
Title Implementing information-theoretically secure oblivious transfer
from packet reordering

Authors Palmieri, Paolo;Pereira, Olivier

Publication date 2011-12

Original Citation Palmieri, P. and Pereira, O. (2012) 'Implementing Information-
Theoretically Secure Oblivious Transfer from Packet Reordering',
in Kim, H. (ed.) Information Security and Cryptology - ICISC
2011: 14th International Conference, Seoul, Korea, November
30 - December 2, 2011. Revised Selected Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 332-345, doi:
10.1007/978-3-642-31912-9_22

Type of publication Conference item

Link to publisher's
version

https://link.springer.com/chapter/10.1007/978-3-642-31912-9_22
- 10.1007/978-3-642-31912-9_22

Rights © Springer-Verlag Berlin Heidelberg 2012. The
final publication is available at Springer via https://
doi.org/10.1007/978-3-642-31912-9_22

Download date 2024-05-12 01:55:06

Item downloaded
from

https://hdl.handle.net/10468/4773

https://hdl.handle.net/10468/4773

Implementing Information-Theoretically Secure
Oblivious Transfer from Packet Reordering

Paolo Palmieri and Olivier Pereira

Université catholique de Louvain
UCL Crypto Group

Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium
{paolo.palmieri,olivier.pereira}@uclouvain.be

Abstract. If we assume that adversaries have unlimited computational
capabilities, secure computation between mutually distrusting players
can not be achieved using an error-free communication medium. How-
ever, secure multi-party computation becomes possible when a noisy
channel is available to the parties. For instance, the Binary Symmetric
Channel (BSC) has been used to implement Oblivious Transfer (OT),
a fundamental primitive in secure multi-party computation. Current re-
search is aimed at designing protocols based on real-world noise sources,
in order to make the actual use of information-theoretically secure com-
putation a more realistic prospect for the future.
In this paper, we introduce a modified version of the recently proposed
Binary Discrete-time Delaying Channel (BDDC), a noisy channel based
on communication delays. We call our variant Reordering Channel (RC),
and we show that it successfully models packet reordering, the common
behavior of packet switching networks that results in the reordering of
the packets in a stream during their transit over the network. We also
show that the protocol implementing oblivious transfer on the BDDC
can be adapted to the new channel by using a different sending strategy,
and we provide a functioning implementation of this modified protocol.
Finally, we present strong experimental evidence that reordering occur-
rences between two remote Internet hosts are enough for our construction
to achieve statistical security against honest-but-curious adversaries.

Keywords: Oblivious transfer, secure multi-party computation, noisy channels,
packet reordering, delay

1 Introduction

When a source transmits information over a packet-switching network, it pro-
duces an in-order sequence of packets. However, depending on the network prop-
erties and the communication protocol used, the sequence received at the desti-
nation might be a different one. In this paper we show how this noise introduced
by the network can be used in practice to achieve oblivious transfer and, more
generally, secure computation.

At the network level of the ISO/OSI model, the Internet Protocol (IP) offers
no guarantee that packets are received at destination in the same order in which
they were sent at the source. This task is taken on by some of the protocols
at the transport layer, most notably the Transmission Control Protocol (TCP),
while others leave the problem unaddressed, as in the case of the User Datagram
Protocol (UDP). The phenomenon for which the ordering of a sequence of packets
in a stream is modified during its transit on a network is commonly known as
packet reordering. Common causes of packet reordering are packet striping at
the data-link and network layers [2,11], priority scheduling and route fluttering
[16,3]. Reordering is a common behavior over the Internet. For instance, tests
conducted in [1] for 50 hosts, 35 of which chosen randomly, show an occurrence
rate of over 40%, with a mean reordering rate roughly fluctuating between 10
and 20% per occurrence. Current Internet trends, like increasing link speeds and
increased parallelism within routers, wireless ad hoc routing, and the widespread
use of quality of service (QoS) mechanisms and overlay routing, all indicate an
expected increase in packet reordering occurrences.

