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Abstract 
 
Introduction To date, neonatal seizures remain a challenge to many researchers; 

both in the clinical and non-clinical fields worldwide. More compelling laboratory and 

clinical evidences are showing that seizures are harmful to the neonatal developing 

brain and that poor long-term neurodevelopmental outcome has been associated 

with neonatal seizures. The clinical management of neonatal seizures can be 

optimized through more reliable and accurate method of seizure detection, if more 

effective neuroprotective strategies are available in treating these seizure and to 

delineate how these treatment strategies affects the seizure burden in the neonatal 

developing brain.  

 

Aims Information on the characteristics of seizure burden from current population of 

neonates in the neonatal intensive care unit needs to be investigated. This would 

include cooled HIE neonates with hypoxic-ischaemic encephalopathy (HIE) (as 

therapeutic hypothermia has become the standard of care in clinical practice for term 

neonates with HIE) and neonates with stroke, which had been previously known to 

be the second most common identifiable cause of seizures in term neonates. It will 

also be more informative to assess the response of seizure burden inclusively in 

neonates with seizures due to other aetiologies when our current treatment strategy 

of anti-seizure medication is applied.  

The following 4 specific studies were undertaken:  

Study 1: Comparison on the seizure profile between non-cooled versus cooled 

neonates with HIE (the Cooling study).  

Study 2: The characteristics of seizure profile in neonates with stroke (the Stroke 

study), based on detailed characteristics of EEG seizures analysis (the Stroke study), 

Study 3: The response of seizure burden to treatment with anti-seizure medication in 

term neonates (Phenobarbitone study).  
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Study 4: In term neonates, electroclinical dissociation of seizures (ECD) has been 

speculated to have a high occurrence. However, it has not been quantified using 

multichannel EEG and in a cohort of term neonates with multiple aetiologies which 

are presented in the neonatal intensive care unit. This study aimed to determine the 

degree of ECD occurrence in the current population of term neonates with seizures. 

Methods The multichannel video-EEG was used in this research study as the gold 

standard to detect seizures, thus allowing an accurate quantification of seizure 

burden to be ascertained. Neonates more than 37 weeks gestation who were at high 

risk of developing seizures, were enrolled for EEG monitoring as soon as possible 

after delivery. Neonates were recruited from the neonatal intensive care units at Cork 

University Maternity Hospital (CUMH), Ireland and from Elizabeth Garrett Anderson 

Wing. University College London Hospital, London (UCLH), United Kingdom, 

between 5th January 2009 and 1st October 2011. A historical cohort of non-cooled 

term neonates recruited from 1st June 2003 to 31st December 2006, was included for 

comparison with neonates who were cooled.  

The entire EEG recording for each neonate was independently reviewed and 

annotated by at least 1 experienced neurophysiologist. All analyses were done using 

the PASW Statistics 17.0, 18.0, 20.0 and SAS 9.3. Data were treated as non-

parametric and expressed in medians and interquartile ranges (IQR). The interrater 

agreement between 2 electroencephalographers was assessed using a Cohen’s 

Kappa (к) statistic. For comparisons between the two groups (non-cooled and 

cooled), the Mann-Whitney test was used for continuous variables and the χ2 test or 

Fisher’s exact test (in the case of small expected counts) was used for categorical 

variables. For paired comparisons, the Wilcoxon signed-rank test was used. For 

comparisons between groups, group was included as a fixed effect in the linear 

mixed model. Results based on linear mixed models were presented as mean [95% 

confidence interval]. A p value <0.05 was deemed as significant. 
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Results In the Cooling study, thirty seven neonates were identified to have 

electrographic seizures; of these, 31 had recordings that were suitable for analysis 

(16 non-cooled, 15 cooled). Compared with non-cooled neonates, earlier [age: 6 (3-

9) vs 15 (5-20) hours] and longer [88 (75-101) vs 55 (41-60) hours] EEG monitoring 

were undertaken in cooled neonates. Despite this increased opportunity to capture 

seizures in cooled neonates, the recorded seizure burden in the cooled group was 

significantly lower than in the non-cooled group [60 (39-224) vs 203 (141-406) 

minutes; p=0.027]. Further exploratory analysis showed that the recorded seizure 

burden was only significantly reduced in cooled neonates with moderate HIE [49 (26-

89) vs 162 (97-262) minutes; p=0.020] when compared with severe HIE.  

In the Stroke study, nine neonates with perinatal arterial ischaemic stroke seizures 

and EEG monitoring were identified. While EEG continuity was present in all cases, 

the background pattern showed suppression over the infarcted side; this was quite 

marked (>50% amplitude reduction) when the lesion was large (>66% of one 

hemisphere). Characteristic unilateral bursts of theta activity with sharp or spike 

waves intermixed were seen in all cases. Sleep cycling was generally present but 

was more disturbed over the infarcted side. Seizures demonstrated a characteristic 

pattern; focal sharp waves/spike-polyspikes were seen at frequency of 1 to 2 Hz and 

phase reversal over the central region was common. There were more 

electrographic-only than electroclinical seizures (78 vs 22%). 

In the Phenobarbitone study, of the thirty-three neonates treated with 

phenobarbitone, 19 were treated concurrently with electrographic seizures. The 

seizure burden was significantly reduced within 1 hour of phenobarbitone 

administration [mean (95% confidence interval): -14 (-20 to -8) minutes/hour; 

p<0.001]. Seizures abated in 3 neonates while in 16 neonates, I have found that 

seizures returned to levels not significantly different to pre-treatment levels within 4 

hours of first phenobarbitone administration (p=0.064), before seizures returned more 

aggressively requiring further use of second-line anti-seizure medication. Compared 

with 10 mg/kg doses, a subgroup analysis revealed that only phenobarbitone doses 

at 20 mg/kg resulted in a significant reduction in seizure burden (p=0.004).  
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In the Electroclinical dissociation study, the ECD index in the cooled neonates with 

HIE, in non-cooled neonates with HIE, neonates with focal stroke and in neonates 

with other diagnoses were 88%, 94%, 64% and 75% respectively.   

Conclusions Prolonged and continuous multichannel video-EEG monitoring is 

advocated for adequate seizure surveillance. Compared to neonates with severe 

HIE, a decreased seizure burden was noted in neonates with moderate HIE who 

received therapeutic hypothermia. This finding may explain some of the therapeutic 

benefits of hypothermia seen in term neonates with moderate HIE. EEG monitoring 

aids in early identification of neonates with neonates and allows us to delineate the 

true extent of electroclinical dissociation of seizures after treatment has been 

instigated. Electrographic seizures in the absence of clinical seizures can recur with a 

higher incidence, particularly after instigation of treatment and cooling of neonates 

with HIE compared to neonates who had seizures stemming from other diagnoses. 

Further research on the precise mechanistic action of neuroprotective strategies, 

including phenobarbitone in the human developing neonatal brain is required if our 

clinical incentive is to abolish seizures in the developing neonatal brain. A change to 

our current treatment strategy is required, as we continue aiming to strive for more 

effective seizure control, anchored with the use the use of prolonged and continuous 

multichannel EEG as the surveillance tool. 
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Section 1  

 

Introduction to Neonatal Seizures 

 
 



2 

Chapter 1  

Introduction  

1.1 Background of this research study 
Seizures in sick neonates are generally associated with severe neurological consequences 

(Volpe JJ, 2008). There is accumulating and compelling evidence showing that seizures 

are harmful to the developing neonatal brain (Ben-Ari and Holmes, 2006; Friedman and Hu, 

2014; Payne et al., 2014; Shah et al., 2014; Thibeault-Eybalin et al., 2009). The incidence 

of seizures in the neonatal period (the first 28 days for term neonates and before 44 weeks 

of corrected gestational age for preterm neonates) remains higher than other age groups 

(Volpe JJ, 2008).  

 

The incidence of neonatal seizures has been reported to be as high as 57.7 per 1000 

neonates weighing under 1500 grams and 2.8 per 1000 neonates between 2500 grams 

and 3999 grams (Kohelet et al., 2004). Evidently, the reported incidence rate of neonatal 

seizures differs considerably according to geographical area with varying clinical practices, 

gestational ages, birthweights, era when the study was undertaken and the definition used 

for neonatal seizures. Principally, it is also influenced by methods employed in detecting 

seizures in neonates. Accurate seizure detection is crucial if the ultimate aim is to treat 

seizures which may be harmful in the neonate in order to prevent dire long-term 

neurodevelopmental consequences.  

 

Clinical evaluation is an insensitive method of identifying neonatal seizures as 

electrographic seizures will not always be detectable by clinical inspection. Seizure events, 

which have no obvious clinical manifestations have been referred to as ‘occult’, ‘subclinical’ 

or ‘silent’ seizures; the vast majority of neonatal seizures are of this nature (Malone et al., 

2009; Murray et al., 2008; Wusthoff et al., 2011; Yap et al., 2009). Yet, direct visual 

inspection is currently employed in virtually all units where electroencephalogram (EEG) 

monitoring is not available. Contrastingly in neonatal units where EEG is available, the 

amplitude-integrated EEG (aEEG) is widely preferred among neonatologists (Azzopardi, 

2015; Boylan et al., 2010; Boylan et al., 2013; Toso et al., 2014).  

 

However, the aEEG is not a reliable tool for detecting seizures, as it cannot detect seizures 

which are of short duration, low amplitude, that do not generalize (Rennie et al., 2004; 

Shellhaas et al., 2007; Stewart et al., 2010) and seizures originating from other regions not 

detected by the limited aEEG electrode placement. There is also concern in relation to the 

inter-rater agreement particularly among new and inexperienced aEEG users (Boylan et al., 

2010; Boylan et al., 2015; Rennie et al., 2004). To date, prolonged and continuous 
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multichannel EEG monitoring remains the gold standard for detecting seizures in neonates 

(Azzopardi, 2015; Boylan et al., 2013; Boylan et al., 2015; Shellhaas, 2015). However, in 

neonatal units that do not have the availability of a continuous multichannel EEG 

monitoring, it is better to have an aEEG service rather than relying on clinical observation 

alone. 

1.2 Aims and scope of this thesis 
Seizures have been shown to be harmful to the developing neonatal brain leading to poor 

long-term neurodevelopmental outcomes (Ben-Ari and Holmes, 2006; Maartens et al., 

2012; Scher, 2003; Schiering et al., 2014; Thibeault-Eybalin et al., 2009; van der Heide et 

al., 2012). However it remains controversial as to whether the severity of brain injury 

presenting as the aetiology of seizures, the degree of seizure burden itself or both 

contribute to the poor long-term neurodevelopmental outcome seen in this group of 

neonates.  

 

The current strategy for anti-seizure medication usage may need to be revisited as some 

seizures may be treated inappropriately. Seizures are rarely treated under tight EEG 

control. Further in-depth information about the characteristics of seizures before, during 

and after treatment begins is required. This information can only be acquired from 

multichannel EEG: the gold standard for seizure detection in neonates.  

 

A single seizure has been shown to have the ability to alter the homeostatic state of the 

developing brain with adverse consequences (Cornejo et al., 2007). Neonatal seizures 

themselves have been shown to cause further injury and exacerbate existing injury in the 

developing neonatal brain (Thibeault-Eybalin et al., 2009) by increasing the central nervous 

system metabolic demand above energy provision (Wasterlain et al., 2010). Recurrent 

seizures may be deleterious to the brain even without disturbances of ventilation or 

perfusion, and can cause the release of excitatory amino acids such as glutamate (Volpe 

JJ, 2008).  

 

In clinical practice, prolonged seizures potentiate the risk of permanent brain injury and 

treatment becomes progressively more difficult if not instigated promptly after the onset of 

seizure (Boylan et al., 2004; Painter et al., 1999; Payne et al., 2014). Since seizures are 

harmful to the neonatal brain, we need better ways to prevent this harm by identifying 

seizures reliably and treating seizures effectively. My hypotheses are as follows: 
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Hypothesis 1: Therapeutic hypothermia reduces seizure burden in term neonates with 

hypoxic-ischaemic encephalopathy (HIE). 

 

Hypothesis 2: There are characteristic features of electrographic seizures in neonates with 

stroke, hence potentially making the diagnosis earlier than other cranial imaging modality. 

In addition, in the absence of cooling, seizure burden in neonates with stroke may be 

higher than anticipated. 

 

Hypothesis 3: Administered doses of phenobarbitone lower than 20 mg/kg are not as 

effective as at 20 mg/kg. The current treatment strategy clearly questions the effectiveness 

of phenobarbitone in terms of dosage and the timing of administration. 

 

Hypothesis 4: There is a high incidence of electroclinical dissociation (ECD) of seizures in 

term neonates. A new and current cohort of neonates with seizures including cooled 

neonates is needed to confirm and quantify this, so as to determine the dissociation rate 

according to different seizure aetiologies.  

 

In the sick neonate, as part of the first crucial steps in neonatal care, it is essential to 

characterize features of neonatal seizures detected by multichannel video-EEG in order to 

facilitate appropriate and effective treatment in the neonatal intensive care unit (NICU). 

Current information on the characteristics of seizures in term neonates based on the 

evidence from multichannel EEG is required to enhance our medical management of 

neonatal seizures in terms of diagnosis and treatment. We need to have a more effective 

treatment strategy using anti-seizure medication when clinically managing this vulnerable 

group of neonates. In time, this will ultimately lead to better and optimal management of 

neonatal seizures by neonatal teams as a stepping stone to achieve better long-term 

neurodevelopmental outcome in this group of neonates.   

 

In this research study, I aimed to determine the characteristics of seizures in term neonates 

using prolonged continuous multichannel video-EEG recording. To achieve my research 

aims, primarily four studies were completed for this thesis: 

 

Study 1: Characteristics of seizures in neonates with hypoxic-ischaemic encephalopathy: 

non-cooled versus cooled neonates (the Cooling study). To date, therapeutic hypothermia 

has become the standard of care for neonates with hypoxic-ischaemic encephalopathy in 

most tertiary neonatal units, hence it is imperative to examine the seizure characteristics in 

cooled neonates with hypoxic-ischaemic encephalopathy. In this study, I investigated this 
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by quantifying the effect of therapeutic hypothermia on recorded seizure burden obtained 

from continuous multichannel video-EEG monitoring.  

 

Study 2: Characteristics of seizures in neonates with stroke (the Stroke study). Most 

studies have focused on seizures due to hypoxic-ischaemic encephalopathy and less is 

known about seizures caused by stroke, which remains the second most identifiable cause 

of seizures in term neonates. In this study, I describe the characteristic electrographic 

seizure burden and morphology of term neonates with stroke.  

 

Study 3: Characteristics of seizures in neonates treated with phenobarbitone (the 

Phenobarbitone study). As part of the process in assessing the effectiveness of current 

anti-seizure medication treatment strategy, this study aimed to determine the effect of 

phenobarbitone on neonatal seizures specifically in relation to the degree of reduction in 

electrographic seizure burden in term neonates during continuous and prolonged 

multichannel video-EEG monitoring. 

 

Study 4: Characteristics of electroclinical dissociation (ECD) of seizures in term neonates 

(the Electroclinical dissociation study). Electroclinical dissociation of seizures is believed to 

be a common phenomenon, but has rarely been quantified using multichannel EEG and in 

a cohort of term neonates who were either cooled or non-cooled with multiple aetiologies. 

This study aimed to determine the occurrence of this phenomenon in the current population 

of term neonates with seizures. 

 

Section 1 of this thesis introduces the main aspects of neonatal seizures; it comprises of 4 

chapters.  

• An introduction to this research thesis is found in Chapter 1. It comprises the 

hypotheses and aims of this research thesis. 

• It is vital to understand the pathophysiology of neonatal seizure as it forms the 

rationale for treatment of seizures; these are described in Chapter 2. Seizure 

treatment strategies, specifically using anti-seizure medication and/or therapeutic 

hypothermia are also discussed in this chapter.  

• Chapter 3 specifically describes the clinical aspects of seizures and the various 

methods currently used for seizure detection in the NICU; the limitations posed by 

these methods are also highlighted.  

• Seizure recognition using multichannel EEG and the definition of an electrographic 

seizure are also discussed in Chapter 4.  
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In Section 2,  

• Chapter 5 describes the methodology used during the course of this research study. 

The study population, standard protocols, equipment, data collection, storage and 

analysis are described here.  

 

Section 3 comprises the results and discussions of the 4 main studies pursued for this research 

study; they are categorized into 4 individual chapters.  

• Chapter 6 describes the characteristics of seizures between 2 groups of neonates: 

the non-cooled and cooled neonates with hypoxic-ischaemic encephalopathy (the 

Cooling study). 

• Chapter 7 describes the characteristics of seizures in neonates with stroke (the 

Stroke study). 

• Chapter 8 describes the characteristics of seizures in neonates who have been 

treated with phenobarbitone (the Phenobarbitone study). 

• Chapter 9 describes the degree of electroclinical dissociation of seizures in our 

current cohort of term neonates (the Electroclinical dissociation study). 

 

In Section 4, 

• Chapter 10 of this thesis summarizes the conclusive findings derived from this 

research study. Discussions on the implications and future research which can be 

undertaken from this research study are also included.  

 

Section 5 lists the contributions which have been made to the literature from this thesis.  

 

Section 6 contains the references used in this thesis while Section 7 contains the Appendices. 
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Chapter 2  

Pathophysiology of Neonatal Seizures and their Basis for Treatment 
   

Introduction 
In 1870, J. Hughlings Jackson described a seizure as an “excessive discharge of nerve 

tissue on muscle” (Jackson, 1890). He elaborated “this discharge occurs in all degrees, with 

all sorts of conditions of ill health, at all ages and under innumerable circumstances”. 

Epidemiological evidence has shown that the highest risk for seizures occurs in the first 

decade of life, explicitly during the neonatal  period (Silverstein and Jensen, 2007). A 

seizure is a sign or symptom of an underlying diagnosis affecting the developing neonatal 

brain. Seizures are the most common and prominent clinical manifestation seen when 

neurological injury has occurred during the neonatal period (Volpe JJ, 2008).  

2.1 What are neonatal seizures? 

2.1.1 Generation of neonatal seizures 
Regardless of the underlying pathology or aetiology leading to a seizure, the theory is that all 

seizures are due to a shift in cell energy (Gillam-Krakauer and Carter, 2012). In neonates, 

the main theory to this shift in cell energy has been hypothesized as a result from an 

imbalance of inhibitory and excitatory neurotransmitters and from failure of the adenosine 

triphosphate (ATP)–dependent sodium-potassium (sodium-potassium) pump. 

 

Fundamentally, the balance between excitation and inhibition determines whether a seizure 

occurs or not. It is the excitatory component which accounts for the generation of seizures. 

The developmental expression of receptors for inhibitory and excitatory neurotransmitters is 

age-dependent (Khazipov et al., 2004; Ritter et al., 2001); in that the immature brain of the 

human neonate differs considerably from the mature brain of the adult in the development 

and propagation of seizures. As a result of this, in response to an insult or injury to the brain, 

the developing neonatal brain is more susceptible to developing seizures than in the adult 

brain; and several mechanisms have been hypothesized to explain this (Jensen, 2009a; 

Jensen, 2009b). The main basic reasons for the hyperexcitable nature of the immature brain 

have been thought to be due to the enhanced excitatory neurotransmission, decreased 

expression of inhibitory mechanisms, developmental expression of neuronal ion channels, 

and age-dependent modulation of neuro-peptides. 
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Enhanced excitability of the neonatal brain caused by excitatory nature of gamma-
aminobutyric acid (GABA) neurotransmitter 
The human model for seizure generation often describes two main neurotransmitters: 

glutamate and gamma-aminobutyric acid (GABA). In the adult brain, glutamate is the primary 

excitatory neurotransmitter and GABA is the principal inhibitory neurotransmitter (Cherubini 

and Ben-Ari, 2011); the latter prevents the spread of excitatory activity. However in the 

developing neonatal brain, controversy still remains as to whether GABA is inhibitory (Isaev 

et al., 2007; Minlebaev et al., 2007) or excitatory (Ben-Ari et al., 2007; Ben-Ari et al., 2008; 

Volpe JJ, 2008). A delayed in the development of inhibitory mechanisms has also been 

implicated (Moshe, 2000).  

 

The more popular belief is that in the developing neonatal brain, GABA can provide a 

paradoxical excitatory drive due to the predominance of sodium-potassium-chloride co-

transporter isoform 1 (NKCC1) which moves chloride into the cell and the lower expression of 

potassium-chloride co-transporter isoform 2 (KCC2) which moves chloride out of the cell 

(Volpe JJ, 2008) (figure 2.1). This results in a high intracellular chloride concentration in 

immature neurons leading to a depolarization state which renders the immature brain more 

susceptible to seizures (Demarque et al., 2004); as seizures are known to be paroxysmal 

alterations in the neurological function as a result of excessive synchronous depolarization of 

neurons within the central nervous system. 
Figure 2.1 Mode of action of sodium-potassium-chloride co-transporter isoform 1 (NKCC1) and potassium-chloride co-transporter 
isoform 2 (KCC2) in neonatal brain (adapted from Volpe JJ, 2008) 
 
A. The KCC2 pumps chloride out of the post synaptic membrane creating a gradient across the membrane. Release of GABA at 
the synapse opens the chloride channel causing influx of chloride and hyperpolarisation. 
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B. NKCC1 (expressed in preterm less than term) pumps chloride into postsynaptic cell creating a high intracellular concentration. 
GABA released at the synapse open chloride channels and led to chloride efflux and depolarisation. 
 

 
 

There is considerable and growing evidence from animal models and human tissue studies 

showing that neurotransmitter receptors are highly developmentally regulated (Rakhade and 

Jensen, 2009; Sanchez and Jensen, 2001). The reason for GABA having an excitatory effect 

in the immature brain has been linked to the fact that the effects of GABA on chloride 

conductance change with age (Jensen, 2006; Jensen, 2009a). In the more mature cells, 

GABA has been shown to cause hyperpolarization because KCC2 is active. It has been 

hypothesized that the balance between excitatory versus inhibitory synapses is in the favour 

of excitation in the developing neonatal brain, so as to permit robust activity-dependent 

synaptic formation, plasticity and maturation (Rakhade and Jensen, 2009).  

 

There have been concerns of neonatal seizures which are refractory to anti-seizure 

medications and of its severe consequences on long-term neurodevelopmental outcome 

(Boylan et al., 2015; Gutherz et al., 2014; Hellstrom-Westas et al., 2015). Developmental 

stage-specific factors and age-specific mechanisms have been hypothesized to influence 

mechanisms of seizure generation, responsiveness to anti-seizure medications (mainly with 

barbiturates and benzodiazepines), and the potential adverse impact on development of the 

central nervous system  (Jensen, 2009a; Jensen, 2009b; Rakhade et al., 2011). The 

incomplete development of neurotransmitter systems in neonates have been linked to the lack 

of “target” receptors for anti-seizure medications (Puskarjov et al., 2014).  

 

The higher expression of NKCC1 in the developing neonatal brain suggests that seizures may 

be resistant to treatment when a GABA agonist such as phenobarbitone is used (Volpe JJ, 

2008). This is further supported by the fact that when bumetanide (a NKCC1 antagonist) is 

used in experimental models, it reduces intracellular chloride (Dzhala et al., 2010) and had 
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shown efficacy against kainate-induced seizures in the immature brain (Dzhala et al., 2008); 

promoting the idea that GABA may be more excitatory during neonatal brain developmental 

(further discussion in section 2.4). However, an intricately designed European clinical trial has 

shown that bumetanide as an add-on to phenobarbitone does not improve seizure control in 

human term neonates with hypoxic-ischaemic encephalopathy, and that it leads to increase 

risk of hearing loss  (Pressler et al., 2015). Future studies based on more convincing 

pathophysiological evidence are required to develop more effective anti-seizure medications 

to treat neonatal seizures. 

 

Enhanced excitability of the neonatal brain caused by increased expression of glutamate 
receptors  
An over-expression of certain glutamate receptor subtypes in both rodent and human 

developing cortex has been found to coincide with age and its increased susceptibility to 

developing seizures (Sanchez et al., 2001; Sanchez and Jensen, 2001; Talos et al., 2006). In 

neonates, it has been hypothesized that there is a relative excess of excitatory 

neurotransmitters and receptors, and that this increased in neuronal excitability has been 

linked to an increased receptor expression of glutamate receptors; namely the the alpha-

amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and the N-methyl-D-

aspartate (NMDA) receptors (Ben-Ari and Holmes, 2006; Jensen, 2006; Jensen, 2009a). In 

the immature brain, potassium tends to accumulate in the extracellular space, as a result of a 

decreased in sodium-potassium-ATPase activity, and immature enzyme systems.  

 

NMDA receptors (NR) has an obligate known as the NR1 subunit which is also 

developmentally regulated (Jensen, 2009a). In the immature brain, the NR2 subunits are 

predominantly those of the NR2B subunit, which has a functional correlate that has a longer 

current decay time compared with the NR2A subunit, which is the form expressed in more 

mature neurons (Jiang et al., 2007). Other developmentally regulated functional subunits 

include the NR2C, NR2D, and NR3A subunits. Rodent studies show that these subunits 

increased in the first 2 postnatal weeks, exposing them to have a lower sensitivity to 

magnesium, the endogenous receptor channel blocker; and that these factors contribute to 

the increased neuronal excitability in the developing neonatal brain (Wong et al., 2002). 

 

The NMDA receptor has been reported to be selectively activated during plasticity and 

learning, and that the AMPA subtype of glutamate receptor is thought to be involved in 

mostly the fast excitatory synaptic transmission. Due to the enhanced calcium permeability, 

the AMPA receptors in the immature brain, has been hypothesized to play an important role 

in contributing not only to excitability but also to activity-dependent signalling down-stream of 

the receptor (Talos et al., 2006). Both NMDA and AMPA receptors are expressed at levels 
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and with subunit composition that enhance excitability of neuronal networks around term 

gestational age in the human neonate. 

 

Although present in the neonate, the AMPA receptors are not fully functional and the NMDA 

channels do not operate at normal membrane resting potentials; this is because of its voltage 

dependent blockage with magnesium. The effect of depolarization produced by GABA is 

sufficient to remove the voltage-dependent magnesium block from NMDA channels, thereby 

inducing a large influx of calcium into the immature neurons. Rodent studies show that AMPA 

receptor antagonists (for eg: topiramate and talampanel) appear to be potently effective 

against neonatal seizures, and more effective than NMDA receptor antagonists or GABA 

agonists (Aujla et al., 2009; Koh and Jensen, 2001; Liu et al., 2004). 

 

Enhanced excitability of the neonatal brain caused by the configuration of neuronal 
ionic channels  
Ionic channels also regulate the neuronal excitability in the developing neonatal brain 

(Jensen, 2009a). Mutations in the potassium channels, namely the KCNQ2 and KCNQ3 

(which are associated with benign familial neonatal convulsions) interfere with the normal 

hyperpolarizing potassium current that prevents the repetitive firing of action potentials in the 

neurons (Yue and Yaari, 2004). Another related potassium channel subtype known as the 

hyperpolarization-activated cyclic nucleotide-gated (HCN or h) channels are important for 

maintenance of the resting membrane potential and dendritic excitability (Pape, 1996). The 

immature brain has a low expression of the HCN1 isoform, which reduces the dendritic 

excitability in the adult brain (Bender et al., 2001). The maturation of ionic channels can also 

contribute to the cumulative effect in the hyperexcitability state of the immature brain when 

occurring in combination with the differences in ligand-gated channels (Bender et al., 2001; 

Jensen, 2006; Jensen, 2009b).  

 

Enhanced excitability of the neonatal brain caused by neuro-peptides  
An interesting example of a neuropeptide is the corticotropin releasing hormone, which 

releases potent neuronal excitation (Clynen et al., 2014; Dobolyi et al., 2014; Wu et al., 

2012). In the perinatal period, corticotropin releasing hormone and its receptors are 

expressed at higher levels than in later life, specifically in the first 2 postnatal weeks in the 

rat; corticotropin releasing hormone levels increase during stress, explaining perhaps why 

seizure activity in the immature brain may exacerbate subsequent seizure activity (Chu et al., 

2013; Korosi et al., 2010). Neuropeptide modulation has the potential for future treatment of 

neonatal seizures (Clynen et al., 2014; Dobolyi et al., 2014). 
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2.1.2 Propagation of neonatal seizures, status epilepticus and epilepsy 
Glial proliferation, neuronal migration, myelin deposition, establishment of complex axonal 

and dendritic communications are incomplete in the neonatal brain (Volpe JJ, 2008); this 

contributes to the difference in the propagation or spread of seizures when compared to the 

adult brain. The propagation of seizures in the immature developing neonatal brain is 

dependent on subcortical structures, particularly on the communications between the 

superficial and deep grey matter (Holmes and Ben-Ari, 2001; Peng et al., 2013). In the mature 

brain, the propagation of seizures relies on the communications at the level of the cortical 

grey matter of the cortex. The immaturity of the developing neonatal brain explains why 

electrical discharges are incompletely spread and tend to remain localized to one hemisphere 

in the neonatal brain. 

 

If seizures are repetitive, a change in cerebral excitability could lead to status epilepticus 

(prolonged or recurrent seizures) (Lawrence and Inder, 2010) (further discussion in section 

4.3). The Hebbian principle states that “neurons that fire together, wire together” (Hebb, 

1967). This principle hypothesizes that early in development, spontaneous activities are 

generated based on the configuration of neuronal connections in the brain and are 

programmed necessary for function and survival. This supports the theory which 

hypothesized that poor long-term neurodevelopmental outcome of neonatal seizures is due to 

seizure-induced alterations in surviving networks of neurons, even following brief neonatal 

seizures (Ben-Ari and Holmes, 2006; Jensen, 2006; Jensen, 2009a). As a result, epilepsy or 

recurrent seizures beyond the neonatal period is a consequence of a disorder in the neuronal 

network which synchronously discharges. 

 

Rapid increases in synaptic potency have been hypothesized to mimic long-term potentiation, 

and this activation may contribute to enhanced epileptogenesis (Rakhade et al., 2008). In the 

developing brain, the glutamate receptor-mediated molecular cascades have been thought to 

be associated with physiological synaptic plasticity which are over-activated by seizures 

(Cornejo et al., 2007; Rakhade et al., 2008). Many models reveal that neonatal seizures alter 

synaptic plasticity (Rakhade et al., 2011; Stafstrom et al., 2006), and alter the molecular 

signalling cascades (Raol et al., 2006; Sanchez et al., 2005). 

 

In addition to glutamate receptors, inhibitory GABAA receptors can also be affected by 

seizures in early life, resulting in long-term functional impairments. Following hypoxia-induced 

seizures in neonatal rat model, early and immediate functional decreases in inhibitory 

GABAergic synapses mediated by post-translational changes in GABAA subunits are 

observed (Sanchez et al., 2005). There is evidence that some of these changes may be 

downstream of calcium permeable glutamate receptors and calcium signalling cascades, and 
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that early post-seizure treatment with glutamate receptor antagonists or phosphatase 

inhibitors may interrupt these pathological changes which may contribute to the adverse 

neurodevelopmental outcome and epilepsy (Rakhade et al., 2008; Sanchez et al., 2005). 

 

Even less is known about how and why seizures end (Cross, 2014). Neuronal membranes, 

synapses, neurons and interneurons, subcortical structures moderating the balance between 

inhibition and excitation (Lado and Moshe, 2008), effects induced by neuromodulators 

(endocannabinoids, adenosine, neuropeptide Y) depletion of inhibitory neurotransmission 

(glutamate, GABA), failure of gap junction decoupling have been postulated as possible 

contributors as to why seizures end (Cross, 2014). It has also been hypothesized that 

seizures end when there is activation of inhibitory circuits in the neuronal network or changes 

in the ionic environment, such as a reduction in extracellular potassium (potassium currents 

activated by ion entry and loss of ionic gradients) or an elimination of intracellular calcium 

(Holmes and Ben-Ari, 2001). In animal models, seizures have been shown to end 

subsequently when there is depletion of energy substrates (Kovac et al., 2013; Wasterlain et 

al., 2010). 

2.2 Risk factors for neonatal seizures 
Although the neonatal brain is already at high risk of developing seizures compared to the 

adult brain, a subgroup of neonates who are at a higher risk of developing seizures can be 

identified through clinical history and examination. There are various risk factors identified for 

seizures (table 2.1), some of which often serve as inclusion criteria for EEG monitoring in 

neonates and therefore have been chosen for this research study (Chapter 5: Methodology).  

 

 

 
 

 

Risk factors based on pH and Apgar score for assessing hypoxic-ischaemia 
encephalopathy 

According to a recently published national guideline in Ireland (Twomey A and Bowden A, 

2011), therapeutic hypothermia should be considered for term neonates who present with 

clinical signs of moderate encephalopathy within the first 6 hours of age and who fulfill 1 of 4 

of the inclusion criteria namely: 

 

Table 2.1 Risk factors for neonatal seizures (adapted from Rennie JM et al., 2008) 

 

Abnormal cardiotopography in labour 

Depressed Apgar score (<5 at 5 minutes) 

Need for resuscitation at birth 

Low fetal scalp or cord pH (< 7.0) 

Prolonged rupture of membrane 

Maternal pyrexia in labour and post-partum 

Maternal drug abuse 

 

Instrumental delivery 

Emergency Caesarean section delivery during labour 

Neonatal pyrexia 

Abnormal neonatal neurological behaviour 

Family history of neonatal seizures 

Prematurity 

Small for gestational age 
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1. A need for positive pressure ventilation at 10 minutes of age. 

2. An Apgar score less than or equal to 5 at 10 minutes of age. 

3. pH of less 7.0 within the first hour of age. 

4. A base deficit of more than or equal to 16 mmol/L within the first hour of age.  

 

There is no clear diagnostic test for hypoxic-ischaemic encephalopathy (HIE), so sometimes 

it can still be very challenging and difficult to detect the sentinel of events leading to HIE. 

Although the need for ventilation in an attempt to attenuate conditions relating to hypoxia is 

important, the inclusion criterion for positive pressure ventilation at the timeframe of 10 

minutes of age is only arbitrary. In neonates with perinatal asphyxia, combined markers of 

illness such as Sarnat encephalopathy grade, Apgar score, intubation status, and pH had 

only a 25% positive predictive value and a 77% negative predictive value for seizure 

occurrence (Murray et al., 2006a) 

 
Apgar score 
Although the Sarnat score (Sarnat and Sarnat, 1976) and the Thompson score (Thompson et 

al., 1997) have been used to assess the early neurological condition of a neonate at different 

timepoints after delivery, the Apgar score remains the most common system used to assess 

the immediate condition of the neonate shortly after delivery. The Apgar score was originally 

designed by Virginia Apgar (table 2.2), an anaesthesiologist to assess the newborn’s 

response to stress of labour and delivery. It is generally obtained every 5 minutes as in 1, 5, 

10, 15 and even up to 20 minutes until the score is ≥7.  

 

The changes in the scores are generally relied on by clinicians to assess the efficacy of 

resuscitation. In some studies, the 10 minute Apgar score has been shown to be a prognostic 

value in encephalopathic neonates, even Apgar scores at 1 and 5 minutes had been shown 

to be associated with increased risk of later disability (Natarajan et al., 2013). However, the 

assesment of Apgar score is subjective at 1, 5 or 10 minutes and can vary significantly 

among nursing and medical personnel. 

 

 
 
 
 
 
 
 

  Table 2.2 The Apgar scoring system  (adapted from Apgar V, 1953) 
Score 0 1 2       Dr. Virginia Apgar (1909-1974)      

 

 
                                             

Appearance 
(Skin colour) 

Blue or 
pale 

Blue at extremities, 
body pink 

Extremities and body 
pink 

Pulse rate (heart 
rate) 

Absent <100 >100 

Grimace 
(Reflexes) 

No 
response     
to 
stimulation 

Grimace/ feeble cry 
when stimulated 

Cry or pull away   
when stimulated 

Activity (muscle 
tone) 

None Some flexion Flexed arms & legs 
that resist extension 

Respiratory effort 
(breathing effort) 

Absent Weak, irregular, 
gasping 

Strong, lusty cry 
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pH 
According to the American Committee of Obstetrics, the severity of hypoxic-ischaemic 

encephalopathy increases with an umbilical arterial base deficit of 12 to 16 mmol/L (ACOG, 

2006). Moderate or severe hypoxic-ischaemic encephalopathy occurs in 10% of neonates 

who had this level of acidosis and that the rate increases to 40% in neonates who had  

umbilical arterial base deficit of greater than 16 mmol/L at birth. Although pH of less than 7.0 

has been shown to be the most important umbilical blood gas variable for predicting early 

onset of neonatal seizures (Williams and Singh, 2002), cord pH (acidosis) are not sensitive, 

as congenital neonatal sepsis can also present with acidosis (Holcroft et al., 2004).  

 

It has been shown that cord pH is not predictive of hypoxic-ischaemic 

encephalopathy (Murray et al., 2006b) or of neonatal seizures (Jonsson et al., 

2014) but that brain alkalosis and high concentrations of cerebral lactate were 

associated with changes on cranial MRI consistent with severe brain injury (Uria-

Avellanal and Robertson, 2014). Some asphyxiated neonates can appear clinically 

well shortly after delivery. They may not come to medical attention until they 

present with signs of encephalopathy or seizures at a later stage, by which time 

the presumed acidosis after delivery may have been compensated. 

 

Clinical neurological assessment after resuscitation has high inter-observer 

variability. Accompanied with physical examination of the newborn (color, tone and 

cry), routine monitoring of vital signs using peripheral oxygenation and heart rate 

(as in Apgar score) do not reflect the immediate and ongoing states of the 

developing neonatal brain which may have already been compromised by variable 

degrees of hypoxia shortly after resuscitation. Depending entirely on physiological 

measurements may not be as reliable when assessing the severity of hypoxic-

ischaemic encephalopathy.  

 

More helpful to clinicians are information from cerebral physiological variables 

utilizing other feasible means of monitoring brain function in neonates such as 

using cranial ultrasound (static) or continuously (dynamic) by measuring ongoing 

cerebral oxygenation using near-infrared spectrometry and measuring ongoing 

cerebral electrical activity using EEG monitoring (Pichler et al., 2014; Tsuchida et 

al., 2013). During therapeutic hypothermia, monitoring cerebral function becomes 

even more crucial in providing invaluable cues to clinicians in terms of the 

managing the clinical aspects of neuroprotection, if the incentive is to optimize 

improvement in the long-term neurodevelopmental of neonates suspected of brain 
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injury and at risk of developing seizures (Glass et al., 2014; Tsuchida et al., 2013; 

Tsuchida, 2013).  

 

Infection as a risk factor for seizures in the immature brain 
Neonatal seizures can occur in the setting of inflammation resulting from an inter-

current infection, hypoxic or ischaemic injury. Early microglial activation and 

inflammatory cytokine production has been shown to occur in the developing brain 

in both hypoxia or ischaemia  (Huang et al., 2014; Zendedel et al., 2015). Microglia 

have been shown to be highly expressed in immature white matter in rodents and 

humans during cortical development (Billiards et al., 2006). In animal models 

experiencing an acute event of seizures, microglia activation has been 

demonstrated by morphologic changes and rapid production of pro-inflammatory 

cytokines (Abraham et al., 2012; Riazi et al., 2008). 

2.3 Aetiology of neonatal seizures in term neonates 
In term and preterm neonates, the aetiologies associated with seizures are 

different due to the dissimilar maturity of the cerebral structural organization 

between the 2 groups of neonates (table 2.3).  

 

 

 

 

 

 

 

 

 

 

 

There are many causes of neonatal seizures in the term neonate, but only 2 main 

aetiologies are described in this chapter: hypoxic-ischaemic encephalopathy and 

stroke. This is because hypoxic-ischaemic encephalopathy remains the 

commonest cause of seizures in term neonates, while stroke is the second 

commonest identifiable cause of seizures in term neonates. The onset of seizures 

in term neonates with HIE characteristically ranged from 8 to 36 hours after birth 

(Pressler R.M, 2015). This appears to be similar to animal studies in which the 

EEG activity in lambs with an intrapartum insult is at first depressed, and then 

evolves to show electrographic seizure activity approximately 8 hours after birth 

Table 2.3 Causes of seizures in neonates (adapted from Rennie et al., 2008) 
 
Perinatal hypoxic-ischaemia 
Cerebral arterial infarction (perinatal arterial stroke) 
Cerebral venous sinus thrombosis 
Intracranial haemorrhage 
    Subarachnoid haemorrhage 
    Subdural haemorrhage 
    Intraventricular haemorrhage 
    Parenchymal (lobar) haemorrhage 
    Thalamic haemorrhage 
    Cerebellar haemorrhage 
Meningitis or encephalitis (bacterial, fungal or viral) 
Neonatal abstinence syndrome  
    drug withdrawal from selective serotonin 
    reuptake inhibitor, methadone drug intoxication 
Structural cerebral malformations 
 

  
Metabolic causes 
    Hypoglycaemia 
    Hypo/ hypernatraemia 
    Hypocalcaemia 
    Hypomagnesaemia 
    Hyperbilirunaemia (kernicterus) 
Inborn errors of metabolism 
    Pyridoxine dependency 
    Biotinidase deficiency 
    Glucose transporter type 1 deficiency 
    Amino acids, organic acid disorders 
Syndromes 
    Benign familial neonatal convulsions 
    Benign non-familial neonatal convulsions 
    Early infantile epileptic encephalopathy (Ohtahara syndrome) 
    Neonatal myoclonic encephalopathy 
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(Gunn et al., 1992). It was hypothesized that this would strongly suggest an 

antenatal insult which had occurred beyond 8 hours before delivery.  

 

Early background EEG activity is a relatively reliable prognostic indicator for 

outcome (Pressler et al., 2001; Sampath et al., 2014). While therapeutic 

hypothermia has been the shown to reduce seizures in HIE, it has not been 

advocated for neonates with stroke. To date, there is no existing intervention to 

reduce the seizure burden in neonates with stroke effectively; this may explain 

why seizures are still a common occurrence in neonates with stroke. 

2.3.1 Hypoxic-ischaemic encephalopathy (HIE) and seizures 
Birth asphyxia remains one of the leading causes of neonatal morbidity worldwide 

(Lawn et al., 2005a; Lawn et al., 2005b; Lawn et al., 2010) and perinatal hypoxia-

ischaemia which affects approximately one to three per 1000 live term births, 

remains the most common cause of neonatal seizures, accounting for 40% of all 

cases (Volpe JJ, 2008) and is a major cause of long-term neuro-disability and 

death (Lawn et al., 2010; Marlow and Budge, 2005) (figure 2.2). In term neonates 

with hypoxic-ischaemic encephalopathy, seizures occur in approximately 50% of 

neonates with moderate and severe hypoxic-ischaemic encephalopathy (Levene 

et al., 1985; Sarnat and Sarnat, 1976), seizure onset of which is usually within the 

first 24 hours of life (Lynch et al., 2012). Studies completed before the widespread 

use of therapeutic hypothermia, show that traditional first and second-line anti-

seizure medications to control seizures are often ineffective (Boylan et al., 2004; 

Painter et al., 1999).  
Figure 2. 2 The millennium development goal is to reduce child deaths by two thirds by 2015 (adapted from Lawn et 
al., 2010) 
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Seizures have been shown to occur directly as a result of an asphyxial-induced 

brain injury. In experimental models of hypoxic-ischaemic encephalopathy, 

seizures occur either immediately after injury following an asphyxial insult, or in a 

delayed manner 6 to 12 hours after the initial insult when secondary energy failure 

leads to additional cell death (Scher et al., 2008). Gunn et al. found that if 

ischaemia lasted 30 minutes or longer, a stereotypic sequence of depressed EEG 

activity followed by a low frequency epileptiform activity was observed (Gunn et 

al., 1992).  

 

The combination of hypoxia and seizures produces more profound changes in the 

brain rather than either factor alone (Wirrell et al., 2001). In neonatal animal 

studies, seizures add to hypoxic-ischaemic injury; the same may be true in the 

developing human neonatal brain (Miller et al., 2002; Wirrell et al., 2001). These 

seizures are often prolonged, frequent and status epilepticus from hypoxic-

ischaemic encephalopathy is not rare. Histological findings in the hippocampus of 

16 deceased and asphyxiated term neonates showed that there were alterations in 

the blood-brain barrier, increased activation of the microglia and greater 

expression of the inflammatory markers (namely interleukin 1β and complement 

1q) in neonates with seizures when compared with cases which had no seizures; 

this contributes further evidence that seizures lead to secondary brain injury 

(Schiering et al., 2014).  

 

Following an extensive hypoxic-ischaemia insult in piglets at term equivalent age 

to human neonates, Bjorkman et al. demonstrated that seizures were associated 

with increased severity of brain injury (Bjorkman et al., 2010). Irrespective of the 

clinical manifestation of seizures, they showed that seizure activity was associated 

with a significant degree of brain injury as determined by histology, magnetic 

resonance imaging (MRI) and 1H-magnetic resonance spectroscopy. The 

overlapping effects of brain injury from specific aetiologies versus seizure-induced 

brain injury per se, make it difficult to differentiate pre-existing brain lesions from 

direct and injurious effects of seizures themselves (Thibeault-Eybalin et al., 2009).  

 

The severity of seizures in neonates with perinatal asphyxia has been shown to be 

independently associated with brain injury and adverse outcome (Garfinkle and 

Shevell, 2011; Miller et al., 2002). In response to hypoxemia-ischaemia, the 

preterm brain is most vulnerable in the white matter, whereas a term neonate has 

gray matter susceptibility (Back et al., 2007; Jensen, 2006). In a recent study, the 
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presence of neonatal status epilepticus was independently associated with 

epilepsy later on in life (Glass et al., 2011a). All of the children with epilepsy had 

injury noted on neonatal cranial MRI, with the majority who had injury 

demonstrated in the basal ganglia and thalamus. 

 

While examining the temporal distribution of seizures in neonates that did not 

receive therapeutic hypothermia, Lynch et al. found that seizures generally have 

a short period of high electrographic seizure burden followed by a longer period 

of low seizure burden, thereby resulting in an accumulation of seizures near the 

time of seizure onset (a positive skew) (Lynch et al., 2012). Seizures in human 

neonates with hypoxic-ischaemic encephalopathy may exacerbate the initial 

hypoxia-ischaemic injury and require treatment (Ancora et al., 2010; Glass et al., 

2009; Miller et al., 2002; Shah et al., 2014) and there are some that would 

advocate for early seizure control (Boylan et al., 2004; DeLorenzo et al., 1999; 

Painter et al., 1999; Payne et al., 2014). However, this is very difficult to optimize 

without continuous video-EEG monitoring. The effects of cooling on seizures are 

discussed later in section 2.5 of this chapter. 

 

The timing of primary and secondary phase of brain injury in hypoxic-
ischaemic encephalopathy 

The pre-existing state of the neonatal brain such as the degree of maturity (Dennis 

et al., 2013) and the frequency of repeated insults determines the severity of brain 

injury (Mallard et al., 1995). During the normal course of brain development, some 

neurons die (Gluckman and Williams, 1992), therefore many neurons do not only 

die during the asphyxial insult itself. However during hypoxia-ischaemia, the insult 

initiates cascades of processes that operate over a considerable time after the 

event (Gluckman and Williams, 1992), leading to a significant level of neuronal 

death (Lai and Yang, 2011) (figure 2.3).  
Figure 2.3 Cell death pathways in HIE  (Lai and Yang, 2011)  
Copyright © 2011 Lai MC and Yang SN. Perinatal Hypoxic-Ischemic Encephalopathy. J Biomed Biotechnol. 2011; 
2011: 609813. Published online 2010 Dec 13. doi:  10.1155/2011/609813. This is an open access article distributed 
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/3.0/  
 
A. At the molecular level 

http://www.ncbi.nlm.nih.gov/pmc/about/copyright.html
http://dx.doi.org/10.1155%2F2011%2F609813
https://outlook.office.com/owa/redir.aspx?REF=43GN43VzQfD3FtVlBqpHjIab9FdhkWLEjs9UJbSR8bTx1LqluxnTCAFodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS8zLjAv
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When the cell is exposed to a certain degree of hypoxic insult which is sufficient enough to cause failure of the ATP-
dependent sodium/potassium pump it causes sodium influx into the cell which in turn causes membrane 
depolarization. Glutamate release is activated which acts on the NMDA, AMPA and the glutamate receptors which 
causes an increase intracellular calcium levels. Together with the activation of the release of nitic oxide synthase, 
lipase, protease and nucleases, the increase in calcium levels impairs the energy production (ATP) in the 
mitochondrion which is turns causes cell death; and if this cell death is irreversible, cell necrosis occurs. Early cell 
death occurs when there is cell swelling secondary to the chloride and water influx caused by the sodium influx 
when the energy pump failure occurs during a hypoxic-ischaemic insult 

 

Perinatal brain injury as a result from hypoxic-ischaemic encephalopathy in the 

term neonate is thought to be due primarily to a varying degrees of hypoxia and 

ischaemia (Ferriero, 2004; Johnston et al., 2011; Northington et al., 2011). 

Hypoxia describes the process that results from a lack of tissue oxygenation and 

perfusion (Evans DJ et al., 1999). The tissue undergoes a fall in cellular energy 

levels and an accumulation of carbon dioxide and lactic acidosis occurs through 

anaerobic metabolism. In animal models of perinatal hypoxia-ischaemia, 2 phases 

based on cerebral energy state have been commonly described: the primary and 

the secondary phase of energy failure (Antonucci R et al., 2014; Lorek et al., 1994) 

(figure 2.4). 

Figure 2.4 Schematic diagram depicting the primary and secondary phases of energy failure following neonatal 
hypoxic-ischaemic encephalopathy (Antonucci R et al., 2014) 
Copyright © 2014 Antonucci R, Porcella A, Pilloni MD. Perinatal asphyxia in the term newborn. J Pediatr Neonat 
Individual Med. 2014;3(2):e030269. doi: 10.7363/030269. This is an open access article distributed under the 
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/3.0/ 
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In the primary phase of energy failure, reductions in cerebral blood flow, oxygen 

and or substrates, high energy phosphorylated compounds [such as the 

adenosine triphosphate (ATP) and phosphocreatine] have been observed, thus 

leading to tissue acidosis. The primary phase is recognized as an essential basis 

for all subsequent pathologic events. The primary energy failure is associated with 

acute intracellular derangements which included loss of membrane ionic 

homeostasis, release or blocked reuptake of excitatory amino acids and inhibition 

of protein synthesis (Johnston et al., 2001). In fetal sheep model, the resultant 

cerebral ischaemia has been shown to be associated with secondary cortical 

oedema and seizures, reduced final EEG power, loss of sleep state cycling, and 

significant loss of neurons and oligodendrocytes (Davidson et al., 2015; Wassink 

et al., 2015). 

 

If the hypoxia-ischaemia event does not resolve (for example by maturation, 

substrate availability or body temperature), the injury can be aggravated, leading 

then to a secondary phase of energy failure (which has been estimated to be 

about 6 to 12 hours after the primary insult) which can last from hours to days 

(usually 12 to 48 hours) (Cowan et al., 2003; Jensen, 2006). The secondary phase 

                              
Primary cerebral energy failure occurs when there is reduced cerebral blood flow, reduced oxygen and substrates 
supply and high-energy phosphorylated compounds; thus resulting in brain acidosis. When resuscitation is 
undertaken, either brain injury (immediate neuronal death) occurs or that there is a resolution of the hypoxia-
ischaemia insult, thus leading to the normalization of cerebral metabolism and restoring the energy reserves in the 
brain. As time progresses, if there were interventions which took place to restore the energy or oxygen supply of the 
brain leading to reperfusion of the previously affected area to the hypoxia-ischaemia insult, a secondary cerebral 
energy failure. A delayed neuronal death occurs during secondary cerebral energy failure. 
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of energy failure is characterized by further declines in phosphocreatine and ATP 

without brain acidosis (Lorek et al., 1994). In this process, secondary neurotoxic 

mechanisms are activated; leading to the extracellular accumulation of excitatory 

amino acids or neurotransmitters (mainly glutamate) as a result of an increased 

release as well as impaired uptake.  

 

As a consequent to this, over-activation of neuronal glutamate receptors, [mainly 

the N-methyl-D-aspartate (NMDA) receptor] occurs, which results in an excessive 

intracellular influx of calcium (accumulation). The accumulation of intracellular 

calcium causes activation of cell degrading enzymes (lipases, phospholipases, 

proteases and endonucleases) and the production of oxygen free radicals through 

activation of xanthine oxidase, increased prostaglandin synthesis, and activation of 

nitric oxide (NO) synthase.  

 

In the secondary phase of brain injury, other adverse biological events include 

mitochondrial dysfunction (Kristian, 2004; Rousset et al., 2012; Taylor et al., 1999) 

and neuronal hyperexcitability which may or may not be associated with clinically 

evident seizures (depending on whether neurons are involved) (Jensen, 2009b). 

Accumulation of excitatory amino acids probably exacerbates the injury during the 

hyperexcitability of the neurons. The hyperexcitability in itself increases energy 

demands in the compromised brain, but in the absence of seizures, secondary 

neuronal loss can also occur. When the insult is removed, there is a phase of re-

oxygenation, a phase also known as the reperfusion phase, which may be 

associated with the release of cytotoxins such as free radicals that can lead to cell 

destruction. The initial reperfusion phase can last from 10 to 30 minutes, resolving 

the primary intracellular oedema and restoring the cellular energy but neuronal 

activity remains depressed for some hours (Jensen, 2006).  

In animal studies following resuscitation and restoration of cerebral perfusion, 

many surviving cells with depleted but not exhausted intracellular energy stores 

will begin to recover and rising energy stores may be observed. Unfortunately, this 

recovery is short-lived and cellular energy stores can be seen to deplete once 

again despite adequate cerebral perfusion resulting in secondary phase of energy 

failure (also known as delayed cell death) (O'Brien et al., 2006). This phase which 

consists of a fall in cerebral high-energy phosphate is also associated with a rise in 

intracellular pH. 

 

Necrotic cell death is also another prominent process hypothesized in the 

immediate and acute phases of severe cerebral insults, with apoptosis 
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(programmed cell death) being the prominent mode of cell death during the 

secondary phase of injury (Northington et al., 2011). However, apoptosis is a 

biochemical, energy requiring process that can be inhibited at several points in the 

pathway by neuroprotective intervention.  

 

Many effects induced by therapeutic hypothermia can help to reduce the number 

of cells undergoing apoptosis after hypoxic-ischaemia (Xu et al., 2002). The 

presence of a latent phase between primary and secondary energy failure also 

suggests that specific therapeutic interventions such as therapeutic hypothermia 

are possible to prevent brain injury through inhibition of the secondary neurotoxic 

mechanisms.  

2.3.2 Stroke and seizures 
To date, stroke is the second commonest identifiable cause of seizures in term 

neonates. Stroke occurs as a result of a sudden disturbance in the blood 

circulation (artery or venous) to the brain leading to a disruption in the function of 

the brain with pathological or radiological evidence of focal arterial or venous 

infarction (Kirton et al., 2011; Wu et al., 2005). Perinatal arterial ischaemic stroke 

(PAIS) occurs between 28 weeks gestation and 28 days of postnatal age, while 

neonatal stroke occurs within the first 28 days after birth for a term neonate or 

within term equivalent age of 44 weeks for a preterm neonate (Lynch et al., 2002). 

In the neonatal period, stroke is classified into 2 main types: ischaemic stroke and 

haemorrhagic stroke (Venkataraman et al., 2004). 

 

Term neonates with arterial ischaemic stroke often present with seizures during 

the neonatal period even though they may have been considered healthy shortly 

after birth, with normal Apgar scores and cord pH values (Harteman et al., 2012; 

Mercuri et al., 1995). In the neonatal period, the most common clinical seizure 

observed in neonates with stroke is focal clonic in nature, involving the 

contralateral limb to the cerebral infarction.  

 

Neonates with stroke are often non-encephalopathic. A study by Rafay et al. 

compared the EEG characteristics between neonates with PAIS and HIE (Rafay et 

al., 2009); they showed that there was no significant difference in the number of 

neonates who had electrographic seizures (PAIS vs HIE: 7 of 27 neonates vs 13 

of 35 neonates; p=0.350]. In their study, of neonates with stroke, normal 

background EEG was reported in 14 of 27 neonates, background asymmetry was 

noted in 27 neonates, unilateral rolandic periodic slow waves in 2 of 27 neonates, 
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lateralised EEG findings in 9 of 27 neonates and midline EEG findings in 3 of 27 

neonates. The presence of electrographic seizures was noted in 7 of 27 neonates. 

Their results were limited because EEG findings were described exclusively from 

EEG reports which did not enumerate the degree of seizure burden and the 

number of seizure events in neonates with PAIS.  

 

Pathophysiology of stroke 
The pathogenesis of perinatal stroke is complex and multifactorial. According to 

Marret S (Marret et al., 2001), the pathophysiological factors associated with 

perinatal cerebral strokes may include the following: impaired or absent blood flow, 

non- genetic risk factors, genetic diseases and the multifactorial physiopathology 

of perinatal/neonatal strokes. As reported in other immature animal hypoxia-

ischaemia models, the evolution of the neonatal stroke injury is quite prolonged 

(Johnston et al., 2001; Nakajima et al., 2000).  

 

Acute focal ischaemia in the brain is associated with a dense necrotic core in 

which primary neuronal death occurs. This core is surrounded by an ischaemic 

‘penumbra’, which has some residual blood supply (Memezawa et al., 1992). The 

evolution of injury in the penumbra is associated with waves of depolarization 

which deplete remaining cellular energy reserves (Nedergaard and Hansen, 

1993). If ischaemia is permanent, damage progressively extends from the core to 

the penumbra over a few hours under experimental conditions (Folbergrova et al., 

1992).  

 

The infarction in the brain is frequently on the opposite side of the body where the 

clinical signs and symptoms may be manifested (depending on which part of the 

brain is affected). Isolated leg seizures had been noted in a case of infarction of 

the anterior part of the region supplied by the middle cerebral artery (MCA) (Billard 

et al., 1982) and isolated upper limb seizures with posterior truncal of the middle 

cerebral artery stroke had been observed by this group. These findings 

correspond to the penumbra as a partially functional area excited by waves of 

depolarization (Govaert et al., 2009b). However, stroke-induced seizures are not 

always contralateral to the site of infarction (Filipek et al., 1987). It has been 

suggested that due to more extensive brain injury, seizure could not be generated. 

Other types of cerebrovascular lesions other than cerebral infarcts may have 

contributed to the genesis of seizures (Aso et al., 1990). 
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There is evidence that the time window between ischaemia and the development 

of brain infarction in stroke patients may extend beyond 48 hours (Heiss et al., 

1992). In 6 term neonates, Rutherford et al. showed that in the early phase of 

infarction (of up to 2 months), low signal areas with clearly defined margins 

developed at the site of infarction (Rutherford et al., 1997). In the late phase (from 

2 months onwards) growth was seen in the brain at the margins of the infarction 

with the infarcted region showing a marked decrease in size (Rutherford et al., 

1997). Although in some cases the rate of growth into the infarction appeared 

greater than general rate of growth of the brain, in other cases the rate of growth 

at the infarct margins was less than that of the brain as a whole. Growth of the 

undamaged tissue may provide an important mechanism for recovery of the 

developing neonatal brain.  

 

Cerebral blood flow in neonatal stroke 

Messer et al. observed that cerebral blood flow velocity values were completely 

absent or extremely reduced on the affected side of the middle cerebral artery in 2 

patients with unilateral neonatal cerebral infarction during the first months of life 

(Messer et al., 1991). Perlman et al. also demonstrated the transient decreases in 

cerebral blood flow velocity on the affected side compared with the contralateral 

unaffected side of the middle cerebral artery in neonates with cerebral infarction 

(Perlman et al., 1994).  

 

Using a transcranial Doppler, Nishimaki et al. showed that the systolic and 

diastolic blood flow velocities were increased but the resistance index values were 

markedly decreased on the affected side of the middle cerebral artery in the 

neonate who developed hemiplegia with cystic encephalomalacia (Nishimaki et al., 

2001). The authors speculated that the asymmetry in resistance index values may 

result from the focal perfusion after focal ischaemic brain injury by cerebral 

infarction. They concluded that the asymmetry of the cerebral blood flow velocity 

and resistance index values in the neonatal period may be useful to evaluate the 

severity of brain injury and predict later neurodevelopmental outcome of unilateral 

neonatal cerebral infarction in neonates. 

 

It has been shown that a large poroencephalic cyst is the typical evolution of an 

early infarction in the territory of the middle cerebral artery, with or without the 

involvement of basal ganglia, a diffuse atrophy of the hemisphere and the sign of a 

secondary Wallerian degeneration of the cortico-spinal pathway at the brainstem 

level (Gunther et al., 2000). These findings (i.e. basal ganglia and internal capsula 
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involvement and Wallerian degeneration), have an adverse prognostic value to 

surrogate long-term neurodevelopmental outcome for possible evolution of 

hemiplegic cerebral palsy (Gunther et al., 2000) 

 

The left middle cerebral artery in neonatal stroke 

Neonatal strokes are often arterial in origin and ischaemic in nature (DeVeber et 

al., 2001). The distribution of cerebral infarction differs with gestational age. The 

lesions associated with stroke in the preterm neonates are often multifocal, 

involving the cortical and the lenticulostriate branches of the middle cerebral 

artery, rather than the trunk of the middle cerebral artery in term neonates 

(Barnette and Inder, 2009; de Vries et al., 1997). Like adult patients, unilateral 

infarctions of the left common carotid artery are more frequently (3 to 4 times) 

affected than the right in neonates (Estan and Hope, 1997; Govaert et al., 2000; 

Mercuri et al., 1999; Messer et al., 1991).  

 

Approximately 75% of lesions occur on the left side of the brain (Levy et al., 1985; 

Perlman et al., 1994). The predominance of the left middle cerebral artery is poorly 

understood. The predominance of left sided lesions may be the result of vascular 

asymmetry (Trauner et al., 1993) or hemispheric differences in maturation and 

vulnerability (Uvebrant, 1988). Some authors have suggested a thromboembolic 

origin (Barmada et al., 1979; Ment et al., 1984; Nicolaides and Appleton, 1996) 

where up to 54% of cases have been reported (Gunther et al., 2000). Others have 

suggested that emboli originating, either from the degenerating placental vessel 

before birth or in the just-activated pulmonary vascular bed after birth, have the 

ability to pass across the patent ductus arteriosus and access the carotid 

circulation (Coker et al., 1988).  

 

The haemodynamic differences between the right and the left carotid arteries as a 

result of patent ductus arteriosus have been cited mostly as a possible cause for 

the predominance of stroke affecting the left side (Sreenan et al., 2000). The 

transient right to left intracardiac shunt, or from a more direct route through the left 

common carotid artery has been implicated (Sreenan et al., 2000). Contrary to 

this, focal ischaemic injury in neonates who have had extracorporeal membrane 

oxygenation occurred predominantly on the right side. This may be related to the 

right carotid artery which was often ligated during the procedure (Mendoza et al., 

1991).  
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It is important to make an early distinction between the diagnoses in the neonatal 

period, as the approach to clinical management for stroke and hypoxic-ischaemic 

encephalopathy differs (table 2.4). There is currently sufficient evidence of benefit 

for the National Institute for Health and Clinical Excellence (NICE) to endorse the 

use of therapeutic hypothermia for hypoxic perinatal brain injury (National Institute 

for Health and Clinical Excellence (NICE), 2010). However, this has not as yet 

been recommended for stroke, albeit in the future, cooling may emerge as one of 

the potential treatment for perinatal stroke (Harbert et al., 2011; van der Worp et 

al., 2010).  

 

 

 

 

 

 

 

 

Early brain imaging such as computed tomography (CT) and magnetic brain 

imaging (MRI) are of limited use to differentiate stroke and HIE in the immediate 

neonatal period because the affected neonates can be critically unstable for 

transport to the site where neuroimaging is located; requiring ventilation or cooling. 

Although, cranial ultrasound is readily accessible for most neonatologists, it is an 

insensitive tool to detect cerebral infarction at the early stages. Cranial ultrasound 

scans have been shown to have good diagnostic capabilities only when performed 

after day 4 after birth (Cowan et al., 2005), confirmation of diagnosis is only 

reliably achieved with MRI; however this facility is not readily available in many 

institutions.  

 

The role of hypoxic-ischaemic encephalopathy in the pathogenesis of stroke in the 

perinatal period is controversial. Although stroke in the neonatal period has 

previously been attributed to perinatal asphyxia, ascribing a causal hypoxic-

ischaemia event to the pathogenesis of stroke has been proven difficult (Cowan et 

al., 2003). Asphyxia with an element of hypoxia-ischaemia as a cause of perinatal 

arterial ischaemic stroke has been seen in less than 5% (6/134) of cases (Govaert 

et al., 2009a); however hypoxia-ischaemia is a rare cause for unilateral cerebral 

infarction.  

Table 2.4 The comparative differences between neonates with stroke and hypoxic-ischaemic encephalopathy 
 Hypoxic-ischaemic encephalopathy Stroke 
 

 
 

 

Cause of neonatal seizure  Most common Second most common 
Seizure onset  ≤ 24 hours ≥ 12 hours 
Standard of care  Cooled Non-cooled 
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  2.4 Using anti-seizure medication  
During both the pre and post-therapeutic hypothermia era, phenobarbitone has 

remained the most commonly used first-line anti-seizure medication for the 

treatment of neonatal seizures (Bartha et al., 2007; Hellstrom-Westas et al., 2015; 

Vento et al., 2010), despite being shown to be effective only in approximately 50% 

of cases (Boylan et al., 2002; Painter et al., 1999). Many investigators using 

animal models have shown that GABA is excitatory in the developing brain 

(Khazipov et al., 2004).  

 

The developing neonatal brain may be resistant to GABA agonist such as 

phenobarbitone as a result of the higher concentration of intracellular chloride and 

because of the lower expression of the GABA receptors; both of which may 

account for the lesser sensitivity to benzodiazepine when compared to the adult 

brain (figure 2.5). This ineffectiveness has also been hypothesized to be related to 

the immaturity of neurotransmitters such as gamma-aminobutyric acid (GABA) in 

the developing neonatal brain (Jensen, 2009a).  

 

Phenobarbitone, a barbiturate is believed to prolong the action of GABA (hence a 

GABA agonist) acting mainly on the GABAA receptors in the adult brain model 

(Jones AW et al., 1950). To date, only 19 subunits constituting the GABAA 

receptors have been discovered in the human adult brain (Sieghart et al., 2012); 

hence the complete structure of the GABAA receptor has not yet been fully 

deciphered (Loscher and Rogawski, 2012), let alone in the developing neonatal 

brain. Some GABAA receptors may be present in the neonatal brain; experiments 

have shown that phenobarbitone was only selective for the neocortex (Olsen RW, 

2002), particularly in certain parts of the thalamus at very high and potentially toxic 

doses (Mathers et al., 2007). Interestingly in the adult brain, it is speculated that 

phenobarbitone may activate the GABAA receptor through different mechanisms 

by inducing different conformational changes in the GABAA receptor structure 

(Eaton et al., 2012; Mercado and Czajkowski, 2008; Muroi et al., 2009); this 

uncertainty may also occur in the developing neonatal brain.  
Figure 2.5 The difference between neonatal and adult based on neuronal chloride gradient and the mechanism of 
action by GABA agonist (Mruk et al., 2015) 
Used with permission of the copyright holder, © 2015 Pediatric Pharmacy Advocacy Group. First published in Mruk 
AL, Garlitz KL, Leung NR. Levetiracetam in neonatal seizures: a review. J Pediatr Pharmacol Ther. 2015;20:76-89. 
Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418685/ (Accessed 12 January 2016)   
                                       Neonatal                                            Mature 
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During development of the neonatal brain, the excitatory (glutamate) neurotransmitters and receptors mature 
slightly faster than inhibitory (gamma-aminobutyric acid [GABA]) neurotransmitters and receptors. The chloride 
(Cl¯) gradient in neonatal neurons is reversed compared to that in the pediatric and adult brain, with higher 
intracellular Cl¯ concentrations in neonates rather than the lower extracellular Cl¯ concentrations in the more 
mature brain. This reversed gradient is due to overexpression of the sodium-potassium-chloride Cl¯ importer 
(NKCC1) and under-expression of the potassium-chloride exporter (KCC2). KCC2 is not fully expressed until the 
end of the first year of life; therefore, minimal Cl– is exported, resulting in synaptic firing. The combination of 
decreased GABA function, increased glutamate function, and reversed Cl¯ gradient potentially renders the 
developing neonatal brain to be excitatory and decreases the neonatal seizure threshold as in that it is more 
susceptible in developing seizures. 

 

If GABA agonists facilitate further seizures in the immature developing brain, then 

phenobarbitone should increase seizures around the time when is administered 

during ongoing seizures. Yet, this is never seen in clinical practice. GABA 

antagonists however, have not been shown to reduce seizures (Moshe, 1987). 

