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We have recently proposed a two-dimensional quantum walk where the requirement of a higher dimensionality
of the coin space is substituted with the alternance of the directions in which the walker can move [C. Di Franco,
M. Mc Gettrick, and Th. Busch, Phys. Rev. Lett. 106, 080502 (2011)]. For a particular initial state of the coin,
this walk is able to perfectly reproduce the spatial probability distribution of the nonlocalized case of the Grover
walk. Here, we present a more detailed proof of this equivalence. We also extend the analysis to other initial
states in order to provide a more complete picture of our walk. We show that this scheme outperforms the Grover
walk in the generation of x-y spatial entanglement for any initial condition, with the maximum entanglement
obtained in the case of the particular aforementioned state. Finally, the equivalence is generalized to wider classes
of quantum walks and a limit theorem for the alternate walk in this context is presented.

DOI: 10.1103/PhysRevA.84.042337 PACS number(s): 03.67.Ac, 03.67.Bg, 05.40.Fb

I. INTRODUCTION

The interest of a wide scientific community in the study of
quantum walks [1,2] has recently increased. The main reason
is that, in the same way that classical random walks have
applications in several fields (see, as noticeable instances,
physics, computer science, economics and biology [3]), their
quantum counterparts are useful in different scenarios, from
simulating quantum circuits [4] to analyzing quantum lattice
gas models [5]. Even if the complete range of possibilities is
still under investigation, interesting experimental implementa-
tions have already been realized [6]. Quantum walks can also
efficiently generate entanglement in experimentally feasible
systems [7]. Due to the main role of entanglement in quantum
metrology, quantum computation, and quantum cryptography,
its generation is of fundamental importance to realize reliable
devices for quantum information processing [8].

A very interesting example of a two-dimensional quantum
walk is the Grover walk, which can be used to implement the
two-dimensional Grover search algorithm [9]. Unfortunately,
the experimental resources required for its realization are ex-
tremely challenging for the current state-of-the-art technology.
This is in general a problem common to all two-dimensional
quantum walks in which the coin has to be represented
by a four-level system. A simplification in this respect is
highly desirable, especially from a practical perspective.
Reference [10] presents a significant step forward in this
direction: we have demonstrated that the spatial probability
distribution of the nonlocalized case of the Grover walk can
be obtained using only a two-level coin and a quantum walk
in alternate directions (however, the two final states will
be different). The requirement of a higher dimensionality
of the coin space is thus substituted by alternating the
directions in which the walker can move, offering a striking
advantage in terms of the experimental resources needed for its
implementation. Here, we present a more complete analysis of
this alternate quantum walk, considering the case of different
initial conditions and providing further details of the x-y
spatial entanglement generated with respect to the Grover
walk.

To analyze the asymptotic behavior of quantum walks in
the long-time limit, Fourier transform methods have been
used, finding limit theorems in different contexts [11,12].
A similar approach has been recently exploited for the
investigation of the asymptotic behavior of the entanglement
in one-dimensional quantum walks [13]. Here, we use this tool
in order to find a limit distribution for the alternate quantum
walk.

The remainder of this article is organized as follows. In
Sec. II, we describe the model under investigation. Section III
presents a complete and detailed proof that the alternate
quantum walk is able to perfectly reproduce the spatial
probability distribution of the nonlocalized case of the Grover
walk. In Sec. IV, we study the case of different initial states
of the coin, with an analysis of the x-y spatial entanglement
generated with respect to the Grover walk. Section V deals with
the generalization of the equivalence between the quantum
walks for wider classes of them and we present a limit
theorem for the alternate walk in this context. Finally, Sec. VI
summarizes our results.