For its ability to deteriorate the responsiveness and quality of data transmis-
sion, especially in applications featuring real time communication or streaming
of multimedia content, packet reordering is generally treated as any other form
of noise: a problem that needs to be solved. However, cryptographers have a
history in transforming noise into something useful and desirable. It is the case
of secure multi-party computation, that can be achieved only through the use
of noisy channels when the adversaries are computationally unbounded. Multi-
party computation deals with the problem of performing a shared task between
two or more players who do not trust each other. Security is achieved when the
privacy of each player’s input and the correctness of the result are guaranteed
[4]. A basic primitive and a fundamental building block for any secure compu-
tation is Oblivious Transfer (OT), introduced by Rabin in 1981 [19]. In fact,
when oblivious transfer is available, any two-party computation can be imple-
mented in a secure way [13]. A commonly used variant of the primitive is the
1-out-of-2 oblivious transfer, proposed by Even, Goldreich and Lempel [10], and
later proved to be equivalent to the original OT by Crépeau [5]. In this proto-
col, a sender Sam knows two secrets, and is interested in transmitting one to
a receiver Rachel without disclosing the other. Rachel wants to choose which
secret to receive, but does not want to reveal her choice. Privacy of the inputs
and correctness of the result are achieved without implying any degree of mutual
trust between the players.

The first protocol to implement oblivious transfer over a noisy channel used
the well-known Binary Symmetric Channel (BSC) [6]. The BSC is a simple bi-
nary channel that flips with probability p each bit passing trough it. While being
a common reference in information theory, the BSC proved not to satisfy cryp-
tographers, more interested in modeling advantages a potential adversary might
have. Many modifications of the channel were consequently proposed, in the di-
rection of allowing dishonest players an edge over honest ones. An Unfair Noisy
Channel (UNC) let the adversary choose the crossover probability within a spe-

cific (narrow) range [9,8], while the Weak Binary Symmetric Channel (WBSC)
introduces the possibility for the dishonest player to know with a certain prob-
ability if a bit was received correctly [20]. The aim of these constructions is to
gain generality by easing the security assumptions, but, while we know that OT
can be built on any non-trivial noisy channel [7], none of these proved to be
suitable for actual implementation in a real world communication scenario, due
to the lack of flexibility and strong requirements imposed by the channel model.

A different approach was taken in [15], where the proposed oblivious transfer
protocol uses a different source of noise: communication delays. The protocol
is built over a new noisy channel model, called Binary Discrete-time Delaying
Channel (BDDC), that accepts binary string inputs at discrete times, and output
each string at the following discrete time. Strings passing through the channel
have a probability p of being delayed, and therefore being kept in the channel
until the following output time.

1.1 Contribution

In this paper we present a new channel model, the Reordering Channel (RC). The
reordering channel is a modified version of the BDDC, that modifies the concept
of delay from a temporal one to that of shifting positions in a sequence. We
observe that the RC provides enough ambiguity (noise) for building an oblivious
transfer protocol, and we show that using a different strategy for sending packets
at the sender’s end we are able to build oblivious transfer on the channel using a
modified version of the same protocol used on the BDDC. Since the reordering
channel models the behavior of packet reordering over the Internet, we provide
an actual, functioning implementation of the protocol based on the transmission
of UDP packets. The source code of the application is provided.1 Finally, we
present strong experimental evidence supporting the effectiveness and security of
the construction and we show how different specific packet reordering behaviors
can be used to improve the efficiency of the protocol.

To the best of our knowledge, this is the first actual implementation of obliv-
ious transfer over the Internet that provides security against computationally
unbounded adversaries, that is, adversaries with unlimited computational capa-
bilities.

1.2 Outline of the Paper

In section 2 we introduce some preliminary notions and definitions relative to
oblivious transfer that will be useful in the following. The definition of BDDC and
the protocol implementing OT over it are also presented. In section 3 we discuss
the implementation of oblivious transfer from packet reordering. We initially
introduce the reordering channel and we show how the OT protocol for the
BDDC can be modified to work on the new channel. In Section 3.1 we discuss

1 The source code of the latest version of the program is available for download over
the internet at the address: http://www.uclouvain.be/crypto/ifyd-latest.tar.gz.

https://extranet.cranfield.ac.uk/crypto/,DanaInfo=www.uclouvain.be+ifyd-latest.tar.gz

common reordering behaviors that influence the design of our implementation of
the protocol, which is presented in Section 3.2. In Section 3.3 we introduce some
metrics used to analyze the data gathered during the testing of our application,
of which we relate in Section 3.4, where we present statistical evidence of the
security of our construction.