Most of what we understand about the paradoxical effect of GABA in the 

developing brain is derived from animal studies and these have merit, but the 

clinical situation in the human neonate might be very different and more complex 

than currently hypothesized in the literature (Ben-Ari et al., 2007; Ben-Ari, 2012).  

 

Additional anti-seizure effects of phenobarbitone have been shown to be 

associated or interlinked to its ability to inhibit some voltage-activated ion channels 

particularly voltage-activated calcium channels (Schober et al., 2010) and to block 

non-N-methyl-D-aspartate receptors (Nardou et al., 2011a). Therefore the anti-

seizure effect of phenobarbitone is not likely to be explained solely by its effect on 

the GABAA receptors, and its ability to block other ion channels cannot be 

dismissed in the developing neonatal brain. Furthermore, to know how 

phenobarbitone precisely works as an anti-seizure medication, future research 

should delve into unearthing the precise location for its binding sites on the 

GABAA receptor, its action on other ion channels or other possible mechanisms in 

the developing neonatal brain.  
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Other unidentifiable subunits or alternative inhibitory systems may be implicated, 

creating a pathway for phenobarbitone to be effective in reducing seizure burden 

in the early neonatal period and in the Phenobarbitone study (discussed in greater 

detail in Chapter 8). At later stages of seizure progression during recurrent 

seizures, Nardou et al. hypothesized that the change (increase) in the 

concentration of intracellular levels of chloride may enhance the excitatory 

component of GABA, causing GABA agonists such as phenobarbitone to be 

ineffective in reducing seizure burden (Nardou et al., 2011b).  

 

Another possible reason may be due to the pharmacoresistance of 

phenobarbitone acting on the GABAA receptors when phenobarbitone is given at a 

later stage of ongoing seizures (Jones et al., 2002). Based on an adult rodent 

model of status epilepticus treated with diazepam versus phenobarbitone, Jones 

et al. (Jones et al., 2002) found that the abolition of seizure was expedited when 

phenobarbitone was instigated at less than 10 minutes compared to more than 10 

minutes from onset of either clinical or EEG seizures. To explain the theory on 

pharmacoresistance of phenobarbitone towards GABA, 4 possible hypotheses 

were offered: a change in the GABA subunit (loss of γ2 subunit replaced by δ 

subunit of GABAA receptor); activation of a non-functional 'spare' GABAA receptor; 

uncoupling of receptors (relating to the massive release of GABA during ongoing 

seizures) and the post-translational modification of GABAA receptor (Jones et al., 

2002). Whether these mechanisms apply to the developing neonatal model are yet 

to be investigated.  

 

Alternatively, for phenobarbitone to exert its anti-seizure ability, a certain degree of 

inhibition in the brain may be required. Although there have been many theories 

hypothesizing the excitatory action of GABA present in the neonatal brain, some 

inhibitory action of GABA in the developing neonatal brain has been demonstrated 

as early as during the first postnatal week (Isaev et al., 2007; Tyzio et al., 2006). In 

rodents, the release of GABA originating from the hippocampus has been shown 

to cause inhibition (Dzhala et al., 2012; Wong et al., 2005). These studies suggest 

that phenobarbitone indeed has the ability, to some degree, to reduce seizures in 

the immature brain. Therefore, further studies are required to investigate the 

inhibitory action of GABA in the human neonatal brain which will shed further light 

on why phenobarbitone is able to reduce seizures if administered soon after 

seizure onset. 
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During the initial stage of treatment, the response of seizures to first-line anti-

seizure medication is unpredictable, prompting the use of second-line anti-seizure 

medication in most cases if there were persistence of clinical seizures (Glass et 

al., 2012; Malone et al., 2009; van Rooij et al., 2013b; Wickstrom et al., 2013). 

However, there is variation as to the choice of the second-line anti-seizure 

medication (Boylan et al., 2004; Hellstrom-Westas et al., 2015). There is still no 

consensus among neonatologists today as to what incremental dose of 

phenobarbitone and which type of second or third-line anti-seizure medication 

should be appropriate when first-line anti-seizure medication such as 

phenobarbitone failed to control seizures in neonates (Hellstrom-Westas et al., 

2015; van Rooij et al., 2013a). 

 

A recent international survey revealed that more than 70% of neonatologists, 

neurologists and specialists in neonatal neurocritical care still use phenobarbitone 

as the first-line anti-seizure medication (Bartha et al., 2007; Glass et al., 2012), 

more than 40% used phenytoin as second-line and more than 13% used 

lorazepam as third-line anti-seizure medication to treat neonatal seizures (Glass et 

al., 2012). This practice is based on tradition and individual protocol rather than on 

evidence-based medicine. There is no consensus on the optimal time to 

discontinue anti-seizure medication (Bartha et al., 2007; Glass et al., 2012; 

Hellstrom-Westas et al., 2015; Wickstrom et al., 2013). Treatment of neonatal 

seizures needs to reflect effectiveness and perhaps we need to change our 

current strategy of treating neonatal seizures in our neonatal units. 

 

Bumetanide is a loop diuretic which has been proposed as an adjunct to 

GABAergic drugs like phenobarbitone to help overcome the depolarizing action of 

immature neurons to GABA agonists (Cleary et al., 2013). Further experimental 

work has shown that when bumetanide (a NKCC1 antagonist) is used, it reduces 

intracellular chloride leading to the attenuation from the normally excitatory 

response of immature cells with high NKCC1 expression to an inhibitory response 

(Glass, 2014; Khanna et al., 2013), and suppresses seizures (Dzhala et al., 2010). 

It has also been shown to enhance the action of phenobarbitone in neonatal rats 

(Cleary et al., 2013).  

Bumetanide blocks the excitatory nature of GABA by reversing the chloride 

gradient, phenobarbitone then enhances the GABA receptors to maintain that 

chloride current in the channels. However, Puskarjov et al. suggested that since 

bumetanide remains suboptimal due to its lack of target specificity, studies 

focusing on developing more specific NKCC1 inhibitors with its increased in 
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central nervous system penetration, direct and indirect strategies to enhance 

KCC2-mediated neuronal chloride extrusion, may pave the way to better 

therapeutic modulation of the GABAergic system for the treatment of neonatal 

seizures (Puskarjov et al., 2014). Further work should investigate whether 

bumetanide has any merit when used as an adjunct with phenobarbitone in the 

neonatal intensive care unit (Pressler et al., 2015; Pressler and Mangum, 2013). 

 

Levetiracetam is potentially a useful anti-seizure medication in neonates despite 

its limited data on its efficacy (Glass et al., 2012; Silverstein and Ferriero, 2008). 

Levetiracetam has been shown to be an effective anti-seizure medication by 

reducing more than 50% of the seizure burden within 24 hours in 8 of 23 neonates 

with no adverse effects (Abend et al., 2011). The mechanism of action of 

levetiracetam continues to be evaluated and has not been fully elucidated. 

Levetiracetam is a pyrrolidine derivative antiepileptic that binds to the synaptic 

vesicle protein synaptic vesicle glycoprotein 2a (SV2a), which is expressed 

throughout the brain. When levetiracetam is binded to SV2a, neurotransmitter 

release and vesicle transport are impeded within the neuron (Talos et al., 2013; 

Yang and Rothman, 2009). Because the SV2a is found in all areas of the brain, it 

can treat partial seizures that arise in various regions of the brain, as seen in 

neonatal seizures. Unlike phenobarbitone and phenytoin, levetiracetam was 

shown to be devoid of proapoptotic actions in animal models (Forcelli et al., 2012; 

Kim et al., 2007; Manthey et al., 2005).  

 

Midazolam is one of the most widely used sedatives in the neonatal intensive care 

unit and is used when seizures are refractory to phenobarbitone use (Castro, Jr. et 

al., 2005; Hu et al., 2003; Sheth et al., 1996; Sirsi et al., 2008). The sedative and 

anti-seizure properties of midazolam are related to GABA accumulation and 

occupation of benzodiazepine receptors (Pacifici, 2014). In a non-randomized 

study, all seizures were rapidly controlled with midazolam in 13 non-responders to 

phenobarbital/phenytoin (Castro, Jr. et al., 2005). Sirsi et al. reported status 

epilepticus due to different aetiologies in three neonates who did not respond to 

phenobarbital and phenytoin but responded to a midazolam infusion (Sirsi et al., 

2008).  

Lidocaine is also widely used for refractory neonatal seizures in most neonatal 

units (Lundqvist et al., 2013; Malingre et al., 2006; van den Broek et al., 2013). 

Some authors have indicated that lidocaine is an effective drug for refractory 

seizures as second- or third-line treatment with response rate varying from 70% to 

92% (Shany et al., 2007; Yamamoto et al., 2007). In a study by Boylan et al., three 
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of five infants responded to lidocaine as a second-line drug after phenobarbital 

(Boylan et al., 2004).  

 

Topiramate has been shown to have multiple mechanisms of anticonvulsive action 

in animal models of seizures and brain injury (Cha et al., 2002; Liu et al., 2004), 

and has been shown to be an effective neuroprotective agent with its safety and 

efficacy established as an anti-seizure medication in neonates (Glass et al., 

2011c). A recently developed intravenous preparation of topiramate has been 

shown to be well tolerated in adult volunteers; it has been shown to have 

equivalent bioavailability to the oral formulation and this anti-seizure medication is 

promising for use in neonates (Clark et al., 2013).  

 

2.5 Using therapeutic hypothermia to treat neonatal seizures  

Cold, as a simple and easily accessible element, is among man’s earliest 

remedies (Wang et al., 2006). The use of cold as a therapeutic agent has had a 

long and colourful history in both medicine and surgery (Wang et al., 2006). The 

concept of hypothermia as a treatment of brain injury is not new  (Floyer J, 1674) 

(figure 2.6). The use of hypothermia in the treatment of asphyxia was suggested 

65 years ago by JA Miller Jr. whose treatment was based on a well-known fact 

that rates of chemical reactions including those involved in living processes 

depend upon temperature (Miller JA. et al., 1964). Since 1884, this is known as 

the Van’t Hoff’ rule (van't Hoff JH, 1884) which states that the rates of chemical 

reactions increase two times or more for each 10°C rise in temperature. 

 

 

 

 

 

 

 

 

 

Figure 2.6 Ancient records on cooling in infants (Floyer J, 1674) 
 

a) Record of cooling in the 17th century 
 

b) Description of a neonate with HIE in the 17th century 



35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the 1960s, Miller and Westin (Miller JA. et al., 1964) studied the physiologic 

basis for the neuroprotective role of hypothermia in the treatment of “asphyxia 

neonatorum,” firstly in newborn animals and then in human newborns. When 

conventional resuscitation techniques failed, they demonstrated an improved 

survival without cerebral palsy or mental retardation when neonates that were 

apnoeic after delivery were cooled rapidly to core temperatures of 23 to 32°C. 

Bernard et al. provided the preliminary observations in which treatment with 

moderate hypothermia appears to improve outcomes in adult patients with coma 

after resuscitation from out-of-hospital cardiac arrest (Bernard et al., 2002). 

Cerebral reperfusion injury occurs when cerebral blood flow is restored after 

cardiac arrest and resuscitation.  
 
Perinatal asphyxia is one of the most damaging of neurologic processes and 

remains an important cause of long-term neurodisability and death (Edwards et al., 

2010). The timeframe in which hypothermia used as a treatment option has often 

been closely discussed together with the mechanism of brain injury incurred by 

hypoxic-ischaemic encephalopathy and this is discussed below. 

 

 

 
 

 

Old record showing describing an infant with encephalopathy and how the effects of cold bathing improved the 
health of the infant as it stated “Such infants have weak limbs and a stupidity of their minds. The cold immersion 
will strengthen the limbs and clear the head and excite the sensitive soul to act more vigorously’’ 
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Effects of cooling on seizures 
At the molecular level, cooling can directly or indirectly affect the key roles of ion 

channels, particularly voltage-gated sodium channels involved in seizure 

generation (Motamedi et al., 2013). Increased intracellular levels of glutamate 

(which is an excitatory neurotransmitter released from presynaptic terminals) 

activate ion-channel complexes that cause calcium to shift from the extracellular to 

the intracellular fluid, leading to the accumulation of oxygen free radicals and the 

activation of degradative enzymes which are damaging to the brain. 

Neuroprotection occurs when hypothermia reduces the glutamate level and the 

subsequent production of oxygen free radicals (Nakashima and Todd, 1996).  

 

Further at the molecular level, hypothermia reduces neuronal activity, decreases 

energy requirements for intrinsic cellular support and membrane homeostasis 

(Bennet et al., 2001; Nakashima and Todd, 1996; Tooley et al., 2003), and 

reduces the cerebral energy metabolism during the primary injury phase, thus 

delays the progression of primary damage and alleviates post-reperfusion injury. 

Some studies  have shown that cooling markedly delayed apoptosis even when it 

does not completely suppress it (Azzopardi et al., 2009; Gunn et al., 2005). 

Wassink et al. suggested that there may be secondary processes pioneering a 

cascade of deleterious events involved in the "execution" phase of cell death 

(Wassink et al., 2014); these events may explain some of the morbidity and 

mortality observed in neonates with hypoxic-ischaemic encephalopathy who had 

received therapeutic hypothermia. 

 

In animal studies, several experiments have demonstrated the effects of 

hypothermia on seizures (Bennet et al., 2001; Busto et al., 1989; Globus et al., 

1995; Nakashima and Todd, 1996; Tooley et al., 2003). In fetal sheep, 

hypothermia was associated with a marked reduction in the amplitude of seizures 

and other epileptiform activities in the first 6 hours after a complete umbilical cord 

occlusion (Bennet et al., 2001). In a piglet model of asphyxia, the duration of 

individual electrographic seizures were reduced in the cooled group when 

compared to the non-cooled group (Tooley et al., 2003). Hypothermia to 30 or 

33°C has been shown to completely inhibit the release of glutamate in a rat model 

of cerebral ischaemia (Busto et al., 1989). Other effects of hypothermia such as 

reduced cytotoxic oedema by reducing amino acid release (Nakashima and Todd, 

1996) and inhibition of free oxygen radicals (Globus et al., 1995), may have an 

impact on the reduction in seizure burden. Whether the amplitude, morphology 
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and distribution of electrographic seizures in cooled neonates differ from that in 

non-cooled neonates will require further investigation. 

In a rodent study, rapidly cooling the cortex to 20 to 25°C as quickly as possible 

after seizure onset and maintaining cooling for 0.5 to 2 minutes, showed that the 

average seizure duration was dramatically reduced by 90% (Hill et al., 2000). 

Cooling reduced seizure duration from 68.7± 18.7 seconds to 42.8 ± 13.9 seconds 

(p<0.05) and seizure frequency (total number of subsequent seizures during a 70 

minute observation period) from 20.6 ± 10.7 to 6.4 ± 6.2 (p<0.05). After two 

periods of cooling, the frequency and duration of subsequent seizures were 

significantly reduced. This effect observed in in-vitro experiments suggests that 

cooling might have other anti-seizure effects (Hill et al., 2000).  

 

Rewarming seizures or seizures following discontinuation of 
therapeutic hypothermia 

With the advent of therapeutic hypothermia, neonatologists now have to deal with 

rewarming seizures, but there are only a few reports on this so far (Battin et al., 

2004; Kendall et al., 2012; Shah et al., 2014). Rewarming seizures can be 

common (Battin et al., 2004; Shah et al., 2014) and can continue unabated even 

after the rewarming period (Kendall et al., 2012). There is no direct explanation as 

to why seizures occurred during rewarming. However, the main hypothesis which 

has been postulated is that rewarming seizures may be due to the re-accumulation 

of chemicals which are involved in the seizure generation pathway leading to the 

re-ignition of the seizure pathway; which had been either in a state of decrease or 

stagnant production or under-expressed during cooling. In a rabbit model which 

were cooled to a core temperature of 33°C, a decrease in nitric oxide production 

and hippocampal cell loss were noted during kainate-induced seizures (Takei et 

al., 2005). During rewarming, there was an increased in nitric oxide production in 

the hippocampus during seizures (Takei et al., 2005).  

 

The incidence of rewarming seizures remains speculative. Although there has 

been valid explanation in theory of its pathophysiology suggesting that it can be a 

common occurrence, it remains a rarity and anecdotal in clinical practice (Battin et 

al., 2004; Gerrits et al., 2005; Shah et al., 2014). Perhaps one of the reasons to 

this is because most neonatal seizures are subclinical, and that without EEG 

monitoring, rewarming seizures may have been missed and remain undetected. 

Although some studies have speculated that rewarming seizures are benign 

(Kendall et al., 2012; Shah et al., 2014), further studies are required to establish 

their significance. 
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Seizure recognition by clinical observation and aEEG during cooling 

Previously published neonatal hypothermia trials could not accurately measure 

seizure burden as their protocols did not include early, prolonged and continuous 

multichannel EEG monitoring. These studies used clinical (Kwon et al., 2011) 

and/or aEEG monitoring (Edwards et al., 2010; Simbruner et al., 2010) for seizure 

recognition. The recently published Neonatal Research Network Whole Body 

Hypothermia Trial relied on clinical recognition of seizures only (Kwon et al., 2011) 

and when the authors adjusted for hypothermia and severity of encephalopathy, 

hypothermia did not appear to have any impact on the frequency of clinical 

seizures and outcome. However, clinical estimation of seizure burden is 

notoriously unreliable with the majority of neonatal seizures being subclinical 

(Malone et al., 2009; Murray et al., 2008). Subclinical seizures have been reported 

to be prevalent even in neonates treated with therapeutic hypothermia (Yap et al., 

2009).  

 

When available in some participating neonatal institutions in the Total Body 

Hypothermia for Neonatal Encephalopathy (TOBY) trial (Azzopardi et al., 2009), 

the aEEG (not restricted to any number of channels) had been used for 

recruitment and as a monitoring tool during therapeutic hypothermia. At 

recruitment, clinical seizures and seizures detected by aEEG (did not specify how 

many channels were used) were present in 67% (74 or 110) of neonates and 29% 

(33 of 115 neonates) of neonates respectively. The TOBY trial considered 

seizures as a complication during therapeutic hypothermia, with a decreasing 

incidence from day 1 to 4 (90% to 23%). Both clinical recognition of seizures and 

the aEEG are known to underestimate the actual true seizure burden (Boylan et 

al., 2013). The aEEG cannot detect short seizures, seizures which do not 

generalize and low voltage seizures (Boylan et al., 2013; Rennie et al., 2004). 

Furthermore, there is also a degree of inter-observer variability in aEEG 

interpretation (Boylan et al., 2013; Rennie et al., 2004; Shellhaas et al., 2007).  

 

At present, the TOBY registry lead by Azzopardi et al., has not made brain 

monitoring as a prerequisite for cooling (Azzopardi D et al., 2007). They had 

recommended that if possible, some form of cerebral function monitoring be 

performed on neonates receiving therapeutic hypothermia either before the 

induction of cooling or as soon as possible during cooling. Prolonged monitoring 

should be extended long after cooling has been discontinued as rewarming 

seizures may go undetected without EEG monitoring, and that the multichannel 

EEG monitoring is crucial to detect electroclinical dissociation of seizures. A longer 
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EEG recording time will increased the possibility of capturing more seizures and 

using multichannel EEG will not miss seizures arising from other cerebral regions 

brain, which will inherently be missed when monitoring with the aEEG (which uses 

the limited electrode placement). 

 

2.6 Using anti-seizure medication during therapeutic hypothermia to treat 
            neonatal seizures   
Although the use of  phenobarbitone as a monotherapy has been shown to be 

ineffective for the treatment of seizures in many neonates, phenobarbitone has 

been rendered more effective when co-administered with other forms of treatment 

such as with therapeutic hypothermia (Barks et al., 2010). In a rodent study, 

phenobarbitone was shown to augment the therapeutic effect of cooling (Barks et 

al., 2010). As an anti-seizure medication, phenobarbitone has the potential to 

reduce endogenous heat production and thus exaggerate the fall in temperature 

during active cooling. In the setting of therapeutic hypothermia, phenobarbitone 

has been shown to contribute to neuroprotection by decreasing the antioxidant 

effects, decrease cerebral oedema and cerebral metabolic demand (Barks et al., 

2010), which may in turn exert its anti-seizure effects. 

 

It is known that that the half-life of phenobarbitone is significantly increased when 

neonates are treated with hypothermia (Filippi et al., 2011), and with reduced 

hepatic metabolism during hypothermia, plasma drug levels will accumulate (Roka 

et al., 2008). The bioavailability of phenobarbitone in neonates is usually longer 

ranging from 45 to 500 hours (Takemoto CK et al., 2012); it can be variable 

depending on circumstances (e.g.: renal and hepatic enzyme excretion and 

metabolism, drug distribution and clearance during therapeutic hypothermia) 

(Faught, 2001; Filippi et al., 2011; Shellhaas et al., 2013; van den Broek et al., 

2012) and is different from adults (Marsot et al., 2013). Van den Broek et al. 

assessed the pharmacokinetics of phenobarbitone in a cohort of 31 neonates (≥36 

weeks gestation) with HIE who were cooled (van den Broek et al., 2012). The 

authors advocate the use of up 40 mg/kg of phenobarbitone in total before 

proceeding to a second-line anti-seizure medication as plasma levels remained 

below therapeutic range during therapeutic hypothermia. Based on a study 

undertaken before the era of therapeutic hypothermia, phenobarbitone doses 

higher than 40 mg/kg have been shown to increase neuronal apoptosis (Gilman et 

al., 1989).  
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In a mouse model, therapeutic hypothermia and histone deacetylase inhibitors, 

such as valproic acid, independently have been shown to have neuroprotective 

properties in models of cerebral ischaemic and traumatic brain injury (Jin et al., 

2014). Hypothermia has been shown to increase the blood concentration of anti-

seizure and anaesthetic drugs (Filippi et al., 2011; Tortorici et al., 2007). The 

particular dosing of anti-seizure medication during cooling may have to be further 

investigated to assess whether the dosing is optimal. Furthermore, 

pharmacokinetic data in neonates differs significantly from older children and adult 

(Allegaert et al., 2008); normative neonatal data is not available, as a placebo 

group of non-cooled neonates is not ethically possible to obtain nowadays.  

 

Sedative and anaesthetic drugs have also been shown to facilitate the therapeutic 

effects of hypothermia (Tooley et al., 2003). Based on the timing of hypoxia-

ischaemia and in the setting of hypothermia, there are many potential and possible 

anti-seizure medications which have been hypothesized to work. Lidocaine has 

been shown to be neuroprotective (van den Broek et al., 2011) and xenon, a 

potent anaesthetic agent has been shown to reduce seizures (Azzopardi et al., 

2013; Lobo et al., 2013) when combined with cooling  (Thoresen et al., 2009).  
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                     Chapter 3 
 
Clinical Manifestation and Detection of Neonatal Seizures   
 
Introduction 

In neonatal units worldwide, clinical detection of neonatal seizure is an ongoing 

problem and remains a challenge for nursing and medical personnel. For parents 

and families, witnessing a seizure is a devastating experience. Nonetheless, some 

neonates may display clinical behaviours which are suggestive of seizures but do 

not have an electrographic correlate. Early and accurate recognition of seizures in 

neonates through cotside training of nursing and medical personnel is an 

important step for the clinical management of neonatal seizures (Glass et al., 

2010). However in the neonate, seizure recognition and physical examination have 

proven inadequate and unreliable among nursing and medical personnel (Malone 

et al., 2009; Murray et al., 2008) (figure 3.1). 

 
Figure 3.1 Clinical neonatal seizures detected clinically are only the tip of the iceberg (adapted from  (Murray et al., 
2008) 
 
 

 
 

Seizure detection with continuous electroencephalogram monitoring is more 

accurate than clinical observation, but it required interpretation from specialized 

experts which may not be available in most neonatal intensive care units (NICUs). 

As a result to date, a more popular method to assess and monitor cerebral 

function in sick neonates is to use the amplitude-integrated EEG (aEEG), which is 

a simplified method of EEG recording, which is based on easy-to-interpret pattern 

recognition of compressed EEG output trends, generated from one or two 

channels. However, it can be problematic with errors for clinical interpretation as 
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short duration and low amplitude seizures can be missed, artefacts which can look 

like seizures may be misinterpreted as actual seizures; thus treatment of seizures 

may be misguided and suboptimal. Some authors have found that seizure 

detection with the use of the aEEG has been proven to be disappointing, albeit its 

sensitivity has been quoted to be close to 80% in some studies where experienced 

raters were used (Shah et al., 2008; Shellhaas et al., 2007; Toet et al., 1999). To 

optimize brain monitoring in neonates who are at high risk of developing seizures, 

multichannel EEG monitoring is required. A promising alternative centers on the 

development of a neonatal automated seizure detection algorithm (NASDA) which 

ultimately may provide the solution to these perplexities (Boylan et al., 2015; 

Boylan and Rennie, 2006). 

3.1 Manifestation of neonatal seizures 
Physically, neonatal seizures have been defined as abnormal, stereotyped, 

paroxysmal alterations in neurological function(i.e. motor, autonomical or 

behavioural) (Volpe JJ, 2008), in the first 28 days after birth in term neonates, or 

before 44 weeks of gestational age in preterm neonates (Thibeault-Eybalin et al., 

2009). However, the accurate definition of neonatal seizures can no longer rely on 

the classification of clinical manifestations; multichannel EEG is required to detect 

all neonatal seizures and remains the gold standard for the detection of neonatal 

seizures. This implies that the recognition and quantification of seizures in 

neonates rests solely on the gold standard of seizure detection. Furthermore, the 

Neurology Group on Neonatal Seizures has recommended the use of continuous 

video-EEG monitoring as a requirement to establish the presence and the number 

of seizures (Clancy, 2006b).  

 

With or without clinical manifestations, electrographically (multichannel EEG is 

required) documented seizures represent the most accurate way to detect and 

quantify neonatal seizures. Four main definitions are required for neonatal 

seizures: 

 

1. Clinical seizures: These are clinically observed seizures, which may include 

paroxysmal changes in neonatal activity such as behavioural or autonomical 

function, which may be correlated with EEG changes (Volpe JJ, 2008).  

 

2. Electroclinical seizures: These are clinical seizures which are accompanied by 

EEG seizure discharges. In other words, they are seizures with both clinical 

features and electrographic correlates (Boylan et al., 1999). 
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3. Electrographic seizures or EEG seizures (multichannel EEG is required): 

These are seizures seen on the EEG as seizure discharges (Tekgul et al., 

2005), possessing characteristic features (stereotyped, evolving, repetitive 

waveforms) and duration. Further discussion is found in Chapter 4 entitled “The 

Neonatal EEG and Electrographic Seizures”. 

 

4. Electroclinical dissociation (ECD) of seizures: These are electrographic 

seizures that are not consistently accompanied by clinical manifestations 

(Boylan et al., 1999; Volpe JJ, 2008; Weiner et al., 1991). Usually, they occur 

in neonates with diffuse encephalopathies, those who have received anti-

seizure medication, particularly barbiturates and in sedated neonates (Tharp, 

2002).  

3.1.1 Electroclinical seizures: clinical seizures with EEG correlates  

3.1.1.1  Clonic seizures 
Physically, these seizures are rhythmic limbs movements consisting of 

approximately 1 to 3 jerks per second at the onset, with the rate progressively 

declining over time (Volpe JJ, 2008). They can be classified as focal, multifocal or 

generalized. Focal unilateral clonic seizures (left or the right side) involve the face, 

neck, trunk, upper or lower limbs at any one time. Multifocal clonic seizures involve 

several parts of the face, body and limbs at the same time and often in a migrating 

fashion. Generalized clonic seizures involve bilaterally, symmetrically and 

synchronously movements of the body and limbs. Clonic seizures have been 

observed to be the most common type of clinical seizure, and they have been 

consistently associated with electrographic seizures (Mizrahi EM and Kellaway P, 

1998). 

3.1.1.2  Tonic seizures 
These seizures can be categorized as focal or generalized. Focal tonic seizures 

have been described as the sustained posturing of a limb or asymmetrical 

posturing of the trunk and neck. Tonic seizures have also noted to be associated 

with electrographic seizures (Mizrahi and Kellaway, 1987; Shellhaas and Clancy, 

2007). Generalized tonic seizures are characterized most commonly by tonic 

extension of both upper and lower limbs, (often resembling “decerebrate” 

posturing), followed by tonic flexion involving the upper limbs together with the 

extension of the lower limbs (often resembling “decorticate” posturing). 

Approximately 85% of generalized tonic movements are not accompanied by 

electrographic seizures (Mizrahi and Kellaway, 1987).  
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3.1.1.3  Myoclonic seizures 
Myoclonic seizures are distinguished from clonic seizures because of their faster 

speed (approximately more than 1 to 3 jerks per second) (Volpe JJ, 2008) and 

because they have a predilection for the flexor muscle groups. Myoclonic seizures 

can be classified into 3 categories: focal, multifocal and generalized. Focal 

myoclonic seizures characteristically involve flexor muscles of an upper limb. 

Multifocal myoclonic seizures are characterized by asynchronous twitching of 

several parts of the body.  

 

Generalized myoclonic seizures are characterized by bilateral jerks or flexion of 

the upper and lower limbs. Generalized myoclonic seizures are more likely to be 

associated with electrographic seizures than focal or multifocal myoclonic 

seizures. Conditions which are commonly associated with myoclonic seizures are 

benign sleep myoclonus (Paro-Panjan and Neubauer, 2008), familial neonatal 

seizures (Saadeldin et al., 2013) and conditions arising from inborn errors of 

metabolism (Vesela et al., 2009; Yu and Pearl, 2013). 

3.1.1.4  Subtle seizures 
The inconspicuous nature of this type of seizure often perplexes observers who 

rely merely on visual acumen for seizure identification (Malone et al., 2009; Murray 

et al., 2008). They include paroxysmal alterations in the behaviour of the neonate 

which can have a motor or an autonomic component. However, the motor 

component does not have a clear clonic, tonic or myoclonic feature. They are 

more commonly detected in preterm than in term neonates (Whitelaw, 2012). In a 

group of neonates between gestational ages of 26 to 32 weeks, subtle seizures 

have been described as sustained eye opening, ocular movements, chewing, 

pedaling motions and a variety of autonomic phenomena such as changes during 

apnoeic events (decreased in oxygen saturation levels, heart rates and respiratory 

rates) (Castro, Jr. et al., 2012; Sirsi et al., 2007).  

3.1.1.5  Apnoeic seizures and EEG suppression  
Apnoeic seizures in term neonates have been reported, and were mainly 

associated with subtle movements such as eye deviation, opening or staring and 

mouth movements (Miyagawa et al., 2007; Ramenghi et al., 2009; Sirsi et al., 

2007). Based on a case report of 2 neonates with occipital infarction, it was 

postulated that the connections between the posterior limbic cortex and the 

temporal lobe with the midbrain respiratory centers may explain the presentation 

of apnoeic seizures (Castro, Jr. et al., 2012). Apnoeic seizures are commonly 

associated with temporal lobe haemorrhage in term neonates (Sirsi et al., 2007; 
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Tramonte and Goodkin, 2004), but they are not usually associated with changes in 

heart rate (Fenichel et al., 1980). However, apnoeic seizures accompanied by 

electrographic seizures (also known as convulsive apnoea) have been reported to 

be associated with bradycardia; convulsive apnoea more than 60 seconds may be 

complicated by bradycardia, which may be secondary to cerebral hypoxia 

(Fenichel et al., 1980). During apnoeic seizures, the temporal area has been 

prominently found to initiate ictal discharges; suggesting that the temporal lobe is 

involved in the limbic origin of apneic seizures (Watanabe et al., 1982). 

 

Although abnormal movements mimicking seizures are sometimes seen in 

neonates who have apnoea, electrographic seizures during EEG monitoring are 

not observed. In fact, EEG suppression is more likely to be present during these 

apnoiec episodes (Low et al., 2012b). In fetal lambs, Gunn et al. has shown that 

the EEG becomes isoelectric during an ischaemia event (Gunn et al., 1992). 

Recovery of EEG activity depended on the duration of the ischaemic event; 

shorter durations of ischaemia tended to lead to full recovery of EEG activity. If the 

ischaemia lasted 30 minutes or longer, a stereotypic sequence of depressed EEG 

activity followed by low frequency epileptiform activity was always seen.  

 

In the newborn piglet model, hypoxic-ischaemic events induced by reducing 

fractional inspired oxygen to around 6% has been shown to generate a rapid 

suppression of EEG activity. Brain injury was only seen when the EEG amplitude 

remained suppressed for 23 minutes or more (Thoresen et al., 1996). In another 

study where one week old piglets were subjected to graded hypoxia, the EEG 

amplitude did not decline until oxygen saturation fell below 25% (Gavilanes et al., 

2004). This is similar to the effects described in animal studies when hypoxia has 

been used to induce severe EEG suppression (Sanocka et al., 1988). In piglets, 

EEG amplitude has been shown to decrease markedly after approximately 30 

seconds of apnoea induced by stimulation of the superior laryngeal nerves 

(Sanocka et al., 1988). 

3.1.2 Electroclinical dissociation (ECD) of seizures  
Electroclinical dissociation is an event when electrographic seizures are not 

consistently accompanied by clinical manifestation; the majority of neonatal 

seizures has been described as mainly of this nature (Boylan et al., 1999; 

Zangaladze et al., 2008). The persistence of EEG seizures has also been termed 

as “decoupling” or “uncoupling” (Bye and Flanagan, 1995a; Connell et al., 1989; 

Scher et al., 2003); it has also been defined as the persistence of electrographic 
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seizures despite the suppression of ≥ 50% clinical seizures, after either one or 

more anti-seizure medication were used (Scher et al., 2003).  

 
Electroclinical dissociation of seizures at the molecular level  
Electroclinical dissociation (ECD) of seizures in term neonates may be due to 

regional interconnectivity, including interhemispheric as well as corticospinal, 

which are not fully mature due to incomplete myelination of white matter tracts, 

leading to only modest or no behavioral manifestations of these seizures. 

Neonates can show no signs or very subtle tonic or clonic movements, often 

limited to only one limb, making the diagnosis difficult to discern from 

myoclonus or other automatisms (Boylan et al., 2013; Mizrahi EM and Kellaway 

P, 1998).   

 

The high incidence of electroclinical dissociation (ECD) of seizures in neonates 

may be related to the developmental profile and caudal-rostral pattern of 

maturation of the chloride cotransporters: NKCC1 and KCC2 (Dzhala et al., 

2010; Glykys et al., 2009; Kahle and Staley, 2012; Sanchez and Jensen, 2001). 

The mechanism of electroclinical dissociation of seizures may be age-specific 

(Jensen, 2009a). The major inhibitor neurotransmitter gamma-aminobutyric acid 

(GABA) is immature in the developing neonatal brain and it matures only 

around the third or fourth week of life in rats (Brooks-Kayal et al., 2001), thus 

GABA is mainly excitatory in the early postnatal life (discussed in chapter 2). 

The depolarizing effects of GABA during early development combined with a 

delay in postsynaptic inhibitory systems causes seizures to be more easily 

elicited in the developing neonatal brain (Holmes and Ben-Ari, 2001).  

  

Phenobarbitone is a GABA agonist and it has been shown to inhibit EEG 

seizures less effectively than clinical seizures; this causes phenobarbitone to 

exacerbate the dissociation of electrographic seizures (an incidence of up to 

80% after use of anti-seizure medications (Scher et al., 2003)) from clinical 

seizures (Kahle and Staley, 2012). The hypothesis for this occurrence has been 

based on the ontogeny known as the KCC2 mRNA expression which follows a 

caudal-rostral pattern. The spinal cord and subcortical neurons begin to express 

KCC2 early during embryogenesis, while KCC2 expression in cortical neurons 

increases only after birth (Stein et al., 2004; Wang and Kriegstein, 2011). The 

different expression patterns of NKCC1 and KCC2 suggests that at birth 

(discussed in chapter 2), GABA should have a more inhibitory effect in spinal 

and subcortical neurons when compared to cortical neurons, but there is no 
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direct evidence for a differential effect of GABA on cortical versus subcortical 

structures. 

 

Glykys et al. tested the hypotheses on the mechanisms of electroclinical 

dissociation and its exacerbation by phenobarbitone; and found that the 

neocortex and subcortical structures have different intracellular chloride 

concentrations during postnatal development using the genetically expressed 

chloride-sensitive dual wavelength fluorescent protein Clomeleon (Glykys et al., 

2009). Their experiments demonstrated and hypothesized that: 

 

1. The intracellular chloride concentration varies substantially between 

neighboring neurons in both the developing thalamus and neocortex, but that 

the average intracellular chloride concentration is significantly lower in thalamic 

than in cortical neurons. 

 

2. Phenobarbitone was an effective anti-seizure medication in the thalamus but 

not in the neocortex; this was hypothesized as a result of a net inhibitory effect 

of GABA in the thalamus but an excitatory effect in the neocortex. 

 

3. The combination of bumetanide and phenobarbitone is effective in 

decreasing epileptiform activity in the neocortex while it is not different from 

phenobarbitone alone in the thalamus.  

 

Based on these results, it was explained that there is a caudal-rostral 

intracellular chloride concentration maturation in neonates which determines the 

neuronal responses to GABA and that the differences in intracellular chloride 

concentrations may contribute to the mechanism of  electroclinical dissociation 

of seizures and the exacerbation of this dissociation by GABA-related anti-

seizure medications (Glykys et al., 2009). Due to GABA development in the 

neonatal developing brain and selective inhibition in specific regions determined 

by chloride concentrations, phenobarbitone has also been hypothesized not to 

have the ability to control seizures arising from subcortical/ neocortex structures 

but could better control seizures arising from the cortical structures (thalamus, 

amygdala) (Glykys et al., 2009).  

 

More cortical lesions have been observed in neonates with electroclinical 

seizures and more subcortical lesions were seen in neonates with electroclinical 

dissociation of seizures; suggesting that subcortical lesions may be involved in 
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the dissociated seizures. In ECD seizures, the clinical component preceded the 

electrical component to a significant extent when compared to electroclinical 

seizures; this reflects that the foci closer to the effector pathways than the 

cortex may result in the delay in the cortical electrical expression following 

clinical manifestation  (Glykys et al., 2009). 

 

Clinical aspects of electroclinical dissociation of seizures 
Scher et al. reported the incidence of electroclinical dissociation of seizures after 

the use of phenobarbitone and phenytoin in their cohort of neonates (Scher et al., 

2003). Although, more than 30% of neonates (with birth asphyxia, intracerebral 

haemorrhage and infections) were shown to experience very frequent seizures, 

the vast majority had no clear clinical signs (Malone et al., 2009; Murray et al., 

2008). The figure of greater than 60% has been commonly reported in human 

neonates (Boylan et al., 1999; Scher et al., 2003), and as high as 80% (Clancy et 

al., 1988) of all EEG seizures has also been reported. Using continuous EEG 

monitoring after at least one occurrence of clinical seizure in neonates from 

corrected gestational age of 28 to 46 weeks (88% of neonates received at least 

one anti-seizure medication before EEG recording (Clancy and Legido, 1987)), 

Clancy and Legido showed that 79% of subsequent EEG seizures were clinically 

silent (Clancy et al., 1988). Ultimately, this results in a large proportion of neonates 

being undiagnosed and therefore, remained untreated (Silverstein and Jensen, 

2007).  

 

Contrastingly, Weiner et al. found that anti-seizure medication was not solely 

responsible for the electroclinical dissociation of seizures in their cohort study 

(Weiner et al., 1991). Based on this finding, they concluded that dissociated 

seizures were equally likely to occur before as well as following treatment with 

anti-seizure medication. However, their study may be biased, as clinicians were 

more inclined to treat neonates who had abnormal clinical movements in the 

electroclinical group. This study has found that only 16% of neonates displayed 

electroclinical dissociation of seizures (51 neonates with various aetiologies and 

with gestational ages of between 23 and 42 weeks); they conceded that this 

number may have been an underestimation because not all neonates in this study 

had prolonged and continuous multichannel video-EEG monitoring performed 

(Weiner et al., 1991). Possibly, there may be other factors which may influence the 

occurrence of ECD (discussed in Chapter 9: the Electroclinical dissociation study). 



49 

3.1.3 Clinical movements mimicking seizure-like activity but with no EEG 
correlate 
In neonates, clinical seizures that do not correlate to electrographic discharges are 

rare (Biagioni et al., 1998). There are several mechanisms which have been 

proposed to explain these clinical seizure-like behaviours without scalp EEG 

correlate. Neonates may display paroxysmal behaviours such as those seen in 

benign sleep myoclonus (Kaddurah and Holmes, 2009; Maurer et al., 2010), 

jitteriness (Shuper et al., 1991), breath-holding spells (Fejerman, 2005) and 

hyperekplexia (Dreissen et al., 2012; Praveen et al., 2001). These events have 

been considered by many authors to be unrelated to seizures because they were 

not accompanied by any changes on the EEG. Volpe has suggested that 

nonepileptic events should be suspected if there is sensitivity to sensory 

stimulation (e.g. sound, movement or ambient temperature), suppressibility by 

gentle restraining or repositioning of the neonate and the lack of accompanying 

autonomic phenomena such as decreased in peripheral deoxygenation (Volpe JJ, 

2008). 

 

Abnormal clinical behaviours in neonates can be due to a phenomenon known as 

the ‘‘release phenomenon’’ of primitive brainstem and spinal motor pathways, 

which are normally inhibited by a functioning forebrain (Alfonso et al., 2000). The 

lack of this inhibition (e.g. in early normal stages of brain development or in some 

cases of severe brain injury) causes the release of abnormal physical movements 

that may be erroneously interpreted as clinical seizures by the observer. Some 

authors have hypothesized that EEG seizures without clinical correlates may be 

originating from deep foci of the brain, distant from the scalp electrodes (Mizrahi 

EM and Kellaway P, 1998; Weiner et al., 1991).  

 

Based on an anecdotal report, seizures in a human neonate (term female infant 

with atelencephaly) have been shown to emanate from non-cortical structures 

such as the deep grey matter structures (Danner et al., 1985). This was based on 

findings on EEG monitoring for 3 hours using the 10-20 electrode placements on 

day 4 of life; 17 electrographic seizures were observed while the infant remained 

motionless. However, there were no neuro-pathological studies performed and the 

confirmation of an absent brain cortex was lacking. Most clinicians and 

researchers consider in-depth EEG recording to be inappropriate or unethically 

justified.  
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3.2 Using clinical recognition  
Seizures in neonates can present variable clinical expressions and can be 

extremely inconspicuous (Malone et al., 2009; Murray et al., 2008). Direct visual 

inspection of neonatal behaviours is the actual method of seizure recognition 

currently employed in virtually all units where there is no video-EEG facility. 

Innocent tremulous clinical movements may be erroneously identified as seizures; 

many abnormal clinical movements are not found to be related to any specific 

epileptic mechanism (Dreissen et al., 2012; Kaddurah and Holmes, 2009; Maurer 

et al., 2010).  

 

Likewise, only 34% of EEG seizures have been shown to be accompanied with 

overt clinical signs (Murray et al., 2008); this implies that clinical detection of 

seizures will lead to both over and under estimation of the true seizure burden. 

Nursing and medical personnel vary significantly in their ability to recognize 

suspicious behaviour contributing to both over-diagnosis and under-diagnosis of 

neonatal seizures (Malone et al., 2009; Murray et al., 2008). Unaided by EEG 

monitoring, bedside clinical detection may seriously underestimate the real 

number of seizures expressed by neonates. 

3.3  Using the amplitude-integrated EEG (aEEG)  
The amplitude-integrated EEG (aEEG) was first developed in the late 1960s as a 

means of monitoring the brain activity in adults undergoing surgery, suffering head 

trauma, or in a coma (Maynard et al., 1969). In the mid-1980s research groups in 

Sweden and the Netherlands began investigating its use in neonates. Currently, 

the aEEG is favoured by neonatologists for prolonged monitoring of the neonatal 

brain in most neonatal units (de Vries and Hellstrom-Westas, 2005; Shah et al., 

2008; Shellhaas et al., 2007) (figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Brain monitoring in the neonates using the aEEG based on 3 electrode placement for 1 EEG channel. 
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The advantage of the aEEG is its immediate availability, ease of application 

(usually using 3 to 5 scalp leads) and interpretation by bedside nursing and 

medical personnel, including neonatologists (de Vries and Hellstrom-Westas, 

2005; Hellstrom-Westas and Rosen, 2006). With the new aEEG machines Stellate 

EEG system (Natus Medical Inc, USA) and the Brainz aEEG monitor (Natus 

Medical Inc., USA), automated seizure detection algorithms from Gotman (Gotman 

et al., 1997a) and Navakatikyan (Navakatikyan et al., 2006) respectively have 

been incorporated in the machine and has been implemented routinely in the 

neonatal intensive care unit. The multichannel EEG differs from the aEEG in that it 

involves a larger numbers of electrodes (at least 10-20 electrodes). The 

multichannel EEG is considered labour-intensive in terms of the setup as well as in 

interpretation (Lawrence et al., 2009).  

 

The aEEG is a compressed, filtered and processed form of the EEG. The aEEG 

gives information about trends over time in the amplitude (upper/lower) of the 

EEG. Current aEEG trend recording is simultaneously displayed with the original 

conventional raw EEG signal from the same recording channels; this allows 

artefacts (for example muscle activity and electrical interference) to be distinctively 

detected during the monitoring. The aEEG trend is, like the conventional EEG, 

mainly interpreted through visual pattern recognition, including assessment of 

continuity and discontinuity of cerebral activity, appearance of sleep-wake cycling 

(discussed in section 4.1) and indication, but not confirmation, of seizures. 

The aEEG has a system which is designed to generate an output of lower 

amplitude signals ranging from 1 to 10 μV so as to capture a depressed cerebral 

activity (Hellstrom-Westas, 2008; Hellstrom-Westas and Rosen, 2006); hence the 

amplitude scale in the original cerebral function monitor was linear from 0 to 6 μV, 

a semi-logarithmic scale from 8 to 20 μV and logarithmic at >25 μV using the 

Fourier spectral transform (Shah et al., 2008). The interpretation on the aEEG is 

based on a trend display, which shows a heavily time-compressed signal after it 

has been extensively filtered. 

 

The aEEG is now commonly used to assess the EEG background in neonates and 

allows continuous assessment of long-term changes in cortical background activity 

(Boylan et al., 2010; Filan et al., 2007; Toet and Lemmers, 2009), and this can be 

done based on assessments of trends either by voltages or pattern recognition 

(figure 3.3 and 3.4). The very early aEEG background pattern has a very high 

predictive value in asphyxiated term infants (Spitzmiller et al., 2007). 
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Figure 3.3 Trends of aEEG traces and EEG showing the interpretation schemes based on voltages. 
 

 

 
 

Normal aEEG 
 

The upper margin of the 
dense aEEG band is 

greater than 10 μv and 
the lower margin is 
greater than 5 μv.  

 
 

EEG shows continuous 
mixed frequency activity. 

 

 

 
 

 
 

Moderately abnormal 
or discontinuous aEEG 
The upper margin of the 

dense aEEG band is 
greater than 10 μv and 
the lower margin is less 
than or equal to 5 μv. 

 
 

EEG shows 
discontinuity. 

 

 
 

 
Severely abnormal 

aEEG 
The upper margin of the 

dense aEEG band is 
less than 10 μv and the 

lower margin is less than 
5 μv. 

 
 

EEG show infrequent 
bursts of low amplitude 

activity. 

 

 

 
 
 

Seizure on aEEG 
Saw-tooth pattern on the 

aEEG. 
 
 
 
 
 
 
 

Seizure on EEG 
EEG showing repetitive 
stereotyped waveforms 

with a definite beginning, 
middle and end. 
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Figure 3.4 Trends of aEEG traces here showing the interpretation schemes based on trends  
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(CNV)  

Continuous aEEG trace voltage 
ranging from 10 to 25 µV. 

 
 
 
 
 
 
 
 
 

EEG shows continuous mixed  
frequency activity. 

     

                                             

     

 
 

Discontinuous normal 
voltage (DNV)  

Discontinuous aEEG trace 
where voltage is generally 

above 5 µV. 
 
 
 
 
 
 
 
 
 

EEG shows low amplitude 
activity alternating with higher 
amplitude bursts, and with no 

sleep cycling. 
 

               

                                              

      

 
 
 

Burst suppression (BS) 
Bursts of activity separated by 
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very low voltage intermixed with 
bursts of higher amplitude on 
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activity with prolonged periods 
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Continuous low voltage 

 (CLV) 
Voltage at or below 5 µV. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EEG activities are continuous 
but low amplitude. 
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Virtual or complete inactivity; 
with voltages below 5 µV. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EEG shows inactivity. 

 

 

 

 

µV 

µV 



55 

Historically, the aEEG signal is recorded from a biparietal derivation (P3-P4). The 

P3-P4 location was selected because it overlies the apex of the cerebrovascular 

watershed zone which is vulnerable to brain injury, and which borders a zone of 

arterial supply from 3 cerebral arteries (Hellstrom-Westas and Rosen, 2006), it has 

been shown to detect more seizures than frontal electrodes (Wusthoff et al., 

2009). However, the adjacent C3 and C4 channels has been shown to provide 

comparable data for single-channel aEEG (Shellhaas and Clancy, 2007). 

 

Although the aEEG has been successful in the early detection of severe 

disturbances in the background EEG activity (such as inactive or burst 

suppression traces) (Hellstrom-Westas and Rosen, 2006), the multichannel EEG 

is still deemed as a reliable for the detection of seizure in neonates as artefacts 

may be misinterpreted as seizures by non-experts using the aEEG (Rennie et al., 

2004). The aEEG can be considered as a form of seizure detection algorithm as it 

displayed seizure activity by exhibiting a saw-tooth pattern. However, with 

restricted number of channels, this limits its use in locating seizures from other 

regions of the brain where the EEG electrodes are not placed.  

 

Shellhaas and Clancy had used the central C3-C4 channel (C3 is approximately 4 

cm anterior to P3 in term neonates) in neonates to create a single channel aEEG 

which was then used for comparison with the multichannel EEG (Shellhaas and 

Clancy, 2007). From a total of 125 infants (gestation 34 to 50 weeks), 851 seizures 

[mean duration: 32 (10-2314) seconds, mean seizure burden defined as the % of 

EEG recorded seizures at any location: 24.8 (0.7 to 86.9)%] were obtained from 

125 conventional EEG (duration of monitoring 23 to 145 mins).  

 

Shellhaas et al. then assessed the comparison of seizure detection among 6 

neonatologists experienced in visualizing seizures on EEG or aEEG (Shellhaas et 

al., 2007). Although theoretically the seizure detection rate by the C3- C4 channel 

was 78%, the actual sensitivity based on visual analysis by 6 experienced 

neonatologists from 851 individual seizure detection was only 12 to 38% and 22 to 

57% of the 125 conventional EEG records (Shellhaas et al., 2007). These studies 

from Shellhaas et al. showed that even among the most experienced 

neonatologists, seizure detection by visual analysis varied widely and are difficult 

to detect on the aEEG. However, it also proves that seizure detection by aEEG is 

better than visual analysis alone from neonatologists.  
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In contrast, Toet et al. reported a sensitivity of 80% for seizure detection based on 

33 aEEG traces using the P3-P4 channel in 36 neonates with gestational age 

above 36 weeks (Toet et al., 2002). The differing reported rates of accuracy 

between most studies are difficult to interpret, as this may be related to the 

different single channel used in aEEG, the level of user experience, or that 

multiple seizure recordings from the same patient were studied without adjusting 

for clustering in the data (Glass et al., 2013; Rennie et al., 2004). 

 

The weaknesses of using reduced montages in the aEEG are the risk of 

overestimating or underestimating the number of seizures. The aEEG has been 

shown to fail in detecting regional or focal seizures if the single channel recording 

is not adjacent to the brain region involved with the seizure expression (Scher, 

2002). Seizure focus may not be exactly located under the recording electrodes, 

and neonatal seizures may present with many varying waveforms. Fewer than 3 of 

10 neonates with suspected seizures on a single channel monitoring device had 

been shown to be verified by the multichannel EEG (Rennie et al., 2004).  

 

Consistently, studies have shown that when using the aEEG from one single 

channel on a compressed timescale (figure 3.5), seizures with a duration of less 

than 30 seconds can be missed, as well as those which have a focal and of low 

voltage seizure activity (Rennie et al., 2004; Shellhaas and Clancy, 2007; Toet et 

al., 2002). Despite the inefficiency of the aEEG in detecting seizures, it is a device 

still being used worldwide for prolonged brain monitoring when the multichannel 

video-EEG recording is not available in the NICU. Sometimes, the aEEG is used 

as a complement to prolonged multichannel video-EEG recording. When seizures 

are suspected on the aEEG alone, experienced aEEG users have advised 

requesting multichannel video-EEG for confirmation of neonatal seizures 

(Hellstrom-Westas and Rosen, 2006).  

 

The clinical impact of the lower accuracy of aEEG in detecting seizures when 

compared with multichannel EEG is yet to be assessed. The effectiveness of the 

aEEG in detecting seizures remains debatable, principally when the interpretation 

solely rests in the hands of inexperienced or untrained users. Neonatologists must 

be attentive to the limited accuracy of aEEG in seizure detection in neonates. The 

use of clinical judgment, amalgamated with the use of the multichannel video-EEG 

monitoring is prudent when the diagnosis of seizures in neonates remains 

speculative. 
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Figure 3.5 An aEEG trace not picking up seizures consecutively shown on the multichannel EEG because seizures 
were of short in duration and of small amplitude. 
 
A full length of the aEEG compressed within a 9 hour period (electrographic seizures not detected by the aEEG trace 
as indicated by the red dots at the bottom of the trace) 
 
 

 

 
First electrographic seizure missed by the aEEG (highlighted by a faint vertical grey bar)  
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3.4 Using the multichannel video-EEG 
Multichannel video-EEG is the most accurate tool for the identification and 

confirmation of neonatal seizures. Early and accurate detection of seizures is 

essential for guiding treatment with anti-seizure medication and in determining the 

risk of morbidity and mortality in neonates with brain injury (Boylan et al., 2010; 

Boylan et al., 2013; Boylan et al., 2015; Clancy, 2006a; Scher, 2002). The 

American Clinical Neurophysiology Society recommends either a full (16 

electrodes) montage or a reduced (10 electrodes) montage for neonatal EEG 

monitoring (Klem et al., 1999).  

 

To date, multichannel video-EEG, using the standard international 10 to 20 system 

modified for neonates (Klem et al., 1999), is the clinical gold standard for 

monitoring and recording seizures in the neonate. Unfortunately, the use of EEG 

 
Third electrographic seizure missed by the aEEG 
 

 
 
Fourth electrographic seizure missed by the aEEG 
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technology is often limited to specialized centers because the investigation must 

be performed by a specially trained technician, and proper interpretation requires a 

neurophysiologist who is familiar with the neonatal EEG. Furthermore in most 

centers, EEG access is limited during the evenings and weekends. These 

restrictions may limit the availability and/ or result in substantial delay between the 

exact moment when monitoring is needed and the exact moment when results are 

available before treatment. EEG monitoring is essential particularly during 

treatment of anti-seizure medication. Prolonged continuous multichannel and 

increased vigilance by the bedside has been shown to decrease cumulative EEG 

(Payne et al., 2014). 

3.5 Using Neonatal Automated Seizure Detection Algorithm (NASDA) 
One of the few limitations of multichannel EEG includes the availability of neonatal 

personnel for technical recording and interpretation. Interpretation of EEG findings 

could be immensely aided by EEG seizure detection algorithms. Since neonatal 

seizures are usually subclinical and are a potential risk factor for poor 

neurodevelopmental outcome warranting treatment as soon as possible, 

multichannel EEG monitoring with automated continuous and online seizure 

detection would be a very useful adjunct. 

 

It is also needed because of the inherent limitations posed by the aEEG. Recent 

works on bedside monitoring have focused on automated detection of seizures 

(Boylan and Rennie, 2006; Cherian et al., 2011; Stevenson et al., 2013; Temko et 

al., 2011). A seizure detection rate by Gotman et al., the automated system as 

high as 71% has been found (Gotman et al., 1997b). Another study has shown a 

sensitivity of 84% and a specificity of 98% (Cherian et al., 2011). Although the 

automated techniques hold the promise, the high false-negative rates posed by 

artefacts are the main limitation for current use as a screening tool for seizures in 

neonates. 

 

Intermittent short EEG monitoring and sporadic interpretation in the neonatal 

intensive care unit has not been entirely useful (Clancy, 2006a; Shah et al., 2012). 

Although many studies have been conducted in relation to automated seizure 

detection in neonates, to date none of these automated seizure detection systems 

developed has been clinically utilized to process long EEG records in the neonatal 

intensive care unit (table 3.1).  
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Few authors have attempted to develop a neonatal automated seizure detection 

algorithm based on different datasets as outlined in table 3.1. In 1982, Gotman et 

al. devised an approach to emulate the human observer in deriving values for 

duration and peak amplitude, slope of a series of consecutive waves for seizure 

detection (Gotman, 1982). From this study, a large percentage of seizures were 

correctly identified (81.42%) by EEG while generating a false positive rate of 

5.38/h, mainly ascribed to artefacts such as electrocardiogram, electrode popping, 

eyes and muscle movements.  

 

In 1997, Gotman et al. modified an adult seizure detection algorithm to detect 

neonatal seizure (Gotman et al., 1997a). Based on 3 methods (namely multiple 

spike detection, spectral analysis and detection of slow rhythmic discharges) 

applied to the EEG recording obtained from 55 neonates (8 to 16 channel EEG) 

from 3 hospitals, a total of 281 hours of recordings containing 679 seizures were 

analyzed by 1 electroencephalographer.  

 

An initial evaluation indicated that 71% of seizures and 78% of seizure clusters 

(defined as a group of seizures separated by less than 90 seconds) were 

detected, with a reduced and improved false detection rate of 1.7/h (Gotman et al., 

1997a). The lower false detection rate may be due to the exclusion of artefactual 

EEG segments in the pre-processing phase. In summary, Gotman et al. reported 

average seizure detection rates of 74% (Gotman et al., 1997a), 71% (Gotman et 

al., 1997a), and 69% (Gotman et al., 1997b) respectively in neonates with false 

detection rates of 2.4/h, 1.7/h, and 2.3/h. A reason proposed for the higher false 

detection rate in the study was that many “at risk” neonates had undergone cranial 

ultrasound imaging which involved prolonged manipulation of the head. Artefacts 

mimicking seizures on the EEG have been found to be related to events such as 

Table 3.1 Comparison with other studies on automated seizure detection algorithm in neonates in terms of number of 
neonates, term or premature, the diagnosis in their cohort, training or validated dataset, EEG record and the number of 
seizures included in the study 
Author et.al Number of 

neonates 
analysed 

Term/ 
Preterm 

Diagnosis Dataset EEG 
record 
(hours) 

Seizure 
number 

(n) 
Liu 1992 (Liu et al., 1992) 14 of 14 ns ns Training ns ns 
Gotman 1997 (Gotman et al., 1997a)  54 of 54 Mixture ns Training & Validation 281 679 
Navakatikyan 2006 (Navakatikyan et 
al., 2006) 

17 of 55 Mixture ns Training & Validation 24 97 

Deburchgraeve 2008 
(Deburchgraeve et al., 2008)  

21 of 26 Term HIE only Training 217 550 

Mitra 2009 (Mitra et al., 2009) 28 of 48 ns ns Training & Validation 121 163 
Temko 2009-11 (Temko et al., 2009; 
Temko et al., 2011)  

17 of 17 Term Mixture 
(HIE, 

stroke, 
meningitis) 

Training 268 705 

Cherian 2011 (Cherian et al., 2011)  24 of 24 Mixture Mixture 
(HIE, 

stroke, 
IVH) 

Validation 756 2077 

ns: not specified 
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gentle rocking, patting a distressed neonate, nursing or feeding the neonate 

(Stevenson et al., 2014).  

 

The study by Cherian et al. described the sensitivity of a new seizure detection 

algorithm by testing a newer and larger EEG dataset on a previously improved 

algorithm called NeoGuard (Cherian et al., 2011). It is an automated neonatal 

seizure detection system which mimics a human interpreter with the visual scoring 

of the background EEG and with the automated seizure detection algorithm 

running on Matlab (The MathWorks, Natrick, MA, USA) reading the EEG with the 

additional ability to reject artefacts. The dataset was from a cohort of neonates 

with hypoxic-ischaemic encephalopathy who were monitored by video-EEG for 

≥24 hours from March 2003 to August 2007. Of 119 neonates, 45 had seizures. 

Twenty-one were excluded because they were already described in a previous 

article on seizure detection algorithm (Deburchgraeve et al., 2008). Three other 

neonates with stroke were excluded; the remaining 21 neonates formed their study 

group.  

 

In the study by Cherian et al., seizure amplitudes decreased considerably with 

deteriorating EEG background in 24 neonates (Cherian et al., 2011). Seizures 

were detected with a total sensitivity of 61.9% (1285/2077). The detected seizure 

burden was 66,244/ 97,574 seconds (67.9%). The average sensitivity in each 

neonate was 65.9% with a mean positive predictive value of 73.7%. After 

excluding four neonates with severely abnormal EEG background and who 

predominantly had dubious seizures (as defined in their study), the algorithm 

disclosed a median sensitivity per neonate of 86.9%, positive predictive value of 

89.5% and false positive rate of 0.28/h. Sensitivity tended to be better for neonates 

with mild than moderate hypoxic-ischaemic encephalopathy.  

 

Features such as the duration, amplitude and rhythmicity of electrographic 

seizures with regards to deteriorating EEG background, tend to worsen the 

performance of automated seizure detection. This article reported that the seizure 

burden in a group of neonates with severe abnormalities of EEG background 

activity was higher than in the mild to moderate group [3802 (880 to15091) vs 

1892 (127 to 6195) seconds; p=0.16]. Although all neonates in this study were 

said to have received a loading dose of phenobarbitone, the timing of 

phenobarbitone administration in relation to EEG commencement was not 

disclosed.  
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3.6 Conclusion 
In both adult and neonates, seizures can have extremely variable morphology, 

frequency and topography, even within the same patient (Tekgul et al., 2005). 

Seizures in neonates are very different to seizures in adults and therefore require 

a specifically trained algorithm. The limitations of relying on clinical observation 

and the aEEG for neonatal seizure recognition are critical. It has led many to seek 

a better method of seizure detection at the cotside. The limited 24-hour service for 

reliable interpretation of the EEG by experts serves as one of the main deterrents 

for using multichannel EEG for many clinicians. Automated seizure detection may 

hold the key for prompt and more reliable seizure detection at the cotside. The 

method of seizure detection is crucial for the treatment of seizures. For treatment 

of seizures to work effectively, seizures have to be detected and monitored more 

reliably and at present this can only be done by performing prolonged and 

continuous multichannel EEG monitoring.  
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Chapter 4  

The Neonatal EEG and Electrographic Seizures 
 

4.1 What is neonatal EEG? 
The electroencephalogram (EEG) was first described in rabbits by Caton 1875 

(Barlow, 1997). The measurement on human EEG was first reported in 1929 by 

the German psychiatrist Hans Berger (Barlow, 1997) (figure 4.1). In 1938, EEG 

recordings from term neonates were first published by Loomis et al. (Loomis AL et 

al., 1936) and Smith et al. (Smith JR, 1938). These early works have made a great 

contribution to our current knowledge of the neonatal EEG. 

 
 
 
 
  
 
 
 
 
EEG recorded from surface electrodes is known to be the only window to assess 

the functional status of the cerebral cortex continuously and this is done by 

monitoring the electrical activity in the neonatal brain from  the multiple scalp 

electrodes in real-time (Niedermeyer E and da Silva FL, 2004). Each electrode 

records from approximately a 2 cm patch of the underlying cortex to a depth of a 

few millimetres. This area contains millions of neurons, such that the EEG is 

recording the combined activity of these neurons. EEG waves are generated 

 primarily from postsynaptic currents. The EEG measures the voltage fluctuations 

generated by summated excitatory and inhibitory postsynaptic potentials (figure 

4.2 and 4.3). This electrical activity is a reflection of the summation of 

synchronous activity from millions of neurons that have similar spatial orientation.  

 

The number of scalp electrodes used in neonatal EEG recording is reduced due to 

the small head circumference of the neonate. The minimum number of leads 

required are located at the frontal, temporal, central and occipital regions 

according to the standard international 10 to 20 system (Klem et al., 1999). 

  

Figure 4.1 Professor Hans Berger (1873-1938) 
 
                        

 

http://en.wikipedia.org/wiki/Neural_synchronization
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Figure 4.2 Origin of EGG (Niedermeyer E and da Silva FL, 2004).  
The polarity of the EEG depends on the net charge in the most superficial layer of the cortex.  
 
A. Excitatory inputs            

                                    
Excitatory inputs to cortical pyramidal cells causes sodium influx to the postsynaptic membrane and a local negativity 
in the extracellular zone around the synapse and a net positivity distal to it. Thalamic inputs synapse onto the 
dendrite proximal to the cell body creating a positive charged area at the surface. Inputs from other cortical neurons 
synapse distally to the cell body creating negative charged area at superficial layers.  
 
B. Inhibitory inputs 
 

                                              
Polarities are reversed for inhibitory inputs. Inhibitory inputs tend to synapse onto the proximal dendrite or cell body 
leaving a net negativity at the cortical surface.  

 

Figure 4.3 Neonatal EEG  
 

                                                                                       
Multichannel EEG record showing 8 EEG channels of brain electrical activity from the central (C), frontal (F), occipital 
(O); parietal (P) and temporal (T) areas of the neonatal brain. There is a period of quiescence (horizontal lines) 
followed by a period of activity (sinusoidal lines) reflecting a normal brain activity. The bipolar vs. referential montage 
was used. 
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The amplitude of EEG differs with age: at term (beyond 37 weeks gestation) it is 

usually below 100 µV and preterm (below 34 weeks gestation) is usually below 

300 µV (figure 4.4). The EEG in the earliest viable preterm neonates at 24 weeks 

is discontinuous; with bursts of transient activity with flattening of the EEG in 

between, and with interburst intervals of less than 60 seconds (table 4.1). As 

gestational age increases, the intervals between the bursts become shorter and 

lower amplitude activities replace the ‘flattened’ periods. By term gestational age, 

the EEG should be continuous. 

Figure 4.4 The normal neonatal aEEG and EEG based on gestational ages 
 
A. aEEG and EEG at 23 weeks gestation 
 

 

    
 
 
B. aEEG and EEG at 30 weeks gestation 
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C. aEEG and EEG at 34 weeks gestation 
 

 

 
 
D. aEEG and EEG at term gestation 

 
 

 
 
 
Table 4.1 Interburst intervals according to gestational ages (adapted from Rennie JM et al., 2008) 

Gestational ages (weeks) Inter-burst interval (seconds) 
24 to 26 10 to 60 
27 to 29 10 to 40 
30 to 32 3 to 20 
33 to 34 Less than 10 
35 to 37 Less than 10 

Beyond 37 weeks None 

 

One of the usefulness of the neonatal EEG is to determine the presence of sleep-

wake cycling in a neonate (Lamblin et al., 2013). Sleep cycles start to appear by 

31 weeks and are clearly definable by 34 weeks. At term equivalent postmenstrual 

age, it is possible to differentiate between five conscious states of the newborn 

infant: wakefulness, drowsiness, active sleep (activite moyenne, rapid eye 

movement sleep), quiet sleep (trace alternant, non-rapid eye movement sleep), 

and indeterminate sleep (slow wave sleep) (figure 4.5). By term gestational age, a 



67 

neonate will have full sleep cycle including quiet and active sleep in 1 hour. The 

standard eight-channel EEG enables identification of four different patterns of 

EEG background activity in one sleep cycle in healthy term infants: low-voltage 

irregular, mixed, high-voltage slow and trace alternant (Hellström-Westas L and 

Ingmar R, 2003).  

Figure 4.5 Sleep-wake cycling 
 
A. EEG shows continuous mixed frequency activity. 
 
 

 
 
B. Quiet sleep. Trace alternant 

 

 
C. Intermediate sleep 
 

 

Continuous normal voltage 
(10-25 μV) 

Sleep-wake cycling 

Quiet sleep Active sleep 
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D. Active sleep 
 

 
 

One cycle of four EEG patterns is thought to require 40 to 60 min, and on the 

aEEG, quiet/active cycling is also known as sleep/wake cycle. The trace is 

narrow when infant is awake (or in active sleep) and widens during quiet sleep; it 

typically cycles every 90 min, but is dependent on the  condition but the neonate 

(Hellström-Westas L and Ingmar R, 2003). Low-voltage irregular and mixed 

activities are often observed during active sleep, whereas high-voltage slow and 

trace alternant activities are almost always observed during quiet sleep when 

sleep states are defined based on physiological parameters. This simplified 

scheme is not always fully consistent in practice because normal sleep cycle is 

easily disrupted and altered by external stimuli. 

