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Abstract

Constraint programming has emerged as a successful paradigm for modelling
combinatorial problems arising from practical situations. In many of those situ-
ations, we are not provided with an immutable set of constraints. Instead, a user
will modify his requirements, in an interactive fashion, until he is satisfied with
a solution. Examples of such applications include, amongst others, model-based
diagnosis, expert systems, product configurators.

The system he interacts with must be able to assist him by showing the con-
sequences of his requirements. Explanations are the ideal tool for providing this
assistance. However, existing notions of explanations fail to provide sufficient in-
formation. We define new forms of explanations that aim to be more informative.
Even if explanation generation is a very hard task, in the applications we consider,
we must manage to provide a satisfactory level of interactivity and, therefore, we
cannot afford long computational times.

We introduce the concept of representative sets of relaxations, a compact set of
relaxations that shows the user at least one way to satisfy each of his requirements
and at least one way to relax them, and present an algorithm that efficiently com-
putes such sets. We introduce the concept of most soluble relaxations, maximising
the number of products they allow. We present algorithms to compute such relax-
ations in times compatible with interactivity, achieving this by indifferently mak-
ing use of different types of compiled representations. We propose to generalise
the concept of prime implicates to constraint problems with the concept of domain
consequences, and suggest to generate them as a compilation strategy. This sets a
new approach in compilation, and allows to address explanation-related queries in
an efficient way. We define ordered automata to compactly represent large sets of
domain consequences, in an orthogonal way from existing compilation techniques
that represent large sets of solutions.
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Chapter 1

Introduction

Summary. This chapter briefly introduces the research presented

in this dissertation. Constraint Programming and Explanations are

introduced. The complexity of explanation generation is discussed,

and an example is given of a current approach. The limitation of the

current approaches is then highlighted. A statement of the thesis is

presented, and the general contributions of this work are outlined.

Finally, the structure of this dissertation is described.

1.1 Context

Constraint Programming has become an active field of research in Artificial In-
telligence. It emerged as a successful paradigm for modelling hard combinatorial
problems, with applications such as scheduling, timetabling, planning, packing,
and others arising from real-world situations [136, 118]. It also defines a frame-
work for developing resolution and optimisation procedures for all these kind of
problems.

In 1971, Cook defined the concept of NP-Completeness [15]. This formalises
the impression that some problems are intrinsically hard to solve, problems that
if one was to solve by hand, he would have to resort to intuition, or luck, or
both, but could not apply a systematic strategy. Informally, NP is the class of
decision problems, i.e. problems admitting a yes or no answer, such that, for in-
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2 INTRODUCTION

stances admitting a yes answer, the answer can be verified in polynomial time.
NP-Complete problems are the hardest problems in NP: by definition, solving any
of those would allow us to solve any problem in NP. NP-Completeness charac-
terises hard problems, as it is widely believed that no efficient algorithm exists for
any NP-Complete problem.

Constraint Programming allows us to model and solve hard problems by ex-
pressing them as a Constraint Satisfaction Problem (CSP) and by applying al-
gorithms that can solve a CSP. The basic problem of determining if a CSP is
satisfiable, i.e. if it admits a solution, is NP-Complete [56]. This means that,
most likely, no naive, brute-force algorithm can efficiently solve a CSP. In order
to solve problems of practical significance, different techniques can be used to
guide search procedures towards a solution, but without any theoretical guarantee
in terms of efficiency.

However, in many real-life settings, solving a problem is just the first part of
the task [111, 74]. Particularly in settings involving user interaction, it can happen
that the solution found is not satisfactory, or that no solution at all can be found.
In these cases, further action needs to be taken. This is achieved by computing
explanations.

1.2 Explanations

Explanations are a versatile concept of Artificial Intelligence, and appear in many
different ways and contexts. The main purpose of an explanation is to justify
in a concise and meaningful way an event that has occurred [89]. For example,
suppose it is found that a particular CSP has no solution containing X = a, Y = b

and Z = c. An explanation can be computed that explains why this is the case.
This can be needed for two reasons, corresponding to two main aspects where
explanations appear in Constraint Programming.

Explanations can be used as a technique that help search procedures avoid
parts of the search that lead to no solution, and learn from failure when they do
reach a dead-end [80]. For example, an explanation could be: X = a, Y = b

and Z = c is inconsistent in the CSP because X = a and Z = c is already in-
consistent. Such an explanation is often called a conflict. This provides additional
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understanding of the CSP to the search procedure and allows it to avoid making
this failure again in the future.

In some settings, a level of user interactivity is present, establishing a two-way
process between a user and the solver. The user can direct the solver towards a
specific direction, and the solver can use explanations as a tool to present back
to the user justifications about its steps or discoveries. In the previous example,
suppose that it was the user who wanted X = a, Y = b and Z = c, as he was
looking for a preferred solution. When the solver finds this to be inconsistent in
the CSP, the user wants to know why. By letting him know that X = a and Z = c

are incompatible, the user knows he has to review his choices by relaxing one of
the two requirements.

Computing explanations is a very hard task, harder than solving a CSP. The
main leap in complexity follows from the complexity of recognising a solution.
Intuitively, while recognising a solution to a CSP is easy – it only requires that
each constraint be satisfied – recognising an explanation is already hard. In
the previous example, checking that X = a and Z = c is a conflict is itself
CoNP-Complete, as it requires checking it is inconsistent. There has been work
that studied the complexity of explanation computation in the context of Horn
clauses. Horn theories, i.e. theories that contain only Horn clauses, are an in-
teresting restriction for which satisfiability is polynomial. In this setting, it has
been shown that many problems associated with computing explanations are NP-
Complete [123, 124, 41]. When considering the general setting where testing sat-
isfiability is already NP-Complete, such as for the Constraint Satisfaction Prob-
lem, these problems move higher up in terms of complexity [40]. The Polyno-
mial Hierarchy defines a hierarchy of complexity classes to formalise this grow-
ing level of complexity. For example, the class ∆P

2 is defined as PNP , denoting
the class of problems that can be solved in polynomial time using an oracle for
an NP-Complete problem. Similarly, ΣP

2 is defined as NPNP , denoting the class
of problems for which the yes-instances can be verified in polynomial time us-
ing an oracle for an NP-Complete problem. This represents harder problems than
NP-Complete problems. It is known that problems that are polynomial in Horn
theories become complete for ∆P

2 in the general case where satisfiability is NP-
Complete, and problems that are NP-Complete in Horn theories become complete
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for ΣP
2 in the general case [40, 1].

