:COl

Title

Secure two-party computation over a Z-Channel

Authors

Palmieri, Paolo;Pereira, Olivier

Publication date

2011-10

Original Citation

Palmieri, P. and Pereira, 0. (2011) 'Secure Two-Party
Computation over a Z-Channel’, in Boyen, X. & Chen, X. (eds.)
Provable Security: 5th International Conference, ProvSec
2011, Xi'an, China, October 16-18, 2011. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 3-15. doi:
10.1007/978-3-642-24316-5_3

Type of publication

Conference item

Link to publisher’s
version

https://link.springer.com/chapter/10.1007/978-3-642-24316-5_3 -
10.1007/978-3-642-24316-5_3

Rights

© Springer-Verlag Berlin Heidelberg 2011. The
final publication is available at Springer via https://
doi.org/10.1007/978-3-642-24316-5_3

Download date

2024-04-28 04:22:02

[tem downloaded
from

https://hdl.handle.net/10468/4775

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh



https://hdl.handle.net/10468/4775

Secure Two-party Computation over a Z-channel

Paolo Palmieri and Olivier Pereira

Université catholique de Louvain
UCL Crypto Group, ICTEAM Institute
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium
{paolo.palmieri,olivier.pereira}@uclouvain.be

Abstract. In secure two-party computation, two mutually distrusting
parties are interested in jointly computing a function, while preserving
the privacy of their respective inputs. However, when communicating
over a clear channel, security against computationally unbounded ad-
versaries is impossible. Thus is the importance of noisy channels, over
which we can build Oblivious Transfer (OT), a fundamental primitive
in cryptography and the basic building block for any secure multi-party
computation. The noisy channels commonly used in current construc-
tions are mostly derived from the Binary Symmetric Channel (BSC),
which is modified to extend the capabilities of an attacker. Still, these
constructions are based on very strong assumptions, in particular on the
error probability, which makes them hard to implement.

In this paper, we provide a protocol achieving oblivious transfer over
a Z-channel, a natural channel model in various contexts, ranging from
optical to covert communication. The protocol proves to be particularly
efficient for a large range of error probabilities p (e.g., for 0.17 < p < 0.29
when a security parameter ¢ = 1079 is chosen), where it requires a lim-
ited amount of data to be sent through the channel. Our construction
also proves to offer security against unfair adversaries, who are able to
select the channel probability within a fixed range. We provide coding
schemes that can further increase the efficiency of the protocol for prob-
abilities distant from the range mentioned above, and also allow the use
of a Z-channel with an error probability greater than 0.5. The flexibility
and the efficiency of the construction make an actual implementation of
oblivious transfer a more realistic prospect.

Key words: Oblivious transfer, secure multi-party computation, infor-
mation theoretic security, cryptography on noisy channels.

1 Introduction

Oblivious Transfer (OT), introduced by Rabin in 1981 [14], is a primitive of
primary importance in the field of secure multi-party computation and, more
generally, cryptography: any secure computation can be built on top of a se-
cure OT protocol [10]. In this paper we present a protocol achieving OT on
a Z-channel, a communication channel that, while being closely related to the
most commonly used ones, has never been used for this purpose. We also show



the greater flexibility our construction has in comparison to current protocols,
being able to accept any error probability p, and allowing an adversary large
control over p itself.

Secure multi-party computation deals with the problem of mutually distrust-
ing players interested in jointly compute a function, while preserving the privacy
of their respective inputs. In the information-theoretic setting, where protocols
must be secure against computationally unbounded adversaries, security cannot
be generally achieved without any further assumption. However, multi-party
computation can be achieved when some form of noise in the communication is
available, which, in turn, allows for the construction of oblivious transfer. Since
OT can be built using almost any noisy channel [5], the most interesting research
question is what form of noise offers the best flexibility and efficiency, and could
therefore be used in the prospect of an actual implementation.

The two players involved in an oblivious transfer protocol are generally di-
vided into a sender and a receiver. The sender knows a set of secret input values,
and is interested in communicating to the receiver a smaller subset, selected ac-
cording to the latter’s choice. After a successful execution of the protocol, the
receiver learns the chosen inputs but gets no information about the others, while
the sender remains oblivious of the receiver’s selection.

