
Title Recode-2: new design, new search tools, and many more genes

Authors Bekaert, Michael;Firth, Andrew E.;Zhang, Yan;Gladyshev, Vadim
N.;Atkins, John F.;Baranov, Pavel V.

Publication date 2010

Original Citation Bekaert, M., Firth, A. E., Zhang, Y., Gladyshev, V. N., Atkins, J. F.
and Baranov, P. V. (2010) 'Recode-2: new design, new search tools,
and many more genes', Nucleic Acids Research, 38(D1), pp. 69-74.
doi: 10.1093/nar/gkp788

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/
gkp788 - 10.1093/nar/gkp788

Rights © 2009, the Authors. Published by Oxford University Press. This is
an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/
licenses/by-nc/2.0/uk/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the
original work is properly cited. - http://creativecommons.org/
licenses/by-nc/2.0/uk/

Download date 2024-05-23 17:59:12

Item downloaded
from

https://hdl.handle.net/10468/5029

https://hdl.handle.net/10468/5029


Recode-2: new design, new search tools, and
many more genes
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ABSTRACT

‘Recoding’ is a term used to describe non-standard
read-out of the genetic code, and encompasses
such phenomena as programmed ribosomal frame-
shifting, stop codon readthrough, selenocysteine
insertion and translational bypassing. Although
only a small proportion of genes utilize recoding in
protein synthesis, accurate annotation of ‘recoded’
genes lags far behind annotation of ‘standard’
genes. In order to address this issue, provide a
service to researchers in the field, and offer
training data for developers of gene-annotation
software, we have gathered together known cases
of recoding within the Recode database. Recode-2
is an improved and updated version of the database.
It provides access to detailed information on genes
known to utilize translational recoding and allows
complex search queries, browsing of recoding
data and enhanced visualization of annotated
sequence elements. At present, the Recode-2
database stores information on approximately 1500
genes that are known to utilize recoding in their
expression—a factor of approximately three
increase over the previous version of the database.
Recode-2 is available at http://recode.ucc.ie

INTRODUCTION

The term ‘translational recoding’ describes the utilization
of non-standard decoding during protein synthesis and
encompasses such processes as ribosomal frameshifting,
codon redefinition, translational bypassing and StopGo
(1–7). What is often considered as a decoding error—e.g.
a frameshifting error or mistranslation of a particular
codon—may occasionally benefit the organism by
increasing its fitness and survival. In such instances the

propensity for the decoding ‘error’ may be selected for
during evolution, leading to the formation of a particular
sequence context that elevates the frequency of the ‘error’.
To discriminate such cases of programmed decoding
‘misbehaviour’ from promiscuous translational errors or
translational noise, the term recoding is used. The position
within an mRNA where a recoding event takes place
is termed the ‘recoding site’. Sequence elements responsi-
ble for increasing the efficiency of recoding events are
termed ‘recoding stimulatory signals’, and a minimal
sequence fragment that allows recoding to take place at
the natural efficiency (i.e. relative to the level of standard
decoding at the recoding site) is termed a ‘recoding
cassette’.
Recoding can benefit gene expression in a number

of ways. It can regulate gene expression by being part of
a sensor for particular cellular conditions. Prominent
examples include ribosomal frameshifting in bacterial
release factor 2 (RF2) and eukaryotic antizyme mRNAs.
In both instances, ribosomal frameshifting is required for
the production of the corresponding active full-length
protein products. In the RF2 mRNA, the efficiency
of frameshifting is negatively regulated by the cellular
concentration of its product, RF2, providing an auto-
regulatory circuit for its biosynthesis (8–10). In the
antizyme mRNA, the efficiency of frameshifting is
modulated by cellular levels of polyamines, whose concen-
tration in turn is controlled by antizyme (11,12). Thus, this
mechanism ensures the maintenance of antizyme produc-
tion at the levels required to support physiologically
appropriate concentrations of polyamines. Recoding can
also be used for the diversification of protein products
encoded by a single gene. An illustrative example is in
bacterial dnaXmRNA, where frameshifting allows synthe-
sis of two different protein subunits—sharing the same
N-terminal part—from a single open reading frame
(ORF) in its mRNA (13–15). A presumed constant ratio
of frameshifting in dnaX ensures a fixed stoichiometric
balance between these two subunits (16). This balance,
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then, is independent of the absolute levels of dnaX tran-
scription and translational initiation on its mRNA.
Similarly, in many viruses recoding is responsible for
setting a ratio between protein products (such as those
encoded by gag–pro–pol genes in retroviruses) produced
from a single mRNA (17). Recoding also provides RNA
viruses with a mechanism for the translation of down-
stream ORFs on polycistronic RNAs [other mechanisms
include leaky scanning, shunting, reinitiation, IRESs and
the production of subgenomic RNAs (18)] and may also
be involved in global regulation mechanisms, such as
mediating the switch between translation and replication
on the same genomic RNA (19). Finally, recoding
provides a way for the incorporation of non-standard
amino acids—e.g. amino acids that share their codons
with termination signals (the most prominent example of
which is selenocysteine, encoded by UGA) (20–22). For
further information on the diverse variety of recoding
functions, see recent reviews (1,3,7,23,24).
Recoding cassettes may be composed of a variety