Nevertheless, there are techniques to compute explanations. In Constraint Pro-
gramming, the QUICKXPLAIN algorithm is considered as one of the standard
techniques to compute minimal conflicts [74]. Suppose a user states n constraints
c1, . . . , cn that are inconsistent. As shown in the previous example, a conflict is a
subset of those constraints that is also inconsistent. A set-wise minimal conflict
is a conflict in which the removal of any constraint would make the remaining set
of constraints consistent. A minimal conflict thus shows a concise cause of incon-
sistency in a set of constraints. The XPLAIN algorithm [31] works as depicted in
Algorithm 1. It makes use of an NP-Complete oracle in the form of a function
s(C) that checks the satisfiability of a set C of constraints.

Algorithm 1: XPLAIN

Data: c1, . . . , cn
Result: A minimal conflict
X ← ∅1

C ← ∅2

while s(X) do3

k ← 04

while s(C) and k < n do5

k ← k + 16

C ← C ∪ {ck}7

if s(C) then return “No conflict”8

X ← X ∪ {ck}9

C ← X10

return X11

This algorithm operates in a fairly intuitive way. It starts by adding constraints
until inconsistency is detected (lines 5-7), after having added c1, . . . , ck. The min-
imal conflict is a subset of c1, . . . , ck, and ck belongs to it (line 9). This is repeated
again, by adding ck before starting again from c1 (line 10). The QUICKXPLAIN

algorithm [74, 75] improves this basic scheme by making a dichotomic search of
the set of constraints. This makes this algorithm scalable with regard to problem
size, in particular when the size of the minimal conflict is small, a safe assump-
tion for real-life cases. This algorithm forms the basis of the explanation facility
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of ILOG Configurator1, one of the main industrial constraint programming con-
figuration tool.

1.3 Limitation of Current Approaches

QUICKXPLAIN can be considered as one of the standard ways of computing ex-
planations in Constraint Programming. However, the type of explanations it com-
putes can actually be of little utility for applications involving user interactivity.
In order to highlight the difference in the use of explanations between the two
aspects mentioned above, consider the same example. When the search discov-
ers that X = a ∧ Z = c is inconsistent in the CSP, it can infer, and add to the
CSP, the constraint that X 6= a ∨ Z 6= c. Even if the search could discover
other failures, this will potentially be useful to avoid discovering the same failure
again. However, when presenting an explanation to a user, he should obtain a
complete understanding of why his requirements cannot be met. In this regard,
simply telling him that X = a and Z = c is not possible is merely partial in-
formation. Surely enough, the user will understand he has to remove one of the
two requirements, and it is up to him to decide which. However, this does not
guarantee the remaining requirements can be met. In fact, there could be another
conflict saying that X = a and Y = b is also inconsistent. Now, the user has to
remove another of his requirements too. If these are the only two conflicts, that is
sufficient. Indeed, the user has to “break” all the conflcits to have his requirements
partially satisfied. However, in a real problem, there could be a large, potentially
exponential, number of such conflicts. This poses the problem of how can a user
be made aware of them.

There have been alternative forms of explanations that take this problem into
account. Rather than explaining a cause of inconsistency, effectively answering
a “why” question, they focus on providing a way to recover from it, answering
instead a “how” question. For example, relaxations show a subset of requirements
that can be satisfied. In the previous example, the user could be told straightaway
that he can remove Y = b and Z = c. A single explanation of this type is

1www.ilog.com

www.ilog.com
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sufficient to achieve the desired effect, which is to recover consistency. However,
other considerations now come into play. It is important to make suggestions to
the user that maximise acceptance. For example, by suggesting to relax X = a,
the two conflicts are also broken. But, most probably, if the user values his three
requirements more or less equally, he will be happier to simply relax X = a

than both Y = b and Z = c. Additionally, by knowing that simply relaxing
X = a is enough to recover consistency, he understands that X = a appears in all
conflicts, no matter how many of them. This provides a deeper understanding of
the problem.

1.4 Dissertation Overview

In summary, well-known explanation techniques in Constraint Programming have
a poor utility in settings involving user interaction. Alternative forms of expla-
nations are needed that are more suited for these applications, and little work has
been done in this direction in Constraint Programming. The main objective for
these explanations has to be to provide to a user a good understanding of the
problem in order to give him enough confidence when reviewing his requirements
and making choices. For this objective to be achieved, more sophisticated expla-
nations are required. However, the complexity of computing such explanations
looks prohibitive, and it is legitimate to wonder how one can provide such a facil-
ity for problems of any real-world significance. Furthermore, interactivity implies
quick response times. More specifically, according to user interface design crite-
ria, for a user to perceive interaction as real-time, response times need to be of
around 250 milliseconds in practice [109].

In this dissertation, we present a novel approach to explanation computation
in Constraint Programming with user interaction. We define new types of expla-
nations, and we claim they are more informative to the user in that they provide a
more complete understanding of a problem and help him draw better conclusions.
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1.4.1 Thesis

The thesis defended in this dissertation is that we can compute more informative
explanations in constraint-based systems. Actually, we claim we can compute
them with a response time compatible with interactive product configurators, the
motivating domain for this research. The main strategy is to apply compilation

methods, where extensive computation is performed before effectively computing
explanations. More precisely, the thesis is the conjunction of a number of sub-
theses. We present them below, along with a discussion of the way the dissertation
supports each of them.

Sub-thesis 1. We show that presenting a set of relaxations that is at the same

time informative and compact, while giving a better picture of a problem than

showing a single relaxation, can be achieved in practice.

In Chapter 3, we define the concept of a representative set of relaxations. A
representative set of relaxations is a compact set of relaxations that shows the
user at least one way to satisfy each of his requirements and at least one way to
relax them. This notion can be extended to more complex considerations, such as
combination of user’s requirements, or by taking into account preferences, if at
least partial preferences are provided. To overcome complexity issues, we present
an algorithm that heuristically converges to a representative set of relaxations.