The first protocol to implement oblivious transfer on a noisy channel was
provided by Crépeau and Kilian in 1988 [4]. The construction is based on the
binary symmetric channel (BSC), which flips with a fixed probability each bit
sent though it. Security is guaranteed by privacy amplification, while the use of
error correction codes assures the correctness of the results. Results were later
improved and generalized in [3, 5, 12]. However, strong requirements are imposed
by the construction: the players must have perfect knowledge of the statistics of
the channel, such as the error probability, which can not change during protocol
execution. Damgard et al. tried to weaken these requirements by introducing the
unfair noisy channels in 1999 [7]. The name comes from the “unfair” advantage
given to an adversary, who is able to arbitrarily choose the error probability of
the channel within a certain range. Results were improved by widening the range
of acceptable probabilities in a following paper in 2004 [6]. Wullschleger further
extended the concept of unfair noisy channel by introducing two new channel
models, the weak erasure channel and the weak binary symmetric channel [16].
The two new primitives aim to be more general by lessening the security as-
sumptions. For instance, they take into account the possibility, for a dishonest
sender, to learn with a small probability if a bit was or not affected by the chan-
nel noise (being flipped in the case of the weak BSC, or lost in the case of the
weak erasure channel).

Although it has been shown that oblivious transfer can be built from almost
any noisy channel, we still lack a clear understanding of what properties a noisy
channel needs to be best suited for efficient protocols. This knowledge is of
primary importance if we are to build better protocols and thus achieve actual
implementation.



1.1 The Z-channel

In a 1980 correspondence on the IEEE Transactions on Information Theory,
Golomb succinctly describes the mutual information and capacity of the Z-channel [8].
A Z-channel is a discrete memoryless channel with two input symbols (z1, z2)
and two output symbols (y1,y2). The noise in the channel is determined by its
error probability p. The conditional probabilities of receiving a given output
based on a given input are expressed by the following matrix:

(Pl Dlmyy (10 0))

In the following, we use the name Z-channel to refer to a binary Z-channel,
where (21,22) = (0,1) and (y1,y2) = (0,1). Using these symbols, the behavior
of the Z-channel closely resemble that of a binary symmetric channel, except
for the fact that the noise is affecting the communication asymmetrically (see
Fig. 1). In practice, we can transmit a “0” through the channel noiselessly, while
sending a “1” we have a probability p that it will be received as a “0”.

Fig. 1. A Z-channel (a) and a standard Binary Symmetric Channel (b).

We observe that using the correct encoding, a Z-channel with crossover prob-
ability p = % is in fact equivalent to a Rabin OT (which in turn is equivalent
to an erasure channel with p = %), where the sender sends a secret bit b, which
is received with probability % and lost otherwise, and remains oblivious as to
whether the bit reached the receiver or not. We can achieve this by sending the
bit string “01”for b = 0 and “10” for b = 1. The receiver is able to decode the
bit if the string is received correctly, but learns no information about it if she
receives the string “00” instead.

The Z-channel appears as a natural model of various types of communica-
tions, from optical communications [1], to various forms of covert communica-

tions [11].

1.2 Contribution

While we know that noise is essential to achieve security in multi-party com-
putation, we still lack the understanding of how the properties of a particular
noisy channel affect the efficiency and security of oblivious transfer protocols.
This paper aims at showing how a careful selection of a noisy channel is needed
in order to achieve secure multi-party computation efficiently.



To do so we provide a protocol implementing oblivious transfer on a simple
channel model, the Z-channel. This channel has interesting properties: contrary
to the binary symmetric and erasure channels, only part of the input symbols
are affected by the noise, allowing the receiver to interpret some (but not all) of
the output symbols with certainty. For the other symbols, the receiver has no
way to recover the original information with certainty. This provides us with the
ambiguity needed for the security of the construction.