 

EEG in hypoxic-ischaemic encephalopathy 
In regards to the EEG, following the primary hypoxia-ischaemic insult (discussed 

in chapter 2), due to the disruption to cerebral oxidative metabolism, cytotoxic 

oedema occurs and excitotoxins accumulate and the EEG becomes suppressed 

(figure 4.6). Some metabolic recovery is possible over the subsequent 30 to 60 

minutes (Bennet et al., 2007; Tan et al., 1996).  

 
Figure 4.6 Evolution of the aEEG and EEG during hypoxic-ischaemic encephalopathy 
 

 

 
 
 
 
 
 

At the beginning, EEG 
flat at start 
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At about 2 hours of 
age, some 

discontinuous activity 
can be observed. 

 

 

 

 
 
 
 
 
 

Seizure commenced 
between12 to 24 

hours old. 
 

 

 

 
 
 
 
 
 
 

EEG may become 
continuous. 

Speed of recovery is  
predictive of long-term 
neurodevelopmental 
outcome (Murray et 

al., 2009). 
 

 

A latent phase, which follows from about 1 to 6 hours, is characterized by cerebral 

hypoperfusion, reduced metabolism and a suppressed EEG. During this period, 

high energy phosphates can return to near normal values (Robertson et al., 2013). 

However, during the secondary injury phase which corresponds to further periods 

of cytotoxic oedema, accumulation of excitotoxins and hyperperfusion, there is a 

failure of cerebral mitochondrial activity which eventually leads to cell death.  
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(Bennet et al., 2006; Lorek et al., 1994; Wassink et al., 2014). In moderate to 

severe brain injury, the background EEG may start to recover during this period 

and seizures often develop. In very severe injury, the EEG can remain suppressed 

for days and seizures may never emerge.  

4.2 Literature search on the definition of electrographic seizures in 
neonates 

The most cited definition for electrographic seizures in neonates in the literature 

has been derived  since 1987 by Clancy (Clancy et al., 1988; Clancy, 2006a); 

electrographic seizure was defined as the evolution of sudden, repetitive, 

stereotyped waveforms with a definite beginning, middle and end and with a 

minimal duration of 10 seconds. It remains a debate as to whether we should be 

treating single or short duration of electrographic seizures. Exclusively short 

electrographic seizures have been shown to possess similar poor prognostic value 

as longer electrographic seizure (Oliveira et al., 2000). In animal models, mainly 

longer and recurrent seizures such as status epilepticus have been shown to be 

more deleterious to the developing neonatal brain (Abend and Wusthoff, 2012; 

Topjian et al., 2013).  

 

It is important to describe and define what electrographic seizures are in neonates 

before any estimation or quantification is pursued to establish the more precise 

seizure burden. This is vital for confirmation and annotation of electrographic 

seizures; both of which are still officially being performed through manual visual 

observation of long EEG recordings by independent neurophysiology experts. 

 

Fundamentally, the definition of seizure (and subsequently the quantification of 

seizure burden) is dependent on whether the amplitude-EEG (aEEG) or the full 

multichannel EEG was utilised, the number of EEG channels used and the entire 

duration of EEG monitoring. In terms of seizure burden, several factors should be 

taken into consideration such as the gestational age, aetiologies and whether 

treatment with anti-seizure medication has been instigated in the study cohort 

before EEG monitoring begun.  

4.2.1 Morphological features of electrographic seizures in neonates 

4.2.1.1  Waveform patterns and frequency 
The characteristics of electrographic seizures in neonates differ from  those of 

adults in relation to clinical symptoms and pathology (Patrizi et al., 2003). It is 

common for electrographic seizures to first appear at relatively low voltage and to 
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gradually increase as the seizure evolves (Patrizi et al., 2003). Neonatal 

electrographic seizures, not only have the ability to display a repetitive discharges 

of sharp waves with gradual changes in voltage and frequency; they also have the 

capacity to exhibit other characteristic features (Oliveira et al., 2000). One of these 

characteristics is an abrupt beginning and end of electrical discharges without any 

changes in character electrographically along the seizure (Oliveira et al., 2000); 

such that an electrographic seizure is often defined as a discrete event that has a 

definable beginning, middle and end (Clancy, 2006a) (figure 4.7).  

 
Figure 4.7 The classic sharp and slow waves of seizures observed on EEG 
 

 
Electrographic seizures observed in this recording as a discrete event that has a definable beginning, middle and end 
present in all 8 channels of the multichannel EEG reflecting seizures to be arising from central (C), frontal (F), occipital (O); 
parietal (P) and temporal (T) the areas of the brain. 

 

Seizures can be as a discrete event that has a definable beginning, middle and 

end (Clancy, 2006a) characterised in terms of their amplitude, frequency, 

morphology, location and duration. Nunes et al. observed that not only do neonatal 

seizure discharges originate focally, they can present as typical EEG waveforms 

such as  trains of sharp waves, pseudo–beta–alpha–theta–delta patterns or 

multifocal discharges (Nunes and da Costa, 2010). At the onset of seizures, Patrizi 

et al. noted that preterm neonates predominantly displayed rhythmic alpha and 

delta activity, while term neonates predominantly exhibited sharp waves, spikes or 

slow waves (isolated or in combination) (Patrizi et al., 2003). The changing 

morphology of the discharges may be the result of a slow recruitment of additional 

neuronal networks during seizures. 
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4.2.1.2  Onset nature of neonatal seizures 
The term “focal” implies that the electrographic seizures are well localized to a 

small focus or region of the brain (Clancy, 1996). The fundamental observation is 

that neonatal electrographic seizures essentially arise focally (figure 4.8). For this 

reason, neonatal seizures have been described as partial seizures (Clancy, 1996). 

Neonatal seizures are topographically restricted (Clancy, 2006a; Tekgul et al., 

2005) due to the characteristic focal nature of seizure onset. Therefore, seizures 

may be missed when using a limited number of electrodes.  

 
Figure 4.8 Focal seizure seen on aEEG and EEG maximal on the left posterior channel 
 

 
 

The term “unifocal” is used, if the EEG or electrographic seizures originate from 

the same single location (Clancy, 1996). If repeated electrographic seizures 

always arise from the same single location, then it may suggest that a focal or 

lateralized structural cerebral lesion exists. Neonatal stroke is an example where 

repetitive seizures often arise focally, such that all of the individual electrographic 

seizures have their origin at the same location (Clancy et al., 1985). However, a 

single focal seizure does not necessarily convey the location of a restricted brain 

lesion or abnormality, and it can also migrate (figure 4.9). Patrizi et al. has shown 

that the focal nature of EEG or electrographic seizures was confined most 

commonly in term than in preterm neonates (Patrizi et al., 2003).  

 

 

 

 

 

 

 

Focal seizure 
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Figure 4.9 Migrating seizures seen here from channel F3-C3 to F4-C4 on the aEEG and EEG 
 

 
 

The term “multifocal” seizures mean seizures can originate from a number of 

locations. The onset of electrographic seizures arising from various locations of 

the brain were noted in 44% in a group of term and preterm neonates (Bye and 

Flanagan, 1995b). Multifocal seizures may appear in both hemispheres and 

progress independently at different frequencies (figure 4.10), often requiring at 

least 3 independent generators of seizures involving both hemispheres; they can 

also be expressed independently in anatomically unrelated brain regions (Volpe 

JJ, 2008). 

 
Figure 4.10 Seizures which change in frequencies 
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4.2.1.3  Origin of location of neonatal seizures 
There are controversies as to which region of the developing neonatal brain has 

the predilection to generate seizures. In both preterm and term neonates, it has 

been hypothesized that the most common site of electrographic seizure origin is 

the temporal lobe (Patrizi et al., 2003). Within the temporal region, the mid-

temporal (T3 and T4) are probably the most common locations of origin of 

neonatal EEG seizures, although the exact origin of individual neonatal EEG 

seizure may vary within an individual (Clancy, 1996). However, this has not been 

related to aetiology, but has been related to the combination of high cell density, 

intrinsic bursting cells and extensive recurrent excitatory collaterals which render 

the hippocampus in the temporal region to be highly epileptogenic in neonates 

(Holmes, 1997; Moshe, 1987). This is in contradiction to the rationale for placing 

electrodes during aEEG monitoring in the biparietal (P3 and P4) region which 

overlies the apex of the cerebrovascular watershed zone; an area which has been 

postulated to be the most vulnerable site for injury and borders a zone of arterial 

supply from the 3 cerebral arteries.  

 

Since the bi-parietal (P3 and P4) region is not included as a prerequisite in the 

standard international 10 to 20 system of electrode placement for neonatal EEG 

monitoring, the more common central (C3 and C4) region electrode placement is 

used (C3 is 4 cm anterior to P3 in term neonates). Further studies are required to 

ascertain and confirm which electrode placements are most appropriate, in order 

to correctly capture seizures origin in the developing neonatal brain.  

4.3 Status epilepticus in neonates 
The incidence of status epilepticus varies from author to author due to different 

definitions applied to neonatal seizures (Lawrence and Inder, 2010; McBride et al., 

2000; Scher, 2002; Wusthoff, 2013). Human studies have shown that the duration 

of seizures during status epilepticus are directly related to morbidity and mortality 

(Agarwal and Fox, 2013; DeLorenzo et al., 2009; van der Heide et al., 2012). The 

commonest definition cited by many authors today for neonatal status epilepticus 

stemmed mainly from a study published in 1993 by Scher et al., which defines 

status epilepticus as a continuous electrographic seizure lasting for at least 30 

minutes, or more than or equal to 50% of the EEG recording time, or the 

combination of both (Scher et al., 1993).  
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However, EEG recording times may vary considerably; traditionally as short as 1 

hour was standard, currently it can last at least 72 hours (with the advent of 

therapeutic hypothermia). Because of the prevalent use of the aEEG among 

neonatologists worldwide, status epilepticus was defined as a saw-tooth pattern on 

the amplitude-integrated EEG (aEEG) lasting at least longer than 1 hour (de Vries 

and Toet, 2006; Toet et al., 2008; van Rooij et al., 2010a) (figure 4.11). Yet to 

date, there is no consensus on the definition for neonatal status epilepticus, 

despite the proposed criteria (Wusthoff, 2013). 

 
Figure 4.11 EEG showing seizures which are focal in onset but become generalized 
 

 
 

Experimentally, ongoing seizures lasting for at least 30 minutes have been shown 

to cause neuronal injury in neonatal animal models with ischaemia (Fujikawa, 

2005; Klitgaard et al., 2002); this forms the rationale for the definition of neonatal 

status epilepticus. The mechanism for brain injury secondary to status epilepticus 

has been attributed to toxic amounts of glutamate (Saghyan et al., 2010; Zhang et 

al., 2004). Glutamate leads to excessive depolarization of neurons, which results 

in intracellular increases of sodium and calcium. Changes in these intracellular 

ions lead to a cascade of events ultimately resulting in cell death (Fujikawa, 2005; 

Zhang et al., 2004). Prolonged seizure duration is thought to potentiate the risk of 

permanent brain damage and increases the difficulty of stopping seizure activity 

(Ben-Ari, 2006; Holmes and Ben-Ari, 2003; Lado et al., 2002), thus generating the 

belief that the best chance of terminating a seizure is with early treatment (Abend 

and Wusthoff, 2012).  
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Morbidity due to status epilepticus appears to be decreasing; this may be related 

to the improved critical care management and treatment with anti-seizure 

medication (DeLorenzo et al., 2009; Lawrence and Inder, 2010). Using the 10-20 

EEG channels monitoring which began before the use of anti-seizure medication, 

it has been highlighted that neonatal status epilepticus is primarily generated by 

severe acute brain injuries such as hypoxic-ischaemic encephalopathy and 

periventricular leucomalacia and that neonatal status epilepticus seems to be a 

predictive risk factor for epilepsy in preterm neonates ≤ 29 weeks gestation and in 

term neonates (Pisani et al., 2007).  

 

Status epilepticus can also occur in neonatal stroke (Rafay et al., 2009); the 

outcome from these neonates has yet to be determined. Death due to status 

epilepticus is usually attributable to the underlying cause and not due to the 

prolonged seizure activity per se (Thibeault-Eybalin et al., 2009). However, while 

seizure duration and age onset of seizures have been implicated in the prognostic 

value of determining mortality due to status epilepticus, not all aetiologies play a 

crucial role in determining outcome (Pisani et al., 2007).  

 

Based on seizure burden quantified using the continuous video-

electroencephalography monitoring in 259 infants and children (51% male) with a 

median age of 2.2 years (interquartile range: 0.3 days-9.7 years), seizure burden 

lasting longer than 12 minutes in a given hour was strongly associated with 

neurological decline, thus supporting the hypothesis that electrographic seizures 

independently contribute to brain injury and worsen outcome regardless of what 

the aetiologies were (Payne et al., 2014). 

 

Status epilepticus represents the most severe expression for seizures and has the 

potential to cause brain injury in the immature brain (Lawrence and Inder, 2010). 

In older children and adults, apart from the 30-minute rule, the presence of 2 

consecutive seizures, or repeated seizures with brief intervals and most 

imperatively during which the child is unable to regain full consciousness is also 

included in the definition for status epilepticus (Panayiotopoulos, 2004). However, 

the application of this definition in neonates is obscure as the level of 

consciousness can be difficult to gauge, particularly if sedative medication is given 

(Volpe JJ, 2008).  
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It can be difficult to determine mental status in neonates; therefore choosing this 

criterion for definition as a clinical end-point to define status epilepticus in 

neonates is inappropriate. Furthermore by nature, neonatal EEG seizures are 

usually recurrent brief events rather than long and uninterrupted events (Clancy, 

2006a). Hence, the criteria used to define status epilepticus which includes the 

level of consciousness, such as those applied in the more mature central nervous 

system in older children and adults are not particularly useful for neonates 

(Lawrence and Inder, 2010).  

4.4 Neonatal seizure burden 
Seizure burden is defined as the total duration of recorded electrographic seizures 

in minutes (Clancy and Legido, 1987). Seizure burden is an important  factor to 

consider for outcome studies because prolonged or recurrent seizures are thought 

to be associated with poor long-term neurodevelopmental outcome (Clancy, 

2006a; Payne et al., 2014; Pisani et al., 2007; Pisani et al., 2008). Increasing 

seizure duration, such as continuous or repetitive seizures, carries a higher risk for 

seizure-induced brain injury (Holmes and Ben-Ari, 2001), therefore EEG 

documentation to aid in the diagnosis is essential. The results of devastating 

physiological, metabolic, excitotoxic and genetic effects of electrographic seizures 

are dependent on the severity of each insult, as it has been shown that perinatally 

asphyxiated neonates with abundant seizures demonstrated a worse outcome 

(Maartens et al., 2012; Nunes et al., 2008; van der Heide et al., 2012). 

 

Seizure burden is often relied upon to assess the response of neonates to anti-

seizure medication or to determine the effectiveness of anti-seizure medication. 

Aggressive use of anti-seizure medication without EEG confirmation contributes to 

the inaccuracy in estimating the severity of seizures in neonates and medication-

induced brain injury; furthermore intractable seizures require the use of multiple 

anti-seizure medication to control seizures (Boylan et al., 2004; Painter et al., 

1999). Medication may also impede the recognition of persistent seizures due to 

the phenomenon known as “electroclinical dissociation of seizures” (previously 

discussed in Chapter 3).  

 

The comparative effectiveness of different anti-seizure medication at varying 

gestational ages has not yet been fully established using EEG criteria. Seizure 

durations can be used as quantitative measures of anti-seizure medication 

effectiveness and seizure severity. Interestingly, the Neurology Group on Neonatal 

Seizures had proposed to define the effectiveness for seizure-reducing medication 



78 

as a total cessation of seizures of not merely to a 50% reduction of seizures 

(Clancy, 2006b), but beyond 50% in the reduction of seizures. Some authors have 

shown that seizure activity stopped within 6 hours of giving anti-seizure medication 

in neonates, with serum values within the accepted therapeutic range in all 

neonates (Malik et al., 2003; NEMO study, 2010; Slaughter et al., 2009).  

 

In the last 30 years, various reports on seizure burden in neonates have been 

described. Up until a decade ago, the burden of neonatal seizures in critically ill 

newborns remained high; few studies have computed the minimal or maximal 

seizure durations in neonates (Bye and Flanagan, 1995b; Clancy et al., 1988; 

Scher et al., 1993).  Clancy et al. quantified seizure duration in neonates with a 

variety of acute encephalopathies from EEG recording (length of recording ranged 

from 27 minutes to 3 hours) (Clancy and Legido, 1987). Seizures were best 

characterized as recurrent, but relatively brief events with a mean duration of only 

137 seconds. The majority of seizures were no more than 9 minutes long.  

 

Standard EEG monitoring which consists only of an hour recording undertaken at 

most clinical practices could potentially miss some of the EEG seizures. Clancy et 

al. used several quantitative measures of seizure burden i.e. mean (range) 

number of seizures per hour was 9.5 (1 to 66), mean seizure duration was 132 (19 

to 675) seconds, mean longest recorded seizure was 280 (26 to 1840) seconds 

and the mean percentage of each EEG record during any channel which showed 

electrographic seizure activity was 23 (2 to 87)% (Clancy and Legido, 1991).  

 
4.5 Conclusion  
The characteristics of neonatal seizures differ from those of older children and 

adults. The information on seizure burden in neonates has clinical significance in 

terms of treatment and prognosis; however it needs to be revisited and re-explored 

as the definition of neonatal seizures can no longer be based only on clinical 

grounds which are notoriously known to be subjective. Current information on 

seizure burden in neonates has to be based on seizures detected by the gold 

standard: by prolonged continuous multichannel video-EEG recording. This forms 

the aims of my thesis which is to describe in more detail the matrixes in seizure 

burden as represented by our current population of neonates in our NICUs 

(described in Chapter 1). 
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Chapter 5  

Methodology 

 

               

 

 

 

 

 

 

 

 

                     Introduction 
This research study was a prospective cohort study of neonates who were 

monitored with early, prolonged and continuous multichannel video-EEG because 

they were at risk of seizures in the first few days after birth. In this chapter, the 

study setting, recruitment process, EEG recording methods, study definitions, data 

collection, storage and analysis are discussed.  

 

5.1 Study setting 
5.1.1 Study population 
Study site: Neonates were recruited from the neonatal units at Cork University 

Maternity Hospital (CUMH), Ireland and at Elizabeth Garrett Anderson Wing, 

University College London Hospital (UCLH), London, United Kingdom.  

 

Study period: between 5th January 2009 until 31st December 2011 (3 years). 

 

Inclusion criteria for neonates: Neonates ≥ 37 weeks gestation were enrolled for 

multichannel EEG monitoring if they fulfilled 1 or more of the following criteria:  

1. Apgar score less than 6 at 5 minutes. 

2. First ph of ≤7.1 (cord, capillary, venous or arterial blood sample). 

3. Clinical evidence of encephalopathy, or   

4. Any clinical concern of seizures on a sick neonate 
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Exclusion criteria: No parental consent. 

 

Posters (figure 5.1) as advertisement for this research study were placed in the 

neonatal intensive care unit, special care baby unit, the Tutorial Room, the 

Doctors’ On-Call rooms, in addition to word-by-mouth to doctors and nurses during 

my off and on-call clinical work as well as during EEG rotating hours. 

 
Figure 5.1 Posters as advertisement for this research study 

                              
The NIRS (near-infrared spectrometry) study was an ongoing study which was taking place at the same time 
as the EEG study by the research group. The NIRS measures the ongoing cerebral oxygenation in a neonate 
who was having simultaneous multichannel EEG monitoring.  

 
5.1.2 Standard protocol approvals, registrations and patient consents 
This study was conducted with approval from the Clinical Research Ethics 

Committees of the Cork Teaching hospitals, Ireland and the National Health 

Service in the UK, via the Integrated Research Application Service. Written, 

informed consent was obtained from at least one parent of each neonate who 

participated in this study.  

 

5.2 Electroencephalogram (EEG) recording in the neonatal unit 
When neonates fulfilled the inclusion criteria for the study and written, informed 

consent was obtained from one of the parents, they were then monitored with 

multichannel video-EEG as soon as possible after birth. A bedside 12 channel 

Nicolet video-EEG monitor (CareFusion NeuroCare, Wisconsin, USA) was used to 

record the multichannel video-EEG (figures 5.2 and 5.3). 
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5.2.1 Scalp electrode placements 
The preparation for this procedure involves a number of steps. The skin on the 

neonatal scalp was cleaned by removing any debris and skin cells using an 

alcohol wipe (Alcowipe). An abrasive gel acting as a skin prepping gel (NuPrep) 

and a soft EEG conductive paste (Ten20) were applied onto the scalp using the tip 

of a cotton bud, to achieve an impedance of less than 10 kOhms. Reducing the 

impedance with a gentle abrasive gel to less than 10 kOhms greatly enhances the 

quality of the EEG recording. A delicate tape (Mefix) was used to adhere the EEG 

electrodes (made of silver/silver chloride) onto the skin where the allocated site 

was cleaned on the neonatal scalp and a CPAP (continuous positive airway 

pressure) cap was used to keep the electrodes in placed. 

 

Figure 5.2 Nicolet multichannel video-EEG monitoring device 
                                                     

                                                                           
 

Figure 5.3 Multichannel video-EEG setting in the neonatal intensive care unit 
                                            
                                        
 
 
 
 

                                           
 

Neonate in an incubator 

Ventilator EEG monitor 

Video 
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Using the standard international 10 to 20 system of electrode placement modified 

for neonates (Klem et al., 1999), scalp electrodes were placed at F3, F4, C3, C4, 

T3, T4, O1, O2 and CZ, to record electrical activity from the frontal, central, 

temporal and occipital areas (figure 5.4). This reduced channel system has been 

previously shown to accurately record background EEG activity and neonatal 

seizure discharges (Tekgul et al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

Continuous digital video imaging of the neonate was recorded simultaneously. 

Physiological parameters such as heart rate, respiration, peripheral oxygen 

saturation and invasive arterial blood pressure (where available) were recorded 

digitally from the IntelliVue MP70 Neonatal monitor (Philips, Boeblingen, 

Germany). These physiological vital signs were recorded and stored 

simultaneously with the EEG signal on the Nicolet video-EEG monitor (figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Standard international 10 to 20 system of electrode placement for neonates 
       
 
 

        
 
 

            

C: central;  F: frontal; Gr: ground electrode; O: occipital; P: parietal;   Ref: referential electrode; T: temporal. 
The bipolar vs. referential montage was used. 

Figure 5.5 Multichannel video-EEG record 
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In order to obtain good quality continuous EEG recordings for prolonged periods, 

regular checks of electrode placements were required to ensure that they were still 

intact and that the impedance of electrodes was maintained. Scalp electrodes, 

impedance and EEG traces were examined frequently during the recording and 

replaced and adjusted as necessary. If the neonate needed to be relocated within 

the neonatal unit, for example from the resuscitaire to an incubator, or if the 

neonate had procedures performed which potentially might disrupt the 

maintenance of the EEG electrodes (such as cranial ultrasound, x-ray), my 

colleagues and myself were informed by the nursing or medical personnel to assist 

in moving the EEG equipment and re-attach the EEG electrodes so as to avoid 

any loss of data. If the neonate was clinically unstable or needed to be transferred 

to another hospital for further treatment, we were be summoned to abort the EEG 

monitoring earlier than anticipated. 

 
5.2.2 Visual Analysis of EEG 
EEG analysis by visual inspection: The entire multichannel EEG recording from 

each neonate was independently reviewed by two experienced 

neurophysiologists, students analyzing the EEG and myself. 

5.3 Radiographic features 
Magnetic resonance imaging (MRI) studies were performed in a Siemens Avanto 

1.5 Tesla unit (Siemens Ag, Erlangen, Germany) and computed tomographic (CT) 

scanning was performed using a Toshiba Aquilion 4-detector row CT (Toshiba, 

Tochigi-ken, Japan). All imaging studies were performed without sedation. 

Neonates were transferred to the MRI scanner in an MRI-compatible incubator 

with integrated neonatal array coils (MR Diagnostics Incubator, Lammers Medical 

Technology GmbH, Luebeck, Germany). The arterial territory and estimated size 

of cerebral infarction based on methods described by Marks et al., (Marks et al., 

1999) were reported by an experienced paediatric radiologist. 

5.4 Standard protocol for treatment 

The clinical management of neonates in terms of treatment including therapeutic 

hypothermia by whole body cooling, anti-seizure medication and other medication 

and was at the discretion of the attending neonatologist and was not be dictated 

by the clinical research team. All clinical seizures were treated as well as seizures 

recognized by the clinical team interpreting the aEEG. The aEEG used to confirm 

suspected seizures was also used as an aid in clinical decision-making at the 

cotside. Concerns regarding any abnormal behaviour or aEEG pattern prompted a 
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review of the multichannel EEG from the neurophysiologist in each hospital. 

Immediate reporting of the multichannel EEG was not always available; the aEEG 

and clinical suspicion were the mainstays of seizure confirmation. 

5.4.1 Therapeutic hypothermia by whole body cooling  
Neonates were cooled if they met the entry criteria for the UK Total Body 

Hypothermia for Neonatal Encephalopathy (TOBY) cooling registry (Azzopardi D 

et al., 2007) (figure 5.6). Outborn neonates received passive cooling prior to 

transfer with the overhead radiant warmer turned off. During transport the neonate 

will be nursed in a transport incubator. The incubator heater will be turned on and 

adjusted if necessary to maintain the rectal temperature between 33 and 34°C.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Cooling a neonate with multichannel video-EEG monitoring in the neonatal intensive care unit. 
Permission to be photographed obtained from neonatal nurse Maura Cahill 
 
 
 
 
 

                                   
 

Figure 5.7 Equipment used for therapeutic hypothermia  
 

a) Tecotherm TS med 200 machine 
(Tec-Com, Halle, Germany) 

 

 
b) CritiCool MTRE machine 

(Charter Kontron, Milton Keynes, UK) 

 

 
c) A cooling mattress is used to wrap the neonate 

when using the Tecotherm 

                    

 
d) A CureWrap garment is used to wrap the baby when 

using the CritiCool machine 

 
 

EEG machine Cooling machine 
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Cooled gel packs will be placed around the neonate if necessary to maintain the 

target temperature. For active cooling, either the Tecotherm TS med 200 machine 

(Tec-Com, Halle, Germany) or the CritiCool MTRE machine (Charter Kontron, 

Milton Keynes, UK) was used (figure 5.7). Neonates were actively cooled to a 

rectal temperature of 33 to 34°C for 72 hours (unless contraindicated) and were 

slowly rewarmed by increasing the core temperature not more than 0.5°C per hour 

until it reaches the normal body temperature.  

5.4.2 Anti-seizure medication 
Phenobarbitone was the first-line anti-seizure medication administered to a 

maximum dose of 40 mg/kg intravenously. Second-line anti-seizure medication 

was administered if clinical and/or electrographic seizures recurred following 

phenobarbitone administration. In both hospitals, second-line anti-seizure 

medication was either intravenous phenytoin or midazolam.  

 

Although standardized protocols for the use of anti-seizure medication were similar 

in both hospitals, the choice of second-line anti-seizure medication administration 

was at the discretion of the attending neonatologist. The timing and dose of each 

anti-seizure medication as well as morphine administered were recorded in all 

neonates. 

 
5.5 Dataset for each study  
The pathway in which neonates were included in each study is shown in a 

flow diagram at the Result section of each study. 

 
Cooling study: The concluding diagnosis of hypoxic-ischaemic encephalopathy 

was at the discretion of the attending neonatologist. Every neonate was assigned 

a clinical grade of encephalopathy using the modified Sarnat score at 24 hours of 

age (Evans DJ et al., 1999). Non-cooled neonates were enrolled between June 

2003 to September 2006 and January 2009 to March 2010 from the neonatal 

intensive care unit at Cork University Maternity Hospital (CUMH), Ireland. Cooled 

neonates were enrolled between January 2009 to September 2010 from CUMH 

and University College London Hospital (UCLH), United Kingdom. 

 

Stroke study: The diagnosis of perinatal arterial ischaemic stroke was based on 

neuroimaging evidence of focal infarction affecting at most two arterial territories. 

Study analysis included only neonates with perinatal arterial ischaemic stroke who 

had electrographic seizures. Neonates with hypoxic-ischaemic encephalopathy, 
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infections, inborn errors of metabolism, blood disorders, venous or multiple 

infarctions were excluded due to differing pathogeneses and clinical 

manifestations when compared to those with focal arterial infarction.  

 

Phenobarbitone and Electroclinical dissociation studies: The exclusion 

criteria for these studies were any neonates with a total EEG record of less than 

12 hours in length, or with more than 50% of artefacts on the total EEG record, or 

with more than 36 hours gap between first 2 consecutive EEG records, or if the 

first EEG record was less than 12 hours, or any neonates with less than 8 cerebral 

EEG channels for more than 50% of the total EEG record or any ex-preterm 

neonates with EEG record done at term equivalent age. Further exclusion criteria 

specifically relating to EEG recordings were the exclusion of the last EEG when 

the previous EEG was done more than 36 hours ago, or when the EEG record had 

more than 50% of artefacts, or when an EEG record with less than 8 cerebral EEG 

channels for more than 50% of the total EEG record. 

 

Randomization process for Phenobarbitone and Electroclinical dissociation studies 

Assuming a kappa coefficient of 0.85, 70 neonates were required to be assessed 

by the expert rater in order to achieve a 95% confidence interval for kappa with a 

width of 0.2. Therefore for statistical validation reasons, the study sample size of 

70 term neonates was deemed adequate. Between the 5th January 2009 and 30th 

June 2011, there were 192 term neonates (163 CUMH, 59 UCLH) who were 

consecutively recruited for EEG monitoring, 95 neonates were excluded. Fifty-six 

neonates were excluded because they had less than 12 hours EEG recording; 10 

neonates had more than 50% of artefacts on the EEG and 29 neonates (17 had 

electrographic seizures) were excluded for further testing of the algorithm. Of the 

remaining 97 term neonates, 62 were “non-seizure neonates” and 35 were 

“neonates with seizures”. Thirty-five neonates were randomly selected from the 62 

“non-seizure neonates”.  

 

A total of 70 term neonates (35 non-seizure neonates and 35 neonates with 

seizures) were identified by the human expert rater. Each of these 70 neonates 

was given a coding system randomly. Neonates with multichannel EEG monitoring 

selected for the study analysis were those who were at high risk of having seizures 

or were treated with anti-seizure medication; these included some neonates who 

were without seizures but were treated with anti-seizure medication. Neonates 

who had at least one dose of anti-seizure medication administered during ongoing 

electrographic seizures were included for the Phenobarbitone study. Neonates 
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were excluded if all their anti-seizure medication doses were administered without 

evidence of electrographic seizures. 

5.6 Clinical data collection  

Clinical information  
Clinical information of each neonate recruited for EEG was entered on Microsoft 

Excel 2007-2010 version. Every neonate who fulfilled the criteria for EEG 

monitoring was assigned a code systematically as they were enrolled 

consecutively, either in CUMH (prefixed by C_number) or UCLH (prefixed by 

L_number). The individual names of the neonates were only documented and 

stored in a concealed place at the Neonatal Research Centre in CUMH. The 

information details on the Excel can only be traced by a coding system.  

 

EEG recordings 
All EEG recordings with their video recordings were initially backed up and stored 

onto an external universal serial bus (USB). An electronic storage system for EEG 

records was set up by the Centre for Unified Computing, Boole Centre for 

Research in Informatics in UCC. All EEG records of every neonate were uploaded 

onto a UCC server available at the network location (1) 

wellcome(\\cucfs1.ucc.ie)(z:drive), according to the assigned coding system. Data 

were updated on a regular basis. 

 

Seizure burden annotations from human raters 
All seizure annotations were initially made on the raw EEG record and were 

exported to a Notepad format (.txt as this is the only method Nicolet is able to 

generate all annotations currently). The .txt files were then transferred and opened 

with Excel format for more convenient calculations to be made. Further robust 

statistical analysis can be made by transferring the data from Excel onto a 

statistical package format. All data were stored and backed up securely in an 

external USB. 

file://cucfs1.ucc.ie)(z:drive)
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5.7 Definitions 

An electrographic seizure was defined as a sudden and evolving repetitive 

stereotyped waveform with a definite start, middle and end, lasting for at least 10 

seconds and with a minimum amplitude of two microvolts (Clancy and Legido, 

1987) on at least one EEG channel.  

Status epilepticus was defined as continuous or accumulative 

electrographic seizure activity lasting greater than 50% of a one hour period 

(Ortibus et al., 1996).   
 
The electrographic seizure window was defined as the timepoint between the 

first and last recorded electrographic seizure in hours. 

 

The recorded seizure burden was defined as the total duration of recorded 

electrographic seizures in minutes. It was also expressed in terms of seizure per 

hour and was calculated using a formula: 

 
Seizure burden= total seizure burden (minutes)/ electrographic seizure 

window (hours) 

 

Seizure number was counted as the number of seizure events recorded on 

the EEG.  

 

To avoid neonates with many seizures having much influence on the results, 

summary measures were calculated for each neonate. These summary measures 

were percentages of the number of seizure events and the seizure burden (seizure 

duration in minutes) associated with electroclinical seizures, electrographic-only 

and the duration when viewing of the video was obscured (for example during a 

medical procedure); they were calculated relative to the total number of 

electrographic seizures and the total seizure burden (seizure duration in minutes). 

For example: 

 
% number of electroclinical seizures= (the number of electroclinical seizures/ 

the total number of seizures) * 100 

 
% seizure burden of electroclinical seizures= (the seizure burden of 

electroclinical seizures/ the total seizure burden) * 100 
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% number of electrographic-only seizures= (the number of electrographic-only 

seizures/ the total number of seizures) * 100 

 

% seizure burden of electrographic-only seizures= (the seizure burden of 

electrographic-only seizures/ the total seizure burden) * 100 

 

Mean seizure duration was calculated for all recorded electrographic seizures in 

each neonate. In each neonate, the mean seizure duration is calculated as the 

proportion of the total seizure burden in seconds relative to the number of seizures: 

Mean seizure duration= total seizure burden (in seconds) /total number of seizures 

 

The entire background EEG pattern was graded and assessed for continuity, 

symmetry, synchrony, sleep cycling and other specific features.  

 

Sleep cycling was assessed as being present, absent or disturbed in each 

neonate; a disturbed sleep cycling signified an interruption to the expected sleep 

cycle architecture of healthy term neonate (Lamblin et al., 2013).  

 

Significant EEG suppression was defined as EEG activity below 5 μV in all EEG 

channels for at least 10 seconds respectively. 

5.8 Statistical analysis 

Detailed description of statistical analysis pertaining to the 4 different studies is 

found in the following chapters 6, 7, 8 and 9.  
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Results and Discussions 
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Summary of dataset of neonates recruited for this research study 
Diagram 3.0 Overall flow diagram on the recruitment timeline for this research study  
 
Recruitment timeline: June 2003 to October 2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CUMH: Cork University Maternity Hospital; UCLH: University College London Hospital, United Kingdom. 

258 term neonates with multichannel EEG monitoring 

105 from CUMH      
(Jan 2009 to Oct 2010) 

66 from previous cohort 
(June 2003 to Sept 2006) 

43 from UCLH          
(Jun 2009 to Oct 2010) 

214 term neonates with EEG 
(Cooling study) 

148 term neonates with EEG 

 

97 term neonates with EEG 

 

Excluded 66 neonates: 
- 56 had <12 hours of EEG monitoring  
- 10 had >50% artefacts on EEG 
 

35 had electrographic seizures (Jan 2009 to Oct 2011) 

163 term neonates with EEG 

 

Excluded 29 neonates from 
UCLH for validation purpose 

(17 had seizures) 

 

2 from UCLH 

4 from CUMH 

2 from 
previous 
cohort 
 

Excluded 62 neonates who 
had no electrographic seizures 

44 from CUMH & UCLH                                           
(Oct 2010 to Oct 2011) 

192 term neonates with EEG 

 

1 from UCLH     
(by end Oct 2011) 

9 term 
neonates with 

EEG       
(Stroke study) 

33 had phenobarbitone 

19 had phenobarbitone during 
electrographic seizures 
(Phenobarbitone study) 

 

24 had simultaneous                      
video-EEG recording                                

(Electroclinical dissociation study) 

 

Excluded 11 
neonates who had 
no simultaneous 

video-EEG 
recording 

Excluded 2 neonates 
who did not received 

any anti-seizure 
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Chapter 6  

Characteristics of Electrographic Seizure Burden in Term Neonates 
with Hypoxic-ischaemic Encephalopathy 

6.1 Abstract 
Background: Therapeutic hypothermia in neonates with hypoxic-ischaemic 

encephalopathy (HIE) improves long-term neurological outcomes. 

 

Objective: To investigate the effect of therapeutic hypothermia on seizure burden, 

the recorded seizure burden was quantified based on multichannel video-EEG in 

HIE neonates who received therapeutic hypothermia and in those who did not. 

 

Methods: Early, prolonged and continuous multichannel video-EEG recordings 

were performed and each EEG record was reviewed independently by two 

experienced electroencephalographers who were blinded to the allocation for 

therapeutic hypothermia. Comparison between the recorded seizure burden in 

non-cooled and cooled neonates was assessed. Data were expressed as medians 

and interquartile ranges (IQR). 

 

Results: There were 107 neonates with HIE who were recruited for multichannel 

EEG monitoring during the study period of 2009 and 2011. Thirty seven neonates 

were identified to have electrographic seizures; of these, 31 had recordings that 

were suitable for analysis (16 non-cooled, 15 cooled). Compared with non-cooled 

neonates, earlier [age: 6 (3-9) vs 15 (5-20) hours] and longer [88 (75-101) vs 55 

(41-60) hours] EEG monitoring were undertaken in cooled neonates. Despite this 

increased opportunity to capture seizures in cooled neonates, the recorded 

seizure burden in the cooled group was significantly lower than in the non-cooled 

group [60 (39-224) vs 203 (141-406) minutes; p=0.027]. Further exploratory 

analysis showed that the recorded seizure burden was only significantly reduced 

in cooled neonates with moderate HIE [49 (26-89) vs 162 (97-262) minutes; 

p=0.020] when compared with severe HIE. 

 

Conclusions: Compared to neonates with severe HIE, a decreased seizure 

burden was noted in neonates with moderate HIE who received therapeutic 

hypothermia. This finding may explain some of the therapeutic benefits of 

hypothermia seen in term neonates with moderate HIE. 
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6.2 Introduction  
Hypoxic-ischaemic encephalopathy (HIE) accounts for approximately 50 to 75% of 

neonatal seizures (Volpe JJ, 2008). Seizures have been shown to exacerbate pre-

existing cerebral damage due to perinatal hypoxic-ischaemia (Yager et al., 2002). 

Outcome studies in neonates have shown that seizures are powerful predictors of 

morbidity and mortality (Glass et al., 2009; van Rooij et al., 2007). However, these 

studies relied almost entirely on the detection of seizures using clinical observation 

(Glass et al., 2009) or the amplitude-integrated electroencephalogram (aEEG) 

(van Rooij et al., 2007). It is well-known that many seizures can remain undetected 

by clinical recognition (Malone et al., 2009; Murray et al., 2008) or the aEEG 

(Glass et al., 2013; Rennie et al., 2004); therefore both methods cannot accurately 

quantify the precise seizure burden in neonates. Inherently, the accurate 

identification and quantification of neonatal seizures require early, prolonged and 

continuous monitoring with the multichannel video-EEG. 

 

Based on many evidence of benefit from both animal and human studies, the 

National Institute for Health and Clinical Excellence has endorsed the use of 

therapeutic hypothermia for hypoxic perinatal brain injury in the United Kingdom 

(UK) (National Institute for Health and Clinical Excellence (NICE), 2010). Edwards 

et al. conducted a meta-analysis of three trials which had enrolled 767 neonates; 

they showed that therapeutic hypothermia reduced the combined rate of disability 

and death at 18 months (Edwards et al., 2010). Recently, longer term 

neurodevelopmental outcome of neonates who were treated with therapeutic 

hypothermia after perinatal asphyxia has shown that there was an improvement in 

neurocognitive function in children aged between 6 and 7 years old (Azzopardi et 

al., 2014). 

 

However, the precise mechanism by which hypothermia achieves neuroprotection 

in neonates with HIE is unknown. In the biphasic model of neuronal death 

following hypoxia- ischaemia injury, the cascade of events which occurs in the 

secondary reperfusion injury phase may be associated with seizures, an 

accumulation of cytotoxins and failure of oxidative cerebral metabolism (Bennet et 

al., 2001; Busto et al., 1989; Tooley et al., 2003). Hypothermia may reduce the 

seizure burden in neonates by affecting or arresting some of these mechanisms 

during this vital phase of brain injury.  
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What is already known on this topic?  

• Therapeutic hypothermia in neonates with hypoxic-ischaemic 

encephalopathy has been shown to ameliorate adverse long-term 

neurodevelopmental outcome at 18 months. 

• Clinical recognition and the amplitude-integrated EEG can miss many 

seizures and therefore will underestimate the true seizure burden in 

neonates with hypoxic-ischaemic encephalopathy. 

• Inherently, early, prolonged and continuous multichannel video-EEG 

monitoring provides the more accurate identification and quantification 

of electrographic seizure burden in term neonates. 

6.3 Aim 
Hypothesis: Therapeutic hypothermia reduces seizure burden in term 

neonates with hypoxic-ischaemic encephalopathy (HIE). 

 

Study aim: To determine the characteristics of seizures in neonates with 

hypoxic-ischaemic encephalopathy: non-cooled versus cooled neonates (the 

Cooling study). To date, therapeutic hypothermia has become the standard 

of care for neonates with hypoxic-ischaemic encephalopathy in most tertiary 

neonatal units, hence it is imperative to examine the seizure characteristics in 

cooled neonates with hypoxic-ischaemic encephalopathy. In this study, I 

investigated this by quantifying the effect of therapeutic hypothermia on 

recorded seizure burden obtained from continuous multichannel video-EEG 

monitoring.  

6.4  Methods 
Of the 214 neonates who had EEG monitoring, 66 neonates were from a historical 

cohort (55 of whom had HIE) and 148 neonates were from the current cohort (105 

neonates from CUMH and 43 from UCLH). With the advent of therapeutic 

hypothermia, most of the historical cohort of neonates (2003-2006) were non-

cooled and their EEG data were compared with neonates who were cooled in the 

current population (2009 to 2010). Neonates who had moderate and severe HIE 

were selected for this study analysis (figure 6.1). Further methods of EEG 

monitoring are described in Chapter 5 of Methodology section.  
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Figure 6.1 Flow diagram on the recruitment timeline for the Cooling study 
 
Recruitment timeline: June 2003 to Oct 2010 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CUMH: Cork University Maternity Hospital, Ireland; HIE: hypoxic-ischaemic encephalopathy; UCLH: University 
College London Hospital, United Kingdom. 

 

The recorded seizure burden was defined as the total duration of recorded 

electrographic seizures in minutes. Seizure number was counted as the number of 

seizure events recorded on the EEG. Mean seizure duration was calculated for all 

recorded electrographic seizures in each neonate. 

 

Statistical analysis: The inter-rater agreement between 2 

electroencephalographers was assessed using a Cohen’s Kappa (к) statistic. 

Continuous variables were described using medians and interquartile ranges 

(IQR) and categorical variables using frequencies. For comparisons between the 

two groups (non-cooled and cooled), the Mann-Whitney test was used for 

214 term neonates with multichannel EEG monitoring 

55 HIE 

105 from CUMH      
(Jan 2009 to Oct 2010) 

66 from previous cohort 
(June 2003 to Sept 2006) 

43 from UCLH          
(Jun 2009 to Oct 2010) 

19 HIE 24 non-HIE 33 HIE 

107 HIE  

72 non-HIE 11 non-HIE 

43 Mild HIE 
- 24 previous cohort 
- 15 CUMH 
- 4 UCLH 
 

34 Moderate HIE 
- 13 previous cohort 
- 12 CUMH 
- 9 UCLH 

37 had electrographic seizures 

64 Moderate & Severe HIE 

30 Severe HIE 
- 18 previous cohort 
- 6 CUMH 
- 6 UCLH 

15 Cooled 
- 6 CUMH 
- 9 UCLH 

Excluded 6 neonates:  
- 4 Moderate HIE 
- 2 severe HIE 

16 Non-cooled 
- 14 previous cohort 
- 2 CUMH 
 

31 included for study analysis 

6 
Moderate 

HIE 

10 
Severe 

HIE 

8 
Moderate 

HIE 

7 
Severe 

HIE 
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continuous variables and the χ2 test or Fisher’s exact test (in the case of small 

expected counts) was used for categorical variables. All statistical analyses were 

performed using PASW Statistics 17.0. All tests were two-sided and a p value 

<0.05 was considered to be statistically significant. 

 

6.5 Results 
Patient population 

During the study period between June 2003 to Oct 2010, there were 107 term 

neonates diagnosed with HIE (figure 6.1). Based on assessment using the clinical 

Sarnat grade for HIE, 43 neonates were identified to have mild HIE, 34 with 

moderate HIE and 30 neonates with severe HIE. From the 64 neonates with 

moderate or severe HIE, electrographic seizures were recorded in 37 neonates. Of 

these, 6 neonates were excluded from the study analysis: four neonates with 

moderate HIE were excluded [2 cooled neonates had secondary events shortly 

after EEG was commenced (one with cardiopulmonary arrest and the other with 

pulmonary haemorrhage), one cooled and one non-cooled neonate had less than 

20 hours of artefact-free EEG] and 2 neonates with severe HIE were excluded 

(one cooled neonate with a subsequent principal diagnosis of mitochondrial 

respiratory chain disease and one non-cooled neonate with less than 20 hours of 

artefact-free EEG).  

 

The remaining 31 neonates formed the study group (16 non-cooled, 15 cooled). 

Table 6.1 summarizes the clinical characteristics of neonates in both non-cooled 

and cooled groups. All non-cooled neonates were enrolled from CUMH (table 6.2). 

Nine of the 15 cooled neonates were enrolled from UCLH (table 6.3).  

 
Table 6.1 Clinical characteristics of neonates included in this study 

 Non-cooled (n=16) Cooled (n=15) p 
value 

Gestational age (weeks) 41 (40- 41) 40 (40- 41) 0.300 
Birthweight (grams) 3 488 (3163- 3733) 3275 (3000- 4130) 0.707 
Gender (male: female) 10: 6 9:6 0.886* 
Clinical Sarnat score    
     Moderate 6 8 0.376* 
     Severe 10 7  
5 minute Apgar score  6 (2-8) 4 (2- 4) 0.050 
First pH 7.134 (7.032- 7.217) 6.930 (6.800- 7.100) 0.009 
Number of anti-seizure medication  2 (1-3) 1 (1-2) 0.274 
First-line anti-seizure medication (age in hours) 12 (9-19) 14 (10-24) 0.504 
Total dose of first-line anti-seizure medication (mg/kg) 30 (20-40) 20 (20-20) 0.203 
Second-line anti-seizure medication (age in hours) 28 (24-31) 26 (19-38) 0.556 
Number of neonates on morphine 8 15 0.002* 
Data are median (interquartile ranges) or n.  
χ2 test for the proportion of gender and clinical Sarnat score for neonatal hypoxia-ischaemic encephalopathy in non-
cooled and cooled groups. 
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Table 6.2 Individual characteristics of non-cooled neonates with hypoxia-ischaemic encephalopathy 

Case Clinical  
Sarnat 
score 

Recorded 
seizure 
burden 
(minutes) 

Seizure 
number  
(n) 

Mean 
seizure 
duration 
(seconds) 

Age at first 
EEG 
seizure 

Age at first-line 
anti-seizure 
medication 

Time from 
EEG seizure 
onset to 
treatment 

Second-line anti-seizure 
medication 

Other 
drugs 

Age Total dose 

C1S 2 38 4 574 10h 15m None N   M 

C2 3 106 43 147 18h   23h 14m Pt= 10 mg/kg M 

C3S 2 116 21 331 26h 11m 8h 5m B 25h 5m Pt= 20 mg/kg  

C4S 3 137 84 98 14h 12m None N   M, Tr 

C5S 2 152 99 92 22h 30m 22h 34m 4m 32h 44m Pt= 20 mg/kg  

C6E, S 2 172 21 493 25h 30m 19h 13m B 28h 28m Pt= 20 mg/kg  

C7E 3 183 121 91 12h 40m 12h 20m B 35h 35m Mz= 100 mcg/kg M 

C8E 3 199 41 291 17h 7m 10h 50m B   M 

C9 3 206 60 206 12h 20m 24h 24m 12h 4m   M 

C10E, S 2 212 66 193 10h 54m 10h 10m B 28h 40m Pt= 20 mg/kg  

C11 3 239 150 96 10h 56m 19h 35m 8h 39m    

C12E 3 384 209 110 21h 58m 2h 30m B  Pt= 20 mg/kg Cn, M 

C13E, S 2 413 63 393 17h 54m 10h 3m B    

C14E, S 3 640 305 126 16h 48m 18h 13m 1h 25m 29h 13m Pt= 20 mg/kg Pr, Mz, Py 

C15E 3 958 190 303 27h 28m 6h 34m B 9h 44m Pt= 25 mg/kg Mz, Py 

C16E 3 1002 201 299 20h 35m 16h 37m B 26h 47m Pt= 40 mg/kg M, D 

B: clinically treated before EEG commenced; C: neonates enrolled from the Cork University Maternity Hospital; Cn: clonazepam; D: intravenous diazepam; 
E: neonates with status epilepticus; M: morphine; Mz: midazolam; N: not given any anti-seizure medication; Pr: paraldehyde; Pt: phenytoin; Py: pyridoxine; 
S: neonates who were already seizing at the time when EEG was commenced; Tr: trichloral hydrate. 
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Table 6.3 Individual characteristics of cooled neonates with hypoxia-ischaemic encephalopathy 
Case Clinical 

Sarnat 
Recorded 
seizure burden 
(minutes) 

Seizure 
number 
(n) 

Mean seizure 
duration 
(seconds) 

Age at first 
EEG seizure 

Age at first-line 
anti-seizure 
medication 

Time from EEG 
seizure onset  
to treatment 

Second-line anti-seizure 
medication 

Other 
drugs 

Cooling 
duration      
(age in hours) Age Total dose 

L1A 2 19 4 283 10h 59m 11h 30m 31m   M 72 (12-84) 

L2A 2 24 17 85 11h 20m 12h 25m 1h 5m 26h Pt= 20 mg/kg M, Mz 72 (8-90) 

L3E 2 31 2 917 6h 58m 7h 25m 27m   M 72 (6-78) 

C17 3 39 14 168 12h 22m 6h 10m B   M 72 (0.25-72.25) 

L4 2 48 12 241 24h 23m 31h 44m 7h 21m   M 72 (6-78) 

L5R, A 2 49 46 64 39h 26m 24h 23m B   M 72 (9-81) 

C18E 2 55 2 1658 8h 17m 9h 55m 1h 38m   M 72 (2-74) 

L6W 3 60 41 88 12h 12h 51m 51m 20h 11m Mz= 150 mcg/kg M 33 (0.5-33.5) 

C19 2 100 22 274 13h 25m 15h 38m 2h 13m   M 72 (2-74) 

C20 2 118 76 93 21h 28m 7h 20m B   M 72 (3-75) 

C21E, W 3 214 56 229 16h 33m 17h 3m 30m 28h 33m Pt= 20 mg/kg M 65 (0.8-66) 

L7R, W 3 224 281 48 12h 51m 21h 22m 8h 31m 25h 52m Mz= 340 mcg/kg M 23 (5-28) 

C22R 3 244 185 79 42h 13m 56h 25m 14h 12m 65h 35m Pt= 20 mg/kg M 72 (6-78) 

L8E, R, W 3 289 161 108 13h 5m 27h 23m 14h 18m   M 19 (5-24) 

L9S, W 3 421 178 142 10h 24m 13h 35m 3h 11m 13h 55m Mz= 330 mcg/kg M 66 (5-71) 

A: documented age onset of active cooling, passive cooling initiated earlier during transport; B: clinically treated before EEG commenced; C: neonates enrolled from 
Cork University Maternity Hospital; E: neonates with status epilepticus; L: neonates enrolled from University College London Hospital; M: morphine; Mz: midazolam; Pt: phenytoin; R: neonates 
with EEG seizures following discontinuation of cooling; S: neonates who were already seizing at the time when EEG record was commenced; W: shorter cooling period as part of withdrawal of 
life-sustaining support decision. 
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                     Therapeutic hypothermia and anti-seizure medication 

Therapeutic hypothermia was commenced at the median (interquartile ranges) 

age of 5 (2-6) hours. In 6 of 7 cooled neonates with severe HIE, therapeutic 

hypothermia was commenced within 6 hours of age. However, due to clinical 

decisions to withdraw life-sustaining supportive care in these neonates, the 

duration of therapeutic hypothermia and EEG monitoring were shorter. A higher 

recorded seizure burden was noted in cooled neonates who had moderate HIE. 

Passive cooling was commenced earlier during transport to UCLH in 3 of 8 

neonates with moderate HIE, but the recorded age at which active cooling 

commenced was beyond 6 hours of age. Despite this, all 8 neonates with 

moderate HIE received at least 72 hours of therapeutic hypothermia. Eight of 16 

non-cooled neonates received at least one dose of phenobarbitone before EEG 

monitoring commenced.   

 

All cooled neonates did not have any anti-seizure medication prior to EEG 

monitoring; all were only given anti-seizure medication during therapeutic 

hypothermia. However in both groups, there was no significant difference in the 

number of anti-seizure medication [non-cooled: 2 (1-3) vs cooled: 1 (1-2); p=0.274] 

and in the total administered dose of first-line anti-seizure medication [non-cooled: 

30 (20-40) vs cooled: 20 (20-20) mg/kg; p=0.203]. There were no significant 

differences in the ages at which the first-line anti-seizure medication [non-cooled: 

12 (9-19) vs cooled: 14 (10-24) hours; p=0.504] and the second-line anti-seizure 

medication administered [non-cooled: 28 (24-31) vs cooled: 26 (19-38) hours; 

p=0.556]. Based on the Fisher’s exact test, all cooled neonates received morphine 

compared to 8 of 16 non-cooled neonates (p=0.002). 

 
Characteristics of seizure burden 

There was a high level of agreement in the interrater agreement for seizure 

identification (к=0.872). In 8 non-cooled and 1 cooled neonates, seizures were 

noted to be ongoing when EEG recording commenced. The postnatal age of first 

recorded electrographic seizure was similar in both groups [non-cooled: 18 (12-22) 

vs cooled: 13 (11-22) hours; p=0.252]. In cooled neonates, the recorded seizure 

burden was significantly less than in the non-cooled group [60 (39-224) vs 203 

(141-406) minutes; p=0.027] (table 6.4), while the number of seizures was fewer in 

the cooled than in the non-cooled group [41(12-161) vs 75 (42-180); p=0.105]. 

Cooled neonates had lower mean seizure duration than non-cooled neonates [142 
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(85-274) vs 200 (101-324) seconds; p=0.192], but these did not reach statistical 

significance.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
There were more neonates with status epilepticus in the non-cooled group when 

compared to the cooled group; this also was not statistically significant (n=9/16 vs 

4/15 cases, p=0.095). An exploratory subgroup analysis showed that therapeutic 

hypothermia had a significant reduction of recorded seizure burden in neonates 

with moderate HIE [non-cooled: 162 (97-262) vs cooled: 49 (26-89) minutes; 

p=0.020] while no such difference was seen in neonates with severe HIE [non-

cooled: 223 (172-720) vs cooled: 224 (60-289) minutes; p=0.558].   

 
Seizures following discontinuation of therapeutic hypothermia 

Eleven cooled neonates had EEG monitoring long after therapeutic hypothermia 

was discontinued. When therapeutic hypothermia was discontinued, 

electrographic seizures were observed in 4 of 15 neonates (table 6.3). When a 

decision was made to withdraw life-sustaining supportive care, 2 of the 4 neonates 

had a shorter duration of therapeutic hypothermia (case L8- cases to tally with 

table for 19 hours, case L7 for 23 hours). In the remaining two cases (cases C22 

and L5), electrographic seizures were observed following discontinuation of 

therapeutic hypothermia despite the fact that therapeutic hypothermia started at 6 

and 9 hours respectively after birth and continued for 72 hours (figure 6.2). 

 

 

Table 6.4 Characteristics of seizure burden in non-cooled and cooled groups 

All neonates Non-cooled (n=16) Cooled (n=15) p value 

Recorded seizure burden (minutes) 203 (141- 406) 60 (39-224) 0.027 

Total seizure numbers per neonate (n) 75 (42-180) 41 (12-161) 0.105 

Mean seizure duration (seconds) per neonate 200 (101-324) 142 (85-274) 0.192 

Number of neonates with status epilepticus (n) 
 

9 4 0.095* 

Age onset of EEG (hours) 
 

15 (5-20) 6 (3-9) 0.006 

Total EEG duration (hours) 55 (41-60) 88 (75-101) 0.001 
Moderate HIE Non-cooled (n=6) Cooled (n=8)  

Recorded seizure burden (minutes) 162 (97- 262) 49 (26-89) 0.020 
Total seizure numbers per neonate (n) 42 (17-74) 15 (3-40) 0.174 
Mean seizure duration (seconds) per neonate 
 

362 (168-513) 258 (87-759) 0.519 

Severe HIE Non-cooled (n=10) Cooled (n=7)  
Recorded seizure burden (minutes) 223 (172-720) 224 (60-289) 0.558 
Total seizure numbers per neonate (n) 136 (56-203) 161 (41-185) 0.591 
Mean seizure duration (seconds) per neonate 137 (98-293) 108 (79-168) 0.172 
Data are median (interquartile ranges) or n.  
*χ2 test for the proportion of neonates with status epilepticus in non-cooled and cooled groups. 
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6.6 Discussion 
When compared to non-cooled neonates, this study has shown that there was a 

significantly lower electrographic seizure burden in term neonates with moderate 

and severe HIE when treated with whole body cooling. This is the first study to 

enumerate the seizure burden based on early and prolonged continuous 

multichannel video-EEG between non-cooled and cooled neonates. 

 

Incidence of seizure burden since therapeutic hypothermia 

In our study, we have found that the seizure burden was reduced in cooled when 

compared to the non-cooled neonates [60 (39-224) vs 203 (141-406) minutes]; this 

was significant in neonates with moderate HIE rather than those with severe HIE 

(Low et al., 2012a). Our findings were further confirmed by Srinivasakumar et al. 

who had added cranial magnetic resonance imaging findings to their study 

(Srinivasakumar et al., 2013). In this reserach study of neonates with moderate or 

severe HIE, the reported incidence of electrographic seizures in non-cooled and 

cooled cohorts were 54% and 61% respectively (and after study exclusion: 52% 

and 48% respectively) (Low et al., 2012a). These values are consistent with other 

studies using multichannel EEG (Nash et al., 2011; Rafay et al., 2009; Wusthoff et 

al., 2011).  

 

However in the 2 recent hypothermia studies, (Nash et al., 2011; Wusthoff et al., 

2011) the recorded seizure burden was not quantified and a control cohort (non-

cooled) was not made available for comparison. In another study by Hamelin et 

Figure 6.2 The overall seizure burden in non-cooled and cooled groups. 
 
 

      
Total overall seizure burden in non-cooled and cooled groups (p=0.027) and when excluded neonates who 
were not cooled for 72 hours (p=0.008). Box-and-whisker plots showing medians, interquartile ranges and 
outliers (values≥ 1.5*inter-quartile range). 
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al., seizures had been shown to be less frequent in the cooled group but this was 

not significantly different with the non-cooled group (Hamelin et al., 2011). It would 

no longer be ethical to randomize neonates with HIE to normothermia. 

 
Status epilepticus during therapeutic hypothermia 
Not many studies have reported the occurrence of status epilepticus during 

cooling. Status epilepticus tends to occur in both neonates with moderate or 

severe HIE but more so in the non-cooled population (Low et al., 2012a). In a 

cooled cohort studied by Srinivasakumar et al., in 5 (of 19) neonates with status 

epilepticus, all were noted to have severe brain injury as assessed by cranial 

magnetic resonance imaging. In a cohort of 56 neonates who were cooled, 

moderate to severe brain injury (as detected on magnetic resonance imaging at 

median age of 5 days) was more commonly detected in neonates with status 

epilepticus (5 of 17 neonates) (Glass et al., 2011b).  

 

A study by Nash et al. also confirmed this finding in 4 of 15 cooled neonates who 

had status epilepticus and had moderate to severe brain injury (Nash et al., 2011). 

They concluded that during therapeutic hypothermia, seizures are a risk factor for 

brain injury particularly in neonates with status epilepticus. In the study by 

Wusthoff et al., 23% of neonates continued to have status epilepticus (Wusthoff et 

al., 2011). Animal studies have advocated the use of therapeutic hypothermia as 

an adjunct to conventional anti-seizure medication to treat status epilepticus 

(Schmitt et al., 2006). Alternatively, a more effective anti-seizure medication acting 

as an adjunct to therapeutic hypothermia is much needed to control status 

epilepticus. Further reports relating to status epilepticus in the cooled population 

need to be assessed to determine whether there are any other factors involved 

apart from the severity of brain injury. 

 

Electroclinical dissociation (ECD) of seizures during therapeutic hypothermia 

Electroclinical dissociation (ECD) of seizures is common in neonates treated with 

therapeutic hypothermia (Nash et al., 2011; Wusthoff et al., 2011; Yap et al., 

2009). Yap et al. monitored a cohort of 20 neonates (13 moderate HIE, 7 severe 

HIE) with selective head cooling (Yap et al., 2009). Concurrently with seizures on 

aEEG, initially 9 of 20 (45%) neonates were suspected of having clinical seizures 

at enrolment, during the first 24 hours of life during cooling, a total 18 of 20 (90%) 

neonates had non-convulsive seizures. Seizure burden increased in 9 of 20 (45%) 
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neonates during ongoing cooling period at 24 to 36 hours (day 2 to 3) of age. After 

36 hours, seizure frequency decreased in 18 of 20 neonates. The occurrence of 

electrographic-only seizures in this study by Yap et al. is high. They had mainly 

used the aEEG and single-channel EEG tracing with intermittent multichannel 

EEG for seizure detection, and the use of anti-seizure medication with the 

occurrence of electroclinical dissociation of seizures was not discussed (All 20 

neonates were given phenobarbitone and 14 of 20 neonates had received 

fosphenytoin and increasing midazolam infusion) (Yap et al., 2009). 

 

Using the gold standard: multichannel video-EEG from 26 neonates who received 

whole body cooling, (reviewed by 2 paediatric neurophysiologists), Wusthoff et al. 

detected 17 of 26 (65%) neonates who had electrographic seizures during and 

immediately after cooling; 8 of 17 (47%) had only electrographic-only seizures [13 

of 17(76%) had seizure onset within 48 hours of life] and 4 of 17 (23%) had status 

epilepticus (Wusthoff et al., 2011). In 10 of 26 (39%) neonates, phenobarbitone 

was given for suspected clinical seizures before EEG commenced [7 of 10 

neonates received 1 dose of phenobarbitone; 8 of 10 neonates were treated 

based on electrographic seizures], 18 of 26 (69%) neonates were treated with anti-

seizure medication (unspecified) during cooling. The treatment protocol in this 

study was to treat neonates with anti-seizure medication with the aim of total 

termination of electrographic seizures. The onset of seizures spanned from 6 to 95 

hours of age; this study advocated that EEG monitoring should be extended 

beyond 24 hours for neonates receiving therapeutic hypothermia (Wusthoff et al., 

2011). 

 

Using continuous video-EEG (commenced at 10.2 ±2.9 hours of age for 90.9 

±28.3 hours) and whole body cooling in 41 neonates treated with anti-seizure 

medication (lorazepam, phenobarbitone, fosphenytoin, levetiracetam), Nash et al. 

detected electrographic seizures in 14 of 41(34%) neonates [13 of 14 neonates 

had seizure onset within 18 hours of age, 8 neonates within 6 hours of age] and 4 

of 41 neonates had status epilepticus (Nash et al., 2011). Electroclinical seizures 

occurred in 8 of 14 (57%) neonates and electrographic-only seizures were noted in 

6 of 14 (43%) neonates [3 of 6 neonates had status epilepticus]. However, the 

effect of anti-seizure medication on electrographic-only seizures was not assessed 

in studies by Wusthoff et al. (Wusthoff et al., 2011) and Nash et al. (Nash et al., 

2011).  



 

105 

Perhaps differing treatment strategies in other institutions with the use of different 

first-line anti-seizure medication (lorazepam) may have explained the lower 

incidence of electrographic-only seizures in these studies. In a cohort of neonates 

who were cooled, the study by Glass et al. have shown that the electroclinical 

dissociation of the seizures is as common as electroclinical seizures (57% vs 60%) 

(Glass et al., 2011b). These studies have shown that electroclinical dissociation of 

seizures is common in neonates with HIE receiving therapeutic hypothermia; these 

findings further reinforce the emphasis on the importance of using the 

multichannel EEG monitoring as part of routine clinical management.  

 

Anti-seizure medication and therapeutic hypothermia 
There may be a potential bias to the results in relation to the choice of anti-seizure 

medication used in this study. The timing and dose of anti-seizure medication may 

differ as the administration of medication was at the discretion of different 

attending neonatologists in both enrolling hospitals. Based on multicenter studies 

in Europe (Vento et al., 2010) and in the United States of America (Bartha et al., 

2007), there is still no consensus on a standard protocol for the use of anti-seizure 

medication among neonatologists.  

 

Compared to cooled group, the recorded seizure burden remained higher in the 

non-cooled group who had received more numbers and doses of anti-seizure 

medication. Despite this, the results from this research study have shown that 

there was no significant difference between the non-cooled and cooled groups 

with respect to the number, dose and age in hours when the first and second-line 

anti-seizure medication were administered. None of the cooled neonates and half 

of the non-cooled neonates had received at least one dose of phenobarbitone 

before EEG monitoring.  

 

The synergistic anti-seizure medication properties of cooling with other anti-

seizure medication have been described (previously discussed in Chapter 2). All 

but two non-cooled neonates in this research study received phenobarbitone, 

which remains the most commonly used first-line anti-seizure medication in most 

neonatal units (Bartha et al., 2007; Vento et al., 2010). The reduced effectiveness 

of this gamma-aminobutyric acid (GABA)-enhancing anti-seizure medication has 

been linked to the altered neuronal chloride transport in the developing brain 

(Dzhala et al., 2005). 
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Sedative and anaesthetic medication have been shown to facilitate the therapeutic 

effects of hypothermia (Tooley et al., 2003). All cooled neonates and half of the 

non-cooled neonates received morphine (Low et al., 2012a). However, morphine 

itself does not possess anti-seizure properties; so this difference alone is unlikely 

to explain the measured difference in the recorded seizure burden between the 

non-cooled and cooled groups. 

 
Effect of cooling on severe HIE 
It is debatable whether severely affected HIE neonates would benefit from 

therapeutic hypothermia. The results of exploratory analysis in this research study 

showed that the recorded seizure burden was only significantly reduced in cooled 

neonates with moderate HIE. Possibly, this is related to the higher recorded 

seizure burden in 5 of the 7 cooled neonates with severe HIE who had shorter 

durations of therapeutic hypothermia and EEG monitoring following decisions to 

withdraw life-sustaining support.  

 

Studies by Gluckman et al. (Gluckman et al., 2005) and Shankaran et al. 

(Shankaran et al., 2005) showed that cooling is most effective in neonates with 

moderate encephalopathy. Interestingly, the analysis of the 3 hypothermia trials in 

neonates has revealed that the primary outcome of neurodisability and death at 18 

months was significantly reduced by cooling neonates with moderate HIE but not 

with severe HIE (Edwards et al., 2010). However, a recent study by Simbruner et 

al. has shown that  therapeutic hypothermia was strongly neuroprotective for 

severe HIE (Simbruner et al., 2010).  

 

In determining neonatal outcome from seizures or other brain insults, it is vital to 

know the pre-existing condition of the fetal or neonatal brain (Gluckman and 

Williams, 1992). The neurons in severe HIE which have undergone necrosis, may 

be rendered non-rescuable by therapeutic hypothermia. However, it is important to 

emphasize that further data are required to clarify whether therapeutic 

hypothermia is appropriate for severe HIE, before clinical decisions are made to 

abort cooling neonates with severe HIE. Efforts to supplement therapeutic 

hypothermia with other neuroprotective agents and to extend the neuroprotection 

window beyond 72 hours may prove useful for this vulnerable population of 

neonates (Aly et al., 2012; Charriaut-Marlangue et al., 2014; Dingley et al., 2014; 

Faulkner et al., 2011; Herrera et al., 2014; Robertson et al., 2013).  
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Rewarming seizures or seizures following discontinuation of therapeutic 
  hypothermia 

In this research study, eleven cooled neonates had EEG monitoring after 

therapeutic hypothermia was discontinued. Electrographic seizure events were 

observed in 4 of 15 cooled neonates when therapeutic hypothermia was 

discontinued. When a decision was made to withdraw life-sustaining support, two 

of the four cases had a shorter duration of therapeutic hypothermia. In the 

remaining two neonates, electrographic seizures were observed following 

discontinuation of therapeutic hypothermia despite the fact that therapeutic 

hypothermia started at 6 and 9 hours respectively after birth and continued for 72 

hours.  