Sub-thesis 2. We claim that, when suggesting a relaxation, we need to take into

account the solutions it allows. We propose to compute relaxations that admit

the highest number of solutions, or the lowest number of solutions. A relaxation

with the highest number of solutions leaves the user with the largest choice. A

relaxation with the lowest number of solution corresponds the most closely to the

user’s original requirements.

In Chapter 4, we define algorithms to compute such relaxations using com-
piled representations of a problem to cope with the complexity of computing
those. We define algorithms based on automata, as a baseline, then we abstract and
generalise these procedures in order to make them independent from any partic-
ular representation, by identifying the structural properties a representation must
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satisfy for them to apply. An important consequence of this is that it by choosing
the most compact representation possible, we obtain the most efficient procedures.

Sub-thesis 3. We claim that complete knowledge of the conflicts of a problem

helps compute more useful explanations. It is possible to circumvent the com-

plexity associated with computing conflicts and arising from their high number by

compiling a problem to a new type of representation that contains explicit knowl-

edge of its conflicts.

In Chapter 5, we propose a new way to compile a constraint problem to handle
the requirements posed by explanation computation, with the concept of domain

consequence. This allows us to detect conflicts inherent in a problem before the
user specifies any particular requirement. For example, nogoods are a particular
case of domain consequences, and thus the method we propose facilitates early
detection of all the nogoods of a problem. From a logical point of view, this
concept generalises the concept of prime implicates. In Chapter 6, we present a
data structure and a series of algorithms to represent, in a compact way, a large set
of domain consequences, and to compute the domain consequences of a problem
in a more efficient way. This defines a new type of compilation that is more suited
to explanation-related computation.

1.5 Outline of the Dissertation

This dissertation is structured as follows. Chapter 2 is an overview of concepts
pertaining to the work in this dissertation. Particularly, we formally introduce the
fundamental concepts in Constraint Programming, such as constraint satisfaction
problems (CSPs), consistency, propagation, solving procedures, and we discuss
the structure of CSPs. We then introduce the concept of explanation, and review
the literature showing how this notion appears in many different ways and con-
texts, and how they relate or differ to our setting. We present knowledge compila-
tion, as an approach, and describe the most widely known compilation techniques.
We explain what configuration is, and show it is a widely studied application to
which interactive constraint programming applies. Finally, we present a synthesis
of this overview that defines the setting of this dissertation.
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In Chapter 3, we introduce the concept of a representative set of relaxations.
We discuss the complexity of enumerating explanations, and show the impact on
algorithms for generating sets of explanations. We present REPRESENTATIVEX-
PLAIN, an algorithm we developed that heuristically computes a representative
set of explanations, and evaluate its performance with an experimental study.

In Chapter 4, we study how compiled representations can be used to compute
most or least soluble relaxations. We present two algorithms that operate on au-
tomata, but then show how they can be abstracted from the representation they are
operating on. We show how our algorithms can be applied to other representations
from the Compilation Map, a framework for defining compiled representations in-
troduced by Darwiche and Marquis [22]. The experimental evaluation shows that
by relying on a more compact representation, we can compute these relaxations
in very short times.

In Chapter 5, we study a new approach for compiling a problem that is specif-
ically designed for explanation computation. It is based on the notion of domain
consequence, which we define. We show that the representations considered in
the previous chapter, which correspond to the commonly used compilation tech-
niques, do not allow us to efficiently compute some type of explanations, namely
those that require knowledge of all the conflicts of a problem. Our approach aims
at providing this functionality. We give ideas of applications of this method. A
simple experimental study shows the behaviour of problems in terms of their num-
ber of domain consequences. This motivates for further study in the representation
of the domain consequences of a problem.

In Chapter 6, we define ordered automata to encode sets of domain conse-
quences to compactly represent a large number of domain consequences. The
main contribution in this chapter is to design a range of algorithms that allow us
to generate the domain consequences of a problem directly on this representa-
tion, as it has been shown in the previous chapter that no algorithm that explicitly
enumerates each domain consequence can ever be tractable.

Finally, in Chapter 7, we summarise our contributions and suggest directions
for future work.
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Chapter 2

Background and Related Work

Summary. We begin by defining constraint satisfaction problems,

and related concepts such as consistency and propagation. We then

introduce the notion of explanation, which is at the core of the work

in this dissertation. We present a very general perspective, exhibit a

formal point of view and introduce several areas where explanations

appear, aiming at illustrating their versatility. Finally, we introduce

two more domains that concern our work, namely knowledge compi-

lation and configuration.

2.1 Overview

In this chapter, we introduce a series of concepts, definitions and results from
the literature that are used throughout this dissertation, or that are related with,
and relevant to, the work presented in it. The purpose of this presentation is to
make the reader familiar with the broader area to which the work presented in
this dissertation pertains, in an attempt to make the presentation as self-contained
as possible, and to make a critical review of the literature, in order to put our
work into context. Some concepts and related work cannot be clearly presented
in a general way in this chapter and for that reason are introduced in subsequent
chapters, where they are more appropriate.

11
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2.2 Constraint Satisfaction Problems

2.2.1 Formal Definition

A constraint satisfaction problem (CSP) is a simple and general way to formally
describe a combinatorial problem. A CSP is defined in terms of a set of variables,
a domain for each variable stating the values it can take, and a set of constraints,
each holding on a subset of the variables and restricting the values those vari-
ables can simultaneously take. In this dissertation, we consider the case of vari-
ables having a finite discrete domain. The problem consists in assigning to all the
variables of the problem a value from their domain, such that all constraints are
satisfied.

Definition 2.2.1 (Constraint Satisfaction Problem). A CSP P is defined as a tuple
〈X,D,C〉, where X is a finite set of n variables {X1, . . . , Xn}, D is a set of finite
domains {D(X1), . . . , D(Xn)}, where D(Xi) is the set of values variable Xi is
allowed to take, and C is a finite set of constraints c1, . . . , ck. In the most general
form, a constraint cj is a predicate holding on a set of variables, its scope, denoted
X(cj) = {Xi1 , . . . , Xip}, which has value true for each combination of values
〈vi1,...,vip 〉 of D(Xi1)× . . .×D(Xip) that satisfies this constraint. A solution to the
CSP is a tuple 〈v1, . . . , vn〉 of D(X1)× . . .×D(Xn) that satisfies every constraint
in C.