2 Preliminaries

Our construction is based on the chosen 1-out-of-2 binary oblivious transfer (in
the following simply called oblivious transfer). A protocol implements oblivious
transfer in a secure fashion when three conditions are satisfied after a successful
execution: the receiver party learns the value of the selected bit bs (correctness);
the receiver party gains no further information about the value of the other bit
b1−s (security for Sam); the sender party learns nothing about the value of the
selection bit s (security for Rachel) [6].

The behavior of the players defines the level of security that a protocol can
achieve. The oblivious transfer protocol for the BDDC is secure against honest-
but-curious players. In practice, the player strictly follows the protocol but tries
to gain extra information from her inputs and output, in order to gain an ad-
vantage in guessing the other player’s secret.

2.1 Binary Discrete-time Delaying Channel

A protocol for achieving oblivious transfer from communication delays in the
information-theoretic model has been proposed in [15]. The noisy channel used
to model delay is the Binary Discrete-time Delaying Channel (Figure 1).

Definition 1. [15] A Binary Discrete-time Delaying Channel with delaying prob-
ability p consists of: an input alphabet {0, 1}n, an output alphabet {0, 1}n, a set
of consecutive input times T = {t0, t1, . . .} ⊆ N, a set of consecutive output times
U = {u0, u1, . . .} ⊆ N where ∀ui ∈ U, ti ∈ T, ui ≥ ti . Each input admitted into
the channel at input time ti ∈ T is output once by the channel, with probability
of being output at time uj ∈ U

Pr [uj] = p(j−i) − p(j−i+1) . (1)

2.2 Oblivious Transfer over a BDDC

The following protocol, also proposed in [15], implements oblivious transfer over
a BDDC with error probability p. The sender party, Sam, inputs two secret
bits b0, b1 and gets no output; the receiver Rachel inputs the selection bit s
and receives output bs. In the following, we introduce a modified version of this
protocol, which serves as the base for our construction over packet reordering.

Channel

t0

t1

u0

u1

Pr (p)

c1, c2

c3, c4

c2

c1, c3, c4

t u

Fig. 1. A schematization representing a Binary Discrete-time Delaying Channel ac-
cepting two strings at time t0, one of which gets delayed once, and two at time t1, none
of which gets delayed. This results in the channel emitting one string at time u0 and
three at u1.

Protocol 1 [15] Before starting the communication between the parties, Sam
selects two disjoints sets E, E′ each composed of n distinct binary strings of
length l: e1, . . . , en and e′1, . . . , e

′
n. Then, Sam builds the sets C = {c1, . . . , cn}

and C ′ = {c′1, . . . , c′n}, where ci := ei‖i and c′i := e′i‖i.

1. Sam sends to Rachel the set C at instant t0, and C
′ at t1, using a p-BDDC.

2. Rachel receives over the BDDC the strings in {C ∪ C ′}, in the order produced
by the channel. She keeps listening on the channel at instants u2, u3, . . . until
all the delayed strings have been received. 2

3. Rachel selects the set Is, where s ∈ {0, 1} is her selection bit, such that
|Is| = n

2 and so that i ∈ Is only if ci ∈ C has been received at u0. Then
she selects I1−s = {1, . . . , n} \ Is and sends I0 and I1 to Sam over a clear
channel.3

4. Sam receives I0, I1 and chooses two universal hash functions f0 and f1,
whose output is 1-bit long for any input. Let Ej ⊂ E be the set containing
every ei ∈ E corresponding to an i ∈ Ij, such that

ei ∈ Ej ⇔ i ∈ Ij . (2)

For each set Ij, Sam computes the string gj by concatenating each ejk ∈ Ej,
ordering them for increasing binary value, so that

gj =
(
ej1 ‖ . . . ‖ e

j
n
2

)
with ej1, . . . , e

j
n
2
∈ Ej . (3)

Sam computes h0 = f0 (g0), h1 = f1 (g1) and sends to Rachel the functions
f0, f1 and the two values

i0 = (h0 ⊕ b0) , i1 = (h1 ⊕ b1) . (4)

2 If less than n
2

strings are received at u0 Rachel instructs Sam to abort the commu-
nication.

