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Nanoelectronics requires the development of a priori technology evaluation for materials and device

design that takes into account quantum physical effects and the explicit chemical nature at the atomic

scale. Here, we present a cross-platform quantum transport computation tool. Using first-principles

electronic structure, it allows for flexible and efficient calculations of materials transport properties

and realistic device simulations to extract current-voltage and transfer characteristics. We apply this

computational method to the calculation of the mean free path in silicon nanowires with dopant and

surface oxygen impurities. The dependence of transport on basis set is established, with the optimized

double zeta polarized basis giving a reasonable compromise between converged results and efficiency.

The current-voltage characteristics of ultrascaled (3 nm length) nanowire-based transistors with p-i-p

and p-n-p doping profiles are also investigated. It is found that charge self-consistency affects the

device characteristics more significantly than the choice of the basis set. These devices yield source-

drain tunneling currents in the range of 0.5 nA (p-n-p junction) to 2 nA (p-i-p junction), implying that

junctioned transistor designs at these length scales would likely fail to keep carriers out of the channel

in the off-state. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807578]

I. INTRODUCTION

The continuous miniaturization of electronic transistors

pursued by semiconductor industries enables more functional-

ity for a fixed die area. However, scaling devices to sub-deca

nanometer gives rise to short-channel and quantum tunneling

effects that degrade device performance1,2 and to keep up with

scaling research has motivated new transistors designs that use

a range of nanostructured materials.3 These types of devices

require for their description taking explicitly into account new

physical phenomena and materials properties at the nanoscale.

For example, strong quantum confinement in one- and

two-dimensions occurs, respectively, in ultrathin body and

nanowire-based field-effect-transistors (FETs)2,4 and the high

surface to volume ratio allows for the manifestation of size

effects5,6 and volume inversion.7,8 Direct source-drain quan-

tum mechanical tunneling3,9 and gate-tunneling leakage

arise,10 obstructing the way to reducing power consump-

tion.11,12 Manifestations of differing properties of nanoscale

materials compared to their bulk counterparts have also been

demonstrated. For the prototypical material of silicon nano-

wires, surface functionalization schemes result in tuning the

electronic and transport properties,13–15 the effective masses of

charge carriers become heavier,16 dopants may deactivate,17

and the deformation potentials and electron-phonon scattering

can become highly anisotropic.18

Various semi-classical methods have been elaborated to

simulate the current-voltage of conventional transistors and

are used to reduce costs and shorten the design cycle.19 The

need to develop such a priori technology evaluation that

extends to the nanoscale is significant as the traditional trial-

and-error experimental design of nanodevices becomes more

time consuming and expensive. Over the last decade, the

description of electronic quantum transport based on compu-

tational methods has become one of the core topics in

atomic-scale modeling and device simulations,20 and the

explicit electronic structure of materials has been considered

from approximate methods that use empirical bulk parame-

terization15 to first-principles approaches,21–23 and approxi-

mations thereof.13,23–25

In this paper, we first discuss our own quantum transport

implementation (TiMeS—Transport in Mesoscopic Systems).

Separating the step that provides the electronic structure

description from the transport module, TiMeS offers a cross-

platform solution that allows efficient calculations of materials

transport properties and realistic device simulations to extract

current-voltage and transfer characteristics. Previously,

TiMeS was applied to predict transistor behavior in junction-

less nanowire-based gate-all-around (GAA) architectures

with just a 3 nm gate length.9,25 The excellent device charac-

teristics at such ultra-scaled dimensions have been recently

confirmed.26 The simulation results were obtained using

an approximate Density-Functional Tight-Binding (DFTB)

approach based on the Harris-Foulkes functional of density

functional theory (DFT).27 Here, we make use of the TiMeS

modularity to interface with a DFT package based on numeri-

cal atomic orbitals (NAOs). We demonstrate TiMeS flexibility

by applying it to study the basis set dependence of the mean

free path in silicon nanowires with dopant and surface oxygen

impurities and the current-voltage characteristics of ultra-

scaled nanowire devices.