In the rest of this dissertation, we will adopt some simplifications, to avoid
heavy formalism, where this does not create ambiguity. The domain of variable
Xi might be simply denoted Di. Additionally, and more often that not, a problem
will be simply defined in terms of a set of constraints. Sometimes, the variables
and their domains are assumed to be implicitly or trivially known by the context.
In other cases, we simply assume that the set of constraints completely specifies
the problems. Indeed, a domain D(Xi) can be expressed in the form of a unary
constraint stating that Xi ∈ D(Xi). Additionally, as it makes little sense to intro-
duce variables that do not appear in any constraint, we can implicitly assume that
the set of variables is defined as the union of the scopes of each constraint.
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2.2.2 On the Structure of CSPs

CSPs are sometimes viewed as constraint networks. We can reason about the
structure of a constraint network (as opposed to its semantics) in terms of graph
representations.

Definition 2.2.2 (Constraint Graph). Given a CSP P = 〈X,D,C〉, the associated
constraint graph is the graph GP = 〈Q,E〉 defined as follows:

• Q = {1, . . . , n}, with n = |X|;

• {i, j} ∈ E iff there is a constraint c ∈ C such that Xi ∈ X(c) and Xj ∈
X(c).

For a CSP containing only binary constraints (i.e. involving only two vari-
ables), each constraint between two variables is represented by an edge between
the two corresponding vertices. For a CSP with constraints of any arity, each
constraint is represented by a clique between all corresponding vertices. The con-
straint graph is sometimes called primal constraint graph. Alternatively, the struc-
ture of a CSP can be represented by its dual graph [34].

Definition 2.2.3 (Dual Graph). The dual graph of a CSP P = 〈X,D,C〉 is a
labelled graph HP = 〈Q,E, l〉 such that:

• Q = {1, . . . , k}, with k = |C|;

• for each node i ∈ Q, l(i) = X(ci);

• E = {{i, j}, i 6= j/l(i) ∩ l(j) 6= ∅};

• for each edge e = {i, j}, l(e) = l(i) ∩ l(j).

Example 2.2.1. Consider a CSP with variables A,B,C,D,E and three ternary
constraints, holding respectively on {ABC}, {BCD} and {CDE}. The con-
straint graph of this CSP and its dual graph are shown on Figure 2.1. N

The dual graph gives rise to a binary CSP equivalent to the original one (usu-
ally referred to as the dual encoding): the domains of the dual variables range
over the allowed value combinations of the constraint, and the dual constraints
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Figure 2.1: The constraint graph and the dual graph of the example CSP

impose equality of values over the shared variables. In this dual CSP, some con-
straints are redundant, in that their removal does not change the solutions of the
CSP. Namely, an arc between two nodes can be removed if its variables appear in
all the arcs of an alternative path between these two nodes. A graph obtained by
removing all redundant arcs, called a join graph, satisfies the following property:
for any two nodes sharing a variable, this variable appears in the all the arcs of at
least one path linking these two nodes. A join graph that is a tree is called a join

tree. Not all CSPs admit a join tree. Those that do are called acyclic CSPs, which
is well-known to be a desirable property for various reasons [4]. Particularly,
acyclic CSPs form a tractable category of CSPs. For example, they can be solved
in polynomial time [58], while efficient algorithms that have been developed for
databases can be applied to identify acyclic CSPs and compute a join tree.

Example 2.2.2. Consider the problem at Example 2.2.1. It is acyclic. Indeed, the
arc between nodes ABC and CDE can be removed: C appears in all arcs of the
path remaining between ABC and CDE. There is no other redundant arc to be
removed, and the join graph obtained is a tree, which means the CSP is acyclic,
admitting the join tree shown at Figure 2.2. N

A non-acyclic CSP can be turned into an acyclic CSP by merging nodes in its
dual graph to bigger nodes (i.e. containing more variables) in such a way that it ad-
mits a join tree. This is usually referred to as tree decomposition [34]. In terms of
the CSP, this amounts to merging some constraints into bigger constraints, stand-
ing for the conjunction of the merged constraints. If we reason on the primal
graph, this amounts to adding edges between vertices creating bigger cliques, a
process which is known a triangulation [132, 4]. The width of this join tree is
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ABC
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BCD
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BC

Figure 2.2: A join tree of the example

equal to size of its bigger node minus one, and the tree-width of a CSP is equal to
the minimum width over all possible join trees. This corresponds exactly to the
tree-width of the primal graph, as it has been defined in literature [114, 115, 116].

Example 2.2.3. The width of the CSP at Example 2.2.1 is 2. Consider now a
CSP with five constraints holding respectively on ABC,BC,BD,CE,DE. The
constraint graph and the join graph are shown on Figure 2.3 (dashed lines show re-
dundant arcs removed from the dual graph). The join graph is not a tree, therefore
this CSP is not acyclic.

B

C
C

D

BC

BD

DE

CE

B D

EC

A
ABC

BC

B

E

Figure 2.3: The join graph of a non-acyclic CSP

An acyclic CSP can be obtained by merging the four nodes of the join graph
containing B,C,D,E into one big node. This corresponds to adding an edge
BE and an edge CD in the constraint graph, creating a clique between the nodes
B,C,D,E. This tree decomposition is of width 3. However, by merging the
nodesBC andBD on the one hand, and the nodesCE andDE on the other hand,
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which corresponds to adding an edge CD on the constraint graph, we obtain a tree
decomposition shown on Figure 2.2, of width 2, which is optimal. Therefore the
tree-width of the CSP is 2. N

The benefit of finding a join tree for a non-acyclic CSP in terms of tractability
is limited by the number of constraints (corresponding to nodes of the dual graph)
that have to be merged to make the CSP acyclic, more precisely by the size of the
resulting merged constraints. A trivial tree-decomposition would involve merging
all constraints into a single one, thus obtaining a tree-decomposition of width
equal to the number of variables of the CSP minus one. For the most degenerated
CSP, this would be the optimal tree-decomposition, i.e. the tree-width of the CSP
would be equal to its number of variables minus one. In the other end, when a
CSP is already acyclic, its tree-width is equal to the size of its largest constraint
(minus one). In between the two extremes, the closer the tree-width of a CSP is
to the size of its largest constraint (minus one), the more “tree-like” is the CSP,
or the closer it is to being acyclic. It became very widespread in the literature to
say that such a CSP is structured. This is just a short way of saying that such a
CSP has a structure that can be taken advantage of in a variety of ways. Structured
CSPs are interesting to us as we shall see later in this chapter.