II. ALTERNATE QUANTUM WALK WITH
SINGLE-QUBIT COIN

The total state of the system considered here is a vector
in the composite Hilbert space H = HW ⊗ HC , where HC

(coin space) is a two-dimensional Hilbert space spanned by
{|0〉,|1〉} and HW (walker space) is an infinite-dimensional
Hilbert space spanned by {|x,y〉}, with x and y assuming
all possible integer values. Let us define the basis states of
this space H as {|x,y,c〉} where, for the sake of simplicity,
we have defined |x,y,c〉 = |x,y〉W ⊗ |c〉C . In the standard
representation of two-dimensional quantum walks, x and
y denote the position of a particle (walker) along the x

and y directions, respectively. We stress, however, that here,
differently from other two-dimensional quantum walks, |c〉C is
the state of a single-qubit coin (thus embodied by a two-level
quantum system). From now on, we consider our walks (the
alternate one as well as the Grover one) always starting at the
origin, i.e., in |0,0〉W .
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FIG. 1. (Color online) Sketch of the alternate quantum walk: the
walker is allowed to move alternately in two orthogonal directions of
a two-dimensional lattice; a coin operation is performed before each
movement.

The evolution of the system is given by a sequence of
conditional shift and coin operations. We have two different
conditional shift operations,

Ŝx =
∑
i,j∈Z

|i − 1,j,0〉〈i,j,0| +
∑
i,j∈Z

|i + 1,j,1〉〈i,j,1| (1)

and

Ŝy =
∑
i,j∈Z

|i,j − 1,0〉〈i,j,0| +
∑
i,j∈Z

|i,j + 1,1〉〈i,j,1|. (2)

If we consider the walker component |i,j 〉W as describing the
quantized position of the walker in the x and y directions with
increasing numbers from left to right and from bottom to top,
respectively, the effect of Ŝx is to move the walker one step to
the left (right) when the coin component is in the state |0〉C
(|1〉C) and the effect of Ŝy is to move the walker one step down
(up) when the coin component is in the state |0〉C (|1〉C). Our
coin operation is the Hadamard gate

Ĥ = 1√
2

(
1 1
1 −1

)
, (3)

as in the original one-dimensional quantum walk [1]. A single
time step consists here of two Hadamard operations and
two movements on the x and y directions, according to the
following sequence: coin operation, movement on x, coin
operation, movement on y (as sketched in Fig. 1).

It is also useful to briefly present here the details of
the Grover walk. The coin space HC ′ , in this case, is
four-dimensional, so we define the basis states of the total
Hilbert space as {|x,y,c′〉}, where c′ ∈ {0,1,2,3}. The states
of the computational basis of the coin |0〉C ′ , |1〉C ′ , |2〉C ′ ,
and |3〉C ′ correspond to movements in the left-down, left-up,
right-down, and right-up directions, respectively. The Grover
coin operation is given by

Ĝ = 1

2

⎛
⎜⎜⎜⎝

−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

⎞
⎟⎟⎟⎠ , (4)

and a single time step consists here of a Grover coin operation
and a movement on the x-y plane. In this particular scheme,
the walker is always localized (i.e., the probability to find it at

FIG. 2. (Color online) Spatial probability distribution after t =
50 time steps of the two-dimensional Grover walk with the initial
state of the coin as in Eq. (5). Only the sites with even x and y are
shown, as the probability is zero for all odd sites.

the origin is asymptotically larger than 0 for t → ∞), except
if the coin is in the particular initial state [14]

1
2 (|0〉C ′ − |1〉C ′ − |2〉C ′ + |3〉C ′ ). (5)

The spatial probability distribution for this case can be
obtained by tracing out the state of the coin, as presented
in Fig. 2 after t = 50 time steps.

III. EQUIVALENCE BETWEEN THE ALTERNATE
QUANTUM WALK AND THE GROVER WALK

In what follows, we illustrate how the coefficients of the
Grover walk in the nonlocalized case can be mapped to the
coefficients of the alternate quantum walk where the initial
condition of the coin is

1√
2

(|0〉C + i|1〉C), (6)

as in the original symmetric one-dimensional quantum walk
[1]. The coefficients in the decomposition of the states in the
Grover walk and in the alternate quantum walk, with respect
to the bases {|x,y,c′〉} and {|x,y,c〉}, are defined as αx,y,c′ (t)
and βx,y,c(t), respectively. It is easy to note that, for the initial
states under consideration, the αx,y,c′ (t)’s are real numbers,
while the βx,y,c(t)’s are complex numbers.