of diverse sequence elements. For example, primary
nucleotide sequences may promote re-arrangements of
tRNA molecules relative to their codons in mRNA
inside the ribosome or affect recognition of tRNAs or
release factors in the ribosomal A-site. On the other
hand, many recoding signals act in the form of RNA sec-
ondary structures, such as simple stem-loops, or more
complex pseudoknots, kissing stem-loops and other
structures that involve interactions between considerably
distant RNA regions (19,25–28). Trans-acting RNA
signals affecting ribosomal decoding through complemen-
tary interactions with ribosomal RNA (29–32), or through
the nascent peptide acting within the ribosome exit tunnel
(6,33,34), are also known. Some recoding events—such
as selenocysteine insertion—require the presence of
additional specialized machinery such as selenocysteine
tRNAs, selenocysteine-specific translation factors and
several other components of the selenocysteine biosynthe-
sis and insertion pathway (20,35–37). Recent reviews on
stimulatory signals involved in the modulation of recoding
events and molecular mechanisms of recoding provide
further details (7,25,27,38,39).
Despite considerable progress in the development of

computational tools for the prediction of protein coding
genes in sequenced genomes, the identification and anno-
tation of recoded genes lags far behind. The hurdle lies not
so much in the fact that recoded genes do not obey
standard rules of genetic readout but, rather, in the con-
siderable diversity of recoded genes and sequence elements
responsible for recoding. Even among evolutionarily
related genes, all utilizing recoding, the diversity of
recoding signals can be considerable. An extreme
example is when orthologous genes utilize recoding at dif-
ferent stages of gene expression to achieve the same goal.
An example is in dnaX, where ribosomal frameshifting
is employed by enterobacteria, but transcriptional slippage
is used in Thermus thermophilus (40). A similar situation
occurs in bacterial insertion sequence (IS) elements, where
a certain group of IS elements utilizes transcriptional
slippage to produce ORFA–ORFB fusions, while many
other IS elements utilize ribosomal frameshifting for the

same purpose (41). The diversity of recoding functions,
combined with the wide spectrum of unrelated sequence
elements involved in recoding, makes the design of a
uniform model of recoding intractable. Nonetheless, in
recent years, we have witnessed the development of
specialized models and computational tools for the iden-
tification of particular subsets of recoding cassettes, or
tools that are specific to recoding events in particular
groups of homologous genes (42–45).

These developments, at least partially, were
facilitated by the availability of a compiled dataset of
known recoded genes collected together in the Recode
database (http://recode.genetics.utah.edu), which was ini-
tially launched 9 years ago (46,47). To facilitate further
development of computational tools for the prediction of
recoded genes in the ever faster growing body of sequence
data, as well as to provide bench researchers with up-
to-date information on recoding, an efficient means of
Recode database population and annotation are now
required. In this article, we describe the incarnation
of the database, Recode-2. The major advances of
Recode-2 (hosted in a new location http://recode.ucc.ie)
over previous versions include a new web design
allowing enhanced visualization of stimulatory signals, a
uniform RecodeML format for the annotation of recoded
genes, and a significantly larger number of entries—
including many recently identified cases—that altogether
have more than doubled the size of the database since its
last published update.