Theoretical studies based on first-principles DFT is one

of the widely used methods to describe accurately the atomic
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geometry and to provide materials design guidelines in an

affordable computational time without introducing system

dependent parameters. In a recent study,28 we benchmarked

NAOs against plane waves (PWs) basis sets and discussed

the impact of basis set on the electronic properties of SiNWs.

PWs are simpler to converge; however, computational

requirements have limited their use in studies of quantum

transport. On the other hand, basis sets made of atomic orbi-

tals (AOs) can be more efficient motivating their implementa-

tion for large-scale order-N calculations.29 There have been

numerous studies comparing the structural properties and

electronic spectra resulting from PW and AO implementa-

tions (see, e.g., Ref. 28 and references therein). Surprisingly,

with few exceptions, a similar elaboration on the impact for

transport properties has attracted little attention despite the

need to reach the same level of confidence for device design

and evaluation.

Strange et al. performed benchmark calculations of the

transmission spectrum for a set of five single-molecule junc-

tions.30 Using a Wannier transformation on DFT Hamiltonians

in the PW basis sets enabled them to calculate the transmission

function and to compare with a NAOs transport implementa-

tion. They concluded that a double zeta polarized basis sets

suffices for the particular systems. This confirmed earlier work

by Bauschlicher et al. on the gold-benzene-1,4-dithiol-gold

junction.31 In Ref. 32, Driscoll and Varga study the depend-

ence of quantum conductance on basis sets by comparing

localized basis sets with extended non-localized polarized ba-

sis. They find that convergence with localized basis sets is

more demanding due to sensitivity in describing the self con-

sistent potential. Hermann et al. also identify issues with the

use of large non-orthogonal Gaussian-type AOs.33 They show

that basis sets of triple-zeta quality or higher can result in an

artificially high transmission. These results imply that despite

the extensive study over decades of the convergence properties

of AOs in quantum chemistry,34 it is necessary to check the

transferability of tabulated AOs as well as the construction of

NAOs in different chemical environments for a priori evalua-

tion of nanoscale devices.

The structure of the paper is as follows. In Sec. II, the

background on the computational methodology to analyze

materials properties and device characteristics at the nano-

scale is expanded. In Sec. II B in particular, we provide

the implementation details of the TiMeS cross-platform

simulation tool. This is based on employing Hamiltonian ma-

trix descriptions from different electronic structure codes

and combining these with Green’s functions methods to cal-

culate the quantum-mechanical scattering matrix (S-matrix).

Charge self-consistency in the presence of applied voltages

is treated within the non-equilibrium Green’s functions

(NEGF) framework. In Sec. III A, TiMeS is applied to the

calculation of the mean free path and the basis set conver-

gence for silicon nanowires with dopant and surface oxygen

impurities is established. Optimized double zeta polarized

basis sets give a reasonable compromise between converged

results and efficiency. The current-voltage characteristics of

ultrascaled (3 nm long) nanowire-based transistors with p-i-p

and p-n-p doping profiles is investigated in Sec. III A 1. The

quantitative interplay between basis set dependence and

charge self-consistency is analyzed and it is found that the

latter has a more pronounced effect on the device character-

istics. Interestingly, these devices yield relatively large

source-drain tunneling in the off-state (currents in the range

of 0.5 nA to 2 nA for the p-n-p and p-i-p junctions, respec-

tively), which can have a detrimental effect in the device

performance. Section IV concludes with a brief discussion of

the results.

II. COMPUTATIONAL METHODOLOGY

A. Geometry and electronic structure

The geometry and electronic structure are calculated

using DFT. Throughout the simulations, the PBE generalized

gradient approximation (GGA) to the exchange correlation

potential is used together with norm-conserving pseudopo-

tentials. We focus on hydrogenated silicon nanowires grown

along the [110] crystallographic direction with lattice con-

stant of 3.84 Å along with the wire axis and diameter equal to

1.15 nm. Impurities are introduced in the supercell by either

substitution of silicon atoms in the pristine structure with

dopants (see Figure 1) or changing the surface termination

and introducing oxygen defects for the model described in

Ref. 14. The structures were geometry optimized with force

threshold of 0.01 eV/Å and using optimized double zeta

polarized basis set for both silicon and impurity atoms.