Lemma 1. In the Grover walk, with the walker starting at
the origin and the initial conditions

α0,0,0(0) = 1/2, α0,0,1(0) = −1/2,
(7)

α0,0,2(0) = −1/2, α0,0,3(0) = 1/2,

the amplitudes satisfy the properties

αx−1,y,0(t) + αx−1,y,1(t) + αx+1,y,2(t) + αx+1,y,3(t) = 0,

(8)

αx,y−1,0(t) + αx,y−1,2(t) + αx,y+1,1(t) + αx,y+1,3(t) = 0.

(9)

Proof. We proceed by induction on t .
Base case. It is easy to see that Eqs. (8) and (9) are

satisfied at t = 0. For completeness, the details are as

042337-2
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follows:
(i) At (x,y) = (1,0), Eq. (8) reads α0,0,0(0) + α0,0,1(0) +

α2,0,2(0) + α2,0,3(0) = 1/2 − 1/2 + 0 + 0 = 0.
(ii) At (x,y) = (−1,0), Eq. (8) reads α−2,0,0(0) +

α−2,0,1(0) + α0,0,2(0) + α0,0,3(0) = 0 + 0 − 1/2 + 1/2 = 0.
(iii) At (x,y) = (0,1), Eq. (9) reads α0,0,0(0) + α0,0,1(0) +

α0,2,2(0) + α0,2,3(0) = 1/2 − 1/2 + 0 + 0 = 0.

(iv) At (x,y) = (0, − 1), Eq. (9) reads α0,−2,0(0) +
α0,−2,1(0) + α0,0,2(0) + α0,0,3(0) = 0 + 0 − 1/2 + 1/2 = 0.

For all other values of (x,y), the α’s are initially zero.
Inductive step. Assume that both Eqs. (8) and (9) are true

[for all points (x,y)] at some time t . Then we need to prove
that they hold at time t + 1. Starting with the left-hand side of
Eq. (8), we have

αx−1,y,0(t + 1) + αx−1,y,1(t + 1) + αx+1,y,2(t + 1) + αx+1,y,3(t + 1)

=
3∑

j=0

[G0jαx,y+1,j (t) + G1jαx,y−1,j (t) + G2jαx,y+1,j (t) + G3jαx,y−1,j (t)]

=
3∑

j=0

[(G0j + G2j )αx,y+1,j (t) + (G1j + G3j )αx,y−1,j (t)]

= αx,y+1,1(t) + αx,y+1,3(t) + αx,y−1,0(t) + αx,y−1,2(t), (10)

which is identically zero because we have assumed Eq. (9) true
at time t . Here, Gij (i,j = 0,1,2,3) is the element of the matrix
Ĝ corresponding to |i〉C〈j |. It is straightforward to proceed
in the same way to prove Eq. (9) at time t + 1, assuming that
Eq. (8) is true at time t . �

Theorem 1. The relations between the amplitudes βx,y,j (t)
of the alternate quantum walk with the initial conditions

β0,0,0(0) = 1/
√

2, β0,0,1(0) = i/
√

2, (11)

and the amplitudes αx,y,k(t) of the Grover walk with the initial
state as in Eq. (7) are given by

βx,y,0(t) = (−1)t eiπ/4[αx,y,0(t) + iαx,y,2(t)], (12)

βx,y,1(t) = (−1)t eiπ/4[−αx,y,1(t) + iαx,y,3(t)]. (13)

Proof. We proceed by induction on t .
Base case. At t = 0, all the amplitudes are zero outside of

the origin (x,y) = (0,0). At the origin, we have

β0,0,0(0) = (−1)0eiπ/4[α0,0,0(0) + iα0,0,2(0)]

= 1 + i√
2

(
1

2
− i

2

)
= 1√

2
, (14)

β0,0,1(0) = (−1)0eiπ/4[−α0,0,1(0) + iα0,0,3(0)]

= 1 + i√
2

(
1

2
+ i

2

)
= i√

2
. (15)