 

Transient rebound epileptiform activity has been previously observed when 

hypothermia was discontinued after 72 hours (Gunn et al., 2005). Shah et al. has 

shown that in human term neonates, seizures are commonly noted during cooling 

(on day 1), however there seems to be a significant second peak of seizures 

rebounding during the rewarming period (on day 4) (Shah et al., 2014).  

 
Duration of EEG monitoring 
All non-cooled neonates would have qualified for cooling if therapeutic 

hypothermia was available at the time of recruitment. The time of onset and 

duration of EEG recording between non-cooled and cooled groups were 

significantly different. With the advent of therapeutic hypothermia, EEG monitoring 

has been the standard of monitoring and that cooled neonates were monitored 

longer when compared with the non-cooled cohort; thus creating a selection bias. 

Several non-cooled neonates were already experiencing seizures when EEG 

recording commenced; the recorded seizure burden in non-cooled group may 

have been underestimated. Despite this, and the fact that there was a longer EEG 

recording time which increased the possibility of capturing more seizures in the 

cooled group, the overall recorded seizure burden was still lower in the cooled 

group. 

 

Two recent hypothermia studies have not quantified the recorded seizure burden 

and a control cohort was not made available for comparison (Nash et al., 2011; 

Wusthoff et al., 2011). cooled group but this was not significantly different with a 

control cohort (Hamelin et al., 2011). It would be ideal if the study was done 
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prospectively between cooled and non-cooled group, as this was conducted by 

Alistair Gunn’s animal study (Gunn et al., 1997), however it would no longer be 

ethical to randomize human neonates with HIE to normothermia. 

 

6.7 Conclusion  
In neonates with HIE, this study has shown that therapeutic hypothermia was 

associated with a decreased recorded seizure burden. This effect may account for 

the reduction in neuronal damage due to seizures, and may help to explain the 

observed improvement in long-term neurological outcome seen in neonates with 

HIE who were treated with therapeutic hypothermia. Further studies using early, 

prolonged and continuous multichannel EEG monitoring for accurate 

determination of seizure burden are undoubtedly warranted in neonates receiving 

therapeutic hypothermia. 

 

What this study adds?  

• Using the multichannel EEG, this is the first study to report that the 

recorded electrographic seizure burden is decreased in neonates with 

hypoxic-ischaemic encephalopathy who were cooled, when compared with 

neonates who were not cooled. 

• Therapeutic hypothermia may possess some anti-seizure properties, as it 

has the ability to reduce the electrographic seizure burden in term neonates 

who were cooled. 
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Chapter 7  

Characteristics of Electrographic Seizures in Term Neonates with Stroke  
 

7.1  Abstract 
Purpose This chapter aims to describe specifically the characteristic EEG patterns 

in neonates with perinatal arterial ischaemic stroke (PAIS) and who had seizures.   
 
Design Retrospective observational study of neonates >37 weeks gestation, born 

between 2003 and 2011 in two hospitals. 
 
Methods Continuous multichannel video-EEG was used to analyze the 

background patterns and characteristics of seizures. Each EEG was assessed for 

continuity, symmetry, characteristic features and sleep cycling; morphology of 

electrographic seizures was also examined. Each seizure was categorized as 

electrographic-only or electroclinical.  
 
Results Nine neonates with PAIS seizures and EEG monitoring were identified. 

While EEG continuity was present in all cases, the background pattern showed 

suppression over the infarcted side; this was quite marked (>50% amplitude 

reduction) when the lesion was large (>66% of one hemisphere). Characteristic 

unilateral bursts of theta activity with sharp or spike waves intermixed were seen in 

all cases. Sleep cycling was generally present but was more disturbed over the 

infarcted side. Seizures demonstrated a characteristic pattern; focal sharp 

waves/spike-polyspikes were seen at frequency of 1 to 2 Hz and phase reversal 

over the central region was common. There were more electrographic-only than 

electroclinical seizures (78 vs 22%). 
 
Conclusions Cotside EEG monitoring in neonates with PAIS shows consistent 

electrographic features which could prove very useful for early diagnosis. Focal 

electrographic and electroclinical seizures with ipsilateral suppression of the 

background activity and focal sharp waves are strong indicators of PAIS. 

Approximately 80% of the total seizure burden resulted from clinically unsuspected 

seizures in neonates with PAIS. Prolonged and continuous multichannel video-

EEG monitoring is advocated for adequate seizure surveillance.   
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7.2 Introduction 
Stroke is the commonest identifiable aetiology of neonatal seizures after hypoxic-

ischaemic encephalopathy (HIE) in the term neonate (Volpe JJ, 2008). Stroke can 

occur at any age but the incidence of stroke is particularly high during the 2 

extremes of life; in the neonatal period and in the elderly adults. It is difficult to 

diagnose stroke in the newborn period as many neonates can be asymptomatic in 

the immediate neonatal period. However, it has been reported that approximately 

60% of neonates who have had perinatal stroke, were symptomatic in the neonatal 

period; the remainder are identified after the neonatal period (i.e. beyond 28 days 

after birth) (Volpe JJ, 2008). 

 

To date, the EEG is often used as the gold standard to detect seizures at the 

cotside. It is becoming a more useful tool for neonatologists because EEG 

abnormalities can also express antepartum, intrapartum and neonatal insults to 

the brain, thereby allowing proper assessment of the degree of severity in HIE. 

Although, EEG abnormalities are rarely pathognomonic for a specific clinical 

pathologic situation, our study aims to make every attempt to complement EEG 

studies with clinical history, examination and neuroimaging studies, to better 

define and distinguish the diagnoses between stroke and HIE in term neonates.  

 

What is already known on this subject?  

• Therapeutic hypothermia has been widely accepted as the standard of care 

for tem neonates with hypoxic-ischaemic encephalopathy, but not for 

stroke. 

• In the era of therapeutic hypothermia, seizure burden in neonates with 

stoke remains unknown.  

• The characteristics electrographic seizures in neonates with stroke have 

never been described. 

 

7.3 Aims  
Hypothesis: There are characteristic features of electrographic seizures in 

neonates with stroke, hence potentially making the diagnosis earlier than other 

cranial imaging modality. In addition, in the absence of cooling, seizure burden in 

neonates with stroke may be higher than anticipated. 
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Study aim: Most studies have focused on seizures due to hypoxic-ischaemic 

encephalopathy and less is known about seizures caused by stroke, which 

remains the second most identifiable cause of seizures in term neonates. In this 

study, I describe the characteristic electrographic seizure burden and morphology 

of term neonates with stroke (the Stroke study).  

7.4  Methods 
Neonates for this study had presented with clinical seizures or suspected of 

having seizures; subsequently these seizures were confirmed on EEG 

monitoring. When a later neuroimaging (cranial ultrasound, CT or MRI) 

revealed that these neonates were confirmed to have stroke, their EEG 

recordings were selected for this study analysis.The methodology involved in 

this study has also been described in detail in Chapter 5 (Methodology).  

 
The electrographic seizure window was defined as the timepoint between the 

first and last recorded electrographic seizure in hours. 

 

The recorded seizure burden was defined as the total duration of recorded 

electrographic seizures in minutes. It was also expressed in terms of seizure per 

hour and was calculated using a formula: 

 
Seizure burden= total seizure burden (minutes)/ electrographic seizure 

window (hours) 

 

Seizure number was counted as the number of seizure events recorded on 

the EEG.  

 

To avoid neonates with many seizures having much influence on the results, 

summary measures were calculated for each neonate. These summary measures 

were percentages of the number of seizure events and the seizure burden (seizure 

duration in minutes) associated with electroclinical seizures, electrographic-only 

and the duration when viewing of the video was obscured (for example during a 

medical procedure); they were calculated relative to the total number of 

electrographic seizures and the total seizure burden (seizure duration in minutes). 

For example: 
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% number of electroclinical seizures= (the number of electroclinical seizures/ 

the total number of seizures) * 100 

 
% seizure burden of electroclinical seizures= (the seizure burden of 

electroclinical seizures/ the total seizure burden) * 100 

 

% number of electrographic-only seizures= (the number of electrographic-only 

seizures/ the total number of seizures) * 100 

 

% seizure burden of electrographic-only seizures= (the seizure burden of 

electrographic-only seizures/ the total seizure burden) * 100 

 

Mean seizure duration was calculated for all recorded electrographic seizures in 

each neonate. In each neonate, the mean seizure duration is calculated as the 

proportion of the total seizure burden in seconds relative to the number of seizures: 

Mean seizure duration= total seizure burden (in seconds) /total number of seizures 

 

The entire background EEG pattern was graded and assessed for continuity, 

symmetry, synchrony, sleep cycling and other specific features.  

 

Sleep cycling was assessed as being present, absent or disturbed in each 

neonate; a disturbed sleep cycling signified an interruption to the expected sleep 

cycle architecture of healthy term neonate (Lamblin et al., 2013).  

 

Significant EEG suppression was defined as EEG activity below 5 μV in all EEG 

channels for at least 10 seconds respectively. 

 

Magnetic resonance imaging (MRI) studies were performed in a Siemens Avanto 

1.5 Tesla unit (Siemens Ag, Erlangen, Germany) and computed tomographic (CT) 

scanning was performed using a Toshiba Aquilion 4-detector row CT (Toshiba, 

Tochigi-ken, Japan). All imaging studies were performed without sedation. 

Neonates were transferred to the MRI scanner in an MRI-compatible incubator 

with integrated neonatal array coils (MR Diagnostics Incubator, Lammers Medical 

Technology GmbH, Luebeck, Germany). The arterial territory and estimated size 

of cerebral infarction based on methods described by Marks et al., (Marks et al., 

1999) were reported by an experienced paediatric radiologist. 
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Statistical analysis: To avoid neonates with many seizures having much 

influence on the results, summary measures were calculated for each neonate (as 

discussed previously in section 5.4: Matrices of seizure burden). These summary 

measures were described across all neonates using medians and interquartile 

ranges (IQR). For paired comparisons, the Wilcoxon signed-rank test was used. 

All statistical analyses were performed using SPSS Statistics 20.0 (IBM SPSS 

Statistics, Illinois, USA). All tests were two-sided; p value <0.05 was considered to 

be statistically significant.   

7.5 Results 
During the study, nine neonates with PAIS who had early, prolonged and 

continuous multichannel video-EEG monitoring had electrographic seizures, and 

this is shown in the flow diagram in figure 7.1. Five neonates had coagulation 

testing and none had thrombophilic disorders. Table 7.1 lists the clinical 

demographics and outlines the MRI findings in eight of the nine neonates with 

various degrees of middle cerebral artery (MCA) infarction; one neonate had CT 

imaging. Cranial imaging was undertaken at median and interquartile ranges (IQR) 

of 5 (3-12) days after birth.  
Figure 7.1 Flow diagram on the recruitment timeline for the Stroke study 
 
Recruitment timeline: June 2003 to Oct 2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CUMH: Cork University Maternity Hospital, Ireland; UCLH: University College London Hospital, United Kingdom. 

 

 

4 CUMH 
(Jan 2009 to 
June 2011) 

 

2 previous cohort 
(June 2003 to 

Sept 2006) 

2 UCLH 
(Jan 2009 to 
June 2011) 

192 term neonates 

163 term neonates 

Excluded 29 neonates from 
UCLH for validation purpose 

(17 had seizures) 

 

97 term neonates 

35 neonates with seizures 

Excluded 66 neonates:   
- 56 had <12 hours of EEG monitoring  
- 10 had >50% artefacts on EEG 

 

1 UCLH 
(June to Oct 

2011) 

9 neonates with stroke included for the study analysis 



 

114 

 

Table 7.2 summarizes the background EEG and seizure characteristics for each 

neonate. In all neonates, a continuous background pattern was present but 

voltage suppression and intermittent sharp theta discharges were seen over the 

infarcted side (figure 7.2). Background EEG suppression was greatest in cases 

where the estimated size of infarction was larger than 66% of one hemisphere. 

Sleep cycling was present in all cases but disrupted in many. The morphology of 

seizures in neonates with PAIS showed a characteristic pattern in all cases (figure 

7.3). Spike and polyspike waves at a frequency of 1 to 2 Hz were seen over the 

infarcted side and phase reversal of these spikes over the central region was 

evident as the seizure evolved. Higher frequency temporal discharges were seen 

during apnoea in a neonate (case 2) who presented with dusky episodes. In this 

group of neonates with stroke, electrographic seizure spread to the contralateral 

side was not observed. On the non-infarcted side, no independent focal 

abnormalities were observed. Evidence of whether there may be any changes 

affecting short or long term outcome, if these electrographic seizures were 

eliminated was not analysed; but may be worth investigating in future research.

Table 7.1 Demographics and neuroimaging features of neonates in the order of increasing seizure burden 
Neonate    1    2    3    4    5    6    7    8    9 

          
Birthweight (grams) 
 

3700 3740 3750 3410 2830 3420 3160 3670 3480 

Gestation (weeks) 
 

40 39 41 41 39 41 39 41 41 

Gender 
 

Male Male Male Female Female Female Male Male Male 

Perinatal events 
 
 

None  Polyhydramnios, 
PROM (36h) 

NRCTG None NRCTG,                        
PROM (>18h)  

None NRTCG FTP FTP 

Mode of delivery 
 

VV                                    VV                                  EMCS Forceps     EMCS Ventouse EMCS EMCS EMCS 

First pH 
 

7.42 7.04 7.13 7.29 7.00 7.34 7.30 7.41 7.27 

5 min Apgar score 
 

10 9 9 10 6 7 10 10 10 

Age at first clinical seizure (hours) 
 

36 54 20 6 47 33 15 18 33 

First clinical seizure  
 

RUL Dusky episodes LS RS LLL RS RUL RUL LUL 

Age at EEG (hours)                                                                                                                                     54 
 

59 26 9 53 3  18 19 36 

Age at first recorded EEG seizure 
(hours) 
 

54 60 26 9 53 39 19 19 36 

EEG duration (hours) 
 

25 70 49 39 44 46 49 63 229 

Cerebral infarction 
 
 

LMCA LMCA RMCA LMCA,                  
RMCA 

RMCA LMCA LMCA LMCA,                                
LPCA 

RMCA    

Age at cranial imaging (days) 
 

5 8 29 3 10 3 2 3 14 

Estimated size of infarction (%) 
(mode of cranial imaging) 
 

<33 
(CT) 

>66 
(MRI) 

<33 
(MRI) 

<33 
(MRI) 

33-66        
(MRI) 

33-66 
(MRI) 

<33 
(MRI) 

>66 
(MRI) 

33-66 
(MRI) 

CT: computerized tomography; EMCS: emergency Caesarean section; FTP: failure to progress; LLL: left lower limb clonic; LMCA: left middle cerebral 
artery; LPCA: left posterior cerebral artery; LS: left-sided clonic; LUL: left upper limb clonic movements; MRI: magnetic resonance imaging; NRCTG: non-
reassuring cardiotocogram; PROM: premature rupture of membranes; RMCA: right middle cerebral artery; RS: right-sided clonic; RUL: right upper limb 
clonic; VV: vertex vaginal. 
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Table 7.2 Characteristics of EEG and seizures in neonates with perinatal arterial ischaemic stroke 
Neonate   1   2    3    4    5    6     7   8   9 

          
Summary of background EEG features          
             Continuous activity 
 

Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Symmetry 
 
 

Left mild                   
suppression 

Left significant 
suppression 
 

Right mild                        
suppression  

Good Right mild                            
suppression  

Good Good Left                                
significant                               
suppression  

Right mild              
suppression 

Intermittent features Left-sided                           
sharp theta                  
bursts 

Left-sided  theta 
sharp                      
waves 
 

Right focal            
sharp waves 

Left-sided                                
sharp waves                                       
in quiet sleep 

Right-sided                                     
theta sharp                      
waves 

Left-sided                                       
theta sharp                      
waves 

Left-sided                                     
focal sharp                         
theta waves 

Left-sided                                   
theta sharp                                  
waves                                                                                                       

Right-sided                             
sharp waves                                              

Sleep cycling Normal 
bilaterally  

Disturbed 
unilaterally  

Disturbed                   
bilaterally 

Disturbed                     
bilaterally                           

Normal                                             
bilaterally 

Normal                           
bilaterally 

Disturbed                    
unilaterally                       

Disturbed              
unilaterally             

Normal                               
bilaterally                         

          
Seizure morphology Focal spikes                           

over left                               
central with                             
phase                                    
reversal 

Focal spikes                           
over left                               
central with                             
phase                                    
reversal 

Focal spikes                     
over right                      
central with                      
phase                           
reversal 

Focal spikes                            
& polyspikes                        
over left                               
central with                             
phase                                    
reversal 

Focal spikes                            
& polyspikes                        
over right                      
central with                      
phase                           
reversal 

Focal spikes                           
over left                               
central with                             
phase                                    
reversal 

Focal spikes                           
over left                               
central with                             
phase                                    
reversal 

Focal spikes                            
& polyspikes                        
over left                               
central with                             
phase                                    
reversal 

Focal spikes                            
& polyspikes                        
over right                      
central with                      
phase                           
reversal 

Summary of seizure burden          
       Total seizure burden (minutes) 19 67 101 133 162 201 266 327 332 
       Seizure burden (minutes/hour) 2.70 7.28 27.60 5.53 10.27 18.15 12.77 9.25 6.18 
       Mean seizure duration (seconds) 370 98 356 362 120 523 143 195 146 
       Seizure window (hours) 7 9 4 24 16 11 21 35 54 
       Status epilepticus None None Yes None None Yes Yes Yes Yes 
       Number of seizures (n) 
 

3 41 17 22 81 23 112 101 136 

Seizure classification          
      Electrographic-only seizures: n (%) 0 (0) 27 (66) 8 (47) 20 (91) 77 (95) 13 (57) 77 (69) 62 (61) 121 (89) 

Electrographic-only seizure burden: minutes (%) 0 (0) 28 (42) 26 (25) 129 (97) 146 (90) 74 (37) 129 (49) 244 (74) 282 (85) 
       Electroclinical seizures: n (%) 2 (66) 10 (24) 7 (41)  1 (4.5) 3 (3.7) 9 (39) 32 (29) 35 (35) 15 (11) 

Electroclinical seizure burden:  minutes (%) 18 (95) 30 (44) 48 (48) 3 (2) 15 (9) 108 (54) 126 (47) 80 (24) 50 (15) 
                   Clonic/subtle seizures: n 2/0 0/10D 5/2C 1/0 3/0 0/9S 17/15S 16/19Y 9/6M 

       Video obscured: n (%) 1 (33) 4 (10) 2 (12) 1 (4.5) 1 (1.3) 1 (4) 3 (2) 4 (4) 0 (0) 
Subtle seizures: C, cycling movements of the limbs; D, desaturations; M, mouthing and smacking of lips; S, sucking; Y, yawning.                                                                                                                                 
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Figure 7.2 Background EEG pattern in a neonate (case 9) with a right middle cerebral artery infarction.                                                                                                                                 

 
Note the mild voltage reduction over the right hemisphere on EEG (blue channels or even numbered channels) which 
is also evident on the aEEG with a wider band on the right in comparison to the left side (odd numbered channels). In 
addition, intermittent right-sided bursts of higher voltage sharpened theta activity are also evident. Some sleep cycling 
is also present over the left albeit disturbed but this is absent over the right side. 

Figure 7.3 EEG in a neonate (case 6) with seizures arising from the left hemisphere.  
 

a) EEG recording 

 

 

 
 
 

b) MRI imaging 
 
      

            
 

Electrographic seizures arising from the left sided channels of the EEG (F3-C3, C3-O1, Cz-c3, C3-T3) corresponding to the frontal (F), 
central (C), occipital (O) and temporal (T) areas of the brain. Note the characteristic focal spike and wave discharges over the left 
hemisphere with phase reversal over the left central region (odd numbered channels).This is corresponding with a left middle cerebral 
artery infarction on cranial MRI. The sequence is an axial T2 turbo spin echo performed on day 7 of life. 
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Figure 7.4 Characteristics of seizures and anti-seizure medication administration in each neonate.                                                                                                           
    

 
Vertical red lines denote the presence of electrographic-only seizures, vertical blue lines denote electroclinical 
seizures and vertical green lines denote obscured seizures. Horizontal black line denotes the period of EEG 
monitoring. Black crosses denote missing data. Timepoints bounded by black arrows denote the first-line anti-
seizure medication administration while the magenta arrows denote the second-line anti-seizure medication 
administration. 

 

Of 536 electrographic seizures identified from multichannel EEG in this cohort of 

neonates with PAIS; 519 were classified (table 7.2). Accumulatively, there were 

more electrographic-only (n=405; 78%) than electroclinical seizures (n=114; 22%). 

Summary measures of each neonate showed that the median (IQR) 

electrographic-only was higher than electroclinical seizures [66 (52-90) vs 29 (8-

40)%; p=0.051]. Subtle seizures were noted in six of nine neonates and 

manifested activities such as pedalling or cycling movements of the limbs, sucking 

or chewing movements.  

 

Other occasional subtle seizures noted were hiccups and eye blinking episodes. 

When electroclinical seizures were subdivided, there were more subtle (n=61; 

12%) than clonic seizures (n=53; 10%) [median (IQR) of subtle vs clonic 

seizures=12 (0-22) vs 7 (2-24)%; p=0.553]. The median seizure burden of 

electrographic-only was higher than electroclinical seizures [49 (31-88) vs 44 (12-

51)%; p=0.515]. This is despite the significantly shorter median duration of 

electrographic-only when compared to electroclinical seizures [100 (55-173) vs 

181 (95-359) seconds; p<0.001].  
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The temporal distribution of electrographic-only and electroclinical seizures with 

the administration of anti-seizure medication superimposed for each neonate are 

shown in figure 7.3. In four of nine neonates (cases 1, 2, 3 and 6), anti-seizure 

medication were administered prior to prolonged multichannel EEG monitoring, 

hence before the first electrographic seizure. All nine neonates with PAIS received 

first-line anti-seizure medication at age of 34 (20-46) hours while seven neonates 

received second-line anti-seizure medication at 48 (29-66) hours.  

7.6 Discussion  
This study has shown that in term neonates with stroke, the electrographic seizure 

burden was approximately as high as up to 80% of all seizures. There is a 

characteristic signature on the EEG which was identified clearly in all neonates 

with stroke. The background EEG generally revealed a marked suppression (>50% 

amplitude reduction) if the infarction was large (>66% estimated size of infarction) 

over the affected hemisphere. A characteristic unilateral theta bursts with 

intermixed sharp or spike waves were seen in all cases over the infarcted side. 

Sleep cycling was more disrupted over the infarcted side.  

 

Seizures in neonates with PAIS appear to have a characteristic pattern and in all 

cases, focal sharp waves/spike-polyspike seizure discharges were seen at a 

frequency of 1 to 2 Hz over the area of infarction. The morphology of these 

seizures in stroke has been noted to be different from seizures arising from HIE 

(Lynch N et al., 2011). In this study cohort of neonates with MCA infarction, 

seizures were generally seen over the central region and phase reversal of spike 

and polyspike discharges were a common finding. This is the first study in detailing 

the characteristic electrographic seizure burden and to describe the characteristic 

EEG findings in a series of neonates with PAIS in the early postnatal period; these 

findings may prove very useful for early diagnosis of neonates with seizures. 

 
Clinical diagnosis of PAIS 
PAIS tends to be a clinical diagnosis when three important findings are present: 

no clear history of HIE, seizure onset beyond 12 hours after birth and focal 

seizures. In many instances when the affected cases are discussed 

retrospectively, subtle details are often missed; they usually revealed a slightly 

complicated antenatal history such as mild changes on the cardiotocogram or 

meconium stained delivery (Mercuri, 2001). Apgar scores and clinical history may 

be subjective. The use of the EEG is advocated as an adjunct to suggest the 



 

119 

early diagnosis of PAIS during the neonatal period when clinical suspicions are 

aroused. 

 

Neonates with PAIS are usually noted to be non-encephalopathic (Cowan et al., 

2003)(such as normal feeding, absence of abnormal tone or absence of a 

depressed level of alertness); however hypotonia, poor sucking reflex and 

irritability have been described (Miller, 2000). Clinical signs may not manifest if 

the motor cortical strip is not involved. All neonates in this study had some 

degree of MCA involvement and at some timepoints; a clinical correlate which 

can be often very subtle was evident. Subtle seizures in this cohort of neonates 

with PAIS involved mainly oral-buccal-lingual movements (four of six neonates); 

this is in line with other studies (Pinto and Giliberti, 2001; Volpe JJ, 2008).  

 

In PAIS, autonomic dysfunction such as apnoeic spells (Fujimoto et al., 1992; 

Hoogstraate et al., 2009) has been reported in up to 36% of neonates (Sreenan 

et al., 2000); only one neonate in this study presented with apnoea before any 

anti-seizure medication administration. More studies are required to investigate 

and explain as to why EEG suppression tends to occur at the side of infarction in 

neonates. However, there have been several studies showing how apnoea can 

affect the electrical activity and hence the EEG in neonates with some degree of 

brain injury (Thoresen et al., 1996; Gavilanes et al., 2004; Low et al., 2012b) 

 

In the newborn piglet model, hypoxic-ischaemic events induced by reducing 

fractional inspired oxygen to around 6% has been shown to generate a rapid 

suppression of EEG activity. Brain injury was only seen when the EEG amplitude 

remained suppressed for 23 minutes or more (Thoresen et al., 1996). In another 

study where one week old piglets were subjected to graded hypoxia, the EEG 

amplitude did not decline until oxygen saturation fell below 25% (Gavilanes et al., 

2004). This is similar to episodes of EEG suppression observed in a neonate in 

our neonatal intensive care unit (Low et al., 2012b). Hypoxia in conjunction with 

bradycardia was responsible for the severe EEG suppression in the reported 

case. Bradycardia preceded complete EEG suppression and EEG amplitude did 

not become profoundly suppressed until oxygen saturation fell below 20%.  
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Other subtle seizures which have been previously described in neonates with 

stroke included eye blinking, vertical nystagmus and thumb adduction (Fujimoto 

et al., 1992), but multichannel EEG monitoring was not applied, thus the accuracy 

of these clinical signs is unknown. The results of this study support the 

suggestion for lower threshold in initiating EEG monitoring when there is any 

suspicion of unusual movements which may be seizures.  

 

High seizure burden in neonates with PAIS 
The pathophysiology of neonates with stroke differs from those with HIE. Although 

many studies have reported the incidence of seizures in neonates with stroke, they 

were mainly based on clinical observations rather than the multichannel EEG. Few 

studies have reported the seizure burden in neonates with HIE, but no studies 

have quantified the seizure burden in neonates with stroke. By quantifying the 

seizure burden in this vulnerable group of neonates, this will enlighten us our 

current status of the situation in the neonatal intensive care unit.  

 

Although therapeutic hypothermia has been widely accepted as the current 

standard of care to treat neonates with HIE, this has not been advocated for 

neonates with stroke. We have shown that therapeutic hypothermia reduced 

seizure burden in term neonates with hypoxic-ischaemic encephalopathy 

(previously discussed in Chapter 6: the Cooling study). Perhaps, therapeutic 

hypothermia should be advocated for neonates with stroke to reduce the 

occurrence of seizures and hence the seizure burden in this group of neonates. 

 
Use of anti-seizure medication in neonates with PAIS 
The overall seizure burden was high in this current study; early, prolonged and 

continuous multichannel video-EEG monitoring showed that the number of 

seizures is higher than clinically apparent. Anti-seizure medications were 

administered when there was a clinical concern of seizures. The use of anti-seizure 

medication may have resulted in more electrographic-only seizures (Glykys et al., 

2009); this study has shown 80% of the total seizure burden was ascribed to 

electrographic-only seizures. Anti-seizure medication has been shown to cause 

electroclinical dissociation of seizures (Boylan et al., 2002).  
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The high number of seizures uncovered in this group of neonates was surprising 

but reinforces the need for early, prolonged and continuous multichannel EEG 

monitoring in this group of neonates. In comparison, electroclinical dissociation of 

seizures has been reported to occur up to 28% of neonates with HIE; however this 

figure was based on aEEG findings in neonates above 32 weeks gestation and its 

association with anti-seizure medication administration was not described 

(Vasiljevic et al., 2012).  

 

The studies by van Rooij et al. (van Rooij et al., 2010a) and Mercuri et al. (Mercuri 

et al., 1999) did not provide information on the electroclinical dissociation of 

seizures. Many of the previous studies reported the clinical response to anti-

seizure medication without any EEG monitoring (Estan and Hope, 1997; Golomb et 

al., 2007; Rando et al., 2000). It is known that anti-seizure medication can be a 

sedative agent and lead to electroclinical uncoupling or dissociation of seizures 

(Boylan et al., 2002). Clinical seizures are therefore a poor indicator when it comes 

to assessing the response to anti-seizure medication; hence the true response of 

anti-seizure medication in seizure control in neonates with PAIS remains unknown. 

 

This research study highlights that despite the use of anti-seizure medication, 

under tight EEG monitoring, there are still ongoing electrographic seizures in 

neonates with PAIS. Neonatologists should be aware of this when treating 

neonates with PAIS who are already treated with initial anti-seizure medication, 

particularly in the absence of EEG monitoring. This also explains why several 

neonates in this research study had many hours of repetitive seizures and were not 

treated with anti-seizure medication. This study is the first to demonstrate the high 

seizure burden in PAIS using continuous multichannel EEG monitoring and is thus 

of significant and practical clinical importance. 

 

Monitoring seizures in neonates with PAIS 
In neonatal stroke studies which used the aEEG (F3-P3 and F4-P4), some 

localized seizures may have been missed. The MCA is the most commonly 

involved artery for ischaemic infarction in term neonates (the posterior branch 

irrigates the occipital, temporal and posterior parietal areas, while the anterior 

branch irrigates the prefrontal, precentral, central and anterior parietal areas) 

(Govaert et al., 2000). Therefore, a comprehensive EEG electrode coverage of the 

scalp is required to ensure that all seizures are detected. This research study had 
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relied on monitoring using the multichannel EEG with a bipolar montage consisting 

of at least 8 channels to capture seizures; this has allowed a more accurate 

measurement of seizure burden to be obtained.  

 

Comparing one-channel with the two-channel aEEG recordings in 34 neonates 

who had seizures due to unilateral brain injury, van Rooij et al. showed more varied 

seizures patterns, asymmetry in the background activity and a difference in sleep 

cycling on the ipsilateral side (van Rooij et al., 2010a), however this study gave no 

specific analysis on a subgroup of neonates who had PAIS (n=5) or specifically 

those who had MCA involvement (n=3). Using a four-channel aEEG in 19 neonates 

with PAIS (6 neonates with asymmetrical and 2 with bilateral sharp waves/ spikes, 

8 neonates with no seizures, 3 neonates had no aEEG recorded), Mercuri et al. 

showed that the presence of seizures accompanied by a normal background EEG 

was not related to abnormal outcome (Mercuri et al., 1999); this indicates that both 

factors are poor predictors of outcome. Although this research study was not aimed 

to assess outcome, an abnormal background and the presences of seizures have 

a much higher prognostic value. Also, the study by Mercuri et al. had not assessed 

seizures as an independent factor in determining outcome (Mercuri et al., 1999). 

 

Multichannel EEG has been shown to be more accurate than the aEEG in 

detecting seizures. Our EEG findings based on multichannel EEG recordings are 

similar to studies by van Rooij et al. (van Rooij et al., 2010a) and Mercuri et al. 

(Mercuri et al., 1999) which used the aEEG, however we have provided more 

details on the characteristics of seizures early in the neonatal period in terms of 

seizure morphology and more detailed seizure characteristics in a cohort of 

neonates with PAIS. 

 

To date, reported incidences of seizures in neonates with PAIS are mainly based 

on observation of neonatal behaviours (Golomb et al., 2007; Kirton et al., 2011), 

rather than on multichannel EEG which is the gold standard for accurate detection 

of neonatal seizures (Glass and Wirrell, 2009; Low et al., 2012a; Murray et al., 

2008; Wusthoff et al., 2011). Approximately 20% of neonatal seizures in term 

neonates are due to PAIS (Volpe JJ, 2008). Conversely, while neonatal seizures 

have been noted in 26% of neonates with PAIS (Rafay et al., 2009), these 

numbers could be much higher if detection of seizures is based on early, prolonged 

and continuous multichannel EEG monitoring.  
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Most neurological presentations of neonates with PAIS occur in the first 72 hours 

of life. The age of first clinical seizure and first recorded EEG seizure [33 (17-42) 

and 36 (19-54) hours] were within 72 hours of age. In this study, EEG monitoring 

was initiated only after clinical seizures were observed. This is consistent with 

current practice in most neonatal units as (unlike HIE) there are no existing early 

indicators or biomarkers to identify neonates with PAIS, hence it is possible that 

neonates with PAIS and electrographic-only seizures may have been missed and 

escaped detection during early recording period. Early EEG monitoring may have a 

role in providing an early indicator of PAIS, as early EEG from three hours after 

delivery has been shown to display occasional focal sharp waves over the infarcted 

region which became more frequent, complex and of higher amplitude in quiet 

sleep (Walsh et al., 2011). 

 

A limitation of this study is the small number of neonates with PAIS. In this cohort 

of neonates, all accept one neonate (case 2) was captured when they presented 

with hemiconvulsions before discharge shortly after birth in the 2 neonatal units. 

This study only included neonates that presented with clear PAIS involving at most 

2 arterial territories and who had continuous multichannel EEG monitoring as soon 

as possible after their presentation with seizures. While being monitored, these 

neonates with seizures showed asymmetrical characteristics on the EEG. In this 

period, other neonates would have presented but did not have continuous EEG 

monitoring undertaken.  

 

It is difficult to diagnose all neonates with PAIS in the neonatal period as the 

majority of term neonates affected by PAIS are asymptomatic (Lynch and Nelson, 

2001); appearing clinically well enough to be sent to the postnatal ward shortly 

after birth. In the 2 neonatal units, there is a policy of early maternal and neonatal 

discharge. Any neonate presenting with seizures after they were discharged would 

have been readmitted to regional paediatric hospitals, not the neonatal units. Even 

though the number of neonates with PAIS is small, the novelty here is having 

captured a number of neonates who had early and long duration of multichannel 

EEG monitoring. 

7.7 Conclusion  
Neonates with PAIS demonstrated distinctive features in the background EEG and 

morphology of seizures. These features were present and can be detected from 

very early in life hours after delivery. Detailed EEG analysis may prove very useful 



 

124 

for early diagnosis of PAIS. For the first time, this study has quantified the seizure 

burden in neonates with PAIS using multichannel video-EEG. About 80% of all 

seizures in neonates with PAIS will escape detection without early, prolonged and 

continuous multichannel EEG monitoring.  

 

What this study adds?  

• Using the multichannel video-EEG, this is the first study to report that in 

neonates with stroke, the background EEG shows asymmetry and 

suppression over the infarcted side; characteristic unilateral bursts of theta 

activity, sharp waves and spikes were present. 

• Electrographic seizures in neonates with stroke have a particular focal 

sharp wave/spike-polyspike pattern and phase reversal is frequently 

present.  

• Approximately 80% of the total seizure burden in term neonates with 

stroke is not recognizable without the use of continuous multichannel 

video-EEG monitoring.   
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Chapter 8  

Characteristics of Electrographic Seizure Burden in Response to   
  Phenobarbitone in Term Neonates  

8.1 Abstract  
Purpose To assess the effectiveness of phenobarbitone as first-line anti-seizure 

medication for neonatal seizures using continuous multichannel EEG monitoring.  

 

Patients Neonates more than or equal to 37 weeks gestation, born between 

2009 and 2011 in two hospitals. 

 

Methods Electrographic seizures were annotated on the EEG recording by 2 

experienced neonatal electroencephalographers. Instantaneous seizure burden 

(ISB) was defined as the accumulated duration of electrographic seizures within 

an hour of EEG monitoring and is expressed in minutes/ hour. In each neonate, 

the maximum ISB was used to assess the effectiveness of phenobarbitone and 

was calculated in the following time periods: a 1 hour period beginning 1 hour 

prior to each dose of phenobarbitone (T-1), a 1 hour period beginning 

immediately after cessation of each phenobarbitone infusion (completed in 30 

minutes) (T+1) and the remaining duration of EEG monitoring beginning 1 hour 

after cessation of the last dose of phenobarbitone infusion (T+LP). 

 

Results Thirty-five neonates had electrographic seizures [hypoxic-ischaemic 

encephalopathy (n=20), stroke (n=8), benign seizures (n=2), intraparenchymal 

haemorrhage (n=2), subdural haemorrhage (n=1), meningitis (n=1) and seizure 

of unknown cause (n=1)]. EEG monitoring began at age 9 (5-28) hours, EEG 

duration was 69 (49-104) hours and the median (interquartile ranges) age of first 

EEG seizure was 19 (11-36) hours. Two of 35 neonates with electrographic-only 

seizures did not receive anti-seizure medication therapy. 

 

Of the thirty-three neonates treated with phenobarbitone, 19 were treated 

concurrently with electrographic seizures. The maximum ISB was significantly 

reduced within 1 hour of phenobarbitone administration from T-1 to T+1 [mean 

difference (95% confidence interval): -14.0 (-20 to -8) minutes/hour; p<0.001]. 

Seizures abated in 3 neonates while in 16 neonates, seizures returned to levels 

not significantly different to pre-treatment levels within 4 hours of first 
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phenobarbitone administration (p=0.064). Compared with 10 mg/kg doses, a 

subgroup analysis revealed that only phenobarbitone doses at 20 mg/kg resulted 

in a significant reduction in maximum ISB from T-1 to T+ 

(p=0.004). Phenobarbitone was more effective in the short-term if administered 

when seizure burden was low (p=0.005). 

 

Conclusion Treatment with phenobarbitone has an immediate effect in reducing 

electrographic seizure burden in term neonates. This reduction however did not 

last, with seizures returned in the majority of neonates. Further research on the 

precise mechanistic action of phenobarbitone in the human neonatal brain is 

required if the clinical incentive is to abolish seizures in the developing neonatal 

brain. 
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8.2 Introduction 
Since 1950 when phenobarbitone was discovered to chiefly act on the human 

brain, (Loscher and Rogawski, 2012) the use of anti-seizure medication to treat 

neonatal seizures has not changed significantly in clinical practice; this is in part 

due to the lack of randomized control trials in human neonates. In particular 

among neonatologists, this poses an uncertainty on the effectiveness of currently 

use mono/ polypharmacy medication such as phenobarbitone, lorazepam, 

phenytoin and midazolam to treat neonatal seizures. This form of treatment 

remains unchallenged despite evidence in animal studies which showed that 

phenobarbitone is effective as an anti-seizure medication in approximately only 

50% of neonatal seizures (Painter et al., 1999).  

 

Some authors have cautioned the use of phenobarbitone since it has been 

associated with dire long-term neurodevelopmental consequence due to its ability 

to reduce the growth and development of the neonatal brain (Bittigau et al., 

2003). In many neonatal units today, neonates with hypoxic-ischaemic 

encephalopathy (HIE) who undergo therapeutic hypothermia will have a 

combined treatment with phenobarbitone as the initial treatment for seizures (Low 

et al., 2012a). The evidence of effectiveness of phenobarbitone from the 

combination of treatment with therapeutic hypothermia or with other anti-seizure 

medication has yet to be further studied and evaluated. 

 

To date among neonatologists, further related controversy centres on the issue of 

timing for treating neonatal seizures. Most neonatologists will instigate treatment 

with anti-seizure medication when there are observable clinical seizures at the 

cotside. However, most neonatal seizures are subclinical seizures (Malone et al., 

2009; Murray et al., 2008; Yap et al., 2009). Subclinical seizures are not 

recognizable without the use of the multichannel-EEG monitoring. With the use of 

the amplitude integrated EEG (aEEG), artefacts may be misinterpreted as 

seizures, leading to unnecessary exposure of the neonatal brain to the use of 

anti-seizure medication and its potential side effects. Therefore, accurate 

monitoring of the response of seizures to anti-seizure medication warrants the 

use of the multichannel EEG.  

 
 
 



 

128 

What is already known on this topic?  

• To date, phenobarbitone remains the most popular anti-seizure medication 

used by clinicians to treat neonatal seizures. 

• Approximately 40 to 50% of neonates with seizures will respond to 

phenobarbitone treatment.  

8.3 Aims  
Hypothesis: Administered doses of phenobarbitone lower than 20 mg/kg are not 

as effective as at 20 mg/kg. The current treatment strategy clearly questions the 

effectiveness of phenobarbitone in terms of dosage and the timing of 

administration. 

 

Study aim: To determine the characteristics of seizures in neonates treated with 

phenobarbitone (the Phenobarbitone study). As part of the process in assessing 

the effectiveness of current anti-seizure medication treatment strategy, this study 

aimed to determine the effect of phenobarbitone on neonatal seizures specifically 

in relation to the degree of reduction in electrographic seizure burden in term 

neonates during continuous and prolonged multichannel video-EEG monitoring. 

8.4  Methods 
The methodology involved in this study is described in detail in Chapter 5 

(Methodology). 

 
Instantaneous seizure burden (ISB) is defined as the accumulated seizure 

duration within a 1 hour window which was shifted across the EEG monitoring 

period with a 1 minute interval to generate a time series. The ISB provides a 

continuous summary of an hour of seizure activity, thereby reflecting a 

measurement of the intensity of seizures over the time course of seizures in a 

neonate; it is defined as: 

 

                                             
 

where  is time,  is 30 minutes and  is the seizure annotation based 

on visual interpretation of the EEG. 
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In each neonate, the maximum ISB within a pre-defined time period was used to 

assess the effectiveness of phenobarbitone and was calculated in the following 

time periods: a 1 hour period beginning 1 hour prior to each dose of 

phenobarbitone (T-1); a 1, 2, 3, 4, 5 until 8 hour period beginning immediately 

after cessation of each phenobarbitone infusion completed in 30 minutes (T+1, 

T+2, T+3, T+4, T+5 until T+8 respectively) and the remaining duration of EEG 

monitoring beginning 1 hour after cessation of the last dose of phenobarbitone 

infusion (T+LP) when there was a seizure offset (figure 8.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 The maximum instantaneous seizure burden (ISB) 
 
A. The instantaneous seizure burden (ISB) was calculated at a 1 hour period beginning 1 hour (T-1) before, at a 1 
(T+1), 2 (T+2), 3 (T+3), 4 (T+4) hour period after each dose of phenobarbitone (PB) and the remaining period beginning 
immediately after cessation of each last phenobarbitone infusion (T+LP). 
 

     
 
B. An example plot of the ISB over time (blue line) for a single neonate with seizures overlaid with the time periods 
used to assess the effectiveness of phenobarbitone. The upper plot is the complete seizure time course for the 
neonate with T+LP (black horizontal lines) shown for each phenobarbitone dose (red vertical lines). The lower plot is the 
magnified version of the upper plot with T-1 (red boxes) and T+1 (black boxes) shown for each phenobarbitone dose 
(red vertical lines). Note some smoothing is apparent in the ISB as both future and past values are used to estimate 
the ISB and a 30 minute delay is taken into account for phenobarbitone infusion. The maximum ISB within the time 
period of interest is used to assess the effectiveness of phenobarbitone. There is a clear reduction in maximum ISB 
between T-1 and T+1 following the administration of each phenobarbitone dose and these seizures returned within T+LP. 
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An effective dose was defined as a dose which resulted in a reduction of the 

maximum ISB to an absolute zero during T+1 while an ineffective dose was 

defined as a dose which resulted in a reduction of the maximum ISB, but not to 

zero during T+1. A non-effective dose was defined as a dose which resulted in 

an increase of the maximum ISB during T+1. 
 
Statistical analysis: Continuous variables were described using medians and 

interquartile ranges (IQR) and categorical variables using frequencies. For each 

neonate, differences between ISB pre- and maximum ISB for each period (T+1, 

T+2 until T+LP) post-phenobarbitone administration were calculated. Linear mixed 

models with a neonate-level random effect were used to account for possible 

correlations among observations from the same neonate (more than one dose of 

phenobarbitone per neonate). For comparisons between groups, group was 

included as a fixed effect in the linear mixed model.  

 

Results based on linear mixed models were presented as mean [95% confidence 

interval (CI)]. The following comparisons were also performed: comparison 

between ISB pre- and ISB post 1 hour (T-1 vs T+1) by dosage, accumulated 

dosage and comparison of seizure burden at the time of phenobarbitone 

administration between effective and ineffective doses (analysis restricted to 20 

mg/kg as there were no effective doses at 10 mg/kg). All statistical analyses were 

performed in SAS 9.3 (SAS Institute Inc., Cary, NC, USA) and a p value <0.05 

was considered to be statistically significant.  

8.5 Results 
During the study period from 2009 to 2011, thirty-five neonates with 

electrographic seizures were identified (figure 8.2). The median (interquartile 

ranges) age when EEG monitoring began was 9.1 (4.7-28.1) hours, EEG duration 

was 69.0 (49.4-103.9) hours and the age of first EEG seizure was 19.0 (11.5-

35.8) hours. Aetiologies for seizures included hypoxic-ischaemic encephalopathy 

(HIE) (n=20), stroke (n=8), benign seizures (n=2), intraparenchymal 

haemorrhage (n=2), subdural haemorrhage (n=1), meningitis (n=1) and seizure 

of unknown cause (n=1).  
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Table 8.1 and 8.2 list the clinical demographics, seizure burden, and the 

sequence in which anti-seizure medication were administered in neonates with 

HIE (5 of 20 neonates did not received therapeutic hypothermia) and due to other 

diagnoses respectively. Two of 35 neonates with electrographic-only seizures did 

not receive anti-seizure medication. A schematic diagram of the analysis of 

phenobarbitone administration with respect to the timing of seizures is depicted in 

figure 8.3.

Figure 8.2 Flow diagram on the recruitment timeline for the Phenobarbitone study 
 
Overall timeline: Jan 2009- June 2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CUMH: Cork University Maternity Hospital, Ireland; UCLH: University College London Hospital, United Kingdom. 

192 term neonates 

163 term neonates 

Excluded 29 neonates from UCLH 
for validation purpose (17 had 

seizures) 
 

133 CUMH 30 UCLH 

Excluded 62 neonates: 
- 52 had <12 hours of EEG monitoring 
- 10 had >50% artefacts on EEG 

71 neonates 
(24 had seizures) 

26 neonates    
(11 had seizures) 

Excluded 4 
neonates who 

had <12 hours of 
EEG monitoring 

97 neonates 

62 non-seizure 

35 seizures 35 non-seizure randomly chosen 

Excluded 2 neonates who did not 
received any anti-seizure 

medication  

33 had seizures and treated with phenobarbitone 

19 neonates with seizures ongoing at time of 
phenobarbitone administration 

13 CUMH 6 UCLH 
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Table 8.1 Individual characteristics of the first 19 neonates with electrographic seizures who were suitable for study analysis  

Case Diagnosis Cooling 
duration              

(age in hours) 

Recorded 
seizure 
burden 
(mins) 

Seizure 
number 

(n) 

Mean 
seizure 
burden             
(secs) 

Age of first 
anti-seizure 
medication          

(hours) 

Age of EEG 
monitoring 

(hours) 

Age of 
first EEG 
seizure 
(hours) 

Duration of 
EEG 

monitoring 
(hours) 

Order of anti-
seizure medication 
given during EEG 

(mg/kg) 

 

1 Arterial ischaemic stroke-LMCA  Non-cooled 46 22 126 55.8 59.2 60 69 PB(20, 10),PT  

2E HIE 2 72 (2-74) 58 2 1741 9.9 4 8 77.12 PB (20) 

3 HIE 2 72 (2.5-74.5) 44 21 127 11 4.7 11 78.9 PB (20, 10) 

4E HIE 2 72 (2-74) 119 18 396 15.6 2.7 13 101.25 PB (20) 

5 Multiple infarctions Non-cooled 12 4 183 115.2 113 113 14.87 PB(20) 

6E HIE 2 Non-cooled 37 1 2207 7.3 2.9 7 60.92 PB (20) 

7E HIE 3 65 (0.8-66) 198 49 243 17.1 2.8 17 88.23 PB (20, 20), PT 

8 HIE 3 91 (2.1-93.1) 397 296 80 15.1 6.8 12 127.02 PB (20, 10, 10), MZ 

9 Unknown Non-cooled 25 8 185 30.5 33.9 34 64.83 PB (20, 20), PT 

10E HIE 3 22 (2.5-24.5) 1404 266 317 9.7 4.4 9 172.37 PB (20, 10, 10) 

11R HIE 3 72 (6-78) 225 198 68 56.6 4.8 43 122.15 PB (10,10,20), 
PT,CL 

12 Arterial ischaemic stroke-LMCA 
and RMCA 

Non-cooled 133 22 362 9.7 9.1 9 38.92 PB(20, 10), PT 

13 Multiple infarctions Non-cooled 97 25 234 18.8 17.2 17.7 45.07 PB(20, 20) 

14 E, S HIE 3 Non-cooled 637 271 141 18.2 16.8 17 110.73 PB (20, 20) 

15E Arterial ischaemic stroke-LMCA 
and LPCA 

Non-cooled 362 112 194 19 18.9 19 62.68 PB(20, 10, 10), PT 

16 HIE 2 Non-cooled 149 76 117 29 28 28 53.63 PB (20, 10), MZ 

17E Viral encephalitis Non-cooled 80 28 171 55.5 57.9 58 103.93 PB(20, 20) 

18E Arterial ischaemic stroke-RMCA Non-cooled 332 136 146 37.2 36.4 36 228.9 PB(20, 20), MZ 

19 Benign non-familial seizures Non-cooled 4 5 43 123 119.4 121 42.63 PB (20), PY 

CL: Clonazepam; E: neonates with status epilepticus; LMCA: left middle cerebral artery; LPCA: left posterior cerebral artery; LV: Levetiracetam; MZ: Midazolam; PB: Phenobarbitone; PT: Phenytoin; PY: pyridoxine; R: 
neonates with EEG seizures following discontinuation of cooling; RMCA: right middle cerebral artery. S= neonates who were already seizing at the time when EEG record was commenced. Neonates involved in the 
Cooling study.  Neonates involved in the Stroke study. 
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Table 8.2 Individual characteristics of the remaining 16 neonates with electrographic seizures who were excluded for study analysis. 
_____________________________________________________________________________________________________________________________________________________________________________ 

Case Diagnosis Cooling 
duration              
(age in 
hours) 

Recorded 
seizure 
burden 
(mins) 

Seizure 
number 

(n) 

Mean 
seizure 
burden             
(secs) 

Age of first 
anti-seizure 
medication            

(hours) 

Age of EEG 
monitoring 

(hours) 

Age of 
first EEG 
seizure 
(hours) 

Duration of 
EEG 

monitoring 
(hours) 

Order of anti-
seizure medication 
given during EEG 

(mg/kg) 

Comment 

20 Non-traumatic Intraparenchymal 
bleed 

Non-cooled 98 36 163 19.6 21.1 22 61.02 PB(20) One and only PB dose given 
before EEG commenced 

21 Subdural haemorrhage Non-cooled 7 5 81 8.6 6.8 7 56.53 PB (20, 10, 10), PT, 
CL, LV, PY 

All 3 PB doses given during 
EEG monitoring but all not 
given during EEG seizures 

22 HIE 3 72 (2-74) 67 89 45 1.1 9.1 19 159.65 PB (20, 10, 10), PT, 
CL, LV 

First 2 PB doses given before 
EEG commenced and third  

PB dose given during EEG but 
not during EEG seizures 

23S HIE 2 Non-cooled 213 70 182 10.2 10.8 11 49.42 PB (20) One and only PB dose given 
before EEG commenced 

24E HIE 3 72 (0.66-
72.7) 

27 19 86 3.7 7.6 22 138.48 PB (20, 10), MZ First PB given before EEG 
commenced, second PB dose 

given during EEG but not 
during EEG seizures 

25 HIE 2 72 (4.8-76.8) 24 4 359 18.9 5.8 9 91.22 PB (20) One and only dose of PB 
given during EEG but not 

during EEG seizures 
26 HIE 2 11 (1.8-12.8) 2 1 125 None 4.3 24 48.98 None No anti-seizure medication 

given 
27 Benign familial neonatal seizures Non-cooled 2 4 28 150.4 151.3 153 33.45 PB (20) One and only PB dose given 

before EEG commenced 
28 HIE 2 72 (3-75) 78 54 87 7.3 3.3 23 84.25 PB (20) One and only PB dose given 

during EEG but not during 
EEG seizure 

29R HIE 2 72 ( 2-74) &      
24 (122-136) 

22 26 51 2.9 5.5 81 54.97 PB (20) One and only dose of PB 
given before EEG commenced 

30E HIE 2 72 (5.4-77.4) 82 28 176 6.6 8.5 9 108.23 PB (20, 20), MZ First PB given before EEG 
commenced, second PB dose 

given during EEG but not 
during EEG seizures 

31E Traumatic Intraparenchymal 
bleed 

Non-cooled 142 9 944 10.3 17.7 18 73.27 PB (20, 10), PT All 2 doses of PB given before 
EEG commenced 

32 HIE 3 72 (0.25-
72.3) 

24 9 161 6.2 1.6 13 92.28 PB (20) One and only PB dose given 
during EEG but not during 

EEG seizure 
33E Arterial ischaemic stroke-LMCA Non-cooled 207 22 564 34.4 3.3 39 45.63 PB(20, 10), PT First PB given before EEG 

commenced, second PB given 
when there is no EEG seizure 

34 HIE 2 Non-cooled 51 7 438 None 12.1 22 97.08 None No anti-seizure medication 
given 

35E Arterial haemorrhagic stroke-
LMCA 

Non-cooled 280 120 140 23.7 17.9 19 51.82 PB(20, 20) Neonates suitable for study 
analysis 

CL: Clonazepam; E: neonates with status epilepticus; LMCA: left middle cerebral artery; LPCA: left posterior cerebral artery; LV: Levetiracetam; MZ: Midazolam; PB: Phenobarbitone; PT: Phenytoin; PY: pyridoxine; R: neo  
with EEG seizures following discontinuation of cooling; RMCA: right middle cerebral artery. S= neonates who were already seizing at the time when EEG record was commenced. Neonates involved in the Cooling study.  
Neonates involved in the Stroke study.   
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Figure 8.3 A schematic diagram of ongoing electrographic seizures in all 35 neonates  

 
The first 19 neonates were included for the study analysis. Clustered horizontal lines denote ongoing electrographic 
seizures in neonates who received therapeutic hypothermia (blue lines) and in neonates who did not received 
therapeutic hypothermia (red lines). Black horizontal bars denote phenobarbitone administration while grey horizontal 
bars denote second-line anti-seizure medication administration. Single vertical blue or red lines denote the duration of 
EEG monitoring. TH: therapeutic hypothermia. 

Figure 8.4 A diagram showing the sequence of anti-seizure medication given in neonates with ongoing 
electrographic seizures 
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Two of 35 neonates with electrographic-only seizures did not receive any anti-

seizure medication; case 26 was noted to have only 1 short seizure (2 minutes at 

about 0400 hours of the day), while case 34 was ventilated and sedated with no 

further clinical signs noted (seizure burden: 51 minutes, 7 number of seizures, 

mean seizure burden: 438 seconds) (table 8.1). Of the thirty-three neonates 

treated with phenobarbitone, 5 neonates (cases 20, 23, 27, 29, 31) had all their 

phenobarbitone doses administered shortly after clinical seizures were observed 

but before EEG monitoring commenced. 

 

Case 29 had seizures during the rewarming period [not noticed for several hours 

on Saturday and Sunday (0800-1100)]; therapeutic hypothermia was 

recommenced soon after and seizures abated without further anti-seizure 

medication administration. Case 29 had a seizure burden of 22 minutes, 26 

seizure events and the mean seizure burden was 51 seconds. Case 23 was a 

neonate admitted from the postnatal ward who presented with right sided jerking 

movements for which phenobarbitone was administered. The seizure burden in 

case 23 was 213 minutes, 70 number of seizures and mean seizure burden was 

182 seconds. Case 23 had some recurring electrographic-only seizures (on 

Friday 0500-1430 hour); there were no clinical seizures to alarm the nursing or 

medical personnel. The EEG background pattern was supportive for the 

diagnosis of HIE but because the presentation was beyond the therapeutic 

window (>6 hours), therapeutic hypothermia was not administered.  

 

Case 27 was also a neonate admitted from the postnatal ward who appeared 

clinically well with benign familial neonatal seizures; no further anti-seizure 

medication were given after the first dose of phenobarbitone (table 8.3). The 

seizure burden in case 27 was 2 minutes, 4 seizure events and the mean seizure 

burden was 28 seconds. Some electrographic-only seizures were noted during 

off-call hours (Tuesday 0007-0400), during which there was no neurophysiologist 

reporting on-call service.  
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Cases 20 and 35 were neonates with focal brain lesions who presented with focal 

seizures; phenobarbitone was administered in the postnatal ward before admission 

to the NICU for continuous EEG monitoring. The seizure burden in case 20 was 98 

minutes, 36 seizure events and the mean seizure burden was 163 seconds. There 

were no further clinical signs noted in case 20 during off-call hours (Saturday 0000-

1200). The seizures burden in case 35 was 280 minutes, 120 number of seizures 

and the mean seizure burden was 140 seconds; electrographic-only seizures 

noted during off-call hours (Friday 0230-0730, 1030-1130, 1400-2330 and 

Saturday 0230-1400). Seizures were not treated in these 5 neonates after the first 

dose of phenobarbitone because all seizures were electrographic-only and there 

were no clinical or aEEG sentinels to alert the medical personnel to instigate 

treatment. The seizure burden in the 5 neonates (cases 20, 23, 27, 29, 31) was 

477 minutes with 145 seizure events and the mean seizure burden 1368 seconds). 

 

One neonate did not have EEG monitoring after phenobarbitone doses were 

administered case 35. Of the remaining 28 neonates who received at least one 

dose of phenobarbitone during EEG monitoring, 9 neonates had phenobarbitone 

doses administered when there were no ongoing electrographic seizures; they 

were treated for suspected ongoing clinical seizures. 

Table 8.3 Reasons for neonates to be excluded for this study 
Case Status Reasons Comments 

20 Excluded One and only PB dose given before EEG commenced B 
21 Excluded 3 PB doses given during EEG monitoring but all not given during EEG seizures N 
22 Excluded First 2 PB doses given before EEG commenced, 3rd PB dose given during EEG but not 

during EEG seizures 
N 

23 Excluded One and only PB dose given before EEG commenced B 
24 Excluded First PB given before EEG commenced, 2nd PB dose given during EEG but not during EEG 

seizures 
N 

25 Excluded One and only dose of PB given during EEG but not during EEG seizures N 
26  No anti-seizure medication given  
27 Excluded One and only PB dose given before EEG commenced B 
28 Excluded One and only PB dose given during EEG but not during EEG seizures N 
29 Excluded One and only dose of PB given before EEG commenced B 
30 Excluded First PB given before EEG commenced, 2nd PB dose given during EEG but not during EEG 

seizures 
N 

31 Excluded All 2 doses of PB given before EEG commenced B 
32 Excluded One and only PB dose given during EEG but not during EEG seizures N 
33 Excluded 1st PB given before EEG commenced, 2nd PB given when there is no EEG seizures N 
34  No anti-seizure medication given  
35 Excluded No EEG monitoring after PB was administered  

B: neonates excluded strictly because phenobarbitone (PB) given before EEG monitoring starts (n=5). N: neonates had either first PB 
dose given before or during EEG monitoring but were excluded because all PB were administered when there were no EEG seizures 
(n=9). 
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In this cohort, some ongoing electrographic seizures were not treated; they 

typically emerged during weekends or past-midnight when there was no 

neurophysiologist available to interpret the multichannel EEG. In addition, the 

nursing and medical personnel had no clinical concerns about seizures despite 

continuous aEEG and EEG cotside display. Therefore, it was only possible to 

measure the true effectiveness of phenobarbitone treatment in the remaining 19 

neonates who were treated concurrently with electrographic seizures; they form 

our study group: 10 neonates had HIE (7 cooled, 6 status epilepticus) and 9 

neonates had other diagnoses (3 status epilepticus) (table 8.4). In total, 37 doses 

of phenobarbitone were given to these 19 neonates during EEG monitoring. Of 

these, 31 doses were administered when electrographic seizures were ongoing; 

14, 13 and 4 doses were administered as first, second and third dose of 

phenobarbitone respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Phenobarbitone is more effective when given sooner after seizure onset (figure 8. 

5A), but this effect wears off in the long-term (figure 8.5B). There were 9, 8 and 2 

neonates who had 1, 2 and 3 doses of phenobarbitone analyzed respectively. The 

median (IQR) time between electrographic seizure onset and first analyzed dose 

was 1.8 (0.7-2.4) hours. When a neonate received more than 1 dose, the time 

between doses of phenobarbitone was 9.0 (4.8-13.1) hours (12 of 29 doses). Only 

10 of 19 neonates received a second-line anti-seizure medication; the time from the 

last dose of phenobarbitone to the first dose of second-line anti-seizure medication 

Table 8.4 Summary characteristics of the 19 neonates chosen for study analysis 
Age at EEG monitoring (hours) 17 (4-36) 
Age of first EEG seizure (hours) 18 (11-41) 
Duration of EEG monitoring (hours) 78 (56-109) 
  
Summary of seizure burden  
    Recorded seizure burden (minutes) 119 (45-305) 
    Seizure number (n) 25 (11-130) 
    Mean seizure number (seconds) 183 (126-298) 
    Status epilepticus  9 
  
Received therapeutic hypothermia  7 
Age of first anti-seizure medication (hours) 19 (11-51) 
  
Clinical diagnosis  
    HIE 2 5 
    HIE 3 5 
    Multiple infarction 2 
    Focal arterial infarction 2 
    Bifocal arterial infarction 2 
    Viral encephalitis 1 
    Unknown cause 1 
    Benign non-familial seizures 1 
Data are expressed as n or median (IQR) 
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was 5.1 (2.8-6.3) hours. One neonate received a second-line anti-seizure medication 

12 hours before the last dose of phenobarbitone was administered. 

 
Figure 8.5 The changes in maximum instantaneous seizure burden (ISB) after seizure onset 
A      

               

     B              

 
The change in maximum instantaneous seizure burden 
(ISB) is compared between 1 hour before (T-1) and 1 
hour after (T+1) the administration of phenobarbitone 
(PB). This denotes that phenobarbitone reduces seizure 
burden in the short-term. 

The change in maximum ISB is compared between 1 hour 
before (T-1) and the remaining hours after the administration 
of phenobarbitone (T+LP). This denotes that in the long-term, 
phenobarbitone does not reduce seizure burden as 
effectively as in the short-term. 

 
Comparison between timepoints 
In these 19 neonates, the maximum ISB was significantly reduced 1 hour 

immediately after the administration of phenobarbitone from a mean difference (95% 

CI) of -14.0 (-19.6 to -8.5) minutes/hour; p<0.001 (figure 8.5A).  

 

No seizures were observed during T+1 in 13 of 19 neonates (13 of 31 doses). In 3 

neonates, seizures were permanently abolished after one dose of phenobarbitone 

(20 mg/kg) administration. In the remainder, this overall reduction was not 

maintained permanently as the maximum ISB during T+LP increased when 

comparing maximum ISB in T-1 to T+LP [mean difference (95% CI) of -2.3 (-9.2 to 

4.5) minutes/hour; p=0.481 (figure 8.5B)]. The reduction in maximum ISB due to 

phenobarbitone administration was not significant by T+4; that is within 4 hours of 

first phenobarbitone administration (table 8.5). 
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Table 8.5 Results of linear mixed models for maximum instantaneous seizure burden (ISB) post and pre-1 hour of 
phenobarbitone administration from 31 observations at each timepoint across the 19 neonates.  

 
ISB: Post-pre phenobarbitone administration 

 
Difference in means (95% confidence interval) in 

minutes/hour 

 
p value 

Post: 1 hour -14.04 (-19.60 to -8.48) <0.001 
Post: 2 hours -9.48 (-15.05 to -3.91) 0.003 
Post: 3 hours -7.53 (-13.34 to -1.73) 0.016 
Post: 4 hours -5.38 (-11.15 to 0.39) 0.064 
Post: 5 hours -4.89 (-10.70 to 0.93) 0.089 
Post: 6 hours -4.99 (-10.88 to 0.91) 0.090 
Post: 7 hours -3.39 (-9.78 to 2.99) 0.268 
Post: 8 hours -3.29 (-9.78 to 3.21) 0.292 

Post: 9, 10, 11 hours -2.92 (-9.31 to 3.46) 0.338 
Post: 12 hours -2.92 (-9.31 to 3.47) 0.338 

Until T+LP -2.33 (-9.20 to 4.54) 0.481 

 

The maximum ISB was reduced to 0 during T+1 for 13 (10 as first doses of 

phenobarbitone at 20 mg/kg; 3 as second doses of phenobarbitone at 20 mg/kg) of 

31 analyzed phenobarbitone doses given to 13 neonates (table 8.6). The maximum 

ISB was reduced (but not to 0) during T+1 for 14 of 31 doses given to 11 neonates; 

seven of 14 doses were 10 mg/kg (1 as first dose, 3 as second dose and 3 as third 

dose) and seven were at 20 mg/kg (3 as first dose, 3 as second dose and 1 as third 

dose). For 4 (all second doses of phenobarbitone at 10 mg/kg) of 31 doses in 4 

neonates, there was an increase in maximum ISB during T+1. 
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Table 8.6 Details on the administration of phenobarbitone (PB) and the maximum instantaneous seizure burden in the 19 neonates 
 Case PB dose 

(mg/kg) in 
sequence 

PB dose 
(mg/kg) 

analyzed 

Accumulated 
dose (mg/kg) 

Maximum ISB  
before PB 

administration 
(mins/hr) 

Maximum ISB 
after PB 

administration 
(mins/hr) 

% reduction of 
maximum ISB 

between T+1 and T-

1 
 

Maximum ISB after PB administration (mins/hr) Until  
seizure 
offset 

    1 1 2 3 4 5 6 7 8 9 10 11 12 
1 20*, 10 10  30 13.9 4.5 67.5 5.9 5.9 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 
2 20 20 20 34.2 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3 20*, 10 10  30 8.9 12.0 -35.4 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 
4 20 20 20 30.2 0.0 100.0 2.4 2.4 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.6 
5 20 20 20 8.1 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 20 20 20 36.8 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
7 20 20 20 29.0 7.6 74.0 31.7 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 
7 20, 20 20 40 34.6 0.0 100.0 0.0 0.0 0.0 3.4 27.0 27.4 27.4 27.4 27.4 27.4 27.4 27.4 
8 20, 10, 10 20 20 14.6 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.9 
8 20, 10, 10 10 30 7.2 17.4 -141.7 21.0 22.9 23.3 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9 
8 20, 10, 10 10 40 22.8 8.4 63.0 17.1 18.2 18.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 
9 20*, 20 20 40 7.2 0.0 100.0 0.0 0.0 0.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

10 20, 10*, 10 20 20 17.5 0.0 100.0 0.0 8.9 23.9 25.4 27.4 57.9 58.7 60.0 60.0 60.0 60.0 60.0 
10 20, 10*, 10 10 40 60.0 42.2 29.6 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 
11 10, 10, 20 10 10 26.0 8.8 66.0 11.0 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 
11 10, 10, 20 10 20 9.9 12.2 -23.4 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 
11 10, 10, 20 20 40 2.5 1.5 40.3 7.0 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 
12 20, 10 20 20 3.4 0.0 100.0 7.7 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.1 11.1 11.1 23.3 
12 20, 10 10 30 11.1 6.7 39.9 15.6 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 
13 20, 20 20 20 29.4 0.0 100.0 4.7 9.1 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 
13 20, 20 20 40 16.7 2.3 86.4 2.3 3.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 
14 20, 20 20 20 47.7 14.7 69.3 19.8 25.0 27.2 29.0 31.9 36.2 36.2 36.2 36.2 36.2 36.2 36.2 
14 20, 20 20 40 35.0 20.8 40.5 25.2 25.9 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 
15 20*, 10, 10 10 30 30.6 41.3 -35.2 41.3 43.2 43.2 43.2 43.2 43.2 43.2 43.2 43.2 43.2 43.2 43.2 
15 20*, 10, 10 10 40 39.8 35.1 12.0 42.6 42.6 42.6 42.6 42.6 42.6 42.6 42.6 42.6 42.6 42.6 42.6 
16 20, 10 20 20 23.3 0.7 96.9 16.0 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 27.7 
16 20, 10 10 30 20.1 12.9 36.0 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 
17 20*, 20 20 40 20.9 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 6.0 6.0 6.0 7.7 
18 20, 20 20 20 19.8 0.0 100.0 15.2 15.2 22.1 22.1 22.1 22.1 27.8 27.8 27.8 27.8 27.8 31.9 
18 20, 20 20 40 21.9 15.8 27.8 18.6 20.9 31.9 31.9 31.9 31.9 31.9 31.9 31.9 31.9 31.9 31.9 
19 20 20 20 1.7 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.9 

*Phenobarbitone (PB) dose given but not during electrographic seizures. Yellow: first dose is analyzed (n=14). Green: second dose is analyzed (n=13). Blue: third dose is analyzed (n=4). Pink: time between 
doses calculated. 
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Comparison of T-1 vs T+1 by dosage (10 and 20 mg/kg) 
A subgroup analysis was performed by splitting phenobarbitone into individual 

dosages. The differences between the maximum ISB pre- and one hour post-

phenobarbitone administration depended on dosage (p=0.002). Compared with doses 

of 10 mg/kg, phenobarbitone doses of 20 mg/kg resulted in an immediate and 

significant reduction in the maximum ISB [mean difference (95% CI) of 20 mg/kg 

(n=20) vs 10 mg/kg (n=11)] group: -18.19 (-23.67 to -12.70) vs -4.43(-11.45 to 2.59) 

minutes/hour].  