We show how these channel properties can be exploited to build an oblivi-
ous transfer protocol that can accommodate any non-zero value of the flipping
probability p of the Z-channel and, interestingly, can offer security as long as
this probability is known to lie in any fixed range. This contrasts with the case
of the unfair BSC (UNC) channel studied by Damgérd et al. [7,6], for which it
is known that OT is impossible to achieve as soon as the range of acceptable
flipping probabilities increases too much. In general, we show that an unfair
Z-channel, which allows the adversary to choose the probability of the channel
within a range, behaves much better than an unfair BSC: oblivious transfer can
be achieved for any fixed range, and our protocol is efficient for ranges larger
than the possibility range of a UNC.

Following the terminology of Imai et al. [9], our protocol achieves an oblivious
transfer rate of i. We also demonstrate how this efficiency and flexibility can be
further improved for specific channel parameters and concrete security bounds,
through the use of different coding strategies and protocol modifications.

1.3 Outline of the Paper

Section 2 contains some useful definitions and preliminary notions that are
needed in the following. In particular, we give a security definition for oblivi-
ous transfer. Section 3 describes the basic version of our protocol for achieving
OT on a Z-channel, and proves the security of this protocol in the semi-honest
model. In Section 4, we introduce the unfair version of the Z-channel, and we ana-
lyze the efficiency of our construction. We also demonstrate how different coding
strategies and protocol modifications can be used to improve the efficiency of
concrete instances of our protocol.

2 Preliminaries

Many different flavors of oblivious transfer exist, and they have all been proved
equivalent by Crépeau [2]. In the following, when using the name oblivious trans-
fer, we will be referring to a binary I-out-of-2 oblivious transfer protocol, where
a sender, Sam, has two bits by and by, while a receiver, Rachel, has a choice
bit ¢. After a successful execution of such a protocol, three conditions must be
satisfied: the receiver party knows the value of the selected bit b. (correctness);
the receiver party learns nothing about the value of the other bit by _. (security
for Sam); the sender party learns nothing about the choice bit ¢ (security for
Rachel) [4].



A useful way of measuring the knowledge an adversary has on a secret bit
of information is the prediction advantage. Prediction advantage measures the
advantage the adversary has in guessing the secret bit by using all the available
information.

Definition 1. [15] Let Pxy be a distribution over {0,1} x Y. The maximal bit
prediction advantage of X fromY for a function f is

PredAdV(X|Y):2-m}axPr[f(Y):X]—1 . (1)

All the information that is available to a player during an execution of the
protocol is called the view of the player.

2.1 A Security Definition for Oblivious Transfer

Using the concept of prediction advantage, the three conditions that form the
security of an oblivious transfer protocol can be formally defined, leading to a
security definition for OT. Such a definition can be found in [13]. We will use it
in the following to prove the security of our construction.

Definition 2. [13] A protocol I between a sender and a receiver, where the
sender inputs (bo,b1) € {0,1} and outputs nothing, and the receiver inputs ¢ €
{0,1} and outputs S, securely computes 1-2 oblivious transfer with an error
of at most e, assuming that U and V represent the sender and receiver views
respectively, if the following conditions are satisfied:

— (Correctness) If both players are honest, we have
Pr(S=b]>1-¢. (2)

— (Security for Sam) For an honest sender and an honest (but curious) receiver
we have
PredAdv (b1_. | V,c¢) <€ . (3)

— (Security for Rachel) For an honest receiver and an honest (but curious)
sender we have
PredAdv (¢ | U, bp,b1) < e . (4)

3 Oblivious Transfer over a Z-channel

Our construction differs from standard oblivious transfer protocols for the binary
symmetric channel for the fact that it does not require the use of error correcting
codes (ECC’s). This is due to the fact that some output symbols can always be
interpreted correctly, thanks to the Z-channel properties (a “1” output symbol
always come from a “1” input). The ambiguity needed to assure the security of
the construction is however guaranteed by the fact that we cannot correct errors
in other output symbols (a “0” output symbol can come either from a “0” or a
“1” input).



3.1 Protocol

The protocol is a sequence of three different stages. The first stage is called
precomputation, and is performed by the sender. During this stage, the sender
selects, according to some prescribed distribution, a set of bit pairs to be sent
on the Z-channel.