Surface-passivating hydrogens are treated in a minimal basis

set. The total energy using these bases is a good approxima-

tion to the complete basis set limit as shown previously.28

The supercell consisted of eleven unit cells and its size

extended by 42.24 Å � 25 Å� 25 Å to introduce a vacuum

separation between periodic images of the nanowires.

Monkhorst-Pack k-point sampling was applied on a 4� 1� 1

grid with the higher sampling aligned to the nanowire axis.

Here, we employ the DFT implementation in the

OpenMX code as developed by Ozaki.35,36 This expresses

FIG. 1. Schematic setup of one of the investigated

nanowire structures. A silicon nanowire grown

along the [110] direction is depicted with p-n-p dop-

ing profile. Substitutional boron (green sphere on

line) is used to dope the semi-infinite periodic leads

whereas the “scattering region” incorporates a phos-

phorus dopant (blue sphere on line).
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the Kohn-Sham wavefunction wi as a linear combination of

NAOs

Wið~rÞ ¼
X

n

XK

l¼1

Cilulð~r �~rnÞ: (1a)

The set {/l; l¼ 1, 2…K} of pseudoatomic wavefunctions,

referred as primitives, is obtained by solving the Schr€odinger

equation for an atom in a slightly modified environment that

accounts to some extent for the orbital relaxation when bond-

ing; n is the site index and l includes the angular momentum

l, magnetic quantum number m, and the multiplicity index p,

namely, l! p; l;m. The basis set notation smpm0dm00 is

used to indicate that m, m0, and m00 functions are used to

expand s, p, and d orbitals, respectively, relating to the quan-

tum chemistry notation of single-zeta, double-zeta, and so

on, depending on the number of primitives per valence state.

In practice, the NAOs {ul} are further expressed as a linear

combination of pseudoatomic orbitals with the same (l,m)

index pair, namely,

ulð~rÞ ¼
X

q

alqvgð~rÞ (1b)

with g! q; l;m and l! p; l;m. This leads to contracted or

optimized numerical atomic orbitals, thereby improving the

numerical efficiency and accuracy.28,35 Orbital optimization

reduces the size of the basis and reduces effects associated

with basis sets overcompleteness. The notation unm indi-

cates abbreviation of basis sets, e.g., s32 means that two opti-

mized s orbitals are constructed from three primitive

functions.

B. Transport properties

We have developed a modular transport simulator TiMeS

that allows us to assess both the intrinsic electronic transport

properties of materials and the electrical characteristics of

devices. Our transport module requires a single particle

Hamiltonian of the system expressed in a localized basis set.

Based on Green’s function techniques, the S-matrix and hence

the transmission T(E) of charge carriers injected at energy E
can be calculated from a single-particle Hamiltonian H in ei-

ther the low-bias (non-self-consistent (NSC)) approximation,

or in fully self-consistent (SC) NEGF theory. The interfacing

across various electronic structure platforms and the SC NEGF

extensions build on previous work on the transport properties

of mesoscopic systems38,39 and molecular junctions.24,40

1. Low-bias regime

We emphasize that the NSC version of TiMeS operates

as a post-processing step after an electronic structure compu-

tation and allows for extracting transport properties in the

low-bias regime. Importantly, TiMeS is completely modular

in that it requires, and has, no information about the repre-

sentation used by the electronic structure code except for the

single-particle (typically Kohn-Sham) Hamiltonian matrix

Hij and overlap matrix Sij¼hi|ji elements. TiMeS currently

has interfaces to accept this information from OpenMX,35–37

DFTBþ,27 and the Quantum Espresso plane-wave DFT code

via transformation to Wannier orbitals.41,42

Like other localized-orbital electronic transport codes

based on Landauer or NEGF theory,21–24 TiMeS calculates the

self-energy of the semi-infinite electrodes based on the surface

Green’s function for the given “on-site” and “hopping”

Hamiltonian and overlap matrices for the electrodes.43 The

entire transport region is broken into three sub-regions: the two

electrodes and a scattering region (see Fig. 1). The electrodes

are semi-infinite repetitions of periodic cells. These cells and

the scattering region must be “principal layers” such that over-

lap elements vanish for orbitals separated beyond the adjacent

principal layers. Therefore, just one “hopping” Hamiltonian is

needed for each electrode.