2.2.3 Types of Constraints

In the definition we gave of a CSP, we did not make any special assumption of
the way constraints are defined, other than that they provide a predicate defining
how they are satisfied. In most cases, we assume that checking the satisfaction
of a constraint is polynomial, in which case testing the satisfiability of a CSP is
NP-Complete [56, 95].

We usually distinguish between constraints that are defined extensionally and
intensionally. Extensionally defined constraints are also called table constraints.
A table constraint holding onXi1 , . . . , Xip is defined by a subset ofD(Xi1)×. . .×
D(Xip), containing the combination of values that are allowed by the constraint.
For negatively defined table constraint, this is the subset of combination of values
that are forbidden by the constraint. Intensionally defined constraints are usually
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defined in terms of their semantics, whether a simple arithmetic expression or a
complex domain-specific semantics.

We also distinguish between global constraints and non-global constraints.
Global constraints are constraints that hold on an unbounded number of variables.
For example, the AllDifferent constraint says that a set of variables should be
assigned to mutually different values [110].

2.2.4 Problem Solving

Approaches for solving CSPs differ in the way they explore the search space. A
complete solver makes use of a search procedure that considers all variable value
assignments in a systematic and exhaustive way [94]. It can prove that no solu-
tion exist or that the computed solution is optimal, when some variable is to be
optimised (i.e. has to be assigned the lowest or highest possible value). An incom-
plete solver on the other hand uses a local search procedure [68]. This procedure
moves locally from a full variable value assignment to another, using heuristics
to converge to a feasible and optimal solution. These solvers tend to be more
efficient than complete solvers, and are used as a last resort for large-scale prob-
lems. However, they offer no guarantee of completeness (no exhaustive search,
cycles are possible) or optimality (possibility of getting trapped in local optima).
Meta-heuristics exist that reduce the risk of these phenomena from happening.
Incomplete solvers are more often associated with optimisation problems, and are
not relevant to our work.

Search Procedures

A search procedure operates by incrementally extending partial variable value
assignments. When it finds that a partial assignment cannot be extended to any
valid solution, it discards it by backtracking to a previous decision and considering
a new one. When a full assignment has been reached, a solution has been found,
or when all possible decisions have failed, no solution exists. This algorithm is
referred to as backtracking algorithm. The space of partial assignments is called
a search tree.
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Each node of the search tree is associated with a decision, where one variable
is assigned a value from it current domain. Thus, to each node corresponds an
assignment of a subset of variables. Of course, the entire search tree cannot be
explicitly explored. Strategies exist to refrain from considering parts of the search
tree that can be proved not to contain any solution, and from repeatedly explore
parts of the search tree that lead to the same failure (thrashing).

Example 2.2.4. Consider a simple CSP with X = {X1, X2, X3, X4}, D(X1) =

{1, 2}, D(X2) = D(X3) = {1, 2, 3, 4}, D(X4) = {1, 2, 3, 4, 5}, and two con-
straints:

AllDifferent(X1, X2, X3, X4)

X2 +X3 < X4

There is no solution containing the value X2 = 2, as discovered during the search
depicted at Figure 2.4.
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Figure 2.4: Part of the search tree finding that X2 6= 2.

After the decisionX2 = 2, the value 2 can safely be removed from the domains
of the other variables, because of the AllDifferent constraint. This reduces the
domain of X1, forcing it to take value 1. At this stage, only values 3 and 4 are
left in the domain of X3. After the decision X3 = 3, X4 is left with values 4 and
5. For each of those values, the constraint X2 + X3 < X4 is violated, therefore
the search backtracks by removing the decision X3 = 3. It then tries the second
possible value X3 = 4, which similarly fails. This allows the search to backtrack
even further by removing the decision X2 = 2, as it did not lead to any solution.N
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Consistency and Propagation

While decisions are made, the domains of the uninstantiated variables can be up-
dated to be consistent with those decisions. This happens by removing some val-
ues that can be inferred not to belong to any solution in the current state (i.e.
current domains), repeating this process until a fixed-point is reached. This pro-
cess is referred to as propagation. Propagation allows us to reduce the amount of
the search tree that is explored. In particular, when the domain of some variable
is emptied, a contradiction arises, indicating that the algorithm should backtrack
to a previous decision.

A value that is detected not to belong to any solution is said to be inconsis-

tent. The inconsistency of a value is defined with regard to a specific form of
consistency, as different forms of consistency might not detect the same values
as being inconsistent. One of the most basic forms of consistency is Generalised
Arc-Consistency (GAC).1

Definition 2.2.4 (Generalised Arc-Consistency). Let c be a constraint withX(c) =

{X1, . . . , Xk}. A value vi ∈ D(Xi), with i ≤ k, is consistent with regard to c in
the current domains iff there exists a tuple 〈v1, . . . , vi, . . . , vk〉 ∈ D(X1) × . . . ×
{vi} × . . . × D(Xk) that satisfies c. This tuple is called a support for vi. c is
Generalised Arc-Consistent if for every Xi ∈ X(c) and every vi ∈ D(Xi), vi is
generalised arc-consistent.

Definition 2.2.5. Given a CSP P = 〈X,D,C〉, a set of constraints C ′ ⊆ C is
generalised arc-consistent if every constraint c ∈ C ′ is generalised arc-consistent.
P is generalised arc-consistent if C is generalised arc-consistent.

In other words, a value that does not have a support for a given constraint will
not appear in any solution, as any complete assignment containing this value will
violate at least this constraint. Such a value can therefore be removed from the
domain of the variable. This removal can in turn affect the consistency of another
value (if its only support involved the removed value), so a series of inconsistent
value removals has to be undertaken until a fixed point is reached, by a procedure
called propagator.

