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We report on experimental observations of room temperature low frequency capacitance-voltage

(CV) behaviour in metal oxide semiconductor (MOS) capacitors incorporating high dielectric

constant (high-k) gate oxides, measured at ac signal frequencies (2 kHz to 1 MHz), where a low

frequency response is not typically expected for Si or GaAs MOS devices. An analysis of the

inversion regions of the CV characteristics as a function of area and ac signal frequency for both n
and p doped Si and GaAs substrates indicates that the source of the low frequency CV response is

an inversion of the semiconductor/high-k interface in the peripheral regions outside the area

defined by the metal gate electrode, which is caused by charge in the high-k oxide and/or residual

charge on the high-k oxide surface. This effect is reported for MOS capacitors incorporating either

MgO or GdSiOx as the high-k layers on Si and also for Al2O3 layers on GaAs(111B). In the case of

NiSi/MgO/Si structures, a low frequency CV response is observed on the p-type devices, but is

absent in the n-type devices, consistent with positive charge (>8� 1010 cm�2) on the MgO oxide

surface. In the case of the TiN/GdSiOx/Si structures, the peripheral inversion effect is observed for

n-type devices, in this case confirmed by the absence of such effects on the p-type devices. Finally,

for the case of Au/Ni/Al2O3/GaAs(111B) structures, a low-frequency CV response is observed for

n-type devices only, indicating that negative charge (>3� 1012 cm�2) on the surface or in the bulk

of the oxide is responsible for the peripheral inversion effect. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4729331]

INTRODUCTION

During the development of high-k processes on silicon

or other semiconductor surfaces, it is typical to have a metal

gate patterned on the high-k oxide surface with no additional

passivation, leaving the oxide regions outside the gate area

exposed to ambient conditions as well as processing steps

such as reactive ion etching, rapid thermal processing, and

forming gas annealing. These processing steps, which are

widely employed during fabrication of metal-oxide-semicon-

ductor (MOS) capacitors and MOS field-effect transistors

(MOSFETs), have the potential to induce charge within the

oxide or leave residual charge on oxide surfaces, in particu-

lar where the oxide is exposed during such a processing step.

If this oxide charge results in depletion of the semiconductor

surface and the density of the residual charge is higher than

the semiconductor charge associated with the maximum

depletion width (�8� 1010 cm�2 for 1� 1015 cm�3 Si sub-

strate doping concentration), then peripheral inversion will

be present outside the area defined by the gate electrode.

It is therefore necessary to be aware of the potential

effect of this phenomenon in order to avoid incorrect

analysis of device behaviour, particularly with regard to

MOSFETs, where multiple processing steps are used and

there is the possibility for residual charge from processing to

affect subsequent electrical characterization of the devices,

e.g., the charge could contribute to an artificially high off-

state leakage current.1 In the case of MOS capacitors, what

appears to be low frequency inversion-like behaviour due to

generation and recombination of minority carriers in the

depletion region within the area defined by the gate electrode

may in fact be directly attributable to this peripheral inver-

sion charge, which can provide a source of minority carriers.

By performing simple capacitance-voltage characterization

at multiple ac signal frequencies in conjunction with meas-

uring devices of different areas, over both n-type and p-type

semiconductor substrates, it is possible to establish conclu-

sively if the low frequency inversion-like behaviour is due to

peripheral inversion effects which may have arisen during

device fabrication, or if it is due to generation and recombi-

nation of minority carriers in the semiconductor within the

region defined by the gate electrode. In this work, such an

approach is presented where peripheral charge induced low

frequency CV responses have been observed for the simple
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case of MOS capacitors incorporating either MgO or GdSiOx

dielectric layers on silicon. MgO (Refs. 2–7) or GdSiOx

(Refs. 8–12) thin films are of interest as high-k oxides on

silicon. Experimental results are also presented for Al2O3

layers on GaAs, which is of relevance to the development of

III-V MOSFETs.

EXPERIMENTAL

20 nm thick MgO films were deposited by electron

beam evaporation from 99.9% MgO pellets at a rate of 0.2

Å/s at 180 �C, on n-type and p-type Si wafers (1� 1015/cm3).