DATABASE ORGANIZATION AND USAGE

The data are stored in a local PostgreSQL database that
is queried by PHP scripts embedded in the web interface.
The schema of the PostgreSQL database is shown in
Figure 1. The database stores information on individual
genes that utilize recoding, the mechanisms and stimula-
tory signals involved, and references to the original liter-
ature sources that describe the recoding events. In order to
facilitate the uniform annotation of recoding events,
we have designed an XML-based format for the annota-
tion of recoded genes, RecodeML. The document type
definition for RecodeML is available at the Recode-2
web site at http://recode.ucc.ie/dtd The extensibility of
the RecodeML format will allow incorporation of new
annotation, if required, for newly discovered types of
recoding, and the associated features, as they are being
discovered. The database handles batch importation
of properly designed RecodeML entries into the
PostgreSQL database, thus facilitating rapid population
of the database with new data.

The data in the database may be explored in two ways.
They may be browsed by one of the three categories:
kingdom (archaea, bacteria, eukaryotes and viruses),
organism and type of recoding. The data may also be
searched directly by key words that can be inserted into
the search field. Searches that use regular expressions
are allowed. The output of a database search is a list of
Recode-2 entries in a short format that includes organism
name, kingdom, genus, type of recoding event, status of
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the entry in the database and a link to the full database
entry. The full description includes the following addi-
tional information: (i) the common name of the gene
and the validation status of the recoding event; (ii) the
organism description, giving the organism name and a
link to the NCBI Taxonomy Browser (48); (iii) the
sequence description, giving the Genbank (49) accession
numbers for matching sequences (with links to Genbank)
and links to detailed annotations of the sequences and to
diagrams of RNA secondary structures involved in stim-
ulation of the recoding event; (iv) information on the
protein sequence generated as a result of recoding; (v)
comments on the function of the recoding event and any
additional notes and (vi) references to relevant literature
(with links to corresponding abstracts in PubMed).
The detailed sequence annotation appears in the form of
text decorations that are described in the Help page of the
database and are also illustrated within the Recode-1 logo
itself (which can be used for rapid intuitive decoding of the
text decorations and their associations with the

mechanistic ways by which different sequences affect
ribosome functions). To generate RNA secondary struc-
ture diagrams, PseudoViewer3 (50) is used, since it can
handle complex pseudoknot RNA structures correctly.
Figure 2 shows an example of sequence annotation
for the human oaz1 gene, alongside a diagram of a
stimulatory RNA secondary structure, and the Recode-1
logo.

NOVEL DATA

Unlike Recode-1, where all data on recoding events were
introduced manually, Recode-2 also utilizes automated
identification of recoding events by the recently developed
computer programs ARFA (43) and OAF (44), that are
able to identify and annotate +1 frameshifting events in
mRNAs of bacterial RF2s and eukaryotic antizyme
(OAZs), respectively. However, a significant source of
recoding events remains to be serendipitous discoveries
by experimental studies that sometimes are complemented

A
B

C

~~~~~R~R~R~E~C

R E C O
mRNA - AGG AGG CGC GAA UGC UGAC GAA
rRNA - UCC UCC D E

Figure 2. Screenshots from the Recode-2 database for the entry describing +1 frameshifting in human antizyme 1. (A) Annotated sequence of the
human antizyme 1 gene. Colouring and formatting of the text highlights functional elements according to a scheme described on the Help page of the
Recode-2 database and within the Recode-1 logo. (B) Structure of the stimulatory RNA pseudoknot. (C) The Recode1 logo.
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by more systematic studies of large groups of similar genes
(51,52). Therefore, a large proportion of new data are still
populated manually or semi-manually. To ease manual
population of recoding events, a special form has been
designed that is available in the database upon user regis-
tration. User registration needs to be approved by one
of the database contributors. The novel data in the
database include 249 RF2 mRNAs identified by ARFA,
152 events identified by OAF, 200 new selenoprotein genes
(53–56) and �200 new viral annotations (57) including the
newly discovered frameshift cassettes in potyviruses (58),
alphaviruses (59) and the Japanese encephalitis group of
flaviviruses (60).

FUTURE DEVELOPMENT

The database will expand in accordance with the growth
of available sequence information that will be scanned
by one of the existing programs for recode annotation.
We also plan to continue developing tools for the auto-
matic identification of recoding events from nucleotide
sequences. As the field grows and the number of recoded
genes progressively increases, it becomes harder to extract
data from the relevant literature and a number of novel
recoded genes may escape the database. Therefore, we
encourage users and researchers in the field to submit
their data directly to the Recode-2 database. We are also
willing to provide help with the analysis of potential new
recoding events.
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