 

Comparison of T-1 vs T+1 by accumulated dosage 
One neonate had an accumulated dosage of 10 mg/kg and was excluded from the 

statistical analysis. The differences between maximum ISB pre- and one hour post-

phenobarbitone administration depended on accumulated dosage of 20, 30 or 40 

mg/kg (p=0.006). The reduction in maximum ISB was greatest for the 20 mg/kg dose 

[mean difference (95% CI): -19.0 (-25.0 to -12.9) minutes/hour (n=14)], followed by 

the 40 mg/kg dose [mean difference (95% CI): -14.3 (-21.3 to -7.4) minutes/hour 

(n=10)] and the 30 mg/kg dose [mean difference (95% CI): -1.0 (-10.0 to 8.0) 

minutes/hour (n=6)]. Pairwise comparisons revealed statistically significant 

differences between the 30 mg/kg dose and both the 20 mg/kg and 40 mg/kg dose 

(p=0.001 and 0.017 respectively). No statistically significant differences were found 

between the 20 mg/kg and the 40 mg/kg dose (p=0.247) (figure 8.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 The change in maximum instantaneous seizure burden (ISB) based on dosages 
The change in maximum instantaneous seizure burden (ISB) due to the administration of phenobarbitone (N10mg/kg=1 
dose, N20 mg/kg=14 doses, N30 mg/kg=6 doses, N40 mg/kg=10 doses). The accumulated doses were estimated assuming 
maintenance doses of phenobarbitone accounting for clearance. *denotes p<0.05and ** denotes p<0.01. 
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Comparison of seizure burden between effective and ineffective doses (20 
mg/kg) 
The seizure burden at the time of phenobarbitone administration was significantly 

lower for effective doses [mean (95% CI): 28.1 (-5.9 to 62.1) minutes/hour (n=13)] 

than ineffective doses [mean (95% CI): 117.6 (71.3 to 164.0) minutes/hour (n=7)]; 

p=0.004. Ten of the 13 effective doses were the first doses of phenobarbitone. 

 

Analysis on second-line anti-seizure medication 
There were 13 doses of second-line anti-seizure medication (phenytoin, midazolam) 

given to 10 of the 18 neonates with electrographic seizures. Of these, 12 doses were 

concurrently administered with evidence of electrographic seizures in 9 neonates (6 

on phenytoin, 3 on midazolam). The maximum ISB was significantly reduced 

immediately after the administration of the second-line anti-seizure medication from a 

median (interquartile ranges) of 9.7 (5.9-27.5) minutes/hour during a 1 hour period 

before the administration, to a median of 0 (0-5.9) minutes/hour during a 1 hour 

period after the administration (p=0.004).  

 

No seizures were observed during a 1 hour period after the administration of the 

second-line anti-seizure medication in 5 of 9 neonates. This reduction was also 

significant in the longer term as the maximum ISB in the remaining hours after the 

last dose of second-line anti-seizure medication administration, with a median (IQR) 

of 6.1 (0.0-15.0) minutes/hour; p=0.008. In all 14 excluded neonates who received 

phenobarbitone, seizures returned despite the administration; seven of whom 

received second-line anti-seizure medication (4 had phenytoin, 3 had midazolam). 

 

8.6 Discussion  
Using an innovative method of analysis with time series, we found that 

phenobarbitone has an immediate effect in reducing electrographic seizure burden in 

term neonates; this reduction however was only temporary with seizures returning in 

the majority of neonates after the last dose of phenobarbitone administration. 

Phenobarbitone as an anti-seizure medication was effective in reducing the seizure 

burden in term neonates only up 4 hours after the administration.  
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Timing of phenobarbitone administration 
In terms of the timing of administration, the age of phenobarbitone administration are 

often not specified by authors (van den Broek et al., 2012; van Rooij et al., 2010b). In 

a cohort of neonates with HIE (≥ 34 weeks), prophylactic phenobarbitone at 20 mg/kg 

given within 6 hours of life was shown to significantly reduce the incidence of 

seizures [8% in phenobarbitone group (n=2/25) vs 40% in control group (n=8/20)]; 

however treatment was based only on clinical seizures (Singh et al., 2005). 

 

Prolonged seizure duration is thought to potentiate the risk of permanent brain 

damage and increases the difficulty of stopping seizure activity (Ben-Ari, 2006; 

Holmes and Ben-Ari, 2003; Lado et al., 2002), thus generating the hypothesis that the 

best chance of terminating a seizure is with early treatment (Abend and Wusthoff, 

2012). Since ongoing seizures lasting for at least 30 minutes have been shown to 

cause neuronal injury in neonatal animal models with ischaemia (Fujikawa, 2005; 

Klitgaard et al., 2002); indicating that perhaps in clinical practice, treatment should be 

instigated as early as within 30 minutes from the onset of seizures. In this study, the 

age of phenobarbitone administration was variable. When there were ongoing 

electrographic seizures, the median time from onset of electrographic seizure activity 

to treatment was approximately at 1.9 hours. If treatment was instigated earlier or 

soon after the onset of electrographic seizures, better response to phenobarbitone 

treatment may be observed.  

 

This cohort of neonates is not a homogenous population but consisted of differing 

aetiologies. The severity of injury varies, with different underlying mechanism of 

pathophysiology, each contributing differently to the seizure pathway. This may lead 

to different characteristics of how seizures recurred or ended. In determining neonatal 

outcome from seizures or other brain insults, it is vital to know the pre-existing 

condition of the fetal or neonatal brain (Gluckman and Williams, 1992). Together with 

pharmacoresistance, there may be other independent and multifactorial factors 

fuelling the seizure pathway causing some seizures to abate or continued or with 

some observed to return to pre-treatment level 4 hours after phenobarbitone 

administration. It would not be justified to standardize a physiological explanation to 

each individual neonate studied in this group. GABA may play a role but applying its 
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direct interpretation from other experimental studies to the findings of this research 

study beckons caution. 

 

Exposure of phenobarbitone to neonatal brain in the absence of seizures has been 

shown to stunt the development of both excitatory and inhibitory synaptic function, 

indicating functional neurotoxicity. Even brief treatment with phenobarbitone, 

carbamazepine, diazepam or valproate have been shown to cause an increase 

apoptotic neural death in normal immature rodents, leading to the stagnation in 

growth and development of the developing brain (Bittigau et al., 2002). In the critical 

phases of microgenesis and during the process of neuronal pruning, apoptosis in the 

neurones which causes cell death to take place is known to be a normal component 

of brain development during the first 10 days of life (Bittigau et al., 2002). Therefore, 

careful interpretation of drug-induced apoptosis cannot be taken conclusively in the 

presence of the normal processes of brain development which involves apoptosis. 

 

Timing of anti-seizure medication administration 

One limitation of this study is that the first dose of phenobarbitone was variable and 

that this was at the discretion of the attending neonatologist. Clinical scenarios such 

as apnoeic seizures and concerns in an already sedated neonate may lead 

neonatologists to administer the lower first dose of phenobarbitone to avoid further 

respiration depression. The dose and timing of anti-seizure medication and their 

effects on electrographic seizures in human term neonates have not been well 

studied. At what appropriate dose of anti-seizure medication and how soon and of 

what frequency should neonatal seizures be treated?  

 

Most experts recommend early cessation of the use of anti-seizure medication due to 

concerns over their side effects, combined with the fact that neonatal seizures 

typically abate within days with no intervention and have a low risk of early 

recurrence (Guillet and Kwon, 2007),. However, it remains unethical for clinicians not 

to treat neonatal seizures. In most clinical settings, phenobarbitone currently remains 

the first-line anti-seizure medication in most neonatal units to treat neonatal seizures 

(Bartha et al., 2007), despite being shown to be effective in approximately 50% of 

cases (Booth and Evans, 2004; Rennie and Boylan, 2003).  
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In this study, the reduction of electrographic seizures burden was less significant with 

time after its administration, and that second-line anti-seizure medication are usually 

needed. During the initial stage of treatment, the response of seizures to first-line 

anti-seizure medication is unpredictable, prompting the use of second-line anti-

seizure medication in most cases if there were persistence of clinical seizures. 

However, there is variation as to the choice of the second-line anti-seizure 

medication. This limitation is in accordance with the literature that there is still no 

consensus among neonatologists today as to what incremental dose of 

phenobarbitone and which type of second or third-line anti-seizure medication should 

be appropriate when first-line anti-seizure medication such as phenobarbitone failed 

to control the seizures (Bartha et al., 2007; Boylan et al., 2002) (further discussion 

previously in Section 2.4: Using anti-seizure medication to treat neonatal seizures). 

 

Treatment of neonatal seizures needs to reflect effectiveness and perhaps we need 

to change our current strategy of treating neonatal seizures in our neonatal units by 

using 20 mg/kg up to a total dose of 40 mg/kg, and that 10 mg/kg after a 20 mg/kg 

dose may be ineffective. Perhaps the second loading dose should be given within 4 

hours after the first loading dose in order for phenobarbitone to reduce seizure 

burden effectively. 

 

Analysis of seizure burden 
The analysis undertaken for this study is novel because it assessed seizure burden 

by taking into consideration the total seizure burden per hour continuously during the 

entire EEG monitoring in order to generate a time series to evaluate the 

instantaneous seizure burden in a continuous hourly fashion before and after the 

administration of phenobarbitone. This method of analysis gives more accuracy in 

delineating the response of electrographic seizures to phenobarbitone. Future studies 

should include robust methods of analyses to assess the effectiveness of treatment 

with anti-seizure medication based on the response of electrographic seizures rather 

than clinical seizures.  

 

However, methods of analysing electrographic seizures can only be made available 

when there is ongoing multichannel EEG monitoring. Furthermore, electroclinical 

dissociation of seizures have been shown to increase after treatment with anti-
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seizure medication, indicating the need for continuous multichannel EEG monitoring 

during seizure treatment in neonates (Boylan et al., 2013; Clancy, 2006a) as up to 

80% of neonatal seizures are not detectable by the human eye (Scher et al., 2003). 

Apart from causing the electroclinical dissociation of seizures, phenobarbitone has 

also been shown to reduce the EEG amplitude (Mathieson SR et al., 2014). 
 

When a seizure event is suspected, an EEG monitoring is usually warranted to 

confirm these seizures. Since studies have shown that seizures can be harmful to the 

developing neonatal brain, it is crucial to treat these seizures appropriately with the 

most effective anti-seizure medication timely and with consistency if better 

neurodevelopmental outcome is to be expected. However, due to lack of evidence in 

effectiveness, some authors have decided that the use of anti-seizure medication in 

the immediate period following perinatal asphyxia cannot be recommended for 

routine clinical practice and is only justifiable to be using anti-seizure medication for 

prolonged and frequent clinical seizures (Booth and Evans, 2004). 

 

8.7 Conclusions 
Phenobarbitone as an anti-seizure medication was effective in reducing seizure 

burden in term neonates only up 4 hours after the administration; therefore 

neonatologists should be aware that seizures can recur and return with greater 

intensity particularly only after the first dose of phenobarbitone. Most of what we 

understand about the paradoxical effect of GABA on the developing brain is derived 

from animal studies and may have merit, but the situation in the human neonate 

might be very different and more complex.  

 

We have clearly shown an immediate reduction in seizures in all neonates following a 

dose of 20 mg/kg of phenobarbitone. Doses of phenobarbitone at 20 mg/kg as 

subsequent dose after the initial loading dose of 20 mg/kg, rather than 10 mg/kg as 

subsequent doses were significantly more effective in reducing seizure burden. In the 

majority of neonates the effect is not sustained and seizures returned. The 

mechanism of phenobarbitone action is clearly complex and it may be that its effect 

on seizure reduction may not be, at least initially, mediated by the GABAA receptor; 

further research should delve into investigating the precise mechanism of how 

phenobarbitone works in the human developing neonatal brain.  
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Perhaps our current treatment strategy to treat neonatal seizures with anti-seizure 

medication needs to be evaluated and that the multichannel EEG monitoring is 

warranted to ensure whether there are ongoing seizures since most neonatal 

seizures are subclinical in nature. Future studies should focus on assessing the 

effectiveness of anti-seizure medication on electrographic seizures using the 

multichannel EEG accompanied with a robust method of analysis of seizure burden if 

the clinical incentive is to abolish seizures efficiently in the human developing 

neonatal brain.  

 

What this study adds?  

• Phenobarbitone reduces electrographic seizures temporarily in the majority of 

neonates for approximately 4 hours.  

• Loading doses at 20 mg/kg rather than 10 mg/kg were more effective in 

reducing seizure burden. 

• Phenobarbitone may be more effective if treatment strategies are tightly 

aligned with EEG monitoring.  
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Chapter 9  

The Dissociation of Electroclinical Seizures in Term Neonates 
 

9.1 Abstract  
Background: An estimate of the incidence of electroclinical dissociation (ECD) of 

seizures may be a useful tool to neonatologists in the management of neonatal 

seizures in term neonates. 

 

Purpose: To determine the rate the electroclinical dissociation of seizures in term 

neonates with varying aetiologies.  

 

Methods: Electrographic seizures were annotated by an experienced neonatal 

electroencephalographer. Simultaneous video was reviewed in each neonate and the 

ECD index was defined as the accumulated number of electrographic-only seizure 

relative to the total number of seizures in each neonate according to the respective 

diagnoses. Data are expressed as medians (interquartile ranges).  

 

Results: Twenty-four neonates with electrographic seizures had simultaneous video-

EEG monitoring. There were 8 cooled neonates with hypoxic-ischaemic 

encephalopathy (HIE), 4 non-cooled HIE and 12 neonates with other diagnoses 

[stroke (n=6), benign seizures (n=2), intraparenchymal haemorrhage (n=2), subdural 

haemorrhage (n=1) and seizure of unknown cause (n=1). EEG monitoring began at 

age 9 (5-28) hours, EEG duration was 69 (49-104) hours and age of first EEG seizure 

was 19 (11-36) hours.  

 

Of the 24 neonates, 19 had electrographic seizures and 5 had electroclinical seizures 

only. There was no significant difference in the ECD index between the cooled 

neonates with HIE and all the non-cooled neonates with HIE (p=0.109), with neonates 

with stroke (p=0.465) and those other diagnoses identified (p=0.893). Although there 

was no statistical significance between the groups, the ECD index in the cooled 

neonates with HIE, in non-cooled neonates with HIE, neonates with focal stroke and 

in neonates with other diagnoses were 88 (55-100)%, 94% (small number n=3), 64 

(58-68)% and 75 (61-89)% respectively.   
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Conclusion: Based on our current cohort, the occurrence of ECD is high. This 

emphasizes the need for continuously multichannel video EEG monitoring as the 

majority of electrographic seizures is not detected by clinical observation in the NICU. 
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9.2  Introduction 
The incidence of electroclinical dissociation (ECD) of seizures in neonates has been 

reported to be as high as 80 % of neonates treated with anti-seizure medication 

(Boylan et al., 1999; Boylan et al., 2002; Castro, Jr. et al., 2005; Scher et al., 2003); 

particularly implicating phenobarbitone (Boylan et al., 2002). Phenobarbitone may 

have facilitated the occurrence of ECD and different mechanisms in the developing 

human neonatal brain are responsible for the clinical and EEG manifestation of 

seizures at the molecular level (Boylan et al., 1999). With the advent of therapeutic 

hypothermia, ECD has also been reported in neonates (Nash et al., 2011; Wusthoff 

et al., 2011; Yap et al., 2009). The severity of EEG background activity, status 

epilepticus and higher seizure burden have also been implicated in the increasing 

occurrence of ECD (Boylan et al., 1999; Pinto and Giliberti, 2001).  

 

As most seizures in neonates are subclinical, continuous multichannel video-EEG is 

crucial in monitoring ECD in neonates, particularly during the treatment period. 

Neonates with ECD have been shown to have higher seizure burden and have 

poorer neurodevelopmental outcome (Weiner et al., 1991). Most studies have 

reported only the number of neonates affected by ECD (Nash et al., 2011; Wusthoff 

et al., 2011; Yap et al., 2009); apart from cooling, these studies did not make any 

other direct associations with other factors such as the usage of anti-seizure 

medication, the degree of severity of brain injury, status epilepticus and seizure 

burden. 

What is already known on this topic?  

• Electroclinical dissociation of seizures can occur up to 80% of neonates 

treated with anti-seizure medication.   

• The electroclinical dissociation index in term neonates in the current era of 

care remains unknown. 
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9.3 Aims 
Hypothesis: There is a high incidence of electroclinical dissociation (ECD) of 

seizures in term neonates. A new and current cohort of neonates with seizures 

including cooled neonates is needed to confirm and quantify this, so as to determine 

the dissociation rate of seizures according to different seizure aetiologies.  

 

Study aim: To determine the characteristics of electroclinical dissociation (ECD) of 

seizures in term neonates (the Electroclinical dissociation study). Electroclinical 

dissociation of seizures is believed to be a common phenomenon, but has rarely 

been quantified using multichannel EEG and in a cohort of term neonates who were 

either cooled or non-cooled with multiple aetiologies. This study aimed to determine 

the occurrence of this phenomenon in the current population of term neonates with 

seizures. 

 

9.4 Methods 
The methodology of this study is described in detail in Chapter 5 (Methodology). 

 

The electroclinical dissociation of seizure (ECD) index was used for this study to 

ascertain the current status of ECD in a cohort of term neonates with 

simultaneously multichannel video-EEG monitoring. The ECD index of seizure was 

defined as the percentage of the accumulated number of electrographic-only 

seizures relative to the total number of seizures in each neonate. The ECD index 

was determined between neonates who had received phenobarbitone at 20 mg/kg 

vs those who had received phenobarbitone at 40 mg/kg, between neonates who 

had higher seizure burden (defined as those who had total seizure burden of >60 

mins) vs those who had lower seizure burden (defined as those who had total 

seizure burden of <60 mins), and between neonates with status epilepticus vs those 

who did not have status epilepticus. 

 

Statistical analysis: Data were expressed as medians and interquartile ranges 

(IQR). All statistical analyses were performed using SPSS Statistics 20.0 (IBM 

SPSS Statistics, Illinois, USA). All tests were two-sided; p value <0.05 was 

considered to be statistically significant.   
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9.5 Results 
During the study period from 2009 to 2011, twenty-four neonates in CUMH with 

seizures and simultaneous long-term video-EEG monitoring were identified (figure 

9.1). The median (interquartile ranges) age when EEG monitoring began was 9.95 

(3.3-18.7) hours, EEG duration was 67.5 (46.7-91.27) hours and age of first EEG 

seizure was 18.99 (13-38.89) hours. The aetiologies for seizures included hypoxic-

ischaemic encephalopathy (HIE) (n=12), stroke (n=6), benign seizures (n=2), 

intraparenchymal haemorrhage (n=2), subdural haemorrhage (n=1) and seizure of 

unknown cause (n=1). Table 9.1 lists the clinical demographics and table 9.2 lists 

the details of EEG monitoring and anti-seizure medication given in 12 neonates with 

HIE (4 of whom were non-cooled) and 12 neonates with other diagnoses (all non-

cooled).  
Figure 9.1 Flow diagram on the recruitment timeline for the Electroclinical dissociation study 
 
Overall timeline: Jan 2009- June 2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

19 neonates had 
electrographic-only seizures 

 

24 neonates with electrographic seizures 
and multichannel video-EEG monitoring 

 

5 neonates who had all seizures as 
electroclinical seizures only: 

- Moderate HIE (non-cooled): 1 neonate 
- Moderate HIE (cooled): 1 neonate 
- Benign non-familial seizure: 1 neonate 
- Multiple infarctions: 1 neonate 
- Seizure of unknown origin: 1 neonate 
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Table 9.1 Individual clinical characteristics of 12 neonates with electrographic seizures due to HIE and 12 neonates with electrographic seizures arising 
from non-HIE conditions in the order of increasing seizure burden 
Case 12 neonates 

with HIE 
(grade) 

Cooling 
duration              
(age in hours) 

GA 
(weeks) 

BW 
(grams) 

Sex Sentinel before delivery Mode of 
delivery 

5 min 
Apgar 
score 

First 
pH 

1 3 72 (0.25-72.3) 41 4130 F Deep decelerations in the second 
stage, post-dates, FTP 

IOL 0 7.052 

2E 2 Non-cooled 41 3570 M Early decelerations, post-dates, 
FTP 

IOL-
Ventouse 

6 6.97 

3 2 72 (2.5-74.5) 40 3940 F Fetal bradycardia, antenatal 
pelvicalyceal dilatation  

Ventouse 3 7.047 

4 2 Non-cooled 40 3000 F None  SVD 3 6.99 
5E 2 72 (2-74) 40 4290 1 Shoulder dystocia SVD 3 6.93 
6 3 72 (2-74) 40 3880 F Head high, difficult delivery, 

meconium-stained liquor 
EMCS 5 6.81 

7 2 72 (3-75) 40 3000 F Post-dates IOL-Forceps 4 7.1 
8E 2 72 (2-74) 40 3140 F Severe antepartum haemorrhage, 

fetal bradycardia 
EMCS 4 6.626 

9E 3 65 (0.8-66) 41 5190 1 Shoulder dystocia (23mins delivery 
between head and body) 

SVD 0 7 

10E 2 Non-cooled 39 2950 1 Failed ventouse Forceps 10 7.396 
11R 3 72 (6-78) 37 2900 1 Decreased fetal movement, non-

reassuring cardiotocogram 
ELCS before 
labour 

6 7.18 

12E 3 Non-cooled 40 3350 1 Prolonged second stage, spinal 
pain, failed ventouse, meconium-
stained liquor 

IOL-Forceps 7 7.34 

          

 12 neonates with other 
diagnoses 

       

13 Benign familial neonatal seizures 39 3300 M Fetal bradycardia at second stage Ventouse 9 7.17 
14 Benign non-familial seizures 41 4200 M None  SVD 9 7.323 
15 Subdural haemorrhage 40 3710 F None  SVD 10 7.394 
16 Multiple infarctions 39 2930 F None  SVD 9 7.36 
17 Multiple infarctions 40 3520 F Maternal pre-eclampsia toxaemia, 

FTP at second stage 
IOL-Forceps 10 not 

done 
18 Unknown 39 3740 M Low lying placenta, polyhydramion, 

PROM 36h 
IOL 9 7.04 

19 Arterial ischaemic stroke-LMCA 41 3400 F None  SVD 10 7.385 
20 Non-traumatic intraparenchymal 

haemorrhage 
41 3360 M Persistent occiput-posterior 

presentation 
IOL-Forceps 10 7.349 

21E Traumatic intraparenchymal  
haemorrhage 

41 3420 F Post-dates IOL-
Ventouse 

7 7.34 

22E Arterial ischaemic stroke-LMCA 39 3160 M Non-reassuring cardiotocogram, 
prolonged labour (25h) 

EMCS 10 7.30 

23E Arterial ischaemic stroke-LMCA 38 3370 M Previous section ELCS 10 7.38 
24E Arterial ischaemic stroke-LMCA 

and LPCA 
39 3300 M Fetal bradycardia at second stage Ventouse 9 7.17 

BW: birthweight; C: neonates from Cork University Maternity Hospital; E: neonates with status epilepticus; ELCS: elective C-section; FTP: failure to 
progress; GA: gestational age; IOL: induction of labour; L: neonates from University College London Hospital; LMCA: left middle cerebral artery; LPCA: 
left posterior cerebral artery; R: neonates with EEG seizures following discontinuation of cooling; RMCA: right middle cerebral artery; SVD: spontaneous 
vaginal delivery. 
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Table 9.2 Details on the sequence of anti-seizure medication given and reasons why ongoing EEG seizures were not treated 
Case Age of first 

clinical 
seizure 
(hours) 

Characteristic of first 
clinical seizure 

Age of EEG 
monitoring 

(hours) 

Age of first 
EEG seizure 

(hours) 

Duration of 
EEG 

monitoring 
(hours) 

Age of first 
anti-seizure 
medication 

(hours) 

Order of anti-seizure 
medication given during 

EEG (mg/kg) 

Reasons for not given further anti-seizure 
medication despite ongoing EEG seizures 

1 5 Myoclonic jerks with 
desaturations 

1.6 13 92.28 6.2 PB (20) Saturday 0200-0900. Sedated with no further 
clinical signs noted 

2E 6 Limbs jerking and blinking 2.9 7 60.92 7.3 PB (20): non-cooled Complete resolution of seizures 
3 11 Hypertonic limbs with 

arching 
4.7 11 78.9 11 PB (20, 10) Saturday 0200-0300. Sedated with no further 

clinical signs noted 
4 Not recorded Fisting and posturing 12.1 22 97.08 None None: non-cooled Saturday 0030-0500, Sunday 2300, Monday 0012 
5E 2 Upper limbs jerks 4 8 77.12 9.9 PB (20) Sunday 0649-0759. Complete resolution of 

seizures 
6 1 Upper limbs jerks, 

nystagmus to the right 
9.1 19 159.65 1.1 PB (20, 10, 10), PT, CL, LV Given for clinical seizures 

7 4 Tremulous right hand 3.3 23 84.25 7.3 PB (20) Monday 0036-0241, 0500-1600. Sedated  with no 
further clinical signs noted 

8E 1 Generalize tonic clonic after 
intubation 

2.7 13 101.25 15.6 PB (20) Wednesday 1500-1700, 2100 to Thursday 0900. 
Sedated with no further clinical signs noted 

9E 2 Right arm jerking 2.8 17 88.23 17.1 PB (20, 20), PT Sedated  with no further clinical signs noted 
10E 2 Right sided limbs jerking 10.8 11 49.42 10.2 PB (20): non-cooled Friday 0500-1430 
11R 2 Desaturations while on 

ventilator 
4.8 43 122.15 56.6 PB (10,10,20), PT,CL Sunday 0200 (Valentine’s day) to Monday 1000. 

Sedated  with no further clinical signs noted 
12 E 1 Eyes staring 16.8 17 110.73 18.2 PB (20, 20): non-cooled Saturday 2300, Sunday 0200, 0500, 2200 
13 Day 7 Limbs jerking 151.3 153 33.45 150.4 PB (20): non-cooled Tuesday 0007-0400; only 2 mins long seizure 

14 Day 4 Upper limb hypertonic, left 
eye deviation 

119.4 121 42.63 123 PB (20), PY: non-cooled Tuesday 1600-1700 

15 Not recorded Desaturations 6.8 7 56.53 8.6 PB (20, 10, 10), PT, CL, LV, 
PY: non-cooled 

Saturday 0900-1700 

16 Day 5 Left focal seizures 113 113 14.87 115.2 PB(20): non-cooled Friday 1800-2030. Complete resolution of seizures 

17 13 Left focal seizures 17.2 28 45.07 18.8 PB(20, 20): non-cooled Tuesday 0000,0100,0200, Wednesday 0830 

18 42 Limbs jerking 33.9 34 64.83 30.5 PB (20, 20), PT: non-cooled Saturday 0730-1700 

19 54 Desaturations only 59.2 60 69 55.8 PB(20, 10),PT: non-cooled Saturday 1530-2200 

20 18 Right focal seizures 21.1 22 61.02 19.6 PB(20): non-cooled Saturday 0000-1200.  Sedated  with no further 
clinical signs noted 

21E 8 Left focal seizures 17.7 18 73.27 10.3 PB (20, 10), PT: non-cooled Thursday 1700 to Wednesday 0600 

22E 33 Right sided jerks 3.3 39 45.63 34.4 PB(20, 10), PT: non-cooled Thursday 0600-1700 

23E 15 Right upper limb jerks 17.9 19 51.82 23.7 PB(20, 20): non-cooled Friday 0230-0730, 1030-1130, 1400-2330. 
Saturday 0230-1400 

24E 18 Right upper limb jerks 18.9 19 62.68 19 PB(20, 10, 10), PT: non-
cooled 

Thursday 1700-0000. Friday 0000 to Saturday 
0400 

B: neonates who had all phenobarbitone doses given before EEG monitoring commence; N: neonates with no anti-seizure medication given at any stage; *neonates who were given at least one of the phenobarbitone 
dose during EEG monitoring, but all phenobarbitone doses were not given during EEG seizures.  
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ECD index 
The ECD index in the cooled neonates with HIE (n=7), in non-cooled neonates with 

HIE (n=3: 2 moderate HIE, 1 severe HIE), neonates with focal stroke (n=4) and in 

neonates with other diagnoses (n=5) were 88 (55-100)%, 94% (small number n=3), 

64 (58-68)% and 75 (61-89)% respectively.   

 

Neonates with no occurrence of ECD  
Of 24 neonates with electrographic seizures, five neonates (cases 2, 5, 14, 16 and 

18) did not have any ECD of seizures (i.e. which were detected as electrographic-

only seizures) as all their seizures were presented as electroclinical seizures only 

(see table 9.3). Case 2 was a non-cooled neonate with moderate HIE, who had one 

period of status epilepticus lasting 37 minutes (all were electroclinical seizures which 

consisted of jerking limb movements and only received one dose of phenobarbitone 

which essentially led to the termination of electrographic seizures).  

 

Case 5 was a cooled neonate with moderate HIE who presented with upper limb 

jerking movements and was given one dose of phenobarbitone with subsequent 

complete resolution of seizures. Case 5 had 2 electroclinical seizures (1 clonic 

seizures, 1 subtle seizure (staring episode); with a total seizures burden of 58 

minutes). Case 14 was a non-cooled neonate who presented with stiffening of the 

upper limbs and eye deviation; phenobarbitone and pyridoxine were administered 

before a diagnosis of exclusion was made (the subsequent diagnosis was benign 

non-familial seizures). Case 14 had 4 electroclinical seizures (3 clonic seizures, 1 

subtle seizure which presented as mouthing episode) and 1 seizure event which was 

obscured by video-imaging; total seizure burden was 4 minutes. 

 

Case 16 was a non-cooled neonate who presented with left focal seizures and was 

noted to have multiple infarctions on the MRI; one dose of phenobarbitone was given 

which essentially led to a termination of EEG seizures. This baby had 4 seizures (3 

clonic seizures, 1 seizure obscured by video-imaging) with a seizure burden lasting 

12 minutes. Case 18 was a non-cooled neonate who presented with jerking 

movements of the limbs; phenobarbitone and phenytoin were given before the 

diagnosis of seizures of unknown origin was made. This baby had all 8 electroclinical 

seizures presented as upper limb clonic movements clinically (with a seizure burden 
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lasting 25 minutes. However, most clinical seizures in Case 18 were somehow not 

detected and not treated.  

 

In the remaining 19 neonates, 1123 seizures were analyzed. One neonate (case 1) 

had 44% of seizures which were identified as electrographic-only seizures (EOS) 

while the remaining 18 neonates had more than >50% of their total number of 

seizures detected as EOS [median (IQR)=80.03 (54.73-95.01)%]. Three (cases 4, 7, 

9) of the 18 neonates had all of their seizures identified as EOS. Case 4 was a non-

cooled neonate with moderate HIE with no anti-seizure medication given. Case 4 

had 7 seizures with a seizure burden lasting 51 minutes. Case 7 was a cooled 

neonate who had moderate HIE and had received phenobarbitone 20 mg/kg. Case 7 

had 54 seizures with a seizure burden lasting 78 minutes. Case 9 was a cooled 

neonate with severe HIE and had received total phenobarbitone dose of 40 mg/kg. 

Case 9 had 49 seizures with a seizure burden lasting 198 minutes.  
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Table 9.3  Characteristics of EEG seizures 
Case Seizure 

burden 
(mins) 

Number 
of 

seizure
s (n) 

Mean 
seizure 

duration 
(seconds) 

Seizure 
window 
(hours) 

EEG-
only 

seizure
s (n) 

Clonic seizures 
(n) 

Subtle seizures 
(n) 

Obscured 
seizures 

(n) 

Electroclinical 
seizures (n) 

EEG-
only 

seizure
s (%) 

Conic 
seizure
s (%) 

Subtle 
seizure
s (%) 

Obscured 
seizures 

(%) 

Electroclinical 
seizures (%) 

1 24 9 161 9 4 0 5 (B) 0 5 44.44 0 55.56 0 55.56 
2 37 1 2207 1 0 1 (L-sided) 0 0 1 0 100 0 0 100 
3 44 21 127 11 17 1 (RUL) 3 (B, T) 0 4 80.95 4.76 14.29 0 19.05 
4 51 7 438 29 7 0 0 0 0 100 0 0 0 0 
5 58 2 1741 1 0 1 (arching) 1 (St) 0 2 0 50 50 0 100 
6 67 89 45 118 49 1 (UL) 35 (B, Bx, Cy, St) 4 36 55.06 1.12 39.33 4.49 40.45 
7 78 54 87 15 54 0 0 0 0 100 0 0 0 0 
8 119 18 396 17 16 0 1 (Hi) 1 1 88.89 0 5.56 5.56 5.56 
9 198 49 243 41 49 0 0 0 0 100 0 0 0 0 
10 213 70 182 31 66 1 (RUL) 2 (Cr) 1 3 94.29 1.43 2.86 1.43 4.29 
11 225 198 68 51 183 0 1 (D) 14 1 92.42 0 0.51 7.07 0.51 
12 637 271 141 92 217 20 (arching, UL) 24 (B, D, Hb, Hy, 

M, Sh, St) 
10 44 80.07 7.38 8.86 3.69 16.24 

13 2 4 28 3 3 1 (LLL) 0 0 1 75 25 0 0 25 
14 4 5 43 19 0 3 (L-sided) 1 (M) 1 4 0 60 20 20 80 
15 7 5 81 8 4 0 0 1 0 80 0 0 20 0 
16 12 4 183 2 0 3 (LUL) 0 1 3 0 75 0 25 75 
17 18 6 176 8 4 0 2 (Cy) 0 2 66.67 0 33.33 0 33.33 
18 25 8 185 9 0 8 (RUL) 0 0 8 0 100 0 0 100 
19 67 41 98 9 27 0 10 (D) 4 10 65.85 0 24.39 9.76 24.39 
20 98 36 163 12 35 1 (LLL) 0 0 1 97.22 2.78 0 0 2.78 
21 142 9 944 28 5 3 (LUL) 1 (Cl) 0 4 55.56 55.56 11.11 0 44.44 
22 201 23 523 11 13 0 9 (M, Su) 1 9 56.52 56.52 39.13 4.35 39.13 
23 266 112 143 21 77 17 (RUL) 15 (M, Su) 3 32 68.75 68.75 13.39 2.68 28.57 
24 327 101 195 35 62 16 (RUL) 19 (Cy, M, Su, Y) 4 35 61.39 61.39 18.81 3.96 34.65 
B: blinking; Bx: boxing; Cl: clenching of fists; Cr: crying; Cy: cycling of limbs; D: desaturations of peripheral oxygen; Hb: head bobbing; Hi: hiccups; Hy: hyperventilating; L: left; LLL: left lower limb; M: mouthing;  
RUL: right upper limb; Sh: shivering; St: staring; Su: sucking; T: twitching of left upper limb; UL: upper limb; Y: yawning. 
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Cooling vs non-cooled neonates 
Based on 19 neonates with electrographic-only seizures, there was no significant 

difference between the cooled (n=7) vs all non-cooled neonates (n=12) in terms of 

the percentage of the number of seizures (p=0.498) identified. There was no 

significant difference between cooled (n=7) vs non-cooled neonates with HIE 

(n=3) in terms of the percentage of the number of seizures (p=0.564).  

 

If comparisons were made between cooled HIE (n=7) vs non-cooled neonates 

with focal arterial ischaemic stroke (n=4), there is also no difference in the 

percentage of the number of seizures identified (p=0.465) (table 9.4). There was 

no significant difference in the dissociation of electroclinical seizures between 

cooled (n=7) vs non-cooled neonates with HIE [albeit the number of cases is small 

(n=7 vs 3) (p=0.109) and when comparison was made between cooled vs all non-

cooled neonates with various diagnoses (excluding stroke) (n=7 vs 5) (p= 0.893).  

 
Table 9.4 Comparison of ECD of seizures between cooled and non-cooled neonates 

Case Diagnoses EEG-only seizures (n) of the 
total number of seizures (n) 

EEG-only seizures (%) 

  
Cooled (n=7) 

  

1 HIE 3 4 of 9 44.44 

7 HIE 2 54 of 54  100.00 

8 HIE 2 16 of 18 88.89 

3 HIE 2 17 of 21 80.95 

6 HIE 3 49 of 89 55.06 

11 HIE 3 183 of 198 92.42 

9 HIE 3 49 of 49 100.00 

    

 Non-cooled (n=12)   

4 HIE 2 7 of 7 100.00 

10 HIE 2 66 of 70  94.29 

12 HIE 3 217 of 271 80.07 

20 Non-traumatic intraparenchymal haemorrhage 35 of 36 97.22 

21 Traumatic intraparenchymal  haemorrhage 5 of 9 55.56 

19 Arterial ischaemic stroke-LMCA 27 of 41  65.85 

22 Arterial ischaemic stroke-LMCA 13 of 23 56.52 

17 Multiple infarctions 4 of 6 66.67 

13 Benign familial neonatal seizures 3 of 4 75.00 

15 Subdural haemorrhage 4 of 5 80.00 

24 Arterial ischaemic stroke-LMCA and LPCA 62 of 101  61.39 

23 Arterial ischaemic stroke-LMCA 77 of 112 68.75 
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Phenobarbitone dosage 
All but 1 (case 4) of the 24 neonates who received phenobarbitone (10, 3 and 10 

neonates were given accumulative dose of phenobarbitone at 20, 30 and 40 

mg/kg respectively). Based on 19 neonates, between those who had received 

phenobarbitone 20 mg/kg (n=6) vs phenobarbitone 40 mg/kg (n=9), there was no 

significant difference found in terms of the percentage of the number of seizures 

(p=0.516) identified (table 9.5).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9.5   Comparison of ECD of seizures in neonates based on total phenobarbitone dosages 
Case EEG-only seizures (n) of the 

total number of seizures (n) 
EEG-only seizures (%) 

No phenobarbitone given   
4 7 of 7 100 

 
Total phenobarbitone dosage at 20 mg/kg (n=6) 

  

1 4 of 9 44.44 

7 54 of 54 100 

8 16 of 18 88.89 

20 35 of 36 97.22 

21 5 of 9 55.56 

10 66 of 70 94.29 

 
Total phenobarbitone dosage at 30 mg/kg (n=3) 

  

19 27 of 41 65.85 

22 13 of 23 56.52 

3 17 of 21 80.95 

 
Total phenobarbitone dosage at 40 mg/kg (n=9) 

  

6 49 of 89 55.06 

11 183 of 198 92.42 

9 49 of 49 100 

17 4 of 6 66.67 

13 3 of 4 75 

15 4 of 5 80 

24 62 of 101 61.39 

23 77 of 112 68.75 

12 217 of 271 80.07 
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Severity of brain injury 
Based on 19 neonates who had electrographic-only seizures, there was no 

significant difference in the percentage of the number of seizures between 

neonates who had severe HIE (n=5) vs those who had moderate HIE (n=5); 

p=0.169. Also, there was no significant difference between those who had severe 

HIE (n=5) vs all other diagnoses (n=14) in terms of the percentage of the number 

of seizures (p=0.711) (table 9.6). 

 
Table 9.6 Comparison of ECD of seizures between cooled and non-cooled neonates 

Case Diagnoses EEG-only seizures (n) of the 
total number of seizures (n) 

EEG-only seizures (%) 

 HIE (n=10)   
1 Severe  4 of 9 44.44 

6 Severe 49 of 89 55.06 

11 Severe 183 of 198 92.42 

9 Severe 49 of 49 100 

12 Severe 217 of 271 80.07 

    

7 Moderate 54 of 54 100 

8 Moderate 16 of 18 88.89 

3 Moderate 17 of 21 80.95 

4 Moderate 7 of 7 100 

10 Moderate 66 of 70 94.29 

    

 Other diagnoses (n=9)   

20 Non-traumatic intraparenchymal haemorrhage 35 of 36 97.22 

21 Traumatic intraparenchymal  haemorrhage 5 of 21 55.56 

19 Arterial ischaemic stroke-LMCA 27 of 41 65.85 

22 Arterial ischaemic stroke-LMCA 13 of 23 56.52 

17 Multiple infarctions 4 of 6 66.67 

13 Benign familial neonatal seizures 3 of 4 75 

15 Subdural haemorrhage 4 of 5 80 

24 Arterial ischaemic stroke-LMCA and LPCA 62 of 101 61.39 

23 Arterial ischaemic stroke-LMCA 77 of 112 68.75 
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Status epilepticus 
Based on 19 neonates, the number of electrographic-only seizures between 

neonates who had status epilepticus (n=8) vs those who had no status 

epilepticus (n=11) was not significant, in terms of the percentage of the number 

of seizures (p=0.804) (table 9.7). 

 
Table 9.7 Comparison of ECD of seizures between neonates with and without status epilepticus 

 EEG-only seizures (n) of the 
total number of seizures (n) 

EEG-only seizures (%) 

Status epilepticus cases (n=8)   
8 16 of 18 88.89 

9 49 of 49 100 

10 66 of 70 94.29 

21 5 of 9 55.56 

22 13 of 23 56.52 

23 77 of 112 68.75 

24 62 of 101 61.39 

12 217 o f271 80.07 

   

No status epilepticus cases (n=11)   

1 4 of 9 44.44 

7 54 of 54 100 

3 17 of 21 80.95 

6 49 of 89 55.06 

11 183 of 198 92.42 

4 7 of 7 100 

20 35 of 36 97.22 

19 27 of 41 65.85 

17 4 of 6 66.67 

13 3 of 4 75 

15 4 of 5 80 
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Seizure burden 
Based on 19 neonates who had electrographic-only seizures at higher seizure 

burden (>60 mins) (n=13) vs lower seizure burden (<60 mins) (n=6), the 

proportion in terms of the percentage of the number of seizures was not 

significant (p=0.792), but there was a significant difference in terms of the 

number of seizures (p=0.002) identified in neonates who had higher seizure 

burden (table 9.8). 

 
Table 9.8 Comparison of ECD of seizures between neonates with higher versus lower seizure burden 

 Seizure burden 
(minutes) 

EEG-only seizures (n) of the 
total number of seizures (n) 

EEG-only seizures (%) 

Cases with higher seizure burden 
(n=13) 

   

6 67 49 of 89 55.06 

7 78 54 of 54 100 

8 119 16 of 18 88.89 

9 198 49 of 49 100 

10 213 66 of 70 94.29 

11 225 183 of 198 92.42 

12 637 217 of 271 80.07 

19 67 27 of 41 65.85 

20 98 35 of 36 97.22 

21 142 5 of 9 55.56 

22 201 13 of 23 56.52 

23 266 77 of 112 68.75 

24 327 62 of 101 61.39 

    

Cases with lower seizure burden  
(n=6) 

   

1 24 4 of 9 44.44 

3 44 17 of 21 80.95 

4 51 7 of 7 100 

13 2 3 of 4 75 

15 7 4 of 5 80 

17 18 4 of 6 66.67 

 
9.6 Discussion 
Based on findings of multichannel video-EEG, this study has shown that the 

index of electroclinical dissociation of seizures remains high in term neonates 

who were treated with anti-seizure medication. The ECD index in the cooled 

neonates with HIE, in non-cooled neonates with HIE, neonates with focal stroke 

and in neonates with other diagnoses were approximately 88%, 94%, 64% and 

75% respectively. This study has demonstrated that ECD is high in HIE and other 

seizure aetiologies. Clinical surveillance will not accurately measure response to 

anti-seizure medication in neonates. 
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Few theories have been hypothesized on the mechanism pertaining to the 

electroclinical dissociation (ECD) of seizures in term neonates at the molecular 

level, and this has been discussed in section 3.1.2. Regional interconnectivity, 

including interhemispheric as well as corticospinal, which are not fully mature due 

to incomplete myelination of white matter tracts have been implicated in leading 

to only modest or no behavioral manifestations of these seizures.  

 

Neonates can show no signs or very subtle tonic or clonic movements, often 

limited to only one limb, making the diagnosis difficult to discern from myoclonus 

or other automatisms (Boylan et al., 2013; Mizrahi EM and Kellaway P, 1998). 

The sedative effect of phenobarbitone may account for this, as it is also known to 

be a potent benzodiazepine. In some cases in this study, there were no clinical 

signs detected after neonates had at least one dose of phenobarbitone 

administered, however the number of neonates in this study is small and a larger 

cohort of neonates is required to confirm this finding. 

 

Electroclinical dissociation of seizures and therapeutic hypothermia 
Electroclinical dissociation of seizures was also common in neonates treated with 

therapeutic hypothermia (Nash et al., 2011; Wusthoff et al., 2011; Yap et al., 

2009) (previously discussed in section 6.6 of Chapter 6: the Cooling study). Yap 

et al. monitored a cohort of 20 neonates (13 moderate HIE, 7 severe HIE) with 

selective head cooling (Yap et al., 2009). The occurrence of electrographic-only 

seizures in this study by Yap et al. is higher; the study mainly used the aEEG and 

single-channel EEG tracing, with intermittent multichannel EEG for seizure 

detection they may have underestimated the true seizure burden.  

 

Using the gold standard: multichannel video-EEG from 26 neonates who received 

whole-body cooling, (reviewed by 2 pediatric neurophysiologists), Wusthoff et al. 

detected 17/26 (65%) neonates who had EEG seizures during and immediately 

after cooling; 8/17 (47%) had only electrographic-only seizures [13/17(76%) with 

seizure onset within 48 hours of life]. The onset of seizures spanned from 6 to 95 

hours of age; this study advocated that EEG monitoring should be extended 

beyond 24 hours for neonates receiving therapeutic hypothermia (Wusthoff et al., 

2011).  
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When comparing results from this study with studies conducted by Wusthoff et al. 

and Yap et al., there was no significant difference in the dissociation of 

electroclinical seizures between cooled (n=7) vs non-cooled neonates with HIE 

[albeit the number of cases is small (n=7 vs 3) and when comparison was made 

between cooled vs all non-cooled neonates with various diagnoses (n=7 vs 12).  

 

Using continuous video-EEG (commenced at 10.2 ±2.9 hours of age for 90.9 

±28.3 hours) and whole body cooling in 41 neonates treated with anti-seizure 

medication (lorazepam, phenobarbitone, fosphenytoin, levetiracetam), Nash et al. 

detected electrographic seizures in 14/41(34%) [13/14 had seizure onset within 

18 hours of age, 8 neonates within 6 hours of age] (Nash et al., 2011). Perhaps 

the differing treatment strategies in other institution with the use of a different 

first-line anti-seizure medication (lorazepam) may have explained the lower 

incidence of electrographic-only seizures in these studies when compared to the 

results of this research study. 

 
Electroclinical dissociation of seizures and anti-seizure medication   
In 16 (cases 1, 2, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16, 17, 22, 23, 24) of the 24 

neonates in this study group, EEG monitoring commenced before the first anti-

seizure medication was administered (table 9.2). The limitation of this study is 

that the numbers are small to make the comparison of ECD of seizures before 

and after treatment; it would be interesting to assess this in a larger cohort.  

 

The incidence of ECD has been thought to be high in neonates treated with anti-

seizure medication (Boylan et al., 1999; Boylan et al., 2002; Boylan et al., 2013; 

Castro, Jr. et al., 2005; Scher et al., 2003); implicating specifically 

phenobarbitone which remains the most common first-line anti-seizure 

medication in most neonatal unit worldwide. In a cohort of 88% of neonates who 

were treated with anti-seizure medication, up to 79% of neonates had EEG 

seizures with no clinical correlates (Clancy and Legido, 1987).  

 

ECD was noted in 58% of neonates with electroclinical seizures after the first-line 

(phenobarbitone) or second-line (phenytoin) anti-seizure medication (Scher et al., 

2003). In a study by Scher et al., uncoupling was defined as persistence of EEG 

seizure despite suppression of ≥50 % of clinical seizures after 1 or 2 anti-seizure 

medication (this was based on a cohort of neonates with gestational ranging from 
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25 to 43 weeks with continuous 24 hour EEG monitoring performed) (Scher et al., 

2003).  

 

In study of Boylan et al. and Painter et al., phenobarbitone and phenytoin were 

used and may have facilitated the occurrence of ECD (Boylan et al., 2002; 

Painter et al., 1999). However, anti-seizure medication were administered in 49% 

of ECD seizures and 68% of electroclinical seizures, suggesting that anti-seizure 

medication was not the only factor in causing seizures to dissociate (Weiner et 

al., 1991). This raises the possibility that other mechanisms in the developing 

neonatal brain, may be responsible for the clinical and EEG manifestation of 

seizures (Scher et al., 2003).  

 
Severity of brain lesions and background EEG 
In a group of neonates who had electroclinical dissociation of seizures, 83% of 

neonates had more severe background EEG compared to 69% of neonates with 

electroclinical seizures. The association between ECD and with severe EEG 

background has been implicated in 6 neonates (gestational ages ranging from 25 

to 41 weeks) monitored from 100 to 360 minutes by Boylan et al., (Boylan et al., 

1999) and in 11 neonates in a study by Pinto et al. (Pinto and Giliberti, 2001). In 

11 of 30 term neonates with HIE, electroclinical dissociation of seizures was 

constantly identified only in neonates with depressed and undifferentiated 

background EEG (defined as EEG activity between 5 and 15 μV) which is 

indicative of severe cerebral injury. This implies that electroclinical dissociation of 

seizures is more common in neonates with severe HIE (Boylan et al., 1999).  

 
Status epilepticus 
Electroclinical dissociation of seizures caused by the progression of status 

epilepticus has been a hypothesis considered (Watanabe, 2014). Electroclinical 

dissociation has been noted as a feature of prolonged status epilepticus in adults 

and children (Abend et al., 2013b; Abend et al., 2013a; Watanabe, 2014); as 

prolonged status epilepticus does cause an adult or older children to be 

progressively in a state of severe encephalopathy, or when status occurs in the 

presence of a severe underlying encephalopathy.  
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In neonates without pre-existing brain damage, frequent seizures per se may 

cause mild depression in the EEG background activity characterized by the loss 

of high voltage slow patterns, an important constituent of slow wave sleep 

reflecting cortico-cortical connectivity. Mild depression only in the acute stage is 

not associated with neurological sequelae, but previously damaged brain may be 

more vulnerable than normal brain (Abend et al., 2013b; Watanabe, 2014).  

 

In rodent studies using kainate induced status epilepticus, the higher dose of 

kainate (15 mg/kg) emulating a more severe brain injury than a lower dose (5 

mg/kg) causes more frequent occurrence of electroclinical dissociation of 

seizures (Mikati et al., 2003). They tended to occur when there was continuous 

ictal activity with flat tracing (<10 μV) and when there were epileptiform spike and 

sharp waves repeating at a rate of once every 2 seconds.  

 

In a neonatal study which included 17 neonates (31 to 41 weeks gestation) with a 

mean (range) EEG recording of 97 (60-181) minutes, there was a significant 

correlation between the tendency towards status epilepticus and the occurrence 

of electroclinical dissociation of seizures (Biagioni et al., 1998). This event has 

been hypothesized to be due to the impairment of transmission between the 

motor cortex and the lower structures of the brain and muscle (Wasterlain et al., 

2010). This leads to the progression of EEG changes and a diminution of clinical 

expression as status epilepticus progress (Boylan et al., 2013; Treiman, 1995).  

 

Neonatal studies have reported a small incidence of status epilepticus in cohorts 

of neonates who were cooled. In 8 /17 (47%) neonates who had electrographic-

only seizures, 4/17 (23%) had status epilepticus (Wusthoff et al., 2011), while 3/6 

with electrographic-only seizures had status epilepticus (Nash et al., 2011)]. In 

our study, there were more number of seizures per neonate in the ECD (n=6) 

than in the electroclinical group (n=4); p<0.05.  

 

Monitoring of electroclinical dissociation of seizures in neonates  

As the application of multichannel video-EEG can be difficult to obtain on an 

emergent basis in many neonatal intensive care units, amplitude integrated EEG 

(aEEG) devices are generally utilized (Azzopardi, 2015; Boylan et al., 2010; 

Boylan et al., 2013; Boylan and Pressler, 2013; Gupta et al., 2015). The 

interpretation on the aEEG is based on a trend display, which shows a heavily 
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time-compressed signal after it has been extensively filtered (as described in 

chapter 3). In the aEEG, seizures are detected by acute alterations in spectral 

width, and a raw EEG from both the single and 2-channels can be accessed by 

the viewer for confirmation. Several reports now indicate that the aEEG has 

relatively high specificity but compromised sensitivity, detecting approximately 

75% of seizures detected from conventional full lead montage EEG (Shellhaas et 

al., 2007; Tekgul et al., 2005). 

 

In neonates with electroclinical dissociation of seizures and those with 

electroclinical only seizures, there was no significant demographic difference 

found in a study conducted by Weiner et al. (Weiner et al., 1991). Sixteen percent 

of neonates demonstrated ECD; this is however an underestimation of seizure 

burden because they did not have continuous video-EEG monitoring performed 

(Weiner et al., 1991). Some studies have reported a high occurrence of 

electroclinical dissociation of seizures in the neonatal population (as high as 

80%) (Scher et al., 2003); early, prolonged and continuous multichannel video-

EEG monitoring is essential for confirmation of this phenomenon and for 

assessing effectiveness of treatment with anti-seizure medication (Azzopardi, 

2015; Boylan et al., 2010; Boylan et al., 2015; Pressler et al., 2015; Shellhaas, 

2015). Also, since multifocal seizures can occur in neonates, the multichannel 

video-EEG is the more sensitive than the aEEG in detecting these types of 

seizures.  

 

Most electrographic seizures emerged during out-of hours working time (past 

midnight and during weekends); there were no alarm systems to alert both the 

nursing and medical personnel when there were ongoing electrographic seizures 

detected on the multichannel video-EEG monitoring device. Hence, treatment of 

seizures remains suboptimal as many neonates were treated when there were 

abnormal movements with no electrographic seizure correlates. Further trials on 

assessing the effectiveness of treatment would be highly optimized using the 

automated seizure detection embedded in the EEG system on a continuous 

monitoring basis, as a method to alert neonatologists to treat when there are 

ongoing electrographic seizures and not to treat when there are no electrographic 

seizures. 
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9.7 Conclusions 
The high incidence of ECD raised the important issue of accurate seizure 

detection if our goal is to optimize neuroprotection in neonates. The findings from 

this study are important, making it crucial that we develop a more effective 

method of detecting seizures. Further research should revisit our inevitable 

reliance on the continuous and prolonged multichannel video-EEG monitoring for 

seizure surveillance in neonates.  

 

What this study adds? 

• Using the multichannel video-EEG, this study has reported the occurrence 

of electroclinical dissociation of seizures in our current population of term 

neonates in the NICU. 

• Although the cohort of this study is small, the index of electroclinical 

dissociation of seizures is found to be high in term neonates treated: the 

ECD index in the cooled neonates with HIE, in non-cooled neonates with 

HIE, neonates with focal stroke and in neonates with other diagnoses were 

88%, 94%, 64% and 75% respectively.   
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Section 4  

 

Summary 
 



 

170 

Chapter 10  
Summary, Clinical implications and Implications for Future Research 
 

I began this thesis as a clinical neonatologist with a special interest in neonatal 

seizures. I soon realized how very little I knew about the subject. Neither did I 

realise that I was on the cusp of a wave of real breakthroughs in the understanding 

of the newborn brain, how it develops, how seizures develop, and how these 

seizures may be harmful. I began to see, through careful analysis of hundreds of 

EEGs with the help of my mentors, how many seizures were missed by clinicians 

and other non-seizures, misread and mistreated as seizures. I found myself 

immersed into a research group that was desperately aware of these problems, 

including the inadequacy of current pharmacologic interventions entrusted as 

treatment for neonatal seizures. I also found myself closely involved in the one new 

therapy for hypoxic-ischaemic encephalopathy that showed real promise of 

improved neonatal neurodevelopmental outcome following hypoxic-ischaemic 

encephalopathy: therapeutic hypothermia.  

 

After a long, uncertain and sometimes exhausting journey, I can now summarize,  

 with the help of many dedicated and sagacious colleagues, that this thesis

 contributes the following novel contributions to the literature of neonatal 

seizures. We have: 

• Presented in-depth information on the characteristics of seizures based on 

current population of neonates in the NICU through early and prolonged 

continuous EEG recording during this current era of neonatal care. 

• Demonstrated, using the multichannel EEG, that the recorded 

electrographic seizure burden is decreased in neonates with hypoxic-

ischaemic encephalopathy who were cooled, when compared with neonates 

who were non-cooled. This was the first study which used early, 

prolonged and continuous multichannel EEG to quantify the seizure burden 

between non-cooled and cooled term neonates with hypoxic-ischaemic 

encephalopathy. 

• Postulated that therapeutic hypothermia may possess some anti-

seizure properties, since it has the ability to reduce the electrographic 

seizure burden in term neonates who were cooled. 
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• Shown that electrographic seizures in neonates with stroke have a particular 

focal sharp wave/spike-polyspike pattern and phase reversal is frequently 

present. Using the multichannel video-EEG, this was the first study to report 

that in neonates with stroke, the background EEG shows asymmetry and 

suppression over the infarcted side; characteristic unilateral bursts of theta 

activity, sharp waves and spikes were present. 

• Shown that approximately 80% of the total seizure burden in term neonates 

with stroke is not recognized clinically without the use of continuous 

multichannel video-EEG monitoring.  

• Demonstrated that phenobarbitone reduces seizure burden only on a 

temporary basis in most neonates and that 20 mg/kg dose may be more 

effective than 10mg/kg dose. 

• Shown that phenobarbitone may be more effective if treatment strategies 

are tightly aligned with EEG monitoring. 

• Presented an electroclinical dissociation of seizure index (ECD index) for 

hypoxic-ischaemic encephalopathy (ECD index=90%) and seizures due to 

other diagnoses including stroke (ECD index=60%) and shown that the 

occurrence of the dissociation of electroclinical seizures remains high in our 

current population of neonates in the NICU.  

• Created a large, unique bio-bank of neonatal seizures in term neonates with 

multiple aetiological origins, with which will play a key role in in-depth 

research on neonatal seizure. 
 
Implications of this research for clinical practice 
During the course of this thesis, I worked in 3 different neonatal intensive care units 

as part of my clinical rotations. Clinical guidelines on the treatment of neonatal 

seizures in these hospitals were similar and each hospital had adopted therapeutic 

hypothermia as their standard of care for neonates with hypoxic-ischaemic 

encephalopathy. The results from this research study (the Phenobarbitone study 

has shown that in a group of term neonates with differing aetiologies, using 

phenobarbitone at 20 mg/kg was more effective than using 10 mg/kg as the first 

loading dose to control seizures more effectively, and that better seizure control 

may be achieved if the second 20 mg/kg of phenobarbitone (up to a total dose of 

40 mg/kg) was administered within 4 hours after its first administration. 
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Neonates with seizures who were treated with phenobarbitone ultimately could be 

 treated more effectively if treatment was anchored and controlled under tight EEG 

 monitoring and that electrographic seizures were treated early. Early and 

 appropriate treatment relies on early identification of these seizures on the 

multichannel EEG. However, early, prolonged and continuous monitoring with 

multichannel EEG alone is insufficient when dealing with a neonate with seizures 

either stemming from HIE, stroke or when treatment with phenobarbitone has been 

instigated. Findings from this research study have shown that the phenomenon of 

electroclinical dissociation (the Electroclinical Dissociation study) of seizures is still 

very prevalent in our current cohort of term neonates; they will escape detection 

without early, prolonged and continuous multichannel EEG monitoring. 

 

The characteristics of electrographic seizures and seizure burden in term neonates 

who had stroke (the Stroke study) provided invaluable information for clinical 

management among neonatologists in terms of early diagnosis and treatment. The 

findings from this research study have shown that in the absence of therapeutic 

hypothermia as a treatment option, seizure burden was higher than expected in 

this group of neonates with stroke who were treated with phenobarbitone (Low et 

al., 2014). Perhaps better treatment strategies focusing on treating seizures 

stemming from neonatal stroke are required. In this current era of neonatal care, 

therapeutic hypothermia has not as yet been recommended for stroke; it is still 

being investigated (Harbert et al., 2011; van der Worp et al., 2010) and there is no 

firm conclusion as yet but cooling may emerge as one of the potential treatment in 

the near future for perinatal stroke. 

  

During this study, with the help of my colleagues, we had collected EEG from at 

least 214 neonates and analyzed up to approximately 6089 seizures in total. Based 

on early, prolonged and continuous multichannel EEG monitoring, the findings from 

this research study have provided new information on seizure burden based on a 

heterogeneous population of term neonates which reflects the current environment 

and the ‘real-world’ data remain crucial to clinicians in managing neonates with 

seizures in most NICUs today. The findings from this research study (the Cooling 

study) has shown that the seizure burden in term neonates with hypoxic-ischaemic 

encephalopathy is reduced by therapeutic hypothermia, when compared with those 

who were not treated with this method in a historical cohort (Low et al., 2012a). 
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For neonatologists, this research study highlights that many seizures were missed; 

despite ongoing monitoring with the prolonged multichannel video-EEG, we are still 

not good in detecting seizures. As a result some neonates were treated who did 

not need to be and other neonates who needed treatment were missed. As a result 

of my research for this thesis, I am convinced that neonatal seizures are harmful 

and they need to be treated and we need more effective anti-seizure medications. 

Continuous interpretation of the multichannel EEG is urgently required as it plays a 

pivotal role in alerting the neonatal personnel as part of the clinical management of 

the neonate.  

Decisions have to be made by neurophysiologists in terms of EEG interpretation 

and by neonatologists in terms of whether to instigate treatment with anti-seizure 

medication or not. In practice, these decisions depend on various details gathered 

from history, physical examination and other investigations of the baby with 

suspected seizures. These findings in combination with a reliable source of 

interpretation of the multichannel EEG by neurophysiologists in detecting seizures 

on a 24 hour basis, will enhance our clinical management of dealing with neonates 

with seizures. Whether they improve outcome remains to be seen. However, we 

cannot answer this question without accurate seizure burden detection and optimal 

seizure control. 

There are limitations in human raters in interpreting the multichannel EEG because 

it requires particular skills, which in turn is related to the level of experience of 

expert interpreters. The automated version of the multichannel EEG [which is the 

neonatal automated seizure detection algorithm (NASDA)] for interpretation in real-

time will enhance further the interpretation by neurophysiologists and the decision-

making in clinical management by neonatologists.  

Further studies are needed in the development of alert systems, such as a voice 

alarm or a colour alarm system for automated seizure detection, alerting neonatal 

personnel in the NICU to seizures detected by the NASDA. Many multi-disciplinary 

groups around the world are working hard on completing this task (Boylan and 

Rennie, 2006; Cherian et al., 2011; Stevenson et al., 2013; Temko et al., 2011). 

Automated detection of seizures such as the NASDA is needed, to aid 

neonatologists in the instigation of treatment at the appropriate time, in order to 

curb potential additional damage caused by untreated seizures to the developing 

neonatal brain. 
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  Implications for future Research 
A more in-depth understanding of the pathophysiology of seizures in human 

neonates is required in order for newer treatment of neonatal seizures to be 

effective at the cotside. A more strategically approach to the antiseizure medication 

administration in terms of dosing and timing is required for further analysis of 

seizure burden in the neonates. Some of the upcoming and new anti-seizure 

medication such as melatonin (Turgut et al., 2006), topiramate, levetiracetam 

(Beaulieu, 2013; Loiacono et al., 2014), allopurionol (Chaudhari and McGuire, 

2008), xenon (Azzopardi et al., 2013; Dingley et al., 2014; Lobo et al., 2013), stem-

cell therapy (Scharfman and McCloskey, 2009) studied on neonates and their 

effects of what happen to seizures when commenced during  therapeutic 

hypothermia will need to be further assessed (Boylan et al., 2015; Cilio and 

Ferriero, 2010; Pressler and Mangum, 2013). 

     

Long-term neurodevelopmental outcome studies on neonates with seizures will 

also be required, as it remains a controversy whether the aetiology, the seizures 

generated by the aetiology themselves or the side effects of treatment with anti-

seizure medication are harmful to the developing neonatal brain. To determine the 

correlation of simultaneous and multiple factors and effects from various 

aetiologies, other medications and anti-seizure medications used to treat neonatal 

seizures, and the resultant variable degrees of adverse long-term 

neurodevelopmental outcome will add to our understanding, particularly when 

further attempts are made to improve our clinical management of the neonate in 

terms of diagnosis, treatment and to provide prognosis when counselling parents in 

the NICU. 

 

Prolonged and continuous multichannel EEG monitoring remains the gold standard 

for detecting seizures in neonates (Boylan et al., 2010; Boylan et al., 2002; Clancy, 

2006a). Although it is regarded as the most accurate method for confirming 

neonatal seizures in NICUs worldwide, the limited availability of expert interpreters 

serves as a major deterrent for routine NICU use. Embedding a neonatal 

automated seizure detection algorithm (NASDA) into a continuous multichannel 

EEG system is promising, as it could have the ability to provide continuous and 

robust interpretation of the multichannel EEG for neonatologists at the cotside in 

the NICU.  
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The findings of this research study and the development of the seizure bio-bank 

have implications leading towards the further in-depth research on neonatal 

seizures. In addition, an in-depth investigation of the electroclinical dissociation of 

seizures in neonates with different aetiologies was conducted since video and EEG 

records were available in neonates monitored. Future studies will provide us more 

understanding of neonatal seizures may include: 

 

1. A larger sample size of more neonates with HIE and stroke is required to 

confirm and strengthen the results from this research study.  

2. Larger cohort of neonates with well-defined quantitative analysis tool for 

seizure burden based on more reliable method of seizure detection is 

required. 

3. Since the aEEG is commonly used in most NICUs today, a complete 

comparison between the aEEG and the multichannel EEG in detecting 

seizures would be useful information to neonatologists and EEG 

manufacturers. 

4. More translational research needs to be conducted aiming at better 

understanding of the underlying pathological mechanisms of what cause 

seizures in the developing neonatal brain so that methods of 

neuroprotective can effectively treat these seizures. Further understanding 

of these mechanisms may lead to novel therapies that minimize the 

chances of adverse outcome which has already instilled by the initial brain 

injury and which may improve outcome even if injury has occurred. 

5. Emerging neuroimaging tool which can study in real-time the 

neurophysiology of the normal and abnormal human neonatal brain 

development is required to advance our understanding of neonates at risk of 

developing seizures.  

6. More prospective randomized control trials are required to provide more 

convincing efficacy of these neuroprotective measures.  

7. Better treatment options to treat neonatal seizures apart from 

phenobarbitone and/ or therapeutic hypothermia should be 

developed.             

8. Seizure detection algorithms, which are limited to the analysis of seizures 

only, are insufficient to detect 100% of neonatal seizures accurately. 

Additional physiological markers such as heart rate, respiratory rate, 

peripheral oxygenation, regional cerebral oxygenation using the near 
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infrared spectrometry and mean arterial blood pressure are some of the 

other potential modalities, can be incorporated into the NASDA, and may 

increase the accuracy of seizures detection. Motion trackers such as those 

obtained from simultaneous video-EEG recording are also a possibility. 

   

  Conclusion 
Since neonatal seizures are usually subclinical and are a potential risk factor for 

poor neurodevelopmental outcome, a continuous automatic online seizure 

detection system is needed. For neonatologists, a better mode of seizure detection 

is an important tool to aid neonatologists for short or long term monitoring for 

the recognition of seizures for diagnosis, and in order to instigate appropriate 

investigations, to monitor treatment and to counsel parents about prognosis. For 

researchers, although it seems that monitoring tools and treatment options are 

limited, further improvement could be achieved.  