MOS structures were formed using a fully silicided (FUSI)13

gate process where the MgO was capped with 100 nm of

amorphous silicon in the same deposition system as that

used for the MgO deposition, in order to prevent ambient ex-

posure of the film. Nickel was subsequently deposited ex-situ
by e-beam evaporation (80 nm) through a patterned resist

mask and subsequent lift-off process, to define square

capacitors of various areas. Rapid thermal annealing (RTA)

was then performed in a one step process at 500 �C for 30 s

in N2 to form the NiSi gates. Following the removal of

excess Ni using H2O:H2SO4 (1:3), the silicon outside the

square capacitor area was removed by reactive ion etching

using sulfur hexafluoride (SF6). From the capacitance meas-

ured in accumulation, the permittivity of these MgO films

was calculated as �8.1.13

For the second sample set examined, GdSiOx layers

were prepared by the intermixing of thermally grown silicon

oxide (SiO2) interlayers and evaporated gadolinium oxide

(Gd2O3).15,16 Si surfaces were prepared by RCA cleaning

followed by dry thermal oxidation to form SiO2 interlayers

�4 nm thick. 10 nm thick Gd2O3 films were then deposited

by electron beam evaporation from granular Gd2O3 at a dep-

osition rate of 0.01 nm/s and molecular nitrogen was present

during deposition. The samples then underwent RTA for 1 s

at 900 �C to form GdSiOx from the initial Gd2O3/SiO2

bilayer.15,16 TiN electrodes (50 nm thick) were deposited by

reactive sputtering from Ti, and circular capacitors of

various areas were defined using a lift-off process. Finally,

backside contacts were formed by deposition of Al. A

k-value of �16 is estimated for the GdSiOx layers.15,16

For the third sample set examined, the substrates used

were (1) n-type GaAs(111B) (Si at �5� 1017 cm�3) or (2)

�p-type GaAs(111B) (Zn at �7� 1017 cm�3). GaAs(111B)

surfaces were initially rinsed for 1 min each in acetone,

methanol, and isopropanol, prior to immersion in (NH4)2S

with a concentration of 10% in deionised H2O (20 min,

�295 K). The Al2O3 layers (8 nm) were grown by atomic

layer deposition (ALD) at 300 �C (Cambridge NanoTech,

Fiji F200LLC), using alternating pulses of TMA (Al(CH3)3)

and H2O. Samples were loaded into the ALD reactor within

�14 min after removal from the (NH4)2S solution. Finally,

gate contacts �160 nm thick were formed by e-beam evapo-

ration of Ni (70nm) and Au (90nm), using a lift-off process.

The capacitance-voltage (CV) and conductance-voltage

(GV) measurements were recorded using a Hewlett Packard

4284A LCR meter or Agilent B1500A Semiconductor De-

vice Analyser. The measurements were performed at room

temperature on-wafer in a microchamber probe station

(Cascade Microtech, model Summit 12971B) in a dry air,

dark environment (dew point� 203 K). Conventional trans-

mission electron microscopy (TEM) samples were prepared

using focused ion beam (FIB) thinning procedures in an FEI

200 Workstation and examined at 200 kV in a JEOL2000FX.17

RESULTS AND DISCUSSION

A TEM micrograph for a p-type NiSi/MgO/Si device is

shown in Figure 1(a). This indicates a MgO thickness of

21.7 nm, close to the nominal value, with good layer uni-

formity. The TEM also shows the presence of an amorphous

interfacial oxide layer (IL) with a thickness of just 1 nm.

TEM micrographs for the n-type TiN/GdSiOx/Si structure

are shown in Figure 1(b). It is evident from the TEM micro-

graph that as a result of the RTA treatment, there is very

good inter-diffusion of the SiO2 (4 nm) and Gd2O3 (10 nm)

layers to form GdSiOx, with the thickness of the SiO2 layer

reducing to �1.6 nm, while the thickness of the Gd based

region remains approximately the same at 9.7 nm.

The CV response at room temperature (295 K) with ac

signal frequencies from 2 kHz to 1 MHz for the NiSi/MgO/

p-Si devices is shown in Figures 2(a)–2(c) for capacitor

squares with dimensions of 30� 30 lm, 60� 60 lm, and

90� 90 lm, respectively. The multifrequency CV responses

for the corresponding n-type devices are shown as insets to

Figures 2(a)–2(c). First, in analyzing the CV response in Fig-

ure 2(a) for the smallest device area (30� 30 lm), what

appears to be a low frequency response is observed in the

gate bias range of ��0.5 V to 4 V, at the lowest measured

frequency of 2 kHz. However, the capacitance in this bias

range still remains high for the 1 MHz curve, which is not

expected for typical minority carrier lifetimes in silicon.18,19

In the case of a low frequency CV response due to the gener-

ation and recombination of minority carriers in the depletion

region of the silicon, low frequency CV characteristics are

not typically recorded at frequencies above 100 Hz.18,19

A possible explanation for this effect is shown in Figure

3, which shows plan and cross sectional views of MOS

capacitors with different gate areas, where charge exists on

the oxide surface, or within the oxide, in the region outside

the area defined by the gate electrode. This could be present

due to processing steps such as reactive ion etching (RIE),

FIG. 1. Cross-sectional TEM micrographs of (a) NiSi/MgO/p-Si and

(b) TiN/GdSiOx/n-Si, device structures.
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forming gas annealing (FGA), or RTA. If this oxide surface