Inductive step. Assume that both Eqs. (12) and (13) are true
[for all points (x,y)] at some time t . Then, we need to prove
that they hold at time t + 1. The progression of each walk is

as follows.
(i) Alternate quantum walk:

βx,y,0(t + 1) = 1
2 [βx+1,y+1,0(t) + βx+1,y+1,1(t)

+βx−1,y+1,0(t) − βx−1,y+1,1(t)], (16)

βx,y,1(t + 1) = 1
2 [βx+1,y−1,0(t) + βx+1,y−1,1(t)

−βx−1,y−1,0(t) + βx−1,y−1,1(t)]. (17)

(ii) Grover walk:

αx,y,0(t + 1) =
3∑

j=0

G0jαx+1,y+1,j (t),

αx,y,1(t + 1) =
3∑

j=0

G1jαx+1,y−1,j (t),

(18)

αx,y,2(t + 1) =
3∑

j=0

G2jαx−1,y+1,j (t),

αx,y,3(t + 1) =
3∑

j=0

G3jαx−1,y−1,j (t).

Starting from Eq. (16), we have

βx,y,0(t + 1) = 1
2 (−1)t eiπ/4{αx+1,y+1,0(t)−αx+1,y+1,1(t)

+ iαx−1,y+1,2(t) − iαx−1,y+1,3(t)

+ [αx−1,y+1,0(t) + αx−1,y+1,1(t)

+ iαx+1,y+1,2(t) + iαx+1,y+1,3(t)]}. (19)

Now we use Lemma 1, specifically the relation

αx−1,y,0(t)+αx−1,y,1(t)=−αx+1,y,2(t)−αx+1,y,3(t), (20)

042337-3
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to replace the terms within the square brackets in Eq. (19) and obtain

βx,y,0(t + 1) = 1

2
(−1)t eiπ/4{αx+1,y+1,0(t) − αx+1,y+1,1(t) + iαx−1,y+1,2(t) − iαx−1,y+1,3(t)

+ [−αx+1,y+1,2(t) − αx+1,y+1,3(t) − iαx−1,y+1,0(t) − iαx−1,y+1,1(t)]}
= 1

2
(−1)t+1eiπ/4{−αx+1,y+1,0(t) + αx+1,y+1,1(t) + αx+1,y+1,2(t) + αx+1,y+1,3(t)

+ iαx−1,y+1,0(t) + iαx−1,y+1,1(t) − iαx−1,y+1,2(t) + iαx−1,y+1,3(t)}

= (−1)t+1eiπ/4

⎧⎨
⎩

3∑
j=0

G0jαx+1,y+1,j (t) + i

3∑
j=0

G2jαx−1,y+1,j (t)

⎫⎬
⎭

= (−1)t+1eiπ/4{αx,y,0(t + 1) + iαx,y,2(t + 1)}, (21)

which completes the proof for Eq. (12). An analogous analysis
allows us to prove the partner Eq. (13).

It is now straightforward to see why the two walks have the
same spatial probability distribution. The probability to find
the walker at position (x,y) after t time steps is

P (x,y) =
3∑

j=0

|αx,y,j (t)|2 (22)

for the Grover walk and

P (x,y) =
1∑

j=0

|βx,y,j (t)|2 (23)

for the alternate quantum walk. The relations in Eqs. (12) and
(13) and the fact that the αx,y,j (t)’s are real numbers guarantee
that the two probabilities are the same for all the points (x,y)
at any time t .

IV. ALTERNATE QUANTUM WALK WITH DIFFERENT
INITIAL CONDITIONS

So far, the analysis has been performed on the alternate
quantum walk for an initial state of the coin given by Eq. (6).
Clearly, any two-level state can be chosen as the initial
condition of the coin. If we focus on pure states, its general
form can be cast as

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (24)

FIG. 3. (Color online) Spatial probability distribution after t =
50 time steps of the alternate quantum walk with the initial state of
the coin as in Eq. (25).