1Originally defined on networks of binary constraints as arc-consistency, where an arc corre-
sponds to a constraint in the constraint graph representation [94].
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For generic constraints extensionally defined, propagators have been devel-
oped that achieve GAC, such as AC3, AC4, AC2001, etc. [5]. Constraints defined
intensionally need to provide a dedicated propagator.

Example 2.2.5. Let us consider again the CSP introduced in Example 2.2.4. The
initial domains are not arc-consistent. For example, value 4 in the domain of X2

is not arc-consistent with regard to constraint X2 +X3 < X4, as there is not value
for X3 and X4 that would satisfy the inequality. Similarly, 4 can be removed for
X3 and 1,2 can be removed forX4. In these reduced domains, value 3 forX4 is no
more arc-consistent with regard to AllDifferent , and has, in turn, to be removed
(Régin [110] describes a propagator for AllDifferent , i.e. an algorithm that would
detect this). The domains shown in Figure 2.5 are arc-consistent.
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Figure 2.5: Arc-consistent domains for the example CSP.

Consider now the decision X2 = 2. This decision is propagated by the search
procedure by enforcing arc-consistency to the domains (see Figure 2.6). More
specifically, because of the AllDifferent , we can remove value 2 for X1 and X4,
which instantiates X1 to 1, and in turn we can remove value 1 for X3. X3 only
has value 3 in its domain. But this value is not arc-consistent with regard to
X2 + X3 < X4 (there is no value for X4 which is strictly greater than 2 + 3).
Therefore, 3 has to be removed too, which makes the domain of X3 empty, thus
raising a contradiction.

The search can backtrack on the decision X2 = 2, and try X2 = 3. By
enforcing arc-consistency after this decision, all domains are reduced to a single
value, thus having a solution (see Figure 2.7). N
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Figure 2.6: Contradiction after the decision X2 = 2.
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Figure 2.7: Arc-consistent domains after the decision X2 = 3.

Levels of Consistency

GAC is defined only with regard to a single constraint, it is therefore a local type
of consistency. The more values can be detected to be inconsistent, the stronger
the consistency level is. The strongest type of consistency is called global con-

sistency, where a value is inconsistent iff it does not appear in any solution of the
complete problem. A set of constraints is globally consistent iff it is satisfiable. Of
course, with a propagator that achieves global consistency, the search procedure
would find a solution without backtracking.

Between the two, different levels of consistency exist, that can be ordered ac-
cording to their strength. Generally speaking, the higher the level of consistency
is enforced, the fewer nodes leading to failure will be explored, resulting in a so-
lution being found in a smaller number of nodes, but possibly at the expense of
more costly reasoning. The trade-off that exists between the amount of reasoning
and the amount of search has been well established [49, 50, 51, 35]. Different
types of consistency include path-consistency, k-consistency, (i, j)-consistency,
pairwise consistency, singleton arc-consistency, dual consistency, and variations
thereof. See Bessière [5] for a survey.
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In the rest of this dissertation, we will often be interested in the consistency of
a set of constraints. Depending on the applications, checking for the satisfiability
of a set of constraints cannot be achieved without a search procedure, the cost of
which can be prohibitive in the said application. Instead, a propagator can be used
on its own, independently from any search procedure, to detect the consistency of
a set of constraints, by applying the procedure and checking for empty domains.
Obviously, a propagator that achieves global consistency will accurately check
whether a set of constraint is satisfiable, but weaker levels of consistency will
only partially detect inconsistent sets of constraints (i.e. some sets of constraints
that are actually not satisfiable will be detected to be consistent), but probably at
a lower cost too. Note too that when not explicitly mentioning a particular level
of consistency, the terms consistent and satisfiable might be used indifferently, by
an abuse of language.

2.3 Explanations

An informal, but intuitive, definition of an explanation is that it is a statement
intending to make something understandable, or that provides a justification for
something. Nonetheless, it is hard to formally define an explanation, and, in Ar-
tificial Intelligence, this term can be found to have many different meanings. In
Artificial Intelligence, explanations are associated with the reasoning process. We
can identify two ways in which this can happen [126]: explanations are part of
the reasoning process itself, whether they are used by it or are the result of it, or
explanations serve to make the reasoning process understandable, transparent to
the user.

In either case, the task of an explanation consists in explaining an observa-

tion. In the context of automated reasoning, an observation can have different
meanings. It can mean explaining a value removal, a variable assignment, a so-
lution, inconsistency; all of these being obviously equivalent. The way such an
explanation can be given varies too. A simple reasoning can be presented that al-
lows one to deduce the explained event. This is particularly relevant to rule-based
systems, where, at its simplest form, a reasoning trace of the system is presented,
or to any other system that proceeds with inference (see Sqalli and Freuder [127]
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for an example on constraint satisfaction). This approach is more satisfactory as to
what an explanation should be, but also less pragmatic in many cases. A more re-
stricted view of an explanation consists in providing a subset of elementary events,
such as a constraints, value removals, variable assignments, that, combined with
each other, imply another elementary event that is being explained. The term ex-
planation most commonly refers to this type of approach in the literature, and it
is this view that will retain our attention throughout this dissertation. Note that,
when needed by the application, these type of explanations can still be made user-
friendly [79].

Finally, explanations can be taken to have a different meaning. Within this
meaning, they deserve less to be called explanation, but the term is nevertheless
widely used in this context, probably because similar theory and algorithms apply.
We can refer to them as “constructive” or “corrective” explanations. This is the
case where instead of simply explaining an event, an explanation proposes an
action to counteract the event. This will typically involve restoring consistency,
restoring back a value that has been ruled out, correct a variable assignment, etc.,
with these concepts being equivalent. Consistency-based diagnosis, which will be
introduced later in this section, falls into this category. Moreover, the rest of this
dissertation will concentrate mostly on this type of explanation in configuration
problems.

2.3.1 A Formal Concept: Abduction

Logic offers a way to formalise the act of explaining, with the concept of ab-
duction. This method of reasoning underlies, more or less directly, all kind of
explanations. Furthermore, many formalisms related to explanations can ben seen
as particular instances of abductive reasoning, as we shall see later.