charge is of the same type as the semiconductor doping, it

will induce a corresponding charge of the opposite sign in

the semiconductor at the oxide/semiconductor interface and

will give rise to an inversion region in the peripheral area

outside the area defined by the gate oxide (termed

“peripheral inversion”), if the oxide charge density [cm�2] is

larger than the product of the doping concentration in the

semiconductor and the maximum depletion width. The

resulting peripheral inversion layer is a source of minority

carriers, which can be supplied to the area under the gate

electrode once the oxide/semiconductor interface under the

gate electrode is inverted by the applied gate voltage.

Capacitance-voltage measurements performed at multi-

ple frequencies and on varying capacitor areas on both

n-type and p-type devices can be used to determine if such

peripheral inversion is responsible for the low frequency

behaviour, as the low frequency behaviour provided through

peripheral inversion would exhibit specific CV behaviour in

the following ways:

(1) For a given device area, the inversion response will

reduce with increasing ac measurement frequency.

(2) At a given ac signal frequency, the inversion response

will be reduced as the device area increases, due to the

increasing diffusion distance from the periphery to the

centre of the gate electrode.

(3) The low frequency inversion like behaviour will be

observed for either n or p doped semiconductor sub-

strates, and not for both, as a given oxide charge will

only invert the oxide/semiconductor surface for one

dopant type.

While the observations described in (1) will be observed

for minority carriers supplied either from under the gate area

(by generation/recombination or diffusion from the quasi-

neutral bulk), or via a peripheral inversion charge, the obser-

vations described in (2) and (3) are not consistent with

minority carrier supply from the depletion region under the

gate electrode. The supply of minority carriers by genera-

tion/recombination in the depletion region or by diffusion

from the quasi-neutral bulk should not exhibit a dependence

on the electrode area and should also be present for both n
and p type semiconductor substrates.

The CV responses in Figures 2(b) and 2(c) are consistent

with the presence of a peripheral inversion region, as the low

frequency inversion-like behaviour in the region �0.5 V to 4

V is observed to decrease as the area is increased for the

60� 60 lm device in Figure 2(b) and the 90� 90 lm device

in Figure 2(c). We can determine that the charge on the sur-

face or in the bulk of the oxide is positive in this case, which

FIG. 2. The CV multi-frequency response at room temperature (295 K) of

the NiSi/MgO/p-Si devices for capacitor squares with dimensions of (a)

30� 30 lm, (b) 60� 60 lm, and (c) 90� 90 lm, respectively. The multi-

frequency CV responses for the corresponding n-type devices are shown as

insets. The ac signal frequencies range from 2 kHz to 1 MHz in all cases.

FIG. 3. Schematic to illustrate a possible mechanism for peripheral inver-

sion effects for p-type MOS devices. A plan view looking down on the gate

area is shown for a smaller device (on the left) and a device where the

perimeter-length is doubled (on the right). Beneath these, corresponding

cross-sectional schematics illustrate the MOS device structure in each case.

124104-3 O’Connor et al. J. Appl. Phys. 111, 124104 (2012)



induces negative charge in the substrate, leading to an inver-

sion response for the p-type devices. The results for the same

NiSi/MgO gate stack over n type Si are shown as insets in

Figures 2(a)–2(c). For the n type silicon, no inversion behav-

ior is observed, as the positive oxide charge will result in

accumulation of the semiconductor surface in this case. This

is again consistent with the source of the minority carriers

originating from the periphery of the device. This charge

was possibly introduced during the reactive ion etch step of

the FUSI processing to define the MOS capacitor areas. This

etch was used to remove excess Si from outside the MOS ca-

pacitor device area, and appears to have left positively

charged ions on the surface of the remaining oxide, and/or

induced positive charge in the oxide outside the gate area.