3 Or Rachel can just send one of these two sets in order to save bandwidth as Sam
can easily reconstruct the other.

5. Rachel computes her guess for bs

bs = fs (gs)⊕ is . (5)

The internal working of the protocol is easily explained: when listening on
the BDDC, Rachel receives at instant u0 all the strings in C that have not been
delayed by the channel. This subset will constitute the correct information she
needs to decode the selected bit. Any string received at u1 or at a later time is
instead ambiguous, and guarantees that Rachel can not decode both b0 and b1.
At u1, the strings from C delayed once and the strings of set C ′ that have not
been delayed can not be distinguished, and so on and so forth for u2, u3,

3 Packet Reordering as a Noisy Channel

While the BDDC is able to model discrete delays in a communication, it is not
suitable to simulate the delaying behavior of packet switching networks, which
is usually visible in the form of packet reordering. Therefore, we introduce a new
channel model, called Reordering Channel (RC), that redefines the concept of
delay using the relative position of a packet in a stream.

Definition 2. A Reordering Channel consists of: an input sequence of binary
strings T = (t1, . . . , tn), an output sequence of binary strings U = (u1, . . . , un),
a sequence of identically distributed discrete random variables {Xn} over N and
its probability distribution PX : N → [0, 1], with

∑
m∈N PX (n) = 1. Each string

in T is output once by the channel in U , i.e. {t1, . . . , tn} ≡ {u1, . . . , un}. The
ordering of the output sequence is determined by the channel, that selects for
the next available position in the output sequence the ti ∈ T not already selected
with the smallest value v = i+Xi. In case more than one string shares the same
value v, the channel selects among them the one with the smallest value i.

In practice, the channel takes a stream of packets as input, and outputs the
same packets in a reordered fashion. For an appropriate distribution function,
where the probability of a packet not to be delayed (X = 0) is high enough,
this channel simulates accurately the reordering behavior of standard Internet
connections. We discuss experimental results regarding the amount of reordering
that is observed on the Internet in Section 3.4.

With an appropriate discrete probability distribution, that is, a distribution
that respects (1) for a value p, the delaying behavior of the reordering channel
follows that of the corresponding BDDC with probability p. However, the re-
ordering channel, due to its continuous nature, opposed to the discrete one of
the BDDC, lacks the reference points in time that are needed by the receiver
to make sure that a string has not been delayed. Therefore, the protocol that
implements oblivious transfer over the BDDC will not work on the RC. To adapt
the protocol to the new channel, we need to use a different sending strategy at
the sender’s end. Instead of sending the two sets C and C ′ from step 1 of the
protocol into the reordering channel sequentially, we can send them as a stream,

by interleaving the strings in the two sets. We observe, in fact, that we obtain
an ambiguity similar to the one of two strings output at the same time by the
BDDC, if two strings with the same value happen to be received consecutively as
a result of reordering by the RC. As illustrated in Figure 2, we can start sending
a first batch of i strings form C, where i is the arbitrarily selected interleaving
value. After ci, we interleave the strings from C with the ones from C ′. Using
this sending sequence, the receiver is unable to distinguish between two strings
ci and c′i when ci is reordered, and received at least i− 1 positions far from its
original place. Adopting this sending strategy, we can implement the oblivious
transfer protocol for the BDDC on the reordering channel and, therefore, on the
Internet.

Sending sequence

C′

C 1 i

1

i + 1

2

i + 2

3

i + 3

Fig. 2. Package interleaving.

3.1 Reordering Dynamics

For an implementation of the protocol to be effective, the selected value of i must
be consistent with the actual amount of reordering observed over the Internet.
However, it is not the only parameter that will affect reordering.