With the non-Hermitian self-energies RL,R to represent

semi-infinite electrodes, TiMeS performs inversion to solve

for the Green’s function G(E)¼ (E – H – RL – RR)�1. This

step is performed independently for each energy E; hence, a

parallel Message Passing Interface (MPI) implementation is

used to reduce the computational cost. From G(E), the scat-

tering matrix is calculated using the channel eigenstates of

the leads.38,44 This approach enables monitoring the compu-

tational flow and numerical stability by checking the unitar-

ity of the S-matrix at each energy step. It also allows

decomposition into individual channel contributions,

thereby yielding direct information on the effect of the vari-

ous scattering mechanisms between channels.38,39,44 The

explicit calculation of the channel eigenstates can be used

further to obtain the band structure of the leads including

the forbidden energy domain where modes are decaying

exponentially along the periodic direction.40 Additional in-

formation is obtained by analysis of the density of states14

as extracted from diagonal matrix elements of the Green’s

functions for any section of the device.

2. Self-consistent transport using NEGF

Starting with this low-bias algorithm, we extended

TiMeS to perform fully self-consistent NEGF calculations in

a fashion retaining TiMeS’ modularity. Following Ke et al.23

for applying boundary conditions (BCs) to the electrode

regions allows us to implement NEGF independently of the

electronic structure step. Solution for the Green’s function G

from HKS gives equivalent information to solving the Kohn-

Sham (KS) equations, so G contains information on the state

of the system.23,44 TiMeS calculates the electronic density

matrix (DM) from the (typically KS-DFT) Hamiltonian out-

put by the electronic structure code. But note that unlike the

electronic structure step, which is typically carried out with

periodic or cluster BCs, TiMeS finds the DM for the open
system, with self-energies representing the semi-infinite

electrodes. The DM is calculated according to

DM ¼� 1

p

ðþ1
�1

dE Im½Gr
CðEÞ fLðE� lL; TeÞ�

þ 1

2p

ðþ1
�1

dE ½Gr
CðEÞCRðEÞGr

CðEÞ
†�½fRðE� lR; TeÞ

� fLðE� lL; TeÞ�; (2a)
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where Gr
C is the retarded Green’s function in the scattering

region, f is the Fermi function at electronic temperature Te,

and lL,R are the chemical potentials of the two leads. The

spectral density is defined via CL;R ¼ i½RL;R � R†
L;R�: The

first term in Eq. (2a) is the equilibrium (linear-response) con-

tribution to the DM, and the second term is the non-

equilibrium (polarization and current flow) contribution,

which vanishes when lL¼lR. The integration is performed

by Gaussian quadrature, and the equilibrium component may

also use complex contour integration (starting appreciably

below the lowest energy band), such that each integral usu-

ally requires evaluation of G(E) at �50 or fewer energies E.

Note that even in a zero-bias calculation, the linear-response

density in NEGF can differ from the non-self-consistent

result because of the inclusion of the self-energies RL,R, rep-

resenting open BCs rather than the periodic BCs of the

electronic structure step. In the limit of an ideal calculation,

the central region should be made long enough that the BCs

are virtually irrelevant, but this is not always the case in

practice. In the case of an applied voltage bias, convergence

is ensured by extending the scattering region.