with θ ∈ [0,π ] and φ ∈ [0,2π ]. Let us first analyze the spatial
probability distribution for particular instances of the initial
conditions. If we consider the states

|ψ1〉 = |1〉 (25)

and

|ψ2〉 = 1√
2

(|0〉 − |1〉), (26)

the corresponding spatial probability distributions after t = 50
time steps are those shown in Figs. 3 and 4, respectively.
The state orthogonal to |ψ1〉 (|ψ2〉) gives a distribution
that is the symmetric to Fig. 3 (Fig. 4) with respect to
the x (y) axis. It is easy to notice that the spatial prob-
ability distribution is enhanced in a particular direction
of the x-y plane on which the walker is moving. More
precisely, through a numerical study, we have found a
correspondence between the direction of the Bloch vector [15]
of the initial coin state and this enhanced direction. In fact,
we just need to consider the projection of this vector onto the
azimuthal plane of the Bloch sphere orthogonal to the vector
corresponding to the state in Eq. (6). The states in Eq. (25),
Eq. (26), and those orthogonal to them belong to this plane
and each one corresponds to a specific direction of the x-y
plane on which the walker is moving [for instance, the state in
Eq. (25) corresponds to the positive y direction]. The closer
the projection of the initial state of the coin is to one of these
four states, the more the corresponding direction is enhanced.

FIG. 4. (Color online) Spatial probability distribution after t =
50 time steps of the alternate quantum walk with the initial state of
the coin as in Eq. (26).
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FIG. 5. (Color online) Entanglement between x and y position of
the walker in the alternate quantum walk, with the initial conditions
of the coin as in Eq. (24), φ = 0, and after a number of steps
t = 10.

Clearly, the only states on the Bloch sphere that have a null
projection on the aforementioned plane are the one in Eq. (6)
and its orthogonal state. These are the only cases in which the
probability distribution is symmetric with respect to both the
axes (see Fig. 2).

Let us now focus the analysis on the generation of entan-
glement in our scheme. In Ref. [10], we have already shown
that the alternate quantum walk with the initial condition as
in Eq. (6) is able to generate more x-y spatial entanglement
than the Grover walk in its nonlocalized case. Here, we extend
the investigation to other initial states of the coin. In order to
evaluate the x-y spatial entanglement, we need to trace out the
degree of freedom embodied by the coin and then calculate the
negativity N of the partial transpose, in its generalization for
higher-dimensional systems (so as to have 0 � N � 1) [16].
Also in this case, the initial state of the coin in the alternate
quantum walk is described by Eq. (24) and we have considered
a number of steps t = 10, so as to perform the numerical
calculations in a reasonable time. However, we have checked
also for longer times and the behavior does not change. We
first report the results obtained by fixing the value of φ and
varying θ . We have considered θ in the interval [0,π ] and
uniformly taken 60 points in it. The x-y spatial entanglement
generated in the alternate quantum walk is presented in
Figs. 5, 6, and 7, for a values of φ equal to 0, π/8, and π/2,
respectively.

FIG. 6. (Color online) Entanglement between x and y position of
the walker in the alternate quantum walk, with the initial conditions
of the coin as in Eq. (24), φ = π/8, and after a number of steps
t = 10.

FIG. 7. (Color online) Entanglement between x and y position of
the walker in the alternate quantum walk, with the initial conditions
of the coin as in Eq. (24), φ = π/2, and after a number of steps
t = 10.

In order to provide a more complete picture of the generated
x-y spatial entanglement, we have also studied its behavior
against both θ and φ. With respect to φ, the results are periodic
with a period of π . The computational power required for the
calculations is clearly larger in this case, and we have therefore
reduced the number of points in each interval for θ and φ.
As a good compromise between the required computational
time and the readability of the plot, we have chosen to
take 20 points for each interval. The result is presented in
Fig. 8.