The probability of occurrence of packet reordering depends on a number of
factors, such as physical distance and number of intermediate hops between the
hosts, transmission medium, quality and speed of hop-to-hop links, traffic on
the network and so on. Packet reordering also frequently displays a consistent
behavior over time between two given hosts.

As already experimentally observed by Bellardo and Savage, the inter-spacing
of packets effectively reduces the reordering probability [1]. In the test they
conducted, the probability is significantly reduced when adding an inter-packet
gap of 100 microseconds (µs), while a longer spacing of 500 µs brings the number
of reorderings close to 0. An increase in the size of the packets has the same effect,
since the longer serialization delay increases the delay between the leading edge of
each subsequent packet. This, in turn, decreases the possibility that two packets
will be reordered if assigned to different queues, when subject to parallelization
during routing. We can actively use this property by adding an inter-packet gap
to stabilize a path affected by a high reordering probability.

3.2 Protocol implementation

In our implementation of the protocol, the receiver acts as a server, waiting on-
line for a client (the sender) to connect. The protocol used to transmit packets

is the User Datagram Protocol (UDP). UDP provides no guarantees of message
delivery to the upper layer, offers no reordering detection or correction mecha-
nism, and retains no state of the messages once sent. The simple structure of a
packet, called datagram and defined in RFC 768, minimizes the size and does
not include any sequence number [18]. The structure of the packets sent follows
the structure of the strings in C and C ′ as defined in Protocol 1. Each packet
pj is composed of the sequence number j and an unique identification value e.

To select the receiver mode of operation, the option -r {S} must be specified,
where S is the selection bit. The receiver algorithm is structured as follows. After
network initialization, the program waits for incoming connections on port 9930.
Once packets are received, they are put in the arrival order in a buffer. The
number of packets to be received is determined in advance with the sender. The
buffer is then read packet by packet, and each pair of packets sharing the same
sequence number j and satisfying any of the following conditions is marked
as ambiguous: the first packet with sequence number j is found in a position
higher than (j + i− 1); the two packets sharing sequence number j are less
than i

2 position apart. Sets Is and I1−s are created by putting all the sequence
numbers corresponding to an ambiguous pair of packets in I1−s, plus enough non-
ambiguous sequence numbers to reach half the total, and putting the remaining
values in Is. The two sets are then sent back to the sender’s address. The software
then waits for the encoded bits, and the chosen bit bs is decoded using (5).

The sender mode of operation is selected by using the option -s {B0:B1}.
The two secret bits are passed in the argument, separated by a colon character.
The mandatory option -a {IP_ADDRESS} is used to specify the receiver’s IP
address. -w USEC can be used to add a USEC microseconds long waiting gap
between packets. The algorithms is structured as follows. Two sets P 0 and P 1

of n packets each are created, with each packet p composed of an increasing
sequence number j and a randomly selected unique identifier e. The two sets
are then sent to the receiver’s address, using the sending sequence described in
Section 3 for a predetermined i. Once all the packets have been sent, the software
starts waiting for the sets I0, I1 from the receiver. Using the information received,
the secret bits are encoded according to (4), using an hash function, and sent to
the receiver.

The reference platform for our implementation of the protocol is Linux. The
programming language used is C++. Only standard POSIX libraries have been
used. The compiler of choice is the GNU Compiler Collection (gcc), version 4.
Full logging capabilities are implemented, including on-screen and file logging.

3.3 Metrics

In order to measure the incidence and relevance of the reorderings observed in
our tests, we use the metrics proposed in RFC 5236 [12] and in [21], adapting
them to the needs of our specific application when necessary.

When packets are received at the destination they are assigned a receive
index (RI), according to the order of arrival. Displacement (D) of a packet is
defined as the difference between RI and the sequence number of the packet.