The charge density can be computed straightforwardly

from the DM according to

qðrÞ ¼
X
l;v

u�lðrÞRe½ðDMÞl;v�uvðrÞ (2b)

and this density is used in the electronic structure code to

extract the new device region Hamiltonian matrix. As a

general principle, codes based on KS-DFT can find the

entire system Hamiltonian HKS from knowledge of just the

electronic density. Likewise, the DFT-based tight-binding

code DFTBþ27 can also be re-started using atomic

Mulliken charges as input. The source code of the elec-

tronic structure packages is modified to read in the re-start

density variables before proceeding with a single KS step

to find the new HKS. To facilitate calculations of gated

devices, we also modified OpenMX to include the gating

potential from a cylindrical GAA shell of charge.45 Source-

drain voltages are applied by including a potential step in

the electrodes and then the charge density is iterated to self

consistency.23

This process of computing DM from H and vice versa

iterates until the charge density converges, after which the

S-matrix and transmission T(E) are computed for the

converged density. Presently, we find that simple mixing of

the charge density suffices for NEGF calculations, but more

sophisticated mixing algorithms can easily be incorporated.

We implemented the NEGF loop and mixing using a Python

script, so each TiMeS and H determination step run as inde-

pendent modules. The non-self-consistent and the NEGF

flowchart are shown in Figure 2. This flexibility and modu-

larity allows for easy continuation of interrupted runs, as

well as interchange and comparison of different electronic

structure approaches or density functionals. In the present

work, matrix representations of the Hamiltonians of the

relaxed structures were obtained from OpenMX as described

in Sec. II A. The program flow is specifically designed to

allow a modular incorporation of differing electronic struc-

ture representations of the single-particle Hamiltonian.

III. RESULTS AND DISCUSSION

A. Transport properties

We discuss the impact of numerical atomic orbitals in

materials transport properties focusing on charge carrier

scattering in SiNWs due to common impurities. The example

of Ref. 14 is taken as initial system of reference, where there

is a detailed discussion on the scattering behavior due to oxy-

gen defects varying the oxidation state of the Si surface. In

this model, the surface Si atom is locally oxidized to the for-

mally Si2þ state by forming a Si-O-Si back bond and with a

hydroxyl instead of hydrogen for passivating the surface dan-

gling bond (see inset of Fig. 3). The presence of the oxygen

defect is the origin for surface roughness at the atomic scale.

Following the method in Ref. 46, the mean free

path for electrons injected at energy E is estimated from

kðEÞ ¼ TsðEÞ
TcðEÞ � ld, where Ts and Tc are the transmission values

across the wire with and without local oxidation, respectively,

and ld is the mean distance between defects. The mean free

path in the energy range of the first valence sub-band is shown

in Fig. 1 for various basis sets, namely, single-zeta, single-zeta

polarized, and double-zeta polarized. Here, ld ¼ 9:6 nm which

corresponds to a defect density n¼ 5� 1019 cm�3. There is in

FIG. 2. The TiMeS flowchart shows the cross-

platform of quantum transport implementation.

The non-self-consistent step is indicated by the

dark (blue on line) arrow. T and F stand for

“true” and “false,” respectively.

203708-4 Sharma et al. J. Appl. Phys. 113, 203708 (2013)



overall good agreement with Ref. 14 where a minimal basis set

was used within the Density Functional Tight Binding approxi-

mation. Interestingly, the mean free path obtained from the

various basis sets shows variation of just up to 0.01% within an

energy range of 0.2 eV using the double-zeta polarized results

as a reference.

The above transport results confirm the weak depend-

ence of k on the basis set when the prevalent scattering

mechanism is non-resonant scattering which is regularly

observed for typical dopant impurities46,47 and oxidation

defects.14 Using a simple analysis based on band structures,

previous predictions attribute mean free path variations to

small changes in the group velocity.28 It may be expected

that differing group velocity and effective mass will have the

most significant impact in the transport coefficients when

different electronic structures are used, hence, the need to

calibrate to the experiment is introduced.