The generated entanglement is minimal for the values of θ

and φ corresponding to the states in Eq. (25), Eq. (26), and
those orthogonal to them (with a negativity, for a number of
steps t = 10, of N ∼ 0.42164), while it is maximal for the state
in Eq. (6) and the orthogonal one (N ∼ 0.54428). We have also
checked the minimum value of the entanglement generated in
the alternate quantum walk [with the initial condition of the
coin as in Eq. (25)] with respect to the entanglement generated
in the nonlocalized case of the Grover walk (the nonlocalized
case gives the maximum value of the generated entanglement
for this walk) after the same number of time steps and we have
found that the former is always larger than the latter. We have
investigated this property for larger numbers of steps, up to
t = 20, always obtaining the same result. We can thus state
that, in all the considered cases, our scheme outperforms the

FIG. 8. (Color online) Entanglement between x and y position of
the walker in the alternate quantum walk against both θ and φ, with the
initial conditions of the coin as in Eq. (24) and after a number of steps
t = 10.
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Grover walk in the generation of x-y spatial entanglement for
any initial condition of the coin.

V. GENERALIZATION TO WIDER CLASSES OF
QUANTUM WALKS AND LIMIT THEOREM FOR THE

ALTERNATE WALK

The equivalence proven in Sec. III can be extended to a
wider scenario. In this case, the generalized Grover operation
is given by

Â =

⎛
⎜⎜⎜⎝

−c2 |cs| |cs| s2

|cs| −s2 c2 |cs|
|cs| c2 −s2 |cs|
s2 |cs| |cs| −c2

⎞
⎟⎟⎟⎠ , (27)

with c = cos γ , s = sin γ , and γ ∈ (0,2π ) (γ �=
π/2,π,3π/2). Let us take the initial state of the coin in
the generalized Grover walk as

q0|0〉C ′ + q1|1〉C ′ + q2|2〉C ′ + q3|3〉C ′ , (28)

with |q0|2 + |q1|2 + |q2|2 + |q3|2 = 1. For the generalized
alternate quantum walk, we consider the coin operation

Û =
(

c s

s −c

)
, (29)

and the initial state of the coin given by

ν0|0〉C + ν1|1〉C, (30)

with |ν0|2 + |ν1|2 = 1. In this case, we can prove the following
theorem.

Theorem 2. If we take the initial states of the coins satisfying
the conditions

|ν0|2 = |ν1|2, ν0ν
∗
1 + ν∗

0ν1 = 0, (31)

and

q0 = q3 = (−1)ξ
|cs|√

2s
,

(32)
q1 = q2 = −(−1)ξ

s√
2
,

with ξ = 0,1, and the walker starting at the origin in both
cases, then the generalized alternate quantum walk and the
generalized Grover walk have the same spatial probability
distribution at any time t .

The proof is along the line of Theorem 1 in Sec. III.
Equation (31) can be rewritten as

|ν0| = 1√
2
, ν1 = (−1)κ iν0, (33)

with κ = 0,1 [corresponding to the state in Eq. (6) and the
orthogonal one, respectively]. In this case, Eqs. (12) and (13)
are substituted by

βx,y,0 = (−1)t+ξ
√

2 ν0{c + (−1)κ i s}
×[sgn(cs)αx,y,0(t) + (−1)κ i αx,y,2(t)],

(34)
βx,y,1 = (−1)t+ξ

√
2 ν0{c + (−1)κ i s}

×[−αx,y,1(t) + sgn(cs)(−1)κ i αx,y,3(t)],

where sgn(x) denotes the sign of x, while

|s|αx−1,y,0(t) + |c|αx−1,y,1(t)

+ |c|αx+1,y,2(t) + |s|αx+1,y,3(t) = 0,
(35)

|s|αx,y−1,0(t) + |c|αx,y−1,2(t)

+ |c|αx,y+1,1(t) + |s|αx,y+1,3(t) = 0

take the place of Eqs. (8) and (9), when the walk starts at the
origin and the initial state corresponds to

α0,0,0(0) = q0 = (−1)ξ
|cs|√

2s
,

α0,0,1(0) = q1 = −(−1)ξ
s√
2
,

(36)
α0,0,2(0) = q2 = −(−1)ξ

s√
2
,

α0,0,3(0) = q3 = (−1)ξ
|cs|√

2s
.

The proof is a straightforward generalization of the one in
Sec. III so, for the sake of simplicity, we do not report it here
entirely.