 

For the EEG system developers, further tests are ongoing to determine the 

common sources of false alarms which will help improve and optimize the 

performance of the NASDA. On the ongoing collaboration between clinical 

neuroscientists, neurophysiologists, neonatologists, neurologists, neuro-

radiologists, pharmacologists, biochemists, biomedical engineers, electrical and 

electronic engineers, computer programmers, information technologists, 

statisticians and data analysts will undoubtedly contribute to further optimising 

seizure detection algorithms in detecting neonatal seizures, with better 

neuroprotection treatment strategy in mind. The aim to enhance seizure detection 

in neonates and optimizing seizure treatment in order to improve the long-term 

neurodevelopmental outcome in neonates continues to motivate research among 

these multidisciplinary teams which will ultimately bring benefits to hospital policy-

makers and health service providers. 
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Section 5  

 

Contribution of this Thesis to 
the Literature 

 
 



Neonatal seizures
in hypoxic-ischaemic encephalopathy:
the impact of therapeutic hypothermia

Geraldine B. Boylan, Evonne Low

Neonatal Brain Research Group, Irish Centre for Fetal and Neonatal
Translational Research, Department of Paediatrics and Child Health,
University College Cork, Cork, Ireland

Moderate to severe neonatal hypoxic-ischaemic encephalopathy (HIE) affects approxi-
mately 1 to 3 per 1,000 live term births and is a major cause of death and long-term
neurodisability (Marlow and Budge, 2005; Lawn et al., 2010). Seizures are the hallmark
of neurological injury and approximately 45 to 50% of all neonatal seizures are attri-
butable to HIE (Volpe, 2008). However, neonatal seizures continue to present a dia-
gnostic and therapeutic challenge to clinicians worldwide due to their variable clinical
expression and poor response to commonly used antiepileptic drugs (AEDs). The adop-
tion of more widespread EEG monitoring in the neonatal intensive care unit over the
last 10 years has meant that the true seizure burden of neonates with HIE has been
recognized. Previous research has been hampered by the lack of continuous EEG moni-
toring to characterize and quantify neonatal seizures in this population. In addition,
many studies included seizures with varying aetiologies and EEG monitoring was not
continuous in the acute phase of injury.

The evidence of benefit for therapeutic hypothermia in HIE is considered sufficient for
the widespread implementation of its use in neonatal intensive care units worldwide (NICE
guideline 2010; Jacobs et al., 2013; Harris et al., 2014). A meta-analysis of 3 trials which
enrolled 767 neonates showed that therapeutic hypothermia reduced the combined rate
of death or disability at 18 months (Edwards et al., 2010). More recently, neonates who
were treated with therapeutic hypothermia after perinatal asphyxia have shown improved
neurocognitive function at 6 to 7 years of age (Azzopardi et al., 2014). Further data are
required to clarify whether therapeutic hypothermia is appropriate for severe HIE. Efforts
to supplement therapeutic hypothermia with other neuroprotective agents and to extend
the neuroprotection window beyond 72 hours may prove useful for this population (Fan
and Van Bel, 2010; Faulkner et al., 2011; Aly et al., 2012; Robertson et al., 2013; Herrera
EA et al., 2014; Charriaut-Marlangue et al., 2014).
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% Hypoxic-ischaemic encephalopathy (HIE)
Given that HIE is an evolving process reflecting the evolution of the underlying brain
injury (Gunn and Thoresen, 2006), continuous EEG monitoring is essential for assessing
cerebral function and for accurate quantification of neonatal seizures. Immediately follo-
wing the primary hypoxia-ischaemic insult, there is disruption to cerebral oxidative meta-
bolism, cytotoxic oedema develops, excitotoxins accumulate and the EEG is suppressed.
Some metabolic recovery is possible over the subsequent 30 to 60 minutes (Tan et al.,
1996; Bennet et al., 2007a). A latent phase then follows from about 1 to 6 hours charac-
terized by cerebral hypoperfusion, reduced metabolism and a suppressed EEG. During this
period, high energy phosphates return to near normal values (Robertson et al., 2013).
However, a secondary injury phase then develops and corresponds to further periods of
cytotoxic oedema, accumulation of excitotoxins and hyperperfusion. During this injury
phase, there is a failure of cerebral mitochondrial activity (Lorek et al., 1994; Bennet et al.,
2006; Wassink et al., 2014) eventually leading to cell death. In moderate to severe brain
injury, the background EEG may start to recover during this period and seizures often
develop (Figure 1). In very severe injury, the EEG can remain suppressed for days and
seizures may never emerge.

% Seizures and HIE
Seizures are seen in term neonates with significant HIE, usually occurring within the first
24 hours of life (Lynch et al., 2012). In experimental models of HIE, seizures occur either
immediately after injury following an asphyxial insult or in a delayed manner 6 to 12 hours
after the initial insult when secondary energy failure leads to additional cell death (Scher
et al., 2008). Gunn et al. found that if ischaemia lasted 30 minutes or longer, a stereotypic
sequence of depressed EEG activity followed by a low frequency epileptiform activity was
always observed (Gunn et al., 1992). The combination of hypoxia and seizures produces
more profound injury in the brain than either factor alone (Wirrell et al., 2001). Seizures
add to the hypoxia-ischaemic injury in neonatal animals; the same may be true for neo-
nates (Wirrell et al., 2001; Miller et al., 2002).

In an elegant study by Bjorkman et al. using histology, magnetic resonance imaging and
spectroscopy, electrographic seizures in piglets were associated with increased severity of
brain injury following an extensive hypoxic-ischaemic insult (Bjorkman et al., 2010).

A recent histological study in the hippocampi of 16 deceased full-term asphyxiated neo-
nates has shown that there were more significant increases in microglial activation and
expression of the inflammatory markers, namely interleukin 1β and complement 1q in
cases with seizures compared to those without seizures (Schiering et al., 2014). In this
study seizures were confirmed with EEG monitoring.

Ideally, accurate identification and quantification of neonatal seizures require continuous
multichannel video-EEG monitoring (Boylan and Pressler, 2013). However, continuous
video-EEG monitoring is not widely available and as a result, many centres worldwide
now use limited two channel aEEG/EEG systems. As long as the limitations of these
devices are appreciated, they are still far better than estimating seizure burden using cli-
nical acumen alone (Rennie et al., 2004; Shellhaas et al., 2007; Murray et al., 2008; Malone
et al., 2009; Glass et al., 2013).

Seizures and Syndromes of onset in the Two First Years of Life82
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Figure 1. EEG and amplitude-integrated EEG (aEEG) over a 24 hour period from a neonate with poor Apgar scores,
cord pH < 7.1 and requiring recuscitation at birth. EEG/aEEG recording commenced when the neonate was three
hours old (during the latent phase) while receiving therapeutic hypothermia. Black arrows indicate location of EEG
snapshot on aEEG recording.
A: EEG activity was suppressed from the outset and remained suppressed until the neonate was nine hours old.
B: following this period, the EEG began to recover and a burst suppression pattern developed with seizures emerging
at 12 hours (probable secondary injury phase) after birth. Seizures responded well to phenobarbitone but a burst
suppression background pattern continued.
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Seizures occur in moderate and severe HIE only (Sarnat and Sarnat 1976; Levene et al., 1985)
and are difficult to control. Studies completed before the widespread use of therapeutic
hypothermia show that traditional first and second-line AEDs are often ineffective (Painter
et al., 1999; Boylan et al., 2004). There are only a few studies that detail the evolution of
electrographic seizure burden in neonates with HIE in the pre-therapeutic hypothermia era
(Low et al., 2012; Lynch et al., 2012). Low et al. detailed the extensive electrographic seizure
burden of neonates with HIE using continuous video-EEG monitoring; the seizure burden in
non-cooled neonates was high and status epilepticus common (Figure 2a). Lynch et al. (2012)
examined the temporal distribution of seizures in neonates with HIE and found that seizures
generally have a short period of high electrographic seizure burden followed by a longer period
of low seizure burden, resulting in an accumulation of seizures near the time of seizure onset (a
positive skew) (Figure 2a and b). Prolonged seizures have been shown to exacerbate pre-
existing cerebral damage due to perinatal hypoxic-ischaemia (Yager et al., 2002). Seizures in
human neonates with HIE may exacerbate the initial hypoxic-ischaemic injury and require
treatment (Miller et al., 2002; Glass et al., 2009; Ancora et al., 2010, Shah et al., 2014).
However, this treatment is very difficult to optimize without continuous EEG monitoring.

% Hypothermia and HIE
The use of cold as a therapeutic agent has had a long and interesting history in both
medicine and surgery (Wang et al., 2006; also refer to the chapter by Ikonomidou in this
volume). The concept of hypothermia as a treatment for brain injury is not new; its use
as a treatment for perinatal asphyxia was suggested over 65 years ago (Miller et al., 1964).
In the 1960s, Miller and Westin studied the physiologic basis for the neuroprotective role
of hypothermia as a form of treatment for “asphyxia neonatorum”, firstly in newborn
animals and then in human newborns (Miller et al., 1964). They demonstrated improved
survival without cerebral palsy or mental disability when apnoeic neonates were cooled
rapidly after delivery when conventional resuscitation techniques failed. Preliminary stu-
dies in adults with coma after resuscitation from out-of-hospital cardiac arrest provided
evidence that moderate hypothermia could improve outcomes (Bernard et al., 2002).

Hypothermia delays neuronal depolarisation, decreases the energy requirement for intrin-
sic cellular support and membrane homeostasis (Nakashima and Todd, 1996; Tooley et al.,
2003; Bennet et al., 2007a), reduces cerebral energy metabolism during the primary injury
phase, leading to a delay in the progression of primary damage and alleviates post-reper-
fusion injury. Some studies have shown that cooling markedly delays apoptosis even when
it did not completely suppress it (Gunn et al., 2005; Azzopardi et al., 2009a).

% Therapeutic hypothermia and neonatal seizures
Several experimental animal studies have demonstrated the effects of hypothermia on
seizures (Busto et al., 1989; Globus et al., 1995; Nakashima and Todd, 1996; Tooley et al.,
2003; Bennet et al., 2007b). In vitro studies have shown that rapidly cooling the cortex
to between 20 and 25o C as quickly as possible after seizure onset resulted in a 90%
reduction in seizure burden (Hill et al., 2000). In fetal sheep, hypothermia was associated
with a marked reduction in the amplitude of seizures in the first 6 hours after a complete
umbilical cord occlusion (Bennet et al., 2007b). In a piglet model of asphyxia, the duration
of individual electrographic seizures were reduced in a cooled group when compared to a
non-cooled group (Tooley et al., 2003). Hypothermia to 30 or 33o C has been shown to
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Figure 2. Comparison of the seizure burden between the normothermic and hypothermic neonates with hypoxic-
ischaemic encephalopathy (adapted from Low et al., 2012 and Lynch et al., 2012 by Dr Nathan Stevenson).
A and B: at the top (A), a schematic diagram depiciting the duration of continuous multichannel EEG monitoring
(thin grey horizontal lines) in normothermic neonates with electrographic seizures (thick grey horizontal lines). The
temporal distribution of seizures (at the bottom, B) as quantified using a measure of the hourly seizure in typically
shows a large positive skew; such that initial seizures generally have a short period of high electrographic seizure
burden followed by a period of reducing seizure burden.

inhibit the release of glutamate in a rat model of cerebral ischaemia (Busto et al., 1989).
Other effects of hypothermia such as reduced cytotoxic oedema by reducing amino acid
release (Nakashima and Todd, 1996) and inhibition of free oxygen radicals (Globus et al.,
1995) may reduce seizure burden. Whether the amplitude, morphology and distribution
of electrographic seizures in cooled neonates differ to that of non-cooled neonates will
require further investigation.

In our recent study of seizures in neonates with hypothermia, we found that seizure burden
was reduced in neonates receiving therapeutic hypothermia compared to a normothermic
group [60 vs 203 minutes]; and that this was significant in neonates with moderate HIE
rather than those with severe HIE (Figure 2c and d) (Low et al., 2012). Our findings were
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Figure 2 (continued). Comparison of the seizure burden between the normothermic and hypothermic neonates
with hypoxic-ischaemic encephalopathy (adapted from Low et al., 2012 and Lynch et al., 2012 by Dr Nathan Stevenson).
C and D: in the hypothermic group during continuous multichannel EEG monitoring (thin grey horizontal lines),
reduced electrographic seizure burden (thick grey horizontal lines) were noted. An altered evolutionary profile,
particularly in neonates with moderate rather than in severe hypoxic-ischaemic encephalopathy contributed to this
significant reduction in seizure burden in hypothermic neonates. Correspondingly, the hourly seizure burden in this
group was also significantly reduced as depicted on the adjacent logarithmic graph.

further confirmed by Srinivasakumar et al. who added MRI findings to their study (Sri-
nivasakumar et al., 2013). In neonates with moderate or severe HIE, we found that elec-
trographic seizure rates were almost identical in non-cooled and cooled cohorts (52% and
48% respectively) (Low et al., 2012). These values are consistent with other studies using
multichannel EEG (Rafay et al., 2009; Wusthoff et al., 2011; Nash et al., 2011). However,
in 2 of the more recent studies (Wusthoff et al., 2011; Nash et al., 2011), the recorded
seizure burden was not quantified and a control cohort (non-cooled) was not available for
comparison. In another study, even though seizures were less frequent in a cooled group,
this was not significantly different when compared to a non-cooled group (Hamelin et al.,
2011).

Seizures and Syndromes of onset in the Two First Years of Life86

15-02-26169039-PAO
L : 179.991

- Folio : p100
- H : 249.992 - Couleur : BlackYellowMagentaCyan

- Type : pINT 11:49:22



% Status epilepticus
Few studies have reported the occurrence of status epilepticus during cooling. Status epi-
lepticus occurs in neonates with both moderate and severe HIE (Low et al., 2012). In a
cooled cohort studied by Srinivasakumar et al., 5 of 19 neonates with status epilepticus
were noted to have severe brain injury on MRI (Srinivasakumar et al., 2013). In another
cohort of 56 neonates who were cooled, moderate to severe brain injury (detected by MRI
at age of 5 days) was more common in neonates with status epilepticus (Glass et al., 2011).
A study by Nash et al. also confirmed this finding in 4 of 15 cooled neonates who had
status epilepticus and had moderate to severe brain injury (Nash et al., 2011). They
concluded that during therapeutic hypothermia, seizures are a risk factor for brain injury,
particularly in neonates with status epilepticus. In a study by Wushtoff et al., 23% of
neonates undergoing therapeutic hypothermia continued to have status epilepticus (Wus-
thoff et al., 2011).

Animal studies have advocated the use of therapeutic hypothermia as an adjunct to
conventional AEDs to treat status epilepticus (Schmitt et al., 2006). Alternatively, a more
effective AED acting as an adjunct to therapeutic hypothermia is much needed to control
status epilepticus. Clearly this is an important area for future research, as evidence from
small cohort studies shows that neonates undergoing therapeutic hypothermia continue
to have periods of status epilepticus which may add further to existing brain injury.

% Electroclinical dissociation of seizures
Electroclinical dissociation or electroclinical uncoupling is often described in neonatal
seizure studies (Boylan et al., 1999; Zangaladze et al., 2008). When this occurs, the clinical
signature accompanying the seizure is abolished and seizures are electrographic only. Many
neonates exhibit this phenomenon, particularly those with HIE and it is exacerbated by
AED use (Connell et al., 1989; Bye and Flanagan, 1995; Scher et al., 2003). A more
detailed overview of this subject is beyond the scope of this particular review, but is
discussed in greater detail by Boylan et al. (Boylan et al., 2013).

Electroclinical dissociation is common in neonates treated with therapeutic hypothermia
(Yap et al., 2009; Nash et al., 2011; Wusthoff et al., 2011; Glass et al., 2011). Wusthoff
et al. report electrographic-only seizures in 47% of neonates treated with therapeutic
hypothermia, Nash et al. report 43% and Glass et al. report 57%. Yap et al. monitored a
cohort of 20 neonates with selective head cooling (Yap et al., 2009) and monitored seizures
with aEEG; they found that 90% of neonates had electrographic-only seizures. The occur-
rence of electrographic-only seizures in this study is higher than most reports and may
reflect the use of specific AED protocols in this population.

% Antiepileptic drugs (AEDs) and therapeutic hypothermia
During both the pre and post-therapeutic hypothermia era, phenobarbitone remains the
most commonly used first-line AED in most neonatal units worldwide (Bartha et al., 2007;
Vento et al., 2010) and has been shown to be effective in treating approximately 50% of
neonatal seizures (Painter et al., 1999; Boylan et al., 2002; Booth and Evans, 2004). The
reduced efficacy of this GABA-enhancing AED has been linked to altered neuronal chlo-
ride transport in the developing brain (Dzhala et al., 2005).

Neonatal seizures in hypoxic-ischaemic encephalopathy 87

15-02-26169039-PAO
L : 179.991

- Folio : p101
- H : 249.992 - Couleur : Black

- Type : pINT 11:49:22



Based on multicentre studies in the United States (Bartha et al., 2007) and in Europe
(Vento et al., 2010), there is still no consensus on a standard protocol for the use of AEDs
in neonatal seizures. We have previously shown that there was no significant difference
between non-cooled and cooled HIE groups with respect to the number, dose and age in
hours when first and second-line AEDs were administered (Low et al., 2012). In a rodent
study, phenobarbitone was shown to augment the therapeutic effect of cooling (Barks
et al., 2010). As an AED, phenobarbitone has the potential to reduce endogenous heat
production and thus exaggerate the fall in temperature during active cooling.

It is known that the half-life of phenobarbitone is significantly increased when neonates
are treated with hypothermia (Filippi et al., 2011) and with reduced hepatic metabolism
during hypothermia, plasma drug levels will accumulate (Roka et al., 2008). The bioavai-
lability of phenobarbitone in neonates can range from 45 to 500 hours (Takemoto, 2012);
it can be variable depending on circumstances (Filippi et al., 2011; van den Broek et al.,
2012; Shellhaas et al., 2013) and is different from adults (Marsot et al., 2013). Van den
Broek et al. assessed the pharmacokinetics of phenobarbitone in a cohort of 31 neonates
(6 36 weeks gestation) with HIE who were cooled (van den Broek et al., 2012). The
authors advocate the use of up 40 mg/kg of phenobarbitone in total before proceeding to
a second-line AED as plasma levels of phenobarbitone remained below therapeutic range
during therapeutic hypothermia. Based on a study undertaken before the era of therapeutic
hypothermia, phenobarbitone doses higher than 40 mg/kg have been shown to increase
neuronal apoptosis (Gilman et al., 1989).

% Seizures during rewarming following therapeutic hypothermia
Seizures have been reported in the rewarming period following therapeutic hypothermia
(Battin et al., 2004; Kendall et al., 2012; Shah et al., 2014). In a rabbit model cooled to
a core temperature of 33o C, a decrease in nitric oxide production and hippocampal cell
loss were noted during kainate-induced seizures (Takei et al., 2005). During rewarming,
there was an increase in nitric oxide production in the hippocampus during seizures.
Transient rebound epileptiform activity has previously been observed when hypothermia
was discontinued after 72 hours (Gunn et al., 2005). Although rewarming seizures have
been anecdotally reported (Battin et al., 2004; Gerrits et al., 2005; Shah et al., 2014), they
can continue unabated even after the rewarming period has completed (Kendall et al.,
2012). Shah et al. recently showed that in human term neonates, seizures are commonly
seen during cooling and a significant second peak of seizures during the rewarming period
is not uncommon (Shah et al., 2014). On recommencing therapeutic hypothermia imme-
diately after a period of rewarming, seizures that re-emerge during rewarming can abate
without the use of any AED (Kendall et al., 2012).

In our study, seizures were seen in four of 15 cooled neonates when therapeutic hypothermia
was discontinued (Low et al., 2012). Two of the 4 cases had a shorter duration of therapeutic
hypothermia as a decision was made to redirect in neonatal intensive care. In the remaining
2 neonates, electrographic seizures were observed following discontinuation of therapeutic
hypothermia despite the fact that therapeutic hypothermia started at 6 and 9 hours respec-
tively, after birth and continued for 72 hours. The incidence of rewarming seizures remains
speculative. Now that EEG monitoring is continuing during the rewarming period, more
studies describing the re-emergence of seizures during rewarming may be reported. Although
some studies have speculated that rewarming seizures are benign (Battin et al., 2004; Gerrits
et al., 2005; Shah et al., 2014), further studies are required to establish their significance.
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% Therapeutic hypothermia trials and seizures
Neonatal outcome studies have shown that seizures are powerful predictors of death or
permanent neurodisability (Pisani et al., 2008; Glass et al., 2009). Previously published
neonatal hypothermia trials could not accurately measure seizure burden as their protocols
did not include prolonged continuous multichannel EEG monitoring. These studies used
clinical (Kwon et al., 2011) and/or aEEG monitoring (Simbruner et al., 2010; Edwards
et al., 2010) for seizure recognition. The recently published Neonatal Research Network
Whole Body Hypothermia Trial relied on clinical recognition of seizures only (Kwon et al.,
2011) and when the authors adjusted for hypothermia and severity of encephalopathy,
hypothermia did not appear to have any impact on the frequency of clinical seizures and
outcome. However, clinical estimation of seizure burden is notoriously unreliable with the
majority of neonatal seizures being subclinical or electrographic only (Murray et al., 2008;
Malone et al., 2009).

When available in some participating neonatal institutions in the TOBY trial, the aEEG
was used for recruitment and as a monitoring tool during therapeutic hypothermia (Azzo-
pardi et al., 2009b). At recruitment, clinical seizures and seizures detected by aEEG were
present in 67% (74/110) and 29% (33/115) of neonates respectively. The trial considered
seizures as a complication during therapeutic hypothermia, with a decreasing incidence
from day one to four (90% to 23%). Both clinical recognition of seizures and the aEEG
are known to both over, and under estimate the true seizure burden (Murray et al., 2008).
In addition, the aEEG cannot detect short seizures, seizures that do not generalize and
low voltage seizures.

At present, the therapeutic hypothermia registry lead by Azzopardi et al. has not made
brain monitoring a prerequisite for cooling (Azzopardi et al., 2007). It was recommended
that if possible, some form of cerebral function monitoring should be performed on neo-
nates receiving therapeutic hypothermia either before the induction of cooling or as soon
as possible during cooling. We strongly support the view that EEG monitoring is crucial
during therapeutic hypothermia and also believe that monitoring should be extended after
cooling has been discontinued as seizures may emerge during rewarming.

Unfortunately continuous EEG monitoring is hard to maintain in the neonatal intensive
care unit and a specialized team is required for interpretation, which is rarely available.
Many centres have now implemented remote monitoring of the EEG by specialized teams
but this is expensive and time consuming. A more promising option is in the form of
automated seizure detection using specially trained and validated algorithms. Research is
ongoing and a number of excellent algorithms have been described for neonates using
off-line data analysis. Few to date have been implemented routinely in the neonatal inten-
sive care unit with the notable exception of the BrainZ aEEG monitoring system. One
clinical validation trial is currently underway in Europe (ANSeR– Algorithm for Neonatal
Seizure Recognition <http://clinicaltrials.gov/show/NCT02160171>) which may provide
useful information on the utility of automated seizure detection for term neonates with
HIE.

% Conclusion
Seizures are common in neonates with HIE who are treated with therapeutic hypothermia.
While the number of neonates with seizures is similar in both normothermic and hypo-
thermic groups, the overall seizure burden has reduced during therapeutic hypothermia.
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This is particularly evident in neonates with moderate encephalopathy where current
therapeutic hypothermia strategies seem to have the greatest benefit. It is not known if
this reduced seizure burden contributes to the increased benefit seen following therapeutic
hypothermia in moderate encephalopathy, or if it is simply a reflection of reduced neuronal
damage during therapeutic hypothermia. Only large multicentre studies using continuous
multichannel EEG monitoring in neonates with HIE undergoing therapeutic hypothermia
will be able to answer this important question.

This work was supported by a Science Foundation Ireland Research Centre Award (12/RC/
2272) and a Wellcome Trust Strategic Translational Award (098983/z/12/z).
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ABSTRACT
Objective To investigate any possible effect of cooling 

on seizure burden, the authors quantifi ed the recorded 

electrographic seizure burden based on multichannel 

video-EEG recordings in term neonates with hypoxic-

ischaemic encephalopathy (HIE) who received cooling 

and in those who did not.

Study design Retrospective observational study.

Patients Neonates >37 weeks gestation born 

between 2003 and 2010 in two hospitals.

Methods Off-line analysis of prolonged continuous 

multichannel video-EEG recordings was performed 

independently by two experienced encephalographers. 

Comparison between the recorded electrographic seizure 

burden in non-cooled and cooled neonates was assessed. 

Data were treated as non-parametric and expressed as 

medians with interquartile ranges (IQR).

Results One hundred and seven neonates with HIE 

underwent prolonged continuous multichannel EEG 

monitoring. Thirty-seven neonates had electrographic 

seizures, of whom 31 had EEG recordings that were 

suitable for the analysis (16 non-cooled and 15 cooled). 

Compared with non-cooled neonates, multichannel EEG 

monitoring commenced at an earlier postnatal age in 

cooled neonates (6 (3–9) vs 15 (5–20) h) and continued 

for longer (88 (75–101) vs 55 (41–60) h). Despite this 

increased opportunity to capture seizures in cooled 

neonates, the recorded electrographic seizure burden 

in the cooled group was signifi cantly lower than in the 

non-cooled group (60 (39–224) vs 203 (141–406) min). 

Further exploratory analysis showed that the recorded 

electrographic seizure burden was only signifi cantly 

reduced in cooled neonates with moderate HIE (49 

(26–89) vs 162 (97–262) min).

Conclusions A decreased seizure burden was seen in 

neonates with moderate HIE who received cooling. This 

fi nding may explain some of the therapeutic benefi ts of 

cooling seen in term neonates with moderate HIE.

INTRODUCTION
Approximately, 50–75% of neonatal seizures at 
term are attributable to neonatal hypoxic-ischaemic 
encephalopathy (HIE).1 Neonatal outcome studies 
have shown that seizures are powerful predictors 
of death or permanent neurological disability.2 3 
However, these studies relied almost entirely on the 
detection of seizures using clinical criteria2 or ampli-
tude-integrated (aEEG).3 It is well known that clini-
cal assessment4 and aEEG5–7 can miss many seizures 
and therefore cannot accurately quantify the precise 
seizure burden in neonates. Accurate identifi cation 
and quantifi cation of neonatal seizures require con-
tinuous multichannel video-EEG monitoring.

Cooling and seizure burden in term neonates: 
an observational study
Evonne Low,1 Geraldine B Boylan,1 Sean R Mathieson,2 Deirdre M Murray,1 Irina 

Korotchikova,1 Nathan J Stevenson,1 Vicki Livingstone,1 Janet M Rennie2

The evidence of benefi t is considered suffi cient 
for the National Institute for Health and Clinical 
Excellence to endorse the use of cooling for 
hypoxic perinatal brain injury in the UK.8 A meta-
analysis of three trials which enrolled 767 neo-
nates showed that cooling reduced the combined 
rate of death or disability at 18 months.7 However, 
the precise mechanism by which cooling achieves 
neuroprotection in neonates with HIE is unknown. 
In the biphasic model of neuronal death following 
hypoxic injury, the cascade of events which occurs 
in the secondary reperfusion phase may be associ-
ated with seizures, an accumulation of cytotoxins 
and the failure of oxidative cerebral metabolism.9 10 
Cooling may reduce seizure burden in neonates by 
affecting some mechanisms during this vital phase 
of brain injury.

We aimed to determine whether cooling was 
associated with a reduction in seizure burden in 
HIE neonates by quantifying seizure burden using 
continuous multichannel video-EEG monitoring.

PATIENT AND METHODS
Non-cooled neonates were enrolled between 
June 2003 to September 2006 and January 2009 
to March 2010 from Cork University Maternity 

What is already known on this topic

▶  Cooling has been shown to reduce the 
combined rate of death and disability at 18 
months of age in term neonates with  hypoxic-
ischaemic encephalopathy.

▶  Early, prolonged and continuous multichannel 
EEG provides accurate identifi cation and 
quantifi cation of electrographic seizure 
burden in term neonates.

What this study adds

▶  The seizure burden was less in a group 
of neonates treated with therapeutic 
hypothermia compared with a similar group 
who were not cooled.

▶  This is the fi rst study using prolonged 
continuous multichannel EEG to quantify 
the seizure burden in non-cooled and cooled 
term neonates with hypoxic-ischaemic 
encephalopathy.

09_fetalneonatal-2011-300716.indd   26709_fetalneonatal-2011-300716.indd   267 6/9/2012   11:40:48 AM6/9/2012   11:40:48 AM

 group.bmj.com on July 6, 2012 - Published by fn.bmj.comDownloaded from 

http://fn.bmj.com/
http://group.bmj.com/


Original article

Arch Dis Child Fetal Neonatal Ed 2012;97:F267−F272. doi:10.1136/archdischild-2011-300716F268

 (Tec-Com, Halle, Germany) or the CritiCool MTRE machine 
(Charter Kontron, Milton Keynes, UK) was used. Neonates were 
cooled to a rectal temperature of 33–34°C for 72 h (unless con-
traindicated) and were slowly rewarmed. Within both hospitals, 
treatment was based on clinical observation and EEG fi ndings. 
Both groups had continuous EEG monitoring but the neonatolo-
gists did not interpret the EEG recordings. On our monitoring 
system, the aEEG and the multichannel EEG were simultane-
ously recorded and many of our neonatologists would have 
used the aEEG as an aid to clinical decision-making. All clinical 
seizures were treated. The aEEG was used to confi rm clinically 
suspected seizures. If they were concerned about any abnormal 
clinical behaviours or aEEG patterns, the  encephalographers 
would be asked to interpret the multichannel EEG at a later 
stage. Immediate reporting of the multichannel EEG was not 
available, so that aEEG and clinical suspicion were the main-
stays of seizure diagnosis. Phenobarbitone was the fi rst-line 
anticonvulsant administered to a maximum dose of 40 mg/kg 
intravenously. Second-line anticonvulsants were administered 
if clinical and/or electrographic seizures recurred following 

Hospital (CUMH), Ireland. Cooled neonates were enrolled 
between January 2009 and September 2010 from CUMH and 
University College London Hospitals (UCLH), UK. Neonates 
>37 weeks gestation with HIE were enrolled for EEG monitor-
ing if they fulfi lled ≥2 of the following criteria: Apgar score 
<6 at 5 min, a continued need for resuscitation after birth, 
clinical  evidence of encephalopathy or seizures within 24 h of 
birth. At both hospitals, every neonate was assigned a clini-
cal grade of encephalopathy using the modifi ed Sarnat score 
at 24 h of age.11 This study was conducted with the approval 
from the Clinical Research Ethics Committees of the Cork 
Teaching hospitals, Ireland, and the National Health Service 
in the UK, via the Integrated Research Application Service. 
Written, informed consent was obtained from at least one 
parent of each neonate who participated in this study.

Neonates were cooled according to the entry criteria and 
guidelines set by the UK Total Body Hypothermia for Neonatal 
Encephalopathy (TOBY) cooling registry (from the UK 
TOBY Cooling Register Clinician’s Handbook, section 2.1, http://
www.npeu.ox.ac.uk/toby). Either the Tecotherm TS med 200 

Table 1 Clinical characteristics of the neonates included in the study

 Non-cooled (n=16) Cooled (n=15) p Value

Gestational age (weeks) 41 (40-41) 40 (40-41) 0.300
Birth weight (g) 3488 (3163−3733) 3275 (3000−4130) 0.707
Gender (male:female) 10:6 9:6 0.886*
Clinical Sarnat score
 Moderate 6 8 0.376*
 Severe 10 7
5-min Apgar score 6 (2–8) 4 (2–4) 0.050
First pH 7.134 (7.032−7.217) 6.930 (6.800−7.100) 0.009
Number of anticonvulsants 2 (1–3) 1 (1-2) 0.274
First-line anticonvulsant (age in h) 12 (9–19) 14 (10–24) 0.504
Total dose of fi rst-line anticonvulsant (mg/kg) 30 (20–40) 20 (20) 0.203
Second-line anticonvulsant (age in h) 28 (24–31) 26 (19–38) 0.556
Number of neonates on morphine 8 15 0.002*

Data are median (IQR) or n.
*χ2 test for the proportion of gender and clinical Sarnat score for neonatal hypoxia-ischaemic encephalopathy in non-
cooled and cooled groups.

Table 2 Individual characteristics of non-cooled neonates with hypoxia-ischaemic encephalopathy

Case
Clinical 
Sarnat

Recorded seizure 
burden (min)

Seizure 
 number (n)

Mean seizure 
duration (s)

Age at fi rst 
EEG seizure

Age at fi rst-line 
anticonvulsant

Time from EEG 
seizure onset to 
treatment

Second-line anticonvulsant
Other 
drugsAge Total dose

C1S 2 38 4 574 10 h 15 m N N M
C2 3 106 43 147 18 h 23 h 14 m Pt=10 mg/kg M
C3S 2 116 21 331 26 h 11 m  8 h 5 m B 25 h 5 m Pt=20 mg/kg
C4S 3 137 84 98 14 h 12 m N N M, Tr
C5S 2 152 99 92 22 h 30 m 22 h 34 m 4 m 32 h 44 m Pt=20 mg/kg
C6E, S 2 172 21 493 25 h 30 m 19 h 13 m B 28 h 28 m Pt=20 mg/kg
C7E 3 183 121 91 12 h 40 m 12 h 20 m B 35 h 35 m Mz=100 mcg/kg M
C8E 3 199 41 291 17 h 7 m 10 h 50 m B M
C9 3 206 60 206 12 h 20 m 24 h 24 m 12 h 4 m M
C10E, S 2 212 66 193 10 h 54 m 10 h 10 m B 28 h 40 m Pt=20 mg/kg
C11 3 239 150 96 10 h 56 m 19 h 35 m 8 h 39 m
C12E 3 384 209 110 21 h 58 m  2 h 30 m B Pt=20 mg/kg Cn, M
C13E, S 2 413 63 393 17 h 54 m 10 h 3 m B
C14E, S 3 640 305 126 16 h 48 m 18 h 13 m 1 h 25 m 29 h 13 m Pt=20 mg/kg Pr, Mz, Py
C15E 3 958 190 303 27 h 28 m  6 h 34 m B  9 h 44 m Pt=5 mg/kg Mz, Py
C16E 3 1002 201 299 20 h 35 m 16 h 37 m B 26 h 47 m Pt=40 mg/kg M, D

B, clinically treated before EEG commenced; C, neonates enrolled from the Cork University Maternity Hospital; Cn, clonazepam; D, intravenous diazepam; E, neonates 
with status epilepticus; M, morphine; Mz, midazolam; N, not given any anticonvulsant; Pr, paraldehyde; Pt, phenytoin; Py, pyridoxine; S, neonates who were already 
seizing at the time when EEG was commenced; Tr, trichloral hydrate.
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STATISTICAL ANALYSIS
Inter-rater agreement between the two encephalographers 
was assessed using a Cohen’s κ statistic. Continuous variables 
were described using medians and interquartile ranges (IQR) 
and categorical variables using frequencies. For comparisons 
between the two groups (non-cooled and cooled), the Mann–
Whitney test was used for continuous variables and the χ2 test 
or Fisher’s exact test (in the case of small expected counts) was 
used for categorical variables. All statistical analyses were 
performed using PASW Statistics 17.0. All tests were two-
sided and a p value <0.05 was considered to be statistically 
signifi cant.

RESULTS
During the study, 107 neonates were diagnosed with HIE 
(fi gure 1). The clinical Sarnat grade for HIE was assigned as 
mild in 43, moderate in 34 and severe in 30 neonates. Among 
the 64 neonates with moderate or severe HIE, electrographic 
seizures were recorded in 37 neonates. Of these, six neonates 
were excluded from the study analysis. Four neonates with 
moderate HIE were excluded: two cooled neonates had sec-
ondary events shortly after EEG was commenced (one with 
cardiopulmonary arrest and the other with pulmonary hae-
morrhage), one cooled and one non-cooled neonate had less 
than 20 h of artefact-free EEG. Two neonates with severe HIE 
were excluded: one cooled neonate with a subsequent princi-
pal diagnosis of mitochondrial respiratory chain disease and 
one non-cooled neonate with less than 20 h of artefact-free 
EEG. The remaining 31 neonates formed our study group (16 
non-cooled and 15 cooled). Tables 1–3 summarize the clinical 
characteristics of neonates in both groups.

phenobarbitone administration. In both hospitals, second-line 
anticonvulsant was either intravenous phenytoin or midazolam. 
Although  standardized protocols for the use of anticonvulsants 
were similar in both hospitals, the choice of second-line anti-
convulsant administration was at the discretion of the attending 
clinician.12 13 The timing and dose of each anticonvulsant as well 
as morphine administered were recorded in all neonates.

Throughout the study, EEG recording methods were 
identical at both hospitals. A Nicolet monitor (CareFusion 
NeuroCare, Wisconsin, USA) was used to record multichan-
nel video-EEG, using the 10-20 system of electrode placement 
modifi ed for neonates.14 EEG monitoring was commenced as 
soon as possible after birth and continued for at least 20 h 
of artefact-free EEG. Scalp electrodes were placed at F3, F4, 
C3, C4, T3, T4, O1, O2 and Cz locations to record the EEG 
activity from the frontal, central, temporal and occipital 
areas. Parietal electrodes (P3 and P4) were also used wherever 
possible. Impedances of below 5 kΩ were maintained. The 
entire EEG recording from each neonate was independently 
reviewed by two experienced encephalographers (GBB and 
SRM). Cases of disagreement were resolved by consensus. An 
electrographic seizure was defi ned as a sudden and evolving 
repetitive stereotyped waveform with a defi nite start, middle 
and end, lasting for at least 10 s15 on at least one EEG channel. 
Status epilepticus was defi ned as continuous16 or accumula-
tive17 electrographic seizure activity lasting ≥50% of each 
1 h period. The recorded seizure burden was defi ned as the 
total duration of recorded electrographic seizures in minutes. 
Seizure number was counted as the number of seizure events 
recorded on the EEG. Mean seizure duration was calculated 
for all recorded electrographic seizures in each neonate.

Figure 1 Flow diagram of study selection.
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in non-cooled and cooled groups. Cooling had a signifi cant 
reduction of recorded seizure  burden in neonates with moder-
ate HIE (non-cooled: 162 (97–262) vs cooled: 49 (26–89) min; 
p=0.020) while no such  difference was seen in neonates with 
severe HIE (non-cooled: 223 (172–720) vs cooled: 224 (60–289) 
min; p=0.558).

Eleven cooled neonates had EEG monitoring after cooling 
was discontinued. Electrographic seizures were observed in 4 
of 15 cooled neonates when cooling was discontinued (table 3). 
Two of the four cases had shorter duration of cooling when a 
decision was made to withdraw life-sustaining support (case 
L8 cooled for 19 h, case L7 cooled for 23 h). In the remain-
ing two cases (cases C22 and L5), electrographic seizures were 
observed following discontinuation of cooling despite the fact 
that cooling started at 6 and 9 h, respectively after birth and 
continued for 72 h.

DISCUSSION
We have shown that term neonates with moderate HIE treated 
with whole-body cooling have a signifi cantly lower electro-
graphic seizure burden when compared with non-cooled 
neonates. This is the fi rst study to quantify and compare 
the recorded seizure burden between non-cooled and cooled 
neonates using early and prolonged continuous multichannel 
video-EEG.

Previously published neonatal hypothermia trials could not 
accurately measure seizure burden as their protocols did not 
include multichannel EEG monitoring. These studies used 
clinical18 and/or aEEG monitoring7 19 for seizure recognition. 
The Neonatal Research Network Whole-Body Hypothermia 
Trial relied on the clinical recognition of seizures and when 
the authors adjusted their study for cooling and severity of 
encephalopathy, cooling did not appear to have any impact 
on the frequency of clinical seizures and outcome.18 However, 
clinical estimation of seizure burden is notoriously unreliable, 
with the majority of neonatal seizures being subclinical.4 20 
The TOBY trial used aEEG as a recruitment and monitoring 
tool during cooling in some participating neonatal institu-
tions.21 At recruitment, clinical seizures and seizures detected 

Eight of 16 non-cooled neonates and none of the cooled neo-
nates received at least one dose of phenobarbitone before EEG 
monitoring commenced. However, there was no signifi cant dif-
ference in the number of anticonvulsants received between the 
two groups (non-cooled: 2 (1-3) vs cooled: 1 (1-2); p=0.274) and 
in the total administered dose of fi rst-line anticonvulsant (non-
cooled: 30 (20-40) vs cooled: 20 (20-20) mg/kg; p=0.203). There 
was also no signifi cant difference in the ages at which the fi rst-
line anticonvulsant (non-cooled: 12 (9-19) vs cooled: 14 (10-24) h; 
p=0.504) and the second-line anticonvulsant were administered 
(non-cooled: 28 (24-31) vs cooled: 26 (19-38) h; p=0.556). All 
cooled neonates received morphine compared with eight non-
cooled neonates (p=0.002 from Fisher’s exact test).

Cooling commenced at the median (IQR) age of 5 (2-6) h 
(table 3). In six of seven cooled neonates with severe HIE, cool-
ing was commenced within 6 h of age. However, following 
decisions to withdraw life-sustaining support in fi ve of these 
seven neonates, the duration of cooling and EEG monitoring 
were shorter. The recorded seizure burden in these neonates 
was higher than in cooled neonates with moderate HIE. In 
three of eight cooled neonates with moderate HIE, passive 
cooling commenced earlier during the transport to UCLH, but 
the recorded age at which active cooling commenced was after 
6 h. Despite this, all eight neonates with moderate HIE received 
cooling for at least 72 h. 

The inter-rater agreement for seizure identifi cation was con-
sistent with a high level of agreement (κ=0.872). In eight non-
cooled and one cooled neonate, seizures were ongoing when 
EEG recording commenced. The postnatal age of fi rst recorded 
electrographic seizure was similar in both groups (non-cooled: 
18 (12-22) vs cooled: 13 (11–22) h; p=0.252). The median recorded 
seizure burden was signifi cantly less in the cooled than in the 
non-cooled group (cooled: 60 (39-224) vs non-cooled 203 (141-
406) min; p=0.027) (table 4). Between the cooled and the non-
cooled group, there was no difference in the number of seizure 
events, mean seizure duration or the presence of status epilep-
ticus (p=0.105, 0.192 and 0.095, respectively). An exploratory 
subgroup analysis was performed to assess the infl uence of 
cooling on neonates with different severity of encephalopathy 

Table 3 Individual characteristics of cooled neonates with hypoxia-ischaemic encephalopathy enrolled for this study

Case
Clinical 
Sarnat

Recorded 
 seizure 
 burden (min)

Seizure 
number (n)

Mean 
seizure 
duration (s)

Age at fi rst 
EEG seizure

Age at fi rst-line 
anticonvulsant

Time from 
EEG seizure 
onset to 
treatment

Second-line anticonvulsant

Other 
drugs

Cooling 
duration 
(age in h)Age Total dose

L1A 2 19 4 283 10 h 59 m 11 h 30 m 31 m M 72 (12–84)
L2A 2 24 17 85 11 h 20 m 12 h 25 m  1 h 5 m 26 h Pt=20 mg/kg M, Mz 72 (8–90)
L3E 2 31 2 917  6 h 58 m  7 h 25 m 27 m M 72 (6–78)
C17 3 39 14 168 12 h 22 m  6 h 10 m B M 72 (0.25–72.25)
L4 2 48 12 241 24 h 23 m 31 h 44 m  7 h 21 m M 72 (6–78)
L5R, A 2 49 46 64 39 h 26 m 24 h 23 m B M 72 (9–81)
C18E 2 55 2 1658  8 h 17 m  9 h 55 m  1 h 38 m M 72 (2–74)
L6W 3 60 41 88 12 h 12 h 51 m 51 m 20 h 11 m Mz=150 mcg/kg M 33 (0.5–33.5)
C19 2 100 22 274 13 h 25 m 15 h 38 m  2 h 13 m M 72 (2–74)
C20 2 118 76 93 21 h 28 m  7 h 20 m B M 72 (3–75)
C21E, W 3 214 56 229 16 h 33 m 17 h 3 m 30 m 28 h 33 m Pt=20 mg/kg M 65 (0.8–66)
L7R, W 3 224 281 48 12 h 51 m 21 h 22 m  8 h 31 m 25 h 52 m Mz=340 mcg/kg M 23 (5-28)
C22R 3 244 185 79 42 h 13 m 56 h 25 m 14 h 12 m 65 h 35 m Pt=20 mg/kg M 72 (6–78)
L8E, R, W 3 289 161 108 13 h 5 m 27 h 23 m 14 h 18 m M 19 (5-24)
L9S, W 3 421 178 142 10 h 24 m 13 h 35 m  3 h 11 m 13 h 55 m Mz=330 mcg/kg M 66 (5–71)

A, documented age onset of active cooling, passive cooling initiated earlier during transport; B, clinically treated before EEG commenced; C, neonates enrolled from 
Cork University Maternity Hospital; E, neonates with status epilepticus; L, neonates enrolled from University College London Hospital; M, morphine; Mz, midazolam; R, 
neonates with EEG seizures following discontinuation of cooling; Pt, phenytoin; S, neonates who were already seizing at the time when EEG record was commenced; 
W, shorter cooling period as part of withdrawal of life-sustaining support decision.
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remained higher in non-cooled neonates, despite the fact that 
they received anticonvulsants earlier. However, there was 
no signifi cant difference between the groups in the number, 
dose and age when the fi rst- and second-line anticonvul-
sants were administered. One of the strengths of this study 
is that the same reviewers analyzed the EEG recordings of 
both cohorts using a standardized grading system. EEGs were 
also recorded in both groups on the same equipment. As we 
were using a historical cohort, over time some increase in the 
ability of the EEG annotators to recognize seizures through 
increasing use of early continuous EEG may have occurred. 
However, this should have increased the seizure burden in the 
more recent cooled group. This bias only serves to strengthen 
our fi ndings.

Phenobarbitone remains the most commonly used fi rst-
line anticonvulsant in neonatal units worldwide.12 13 It has 
been shown to augment the neuroprotective effect of hypo-
thermia.27 However, phenobarbitone has been shown to be 
ineffective in controlling electrographic seizures in non-cooled 
neonates;28 29 this reduced effi cacy has been linked to the 
altered neuronal chloride transport in the developing brain.30 
In our study, plasma phenobarbitone levels were not routinely 
measured. It is known that the half-life of phenobarbitone is 
signifi cantly increased in cooled neonates and plasma drug 
levels will accumulate due to reduced hepatic metabolism 
during hypothermia.31 32 Sedative and anaesthetic medica-
tions have been shown to facilitate the therapeutic effects 
of cooling.23 All cooled neonates and half of non-cooled neo-
nates in our study received morphine. However, morphine 
does not possess anticonvulsive properties and therefore can-
not explain the measured difference in the recorded seizure 
burden between the two groups.

There was no signifi cant difference in Apgar scores between 
both groups, although the pH was signifi cantly lower in the 
cooled group. This may refl ect more severe disease in the 
cooled group. However, we have previously shown that nei-
ther the condition at birth nor the degree of metabolic aci-
dosis reliably predicts electrographic neonatal seizures33 and 
therefore we do not think that this had any infl uence on the 
seizure burden in the cooled group. All non-cooled neonates 
would have qualifi ed for cooling if it was available at the time 
of recruitment. The time of onset and the duration of EEG 
recording between non-cooled and cooled groups were sig-
nifi cantly different. Several non-cooled neonates were already 

by aEEG were present in 67% (74/110) and 29% (33/115) of 
neonates, respectively and seizures were considered as a com-
plication during cooling, with a decreasing incidence from 
days 1 to 4 (75–23%). Clinical recognition of seizures and the 
aEEG is known to underestimate the true seizure burden. The 
aEEG cannot detect short seizures, seizures which do not gen-
eralize and low voltage seizures.6

In fetal sheep, cooling was associated with a marked reduc-
tion in the amplitude of seizures and epileptiform activities in 
the fi rst 6 h after a complete umbilical cord occlusion.22 The 
duration of individual electrographic seizures was reduced in 
the cooled compared to the non-cooled asphyxiated piglets.23 
Hypothermia to 30 or 33°C has been shown to completely 
inhibit the release of glutamate in a rat model of cerebral 
ischaemia.24 Other effects of cooling such as reduced cyto-
toxic oedema by reducing amino acid release25 and inhibition 
of free oxygen radicals26 may have an impact on the reduction 
in seizure burden.

The results of exploratory analysis showed that the recorded 
seizure burden was only signifi cantly reduced in cooled neo-
nates with moderate HIE. Possibly, this is related to the higher 
recorded seizure burden in fi ve of seven cooled neonates with 
severe HIE who had shorter durations of cooling and EEG 
monitoring following decisions to withdraw life-sustaining 
support. Interestingly, the analysis of three neonatal hypo-
thermia trials has revealed that the primary outcome of death 
and disability at 18 months was signifi cantly reduced by cool-
ing neonates with moderate but not severe HIE.7 However, 
Simbruner et al. has shown that cooling was strongly neuro-
protective even in severe HIE.19 Therefore, it is important to 
emphasize that further data are required to clarify whether 
cooling is appropriate for severe HIE, before clinical decisions 
are made to abort cooling neonates with severe HIE.

This study has a retrospective design which may have led 
to some bias. Both cohorts were selected as they were enceph-
alopathic and at high risk of developing seizures. Both groups 
had continuous multichannel EEG monitoring, and the stan-
dard protocol for monitoring was the same at both time 
points and in both hospitals. We did anticipate a potential 
bias relating to the choice of anticonvulsants used, as admin-
istration was at the discretion of different attending clinicians 
in both hospitals at that point in time. To date, there is still 
no consensus on a standard protocol for the use of anticonvul-
sants among neonatologists.12 13 The recorded seizure burden 

Table 4 Characteristics of seizure burden in non-cooled and cooled groups

All neonates Non-cooled (n=16) Cooled (n=15) p Value

Recorded seizure burden (min) 203 (141–406)  60 (39–224) 0.027
Total seizure numbers per neonate  75 (42–180)  41 (12–161) 0.105
Mean seizure duration (s) per neonate 200 (101–324) 142 (85–274) 0.192
Number of neonates with status epilepticus   9   4 0.095*
Age onset of EEG (h)   15 (5-20)   6 (3-9) 0.006
Total EEG duration (h)   55 (41–60)  88 (75–101) 0.001
Moderate HIE Non-cooled (n=6) Cooled (n=8) p Value
Recorded seizure burden (min) 162 (97–262)  49 (26–89) 0.020
Total seizure numbers per neonate  42 (17–74)  15(3-40) 0.174
Mean seizure duration (s) per neonate 362 (168–513) 258 (87–759) 0.519
Severe HIE Non-cooled (n=10) Cooled (n=7) p Value
Recorded seizure burden (min) 223 (172–720) 224 (60–289) 0.558
Total seizure numbers per neonate 136 (56–203) 161 (41–185) 0.591
Mean seizure duration (s) per neonate 137 (98–293) 108 (79–168) 0.172

Data are median (IQR) or n.
*χ2 test for the proportion of neonates with status epilepticus in non-cooled and cooled groups.

09_fetalneonatal-2011-300716.indd   27109_fetalneonatal-2011-300716.indd   271 6/9/2012   11:40:51 AM6/9/2012   11:40:51 AM

 group.bmj.com on July 6, 2012 - Published by fn.bmj.comDownloaded from 

http://fn.bmj.com/
http://group.bmj.com/


Original article

Arch Dis Child Fetal Neonatal Ed 2012;97:F267−F272. doi:10.1136/archdischild-2011-300716F272

 8. National Institute for Health and Clinical Excellence (NICE). Controlled cooling to 

treat newborn babies with brain injury caused by oxygen shortage during birth. 

Information about NICE interventional procedure guidance 347; Reference No 

N2184. www.nice.org.uk (accessed 10 May 2010).

 9. Thoresen M, Penrice J, Lorek A, et al. Mild hypothermia after severe transient 

hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn 

piglet. Pediatr Res 1995;37:667–70.

10. Gunn AJ, Gunn TR, de Haan HH, et al. Dramatic neuronal rescue with prolonged 

selective head cooling after ischemia in fetal lambs. J Clin Invest 1997;99:248–56.

11. Evans DJ, Levene M. Hypoxic-ischemic injury. In: Rennie JM, Robertson NRC, 

eds. Textbook of Neonatology. Edinburgh: Churchill Livingstone 1999:1231–51.

12. Vento M, de Vries LS, Alberola A, et al. Approach to seizures in the neonatal 

period: a European perspective. Acta Paediatr 2010;99:497–501.

13. Bartha AI, Shen J, Katz KH, et al. Neonatal seizures: multicenter variability in 

current treatment practices. Pediatr Neurol 2007;37:85–90.

14. Klem GH, Lüders HO, Jasper HH, et al. The ten-twenty electrode system of the 

International Federation. The International Federation of Clinical Neurophysiology. 

Electroencephalogr Clin Neurophysiol Suppl 1999;52:3–6.

15. Clancy RR, Legido A. The exact ictal and interictal duration of 

electroencephalographic neonatal seizures. Epilepsia 1987;28:537–41.

16. Scher MS, Hamid MY, Steppe DA, et al. Ictal and interictal electrographic seizure 

durations in preterm and term neonates. Epilepsia 1993;34:284–8.

17. Ortibus EL, Sum JM, Hahn JS. Predictive value of EEG for outcome and 

epilepsy following neonatal seizures. Electroencephalogr Clin Neurophysiol 

1996;98:175–85.

18. Kwon JM, Guillet R, Shankaran S, et al. Clinical seizures in neonatal hypoxic-

ischemic encephalopathy have no independent impact on neurodevelopmental 

outcome: secondary analyses of data from the neonatal research network 

hypothermia trial. J Child Neurol 2011;26:322–8.

19. Simbruner G, Mittal RA, Rohlmann F, et al. Systemic hypothermia after neonatal 

encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics 2010;126:e771–8.

20. Yap V, Engel M, Takenouchi T, et al. Seizures are common in term infants 

undergoing head cooling. Pediatr Neurol 2009;41:327–31.

21. Azzopardi D, Strohm B, Edwards AD, et al. Treatment of asphyxiated newborns 

with moderate hypothermia in routine clinical practice: how cooling is managed in 

the UK outside a clinical trial. Arch Dis Child Fetal Neonatal Ed 2009;94:F260–4.

22. Bennet L, Dean JM, Wassink G, et al. Differential effects of hypothermia on early 

and late epileptiform events after severe hypoxia in preterm fetal sheep. 

J Neurophysiol 2007;97:572–8.

23. Tooley JR, Satas S, Porter H, et al. Head cooling with mild systemic hypothermia 

in anesthetized piglets is neuroprotective. Ann Neurol 2003;53:65–72.

24. Busto R, Globus MY, Dietrich WD, et al. Effect of mild hypothermia on ischemia-

induced release of neurotransmitters and free fatty acids in rat brain. Stroke 

1989;20:904–10.

25. Nakashima K, Todd MM. Effects of hypothermia on the rate of excitatory amino 

acid release after ischemic depolarization. Stroke 1996;27:913–18.

26. Globus MY, Alonso O, Dietrich WD, et al. Glutamate release and free radical 

production following brain injury: effects of posttraumatic hypothermia. 

J Neurochem 1995;65:1704–11.

27. Barks JD, Liu YQ, Shangguan Y, et al. Phenobarbital augments hypothermic 

neuroprotection. Pediatr Res 2010;67:532–7.

28. Painter MJ, Scher MS, Stein AD, et al. Phenobarbital compared with phenytoin 

for the treatment of neonatal seizures. N Engl J Med 1999;341:485–9.

29. Sarkar S, Barks JD, Bapuraj JR, et al. Does phenobarbital improve the 

effectiveness of therapeutic hypothermia in infants with hypoxic-ischemic 

encephalopathy? J Perinatol Published Online First: 28 April 2011. 

doi:10.1038/jp.2011.41.

30. Dzhala VI, Talos DM, Sdrulla DA, et al. NKCC1 transporter facilitates seizures in 

the developing brain. Nat Med 2005;11:1205–13.

31. Róka A, Melinda KT, Vásárhelyi B, et al. Elevated morphine concentrations in 

neonates treated with morphine and prolonged hypothermia for hypoxic ischemic 

encephalopathy. Pediatrics 2008;121:e844–9.

32. Filippi L, la Marca G, Cavallaro G, et al. Phenobarbital for neonatal seizures in 

hypoxic ischemic encephalopathy: a pharmacokinetic study during whole body 

hypothermia. Epilepsia 2011;52:794–801.

33. Murray DM, Ryan CA, Boylan GB, et al. Prediction of seizures in asphyxiated 
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Pediatrics 2006;118:41–6.
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36. Hamelin S, Delnard N, Cneude F, et al. Infl uence of hypothermia on the 

prognostic value of early EEG in full-term neonates with hypoxic ischemic 

encephalopathy. Neurophysiol Clin 2011;41:19–27.

experiencing seizures when EEG recording commenced; the 
recorded seizure burden in this group may have been under-
estimated. Despite this, and the fact that there was a longer 
EEG recording time which increased the possibility of captur-
ing more seizures in the cooled group, the overall recorded 
seizure burden was still lower in the cooled group. 

Two recent hypothermia studies have not quantifi ed the 
recorded seizure burden and a control cohort was not made 
available for comparison.34 35 In another study, seizures 
occurred less frequently in the cooled group but this was not 
signifi cantly different with a control cohort.36 It would no lon-
ger be ethical to randomize HIE neonates to normothermia. 
For this reason, although our study sample size is small, our 
non-cooled HIE cohort with prolonged continuous EEG moni-
toring is unlikely to be replicated.

In summary, we found that cooling was associated with a 
decreased electrographic seizure burden in neonates with HIE. 
A reduced seizure burden may lead to a reduction in neuronal 
damage, and may help explain the observed improvement in 
long-term neurodevelopmental outcome in cooled neonates 
with moderate HIE. Further studies using prolonged continu-
ous multichannel EEG monitoring are undoubtedly indicated.
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Abstract

Background: Stroke is the second most common cause of seizures in term neonates and is associated with abnormal long-
term neurodevelopmental outcome in some cases.

Objective: To aid diagnosis earlier in the postnatal period, our aim was to describe the characteristic EEG patterns in term
neonates with perinatal arterial ischaemic stroke (PAIS) seizures.

Design: Retrospective observational study.

Patients: Neonates .37 weeks born between 2003 and 2011 in two hospitals.

Method: Continuous multichannel video-EEG was used to analyze the background patterns and characteristics of seizures.
Each EEG was assessed for continuity, symmetry, characteristic features and sleep cycling; morphology of electrographic
seizures was also examined. Each seizure was categorized as electrographic-only or electroclinical; the percentage of seizure
events for each seizure type was also summarized.

Results: Nine neonates with PAIS seizures and EEG monitoring were identified. While EEG continuity was present in all cases,
the background pattern showed suppression over the infarcted side; this was quite marked (.50% amplitude reduction)
when the lesion was large. Characteristic unilateral bursts of theta activity with sharp or spike waves intermixed were seen
in all cases. Sleep cycling was generally present but was more disturbed over the infarcted side. Seizures demonstrated a
characteristic pattern; focal sharp waves/spike-polyspikes were seen at frequency of 1–2 Hz and phase reversal over the
central region was common. Electrographic-only seizure events were more frequent compared to electroclinical seizure
events (78 vs 22%).

Conclusions: Focal electrographic and electroclinical seizures with ipsilateral suppression of the background activity and
focal sharp waves are strong indicators of PAIS. Approximately 80% of seizure events were the result of clinically
unsuspected seizures in neonates with PAIS. Prolonged and continuous multichannel video-EEG monitoring is advocated
for adequate seizure surveillance.
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Introduction

Perinatal arterial ischaemic stroke (PAIS) occurs approximately

1 in 2500 livebirths and is recognized as a common cause of early

onset neonatal seizures. [1] Approximately 20% of neonatal

seizures are due to PAIS, [2] and neonatal seizures have been

noted in up to 26% of neonates with PAIS. [3] Generally,

neonates with PAIS are non-encephalopathic but those with

significant seizure burden can be neurologically abnormal, making

the distinction from seizures due to other causes such as hypoxia-

ischaemia difficult in the acute neonatal period. [4] The diagnosis

of PAIS should be suspected when seizures are observed in non-

encephalopathic neonates within the first 48 hours of birth. [5]

While cranial ultrasound scans have been shown to have good

diagnostic capabilities when performed after day 4, [6] confirma-

tion of diagnosis is only reliably achieved with magnetic resonance

imaging (MRI); however this facility is not readily available in

many institutions.

Electroencephalogram (EEG) or amplitude integrated-EEG

(aEEG) is now one of the first diagnostic tools available at the

cotside in the neonatal intensive care unit for the assessment of
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cerebral function. Most studies in PAIS have described EEG

changes in the first week after birth, but typical changes observed

in the first 48 hours after birth have not been described. Early

EEG may distinguish neonates with PAIS from those with

hypoxic-ischaemic encephalopathy (HIE) [3] and other aetiolo-

gies, providing invaluable support for clinical decision-making and

counselling. The aEEG has been used to obtain additional

information in neonates with PAIS by van Rooij et al. [7] and

Mercuri et al. [8]; however these studies have not given details on

the characteristics of electrographic seizures. Early accurate

recognition of PAIS would be helpful in distinguishing neonates

with seizures who do not fulfil the current criteria for therapeutic

hypothermia, but who require thrombophilic screening and high

quality MRI for diagnosis and prognosis. The aim of our study was

to characterize the early postnatal EEG findings in term neonates

with PAIS who had seizures.

Methods

Ethics statement
This study was approved by the Clinical Research Ethics

Committees of the Cork Teaching hospitals, Ireland and the

National Health Service in the United Kingdom (UK), via the

Integrated Research Application Service. Written, informed

consent was obtained from at least one parent of each neonate

who participated in this study.

Patients
Neonates were enrolled from Cork University Maternity

Hospital (CUMH), Ireland between June 2003 and October

2011 and University College London Hospital (UCLH), UK from

January 2009 to October 2011 as part of an ongoing study of

neonatal seizures. Neonates .37 weeks gestation were enrolled for

EEG monitoring if they fulfilled at least one of the following

criteria: Apgar score ,6 at five minutes; a continued need for

resuscitation after birth; any clinical evidence of encephalopathy

or seizures within 72 hours of age. The diagnosis of PAIS was

based on neuroimaging evidence of focal infarction affecting at

most two arterial territories. Study analysis included only neonates

with PAIS who had electrographic seizures. Neonates with HIE,

infections, inborn errors of metabolism, blood disorders, venous or

multiple infarctions were excluded due to differing pathogeneses

and clinical manifestations when compared to those with focal

arterial infarction.

Clinical features
All clinical seizures were treated as well as seizures recognized

by the clinical team interpreting the aEEG. The aEEG used to

confirm suspected seizures was also used as an aid in clinical

decision-making at the cotside. Concern regarding any abnormal

behaviour or aEEG pattern prompted a review of the multichan-

nel EEG from the neurophysiologist in each hospital. Immediate

reporting of the multichannel EEG was not always available; the

aEEG and clinical suspicion were the mainstays of seizure

diagnosis. Phenobarbitone was the first-line anticonvulsant

administered to a maximum dose of 40 mg/kg intravenously.

Second-line anticonvulsants were administered if clinical and/or

electrographic seizures recurred following phenobarbitone admin-

istration. In both hospitals, second-line anticonvulsant was either

intravenous phenytoin or midazolam. Although standardized

protocols for the use of anticonvulsants were similar in both

hospitals, the choice of second-line anticonvulsant administration

was at the discretion of the attending neonatologist. The timing

and dose of each anticonvulsant as well as morphine administered

were recorded in all neonates.

EEG features
Clinical details of all neonates were obtained at the time of

monitoring. Throughout the study, EEG recording methods were

identical at both hospitals. A Nicolet monitor (Carefusion

NeuroCare, Wisconsin, USA) was used to record multichannel

video-EEG, using the 10–20 system of electrode placement

modified for neonates. [9] EEG monitoring was commenced

when recruitment criteria were met and continued for at least

20 hours. Scalp electrodes were placed at F3, F4, C3, C4, T3, T4,

O1, O2 and Cz locations to record EEG activity from the frontal,

central, temporal and occipital areas. Parietal electrodes (P3–P4)

were also used where possible. Impedances below five kV were

maintained. Simultaneous bilateral aEEG trends, electrocardio-

gram and respiration traces were also displayed on the monitor.

All EEG recordings from each neonate were independently

reviewed by an experienced neonatal electroencephalographer

(GBB). The entire background EEG pattern was graded and

assessed for continuity, symmetry, synchrony and other specific

features. Sleep cycling was assessed as being present, absent or

disturbed in each neonate; a disturbed sleep cycling signified an

interruption to the expected sleep cycle architecture of healthy

term neonates. [10] Significant EEG suppression was defined as

EEG activity below five mV in all EEG channels for at least 10

seconds respectively. The morphology of seizures was also

assessed. An electrographic seizure was defined as a sudden and

evolving repetitive stereotyped waveform with a definite start,

middle and end, lasting for at least 10 seconds [11] on at least one

EEG channel. Status epilepticus was defined as continuous or

accumulative electrographic seizure activity lasting $50% of a

one-hour period. [12]

Any associated clinical correlates with all electrographic seizures

annotated were analyzed using the simultaneous video recording.

Electrographic-only seizures were defined as clear electrographic

seizures without any clinical correlates. [13] Electroclinical

seizures were defined as electrographic seizures accompanied with

behavioural correlates. Clinical seizures were defined as paroxys-

mal alterations in neurological function (behaviour, motor or

autonomic); the description was based on those categorized by

Volpe. [2] Subtle seizures were defined as paroxysmal behaviours

(including changes in autonomic parameters) which were not

clearly clonic, tonic or myoclonic seizures [2] and included

behaviours such as eye blinking, pedalling or cycling movements of

the limbs, hiccups, sucking or chewing movements and apnoeic

spells.

Radiographic features
MRI studies were performed in a Siemens Avanto 1.5 Tesla

unit (Siemens Ag, Erlangen, Germany) and CT scanning was

performed using a Toshiba Aquilion 4-detector row CT (Toshiba,

Tochigi-ken, Japan). All imaging studies were performed without

sedation. Neonates were transferred to the MRI scanner in an

MRI-compatible incubator with integrated neonatal array coils

(MR Diagnostics Incubator, Lammers Medical Technology

GmbH, Luebeck, Germany). The arterial territory and estimated

size of cerebral infarction based on methods described by Marks et
al., [14] were reported by an experienced paediatric radiologist

(COB).

Statistical analysis
The total seizure burden was defined as the total duration of

recorded electrographic seizures in minutes. Electrographic

EEG Features of Perinatal Stroke with Seizures
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seizure window was defined as the timepoint between the first and

last recorded electrographic seizure in hours. Seizure burden was

also expressed in terms of seizure per hour and was calculated

using a formula:

Seizure burden = total seizure burden (minutes)/ electrographic

seizure window (hours).

In each neonate, the mean seizure duration is calculated as the

proportion of the total seizure burden in seconds relative to the

number of seizures.

Mean seizure duration = total seizure burden (in seconds) /

total number of seizures.

To avoid neonates with many seizures having much influence

on the results, summary measures were calculated for each

neonate. These summary measures were percentages of the

number of seizure events and the seizure burden (seizure duration

in minutes) associated with electrographic-only, electroclinical

seizures and the duration when viewing of the video was obscured

(for example during a medical procedure); they were calculated

relative to the total number of electrographic seizures and the total

seizure burden (seizure duration in minutes). For example:

% number of electrographic-only seizures = (the number of

electrographic-only seizures/ the total number of seizures) * 100

% seizure burden of electrographic-only seizures = (the seizure

burden of electrographic-only seizures/ the total seizure burden) *

100

% number of electroclinical seizures = (the number of

electroclinical seizures/ the total number of seizures) * 100

% seizure burden of electroclinical seizures = (the seizure

burden of electroclinical seizures/ the total seizure burden) * 100.

These summary measures were then described across all

neonates using medians and interquartile ranges (IQR). For

paired comparisons, the Wilcoxon signed-rank test was used. All

statistical analyses were performed using SPSS Statistics 20.0 (IBM

SPSS Statistics, Illinois, USA). All tests were two-sided; p-value

,0.05 was considered to be statistically significant.

Results

During the study, nine neonates with PAIS who had continuous

early EEG monitoring had electrographic seizures. Five neonates

had coagulation testing and none had thrombophilic disorders.

Table 1 lists the clinical demographics and outlines the MRI

findings in eight of the nine neonates with various degrees of

middle cerebral artery (MCA) infarction; one neonate had CT

imaging. Cranial imaging was undertaken at a median (IQR) of 5

(3–12) days after birth.