The communication between the sender and the receiver takes place in the
second stage (communication). The precomputed set is sent to the receiver
through the Z-channel. The interaction then proceeds by exchanging on a clear
channel the information needed to construct the encoded version of the secret
bits by and by, that are subsequently sent to the receiver.

During the third and last stage, called postcomputation, the receiver computes
the value of the chosen bit b,.

Protocol 1. The three phases described below happen sequentially.

Precomputation The sender Sam selects n pairs of bits s; := (¢;,¢;) such that
¢ @, =1 for all i € [1,n]. Knowledge of the value of n is shared between the
parties.

Communication The sender Sam and the receiver Rachel can communicate over
a Z-channel with error probability p and over a clear channel.

1. Sam sends the pairs si, ...s, to Rachel through the Z-channel.
2. Rachel receives a sequence of n pairs of bits r; := (d;,d}), with i € [1,n],
somehow similar to the s; pairs.

3. Rachel arbitrarily selects two sequences I, and I;_., where c is her choice
bit, each composed of % unique indices i € [1,n], where i € I. if and only
if d; # dj, that is, if the pair (¢;,c}) has not been modified during the
transmission. When she selected enough elements for I., Rachel puts all the
other indices ¢ in Iy _., regardless of the content of (d;, d}) and sends the two
sets back to Sam on a clear channel. If instead there are less than 5 indices
that she can put in I., she aborts the protocol.

4. Sam receives the two sequences of indices (Ip, I1) and builds two strings eg,
e such that the i-th bit of e; has value 0 if and only if (clb[i] , c}b[i]) =(0,1)

where Iy;) is the i-th index in [,. Then Sam chooses two universal hash
functions hg and h; whose output is 1-bit long for any input. He computes

fo=(bo @ ho(eo)) , f1=(b1®hi(er)) , (5)

and sends fo, f1, ho, h1 to Rachel via a clear channel.

Postcomputation The receiver Rachel builds the string e, using the same pro-

cedure used by Sam when building (eg,e;) but using (dlcwdllc[i]) instead of

/
(Cjb[i] , CIW]). Then she computes

bc == (fc S¥) hc (ec)) . (6)



We observe that this protocol follows the general pattern of OT-protocols
from noisy channels [3,5,12]. First, it somehow builds an erasure channel (this
is the purpose of the precomputation stage). Then this erasure channel is used
a number of times to realize OT.

3.2 Security in the Semi-honest Scenario

In the semi-honest model the players act in a honest-but-curious way. In practice,
they follow the protocol, but try to use all the information they can get during
the protocol execution to get extra knowledge. We can also say that in a semi-
honest scenario, the adversary is passive: she follows the protocol, but outputs
her entire view [15].

We now show the security of the protocol when the probability p is in the
interval (O7 %) In the next section, we will show how to relax this requirement
in order to deal with any probability p in the interval (0, 1).

Theorem 1. The protocol described in Section 3.1 securely computes 1-2 oblivi-
ous transfer with error probability € when it is executed on a Z-channel with error

probability p, where 0 < p < %, and with the security parameter n satisfying:

2log(e) log(3)
n>max<(1_2p)2,1og(1g)> . (7)

Proof. We prove that our construction is secure by showing that each of the
three security conditions for an oblivious transfer protocol is satisfied.

Correctness When transmitted through a binary Z-channel, each pair (¢;, ¢}) is
received correctly except with probability p, and Rachel is able to decide whether
she received that pair correctly: the pair has been modified by the channel only
if ¢; =¢}, =0.

The protocol is correct, that is, Rachel is able to build the sequence I. cor-
rectly if at least 5 pairs have been delivered without errors; we call this event
Correct. This Correct event happens with the following probability:

n
Pr [Correct] = Z (Z) (1—p)fprF>1- e 2(3-7)" , (8)

—_n
k=3

where the inequality follows from the Chernoff bound.