We now want to find a limit theorem for the alternate
quantum walk, in the same way as limit theorems have been
already found for other quantum walks in the literature [11,12].
For this, we define |ψt (x,y)〉 as

|ψt (x,y)〉 = βx,y,0|0〉C + βx,y,1|1〉C (37)

and we put |0〉C = T [1,0], |1〉C = T [0,1], where T is the
transpose operator. The probability that the quantum walker
(Xt,Yt ) is at position (x,y) ∈ Z2 at time t is

P [(Xt,Yt ) = (x,y)] = 〈ψt (x,y)|ψt (x,y)〉. (38)

The Fourier transform |�̂t (kx,ky)〉 of |ψt (x,y)〉, with kx,ky ∈
[−π,π ), is given by

|�̂t (kx,ky)〉 =
∑

(x,y)∈Z2

e−i(kxx+kyy)|ψt (x,y)〉. (39)

By the inverse Fourier transform, we have

|ψt (x,y)〉 =
∫ π

−π

dkx

2π

∫ π

−π

dky

2π
ei(kxx+kyy)|�̂t (kx,ky)〉. (40)

From the time evolution of the alternate quantum walk and
Eq. (39), the Fourier transform satisfies

|�̂t+1(kx,ky)〉 = V̂ (kx,ky)|�̂t (kx,ky)〉, (41)

where V̂ (kx,ky) = R̂(ky)Û R̂(kx)Û and

R̂(k) =
(

eik 0
0 e−ik

)
. (42)

Therefore, we can get

|�̂t (kx,ky)〉 = V̂ (kx,ky)t |�̂0(kx,ky)〉. (43)

From Eq. (30), the initial state becomes

|ψ0(x,y)〉 =
{

T [ν0,ν1] for (x,y) = (0,0),
T [0,0] for (x,y) �= (0,0).

(44)

Let us note that |�̂0(kx,ky)〉 = |ψ0(0,0)〉.
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We can now prove the following theorem.
Theorem 3. As t → ∞, we can obtain the limit distribution

for the alternate quantum walk as

lim
t→∞ P

(
Xt

t
� x,

Yt

t
� y

)
=

∫ x

−∞
du

∫ y

−∞
dv f (u,v),

(45)

where

f (x,y) = 1

π2(1 − x2)(1 − y2)
{1 − (|ν0|2 − |ν1|2)y

− ν0ν
∗
1 + ν∗

0ν1

2cs
[c2(x − y) + s2(x + y)]}ID(x,y),

D =
{

(x,y)

∣∣∣∣ (x + y)2

4c2
+ (x − y)2

4s2
< 1

}
, (46)

and ID(x,y) = 1 if (x,y) ∈ D, ID(x,y) = 0 if (x,y) /∈ D.
Proof. Our approach is based on the Fourier analysis

applied to quantum walks on Z2 [11,12]. We concentrate
on the characteristic function E(ei(z1Xt/t+z2Yt /t)) as t → ∞,
where E(X) denotes the expected value of X. The eigenvalues
λj (kx,ky) (with j = 1,2) of V̂ (kx,ky) are

λj (kx,ky) = c2 cos(kx + ky) + s2 cos(kx − ky) + i(−1)j

×
√

1 − [c2 cos(kx + ky) + s2 cos(kx − ky)]2.

(47)

The normalized eigenvector |vj (kx,ky)〉, corresponding to
λj (kx,ky), is given by

|vj (kx,ky)〉 = 1√
Nj (kx,ky)

×
(

cs[ei(kx+ky ) − e−i(kx−ky )]

i[g1(kx,ky) + (−1)j
√

1 − g2(kx,ky)2]

)
,

(48)

where

g1(kx,ky) = −c2 sin(kx + ky) + s2 sin(kx − ky),
(49)

g2(kx,ky) = c2 cos(kx + ky) + s2 cos(kx − ky),

and Nj (kx,ky) is a normalization factor. Equation (43) can be
written as

|�̂t (kx,ky)〉 = V̂ (kx,ky)t |�̂0(kx,ky)〉

=
2∑

j=1

λj (kx,ky)t 〈vj (kx,ky)|�̂0(kx,ky)|vj (kx,ky)〉.