For example, the displacement of packet p0j from the first set is RI
(
p0j
)
− j,

while D
(
p1j
)

= RI
(
p1j
)

+ i − j. Therefore, a negative displacement value indi-
cates the earliness of a packet and a positive value the lateness. We call absolute
displacement the modulus of D. The displacement frequency FD (k) is the num-
ber of received packets having a displacement of k. The reorder density (RD)
is the distribution of the displacement frequencies, normalized with respect to
the number of received packets, ignoring lost and duplicate packets. The mean
displacement of packets (MD) is defined as

MD =

∣∣∣∣∣
i=+Dr∑
i=−Dr

(|i| ×RD [i])

∣∣∣∣∣ /
∣∣∣∣∣
i=+Dr∑
i=−Dr

RD [i]

∣∣∣∣∣ , (6)

while the mean displacement of late packets (ML) is

ML =

∣∣∣∣∣
i=+Dr∑
i=1

(|i| ×RD [i])

∣∣∣∣∣ /
[
i=+Dr∑
i=1

RD [i]

]
(7)

in the case of packets with positive displacement. The reorder entropy (ER) is an
indicator of the reorder density (a discrete probability distribution) to be concen-

trated or dispersed. It is defined as ER = (−1)×
∑i=+Dr

i=−Dr
(RD [i]× lnRD [i]) .

For simplicity, and without loss of generality, in the following we study only
absolute displacements. In fact, for our purposes, displacements values of ±i are
equally ambiguous.

3.4 Experiment

Contrary to what is common in the study of packet reordering, our experiment
uses a an active approach, instead of passively monitoring traffic. We do so by
using the testing capabilities included in our protocol implementation, which let
us produce a stream of UDP datagrams from the sender to the receiver. For
testing the software we use two hosts:

– merlin.dice.dice.ac.ucl.be, IP 130.104.205.236, located in Belgium.
Debian GNU/Linux (kernel 2.6.32-5, i686);

– ec2-50-18-108-9.us-west-1.compute.amazonaws.com, IP 50.18.108.9,
located in Northern California (USA). Ubuntu GNU/Linux (kernel 2.6.35,
x86 64-bit).

Both hosts are connected to the Internet through wired, high-speed links. A
sample tracert shows 18 hops between the two. The mean round trip time
(RTT) is 149.6 milliseconds, with a standard deviation of 0.6 ms.

In the following, we base our analysis on two sample traffic datasets, pro-
duced by observing the behavior of our protocol implementation in two different
settings.

The dataset corresponding to the first experiment is the result of a single
prolonged execution of the protocol test routine. In total, 60167 datagrams are

recorded. The test session took place in May, 2011. The aim of the test is to
observe behavior under ideal traffic conditions: during the execution, both hosts
had no network activity beside the traffic generated by our protocol implemen-
tation itself. A first analysis of the data shows a total of 7009 reordering oc-
currences, equal to 11.65% of all packets received. The maximum displacement
value observed is 59. Detailed figures for low displacement values are displayed
in Fig. 3. The mean displacement is MD = 0.44, while the mean displacement
of late packets is ML = 3.75. The reorder entropy of the set is ER = 0.60, which
shows a good variance and therefore a uniformity of displacement frequency and
probability. These values appear to be consistent with those observed in [21].

D FD %

0 53157 88.35

1 1876 3.12

2 1697 2.82

3 1240 2.06

4 860 1.43

5 468 0.78

D FD %

6 246 0.41

7 137 0.23

8 79 0.13

9 59 0.10

10+ 347 0.58

Fig. 3. Number of occurrences and percentage for each absolute displacement value.

The security of our construction is based on the assumption that the sender
can not accurately predict reorderings that will happen during the datagrams
transit over the network. Predictions of future reorderings are based on the
observation of past occurrences, and the research of patterns in the frequency
and magnitude of displacements. In order to show the independence between past
reordering occurrences and future ones, we evaluate the autocorrelation function.
Autocorrelation is the cross correlation of a vector of random variables with
itself, and is a useful tool frequently used in signal processing to find repeating
patterns. In Fig. 4 the number of reordering occurrences for three different subset
into which the first dataset has been divided for a more detailed analysis are
provided, along with the relative autocorrelation. It is evident that none of the
functions shows any recurring pattern.