Security for Sam The aim of a curious Rachel is to learn the value of b; .. Let us
call this event Success. Rachel has two ways of achieving it: by decoding e;_. on
the correct inputs (let us call this event DecodeE), or by not doing so. So, we have
that Pr[Success] = Pr [Success A DecodeE] + Pr [Success A —DecodeE]. The latter
probability is upper-bounded by %, due to the properties of a universal hash
function, while the former is upper-bounded by Pr[DecodeE]. In the following,
we evaluate that probability.

Rachel needs to learn the value of all the bits in e;_.. For each bit, she has
two ways of doing so:



1. By computing the value. This is possible if d; # d} for the pair of bits
r; corresponding to the bit in e;_. she wants to learn. We call this event
NoAmbiguity.

2. By guessing the value. This is necessary if she cannot directly compute it,
that is, if d; = d = 0 for the corresponding pair of bits. Let us call this event
Ambiguity, and note that it is complementary to the event NoAmbiguity.

The first case happens with probability (1 — p). Therefore, Rachel will be able
to decode the whole string e; . without any guessing with probability (1 — p)".

In the second case, which happens with probability Pr [Ambiguity] = 1 —
Pr [NoAmbiguity], Rachel has no information about which pair (¢;, ¢}) of weight
1 was sent. Therefore Rachel has to guess the value of the bit by tossing a coin,
with a probability to succeed equal to %

Overall, for any bit pair r; she will select the correct value for the bit in e;_.
with probability (5 + (1 —p)) =1— 5. Since the hash function can be correctly
evaluated only if all the guesses are correct, we have

_(1_P\"
Pr [DecodeE] = (1 2) . (9)
Therefore we have )
p n
<= ) .
Pr [Success] < 3 + (1 2) (10)

Security for Rachel The Z-channel does not give any feedback to the sender as
to what errors it introduces in a message transmitted through it. Since Rachel
distinguishes the sets I, and I;_. from the bits flipped by the channel, from
Sam’s point of view the distribution of (Iy, I1) is independent of c.

Combining the two results of the correctness and security for Sam sections of
the proof by extracting n in the two inequalities, and using the definition of
prediction advantage, we obtain the two arguments of the maximum function in
the theorem statement. a

We observe that the bounds provided here are also valid for similar channels
on which OT is built through a simple reduction to the binary erasure channel
(e.g., the binary discrete-time delaying channel considered in [13]).

4 Efficiency and Resistance to Unfair Adversaries

Our construction exhibits a particularly low sensitivity of the n parameter to
the value of the probability p for a given security bound ¢, in a wide range of
values of p. We believe that this is a very useful feature of using a Z-channel for
realizing OT, as the precise channel characteristics are often difficult to evaluate
when communication is achieved between a sender and a receiver who do not
trust each other.



A concrete depiction of the bounds of Theorem 1 is provided in Fig. 2. Our
protocol is particularly efficient when the probability p is around 0.25 (the opti-
mal value has little sensitivity to fluctuations of the € parameter: it ranges from
0.2486 to 0.2462 when e ranges from 1076 to 1071%). ! Just 163 bit pairs are suf-
ficient to guarantee a security of e = 10~ at the optimal probability p = 0.2473.
More importantly, the graph in Fig. 2 shows that the number of bit pairs n can
be kept low for large ranges of p and reasonable values of €. For instance, for
e = 1077, transmitting 250 pairs of bits on the Z-channel is enough to realize OT

for 0.17 < p < 0.29, and the even larger range of 0.04 < p < 0.40 only requires
n = 1060.

10000

Correctness bound

Security for Sam bound ———-
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Fig. 2. n as a function of p for ¢ = 1072,

4.1 Unfair Z-channel

The large acceptable ranges discussed above also imply that our construction
behaves considerably well when the adversary is given the advantage of choosing
the channel probability within a certain range. Following the definition in [7], an
unfair Z-channel with parameters v and &, where v, < %, is a Z-channel with
an error probability p € [y, ] that is set by the adversary but is not known by
the honest players, who have access to the values of v and ¢ only. Therefore, a
protocol implementing OT over an unfair Z-channel must work for any p in this
range.