Table 2 summarizes the background EEG and seizure

characteristics for each neonate. In all neonates, a continuous

background pattern was present but voltage suppression and

intermittent sharp theta discharges were seen over the infarcted

side (figure 1). Background EEG suppression was greatest in cases

where the estimated size of infarction was larger than 66% of one

hemisphere. Sleep cycling was present in all cases but disturbed in

5 of the 9 neonates. The morphology of seizures in neonates with

PAIS showed a characteristic pattern in all cases (figure 2). Spike

and polyspike waves at a frequency of 1–2 Hz were seen over the

infarcted side and phase reversal of these spikes over the central

region was evident as the seizure evolved. Higher frequency

temporal discharges were seen during apnoea in a neonate who

presented with dusky episodes.

Of 536 electrographic seizures identified from multichannel

EEG in this cohort of neonates with PAIS; 519 were classified

(table 2). Accumulatively, there were more electrographic-only

seizure events (n = 405; 78%) than electroclinical seizure events

(n = 114; 22%). Summary measures of each neonate showed that

the median (IQR) electrographic-only seizure events was higher

than electroclinical seizure events [66 (52–90) vs 29 (8–40)%;

p = 0.051]. Subtle seizures were noted in six of nine neonates and

manifested activities such as pedalling or cycling movements of the

limbs, sucking or chewing movements. Other occasional subtle

seizures noted were hiccups and eye blinking episodes. When

electroclinical seizures were subdivided, there were more subtle

(n = 61; 12%) than clonic seizures (n = 53; 10%) [median (IQR) of

subtle vs clonic seizures = 12 (0–22) vs 7 (2–24)%; p = 0.553]. The

median percentage of seizure burden of electrographic-only was

higher than electroclinical seizures [49 (31–88) vs 44 (12–51)%;

p = 0.515]. This is despite the significantly shorter median

duration of electrographic-only when compared to electroclinical

seizures [100 (55–173) vs 181 (95–359) seconds; p,0.001].

The temporal distribution of electrographic-only and electro-

clinical seizures with anticonvulsant administration superimposed

for each neonate are shown in figure 3. In four of nine neonates

(cases 1, 2, 3 and 6), anticonvulsants were administered prior to

prolonged multichannel EEG monitoring, hence before the first

electrographic seizure. All nine neonates with PAIS received first-

line anticonvulsants at 34 (20–46) hours while seven neonates

received second-line anticonvulsants at 48 (29–66) hours.

Discussion

The background EEG generally showed suppression over the

affected side; this was quite marked (.50% amplitude reduction) if

the infarction was large. Characteristic unilateral theta bursts with

intermixed sharp or spike waves were seen in all cases over the

infarcted side. Sleep cycling was generally present but was more

disturbed over the infarcted side. Seizures in neonates with PAIS

appear to have a characteristic pattern and in all cases, focal sharp

waves/spike-polyspike seizure discharges were seen at a frequency

of 1–2 Hz over the area of infarction. In our experience, the

morphology of these seizures is quite characteristic and markedly

different from seizures due to HIE. [15] All neonates in our series

had MCA involvement; seizures were generally seen over the

central region and phase reversal of spike and polyspike discharges

were a common finding. This is the first study to describe these

characteristic EEG findings in a series of neonates with PAIS in

the early postnatal period; these findings may prove very useful for

early diagnosis of neonates with seizures.

Indeed PAIS tends to be a clinical diagnosis when three

important findings are present: no clear history of HIE, seizure

onset beyond 12 hours after birth and focal seizures. In many

instances when the affected cases are discussed retrospectively,

subtle details are often missed; they usually revealed a slightly

complicated antenatal history such as mild changes on the

cardiotocogram or meconium stained delivery. [16] Apgar scores

and clinical history may be subjective. We advocate the use of the

EEG as an adjunct to suggest the early diagnosis of PAIS during

the neonatal period when clinical suspicions are aroused.

Comparing one-channel with the two-channel aEEG recordings

in 34 neonates who had seizures due to unilateral brain injury, van

Rooij et al. showed more varied seizures patterns, asymmetry in

the background activity and a difference in sleep cycling on the

ipsilateral side, [7] however this study gave no specific analysis on

a subgroup of neonates who had PAIS (n = 5) or specifically those

who had MCA involvement (n = 3). Using a four-channel aEEG in

19 neonates with PAIS (6 neonates with asymmetrical and 2 with

bilateral sharp waves/ spikes, 8 no seizures, 3 not recorded),

Mercuri et al. showed that the presence of seizures accompanied

by a normal background EEG was not related to abnormal

EEG Features of Perinatal Stroke with Seizures
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outcome; [8] this indicates that both factors are poor predictors of

outcome. Although our study was not aimed to assess outcome, we

believe that an abnormal background and the presences of seizures

have a much higher prognostic value. Also, the study by Mercuri

et al. had not assessed seizures as an independent factor in

determining outcome. [8] Multichannel EEG has been shown to

be more accurate than the aEEG in detecting seizures. Our EEG

findings based on multichannel EEG recordings are similar to

studies by van Rooij et al. [7] and Mercuri et al. [8] which used

the aEEG, however we have provided more details on the

characteristics of seizures early in the neonatal period in terms of

seizure morphology and more detailed seizure characteristics in a

cohort of neonates with PAIS.

Several studies have reported the electrographic seizure burden

in neonates with HIE, [17], [18] but none has quantified seizure

burden in neonates with PAIS using continuous multichannel

EEG. A study by Rafay et al. compared the EEG characteristics

between neonates with PAIS and HIE; [3] they showed that there

was no significant difference in the number of neonates who had

electrographic seizures (PAIS vs HIE: 7/27 vs 13/35; p = 0.350].

Although their study contributed further to our understanding of

neonatal seizures, the results were limited because EEG findings

were described exclusively from EEG reports generated by a

neurophysiology service. In our study, we have explored further on

the multichannel EEG recordings. The overall seizure burden was

high in our study; prolonged multichannel video-EEG monitoring

showed that the number of seizures is higher than clinically

apparent. In our study, anticonvulsants were administered when

there was a clinical concern of seizures. The use of anticonvulsants

may have resulted in more electrographic-only seizures [19]; and

in our study we have shown that 80% of seizure events were

electrographic-only seizures. The high number of seizures which

we uncovered in this group of neonates was surprising but

reinforces the need for early and continuous EEG monitoring in

this group of neonates. In comparison, electroclinical dissociation

has been reported to occur up to 28% of neonates with HIE;

however this figure was based on aEEG findings in neonates above

32 weeks gestation and its association with anticonvulsant

administration was not described. [20] The studies by van Rooij

et al. [7] and Mercuri et al. [8] did not provide information on the

dissociation of seizures. Many of the previous studies reported the

clinical response to anticonvulsants without any EEG monitoring.

[21–23] It is known that anticonvulsants can be a sedative agent

and lead to electroclinical uncoupling or dissociation. [24] Clinical

seizures are therefore a poor indicator when it comes to assessing

the response to anticonvulsants; hence the true response of

anticonvulsants in seizure control in neonates with PAIS remains

unknown. Our study highlights that despite the use of anticon-

vulsants, under tight EEG monitoring, there are still ongoing

electrographic seizures in neonates with PAIS. Neonatologists

should be aware of this when treating neonates with PAIS who are

already treated with initial anticonvulsants, particularly in the

absence of EEG monitoring. This also explains why several

neonates in our study had many hours of repetitive seizures and

were not treated with anticonvulsants. We believe that this study is

the first to demonstrate the high seizure burden in PAIS using

continuous multichannel EEG monitoring and is thus of

significant and practical clinical importance.

The MCA is the most commonly involved artery for ischaemic

infarction in term neonates (the posterior branch irrigates the

occipital, temporal and posterior parietal areas, while the anterior

branch irrigates the prefrontal, precentral, central and anterior

Figure 1. Background EEG pattern in a neonate (case 9) with a right middle cerebral artery infarction. Note the mild voltage reduction
over the right hemisphere on EEG (blue channels) which is also evident on the aEEG with a wider band on the right in comparison to the left side. In
addition, intermittent right-sided bursts of higher voltage sharpened theta activity are also evident. Some sleep cycling is also present over the left
albeit disturbed but this is absent over the right side.
doi:10.1371/journal.pone.0100973.g001
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Figure 2. A. EEG in a neonate (case 6). Seizures arising from the left hemisphere corresponding with a left middle cerebral artery infarction on
cranial MRI. B. Cranial MRI in a neonate (case 6). The sequence is an axial T2 turbo spin echo performed on day 7 of life. Note the characteristic
focal spike and wave discharges over the left hemisphere with phase reversal over the left central region.
doi:10.1371/journal.pone.0100973.g002
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parietal areas). [25] Clinical signs may not manifest if the motor

cortical strip is not involved. [25] All neonates in our study had

some degree of MCA involvement; at some timepoint a clinical

correlate (often very subtle) was evident. Although typically

neonates with PAIS are non-encephalopathic, [26] hypotonia,

poor sucking reflex and irritability have been described. [27]

Subtle seizures in our cohort involved mainly oral-buccal-lingual

movements (four of six neonates); this is in line with other studies.

[2], [28] In PAIS, autonomic dysfunction such as apnoeic spells

[29], [30] has been reported in up to 36% of neonates; [31] only

one neonate in our study presented with apnoea before any

anticonvulsant administration. Other subtle seizures which have

been previously described included eye blinking, vertical nystag-

mus and thumb adduction, [29] but multichannel EEG monitor-

ing was not applied, thus the accuracy of these clinical signs is

unknown. Our results support the suggestion for low threshold in

initiating EEG monitoring when there is any suspicion of unusual

movements which may be seizures.

To date, reported incidences of seizures in neonates with PAIS

are mainly based on observation of neonatal behaviours, [22], [32]

rather than on multichannel EEG which is the gold standard for

accurate detection of neonatal seizures. [18], [33–35] Approxi-

mately 20% of neonatal seizures in term neonates are due to PAIS.

[2] Conversely, while neonatal seizures have been noted in 26% of

neonates with PAIS, [3] we believe these numbers could be much

higher if detection of seizures is based on prolonged multichannel

EEG monitoring. A limitation of our study is the small number of

neonates with PAIS. In our cohort of neonates, all accept one

neonate (case 2) was captured when they presented with

hemiconvulsions before discharge shortly after birth in our 2

neonatal units. We only included neonates that presented with

clear PAIS involving at most 2 arterial territories and who had

continuous multichannel EEG monitoring as soon as possible after

their presentation with seizures. While being monitored, these

neonates with seizures showed asymmetrical characteristics on the

EEG. In this period, other neonates would have presented but did

not have continuous EEG monitoring undertaken. It is difficult to

diagnose all neonates with PAIS in the neonatal period as the

majority of term neonates affected by PAIS are asymptomatic; [1]

appearing clinically well enough to be sent to the postnatal ward

shortly after birth. In our 2 units, there is a policy of early maternal

and neonatal discharge. Any neonate presenting with seizures after

they were discharged would have been readmitted to regional

paediatric hospitals, not the neonatal units. Even though our

number of neonates with PAIS is small, we believe that the novelty

here is having captured a number of neonates who had early and

long duration of multichannel EEG monitoring.

In our study, EEG monitoring was initiated only after clinical

seizures were observed in the first 3 days of life; we have shown

that the age of first clinical seizure and first recorded EEG seizure

[33 (17–42) and 36 (19–54) hours] were within 72 hours of age.

This is current practice in most neonatal units as there are no

existing early indicators to identify neonates with PAIS, hence it is

possible that neonates with PAIS and electrographic-only seizures

may have been missed during our recording period. Early EEG

monitoring may have a role in providing an early indicator of

PAIS, as early EEG from three hours after delivery has been

shown to demonstrate occasional focal sharp waves over the

Figure 3. Characteristics of seizures and anticonvulsant administration in each neonate. Vertical red lines denote the presence of
electrographic-only seizures, vertical blue lines denote electroclinical seizures and vertical green lines denote obscured seizures. Horizontal black line
denotes the period of EEG monitoring. Black crosses denote missing data. Timepoints bounded by black arrows denote the first-line anticonvulsant
administration while the magenta arrows denote the second-line anticonvulsant administration.
doi:10.1371/journal.pone.0100973.g003
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infarcted region which became more frequent, complex and of

higher amplitude in quiet sleep. [36]

In conclusion, EEG in neonates with PAIS demonstrated

distinctive features in the background EEG and morphology of

seizures. These features were present from very early after birth.

Given the ease with which EEG monitoring can now be

performed at the cotside, careful EEG analysis may prove very

useful for early diagnosis of PAIS. For the first time, we have also

quantified the seizure burden in neonates with PAIS using

multichannel video-EEG. The majority of seizures in neonates

with PAIS will escape detection without prolonged multichannel

EEG monitoring.
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Abstract  33 
Background: Phenobarbitone is the most common first-line anti-seizure drug and is effective in approximately 50% of all 34 
neonatal seizures. Objective: To describe the response of electrographic seizures to administration of intravenous 35 
phenobarbitone in neonates using seizure burden analysis techniques. Methods: Multi-channel conventional EEG, reviewed by 36 
experts, was used to determine the electrographic seizure burden in hourly epochs. The maximum seizure burden (MSB) 37 
evaluated one hour before each phenobarbitone dose (T-1) was compared to seizure burden in periods of increasing duration 38 
after each phenobarbitone dose was administered (T+1, T+2 to seizure offset). Differences were analyzed using linear mixed 39 
models and summarized as means and 95% confidence intervals. Results: Nineteen neonates had electrographic seizures and 40 
met the inclusion criteria for the study. The MSB was significantly reduced one hour after the administration of phenobarbitone 41 
(T+1) [-14.0 (95% confidence interval: -19.6, -8.5) minutes per hour; p<0.001]. The percentage reduction was 74 (36-100)%. This 42 
reduction was temporary and not significant within four hours of administrating phenobarbitone. Subgroup analysis showed 43 
that only phenobarbitone doses at 20 mg/kg resulted in a significant reduction in the MSB from T-1 to T+1 (p=0.002). 44 
Conclusions: Phenobarbitone significantly reduced seizures within one hour of administration as assessed with continuous 45 
multi-channel EEG monitoring in neonates. The reduction was not permanent and seizures were likely to return within four 46 
hours of treatment in most neonates.  47 
 48 
Introduction 49 
Seizures are harmful to the developing neonatal brain [1], are a neurological emergency and require prompt  treatment with an 50 
anti-seizure drug (ASD). In 2011, published management guidelines for neonatal seizure by the World Health Organisation 51 
strongly recommended only the use of phenobarbitone as a first-line ASD; however it was acknowledged that this 52 
recommendation was based on very low quality evidence [2]. To date, phenobarbitone remains the most common first-line 53 
ASD for treatment of neonatal seizures; this practice is largely based on tradition, local  protocols or personal preference as 54 
phenobarbitone has been shown to abolish seizures in only 50% of cases [3,4]. As a result, the treatment of neonatal seizures 55 
has not changed significantly in the last 50 years, although a number of potential new treatments are being investigated [5].  56 
 57 
The development of ASDs for neonates remains a challenging area due to developmental differences between the neonatal and 58 
adult brain such as higher concentrations of intracellular chloride and a lower expression of gamma-aminobutyric acid (GABA) 59 
receptors in the developing neonatal brain [6]. Evidence on the effectiveness of ASDs for neonates is translated from studies in 60 
older children and animal models. There is also inconsistency on the measurement of effectiveness of ASDs. Effectiveness 61 
assessed by clinical observation is known to be inaccurate [7,8], whilst others have used the amplitude-integrated EEG (aEEG) 62 
[9] which has limitations for seizure detection in neonates [10]. Effectiveness is often defined as a binary variable (effective vs. 63 
ineffective) without more detailed quantification of the actual reduction of electrographic seizures [9,11] or the duration of the 64 
effect. The complete response of electrographic seizures to individual doses of ASDs, therefore, remains poorly understood in 65 
neonates. We aimed to measure the effectiveness of individual phenobarbitone doses for the reduction of seizures using multi-66 
channel EEG recordings and detailed seizure burden analysis in a cohort of term neonates with mixed seizure aetiology. 67 

 68 
Methods 69 
As part of an ongoing study of neonatal seizures, neonates were enrolled from the neonatal intensive care units in Cork 70 
University Maternity Hospital, Ireland and University College London Hospital, United Kingdom from January 2009 to October 71 
2011. Neonates ≥37 weeks gestation were enrolled for EEG monitoring if there was any evidence of encephalopathy or seizures 72 
within 72 hours of age. Neonates who had at least one ASD dose administered during electrographic seizures were included in 73 
the study. Neonates were excluded if all their phenobarbitone doses were administered without electrographic evidence of 74 
seizures. Institutional review board approval was obtained from the Clinical Research Ethics Committees of the Cork Teaching 75 
hospitals, Ireland and the National Health Service in the United Kingdom, via the Integrated Research Application Service. 76 
Written, informed consent was obtained from at least one parent of each neonate who participated in this study.  77 
 78 
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All clinical seizures and EEG seizures recognized by the clinical team were treated. The standardized protocol for ASD usage was 79 
similar in both hospitals. At the discretion of the attending neonatologist, a phenobarbitone loading dose of 10 or 20 mg/kg 80 
was administered intravenously on seizure recognition. Subsequent phenobarbitone doses up to an accumulated dosage of 40 81 
mg/kg or a second-line (intravenous phenytoin or midazolam), third and fourth-line ASDs were administered if clinical and/or 82 
electrographic seizures recurred. The time, dose and accumulated dosage of phenobarbitone were recorded. We assumed a 83 
zero clearance rate when calculating the accumulated dosage as the majority of doses were given well within the half-life of 84 
phenobarbitone [9,11,12]. At both hospitals, EEG recording methods were identical. A Nicolet monitor (CareFusion NeuroCare, 85 
Wisconsin, USA) was used to record multi-channel video-EEG using the 10-20 system of electrode placement modified for 86 
neonates [13] The entire EEG recording from each neonate was independently reviewed by two experienced neonatal 87 
electroencephalographers (GBB, SRM) who were blinded to clinical details. Each electrographic seizure annotated was defined 88 
according to Clancy et al. [14] and status epilepticus was defined as by Ortibus et al. [15].  89 
 90 
We calculated the hourly seizure burden (HSB) in each one hour period of the EEG recording based on the electrographic 91 
seizure annotations. This was defined as the accumulated seizure duration within a one hour window, shifted across the EEG 92 
monitoring period with a one minute interval (fig. 1). In each neonate, the maximum HSB (MSB) was used to assess the 93 
effectiveness of phenobarbitone. The MSB in a time period one hour before a phenobarbitone dose (T-1) was compared to a 94 
time period of one hour in duration beginning immediately after cessation of the phenobarbitone infusion which was 95 
completed in 30 minutes. The MSB in time periods of increasing duration was also used to assess the duration of the effect of 96 
phenobarbitone administration. Time periods were increased from one hour (T+1), in hourly increments (T+2, T+3, T+4) until the 97 
last electrographically recorded seizure (T+LR). For example, T-1 is a time period from 1 hour before the start of phenobarbitone 98 
infusion until the start of phenobarbitone infusion and T+3 is a time period from after cessation of phenobarbitone infusion 99 
until 3 hours after the cessation of phenobarbitone infusion (fig. 1). Furthermore, the seizure burden between seizure onset 100 
and phenobarbitone administration was compared between doses which showed a complete (MSB=0) or incomplete (MSB>0) 101 
effect.  102 
 103 
Statistics 104 
Continuous variables were described using median [interquartile ranges (IQR)] and categorical variables using frequencies. 105 
Differences between MSB before and after phenobarbitone administration were calculated for each period (T+1, T+2 until T+LR). 106 
Linear mixed models with a neonate-level random effect were used to account for possible correlations among observations 107 
from the same neonate (more than one phenobarbitone dose per neonate). For comparisons between groups, group was 108 
included as a fixed effect in the linear mixed model. Results based on linear mixed models were presented as means [95% 109 
confidence intervals (CI)]. The comparison between MSB pre- and post-one hour (T-1 vs. T+1) was also performed in subgroups 110 
defined by dosage and accumulated dosage. We denote the number of neonates as nn and the number of doses as nd. All 111 
statistical analyses were performed in SAS 9.3 (SAS Institute Inc., Cary, NC, USA) and p<0.05 were considered as statistically 112 
significant.  113 
 114 
Results 115 
During the study period, of the 35 neonates with electrographic seizures identified, sixteen did not meet the inclusion criteria 116 
for ASD analysis (two neonates received no ASD and 14 were treated before EEG monitoring commenced or when there were 117 
no accompanying electrographic seizures). Therefore, the effectiveness of phenobarbitone was measured in the remaining 19 118 
neonates; table 1 lists their clinical characteristics and details of seizure burden. EEG monitoring began at median (IQR) age of 119 
17 (4-36) hours, EEG duration was 78 (56-109) hours and the age of first electrographic seizure was 18 (11-41) hours. 120 
 121 
The 19 neonates received a total of 37 loading phenobarbitone doses during EEG monitoring, 31 of which were given during 122 
electrographic seizures. The median (IQR) time between seizure onset and phenobarbitone administration was 3.3 (1.1-10.7 123 
hour); nd=31. A significant MSB reduction was seen in the hour immediately after phenobarbitone administration [mean 124 
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difference (95% CI): -14.0 (-19.6, -8.5) minutes/hour; p < 0.001 (nn=19; nd=31)] (table 2). The median (IQR) percentage 125 
reduction was 74.0 (36.0-100.0)% in the 31 doses. In 13 of the 19 neonates, a complete abolition of electrographic seizures was 126 
seen in the first hour following a loading phenobarbitone dose at 20 mg/kg. This abolition was permanent in 3 neonates. The 127 
MSB did not show a significant reduction over the longer term when comparing MSB in T-1 to T+LR [mean difference (95% CI): -128 
2.3 (-9.2, 4.5) minutes/hour; p=0.481]. In fact, the MSB was not significantly reduced after phenobarbitone by T+4 (table 3). The 129 
seizure burden before phenobarbitone administration was significantly lower for doses which resulted in a complete MSB 130 
reduction in the first hour (T+1) [mean (95% CI): 28.1 (-5.9, 62.1) minutes (nd=13)] compared to doses which did not completely 131 
reduce the MSB [mean (95% CI): 117.6 (71.3, 164.0) minutes (nd=7); p=0.004]. Ten of 13 doses which resulted in complete 132 
seizure reduction in T+1 were a first dose (table 2). The median (IQR) time between electrographic seizure onset and first 133 
analyzed dose was 1.8 (0.7-2.4) hours.  134 
 135 
The MSB reduction was greater when 20 mg/kg was administered compared to a dose of 10 mg/kg [mean difference (95% CI) 136 
of 20 mg/kg (nd=20) vs. 10 mg/kg (nd=11): -18.6 (-23.7, -13.5) vs. -4.4 (-11.3, 2.5) minutes/hour; p=0.002]. In fact, 20 of 20 137 
(100%) doses of phenobarbitone at 20 mg/kg resulted in a reduction in MSB during T+1 and in 13 of 20 (65%) doses, the MSB 138 
was zero during T+1. This result is reflected when observing the effect of accumulated dosage as the MSB reduction in T+1 was 139 
significantly higher for accumulated doses of 20 mg/kg [mean difference (95% CI): -19.0 (-25.0, -12.9) minutes/hour (nd=14)] 140 
and 40 mg/kg [mean difference (95% CI): -14.3 (-21.3, -7.4) minutes/hour (nd=10)] compared to an accumulated dose of 30 141 
mg/kg [mean difference (95% CI): -1.0 (-10.0, 8.0) minutes/hour (nd=6)]; p=0.001 and 0.017 respectively (fig. 2).  142 
 143 
A total of 13 doses of additional ASDs were given to neonates who received phenobarbitone as a first-line ASD (phenytoin, 144 
midazolam, clonazepam). Only one dose of phenobarbitone at 20 mg/kg was administered after the administration of second-145 
line ASD (<1 hour after phenytoin). No second or third-line ASDs were given in T+1. The median time between phenobarbitone 146 
administration and additional lines of ASD administration was 8.3 (5.2-12.4) hour. 147 
 148 
Discussion 149 
We have shown that a loading dose of phenobarbitone results in an immediate but temporary reduction in electrographic 150 
seizure burden in most term neonates; seizures returned to pre-treatment levels within four hours of administration. We have 151 
also shown that 20 mg/kg doses were more effective than 10 mg/kg, and that phenobarbitone was more likely to abolish 152 
seizures in the short-term if given before a large accumulation of seizures was apparent.  153 
  154 
Phenobarbitone, a barbiturate, primarily has an inhibitory effect in the adult brain by prolonging the action of GABA, acting 155 
mainly on the GABAA receptors [6]. The purported effect of phenobarbitone (seizure cessation via GABA agonism) is somewhat 156 
problematic given the large body of evidence suggesting that GABA is excitatory in the neonatal brain [16,17]. This excitatory 157 
drive may be due to the predominance of the sodium-potassium-chloride cotransporter isoform 1 which moves chloride into 158 
the cell and the lower expression of potassium-chloride cotransporter isoform 2 which moves chloride out of the cell [6]. This 159 
suggests, and has been shown in animal models, that a GABA agonist will facilitate seizures in the developing neonatal brain. 160 
However, GABA antagonists do not reduce seizures [18] and phenobarbitone abolishes seizures in 50% of cases [3,4]. We have 161 
shown that phenobarbitone abolishes seizures during T+1 in 65% of cases when the dose is 20 mg/kg. Conflicting results 162 
between animal and clinical studies must be resolved in order to develop improved treatment strategies for neonatal seizures. 163 
 164 
We have shown that the effectiveness of phenobarbitone is temporary and the reduction in seizure burden is limited beyond 165 
four hours of administration. This is conspicuously shorter than the pharmacokinetic half-life of phenobarbitone (range: 45 to 166 
500 hours [12] and is variable depending on circumstances [9,11]). Phenobarbitone resistance can occur in the neonatal brain 167 
and a change in GABAA receptor subunit, activation of a non-functional 'spare' GABAA receptor, uncoupling of receptors  and 168 
post-translational modification of GABAA receptor have been hypothesized as possible mechanisms for this 169 
pharmacoresistance [19]. We have also shown that doses of phenobarbitone were more likely to abolish seizures in the short-170 
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term if they were given before a large accumulation of seizures has occurred. This implies that rapid identification of seizures 171 
and intervention, when the accumulated seizure duration is low, may be more beneficial. Nardou et al. hypothesized that the 172 
increase in intracellular chloride levels during recurrent seizures may enhance the excitatory component of GABA, causing 173 
GABA agonists such as phenobarbitone to be ineffective in reducing seizure burden [20].  174 
 175 
Seizures are intermittent and highly variable and show a natural tendency to decay after a long period of time [21]. Up to 80% 176 
of neonatal seizures may be missed using clinical observation alone; methods such as the aEEG are unreliable and dissociation 177 
of electroclinical seizures increases after ASD usage [7,8,10,14,22]. It is not surprising that many seizures were treated before 178 
monitoring began or when no electrographic seizures were evident.  179 
 180 
In maternity units like ours, which monitor neonates with seizures intensively, we still found suboptimal treatment of neonatal 181 
seizures. If electrographic seizures emerged during out-of-hours, there were no alarm systems to alert clinical teams to ongoing 182 
electrographic seizures [23], hence treatment was not always instigated promptly. We are aware that this is a heterogeneous 183 
group and while the numbers (n=19) in our study were sufficient for the general assessment of phenobarbitone effectiveness 184 
on neonatal seizures, it was insufficient for assessment of phenobarbitone effectiveness with respect to seizure aetiology, 185 
dosing strategies or therapeutic hypothermia. The presence of second and third-line ASDs would have resulted in a possible 186 
underestimate of the MSB in longer duration post-phenobarbitone time periods. This, however, would not change our 187 
conclusion on the short-term effect of phenobarbitone as only 1 dose of phenobarbitone was given in the presence of a 188 
second-line ASD. In fact, an underestimation of MSB only enhances our findings relating to a short-term reduction in seizures 189 
and that seizure re-occurrence is earlier than can be accounted for by biological clearance.  190 
 191 
Conclusion 192 
Phenobarbitone immediately reduced the accumulation of seizures in a cohort of neonates with mixed aetiology. The effect 193 
was temporary and the reduction in seizure burden was not significant within four hours of treatment. Doses of 194 
phenobarbitone at 20 mg/kg as subsequent dose after the initial loading dose of 20 mg/kg, rather than 10 mg/kg as subsequent 195 
doses were significantly more effective in reducing seizure burden. Phenobarbitone was also more effective if administered 196 
when the seizure burden was relatively low.  197 
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Table 1. Summary characteristics of the 19 neonates included for the study analysis 
 
Age at EEG monitoring (hours) 

 
17 (4-36) 

Age of first EEG seizure (hours) 18 (11-41) 
Duration of EEG monitoring (hours) 78 (56-109) 
  
Summary of seizure burden  
    Recorded seizure burden (minutes) 119 (45-305) 
    Seizure number (n) 25 (11-130) 
    Mean seizure duration (seconds) 183 (126-298) 
    Neonates with status epilepticus (n) 9 
  
Neonates who received therapeutic hypothermia (n) 7 
Age of first anti-seizure drug (hours) 19 (11-51) 
  
Clinical diagnosis Number of neonates 
    HIE grade II 5 (3 were cooled) 
    HIE grade III 5 (4 were cooled) 
    Multiple infarction 2 
    Focal arterial infarction 2 
    Bifocal arterial infarction 2 
    Suspected viral encephalitis  1 
    Unknown cause 1 
    Benign non-familial seizures 1 
Data are expressed as n or median (interquartile). 
HIE: hypoxic-ischaemic encephalopathy. 
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 324 
Figure 1. 325 
An example plot of the hourly seizure burden (HSB) over time (blue line) for one neonate with seizures overlaid with the time 326 
periods used to assess the effectiveness of phenobarbitone. The change in HSB was compared one hour before (T-1), one 327 
hour after (T+1) and in the remaining hours of electrographic recorded seizures after the administration of phenobarbitone 328 
(T+LR). The upper plot is the complete seizure time course for the neonate with T+LR (black horizontal lines) shown for each 20 329 
mg/kg dose of phenobarbitone (red vertical lines). After the second dose of phenobarbitone was given, electroclinical 330 
dissociation of seizures occurred and subsequent seizures were not highlighted to the clinical team so there was no 331 
additional ASD given for seizures between 30-40 hours. The lower plot is the magnified version of the upper plot with T-1 (red 332 
boxes) and T+1 (black boxes) shown for each dose of phenobarbitone (red vertical lines). There is a clear reduction in 333 
maximum HSB between T-1 and T+1 following the administration of each dose of phenobarbitone and these seizures return 334 
within T+LR. Note that some smoothing is apparent in the HSB as both future and past values are used to estimate the HSB 335 
and a 30 minute delay is taken into account for phenobarbitone infusion. 336 
 337 

 338 
 339 

Table 3. Results of linear mixed models for maximum hourly seizure burden (MSB) post and pre-one 
hour of phenobarbitone administration from 31 observations at each timepoint across the 19 neonates 

 
MSB: Post-phenobarbitone 

administration 

 
Mean difference (95% confidence interval) in 

minutes/ hour 

 
p-values 

Post: 1 hour -14.04 (-19.60 to -8.48) <0.001 
Post: 2 hours -9.48 (-15.05 to -3.91) 0.003 
Post: 3 hours -7.53 (-13.34 to -1.73) 0.016 
Post: 4 hours -5.38 (-11.15 to 0.39) 0.064 
Post: 5 hours -4.89 (-10.70 to 0.93) 0.089 
Post: 6 hours -4.99 (-10.88 to 0.91) 0.090 
Post: 7 hours -3.39 (-9.78 to 2.99) 0.268 
Post: 8 hours -3.29 (-9.78 to 3.21) 0.292 

Post: 9, 10, 11 hours -2.92 (-9.31 to 3.46) 0.338 
Post: 12 hours -2.92 (-9.31 to 3.47) 0.338 

Until T+LR -2.33 (-9.20 to 4.54) 0.481 
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Figure 2.  340 
The short term reduction in seizure burden of phenobarbitone associated with accumulated dosage. ∆MSB denotes the 341 
change in MSB between time periods T+1 and T-1. A negative ∆MSB implies a reduction in seizure burden between T-1 and 342 
T+1. The ∆MSB at accumulated doses of 20 mg/kg and 40 mg/kg are significantly lower than accumulated doses of 30 mg/kg. 343 
Only 1 neonate had a dose of 10 mg/kg as a first dose (accumulated dosage of 10 mg/kg). 344 
 345 
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Online Supplemental Text 410 
 411 
Results  412 
Therapeutic hypothermia was contraindicated in case six who had grade II HIE because there was an extensive subgaleal 413 
hematoma and some degree of coagulopathy present. Therapeutic hypothermia was also contraindicated in cases 14 and 16 414 
who were neonates with HIE grade III and II respectively because they presented clinically beyond the therapeutic window 415 
(i.e. > six hours of age and as can be seen in Table S1, EEG monitoring was commenced at approximately 17 and 28 hours of 416 
age respectively). The doses of phenobarbitone given were at the discretion of the attending neonatologist. Case 11 was the 417 
only neonate given a dose of 10 mg/kg as the first dose; it was anticipated that a dose of 20 mg/kg may cause further 418 
respiratory depression as there was a history of recurrent apnea when the neonate was not yet intubated and ventilated. 419 
 420 
Details on excluded neonates  421 
One of the two neonates who did not receive any ASD had one short seizure (two minutes at 0400 hour) and the other was 422 
ventilated and sedated with no clinical seizures noted (electrographic seizure burden: 51 minutes, seven seizure events in 423 
total). Five neonates had all their phenobarbitone doses administered shortly after clinical seizures were observed but before 424 
EEG monitoring commenced. Eight neonates had phenobarbitone doses administered when there were no ongoing 425 
electrographic seizures at that time and one neonate who required cranial imaging did not have EEG monitoring after 426 
phenobarbitone doses were administered despite ongoing seizures. One neonate (with seizure burden: 22 minutes, 26 427 
seizure events, mean seizure duration: 51 seconds) had seizures during the rewarming period, but were not noticed for 428 
several hours on the weekend; therapeutic hypothermia was recommenced soon after and seizures abated without further 429 
ASD administration. Of note, there was a neonate admitted from the postnatal ward who presented with right sided jerking 430 
movements for which phenobarbitone was administered [seizure burden: 213 minutes, 70 seizure events, mean seizure 431 
duration: 182 seconds; with some recurring electrographic-only seizures (on Friday 0500-1430 hour)]; there were no clinical 432 
seizures to alarm the nursing or medical staff. The EEG background pattern was supportive for the diagnosis of HIE but 433 
because the presentation was beyond the therapeutic window (beyond six hours), therapeutic hypothermia was not 434 
administered. In another neonate who was admitted from the postnatal ward who appeared clinically well with benign 435 
familial neonatal seizures (seizure burden: two minutes, four seizure events, mean seizure duration: 28 seconds); some 436 
electrographic-only seizures were not noticed during off-call hours (Tuesday 0007 to 0400 hour) when there was no 437 
neurophysiologist reporting on-call service and no further ASDs were given after the first dose of phenobarbitone. Two 438 
neonates with focal brain lesions who presented with focal seizures had phenobarbitone administered in the postnatal ward 439 
before admission to the neonatal intensive care unit for continuous EEG monitoring. One of these two neonates with focal 440 
brain lesions had a seizure burden lasting 98 minutes, 36 seizures [with mean seizure duration of 163 seconds; no further 441 
clinical signs noted during off-call hours (Saturday 0000 to 1200 hour)] and the other neonate had a seizure burden lasting 442 
142 minutes, nine seizures, mean seizure duration of 944 seconds; ongoing electrographic-only seizures were not noticed 443 
during off-call hours (Friday 0230 to 0730 hour, 1030 to 1130 hour, 1400 to 2330 hour and Saturday 0230 to 1400 hour). 444 
Seizures were not treated in five neonates after the first dose of phenobarbitone because all seizures were electrographic-445 
only and there were no clinical or aEEG sentinels to alert the clinical team for treatment. The total seizure burden in these 446 
five neonates was 477 minutes (145 seizure events, mean seizure duration: 1368 seconds).  447 
 448 
Second-line ASDs  449 
Thirteen doses of various second-line ASDs were given to 10 of the 19 neonates with electrographic seizures. The time from 450 
the last phenobarbitone dose to the first second-line ASD dose was 5.1 (2.8-6.3) hours. Of these, 12 doses were administered 451 
during electrographic seizures in nine neonates (six had phenytoin, three had midazolam). In all 14 excluded neonates who 452 
received phenobarbitone, seizures returned despite the administration; seven of whom received second-line ASDs (four had 453 
phenytoin, three had midazolam). 454 
 455 
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Table S1. Characteristics of the 19 neonates with electrographic seizures 
Case Diagnosis Cooling 

duration              
(age in hours) 

Recorded 
seizure burden 
(minutes) 

Seizure 
number 
(n) 

Mean seizure 
duration 
(seconds) 

Age of 
first ASD 

Age at EEG 
monitoring 

Age of first 
EEG seizure 

Duration of 
EEG 
monitoring 

1 Arterial ischemic stroke-LMCA Non-cooled 46 22 126 55h 48m 59h 13m 59h 43m 69h 

2E HIE grade II 72 (2-74) 58 2 1741 9h 54m 4h 8h 10m 77h 7m 

3 HIE grade II 72 (2.5-74.5) 44 21 127 2h 36m  4h 40m 11h 23m 78h 54m 

4E HIE grade II 72 (2-74) 119 18 396 15h 36m 2h 40m 13h 25m 101h 15m 

5 Multiple infarctions Non-cooled 12 4 183 115h 12m 113h 0m 113h 5m 14h 52m 

6E HIE grade II Non-cooled 37 1 2207 7h 18m 2h 53m 6h 37m 60h 55m 

7E HIE grade III 65 (0.8-66) 198 49 243 17h 6m 2h 46m 16h 33m 88h 14m 

8 HIE grade III 91 (2.1-93.1) 397 296 80 15h 30m 6h 48m 11h 47m 127h 1m 

9 Unknown Non-cooled 25 8 185 30h 30m 32h 57m 33h 57m 64h 50m 

10E HIE grade III 22 (2.5-24.5) 1404 266 317 9h 18m 4h 25m 8h 39m 172h 22m 

11R HIE grade III 72 (6-78) 225 198 68 56h 36m 4h 50m 43h 8m 122h 9m 

12 Arterial ischemic stroke-LMCA 
and RMCA 

Non-cooled 133 22 362 9h 42m 9h 4m 9h 4m 38h 55m 

13 Multiple infarctions Non-cooled 97 25 234 18h 48m 17h 12m 28h 13m 45h 4m 

14 E HIE grade III Non-cooled 637 271 141 18h 12m 16h 48m 16h 50m 110h 44m  

15E Arterial ischemic stroke-LMCA 
and LPCA 

Non-cooled 362 112 194 19h 18h 59m 18h 59m 62h 41m 

16 HIE grade II Non-cooled 149 76 117 29h 28h 6m 28h 20m 53h 38m 

17E Suspected viral encephalitis Non-cooled 80 28 171 57h 30m 57h 55m 58h 7m 103h 56m 

18E Arterial ischemic stroke-RMCA Non-cooled 332 136 146 37h 12m 36h 26m 36h 26m 228h 54m 

19 Benign non-familial seizures Non-cooled 4 5 43 123h 119h 25m 121h 42h 38m 
ASD: anti-seizure drug; E: neonates with status epilepticus; HIE: hypoxic-ischemic encephalopathy; LMCA: left middle cerebral artery; LPCA: left posterior cerebral artery;  
R: neonates with electrographic seizures following discontinuation of cooling; RMCA: right middle cerebral artery.  
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ABSTRACT  
 
An estimate of the incidence of electroclinical dissociation of seizures (ECDS) may be a 
useful tool to neonatologists in the management of neonatal seizures in term neonates. 
We aimed to determine the rate of ECDS in term neonates with varying aetiologies. 
Electrographic seizures were annotated by an experienced neonatal 
electroencephalographer. Simultaneous video was reviewed in each neonate and the 
ECDS index was defined as the percentage of accumulated number of electrographic-only 
seizure (defined as having >40% of their seizure duration with electrographic-only 
seizures) relative to the total number of seizures in each neonate. Data are expressed as 
medians (interquartile ranges).  

Of 24 neonates with electrographic seizures who had simultaneous video-EEG monitoring, 
19 had electrographic seizures and 5 had electroclinical seizures only. Although there was 
no statistical significance between the groups, the ECDS indices in neonates with focal 
arterial ischaemic stroke (n=4), neonates with other diagnoses (n=5), cooled [n=7 (3 
moderate, 4 severe)] and in non-cooled neonates with HIE [n=3 (2 moderate, 1 severe)] 
were 64 (58-68)%, 75 (61-89)%, 88 (55-100)% and 94% (n=3) respectively.   

Based on our current cohort, the occurrence of ECDS is high. This emphasizes the need for 
continuous multichannel video EEG monitoring as the majority of electrographic seizures is 
not detected by clinical observation alone. 

(Word count 208)   
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1. Introduction 
The incidence of electroclinical dissociation of seizures (ECDS) has been reported to be as 
high as 80% of neonates treated with anti-seizure medications.1-4 Phenobarbitone may 
have facilitated the occurrence of ECDS and that different brain pathologies are 
responsible for the clinical and EEG manifestation of seizures at the molecular level.2,4 As 
the clinical component of ECDS cannot be observed, continuous multichannel video-EEG is 
crucial in monitoring ECDS in neonates particularly during the treatment period. Neonates 
with ECDS have higher seizure burden and are associated with poorer 
neurodevelopmental outcome.5 We aimed to unravel the incidence of ECDS in a group of 
term neonates using continuous multichannel video-EEG. 
 
2. Methods 
Institutional review board approval was obtained from the Clinical Research Ethics 
Committees of Cork Teaching hospitals, Ireland. Written, informed consent was obtained 
from at least one parent of each neonate who participated in this study. As part of an 
ongoing study on neonatal seizures at the Cork University Maternity Hospital, Ireland from 
January 2009 to October 2011, neonates ≥37 weeks gestation were enrolled for EEG 
monitoring if they fulfilled at least two of the following criteria: Apgar score ≤six at five 
minutes; a continued need for resuscitation after birth; any clinical evidence of 
encephalopathy or seizures within 72 hours of age. Phenobarbitone was the first-line anti-
seizure medication administered to a maximum dose of 40 mg/kg intravenously. Second-
line anti-seizure medications were administered if clinical and/or electrographic seizures 
recurred following phenobarbitone administration. The choice of second-line anti-seizure 
medication administration was at the discretion of the attending neonatologist.  
 
The method of monitoring based on the multichannel video-EEG using a Nicolet monitor 
(CareFusion NeuroCare, Wisconsin, USA), the definitions for electrographic seizures, status 
epilepticus, seizure burden, mean seizure duration and electrographic seizure window 
have been described in studies previously published by our research group.6,7 All 
electrographic seizures were annotated by an experienced neonatal 
electroencephalographer (G.B.B). Electrographic-only seizures (EOS) were defined as clear 
electrographic seizures without any clinical correlates.5 Electroclinical seizures were 
defined as electrographic seizures accompanied with behavioural correlates. The ECDS 
index was calculated as the percentage of the number of seizures which had ≥40% of their 
seizure duration with EOS; they were calculated relative to the total number of 
electrographic seizures. Continuous variables were described using medians [interquartile 
ranges (IQR)] and categorical variables using frequencies. For paired comparisons, the 
Wilcoxon test was used. All statistical analyses were performed using PASW Statistics 20.0 
(IBM SPSS Statistics, Illinois, USA). All tests were two-sided; a p-value <0.05 was 
considered to be statistically significant.  
 
3. Results 
During the study period, twenty-four neonates with seizures were identified from 
simultaneous video and multichannel EEG monitoring. The median (IQR) age when EEG 
monitoring began was 10 (3-19) hours, EEG duration was 68 (47-91) hours and age of first 
EEG seizure was 19 (13-39) hours. Aetiologies for seizures included hypoxic-ischaemic 
encephalopathy (HIE) (n=12), stroke (n=6), benign seizures (n=2), intraparenchymal 
haemorrhage (n=2), subdural haemorrhage (n=1) and cryptogenic seizure (n=1). Table 1 
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and 2 show details of anti-seizure medications and the characteristics of seizures in each 
neonate respectively. 
 
Of 24 neonates with electrographic seizures, five neonates (cases 2, 5, 14, 16 and 18) did 
not have any ECDS; all their seizures were presented as electroclinical seizures only (table 
2). In the remaining 19 neonates, 1123 seizures were analyzed. One neonate (case 1) had 
44% of seizures identified as EOS while the remaining 18 neonates had ≥50% of their total 
number of seizures detected as EOS [80.03 (54.73-95.01)%]. The median (IQR) ECDS 
indices in neonates with focal arterial ischaemic stroke (n=4), neonates with other 
diagnoses (n=5), cooled [n=7 (3 moderate, 4 severe)] and in non-cooled neonates with HIE 
[n=3 (2 moderate, 1 severe)] were 64 (58-68)%, 75 (61-89)%, 88 (55-100)% and 94% (n=3) 
respectively.   
 
There was no significant difference in the percentage of the number of seizures with EOS 
between neonates who received phenobarbitone 20 mg/kg (n=6) vs phenobarbitone 40 
mg/kg (n=9) (p=0.516). There was no significant difference in the percentage of the 
number of seizures with EOS between cooled (n=7) vs all non-cooled neonates (n=12; HIE 
and other diagnoses) (p=0.498), cooled (n=7) vs non-cooled neonates with HIE (n=3) 
(p=0.564) and between cooled HIE (n=7) vs non-cooled neonates with focal arterial 
ischaemic stroke (n=4) (p=0.465).  
 
Also, there was no significant difference in the percentage of the number of seizures with 
EOS between neonates who had severe HIE (n=5) vs those with moderate HIE (n=5) 
(p=0.169), between those who had severe HIE (n=5) vs all other diagnoses (n=14) 
(p=0.711) and between neonates who had status epilepticus (n=8) vs those who had no 
status epilepticus (n=11) (p=0.804). 
 
4. Discussion  
Based on findings of multichannel video-EEG, this study has shown that the ECDS index 
remains high in term neonates who were treated with anti-seizure medication. The 
median ECDS indices in neonates with focal arterial ischaemic stroke, other diagnoses, 
cooled and in non-cooled neonates with HIE were 64, 75, 88 and 94% respectively.   
 
Regional interconnectivity (interhemispheric and corticospinal) which are not fully mature 
due to incomplete myelination of white matter tracts have been implicated in leading to 
only modest or no behavioural manifestations of ECDS.8 Neonates can show no signs, very 
subtle tonic or clonic movements, often limited to only one limb, making the diagnosis 
difficult to discern from myoclonus or other automatisms.9,10 The sedative effect of 
phenobarbitone may account for this, as it is also known to be a potent benzodiazepine. In 
a cohort of 88% of neonates were treated with anti-seizure medication, up to 79% of 
neonates had EEG seizures with no clinical correlates.11 ECDS was noted in 58% of 
neonates with electroclinical seizures after phenobarbitone or phenytoin were 
administered.2,4,12 Anti-seizure medications were administered in 49% of ECDS seizures 
and 68% of electroclinical seizures, suggesting that anti-seizure medication was not the 
only factor in causing seizures to dissociate;5 other mechanisms in the developing neonatal 
brain may be responsible for the clinical and EEG seizure manifestation.4  
 
There was no significant difference in the ECDS between cooled (n=7) vs non-cooled 
neonates with HIE (n=7 vs 3) and between cooled vs all non-cooled neonates with various 
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diagnoses (n=7 vs 12). Using continuous video-EEG (commenced at 10.2 ±2.9 hours of age 
for 90.9 ±28.3 hours) and whole-body cooling in 41 neonates treated with anti-seizure 
medication (lorazepam, phenobarbitone, fosphenytoin, levetiracetam), Nash et al. 
detected EOS in 34%(14/41) of neonates.13 The differing treatment strategies in other 
institutions using different use of anti-seizure medication may explained the lower 
incidence of EOS when compared to our study results. The association between ECDS and 
severe EEG background has been implicated in 6 neonates (25-41 weeks gestation) 
monitored from 100-360 minutes by Boylan et al.,1 and in 11 neonates by Pinto et al.14 In 
11 of 30 neonates with HIE, ECDS was constantly identified only in neonates with 
depressed and undifferentiated background EEG (defined as EEG activity between 5-15 
μV), implying that ECDS is more common in neonates with severe cerebral injury.1 
Prolonged status epilepticus can cause a progressive state of severe encephalopathy and 
ECDS has been noted as a feature of prolonged status epilepticus in adults and children.15-

17 Neonatal studies have reported a small incidence of status epilepticus in cohorts of 
neonates who were cooled. In 47%(8/17) of neonates who had EOS, 23%(4/17) had status 
epilepticus,18 while 3/6 with EOS had status epilepticus.13 In our study, there were more 
number of seizures per neonate in the ECDS (n=6) than in the electroclinical group (n=4); 
p<0.05.  
 
Most electrographic seizures emerged during out-of-hours working time (past midnight 
and during weekends); there were no alarm systems to alert nursing and medical 
personnel when there were ongoing electrographic seizures detected on the multichannel 
video-EEG monitoring device. Hence, treatment of seizures remains suboptimal as many 
neonates were treated when there were abnormal movements but with no electrographic 
seizure correlates. Further trials on assessing the effectiveness of treatment would be 
highly optimized using the automated seizure detection embedded in the EEG system on a 
continuous monitoring basis, as a method to alert neonatologists to treat when there are 
ongoing electrographic seizures and not to treat when there are no electrographic 
seizures. 
 
The high incidence of ECDS raises the important issue of accurate seizure detection if our 
goal is to optimize neuroprotection in neonates. The findings from this study are 
important, making it crucial that we develop a more effective method of detecting 
seizures. Further research should revisit our inevitable reliance on the continuous and 
prolonged multichannel video-EEG monitoring for seizure surveillance in neonates. 
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Table 1 Details on the sequence of anti-seizure medication given and reasons why ongoing EEG seizures were not treated 
Case Age of first 

clinical 
seizure 
(hours) 

Characteristic of first 
clinical seizure 

Age of EEG 
monitoring 

(hours) 

Age of 
first EEG 
seizure 
(hours) 

Duration of 
EEG 

monitoring 
(hours) 

Age of first 
anti-seizure 
medication 

(hours) 

Order of anti-seizure 
medication given 

during EEG (mg/kg) 

Reasons for not given further 
anti-seizure medication despite 

ongoing EEG seizures 

1 5 Myoclonic jerks with 
desaturations 

1.6 13 92.28 6.2 PB (20) Saturday 0200-0900. Sedated 
with no further clinical signs 

noted 
2E 6 Limbs jerking and 

blinking 
2.9 7 60.92 7.3 PB (20): non-cooled Complete resolution of seizures 

3 11 Hypertonic limbs 
with arching 

4.7 11 78.9 11 PB (20, 10) Saturday 0200-0300. Sedated 
with no further clinical signs 

noted 
4 Not 

recorded 
Fisting and posturing 12.1 22 97.08 None None: non-cooled Saturday 0030-0500, Sunday 

2300, Monday 0012 
5E 2 Upper limbs jerks 4 8 77.12 9.9 PB (20) Sunday 0649-0759. Complete 

resolution of seizures 
6 1 Upper limbs jerks, 

nystagmus to the 
right 

9.1 19 159.65 1.1 PB (20, 10, 10), PT, CL, 
LV 

Given for clinical seizures 

7 4 Tremulous right 
hand 

3.3 23 84.25 7.3 PB (20) Monday 0036-0241, 0500-1600. 
Sedated  with no further clinical 

signs noted 
8E 1 Generalize tonic 

clonic after 
intubation 

2.7 13 101.25 15.6 PB (20) Wednesday 1500-1700, 2100 to 
Thursday 0900. Sedated with no 

further clinical signs noted 
9E 2 Right arm jerking 2.8 17 88.23 17.1 PB (20, 20), PT Sedated  with no further clinical 

signs noted 
10E 2 Right sided limbs 

jerking 
10.8 11 49.42 10.2 PB (20): non-cooled Friday 0500-1430 

11R 2 Desaturations while 
on ventilator 

4.8 43 122.15 56.6 PB (10,10,20), PT,CL Sunday 0200 (Valentine’s day) to 
Monday 1000. Sedated  with no 

further clinical signs noted 
12 E 1 Eyes staring 16.8 17 110.73 18.2 PB (20, 20): non-

cooled 
Saturday 2300, Sunday 0200, 

0500, 2200 
13 Day 7 Limbs jerking 151.3 153 33.45 150.4 PB (20): non-cooled Tuesday 0007-0400; only 2 mins 

long seizure 
14 Day 4 Upper limb 

hypertonic, left eye 
deviation 

119.4 121 42.63 123 PB (20), PY: non-
cooled 

Tuesday 1600-1700 

15 Not 
recorded 

Desaturations 6.8 7 56.53 8.6 PB (20, 10, 10), PT, CL, 
LV, PY: non-cooled 

Saturday 0900-1700 

16 Day 5 Left focal seizures 113 113 14.87 115.2 PB(20): non-cooled Friday 1800-2030. Complete 
resolution of seizures 

17 13 Left focal seizures 17.2 28 45.07 18.8 PB(20, 20): non-cooled Tuesday 0000,0100,0200, 
Wednesday 0830 

18 42 Limbs jerking 33.9 34 64.83 30.5 PB (20, 20), PT: non-
cooled 

Saturday 0730-1700 

19 54 Desaturations only 59.2 60 69 55.8 PB(20, 10),PT: non-
cooled 

Saturday 1530-2200 

20 18 Right focal seizures 21.1 22 61.02 19.6 PB(20): non-cooled Saturday 0000-1200.  Sedated  
with no further clinical signs 

noted 
21E 8 Left focal seizures 17.7 18 73.27 10.3 PB (20, 10), PT: non-

cooled 
Thursday 1700 to Wednesday 

0600 
22E 33 Right sided jerks 3.3 39 45.63 34.4 PB(20, 10), PT: non-

cooled 
Thursday 0600-1700 

23E 15 Right upper limb 
jerks 

17.9 19 51.82 23.7 PB(20, 20): non-cooled Friday 0230-0730, 1030-1130, 
1400-2330. Saturday 0230-1400 

24E 18 Right upper limb 
jerks 

18.9 19 62.68 19 PB(20, 10, 10), PT: 
non-cooled 

Thursday 1700-0000. Friday 
0000 to Saturday 0400 

B: neonates who had all phenobarbitone doses given before EEG monitoring commence; N: neonates with no anti-seizure medication given at any stage; *neonates who 
were given at least one of the phenobarbitone dose during EEG monitoring, but all phenobarbitone doses were not given during EEG seizures.  
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Table 2  Characteristics of EEG seizures 
Case Seizure 

burden 
(mins) 

Number 
of 

seizures 
(n) 

Mean 
seizure 

duration 
(seconds) 

Seizure 
window 
(hours) 

Clonic seizures  
% (n)  

(description) 

Subtle seizures  
% (n)  

(description) 

Obscured 
seizures 

% (n) 

Electroclinical 
seizures 

% (n) 

EEG-only 
seizures  

% (n) 

1 24 9 161 9 0 (0) 55.56 (5) (B) 0 (0) 55.56 (5) 44.44 (4) 
2 37 1 2207 1 100 (1) (L-sided) 0(0) 0 (0) 100 (1) 0 (0) 
3 44 21 127 11 4.76 (1) (RUL) 14.29 (3) (B, T) 0 (0) 19.05 (4) 80.95 (17) 
4 51 7 438 29 0 (0) 0 (0) 0 (0) 0 (0) 100 (7) 
5 58 2 1741 1 50 (1) (arching) 50 (1) (St) 0 (0) 100 (2) 0 (0) 
6 67 89 45 118 1.12 (1) (UL) 39.33 (35) (B, Bx, Cy, St) 4.49 (4) 40.05 (36) 55.06 (49) 
7 78 54 87 15 0 (0) 0 (0) 0 (0) 0 (0) 100 (54) 
8 119 18 396 17 0 (0) 5.56 (1) (Hi) 5.56 (1) 5.56 (1) 88.89 (16) 
9 198 49 243 41 0 (0) 0 (0) 0 (0) 0 (0) 100 (49) 

10 213 70 182 31 1.43 (1) (RUL) 2.86 (2) (Cr) 1.43 (1) 4.29 (3) 94.29 (66) 
11 225 198 68 51 0 (0) 0.51 (1) (D) 7.07 (14) 0.51 (1) 92.42 (183) 
12 637 271 141 92 7.38 (20 ) (arching, UL) 8.86 (24) (B, D, Hb, Hy, M, Sh, St) 3.69 (10) 16.24 (44) 80.07 (217) 
13 2 4 28 3 25 (1) (LLL) 0 (0) 0 (0) 25 (1) 75 (3) 
14 4 5 43 19 60 (3) (L-sided) 20 (1) (M) 20 (1) 80 (4) 0 (0) 
15 7 5 81 8 0 (0) 0 (0) 20 (1) 0 (0) 80 (4) 
16 12 4 183 2 75 (3) (LUL) 0 (0) 25 (1) 75 (3) 0 (0) 
17 18 6 176 8 0 (0) 33.33 (2) (Cy) 0 (0) 33.33 (2) 66.67 (4) 
18 25 8 185 9 100 (8) (RUL) 0 (0) 0 (0) 100 (8) 0 (0) 
19 67 41 98 9 0 (0) 24.39 (10) (D) 9.76 (4) 24.39 (10) 65.67 (27) 
20 98 36 163 12 2.78 (1) (LLL) 0 (0) 0 (0) 2.78 (1) 97.22 (35) 
21 142 9 944 28 55.56 (3) (LUL) 11.11 (1) (Cl) 0 (0) 44.44 (4) 55.56 (5) 
22 201 23 523 11 0 (0) 39.13 (9) (M, Su) 4.35 (1) 39.13 (9) 56.52 (13) 
23 266 112 143 21 68.75 (17) (RUL) 13.39 (15) (M, Su) 2.68 (3) 28.57 (32) 68.75 (77) 
24 327 101 195 35 61.39 (16) (RUL) 18.81 (19) (Cy, M, Su, Y) 3.96 (4) 34.65 (35) 61.39 (62) 

B: blinking; Bx: boxing; Cl: clenching of fists; Cr: crying; Cy: cycling of limbs; D: desaturations of peripheral oxygen; Electroclinical seizures: electrographic seizures 
accompanied with behavioural correlates; Electrographic-only seizures: clear electrographic seizures without any clinical correlates; Electrographic seizure window: 
the timepoint between the first and last recorded electrographic seizure in hours. Hb: head bobbing; Hi: hiccups; Hy: hyperventilating; L: left; LLL: left lower limb; M: 
mouthing; Obscured seizures: seizures when viewing of the video was obscured (for example during a medical procedure); RUL: right upper limb;  Seizure burden: 
the total duration of recorded electrographic seizures in minutes; Sh: shivering; St: staring; Su: sucking; T: twitching of left upper limb; UL: upper limb; Y: yawning.   
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Perinatal stroke is the second most common cause of neonatal seizures, and can result in long-term

neurological impairment. Diagnosis is often delayed until after seizure onset, owing to the subtle

nature of associated signs. We report the early electroencephalographic (EEG) findings in a female

infant with a perinatal infarction, born at 41 weeks 2 days and weighing 3.42kg. Before the onset of

seizures, the EEG from 3 hours after delivery demonstrated occasional focal sharp waves over the

affected region. After electroclinical seizures, focal sharp waves became more frequent, complex,

and of higher amplitude, particularly in ‘quiet sleep’. In ‘active sleep’, sharp waves often disap-

peared. Diffusion-weighted imaging confirmed the infarct, demonstrating left frontal and parietal

diffusion restriction. At 9 months, the infant has had no further seizures, and neurological examina-

tion is normal. To our knowledge, this report is the first to describe the EEG findings in perinatal

stroke before seizures, and highlights the evolution of characteristic background EEG features.

Perinatal stroke is an important cause of long-term neurologi-
cal morbidity,1 and the second most common cause of seizures
in the newborn period, accounting for 12 to 18% of all neona-
tal seizures.2,3 Most infants who suffer a stroke are well after
delivery, and come to attention when they develop clinical sei-
zure activity.2 Therefore, electroencephalography (EEG) is
generally performed only after presentation with seizures.
EEG can monitor ongoing seizure activity, aid diagnosis, and
predict outcome.4 The EEG features associated with neonatal
stroke have been described only peri- or postictally. The early
EEG changes that occur before the onset of clinical seizures
in neonatal stroke are unknown. We present the early clinical
and EEG findings from 3 hours after delivery in a term infant
with a middle cerebral artery infarct who progressed to sei-
zures at 33 hours post delivery. Parental informed consent was
obtained for publication of this case report.

CASE REPORT
A female infant was born at 41 weeks 2 days to a 34-year-old
mother whose pregnancy had been uneventful. The antenatal
fetal heart rate and variability were normal. The infant was
delivered by ventouse owing to failure to progress. Meconium
was present at delivery, and the airway was intubated and aspi-
rated. Positive-pressure ventilation was required for 2 min-
utes. The heart rate remained over 100 beats per minute
throughout. The Apgar scores were 3 at 1 minute and 6 at
5 minutes. The arterial cord pH was 7.27, with a base excess
of )7.6mEq ⁄ L and bicarbonate of 19.3mmol ⁄ L.

The infant was admitted to the neonatal unit with mild tac-
hypnoea requiring 30% fractional inspired oxygen (FiO2) for
6 hours. A chest radiograph was consistent with mild

meconium aspiration, and neurological examination at this
time was normal. As part of an ongoing research study, contin-
uous digital video EEG began at 3 hours post delivery.

The infant stabilized quickly, and at 18 hours post-delivery
EEG was discontinued. The infant remained slow to feed and
mildly irritable. Repeated neurological assessment at 24 hours
was normal with no obvious encephalopathy.5

At 33 hours post delivery, right upper and lower limb clonic
movements and eye flickering were observed for 3 to 4 min-
utes. Two further clinical seizures occurred over the next
45 minutes. Between clinical seizures, the infant remained
responsive with normal tone and pupillary reflexes. A loading
dose of 20mg ⁄ kg phenobarbital was administered intra-
venously. Continuous EEG monitoring was recommenced at
34 hours post delivery; this confirmed seizure activity. Inter-
mittent electrographic seizures continued and phenytoin was
administered at 48 hours. No further seizures were noted after
54 hours.

Initial investigations, including C-reactive protein, full
blood count, blood culture, metabolic screen (lactate, ammo-
nia, serum amino acids, and urinary organic acids), and lumbar
puncture, did not reveal a cause for the seizures. Cranial ultra-
sound performed at 44 hours post delivery revealed no abnor-
malities.

The Amiel-Tison6 neurological assessment was performed
on day 3. The examination showed the infant to be lethargic,
with right thumb adduction, no resistance to the scarf test in
the right upper limb, and slow recoil in both the right upper
and lower limbs. The Moro reflex was asymmetrical, with
decreased movement in the right upper limb. The
Amiel-Tison assessment was repeated on day 7. The infant
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was alert, the right thumb inactive but not fixed in adduction,
and neither elbow reached the midline on scarf test. The right
upper limb continued to have slow recoil, but axial motor
activity was normal.

Magnetic resonance imaging of the brain was performed at
68 hours. The T1- and T2-weighted sequences were normal,
but diffusion-weighted imaging demonstrated extensive left
frontal and parietal diffusion restriction, consistent with acute
ischaemia of the anterior trunk of the middle cerebral artery,
specifically of the prefrontal, precentral, and central branches
(Fig. S1, published online). Repeat magnetic resonance imag-
ing on day 10 demonstrated extensive left middle cerebral
artery territory white matter T1 hypointensity and T2 hyper-
intensity, consistent with infarction. Perisylvian cortical T1
hyperintensity, representing cortical laminar necrosis, was also
present.

At 9 months of age, the infant has a typical neurological
examination with no residual asymmetry, development is typi-
cal, and there have been no further seizures. No aetiology for
the infarction has yet been found.

Electroencephalographic findings
Continuous video EEG (NicoletOne ICU Monitor; Neuro-
Care, Carefusion, Middleton, WI, USA) was initiated at
3 hours post delivery using nine scalp electroencephalo-
graphic monitoring electrodes (F3, F4, C3, C4, T3, T4,
O1, O2, and Cz). The EEG was initiated as part of an
ongoing clinical study (The BiHIvE Study; one of the
inclusion criteria for the study is an Apgar score of £6 at
5min). Electrocardiography and respiration monitoring
were performed simultaneously. Visual EEG analysis was
performed by a clinical scientist experienced in neonatal
EEG and by a clinical neurophysiologist (GB).

The EEG at 3 hours demonstrated continuous back-
ground activity in the 50 to 100lV range, with poorly
developed sleep cycles (Fig. 1). Occasional sharp waves
were seen over the left central region in ‘active sleep’
phases. In ‘quiet sleep’, intermittent bursts of high-ampli-
tude sharp waves were present over the left hemisphere.
Some mild asymmetries were also noted between the right
and left hemisphere. These findings were not identifiable
on the simultaneous amplitude integrated EEG trace. The
EEG was recommenced at 34 hours, after clinical seizures
were noted. The background EEG asymmetry had become
much more obvious in quiet sleep, with bursts of sharp
waves and isolated sharp waves occurring every 3 to 5 sec-
onds over the left hemisphere. In addition, runs of rhyth-
mic theta activity were also present over the left
hemisphere. In active sleep, the asymmetry lessened and
frequently disappeared (Fig. 2). Electrographic seizures
demonstrated a clear left-sided focus over the central
region. Seizures began as focal 1 to 2Hz discharges. As the
seizure evolved, the discharges often became biphasic or tri-
phasic. During the EEG recording, a total of 24 electro-
graphic seizures were recorded, with a mean duration of
8 minutes 43 seconds (range 1min 26s–23min). On simulta-
neous video recordings, only two were associated with

clinical features: one with lip smacking, and one with a
tonic–clonic clinical seizure.

DISCUSSION
To our knowledge, this report is the first to document the
early postnatal EEG findings in perinatal stroke before the
onset of clinical seizures. Animal models have demonstrated
that seizure genesis occurs in both the infarct core and the
penumbra after stroke, and that non-seizure epileptiform dis-
charges, such as periodic lateralized epileptiform discharges,
are generated in the penumbra.7,8 In the female infant we
assessed, the electrographic abnormalities occurred ipsilateral
to the injury and were spatially consistent with the area of hy-
perintensity on diffusion-weighted imaging.

The exact time of neurological injury causing neonatal sei-
zures is seldom known. Filan et al.9 found that seizures
emerged between 18 and 20 hours in neonatal hypoxic-ischae-
mic encephalopathy, whereas Rafay et al.10 demonstrated that
the mean seizure onset in neonatal stroke (at 27.8h) occurred
later than in hypoxic–ischaemic encephalopathy. In the female
infant we assessed, the seizures developed clinically at
33 hours post delivery. We cannot be exact in the timing of
injury; there was no documented sentinel obstetric event. The
cardiotocogram was normal before delivery, and the infant
was relatively stable at birth. We know that the injury
occurred before the infant was 3 hours old, owing to the
established presence of abnormal electrographic spikes at that
time. The timing of seizures and the diffusion-weighted imag-
ing changes at 66 hours post delivery indicate that the injury
occurred close to the time of delivery.

Previous descriptions of EEG abnormalities in perinatal
stroke, based upon EEGs after the onset of seizure activity,
relate focal slowing and sharp waves.11,12 Clancy et al.12 also
noted localized voltage reduction and focal electrical seizures.
In the female infant we assessed, asymmetrical activity, focal
sharp waves, and theta activity were noted, before and after
the onset of seizures. These abnormalities became more
prominent with time after injury. Peri-infarct depolarizations
(a form of spreading depression) propagate from the infarct
core, causing depolarization within the penumbra, and
increase the ischaemic tissue volume.13 Animal models have
demonstrated that this increase occurs within the first
24 hours, perhaps explaining the evolution of the EEG abnor-
malities described here.13

Rando et al.14 described periodic lateralized epileptiform
discharges on the EEG in two instances of neonatal cere-
bral infarction. These EEGs demonstrated typical back-
ground activity with periods of varying duration consisting
of repetitive stereotyped discharges (200ms occurring every
1–2s). The discharges were initially negative biphasic sharp
transients with an amplitude of 50 to 150lV, and were
present in all behavioural states. Similar sharp waves were
identified before and after the onset of seizure activity in

What this paper adds
• EEG abnormalities in neonatal stroke present early after birth and evolve.
• EEG abnormalities can change with sleep state.
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Figure 1: Active sleep before onset of seizures with occasional sharp waves (circled).
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Figure 2: After seizure onset, quiet sleep showing asymmetrical bursts (circled), and active sleep without asymmetry.
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our female infant. However, a clear difference in sharp wave
activity was noted between active sleep and quiet sleep,
being most prominent in quiet sleep. To our knowledge,
this has not been previously described in neonatal stroke.
Non-rapid eye movement sleep has been shown to increase
epileptogenic activity in the animal model.15 The authors
hypothesized that seizure foci were hyperresponsive to syn-
chronous excitatory synaptic inputs, resulting in the propa-
gation of epileptic discharges during non-rapid eye
movement sleep.