Logical reasoning has traditionally2 been divided into three kinds: deduction,
induction and abduction. Deduction allows one to infer a conclusion from a valid
hypothesis: I know that a holds, I know that a ⇒ b, I can deduce that b holds.
Induction refers to the fact of inferring deductive rules from a finite set of obser-
vations: I observed that every time a holds, b holds too, therefore it is likely that

2Following the work of the American logician and philosopher C.S. Peirce (1839-1914)
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a ⇒ b. Finally, abduction refers to the fact of guessing a hypothesis given an
observation: b holds, I know that a⇒ b, so it could be that a holds.

More specifically, abductive reasoning can be regarded as an approach to find-
ing a likely explanation for an observation. Let F be a set of formulas known to
be true in the domain we are representing, H a set of possible hypotheses, and let
O be a set of new observations. E ⊆ H is an explanation of O if:

F ∪ E |= O and

F ∪ E is consistent.

Abduction is not simply about finding one such E. Abduction has also been
defined as “inference of the best possible explanation” [67], i.e. finding from a
set of many possible explanations one that satisfies some optimality criteria that
relate to its explanatory power. This can refer to some succinctness property or
to some probabilistic consideration. Abductive reasoning constitutes the logical
background behind the many forms of explanations, and underlies many tasks in
AI, as it has been widely noted [39, 106, 81], and as we will show in the rest of
this overview.

2.3.2 Explanations for Problem Solving

Explanations are used as a powerful tool to counteract common shortcomings of
classic backtrack search algorithms in an attempt to reduce the amount of the
search tree that is explored. The general idea is that explanations can be used
to record dependencies between decisions as they are made (such as assigning
a value to a variable) and conclusions (such as removing a value or detecting
a failure), and that this can be taken advantage of by the search procedure. In
this context, an explanation corresponds to a set of decisions that are sufficient to
explain a conclusion. We present here some of the most important of such tech-
niques, with the purpose of simply giving an intuition of the role of explanation
in them, rather than giving an actual technical description of the different systems
introduced here, which is out of the scope of our work.
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Explanations for Search Algorithms

Explanation-based search algorithms, which we will review below, can improve
common weaknesses of classic backtrack algorithms, by avoiding thrashing be-
haviour. Thrashing occurs when the search algorithm backtracks to a decision,
typically the last decision, that is not related to the failure and thus repeatedly
makes a proof of the same contradiction.

Dynamic backtracking (DBT) is an alternative way to explore the search space
that limits thrashing, while still remaining complete [57]. The idea is to repair the
current decisions instead of simply discarding the last one. In particular, any infer-
ence that has been made by decisions that are not involved in the contradiction, in
particular those decisions made after the incriminated ones, is kept intact. More
specifically, when the domain of a variable becomes empty, mac-dbt [80] com-
putes an explanation for this contradiction, consisting of the union of explanations
for the removal of each value in the domain in question. An explanation for the
removal of value v from the domain of variable X is a subset of the decisions that
explains X 6= v. It then removes the most recent of those decisions. The current
state is repaired by removing all inference resulting from this decision. By always
removing the last decision, it can be proved that completeness is guaranteed.

Thrashing can be eliminated altogether by recording all explanations for in-
consistency whenever it occurs, in an approach called nogood recording. This has
also been called learning, as it consists in making explicit any implicit (or im-
plied) constraints. Suppose that during search, a subset of variables X1, . . . , Xk

is instantiated to values v1, . . . , vk, and this assignment cannot be extended to
any value for the next variable. An inconsistency arises, and we discover that
X1 = v1 ∧ . . . ∧Xk = vk is inconsistent with the problem: it is a nogood. There
is no point recording this nogood as the same state will never be considered again
due to backtrack. However, if a subset of this nogood is also inconsistent, record-
ing it, in form of an explicit constraint, prevents search from ever reconsidering
a state containing this nogood. This approach is not practical as it suffers from
exponential growth in the number of such nogoods, and practical implementa-
tions limit the nogoods that are actually kept to those that are most likely to be
useful [32, 122].
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ATMS

Even if originally described in procedural terms, Assumption-based Truth Mainte-
nance System (ATMS) were one of the first popular systems that compute abduc-
tive explanations, with the initial purpose of explaining a system’s behaviour and
conclusions. De Kleer’s ATMS [23, 113] is a system (i.e. a set of data structures)
and a set of procedures that record dependencies between nodes and a subset of
those nodes, called assumptions. Nodes correspond to decisions made by a search
algorithm, and the ATMS is queried during search. For example, given a justifica-
tion for a new node (the set of nodes that led to this node), the ATMS can provide
a set of assumptions that lead to this node. The ATMS can be used for problem
solving [24], and the link between the ATMS and common CSP solving methods,
in particular the different types of consistency, has been noted by de Kleer [25].

In formal terms, each node is represented by a propositional symbol. A sub-
set A ⊆ P of the propositional symbols is called the set of assumptions. The
justifications form a set Σ of Horn clauses, each justification being of the form
p ← p1, . . . , pn, meaning p derives from p1, ..., and pn. Suppose a new justifi-
cation q ← q1, . . . , qn is added to Σ, the ATMS computes an explicit record of q
dependency on the assumptions, i.e. a set of all justifications q ← q′1, . . . , q

′
n such

that each q′i belongs to A, q′1, . . . , q
′
n is consistent with Σ and q′1, . . . , q

′
n is minimal

by inclusion. The ATMS also maintains a set of nogoods, defined as subsets of A
that are, in conjunction with Σ, unsatisfiable.

Example 2.3.1. Suppose Σ contains the following justifications:

p← a, b

p← a, d

q ← a, c

where a, b, c, d are assumptions, and the following justification is added:
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r ← p, q

the ATMS computes the justifications:

r ← a, b, c

r ← a, c, d

In terms of abduction, this corresponds to computing all abductive explana-
tions of r given the theory Σ that contain only symbols from A, which are called
assumption-based explanations. Here, a∧b∧c is an explanation of r in the theory
Σ. N

Even if not presented as such in the original paper [23], the link between
ATMS and abductive reasoning has been much noted later [113, 81, 123]. The
link between the ATMS technique and the theory of diagnosis is also well estab-
lished [28].