The concept of unfair Z-channel gives the graph in Fig. 2 a new meaning: the
area comprised between the two functions is also the largest acceptable range for

! Note that these values are actually as precise as the Chernoff bound that we used
in the proof on Theorem 1.



a given n, where the security for Sam bound is equivalent to the minimum -, and
the correctness bound is the maximum §. This result is particularly interesting
if compared to the best known achievable ranges for the unfair BSC (UNC) [6].
While in the case of the UNC oblivious transfer can not be achieved as soon
as the difference between § and v becomes too large, namely if § > 2 (1 —7),
in the unfair Z-channel OT is possible for any fixed range. The largest possible
range for the UNC has a width of 0.125, with v = 0.25 and § = 0.375, but such
an interval can not be achieved by any of the current protocols. As we have seen
before, for the relatively small n = 1060 our construction offers security for a
maximum range as wide as 0.36.

4.2 Efficiency

For input messages longer than one bit, the efficiency of the protocol proposed
in Section 3.1 can be increased by using privacy amplification techniques (see
Crépeau [3] for instance). Following the terminology of Imai et al. [9], we can
observe that, by letting n grow to infinity on a Z-channel with probability p = %,
the I1_. sequence will only contain indices for which the corresponding (¢;, c})
pair is unknown from ;. As a result, it is possible to realize the oblivious transfer
of messages of § bits by exchanging 2n bits on the Z-channel, achieving an
oblivious transfer rate of %.

This rate is however an asymptotic notion, and is only useful for the exchange
of longer messages. We now investigate improvements on the efficiency of our
protocol for concrete parameters (i.e., concrete values of € and n).

Usually, it is not possible to choose the characteristics of the Z-channel that
one uses. This suggests the use of coding strategies that could let the parties
emulate a Z-channel with probability p ~ 0.25 from a Z-channel exhibiting a
very different crossover probability.

Emulating a Z channel with lower crossover probability. Suppose first that a
Z-channel with crossover probability p > 0.25 is available (including the case
where p > 0.5, as long as p < 1). Using a simple repetition code is actually
enough to emulate a Z-channel with lower crossover probability.

Suppose indeed that, instead of selecting ¢; and ¢} as bits, we select them as
sequences of m repeated bits. A sequence of m zeros will always be delivered as
it is, while a sequence of m ones can be delivered as an arbitrary bit string of
length m. However, as long as that bit string contains a single 1, the receiver can
be sure that a sequence of m “1” was actually sent. So, ambiguity happens only
if all the m “1” are flipped during transmission. This happens with probability
p™, which is always smaller than p for m > 1.

As a result, a m repetition code allows emulating a Z-channel with crossover
probability p™ from a Z-channel with crossover probability p. This also provides
a way to use our protocol on a Z-channel with p > %

Emulating a Z channel with larger crossover probability. Suppose now that a Z-
channel with crossover probability p < 0.25 is available. We can then decide to



encode each “1” bit to be sent on the Z-channel as a sequence of [ “1”, and each
“0” bit as a sequence of (I — 1) “1” with a “0” placed in an arbitrary position
unknown to the receiver. Now, a “1” will only be recognized as it if none of its [
bits is modified while going through the channel. This happens with probability
(1- p)l, which allows emulating a Z-channel with probability 1— (1 — p)l7 which
is larger than p for any [ > 1.

These two codes can always be combined in order to emulate a Z-channel with
the desired crossover probability with arbitrary precision. For instance, we could
choose to encode a “1” as a sequence of m -1 “1”, and a “0” as a sequence of
[ — 1 blocks of m “1” among which a block of m “0” is inserted, which would
provide a Z-channel with crossover probability 1 — (1 — pm)l.

These two codes however come at the price of each time increasing the number
of bits to be transmitted on the Z-channel by a factor m [, and one may wonder
whether this is actually compensated by the possibility to use a lower number
n of pairs. This actually becomes the case when the probability p leaves the
efficient range mentioned above.

Let us consider for instance a Z-channel with crossover probability p = 0.4. A
number of pairs n = 1037 is needed to reach a security margin ¢ = 10~° with our
basic protocol. However, applying our first code with m = 2 allows emulating a
Z-channel with crossover probability p? = 0.16, for which a security parameter
n = 246 is needed, improving the efficiency of our protocol by a factor larger
than 2.