(50)

Note that |�̂0(kx,ky)〉 = |ψ0(0,0)〉 = T [ν0,ν1] [see Eq. (44)].
The joint moment of Xt and Yt is expressed as

E
(
Xr1

t Y r2
t

) =
∑

(x,y)∈Z2

xr1yr2P [(Xt,Yt ) = (x,y)]

=
∫ π

−π

dkx

2π

∫ π

−π

dky

2π
〈�̂t (kx,ky)|Dr1

x Dr2
y |�̂t (kx,ky)〉

= (t)r1+r2

∫ π

−π

dkx

2π

∫ π

−π

dky

2π

2∑
j=1

[
Dxλj (kx,ky)

λj (kx,ky)

]r1

×
[
Dyλj (kx,ky)

λj (kx,ky)

]r2

|〈vj (kx,ky)|�̂0(kx,ky)〉|2

+O(t r1+r2−1) (51)

with Dx = i(∂/∂kx), Dy = i(∂/∂ky), and (t)r = t(t − 1) ×
· · · × (t − r + 1). Noting that

Dxλj (k)

λj (k)
= −(−1)j [c2 sin(kx + ky) + s2 sin(kx − ky)]√

1 − [c2 cos(kx + ky) + s2 cos(kx − ky)]2
,

Dyλj (k)

λj (k)
= −(−1)j [c2 sin(kx + ky) − s2 sin(kx − ky)]√

1 − [c2 cos(kx + ky) + s2 cos(kx − ky)]2
,

(52)

we see that

lim
t→∞ E

[(
Xt

t

)r1
(

Yt

t

)r2
]

=
∫ π

−π

dkx

2π

∫ π

−π

dky

2π

2∑
j=1

[
Dxλj (kx,ky)

λj (kx,ky)

]r1

×
[
Dyλj (kx,ky)

λj (kx,ky)

]r2

|〈vj (kx,ky)|�̂0(kx,ky)〉|2

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy xr1yr2f (x,y), (53)

where

f (x,y) = 1

π2(1 − x2)(1 − y2)
{1 − (|ν0|2 − |ν1|2)y

− ν0ν
∗
1 + ν∗

0ν1

2cs
[c2(x − y) + s2(x + y)]}ID(x,y),

(54)

with

D =
{

(x,y)

∣∣∣∣ (x + y)2

4c2
+ (x − y)2

4s2
< 1

}
. (55)

By Eq. (53), we can compute the characteristic function
E(ei(z1Xt/t+z2Yt /t)) as t → ∞. Since f (x,y) is a density
function (see Ref. [12]), proof is completed. �

For the sake of completeness, we present the limit
density function f (x,y) with γ = π/4 and |ψ0(0,0)〉 =
T [1/

√
2,i/

√
2], corresponding to the particular case of the

alternate quantum walk studied in Ref. [10], in Fig. 9.

FIG. 9. (Color online) Limit density function f (x,y) for the alter-
nate quantum walk with γ = π/4 and |ψ0(0,0)〉 = T [1/

√
2,i/

√
2].
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VI. CONCLUSIONS

We have provided a detailed proof of the equivalence
between the spatial probability distributions of the alternate
quantum walk proposed in Ref. [10] and the Grover walk. A
deeper investigation of the alternate quantum walk has been
performed, considering different initial conditions, and we
have found a correspondence between the Bloch vector of the
initial coin state and an enhancement of the spatial probability
distribution in a particular direction of the plane on which the
walker is moving. In the context of general initial conditions,
we have also investigated the generation of x-y spatial
entanglement; we have proved that its maximum corresponds
to the initial conditions studied in Ref. [10]. The equivalence
between quantum walks with two- and four-dimensional coins

has then been extended to wider classes and a limit theorem
has been put forward for this generalized alternate quantum
walk. We believe that the extensive exploration of the scheme
provided in this work will contribute to the development of
interesting proposals for the exploitation of quantum walks in
feasible experimental settings.
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