The CV response at room temperature (295 K) for NiSi/

MgO/p-Si devices with varying capacitor dimensions from

30� 30 lm to 100� 100 lm, is shown in Figures 4(a)–4(c),

for fixed ac signal measurement frequencies of 10 kHz, 100

kHz, and 1 MHz, respectively. The corresponding CV

responses for n-type Si devices are plotted as insets. For the

p-type devices at low frequency (10 kHz) in Figure 4(a), the

peripheral inversion charge has time to respond to the ac sig-

nal and contribute to the measured capacitance, even for the

largest device area (100� 100 lm). However at 100 kHz in

Figure 4(b), there is a more rapid drop-off in the peripheral

inversion response as the device area increases. This is more

pronounced again for the 1 MHz curves plotted in Figure

4(c). It is noted that for the n-type devices plotted in the

insets to Figures 4(a)–4(c), no low frequency CV behaviour

is observed for any ac signal frequency from 2 kHz to

1 MHz for the three device areas.

The CV response as a function of temperature for these

devices (ac signal frequency 600 kHz, capacitor dimension

100� 100 lm) is plotted in Figure 5, with the corresponding

conductance plotted as an inset. It is clear that there is little

variation in the CV and GV response at positive gate bias

over this wide temperature range, �50 �C to 140 �C. This

weak temperature dependence of the CV and GV is further

evidence that the observed CV response is due to inversion

charge already in place on the periphery of the device. A

true minority carrier response due to generation-

recombination, or diffusion from the quasi-neutral bulk of

the silicon, would exhibit a more significant temperature de-

pendence, as observed by Nicollian and Brews in their analy-

sis of a SiO2/Si MOS device.18 In addition, a true minority

carrier response would exhibit a change in activation energy

(EA) from half the Si bandgap, EG/2 (0.56 eV) for a

generation-recombination regime, to an EA equal to the Si

bandgap, EG (1.12 eV), at higher temperature for a diffusion

regime.18 An Arrhenius analysis of the inversion conduct-

ance (GI)
18 versus temperature, using the data presented in

Figure 5 for these MgO samples, yields an EA of �0.14 eV

which corresponds to neither regime, and is further evidence

that a different mechanism, in this case peripheral inversion,

is responsible for the observed inversion response.

While not significant in relation to the peripheral inver-

sion effect which is under investigation in this study, it is

also apparent that there is an interface state defect related

response observed in the CV characteristics for these n-type

and p-type Si samples with a MgO dielectric layer. It is

clearly visible as a frequency dependent distortion in the

p-type multi-frequency CV responses plotted in Figures

2(a)–2(c), at a gate bias in the range of ��1.5 V to �2.5 V,

and also for the case of the n-type devices in the gate bias

range of ��0.5 V to 0.5 V in the multi-frequency CVs

plotted as insets to Figures 2(a)–2(c), although it’s effect on

the CV is reduced compared to the p-type case. An estima-

tion of the interface state densities (Dit) was performed using

an approximation to the conductance method.18 This yields a

FIG. 4. The CV response at room temperature (295 K) for NiSi/MgO/p-Si

MOS devices with capacitor squares having varying dimensions from

30� 30 lm to 100� 100 lm is shown for fixed ac signal measurement fre-

quencies of (a) 10kHz, (b) 100 kHz, and (c) 1 MHz, respectively. The corre-

sponding n-type Si device CV responses are plotted as insets. The square

MOS capacitors have side lengths of 30, 40, 50, 60, 70, 80, 90, 100 lm.

124104-4 O’Connor et al. J. Appl. Phys. 111, 124104 (2012)