In general, for a Z-channel with probability p, we have a minimum number
of bit pairs n for a given security bound ¢. It is convenient to use an m-I-coding
strategy if the number of bit pairs needed after applying the coding scheme is

, n

W< (11)
Since we have, for a given security bound ¢, an optimal probability pops and
the respective minimum number of bit pairs nep, the combinations of m and
[ that could provide for a convenient m-I-coding scheme are those for which
n > Nopt - M -1, from which we have m-[ < %pt By simply iterating through the
limited number of possibilities, we can find the best n’. Then, subtracting this
n' to n, we get the measure of the improvement we get by using the associated
[-m-~coding scheme, calculated in number of bit pairs. For probabilities p > 0.37,
the gain quickly becomes consistent. There is also a (very) modest gain for low
probabilities, namely for 0 < p < 0.002, where the number of saved packets
reaches, for example, the value of 51 for p = 0.0001.

A different strategy to increase the efficiency of the protocol without using
coding schemes is to modify the size of the index sets Iy and I;. This strategy is
effective when the observed probability of the channel is higher than the optimal
value. By reducing the size of the sets Iy and I, we are able to tolerate a larger
number of errors introduced by the channels, effectively moving the correctness
bound to the right of the graph. However, we are at the same time increasing the
minimum number of errors needed to guarantee the security for Sam, moving



the relative bound to the right too. In practice, if r = [I| — |I| is the difference
between the cardinality of regular set I, 5, and that of the reduced set of size m,
we have a probability that Rachel will be able to correctly decode the selected
bit (correctness) Zzzgq (") (1 —p)*p* . Using Hoeffding’s inequality we

can bound that probability to < exp (—2n (% —p— %)2) . Her probability of

being able to correctly decode both bits is instead < % + (1#)"_27‘

5 Conclusion

In this paper we consider the use of the Z-channel for implementing oblivious
transfer. This simple communication channel models the functioning of various
real-life communication methods, ranging from optical to covert communication.
The Z-channel features an unusual property for a noisy channel: only part of the
information sent through it is affected by the noise, so the receiver can always
interpret correctly some of the output symbols. This particular characteristic
eliminates the need for error correction codes, which, in other constructions, limit
considerably the range of error probabilities acceptable for secure computation.

Our construction follows the common strategy of constructing some form of
erasure channel, which is then repeatedly used to implement OT. Thanks to an
efficient reduction of the Z-channel to a binary erasure channel, the protocol
exhibits a low sensitivity to the channel characteristics. The parties are less
constrained by exact knowledge of the channel statistics, and for a very large
range of error probabilities, 0.17 < p < 0.29, a total of 500 bits transmitted
through the channel is sufficient to guarantee a security of e = 1079 (Fig. 2).
This is particularly useful when confronted to unfair adversaries, who are able
to select the channel probability within a certain range [y, d]. Over a Z-channel,
security against unfair behavior is possible for any fixed range, while the unfair
BSC introduced by Damgard et al. [7,6] can not achieve OT as soon as the
range is larger than 6 > 2+ (1 — ), with a maximum possible width of 0.125. A
total of 2120 bits transmitted over a Z-channel is instead sufficient to guarantee
security for any probability in the range [0.04,0.4], for ¢ = 1079.

The efficiency of the construction can be further increased by using a combi-
nation of two coding schemes, presented in the last section of the paper. A com-
bined m-I-coding strategy, where m and [ are the parameters of the schemes, can
reduce any Z-channel with probability p to a Z-channel with error probability
1-(1- pm)l. This allows the use of channels whose error probability is greater
than 0.5. Moreover, when confronted with a channel with a probability distant
from the optimal range, the parties can decide to opt for the use of a coding
strategy in order to increase the efficiency of the protocol. The factor by which
the communication over a Z-channel is increased (m - () is widely compensated
by the reduced repetition number n that the more efficient probability allows
for. This is especially evident for any p > 0.37 .
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