The second experiment aims to reproduce reordering behavior under intense
traffic over the network. In order to generate traffic we use the software suite
composed of RUDE (Real-time UDP Data Emitter) and CRUDE (Collector for
RUDE), developed by Laine and Saaristo [14]. This client-server tool allows us
to produce UDP traffic from the sender to the receiver with a great deal of
precision. In particular, we use the following routine:

– for the first 5 seconds, RUDE sends 1000 packets per second, with a packet
size of size 200 bytes, generating a traffic of 200 KB/s;

– for the following 5 seconds, RUDE sends 10000 packets/second with 20
bytes/packet (200 KB/s);

Fig. 4. The number of occurrences (left) and the autocorrelation function (right) for
the three subsets composing the first dataset.

– for the last 5 seconds, RUDE sends 500 packets/second with 2000 bytes/packet
(1 MB/s);

– for all the duration of the test, RUDE also sends 2500 packets/second with
100 bytes/packet (250 KB/s). These last datagrams have the Type of Service
(ToS) priority flag of the IPv4 header set to LOW_DELAY (0x10).

In addition to the traffic generated by RUDE, the receiver host also performs a
large file download from a remote host (mirror.garr.it, 131.175.1.35), using
the HTTP protocol. The file chosen is large enough for the download to last over
the entire execution of the experiment. The average download speed observed is
96.5 KB/s.

During the experiment, a total of 4293 datagrams generated by our protocol
implementation are received by the receiver host. About 4 seconds after the
testing routine start, a peak of reorderings is recorded (Fig. 5): this is due to a
set of packets being lost due to the traffic congestion. The particular routine of
external traffic generated with RUDE allows us to analyze how the frequency
of reordering occurrences is affected by manipulation of the traffic reaching the
receiver host. Fig. 5 clearly shows that the reordering behavior is only marginally
affected by external traffic, even when the capacity of the network is almost
fully used. In fact, no significant differences both in the number of occurrences
and mean displacement value can be seen at the change of bandwidth used
at second 10, where the external traffic goes from 200 KB/s to 1 MB/s. The
lower values recorded for the first 4 seconds can be instead explained by the

progressive increase in TCP traffic generated by the HTTP download, that take
full advantage of the available bandwidth only after a few seconds, thanks to the
mechanisms regulating TCP traffic.

Fig. 5. The number of occurrences (left) and the mean displacement value (right) for
the second dataset, calculated over subsets of 100 packets each. The peak of both
functions is due to the loss of a set of packets. The three areas colored with different
shades of gray picture the three time lapses into which the set is divided (5 seconds
each).

4 Conclusion

In this paper we propose an implementation of oblivious transfer over the Inter-
net. The construction we propose is secure against adversaries with unlimited
computational capabilities in the honest-but-curious model, and uses packet re-
ordering, a common phenomenon present in any packet-switching network. Re-
ordering of packets in a stream are due to a number of different causes, among
which intrinsic network characteristics, parallelism both at the node and the link
level, and traffic control and congestion, all of which are increasingly present in
today’s Internet.

Our construction is based on the protocol proposed for the Binary Discrete-
time Delaying Channel. In order to adapt the protocol for practical use over
the Internet, we introduce a new channel, the Reordering Channel, that models
packet reordering. We then build a modified version of the protocol, adapted
to work on the RC, and we present a practical implementation of this modified
protocol based on the transmission of UPD packets over the Internet. We also
present extensive experimental evidence of the security of the implementation:
we show that reordering occurrences are found consistently under both intense
traffic load and minimal network usage, statistical analysis of the reorderings
shows no sign of recurring patterns in frequency or magnitude and no strong
statistical correlation is found over reordering occurrences over time.

To the best of our knowledge, our implementation is the first oblivious trans-
fer protocol secure against computationally unbounded capabilities being imple-
mented over the Internet. The novelty of our construction, based on network
behavior, opens the way to new security constructions entirely based on channel
characteristics.

5 Acknowledgments

This research work was supported by the SCOOP Action de Recherche Con-
certées. Olivier Pereira is a Research Associate of the F.R.S.-FNRS.