To consider the case of strong scattering, we study the

common example of a boron substitutional impurity which

can act as a p-type dopant.47,48 The transmission of holes

injected at energies within the first-valence sub-band is plot-

ted in Fig. 4. Calculations using single-zeta, single-zeta

polarized, double-zeta polarized, and triple-zeta polarized

bases are shown. There is overall qualitative agreement

between the various basis sets notwithstanding the evident

resonant backscattering that strongly suppresses transmis-

sion. However, the quantitative discrepancy in the transmis-

sion may lead to significant overestimations of the nanowire

conductivity. Similar results are found for an n-type dopant

impurity, namely, substitutional phosphorus.

It is evident from Fig. 4 that using the basis set with

double-zeta and polarization closely tracks the result

obtained with triple-zeta polarized basis. Hence, the

double-zeta basis may be viewed as a good compromise

between size and accuracy in the application of atomic ba-

sis sets to predict from first-principles the characteristic

transport length scales and intrinsic transport properties

in materials. This behavior is similar to conductance esti-

mations in transport across molecular junctions where

convergence needs to be ensured by enlarging the size of

the basis set.30,31

1. Electrical characteristics

Applying our electronic transmission methodology, in

this section, the electrical characteristics of SiNW based

p-n-p and p-i-p junctions will be explored. The p-n-p junc-

tion is constructed from boron doped leads with an n-type

scattering region between the two p-type leads (see Fig. 1).

The scattering region includes a single phosphorus dopant in

the nanowire lattice. For the p-i-p junctions, the scattering

region is intrinsic. The total length of the scattering region is

2.7 nm. In a nanowire-based FET, the intrinsic region is sur-

rounded by a cylindrical gate to yield a GAA configuration.

Given that the localization radius of dopant impurity states is

approximately 1.5 nm and that the channel length should be

at least two times larger than the nanowire diameter,49 these

models describe the smallest junctioned nanowire transistors

that can be envisioned using conventional doping strategies.

The results are obtained using the two different transport

algorithms which have already been described in Sec. II B.

Figure 5 illustrates the transmission properties of the

p-n-p and p-i-p SiNW junctions at different source-drain bias

voltages, applied along the nanowire axis, as predicted from

different orbital basis sets. As expected, Fig. 5 shows that at

small source-drain bias voltages the self-consistent con-

verged transmission T(E,VDS) does not differ from the linear-

response approximation T(E) (curve indicated as VDS¼ 0)

considerably. For larger bias, applying the NEGF self-

consistence loop increases the transmission for all basis sets

used. The larger basis has an effect on the electronic structure

alignment of the scattering region with the available channels

of the leads as seen by the comparison of the transmission

onset between minimal (Figs. 5(a) and 5(c)) and polarized ba-

sis sets (Figs. 5(b) and 5(d)). The transmission is also affected

at energies well below the top of the valence band. These dif-

ferences on the energy dependence of transmission result in

variation in the current estimates as shown below. However,

FIG. 3. Mean free path of locally oxidized Si nanowire (structure described

in text) for the indicated basis sets and defect density n¼ 5� 1019 cm�3

(mean distance between impurities ld¼ 9.6 nm). The energy range corre-

sponds to the first valence sub-band of the electronic structure obtained with

the double-zeta polarized basis set.

FIG. 4. Transmission of holes across a silicon nanowire with a boron impu-

rity for the indicated basis sets. The structure and the contraction scheme

are described in the text. The energy range corresponds to the first valence

sub-band of the electronic structure obtained with the double-zeta polarized

basis set.

203708-5 Sharma et al. J. Appl. Phys. 113, 203708 (2013)



it is apparent that the addition of d-polarization functions

does not significantly alter the self-consistence dependence

of the transmission on applied voltage.

The current-voltage (I–V) characteristics of p-n-p and

p-i-p junctions based on T(E,VDS) and T(E) are plotted in

Figs. 6(a) and 6(b), respectively. The I–V characteristics

using the double-zeta polarized basis set and without self-

consistency (based on T(E)) is also illustrated in Fig. 6 for

comparison. The minimum orbital basis set (s31p31) predicts

higher current flow for both junctions compared to orbital

basis sets with polarization (s31p31d1). For example, at

VDS¼ 0.4 V, the p-n-p junction with s31p31 basis set, the

current is 12% larger if we consider the current characteristic

of s31p31d1 as the reference in the fully self-consistent

approach. Also, this figure confirms that the difference

between SC and non-SC results is greater at larger bias vol-

tages for both structures as is intuitively expected.