CONCLUSION
Our findings support the theory that the timing of infarction
is during a narrow perinatal window. We have demonstrated
that the EEG features previously described in neonatal stroke
are present in the early neonatal period before the onset of sei-

zures, and that they progress and become more evident over
the first days of life. We also demonstrate that the abnormali-
ties can change with sleep state and disappear during active
sleep. This has not been previously described, and highlights
the importance of prolonged EEG recording, encompassing
at least an entire sleep–wake cycle to ensure that abnormalities
are not missed.
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We describe the EEG findings from an ex-preterm neonate at term equivalent age who presented with intermittent but prolonged
apneic episodes which were presumed to be seizures. A total of 8 apneic episodes were captured (duration 23–376 seconds) during
EEG monitoring. The baseline EEG activity was appropriate for corrected gestational age and no electrographic seizure activity
was recorded. The average baseline heart rate was 168 beats per minute (bpm) and the baseline oxygen saturation level was in the
mid-nineties. Periods of complete EEG suppression lasting 68 and 179 seconds, respectively, were recorded during 2 of these 8
apneic episodes. Both episodes were accompanied by bradycardia less than 70 bpm and oxygen saturation levels of less than 20%.
Short but severe episodes of apnea can cause complete EEG suppression in the neonate.

1. Introduction

Despite the frequency with which apnea occurs in the
neonate and the concern about adverse long-term effects
[1], few studies have examined the effects of apneic
episodes simultaneously with recorded multichannel elec-
troencephalography (EEG) [2]. Previous EEG studies in term
neonates presenting with apnea but without an accompa-
nying bradycardia have shown that seizures [3], particularly
temporal lobe seizures [4], are a common etiology. The EEG
changes associated with non-seizure apneic episodes in term
neonates have not been described in detail. One study from
1969 has shown that apneic events during weaning from
the ventilator in preterm neonates induced EEG suppression
(<10 µV) when oxygen partial pressures fell to approximately
20 mmHg [5]. Whether EEG suppression is a common
occurrence during intermittent apneic episodes in neonates
is not known and neither is the effect of the duration and
severity of these events.

Sustained EEG suppression in the term neonate is a
worrying sign and is often seen following the acute phase
of moderate to severe hypoxic-ischemic encephalopathy [6].
EEG recovery can take hours or even days, depending
on the severity of the primary injury and in very severe

cases, the EEG may only recover with very low amplitude
activity. In this case report, we were particularly interested
in documenting the EEG changes which occur during
intermittent episodes of hypoxia and bradycardia due to
apnea in an ex-preterm neonate at term equivalent age.

2. Case Report

A female neonate was delivered by emergency Caesarean-
section for maternal hypertension at 32 weeks (birthweight
1.9 kg (75th percentile)). At corrected gestational age of
38 weeks, she presented with apneic events associated with
bradycardia and cyanosis. While being mechanically venti-
lated, she displayed some abnormal movements: hyperex-
tension of the arms, jerking movements of all four limbs,
thumb abduction, and hyperextension of the trunk during
these apneic events. Prior to EEG monitoring, the neonate
received intravenous phenobarbitone (10 mg/kg) and pheny-
toin (15 mg/kg) when clinical suspicion of seizures was
raised. Cranial ultrasound imaging was normal. Chest radio-
graph showed right middle lobe consolidation secondary
to viral bronchiolitis. The apneic events were attributed
to intermittent mechanical obstruction of the endotracheal
tube by copious secretions relating to bronchiolitis.
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Table 1: Physiological characteristics of apneic events not associated with complete EEG suppressions and those with complete EEG
suppressions recorded in the neonate.

Mean (range)

Apnea without complete EEG
suppression

Apnea with complete EEG
suppression

In relation to apneic episodes

Number of apneic episodes (n) 6 2

Duration of apneic episodes (seconds) 79 (23–119)
First episode = 213

Second episode = 376

In relation to oxygenation desaturation

Lowest oxygen desaturation (%) 45
First and second episodes <20
(down to unrecordable levels)

Duration of oxygen desaturation (seconds) 137 (72–335)
First episode = 285

Second episode = 361

Lowest oxygen desaturation before complete EEG suppression (%) —
First episode = 19

Second episode = 4

Duration of oxygen desaturation before complete EEG
suppression (seconds)

—
First episode = 55

Second episode = 56

In relation to bradycardia

Lowest bradycardia (beats per minute) 99
First episode = 66

Second episode = 48

Duration of bradycardia (seconds) 96 (53–224)
First episode = 297

Second episode = 305

Lowest bradycardia before complete EEG suppression (beats per
minute)

—
First episode = 66

Second episode = 54

Duration of bradycardia before complete EEG suppression
(seconds)

—
First episode = 94

Second episode = 68

In relation to complete EEG suppression

Number of complete EEG suppression (n) — 2

Duration of complete EEG suppression (seconds) —
First episode = 68

Second episode = 179

Recovery time from oxygen desaturation after complete EEG
suppression ended (seconds)

—
First episode = 51

Second episode = 129

A NicOne digital video-EEG system (CareFusion Neuro-
Care, WI, USA) was used to record multichannel EEG in this
neonate for a total of 22 hours, using scalp electrodes (F3, F4,
C3, C4, T3, T4, O1, O2, and Cz). Continuous vital signs such
as respiration, electrocardiogram (ECG), and oxygen satu-
rations were monitored simultaneously using the IntelliVue
MP70 Neonatal monitor (Philips, Boeblingen, Germany).
The entire EEG recording was reviewed and annotated by
an experienced neonatal neurophysiologist (GB). Apnea was
defined as cessation of airflow for more than 20 seconds, or
cessation of airflow for less than 20 seconds with bradycardia
(20% below the baseline heart rate), or cessation of airflow
for less than 20 seconds with oxygen desaturations below
80% [7]. Suppression of EEG activity to below 5 µV in all
EEG channels for at least 10 seconds was defined as complete
EEG suppression.

Prior to gestational age of 38 weeks, the neonate did not
have any apneic events. The background EEG activity prior
to the apneic episodes showed continuous mixed frequency
activity with the baseline EEG voltage ranging from 50 to
100 microvolts, which was appropriate for gestational age
and electrographic seizure activity was not present before,

during, or after the apneic events. The average baseline heart
rate was 168 beats per minute (bpm), oxygenation satura-
tions were in the mid-nineties and the neonate remained
normotensive throughout monitoring.

The neonate had a total of eight apneic episodes during
EEG monitoring, two of which required intermittent positive
pressure ventilation, chest compressions, and adrenaline
for recovery. Soon after the onset of both of these more
prolonged apneic episodes (duration: 213 and 376 seconds
resp.), there was a rapid decline in heart rate to 66 and
54 bpm, respectively, and oxygen saturation decreased to
below 20% during both episodes which were accompanied
with profound central cyanosis (Table 1). As heart rate and
saturations declined, the EEG developed a burst suppression
pattern. When the heart rate reached 66 and 54 bpm,
respectively, and when oxygen saturations were below 20%,
the EEG became completely suppressed. In both of these
episodes, the EEG amplitude was completely suppressed
for 68 and 179 seconds, respectively. During the recovery
phase in both episodes, oxygen saturation improved to
approximately 30 to 40% before EEG activity returned.
Figures 1(a)–1(j) illustrate the sequence of events associated
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Shallow breathing begins
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Figure 1: Continued.
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Figure 1: Continued.
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Figure 1: EEG recording showing the sequence of events evolving from baseline values associated with the first episode of complete EEG
suppression. Calibration is 1 second and 50 microvolts.

with the first episode of complete EEG suppression. The
other six recorded apneic episodes in this neonate were less
profound in duration (mean (range) = 79 (23–119) seconds)
and were not accompanied by any EEG changes. The mean
(range) of the lowest oxygen desaturation was 45 (24–69)%
and the mean (range) of the lowest bradycardia was 99 (72–
132) bpm.

3. Discussion

This case report has shown that episodes of transient but
complete EEG suppression can occur during prolonged
apneic episodes in the neonate particularly when they are
accompanied by profound bradycardia and oxygen desatu-
ration.

The apneic events in our case report were not associated
with seizures on the EEG. Although apneic seizures originat-
ing in the temporal lobe have been observed in term neonates
[4], they are not usually associated with changes in heart rate
[3]. In fetal lambs, Gunn et al. has shown that during an
ischemic event, the EEG becomes isoelectric [8]. Recovery
of EEG activity depended on the duration of the ischemic
event, with shorter duration events leading to full recovery
of EEG activity. If ischemia lasted 30 minutes or longer,
a stereotypic sequence of depressed EEG activity followed

by low frequency epileptiform activity was always seen. In
the newborn piglet model, hypoxic-ischemia induced by
reducing fractional inspired oxygen to around 6%, led to
rapid suppression of EEG activity. Brain damage was only
seen when the EEG amplitude remained suppressed for 23
minutes or more [9]. In another study which exposed one-
week-old piglets to graded hypoxia, the EEG amplitude did
not decline until oxygen saturation fell below 25%, a similar
level at which EEG suppression developed in our neonate
[10].

In both episodes in our neonate, bradycardia preceded
complete EEG suppression and EEG amplitude did not
become profoundly suppressed until oxygen saturation fell
below 20%. This is similar to the effects described in
animal studies when hypoxia has been used to induce severe
EEG suppression [11]. In piglets, EEG amplitude has been
shown to decrease markedly after approximately 30 seconds
of apnea induced by stimulation of the superior laryngeal
nerves [11]. Piglets that were preoxygenated preserved
their EEG amplitude during stimulation until the oxygen
saturation levels fell below 50%. We believe that hypoxia in
conjunction with bradycardia was responsible for the severe
EEG suppression in our reported case.

Gavilanes et al. have shown that cerebral neuronal
oxygenation is maintained during hypoxia-induced EEG
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suppression when blood pressure is maintained constantly
above 40 mmHg [10]. This suggests that periods of complete
EEG suppression during hypoxia may be a neuroprotective
mechanism. Animal studies have shown that as soon as
cerebral oxygen supply is depleted to a certain critical
level, postsynaptic potentials are inhibited by an increase
in adenosine (often measured as the breakdown product of
hypoxanthine) in the interstitial space via the A1 receptor
subtype, resulting in suppression of electrocortical activity
[12]. In addition, adenosine may further depress calcium
conductance. The actions of adenosine on potassium and
calcium metabolism may render the cell less electrically
excitable and spare cell energy, avoiding metabolic failure
and irreversible cell damage [13]. In rats, immature neurons
have been found to be more resistant than adult neurons
exposed to hypoxic events. The mechanism for this may
be mediated by activation of the N-methyl-D-aspartate
receptors or intracellular calcium in the immature brain
[13, 14].

Short periods of fetal electrocortical suppression have
been reported during labor in humans without any conse-
quences [15]. An adaptive mechanism has been implicated
in such short suppression of synaptic transmission activity,
where a state of decrease energy requirement is developed
to withstand longer hypoxic insults induced by episodes of
complete cord occlusion (to mimic uterine contraction in
labour) in animal models [16]. In an ovine fetal brain, this
adaptive metabolic shutdown appears to be mediated also
by endogenous activation of adenosine A1 receptors during
critical decreases in oxygenation [17, 18]. The onset of this
response has been shown to occur within 30 to 60 seconds
after complete cord occlusion in animal models, as measured
by a decreased in EEG amplitude or cerebral metabolic rate
[17, 18].

Using near-infrared spectrometry, a combination of
bradycardia and hypoxia has been shown to impair cerebral
oxygenation in the human neonate [19], and this may
have a role in the pathogenesis of neonatal cerebral injury.
Postnatally, it is not known how long apnea or hypoxia can
continue before irreparable brain damage occurs. However,
it is known that prolonged suppression of electrocortical
activity in the neonate is an ominous sign such as that
seen following a severe hypoxic-ischemic brain injury. EEG
activity may recover but a long recovery period following
hypoxic-ischemic injury is associated with an unfavourable
long-term neurological outcome [6]. In animal models, EEG
suppression following a severe hypoxic-ischemic insult can
occur very rapidly and the time required for recovery will
depend on the duration and severity of the primary insult
[20].

4. Conclusion

Our case report has shown that prolonged apneic episodes
accompanied by hypoxia and bradycardia can be associated
with altered cerebral function in the neonate. From a
clinical perspective, we feel that clinicians would be keen
to know the lowest limit of oxygen saturation required to
suppress EEG activity. We have shown that not all apneic

events are associated with complete EEG suppression, but
apneic events with oxygen desaturations below 20% always
were. Although complete EEG suppression can be reversible,
clinicians should be aware that the recovery from complete
EEG suppression depends on the speed of intervention. We
have shown that EEG amplitude is exquisitely sensitive to
hypoxia and bradycardia in the human neonate.
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h i g h l i g h t s

� Seizure detection algorithm (SDA) validated on unseen, unedited EEG of 70 neonates.
� Results at SDA sensitivity settings of 0.5–0.3 acceptable for clinical use.
� Seizure detection rate of 52.6–75.0%, false detection rate 0.04–0.36 FD/h.

a b s t r a c t

Objective: The objective of this study was to validate the performance of a seizure detection algorithm
(SDA) developed by our group, on previously unseen, prolonged, unedited EEG recordings from 70 babies
from 2 centres.
Methods: EEGs of 70 babies (35 seizure, 35 non-seizure) were annotated for seizures by experts as the
gold standard. The SDA was tested on the EEGs at a range of sensitivity settings. Annotations from the
expert and SDA were compared using event and epoch based metrics. The effect of seizure duration on
SDA performance was also analysed.
Results: Between sensitivity settings of 0.5 and 0.3, the algorithm achieved seizure detection rates of
52.6–75.0%, with false detection (FD) rates of 0.04–0.36 FD/h for event based analysis, which was deemed
to be acceptable in a clinical environment. Time based comparison of expert and SDA annotations using
Cohen’s Kappa Index revealed a best performing SDA threshold of 0.4 (Kappa 0.630). The SDA showed
improved detection performance with longer seizures.
Conclusion: The SDA achieved promising performance and warrants further testing in a live clinical eval-
uation.
Significance: The SDA has the potential to improve seizure detection and provide a robust tool for com-
paring treatment regimens.
� 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The concept of ‘‘neuroprotective’’ intensive care has now
reached neonatal units worldwide, in part driven by the results
of randomized controlled trials showing that therapeutic
hypothermia is beneficial for term babies with a recent
hypoxic-ischaemic injury (Glass et al., 2011). The practice of neuro-
protective care involves careful monitoring of carbon dioxide ten-
sion, blood pressure and other physiological variables and is ideally
accompanied by continuous cotside EEG monitoring. Without EEG

monitoring many seizures are missed. The inaccuracy of clinical
recognition of seizures was demonstrated by Murray et al.
(2008). In this study, comparing EEG evidence of seizures to the
seizure detection acumen of NICU staff based on clinical evidence
alone, of 526 EEG seizures, only 179 (34%) had any clinical accom-
paniment, overdiagnosis was common with only 48 of 177 (27%)
clinically suspected events accompanied by EEG seizures such that
only 48/526 (9%) of EEG seizures were correctly identified by clin-
ical observation. Amplitude-integrated EEG (aEEG) is widely used
in NICUs for seizure detection but has been shown to perform
poorly (Rennie et al., 2004). In this study seizure detection by four
non-experts using CFM traces at 3 paper speeds were compared
against simultaneous EEG in 19 babies. Sensitivities of only 38%
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at 6 cm/h, 54% at 15 cm/h and 55% at 30 cm/h were achieved and
agreement between observers was poor at all speeds (j values
from 0.01 to 0.39). Treating seizures to electrical quiescence has
yet to be proven of any long-term benefit, but there is evidence
from animal models (Wirrell et al., 2001), and clinical studies
(Glass et al., 2009; Shah et al., 2014) which would support the prin-
ciple that seizures do inflict further brain injury. Attempts to ame-
liorate such damage must be accompanied by prompt and reliable
detection of seizures. In addition, good quality randomized con-
trolled trials of new antiepileptic drugs are impossible without
robust and reproducible EEG monitoring.

A significant barrier to the practice of neuroprotective critical
care in the NICU is the lack of expertise in reporting neonatal
EEG. Current cotside EEG monitors are sophisticated devices, offer-
ing the ability to record multiple channels of EEG continuously
together with other physiological signals and video-recording of
the baby’s movements. They allow the continuous display of
aEEG and other quantitative trends and are easy to set up and
maintain. But few clinicians have the knowledge to interpret the
plethora of information which is generated by such monitoring,
and without this knowledge there is a danger that this equipment
will be under utilised or (worse) the output will be misinterpreted
at the cotside.

Our group has considerable experience with cotside EEG moni-
toring and has grown to appreciate the benefits that this provides.
For many years now we have been working on a seizure detection
algorithm (SDA), which would analyse one or more channels of
‘‘raw’’ EEG, continuously and in real-time, providing a visual and
audible alert to the clinical team. The engineering challenges have
proven formidable because EEG is a complex signal, and neonatal
seizures have variable amplitude, frequency and morphology,
and are rarely sustained for more than 5 min.

Other groups have developed SDAs for neonates, and have pub-
lished their detection rates, using varying definitions of success
(Liu et al., 1992; Gotman et al., 1997; Smit et al., 2004;
Navakatikyan et al., 2006; Deburchgraeve et al., 2008; Mitra
et al., 2009). Details of the performance of these and other SDAs
are outlined in Table 1 and reviewed further in the discussion.
Currently only two SDAs are commercially available. These are
the Gotman algorithm incorporated into the Stellate EEG system
(Natus Medical Inc, USA); and the ‘Recognize’ algorithm of
Navakatikyan which is incorporated into the Brainz aEEG monitor
(Natus Medical Inc., USA) which has only a 2 channel EEG capabil-
ity. One problem which inhibits comparison of SDAs is the lack of
an agreed definition of what constitutes best performance. Many
SDAs are reported to have good detection rates, with a high num-
ber of seizures accurately detected when compared to expert neu-
rophysiology as the ‘‘gold standard’’, and low numbers of missed
seizures. However, the temporal aspect of seizure detection is
rarely reported, for example one missed seizure of 8 min duration
in an hour would be clinically important. Another important aspect

of SDA performance assessment is the number of false detections.
Many validation studies have used only short duration recordings,
but any robust algorithm designed for current NICU use has to be
able to perform reliably on very long recordings of 72 h or more.
Respiration artefact is a particular problem often recorded in
neonatal EEG and can mimic the stereotyped rhythmic seizure
activity that is often seen in neonates.

We have previously reported the performance of our neonatal
SDA on a set of 17 seizure babies recorded at Cork University
Maternity Hospital (CUMH), Ireland (Temko et al., 2011a) using a
‘leave one out’ (LOO) cross validation method of analysis, whereby
the data of one patient is used for testing and the others used for
training the algorithm and the process is repeated for each patient
and the mean result reported. A further LOO study was performed
on 38 babies from CUMH (Temko et al., 2013) incorporating an
adaptation to reduce the effects of prolonged artefact and showed
improved performance. This study also incorporated analysis of an
‘unseen’ dataset of 51 babies from CUMH.

The aim of the present study was to validate the performance of
our neonatal SDA on a larger database of unseen, unedited, contin-
uous, multi-channel EEG data from 70 term newborns collected at
2 sites, CUMH and University College London Hospital (UCLH), and
to provide comprehensive measures of SDA performance. While
time based metrics assess the ability of the algorithm to detect
the ‘amount’ of seizure activity (seizure burden) correctly and is,
in a sense, the most precise engineering metric, event based met-
rics provide clinicians with valuable information as to the percent-
age of seizures that will be detected, with important implications
for treatment and also how often the algorithm is likely to alarm
falsely. We therefore report both time based and event based mea-
sures of performance.

2. Methods

2.1. Data acquisition and EEG annotation

Neonates were enrolled from the neonatal intensive care units
of CUMH and UCLH from January 2009 to October 2011 as part
of an on-going study of neonatal seizures. Neonates P37 weeks
gestation were enrolled for EEG monitoring if they fulfilled two
or more of the following criteria: Apgar score less than six at five
minutes; a continued need for resuscitation after birth; any clinical
evidence of encephalopathy, or seizures developed within 72 h of
age.

This study was conducted with approval from the Clinical
Research Ethics Committees of the Cork Teaching hospitals,
Ireland and the National Health Service in the UK, via the
Integrated Research Application Service. Written, informed con-
sent was obtained from at least one parent of each neonate who
participated in this study.

Table 1
Summary of SDAs proposed in the literature. (DB – database, h – hour, S – seizure, NS – non-seizure, Dur – duration, AUC – area under the receiver operator characteristic, Sens –
sensitivity, spec, specificity, SDR – seizure detection rate, FA/h – false alarms per hour).

Algorithm DB length h (N) S:NS Dur NS neonates AUC Sens (%) Spec (%) SDR (%) FA/h (N/h)

Liu et al. (1992) 1.0 (14) 1:1 Yes 84 98
Gotman et al. (1997) 237 (54) Yes 66 2.3
Smit et al. (2004) 10.4 (19) No 66 90
Navakatikyan et al. (2006) 24 (55) 1:6.8 Yes 83 87 90 2
Lawrence et al. (2009) 2708 (40) Yes 55 0.09
Deburchgraeve et al. (2008) 218 (26) Yes 85 0.66
Cherian et al. (2011) 756 (24) 1:27.9 No 59 66 0.58
Mitra et al. (2009) 120 (76) 1:11.0 Yes 80 0.78
Temko et al. (2011a,b) 268 (17) 1:5.9 No 0.96 90 90 89 1
Temko et al. (2013) 2540 (51) Yes 0.96 71 0.25
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2.1.1. EEG recording
The EEG was recorded using a NicoletOne EEG monitor

(Carefusion, Wisconsin, USA) and the 10:20 EEG electrode place-
ment system adapted for neonates was used with the following
electrodes F4, F3, T4, T3, C4, C3, CZ, O2 and O1. Additional elec-
trodes were positioned at P3 and P4 when possible. Respiration
and ECG was also monitored and signals were stored syn-
chronously with the EEG. The EEG was recorded at a sampling rate
of 250 Hz or 256 Hz, with a filter bandwidth of 0.5–70 Hz. The EEG
was recorded from as soon as possible after birth and the recording
continued for as long as clinically required.

2.1.2. EEG analysis
All seizures were annotated on the original EEG file by a trained

electrophysiologist, Sean Mathieson (SM) to generate seizure event
text files for each recording. The seizure annotations of SM for all
neonates were used for comparison with the SDA annotations. To
verify the validity of the seizure annotations by SM, a random sam-
ple of 15/35 (42.85%) recordings with seizures were also annotated
by Geraldine Boylan (GB) and compared for inter-rater reliability
using Cohen’s Kappa index.

An electrographic seizure was defined as a sudden and evolving
repetitive stereotyped waveform with a definite start, middle and
end, lasting for at least 10 s on at least one EEG channel (Clancy
and Legido, 1987). A stand alone, offline version of the SDA was
then used to process each EEG recording (see Fig. 1). Full details
of the alpha version of this algorithm have been described previ-
ously (Temko et al., 2011a). The current beta version incorporates
a modification to reduce false detections due to persistent artefact
(Temko et al., 2013). In summary, the EEG is down-sampled to
32 Hz with an anti-aliasing filter set at 12.8 Hz and is then split
into 8 s epochs with 50% overlap between epochs. Fifty-five fea-
tures are then extracted for each channel from each epoch repre-
senting both time and frequency domain characteristics as well
as information theory based parameters. Details of main features
extracted are given in Table 2. The features extracted from each
epoch are then fed into a support vector machine classifier. The
output of the SDA is a graph of the probability of seizure calculated
using all features in any one 8 s epoch, from zero to 1. This analysis
is performed separately for each channel then results are combined
for all channels into a single graph (Fig. 1, top panel). A seizure is
designated when the probability graph breaches a threshold. The
seizure sensitivity threshold is adjustable from 0.1 (most sensitive)
to 0.9 (least sensitive). The adjustable threshold allows the algo-
rithm to be tuned on a patient by patient basis. For example,
should an EEG recording contain large amounts of artefact causing

false detections, the SDA can be desensitised to reduce this number
but with a concomitant decrease in the seizure detection rate, as
there will always be a negative trade-off between the number of
detected seizures and false detections. An SDA annotation was
exported for each threshold and was used for comparison with
the expert rater’s annotation. The SDA and the expert rater’s anno-
tations were stored as text files.

2.2. Assessment of the SDA

Assessment of an SDA against a ‘‘gold standard’’ is not a trivial
task (Temko et al., 2011b). There is a relative scarcity of seizures
in any long duration recording, and in clinical practice recordings
will be made in many babies with no seizures at all. The SDA
may detect a seizure but the assessed duration might not be in
agreement with the ‘‘expert’’ view. The possible output of a com-
parison is demonstrated in Fig. 2, illustrating the true positive sit-
uation (TP) when both the SDA and the expert rater agree there is
seizure activity, and true negative (TN) when neither the rater or
the SDA classify the EEG as showing seizure. A false positive (FP)

Seizure probability output

aEEG F4-C4

aEEG F3-C3

cEEG

Fig. 1. The SDA incorporated into an EEG viewer. The output of the SDA is a graph of the probability of seizure (upper panel). When a seizure is detected the trace turns red
and an annotation is made. The viewer also displays the continuous EEG and aEEG.

Table 2
Main features extracted from the EEG by the SDA.

Groups Feature list

Frequency
domain

� Total power (0–12 Hz)
� Peak frequency of spectrum
� Spectral edge frequency (80%, 90%, 95%)
� Power in 2 Hz width sub-bands (0–2 Hz, 1–3 Hz, ...10–

12 Hz)
� Normalised power in sub-bands
� Wavelet energy (the EEG is decomposed into 8 coeffi-

cients using the Daubechy 4 wavelet, the energy in the
5th coefficient corresponding to 1–2 Hz is used as a
feature)

Time domain � Curve length
� Number of maxima and minima
� Root mean squared amplitude
� Hjorth parameters
� Zero crossings (raw epoch, D, DD)
� Autoregressive modelling error (model order 1–9)
� Skewness
� Kurtosis
� Nonlinear energy
� Variance (D, DD)

Information
theory:

� Shannon entropy
� Singular value decomposition entropy
� Fisher information
� Spectral entropy
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or type 1 error occurs when the human expert did not annotate a
seizure but the SDA output is seizure, and a false negative (FN)
or type II error occurs when the expert annotates the recording
as seizure but the SDA does not. In order to achieve a rigorous eval-
uation the probability output time series was set at 60 samples per
minute (1 Hz). In order to measure the agreement between the
annotations of seizure by the SDA and the expert rater, both
records were converted into a binary time series (in this case the
time series sampled at 1 Hz). The binary signal was generated by
denoting the presence of a seizure at any second with ‘1’ and
absence of seizure at any second with ‘0’.

2.2.1. Conventional measures of agreement
Using the concept of true positive and true negative detection

outlined above, conventional measures can be calculated.
Sensitivity, defines agreement between the human expert and
SDA for identifying the presence of seizure, TP/(TP + FN), and speci-
ficity defines agreement between the human expert and SDA for
identifying the absence of seizure, TN/(TN + FP). The estimates of
sensitivity and specificity can be applied directly to the annotation
time series (time based assessment) or in an event based assess-
ment (Fig. 2). The time based metrics correspond to an ‘overlap
integral’ method of assessment (Wilson et al., 2003). The event
based metrics correspond to an ‘any overlap’ method of assess-
ment and must be modified so that specificity is replaced by a
measurement of the false detections per hour (false positives per
hour) due to a poorly defined ‘no seizure’ event (Wilson et al.,
2003).The sensitivity and specificity can also be used to calculated
the area under the receiver operator characteristic (a plot of the
specificity vs the sensitivity). The effect of seizure duration on
the accuracy of seizure detection (event based analysis) was also
examined.

The assessment of agreement was examined on a case-by-case
basis. Measures of agreement were then summarised across neo-
nates using the median and interquartile range (the distribution
of performance measures will be nonparametric). Agreement was
assessed using Cohen’s Kappa index.

Performance metrics for the current validation study were also
compared against results of the previous ‘leave one out’ study
(Temko et al., 2013).

2.2.2. Application specific measures of SDA usefulness
The agreement between several interpretations of the annota-

tion was compared using the intra-class correlation coefficient
(ICC). We quantify interpretation as a summary representation of
clinically useful information on seizures over the entire EEG
recording of a baby. This includes summary statistics such as sei-
zure burden, seizure number, mean seizure duration, median sei-
zure duration, seizure onset, and seizure period.

The ability of the SDA to support the identification of seizure
and non-seizure babies was also examined, ie. detect any seizures
in seizure babies and make no false detections in non-seizure
babies.

Next the potential of the SDA to support clinical decisions
regarding AED administration was examined. With periodic review
of the EEG, seizures may not be detected immediately and AEDs are
often administered some hours after seizure onset. AEDs may also
be administered based on clinical assessment only, potentially
erroneously. In order to facilitate this analysis, we examined
whether there was seizure activity on the EEG in the 90 min prior
to administration of AED (concurrent with AED), or absent in this
90 min period (non-concurrent with AED) to ascertain whether
AED was given in a timely or appropriate manner. 90 min was
taken as an arbitrary cut off time. This was compared to an exam-
ination of the SDA output to confirm whether AEDs had concurrent
or non-concurrent SDA seizures. This comparison reflected the
ability of an SDA to support clinical decisions regarding AED
administration.

3. Results

In total, 107 babies recruited between 5th January 2009 and
30th June 2011 met the inclusion criteria (71 from CUMH and 26
from UCLH). A cohort of 70 babies was then formed by selecting
all 35 who had EEG seizures and 35 babies who did not have
EEG evidence of seizures. The 35 non-seizure babies were ran-
domly selected from the recordings of the remaining 72 babies in
order to match the number of seizure and non-seizure babies in
the cohort. The range of demographics for this cohort of neonates
is given in Table 3.

The seizure annotations by SM resulted in the detection of 2061
seizures in 35 neonates from a total of 4060 h of multi-channel EEG
recordings (Table 4).

3.1. Conventional measures of agreement

Results of the comparison of seizure annotation by SM and GB
produced a mean Kappa score of 0.851, which is considered near
perfect. The level of agreement (time based analysis) between
the annotations of the human expert (SM) and SDA at 9 SDA
thresholds, are shown in Table 5A. The maximal level of agreement
was at sensitivity threshold 0.4. Further time and event based mea-
sures assessed at each SDA threshold are shown in Table 5B.

The results for time based metrics are also shown in Fig. 3.
Fig. 3a compares the performance of the unseen validation study
to the previous ‘leave one out’ cross validation (Temko et al.,
2013). The median AUC for the validation study, estimated on

Fig. 2. Temporal and event based assessment of agreement between the annotation of the human expert and the SDA output. S denotes seizure and NS denotes non-seizure.
Light/shade in time bar denotes periods of temporal agreement/disagreement: true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). Markers
denote event based agreement: TP and FP. Sensitivity for temporal assessment is 75.0% and specificity for temporal assessment is 75.0%. Sensitivity for event based
assessment is 66.7% and a false alarm rate of 1/h.
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neonates with seizures (sensitivity can only be estimated on neo-
nates who have seizures) was 0.945 (IQR: 0.921–0.971, min:
0.684 max: 0.999). The mean AUC was 0.933. The performance
curves for the two datasets are similar with slightly improved
results in the validation set. Fig. 3b shows the specificity for neo-
nates with seizure and neonates without seizure. The curves are
similar with slightly higher specificity for non-seizure babies than
seizure babies at lower thresholds.

The results for event based metrics on a case by case basis are
shown in Fig. 4. Again the performance curves for the validation
study compared to the LOO cross validation are similar (Fig. 4a).
Fig. 4b shows that false alarm rates are similar for seizure and
non-seizure babies.

Fig. 5 shows seizure detection rates and FDs/h for individual
babies in the cohort. There is variability in seizure detection and
false detection rates across babies. Note the high false detection
rates in seizure babies 25 and 26 due to respiration and pulse
artefact.

Fig. 6 shows the effect of seizure duration on SDA detection rate.
The SDA performance is reduced when detecting short seizures.
The most common seizure duration was 1–2 min.

3.1.1. Application specific measures of SDA usefulness
The intra-class correlation between estimates of seizure burden,

seizure number, mean/median seizure duration, seizure onset and
seizure period are shown in Table 6 for the highest performing
threshold of the SDA. The highest performing threshold varies
depending on the parameter of interest.

The performance of the SDA to support the identification of sei-
zure babies (any seizure detected) and non-seizure babies (no false
detections) at several clinically relevant thresholds is shown in

Fig. 7. There is a trade-off between number of seizure and
non-seizure babies detected depending on the SDA sensitivity
threshold. The best performing SDA sensitivity threshold was at
0.8 (30/35 seizure babies identified, 31/35 non-seizure babies
identified). Clinical recognition of seizure/non-seizure babies
(identification of a seizure baby was assumed if AED was given,
identification of a non-seizure baby was assumed if AED not given)
was slightly superior to the SDA (33/35 seizure babies identified,
30/35 non-seizure babies identified). The SDA did not detect any
seizures that had been missed by the expert reviewer in the
non-seizure baby group.

The potential of the SDA to support clinical decisions regarding
AED administration is shown in Fig. 8. A total of 97 AED adminis-
trations were recorded (NB. Maintenance doses were not anal-
ysed). Of these, 78 were administered during EEG recording.
53/78 were concurrent with EEG seizures (within 90 min preced-
ing AED administration) and 25/78 were administered with no
concurrent seizures (in the 90 min preceding AED administration).
Again there is a trade-off in the performance of the SDA to support
clinical decisions regarding AED administration between support-
ing concurrent and non-concurrent AED decisions, dependent on
SDA sensitivity threshold. The data does suggest however that

Table 3
Demographics and EEG recording information relating to the 70 neonates used in this
study.

Gestational age (weeks+days)� 40+3 (39+2 to 41+2)
Birthweight (g)� 3526 (3140 to 3920)
Gender (male:female) 37:33
Age at EEG onset (h)� 7.0 (3.6–19.0)
EEG recording duration (h)� 51.6 (21.5–84.4)

Primary diagnoses Neonates (N)

HIEa 37
Mild 10
Moderate 19
Severe 8

Birth depressionb 10
Strokec 8
Focal lesiond 3
Othere 12

� Median (interquartile range).
a 22 treated with therapeutic hypothermia (TH).
b Birth depression without ensuing encephalopathy.
c Stroke – arterial ischaemic, haemorrhagic, multiple infarctions.
d Focal lesion – subdural haemorrhage, intraparenchymal bleed.
e Other – meningitis/HIE (TH), viral encephalitis, sepsis, benign familial neonatal

seizures, benign sleep myoclonus, unknown diagnosis.

Table 4
The summary of seizure characteristics in the 35 babies with EEG confirmation of
seizures. Seizure onset (h) refers to post natal age in hours.

Median IQR min max

Seizure onset (h) 19.0 (11.5–35.8) 6.6 153.8
Seizure period (h) 18.6 (8.6–35.4) 0.03 120.2
Seizure burden (mins) 79.8 (25.3–204.6) 1.9 1404
Seizure number (N) 22 (7–75) 1 295
Mean seizure duration (s) 163 (95–298) 28 2207
Median seizure duration (s) 115 (69–186) 25 2207

Table 5
The level of agreement between the annotation of the human expert (SM) and the
SDA at 9 thresholds. (A) Cohen’s Kappa Index (time based metric), (B) sensitivity and
specificity (time based metric), seizure detection rate and false alarms per hour (event
based metrics). Data are median (IQR).

SDA
threshold

Kappaa Prevalence indexa Bias indexa

(A)
0.1 0.098

(0.044–0.204)
0.688
(0.588–0.780)

0.222
(0.157–0.364)

0.2 0.309
(0.155–0.509)

0.893
(0.785–0.949)

0.050
(0.027–0.098)

0.3 0.524
(0.217–0.677)

0.936
(0.862–0.977)

0.011
(0.003–0.031)

0.4 0.630
(0.283–0.739)

0.956
(0.885–0.984)

0.006
(0.003–0.019)

0.5 0.579
(0.332–0.724)

0.954
(0.896–0.983)

0.007
(0.002–0.019)

0.6 0.552
(0.340–0.700)

0.952
(0.864–0.981)

0.006
(0.003–0.019)

0.7 0.405
(0.255–0.621)

0.959
(0.879–0.983)

0.001
(0.003–0.027)

0.8 0.280
(0.135–0.406)

0.957
(0.889–0.989)

0.011
(0.004–0.038)

0.9 0.060
(0–0.207)

0.941
(0–0.981)

0.007
(0–0.042)

SDA
threshold

Sensitivitya Specificityb Seizure
detection ratea

False alarm
rateb

(B)
0.1 96.2

(92.6–98.4)
77.7
(63.0–86.6)

97.1
(92.2–100.0)

4.35
(3.28–5.70)

0.2 88.1
(80.5–92.3)

94.5
(91.1–97.9)

85.7
(77.1–97.6)

1.20
(0.63–2.01)

0.3 76.1
(68.5–83.9)

98.5
(97.0–99.5)

75.0
(59.5–91.7)

0.36
(0.16–0.74)

0.4 68.6
(56.3–80.2)

99.5
(98.6–99.9)

64.0
(41.6–85.3)

0.12
(0.04–0.29)

0.5 58.6
(41.2–70.4)

99.8
(99.3–100.0)

52.6
(28.3–73.4)

0.04
(0–0.18)

0.6 44.2
(31.4–70.0)

99.9
(99.7–100.0)

50.0
(23.1–60.1)

0
(0–0.06)

0.7 32.1
(15.0–51.0)

100.0
(99.9.0–100.0)

34.2
(13.4–50.0)

0
(0–0.01)

0.8 16.4
(7.4–30.9)

100.0
(100.0–100.0)

23.7
(7.2–38.9)

0
(0–0)

0.9 3.4
(0–12.1)

100.0
(100.0–100.0)

5.1
(0–16.2)

0
(0–0)

a Estimated on neonates with seizure (N = 35).
b Estimated on all neonates (N = 70).
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there is a potential for the SDA to beneficially support these
decisions. The SDA, at a threshold of 0.5 and 0.6 performed equally
well in terms of its overall effectiveness to correctly identify
seizures or seizure free EEG in the 90 min preceding AEDs and
therefore to potentially support clinical decisions regarding AED
administrations. At a threshold of 0.5, 45/53 (85%) AED administra-
tions concurrent with EEG evidence of seizure would be supported
by the SDA and only 6/25 (24%) of AED administrations with
non-concurrent seizures would be supported by the SDA., ie. the
SDA has the potential to reduce non-concurrent AED administra-
tion by 76% at a cost of not detecting 15% of concurrent seizures.

3.2. Missed seizures and false detections

Examples of seizures that were not detected by the SDA are
illustrated in Fig. 9. These were often short or low amplitude or
had a dysrhythmic or complex morphology. A quantitative analysis
of both missed seizures and false detections will be published sep-
arately. Some common causes of false detection are shown in
Fig. 10. Respiration and pulse artefacts are recognisable as they
are synchronized to the respiration and ECG traces respectively.
Sweat artefact produces characteristic large semi-rhythmic waves
spanning several seconds. A highly rhythmic background EEG pat-
tern also caused false detections in some cases. This pattern was

often observed in intermediate sleep, a phase between active and
passive sleep, when widespread delta activity is known to increase.
In some cases this delta activity had an increased rhythmicity than
is commonly observed and consequently caused false detections.
This is evident in Fig. 10d where the periodic peaks in the CFM
indicating intermediate/quiet sleep correspond to peaks in the
SDA probability output and a highly rhythmic EEG pattern is
shown in the lower panel.

4. Discussion

In this study a comprehensive set of metrics have been used to
measure the performance of our SDA on a large, unedited dataset
of prolonged, clinical EEGs from two institutions. To the best of
our knowledge this is the largest data set used for SDA validation
in babies to date. Only a small subset of previous SDAs has been
investigated on a large cohort of babies (Gotman et al., 1997;
Lawrence et al., 2009; Mitra et al., 2009; Cherian et al., 2011).

We have used a reduced set of 9 recording electrodes in our
study which the algorithm is preset to analyse. While some centres
may favour a full set of electrodes (up to 32 recording electrodes)

Fig. 3. Time based measures (overlap integral) of SDA performance. The broken
lines denote the interquartile range. (A) The median receiver operator curves (the
trade-off between sensitivity and specificity) of validation set (estimated on babies
with seizure, N = 35) compared to ‘leave one out’ cross validation set (Temko et al.,
2013). The numbers on the plot relate to the threshold at which the sensitivity and
specificity were estimated. (B) The median specificity of the SDA for validation set
with respect to SDA threshold, estimated on babies with seizure (N = 35) and babies
without seizure (N = 35) in validation study.

Fig. 4. Event based measures (any overlap) of SDA performance compared to the
original LOO cross-validation. The broken lines denote the interquartile range. (A)
The trade-off between seizure detection rate and false alarms per hour for babies
with seizure (N = 35) in validation study compared to ‘leave one out’ cross
validation study (Temko et al., 2013). The numbers on the plot relate to the
threshold at which the sensitivity and specificity were estimated. (B) The median
false alarm rate with respect to SDA threshold estimated on babies with seizure
(N = 35) and babies without seizure (N = 35) in validation study.
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which are useful for the purposes of seizure onset localisation, our
primary goal is seizure detection. A study by Tekgul et al. (2005)
comparing seizure detection between a full 10:20 montage and a
reduced 9 electrode set, found very few seizures were missed with
a sensitivity of 96.8% for the reduced montage compared to the full
set. The benefits of using more electrodes must be weighed against

the time and technical constraints to the NNU staff of applying
more electrodes out of hours.

We have found the performance of our algorithm to compare
favourably with those previously reported by others (Table 1),
although in previous papers not all metrics were reported for full
comparison. For example Gotman (Gotman et al., 1997) reported
a SDR of 66% with a FD rate of 2.3 FD/h. At a threshold of 0.3, the
SDA reported here achieved a higher SDR of 75% at a much lower
FD rate of 0.4 FD/h.

Navakatikyan (Navakatikyan et al., 2006), reported a SDR of 90%
at 2 FD/h. In comparison, at a threshold of 0.2 our system achieved
a slightly lower SDR rate of 85%, but with a much lower false detec-
tion rate of 1.2FD/h. In a clinical validation study of the
Navakatikyan algorithm, Lawrence (Lawrence et al., 2009) com-
pared the output of the algorithm with 12 h recordings of conven-
tional video-EEG, and found a seizure detection rate of 55% with a
false detection rate of 0.1 FD/h. This was quite different to the ini-
tial performance results (Navakatikyan et al., 2006). At a threshold
of 0.5, the system reported here achieved a slightly lower SDR of
53% but again with a lower FD rate of 0.04/h.

Deburchgraeve et al. (2008) initially reported an SDR of 85%
with a FD rate of 0.7FD/h. At a threshold of 0.2, our system
achieved a similar SDR of 86% with a higher FD rate of 1.2 FD/h.
However in a clinical validation of this algorithm, Cherian et al.
(2011) reported a lower SDR rate of 66% with a FD rate of
0.58 FD/h. At threshold 0.4 our system achieved only a slightly
lower SDR rate of 64.0% but with a considerably lower FD rate of
0.12 FD/h.

Fig. 5. Seizure detection rates and FDs/h (SDA sensitivity threshold 0.5) for individual babies in the cohort. Note the high false detection rates in seizure babies 25 and 26 due
to respiration and pulse artefact. Babies to the left of the vertical line were babies recruited in Cork and those to the right were recruited in London.

Fig. 6. Analysis of seizure detection rate with respect to seizure duration. (A) SDA
performance with respect to seizure duration over nine thresholds. (B) The
distribution of seizure durations throughout the concatenated recording.

Table 6
Agreement between interpretation of annotations of the human expert (SM) and the
SDA. Interpretation relates to summary statistics of the temporal evolution of seizures
in each EEG recording. The average intra-class correlation coefficient (ICC) is
presented and is estimated on the entire cohort of babies (N = 70). The summary
statistics of seizures are estimated from the SDA annotation but only on babies who
have seizure as detected by the human expert. The threshold that results in the
highest ICC for each measure is shown. The SDA detects at least one seizure in 64, 54,
43, 38 babies at thresholds of 0.4, 0.5, 0.6, 0.7 respectively.

Median IQR ICC SDA
threshold

Seizure onset (h) 15.1 (7.7–32.5) 0.722 0.4
Seizure period (h) 26.3 (7.3–49.8) 0.802 0.6
Seizure burden (mins) 81.1 (26.6–181.3) 0.859 0.5
Seizure number (N) 35 (7–72) 0.930 0.4
Mean seizure duration (s) 169 (121–243) 0.511 0.5
Median seizure duration (s) 124 (92–146) 0.323 0.7
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The SDA presented by Mitra et al. (2009) gave a SDR of 80% with
a FD rate of 0.78 FD/h. The SDR is midway between the SDR rates
reported here at threshold 0.3 (75.0%) and 0.2 (85%) with FD rates
at 0.36 FD/h and 1.20 FD/h respectively, thus at 80% detection rate
our FD rate would be comparable to that of Mitra.

In this study, the performance of our SDA on an unseen dataset
mimicked the performance seen in the previous ‘leave one out’
cross validation (Temko et al., 2013). In ‘leave one out’ cross valida-
tion the data for each patient is tested using the data for all other
patients as training data for the algorithm and the process repeated
for each patient and the results averaged. These results suggest
firstly that the data set used to train the algorithm contained a rep-
resentative population of seizure and background EEG patterns and
secondly that the SDA performs equally well on unseen data, as
will be encountered in clinical use.

This study, in conjunction with the paper by Temko et al.
(2013), are also the first papers to evaluate the SDA in a so-called
‘mismatch’ situation, where the seizure annotations of one expert
are used to train the algorithm and the annotations of another
expert are used to test the SDA. In addition, in this paper, we have,
for the first time, tested the algorithm on data collected from two
different centres, CUMH and UCLH, with potential differences in
EEG application and recording. Given these two factors, the simi-
larity of current SDA performance with previous performance
demonstrates a practically acceptable degree of robustness of the
algorithm.

The current performance, analysed with a very rigorous defini-
tion of true positive and true negative detections, was very good
for most babies with seizures (Fig. 5). Two seizure babies (25 and
26) had high false detection rates due to respiration and pulsatile
artefact. In future, it may be possible to teach clinical staff simple
artefact ‘‘pattern’’ recognition (Fig. 10) so that false detection
would not lead to overtreatment. For example, respiration and pul-
satile artefact are both easily recognised as they are synchronized
to the respiration and ECG traces respectively and are invariant as
they do not show the evolving features of many seizures. Similarly
sweat artefact produces characteristic high amplitude,
semi-rhythmic slow waves spanning several seconds, a far slower
frequency than typical seizures. Indeed, the results of the pilot
study by Lawrence et al. in which pre-training was given, support
this with only 1 single dose of AED given inappropriately in 232
false detection events (Lawrence et al., 2009).

The analysis of AED administration has shown that on 25 occa-
sions AEDs were given without EEG seizures in the preceding
90 min and that the SDA has the potential to support clinical deci-
sions to reduce AED administrations with ‘non-concurrent’ sei-
zures. We are not suggesting that in 25 cases AEDs were given
‘inaccurately’ by clinical staff, In only one case did we identify that
an AED had been given on clinical suspicion of seizure alone (with-
out any EEG correlate at all). In most cases we suspect that there
was simply a delay in detection of seizure and AED administration
due to the nature of periodic EEG review which could potentially
have been reduced with the support of the algorithm alerting clin-
ical staff earlier.

The performance of the SDA has been presented over a range of
sensitivity thresholds and the metrics used allow ‘best performing’
thresholds to be determined. However the choice of sensitivity
threshold used in a clinical environment is critically dependent
on the fact that best performing thresholds differ with tasks and
threshold choice is therefore dependent on the requirement of
the user. For example, the best performing threshold for detecting
the maximal number of seizure/non-seizure babies correctly
(Fig. 7) was threshold 0.8 while for supporting decisions regarding
AED administration (Fig. 8), thresholds of 0.5/0.6 were optimal. The
intra-class correlations in Table 6 show a variety of best perform-
ing thresholds for different parameters of interest. Notably, for
detecting seizure onset and seizure number, a threshold of 0.4 per-
formed best. For the task of correctly detecting the greatest
‘amount’ of seizure/non-seizure activity (seizure burden), time
based analysis provides the most accurate measure and the
Kappa score comparing human and SDA annotations indicated that
the best performing threshold was also 0.4 (Kappa 0.630).

In clinical practice however, it is not likely that clinicians will be
concerned with accurately detecting every single second of each
seizure and are likely to care most that the SDA makes ‘some’
detection during a seizure and that overall the output of the SDA
most accurately represents the numbers of seizures occurring with
an acceptable false detection rate. This would allow treatment to
be titrated to the presence of ongoing seizures, and in this respect
the event based metrics may be of more interest clinically. The
concept of what is deemed acceptable in terms of the rate of false

Fig. 7. The accuracy of the SDA for the identification of seizure and non-seizure
babies at several thresholds. There were 35 neonates with EEG evidence of seizure
and 35 neonates without EEG evidence of seizure. Clinical recognition is based on
AED administration and is superior to the SDA.

Fig. 8. Potential of the SDA to support decisions on AED administration. A total of
97 AED administrations were recorded. Of these, 78 were administered concur-
rently with EEG recording and 53 were concurrent with EEG seizures (seizures
occurring in the 90 min prior to AED adminstration). At a threshold of 0.5, 45 (85%)
AED administrations concurrent with EEG evidence of seizure and only 6 (24%) of
AED administrations with no EEG evidence of seizure would be supported by the
SDA.

8 S.R. Mathieson et al. / Clinical Neurophysiology xxx (2015) xxx–xxx

Please cite this article in press as: Mathieson SR et al. Validation of an automated seizure detection algorithm for term neonates. Clin Neurophysiol (2015),
http://dx.doi.org/10.1016/j.clinph.2015.04.075

http://dx.doi.org/10.1016/j.clinph.2015.04.075


alarms is also dependent on user preference and may vary between
users, affecting the choice of sensitivity threshold.

We consider the output from the SDA at thresholds from 0.5 to
0.3 to be within a clinically acceptable range, giving detection rates
between 52.6% and 75.0% with false detections, on
average, approximately every 20 and 3 h respectively (Table 5B).

This range is proposed on the basis of a perceived expectation that
a minimum of 50% seizure detection is required and that a
false detection rate of greater than 0.5/h might be considered
excessive.

The data presented here represents only one stage in the assess-
ment of the SDAs performance which will be further tested in a

 

Short seizures 

(A)

 

(B)

Fig. 9. Seizures missed by the SDA. (A) Brief 30 s seizure. 0 of 4 seizures were detected in this record (thr 0.5), though the algorithm output would cause the clinician to
interrogate the EEG at various points despite the fact that the fixed threshold was not reached. (B) Subtle, dysrhythmic 2 min seizure with complex morphology, 0 of 1
seizures were detected in this record (thr 0.5). (C) Low amplitude seizure, 31 of 55 seizures were detected in this record (note. Non detected seizures produce clear peaks on
the probability trace for interrogation).
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‘live’ multicentre randomised clinical evaluation (the ANSeR study
– Algorithm for Neonatal Seizure Recognition http://clinicaltri-
als.gov/show/NCT02160171). For this study the threshold will be
preset at 0.5 for purposes of equivalence across participating
centres.

It is important to state that the SDA is not intended to replace
clinician’s review of the EEG or to be viewed as a ‘decision maker’
with regard to the presence, or not, of seizures. Its purpose is only
to highlight areas of interest for further review. In this respect, a
crucial aspect of the algorithm’s output is the graph of the

Undetected 
seizures

Detected 
seizures

(C)

Fig. 9 (continued)

 

 

False detec�ons due 
to persistent 
respira�on artefact 

Respira�on artefact on 
EEG synchronized with 
respira�on trace 

(A)

Fig. 10. Causes of false detection. (A) Respiration artefact. Upper panel shows output from SDA, lower panel shows rhythmic respiration artefact on EEG synchronized with
respiration trace (from motion sensor). (B) Pulse artefact synchronized to ECG trace. (C) Sweat artefact with characteristic high amplitude semi-rhythmic slow waves
spanning several seconds. (D) Highly rhythmic background EEG occurring in the intermediate sleep phase. Note how periodic episodes of intermediate/quiet sleep indicated
by the CFM are coincident with periods of raised seizure probability output on the SDA graph and a highly rhythmic EEG in the lower panel.
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Fig. 10 (continued)
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Fig. 10 (continued)
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probability of seizure. A clinician reviewing the output of the SDA
at the cotside is likely to interrogate both prominent peaks that
breach the threshold on the graph and others that do not (eg.
Fig. 9c). With a ‘‘pattern recognition’’ support package, the ability
of clinicians to differentiate seizures from artefacts can, potentially,
be improved. For these reasons, the role of the reviewer is central
to the interpretation of the output of the SDA and consequently
how many seizures, false detections, seizure babies and
non-seizure babies are identified correctly. Our intention is that
the seizure detection performance of clinicians with the assistance
of our algorithm will be superior to the algorithm’s simple binary
‘alerts’ based on fixed thresholds presented here.

5. Conclusion

We have validated a neonatal SDA on a large EEG dataset and
have shown that it achieves a clinically useful level of seizure
detection with acceptable false detection rates. Future
multi-centre evaluation of the SDA in a ‘live’ clinical environment
will critically investigate the clinician’s interpretation of the full
SDA output to determine the usefulness of the SDA in the NICU.
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Parents Information Leaflet 

                                      
 

EEG and NIRS testing for Babies 
You are being asked to take part in a research study. In order to decide whether 

or not you want to be a part of this research study, we would like you to know 

enough about the risks and benefits to make a decision. This is a vital part of the 

process of fully informed consent. This parent information leaflet provides you with 

information about the research study currently being undertaken in the neonatal 

intensive care unit of the Cork University Maternity Hospital. Once you understand 

the study, you will be asked to sign this form if you wish to take part. This 

information leaflet is for you to keep. 

 

1. What is this study all about? 
The doctors in Cork University Maternity Hospital have experience in studying 

brain waves in sick newborns. Your baby may have unusual movements, is sick 

and may be at risk of seizures often called fits or convulsions. To confirm whether 

your baby is having seizures or not, we would like to do a test called EEG 

(electroencephalogram). To know whether the oxygen supply to your baby’s brain 

is affected or not we would like to do a test called NIRS (near infrared 

spectrometry). 

 

2. What is a fit, convulsion or seizure? 
Fits or convulsions are also called seizures. They are due to excessive electrical 

activity in the brain. 

 

3. Why does my baby need an EEG?  
Your baby’s behaviour suggests that he/she may be having seizures. The EEG 

test is carried out to help confirm that these events are actually caused by 

seizures. 
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4. What is an EEG? 

An EEG is a specialized test that picks up tiny electrical signals from your baby’s 

brain. A series of soft discs will be placed on your baby’s head with a special 

paste. These discs pick up the brain’s electrical activity and are connected to a 

machine by short wires, which record this activity (the wires do not give out 

electrical signals). At the same time, your baby will be videoed to monitor your 

baby’s movements which can be important and help us understand the brain 

activity better. Once the test is complete the discs will be removed. There may be 

some residue of the soft paste on your baby’s head that will wash off with warm 

water. 

 
5. What is NIRS? 
NIRS is a test that picks up the oxygen level in your baby’s brain. Like the EEG 

soft dics, the NIRS dics will also be applied on your baby’s head and will be kept 

in place along with the EEG test for the same length of time and will also be 

removed the same way. 

 
6. How long will the whole study take place on my baby?  
The EEG and NIRS discs take about 30 minutes to apply and after this, they will 

be left in place for up to 3 days while your baby is being monitored.  
 
7. Will there be any side effects from performing the EEG and NIRS on my 
    baby?  
There are no side effects from the EEG and NIRS to your baby.  
 

8. Will my baby feel any pain when the EEG and NIRS monitors are on my 
    baby’s head? 
The EEG and NIRS are a safe and painless procedure. We can assure you that 

we will apply the soft recording discs carefully and slowly to ensure that your baby 

is disturbed as little as possible.  
 
9. Will I be allowed to see my baby during this study?  
Of course. We will encourage you to see your baby as much as you can while 

your baby is in the Neonatal Intensive Care Unit.  
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10. How soon will I know the result of the tests?  
The results of the tests may not be available until the tests are completed over a 

number of days.  As soon as the doctors have results, they will discuss them with 

you. 
 
11. How can it help my baby? 
When the doctors have the results of the tests, it may help them to provide you 

with the diagnosis of your baby’s condition and may also help with treatment of 

this condition. The doctor looking after your baby will explain this to you in greater 

details if your baby requires treatment.  

 
12.  Are EEG and NIRS widely used in other hospitals? 
It is used in Neonatal Intensive Care Units worldwide and we are very fortunate to 

have this monitoring available in Cork University Maternity Hospital. EEG and 

NIRS are also commonly used in older children and adults.  
 
13. Will my baby require any other procedures during this study?  
We wish to examine your baby and ask you a few simple questions about the 
pregnancy and delivery. To conduct this research thoroughly, we will also require 

information from the medical notes of both mother and baby. This information and 
the EEG data that we record will help us to develop an automated computerized 
system for monitoring newborn babies at risk of seizures. Further investigations 

such as blood test, lumbar punctures and radiographical imaging may take place 

but only at the discretion of your attending doctor and these are not directed by 

the study. 
 
14. Will my identity as well as my baby’s identity be revealed? 
No. All information will be stored securely and will be treated with the strictest 

confidence. We would like your permission to show this information to other 

medical professionals for research and teaching purposes on occasion but will not 

reveal any identifying details about yourself or your baby.  
 
15. Do I have to take part in this study?  
You do not have to take part in this study if you do not want to. If you decide to 

take part, you may withdraw at any time without having to give a reason. Your 

decision on whether to take part or not, will not affect the care and management 
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of your baby in any way. We understand that this is a very difficult time for you 

and will do our best to provide you with all the information that you need at any 

time. We also wish to emphasize that your baby may need to have these tests 

anyway as part of the routine clinical care however it will be for a much shorter 

time. In the past, parents have not found our studies intrusive and in fact have 

been very reassured by the added benefit of this continuous monitoring.  

 

If you decide to take part, you will be given a copy of this information sheet to 

keep and be asked to sign a consent form, a copy of which you will also be given 

to keep.  
 
16. Will my baby be followed up in the future? 
After your baby has gone home, we would like to see how your baby is doing for 

neurodevelopmental milestone and outcome. Therefore, we will contact you within 

18 months and 2 years to see how your baby is getting on. 
 
17. Who should I contact if I have more questions about this study? 
Do not hesitate to speak to the Consultant looking after your baby or any of the 

research doctors if you need more information about this study. We will be happy 

to answer any questions that you may have.  
 
After you have read this information and once you have fully understood the 

procedures, the doctors will ask you to sign a consent form. The doctors will 

discuss any issues you may have about the test. 
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(Copy for Investigator and a copy for Parent) 
CONSENT BY PARENTS FOR PARTICIPATION IN STUDY 
Protocol Number: _____________ Baby’s Addressogram: _______________ 
 

Title of Protocol: Seizure Detection for Babies 
 

Doctor(s) Directing Research: 
Prof Anthony Ryan, Prof Geraldine Boylan, Dr Deirdre Murray, Dr Brendan 
Murphy, Dr Peter Filan, Dr Gene Dempsey, Dr Liam O’Connell, Dr Irina 
Korotchikova, Dr Brian Walsh, Dr Niamh Lynch, Dr Evonne Low (Mobile number). 
 
AGREEMENT TO CONSENT 
The research project and the treatment procedures associated with it have been 
fully explained to me. All experimental procedures have been identified and no 
guarantee has been given about the possible results. I have had the opportunity 
to ask questions concerning any and all aspects of the project and any 
procedures involved. I am aware that participation is voluntary and that I may 
withdraw my consent at any time. I am aware that my decision not to participate or 
to withdraw will not restrict my access to health care services normally available to 
me. Confidentiality of records concerning my involvement in this project will be 
maintained in an appropriate manner. When required by law, the records of this 
research may be reviewed by government agencies and sponsors of the 
research.  
 
I understand that the sponsors and investigators have such insurance as is 
required by law in the event of injury resulting from this research. 
 
I, the undersigned, hereby consent my baby to participate as a subject in the 
above described project conducted at the Cork Teaching Hospitals. I have 
received a copy of this consent form for my records. I understand that if I have 
any questions concerning this research, I can contact the doctor(s) listed above. If 
I have further queries concerning my rights in connection with the research, I can 
contact the Clinical Research Ethics Committee of the Cork Teaching Hospitals, 
Lancaster Hall, 6 Little Hanover Street, Cork. 
 
After reading the entire consent form, if you have no further questions about 
giving consent, please sign where indicated. 
 
 
 
Doctor’s name: _____________ Parent’s/ Guardian’s signature: ______________ 
 
Witness’s name: ___________ Date: ___________ Time: _______ (0 to 24 hour)    


	Section 1
	Introduction to Neonatal Seizures
	Chapter 1
	Introduction
	1.1 Background of this research study
	1.2 Aims and scope of this thesis

	Pathophysiology of Neonatal Seizures and their Basis for Treatment
	2.1 What are neonatal seizures?
	2.1.1 Generation of neonatal seizures
	2.1.2 Propagation of neonatal seizures, status epilepticus and epilepsy

	2.2 Risk factors for neonatal seizures
	2.3 Aetiology of neonatal seizures in term neonates
	2.3.1 Hypoxic-ischaemic encephalopathy (HIE) and seizures
	2.3.2 Stroke and seizures

	2.4 Using anti-seizure medication
	2.6 Using anti-seizure medication during therapeutic hypothermia to treat
	neonatal seizures
	3.1 Manifestation of neonatal seizures
	3.1.1 Electroclinical seizures: clinical seizures with EEG correlates
	3.1.1.1  Clonic seizures
	3.1.1.2  Tonic seizures
	3.1.1.3  Myoclonic seizures
	3.1.1.4  Subtle seizures
	3.1.1.5  Apnoeic seizures and EEG suppression

	3.1.2 Electroclinical dissociation (ECD) of seizures
	3.1.3 Clinical movements mimicking seizure-like activity but with no EEG correlate

	3.2 Using clinical recognition
	3.3  Using the amplitude-integrated EEG (aEEG)
	3.4 Using the multichannel video-EEG
	3.5 Using Neonatal Automated Seizure Detection Algorithm (NASDA)
	3.6 Conclusion

	The Neonatal EEG and Electrographic Seizures
	4.1 What is neonatal EEG?
	4.2 Literature search on the definition of electrographic seizures in neonates
	4.2.1 Morphological features of electrographic seizures in neonates
	4.2.1.1  Waveform patterns and frequency
	4.2.1.2  Onset nature of neonatal seizures
	4.2.1.3  Origin of location of neonatal seizures


	4.3 Status epilepticus in neonates
	4.4 Neonatal seizure burden

	B. Quiet sleep. Trace alternant
	Section 2
	Methodology
	Chapter 5
	Methodology
	5.1 Study setting
	5.1.1 Study population
	5.1.2 Standard protocol approvals, registrations and patient consents

	5.2 Electroencephalogram (EEG) recording in the neonatal unit
	5.2.1 Scalp electrode placements
	5.2.2 Visual Analysis of EEG
	5.3 Radiographic features
	5.4 Standard protocol for treatment
	5.4.1 Therapeutic hypothermia by whole body cooling
	5.4.2 Anti-seizure medication

	5.5 Dataset for each study

	5.6 Clinical data collection
	5.7 Definitions
	An electrographic seizure was defined as a sudden and evolving repetitive stereotyped waveform with a definite start, middle and end, lasting for at least 10 seconds and with a minimum amplitude of two microvolts (Clancy and Legido, 1987) on at least ...
	Status epilepticus was defined as continuous or accumulative electrographic seizure activity lasting greater than 50% of a one hour period (Ortibus et al., 1996).
	5.8 Statistical analysis

	Section 3
	Results and Discussions
	Summary of dataset of neonates recruited for this research study
	Chapter 6
	Characteristics of Electrographic Seizure Burden in Term Neonates with Hypoxic-ischaemic Encephalopathy
	6.1 Abstract
	6.3 Aim
	6.4  Methods

	Characteristics of Electrographic Seizures in Term Neonates with Stroke
	7.4  Methods
	7.5 Results
	7.6 Discussion
	7.7 Conclusion
	Characteristics of Electrographic Seizure Burden in Response to     Phenobarbitone in Term Neonates
	8.1 Abstract
	8.2 Introduction
	8.3 Aims
	8.4  Methods
	8.5 Results
	8.7 Conclusions

	The Dissociation of Electroclinical Seizures in Term Neonates
	What is already known on this topic?
	Section 4
	Summary
	Chapter 10
	Summary, Clinical implications and Implications for Future Research
	I began this thesis as a clinical neonatologist with a special interest in neonatal seizures. I soon realized how very little I knew about the subject. Neither did I realise that I was on the cusp of a wave of real breakthroughs in the understanding o...
	After a long, uncertain and sometimes exhausting journey, I can now summarize,   with the help of many dedicated and sagacious colleagues, that this thesis contributes the following novel contributions to the literature of neonatal seizures. We have:
	 Presented in-depth information on the characteristics of seizures based on current population of neonates in the NICU through early and prolonged continuous EEG recording during this current era of neonatal care.
	 Demonstrated, using the multichannel EEG, that the recorded electrographic seizure burden is decreased in neonates with hypoxic-ischaemic encephalopathy who were cooled, when compared with neonates who were non-cooled. This was the first study which...
	 Postulated that therapeutic hypothermia may possess some anti-seizure properties, since it has the ability to reduce the electrographic seizure burden in term neonates who were cooled.
	 Shown that electrographic seizures in neonates with stroke have a particular focal sharp wave/spike-polyspike pattern and phase reversal is frequently present. Using the multichannel video-EEG, this was the first study to report that in neonates wit...
	 Shown that approximately 80% of the total seizure burden in term neonates with stroke is not recognized clinically without the use of continuous multichannel video-EEG monitoring.
	 Demonstrated that phenobarbitone reduces seizure burden only on a temporary basis in most neonates and that 20 mg/kg dose may be more effective than 10mg/kg dose.
	 Shown that phenobarbitone may be more effective if treatment strategies are tightly aligned with EEG monitoring.
	 Presented an electroclinical dissociation of seizure index (ECD index) for hypoxic-ischaemic encephalopathy (ECD index=90%) and seizures due to other diagnoses including stroke (ECD index=60%) and shown that the occurrence of the dissociation of ele...
	 Created a large, unique bio-bank of neonatal seizures in term neonates with multiple aetiological origins, with which will play a key role in in-depth research on neonatal seizure.
	Implications of this research for clinical practice
	During the course of this thesis, I worked in 3 different neonatal intensive care units as part of my clinical rotations. Clinical guidelines on the treatment of neonatal seizures in these hospitals were similar and each hospital had adopted therapeut...
	Neonates with seizures who were treated with phenobarbitone ultimately could be  treated more effectively if treatment was anchored and controlled under tight EEG  monitoring and that electrographic seizures were treated early. Early and  appropriate ...
	The characteristics of electrographic seizures and seizure burden in term neonates who had stroke (the Stroke study) provided invaluable information for clinical management among neonatologists in terms of early diagnosis and treatment. The findings f...
	During this study, with the help of my colleagues, we had collected EEG from at least 214 neonates and analyzed up to approximately 6089 seizures in total. Based on early, prolonged and continuous multichannel EEG monitoring, the findings from this re...
	Section 5
	Contribution of this Thesis to the Literature
	Section 6
	References
	Section 7
	Appendix
	178-191.pdf
	10_Epreuves completes_v2 95
	10_Epreuves completes_v2 96
	10_Epreuves completes_v2 97
	10_Epreuves completes_v2 98
	10_Epreuves completes_v2 99
	10_Epreuves completes_v2 100
	10_Epreuves completes_v2 101
	10_Epreuves completes_v2 102
	10_Epreuves completes_v2 103
	10_Epreuves completes_v2 104
	10_Epreuves completes_v2 105
	10_Epreuves completes_v2 106
	10_Epreuves completes_v2 107
	10_Epreuves completes_v2 108

	239-251.pdf
	Validation of an automated seizure detection algorithm for term neonates
	Introduction
	Methods
	Data acquisition and EEG annotation
	EEG recording
	EEG analysis

	Assessment of the SDA
	Conventional measures of agreement
	Application specific measures of SDA usefulness


	Results
	Conventional measures of agreement
	Application specific measures of SDA usefulness

	Missed seizures and false detections

	Discussion
	Conclusion
	Acknowledgements
	References