Dit distribution across the Si bandgap (not shown), with peak

Dit values of 1.6� 1012 cm�2 eV�1 at �Evþ 0.38 eV and

6� 1011 cm�2 eV�1 at �Evþ 0.8 eV. The peak energy posi-

tions are consistent with those expected for Pb dangling bond

defects, as reported extensively in the literature.14,20–27

It is important to state that the peripheral inversion

effect is not unique to the MgO/Si system or the FUSI proc-

essing used for the MgO sample set. To illustrate this, results

are now presented showing evidence of peripheral inversion

effects for a different oxide/Si MOS system, and where very

different processing steps were used in the device fabrica-

tion, as described earlier in the experimental section. The

CV response at room temperature (295 K) with ac signal fre-

quencies from 2 kHz to 100 kHz for the TiN/GdSiOx/n-Si

devices is shown in Figures 6(a)–6(c), for circular capacitors

with diameters of 100 lm, 200 lm, and 400 lm, respec-

tively. The multi-frequency CV response for the correspond-

ing p-type devices is shown as insets to Figures 6(a)–6(c). In

analyzing the CV responses in Figures 6(a)–6(c) for the

n-type devices, it appears that the low frequency CV

response is also due to peripheral inversion charge. However,

in this case, the peripheral charge on the surface or in the

bulk of the oxide is negative, inducing positive charge in the

substrate, resulting in a low frequency CV response for n-

type devices. It is possible that the 900 �C RTA step per-

formed on the exposed GdSiOx surface resulted in residual

negative charge due to moisture reactions on the GdSiOx sur-

face. Similar behaviour has been reported previously on

n-type Si with a HfO2 dielectric which was exposed during

MOS device processing,20,28 and in the case of the study by

O’Sullivan et al., the corresponding p-type devices did not

exhibit any inversion behaviour.20 Significantly, the inver-

sion response on the TiN/GdSiOx/n-Si devices in the present

work is gate area dependent, as is expected in the presence

of peripheral charge. As the gate area is increased from the

200 lm diameter device in Figure 6(b) to the 400 lm diame-

ter device in Figure 6(c), the magnitude of the capacitance in

the inversion region for a given ac signal frequency is

reduced, and the capacitance for gate bias in the range

�0.5 V to �2 V drops off at all frequencies. (It should be

noted that the smallest device area available for the GdSiOx/

Si set was 100 lm in diameter compared to a smallest device

of 30� 30 lm which was available for the MgO/Si devices.)

For the p-type devices plotted as insets to Figures 6(a)–6(c),

the negative charge on the oxide surface, or within the oxide,

results in accumulation of the surface in the region outside

the gate electrode, and hence no source of minority carrier is

available from the periphery of the device and consequently

no low frequency behaviour is recorded.

FIG. 5. The CV response as a function of temperature (ac signal frequency

600 kHz, capacitor dimension 100� 100 lm), for a p-type NiSi/MgO/Si de-

vice, with the corresponding conductance plotted as an inset. It is clear that

there is little variation in the CV and GV response at positive gate bias over

this wide temperature range, �50 �C to 140 �C.

FIG. 6. The CV multi-frequency response at room temperature (295 K) of

the TiN/GdSiOx/n-Si devices for circular capacitors with diameters of (a)

100� 100 lm, (b) 200� 200 lm, and (c) 400� 400 lm, respectively. The

multi-frequency CV responses for the corresponding p-type devices are

shown as insets. The ac signal frequencies range from 2 kHz to 100 kHz in

all cases.
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The CV response at room temperature (295 K) for TiN/

GdSiOx/n-Si devices with varying capacitor diameter dimen-

sions from 100 lm to 400 lm, is shown in Figure 7 for a

fixed ac signal measurement frequency of 10 kHz. The corre-

sponding p-type GdSiOx/Si device CV responses are plotted

in the inset. As in the case of the MgO sample set plotted

previously in Figure 4, there is a more pronounced drop-off

in the inversion response as you increase the device area,

providing further confirmation that the low frequency CV

response is a consequence of peripheral inversion. It is noted

that there is no variation in the CV response as you increase

the device area for the individual frequencies for the p-type

devices in the inset to Figure 7.

As in the case of the NiSi/MgO/Si capacitors, there is an

interface state defect related response observed in the CV

characteristics for these n-type and p-type Si samples with

GdSiOx dielectric. In the case of the n-type NiSi/GdSiOx/n-

Si sample, it is clearly visible as a frequency dependent

distortion in the multi-frequency CV responses plotted in

Figures 6(a)–6(c), at a gate bias in the range of ��0.5 V to 0

V. For the case of the p-type NiSi/GdSiOx/p-Si sample, the

distortion is seen in the gate bias range of ��0.25 V to

�0.75 V, in the multi-frequency CVs plotted as insets to Fig-

ures 6(a)–6(c). An estimation of the interface state densities

(Dit) was performed using an approximation to the conduct-

ance method,18 resulting in peak Dit values of 1.8� 1012

cm�2 eV�1 at �Evþ 0.37 eV and 2.6� 1012 cm�2 eV�1 at

�Evþ 0.82 eV. These density values and the peak energy

positions are again consistent with those reported for Pb dan-

gling bond defects14,20–27 and are expected as the samples

did not receive a forming gas anneal. It is important to

emphasize that the interface states do not contribute to the

inversion response discussed in this paper. Once the oxide/

silicon surface is inverted, the interface states do not change

occupancy with the ac signal variation on the gate and hence

cannot play a role in supplying carriers to the inversion

region, as discussed by Nicollian and Brews on page 112 in

Ref. 18.