References

1. Bellardo, J., Savage, S.: Measuring packet reordering. In: Internet Measurement
Workshop. pp. 97–105. ACM (2002)

2. Bennett, J.C.R., Partridge, C., Shectman, N.: Packet reordering is not pathological
network behavior. IEEE/ACM Trans. Netw. 7(6), 789–798 (1999)

3. Bohacek, S., Hespanha, J.P., Lee, J., Lim, C., Obraczka, K.: A new tcp for persis-
tent packet reordering. IEEE/ACM Trans. Netw. 14(2), 369–382 (2006)

4. Chaum, D., Damg̊ard, I., van de Graaf, J.: Multiparty computations ensuring pri-
vacy of each party’s input and correctness of the result. In: Pomerance [17], pp.
87–119

5. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomer-
ance [17], pp. 350–354

6. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In: FOCS. pp. 42–52. IEEE (1988)

7. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN. Lecture Notes
in Computer Science, vol. 3352, pp. 47–59. Springer (2004)

8. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious
transfer. In: Naor, M. (ed.) TCC. Lecture Notes in Computer Science, vol. 2951,
pp. 355–373. Springer (2004)

9. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: EUROCRYPT. pp.
56–73 (1999)

10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

11. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Measurement and
classification of out-of-sequence packets in a tier-1 ip backbone. IEEE/ACM
Trans. Netw. 15, 54–66 (February 2007), http://dx.doi.org/10.1109/TNET.

2006.890117

12. Jayasumana, A., Piratla, N., Banka, T., Bare, A., Whitner, R.: Improved packet
reordering metrics. RFC 5236 (Informational) (June 2008), http://www.ietf.org/
rfc/rfc5236.txt

13. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC. pp. 20–31.
ACM (1988)

14. Laine, J., Saaristo, S.: RUDE: Real-time UDP data emitter. http://rude.

sourceforge.net/ (1999–2002)

https://extranet.cranfield.ac.uk/10.1109/,DanaInfo=dx.doi.org+TNET.2006.890117
https://extranet.cranfield.ac.uk/10.1109/,DanaInfo=dx.doi.org+TNET.2006.890117
https://extranet.cranfield.ac.uk/rfc/,DanaInfo=www.ietf.org+rfc5236.txt
https://extranet.cranfield.ac.uk/rfc/,DanaInfo=www.ietf.org+rfc5236.txt
https://extranet.cranfield.ac.uk/,DanaInfo=rude.sourceforge.net+
https://extranet.cranfield.ac.uk/,DanaInfo=rude.sourceforge.net+

15. Palmieri, P., Pereira, O.: Building oblivious transfer on channel delays. In: Lai, X.,
Yung, M., Lin, D. (eds.) Inscrypt. Lecture Notes in Computer Science, vol. 6584,
pp. 125–138. Springer (2010)

16. Paxson, V.E.: Measurements and Analysis of End-to-End Internet Dynamics.
Ph.D. thesis, EECS Department, University of California, Berkeley (June 1997),
http://www.eecs.berkeley.edu/Pubs/TechRpts/1997/5498.html

17. Pomerance, C. (ed.): Advances in Cryptology - CRYPTO ’87, A Conference on the
Theory and Applications of Cryptographic Techniques, Santa Barbara, California,
USA, August 16-20, 1987, Proceedings, Lecture Notes in Computer Science, vol.
293. Springer (1988)

18. Postel, J.: User datagram protocol. RFC 768 (Standard) (August 1980), http:

//www.ietf.org/rfc/rfc768.txt

19. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report
TR-81, Aiken Computation Laboratory, Harvard University (1981), manuscript

20. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O.
(ed.) TCC. Lecture Notes in Computer Science, vol. 5444, pp. 332–349. Springer
(2009)

21. Ye, B., Jayasumana, A.P., Piratla, N.M.: On monitoring of end-to-end packet re-
ordering over the internet. In: International Conference on Networking and Services
(2006)

https://extranet.cranfield.ac.uk/Pubs/TechRpts/1997/,DanaInfo=www.eecs.berkeley.edu+5498.html
https://extranet.cranfield.ac.uk/rfc/,DanaInfo=www.ietf.org+rfc768.txt
https://extranet.cranfield.ac.uk/rfc/,DanaInfo=www.ietf.org+rfc768.txt

	Implementing Information-Theoretically Secure Oblivious Transfer from Packet Reordering