The currents calculated with the non-SC loop are lower

than applying the computationally more demanding NEGF

method. This is attributed to an overestimation of the polar-

ization effect induced when a bias is applied, whereas, SC

allows for the redistribution of charges at non-equilibrium.

This is important to take into account when simulating

current-voltage characteristics to extract the device perform-

ance. Here, this yields an underestimation of the source-

drain current. Elsewhere,9 we have shown that estimates for

switching between off- and on-states in nanowire transistors

are much worse if self-consistency is disregarded in the cal-

culation of the transfer characteristics. In that case, there is

no redistribution of the charges in the channel to lower the

barrier as gate voltage is applied and the tunneling current is

overestimated in the non-SC case. From Fig. 5, it is deduced

that the error is more significant than using a lower quality

basis set.

The I�V characteristic of the p-i-p junction shows more

sensitivity at higher bias voltages compared to the p-n-p junc-

tion. The reason is that there is larger scattering for the p-n-p

junction due to a larger in-built potential compared to the

p-i-p junction (see Fig. 5). This corresponds to higher level of

injected electronic charges in the p-i-p junction yielding a

higher current at large bias. Finally, the source-drain tunnel-

ing currents of the devices for the two doping profiles are

around 0.5 nA and 2 nA for p-n-p and p-i-p junction, respec-

tively. These values are an order of magnitude higher than

what is suitable for high performance logic and larger than

what can be achieved by junctionless Si nanowire devices,9,25

FIG. 5. Transmission properties of p-n-p junctions using (a) s31p31 and (b) s31p31d1 basis sets. Panels (c) and (d) show the transmission of the p-i-p junctions

considering s31p31 and s31p31d1 orbital basis sets, respectively. The Fermi level is the reference energy.
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that is, FETs with homogeneous source-channel-drain doping

similar channel dimensions and NW orientation. Supporting

our previous findings,25 this suggests that at such scales

the distribution of charge carriers around the dopant blurs the

boundaries of a junction over a distance comparable to the

channel length. Therefore, besides being very difficult to fab-

ricate, junctioned FET designs at this scale will fail to effec-

tively keep carriers out of the channel in the off-state.

IV. CONCLUDING REMARKS

To summarise, in this paper, we evaluate the impact of

numerical atomic orbitals on electron transport properties

mainly on charge carrier scattering in [110] oriented SiNWs

with dopant impurities. A relatively weak dependence of the

mean free path on the NAO basis set was found using

explicit calculations of quantum transport that combine DFT

with the Green’s function formalism. This is in agreement

with estimates based on a simple band analysis. For the case

of weak scattering from impurities, the choice of the NAOs

basis is considerably less important than for impurities

inducing strong backscattering. It is found that optimised

double-zeta orbitals with d polarisation functions reproduce

the results with triple-zeta polarised basis; even in the

case of suppressed transmission, the double zeta polarised

basis offers a good compromise between accuracy and com-

putational efficiency. The single zeta basis set yields only

qualitatively correct results.

We also assess the impact of various numerical atomic

orbital approximations on the transport properties of silicon

nanowire setups with p-n-p and p-i-p doping profiles.

Interestingly, although the current-voltage characteristics of

such ultrascaled (3 nm length) nanowire-based transistors

show the expected sensitivity to the choice of the NAOs ba-

sis set, it is found that charge self-consistency affects mostly

the source-drain current. Regarding the possibility to use

these devices, it is concluded that the source-drain tunneling

currents are relatively high—of the order of 0.5 nA and 2 nA

for p-n-p junction and p-i-p junction, respectively—making

it difficult to achieve good device performance for these

architectures on the length scale considered.
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