The observation of the low-frequency behaviour result-

ing from a peripheral inversion region is likely to occur for

the relatively low doping concentrations which are typically

used during oxide/semiconductor process development. Con-

sidering the case of doping concentrations of �1� 1015

cm�3 which were used for the Si samples in this work, the

charge density at the on-set of inversion is 1.3� 10�8 C/cm2

(or 8� 1010 cm�2).29 Hence, a relatively low charge density

on the surface, or within the bulk of the oxide, can result in

inversion outside the area defined by the gate electrode. The

CV behaviour reported in this work will be less likely to be

observed as the doping concentration in the semiconductor

increases.

Finally, the results presented so far have demonstrated

the presence of the peripheral inversion effect for Si MOS

devices fabricated using different processes and employing

different gate oxides. It is, however, important to state that

this phenomenon is not restricted to Si substrates. To illus-

trate this, results are now presented showing evidence of pe-

ripheral inversion effects for an MOS system on a III-V

semiconductor, GaAs. The CV response at room temperature

(295 K) for Au/Ni/Al2O3/n-GaAs(111B) devices with vary-

ing capacitor dimensions from 30� 30 lm to 90� 90 lm is

shown in Figure 8 for a fixed ac signal measurement

frequency of 200 Hz. The corresponding CV responses for

p-type GaAs(111B) devices are plotted as the inset to Figure

8. Under normal measurement conditions, it should not be

possible to observe a minority carrier response on GaAs. As

discussed by Passlack et al.,30 low-intensity light illumina-

tion is required to generate sufficient minority carriers to

observe inversion in C–V measurements on GaAs, as the

GaAs energy gap (1.42 eV) results in a reduction of the ther-

mal generation/recombination rate. In this work, the meas-

urements presented in Figure 8 were obtained at room

temperature, on-wafer, in a light-tight probe station in a dry

air environment. Most importantly, as the measurements

were performed in the dark, this rules out any contribution of

generation of minority carriers through light illumination. It

FIG. 7. The CV response at room temperature (295 K) for TiN/GdSiOx/n-Si

devices with varying capacitor diameters from 100� 100 lm to 400� 400

lm, is shown for a fixed ac signal measurement frequency of 10 kHz.

The corresponding n-type Si device CV responses are plotted as an inset.

The circular MOS capacitors have diameters of 100, 200, 300, and 400 lm.

FIG. 8. The CV response at room temperature (295 K) for Au/Ni/Al2O3/n-

GaAs(111B) devices with varying capacitor diameters from 30� 30 lm to

90� 90 lm, is shown for a fixed ac signal measurement frequency of 200

Hz. The corresponding p-type GaAs(111B) device CV responses are plotted

as an inset. The square MOS capacitors have side lengths of 30, 40, 50, 60,

80, 90 lm.
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is clear that the minority carrier response in Figure 8 is area

dependent, and it is only observed on one substrate polarity

(see Fig. 8 inset), indicating a peripheral inversion effect is

responsible for inducing the minority carrier response. Con-

sidering the case of doping concentrations of �5� 1017

cm�3 which were used for the GaAs samples in this work,

the charge density at the on-set of inversion is 4.8� 10�7 C/

cm2 (or 3� 1012 cm�2).29 In this case, the low frequency CV

response is only observed for n-type GaAs devices indicating

that the peripheral charge on the surface or in the bulk of the

oxide is negative.

CONCLUSION

In conclusion, results were presented which demon-

strate the effect of peripheral inversion in MOS capacitors

incorporating high-k dielectrics on Si or GaAs. Charge on

the oxide surface, or in the oxide, in the region outside the

area defined by the gate electrode, can result in inversion of

the underlying semiconductor/oxide interface. This pro-

vides a source of minority carriers, which can lead to the

observation of low frequency CV behaviour. Through the

use of identical gate stacks over both n and p type Si and

GaAs substrates, and CV measurements as a function of ac

signal frequency and gate area, it is demonstrated that the

origin of the low frequency CV response is due to periph-

eral inversion and not a result of minority carrier generation

in the region of the semiconductor under the gate electrode.

It has been shown that such behaviour is not unique to a

particular device structure or set of processing conditions.

This work is also relevant in a wider context to the electri-

cal characterisation of MOSFETs, where multiple process-

ing steps are typically used during device fabrication, and

peripheral surface charge could result in misleading electri-

cal characteristics, such as artificially high off-state leakage

currents.
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