2.3.3 Explanations for the User

Explanations have been used to introduce user interaction within Constraint Pro-
gramming, particularly in order to assist a user while he is solving a CSP. Expla-
nations can be used to present the decisions of the search procedure to the user [9],
and, if needed, in a user-friendly form [79]. Jussien and Ouis [79] show how ex-
planations can be presented in a way that provides understandable and exploitable
information to the user, instead of involving low-level technical information un-
derstandable only by the developer of the constraint model. This can be particu-
larly useful for debugging purposes, so as to help understand why a model does
not behave as expected. In order to make explanations even easier to understand,
Sqalli and Freuder [127] suggest to use inference-based solvers, where the type
of inference needed to solve a problem is context-dependent, the argument being
that inference is closer to human reasoning. Explanations can be used to reveal
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the reasoning performed by such a solver, by converting each inference step to a
user readable explanation. As an example, consider the classic Zebra puzzle, or
any similar logic puzzle. A solver can find a solution very simply with inference.
However, the solution actually provided to the user usually comprises the succes-
sive steps that allow him to build the solution. An explanation revealing the steps
of the solver can automatically provide this type of justification.

As we can see, how well an explanation does explain becomes an important
consideration. Previous research has considered what characterises a “good” ex-
planation. For example, Friedrich [55] shows how explanations can be used to
explain a solution. This amounts to explaining a specific variable assignment that
is part of the solution. This is equivalent to computing a conflict, containing the
negation of the variable value assignment. In his paper, Friedrich argues that not
every conflict is suitable for explaining a particular value in a solution. He claims
that some conflicts can result in spurious explanations, in that they can imply val-
ues on the other variables that are in contradiction with the actual solution [55]. In
other words, a “well-founded explanation” must explain a particular variable as-
signment, part of a particular solution, in such a way that the explanation not only
entails the variable assignment, but also entails restrictions on the other variables
that are compatible with the given solution. He argues that such explanations are
more likely to be understood by the user, and more likely to be accepted.

Other approaches have been proposed that attempt to be more “helpful” by
relying on “corrective” explanations instead. This can be done by presenting users
with partial consistent solutions [108], or advising on how to relax constraints in
order to achieve consistency, using corrective explanations [101]. The benefit of
presenting a set of relaxations rather than a conflict, in order to give users a better
understanding of the space of possible solutions, has also been suggested, in very
different terms, for recommender systems [99].

Diagnosis

In the model-based diagnosis theory [112, 27], the modelled system is made of
components that might work normally or not, and of observable features. We
model the behaviour of the components of the system on the assumption they work
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correctly. The inconsistency arises when the actual observation of the behaviour
of the system is not consistent with the way the system was meant to behave. The
diagnosis problem involves identifying which of the components are behaving
abnormally in such a way as to explain the observed behaviour and its discrepancy
with the expected behaviour: this is a diagnosis. There can be more than one
diagnosis. The most basic algorithm consists in computing all diagnoses.

The fundamental framework for diagnosis as set by Reiter [112] involves
working on a system made of a set of components, linked to each other according
to a system description (SD), which describes the expected or correct behaviour
of the system, and assume a set of observations (OBS) is given. SD and OBS
are given in the form of a set of first-order sentences, and COMPONENTS is a
finite set of constants. Given a component c ∈ COMPONENTS, an abnormality
predicate AB(c) is defined that is true when c is working abnormally.

A diagnosis for (SD, COMPONENTS, OBS) is a minimal set ∆ ⊆ COMPONENTS
such that

SD ∪ OBS ∪ {¬AB(c)/c ∈ COMPONENTS \∆}

is consistent. In other words, a diagnosis is a minimal set of components that have
to be assumed to be abnormally functioning to explain the observation, i.e. for the
observation to be consistent with the expected behaviour as described by SD. If the
system is working correctly, the only diagnosis is ∆ = ∅. If the system is working
incorrectly, then SD ∪ OBS ∪ {¬AB(c)/c ∈ COMPONENTS} is inconsistent,
i.e. the observation contradicts the possibility that all components work correctly.

A conflict set for (SD, COMPONENTS, OBS) is a set of components {c1, . . . , cn}
such that

SD ∪ OBS ∪ {¬AB(c1), . . . ,¬AB(cn)}

is inconsistent.

There can be of course more than one diagnosis, and Reiter [112] gives an
algorithm to compute all potential diagnoses. Each diagnosis is a hypothesis, or a
possible explanation, of what could be wrong. However, with an observation that
is only partial (as is often the case in practice, typically for cost reasons), there will
probably not be sufficient information to infer the actual diagnosis. Depending on
the application, one could either decide to replace all possibly faulty components,
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or carry extra work by making extra measurements to refine the hypotheses. In
the second case, an extra work of the diagnostic system is to identify the exact
diagnoses with a minimal number of extra measurements. This is a complex task,
and is out of the scope of this presentation.

This type of diagnosis is often referred to as consistency-based diagnosis, and
was initially associated with approaches where only the correct behaviour of the
system is described. Though conceptually it can be seen as a way of providing
an explanation for an observation, it does not correspond to the framework of
abductive reasoning. An alternative and more restrictive approach is abductive

diagnosis [106, 107], which offers a stronger definition of diagnosis. An abduc-
tive diagnosis does not simply have to be consistent with the observation, it has
to actually entail the observation. This corresponds to an instance of abductive
reasoning.

2.3.4 Computing Explanations

Little has been said so far in this overview about how explanations can be com-
puted effectively. It is a general fact that computing explanations is associated
with hard classes of complexity, and often with undecidability. Therefore, gen-
erating explanations presents a considerable algorithmic challenge. Algorithms
tackle this complexity in various ways, but they fall roughly in two categories: on

the fly computation, post-event computation.

On the fly computation pertains to explanations that are tied with the reasoning
process. As we already mentioned, in these approaches, explanations consists in
keeping a trace of decisions and the reasoning that led to them. The reader is
referred to corresponding papers for technical details [80, 78, 117], which are out
of the scope of this presentation.

Post-event computation relates to computing an explanation after the event that
needs to be explained has occurred. The term non-intrusive computation is also
used, as it will not require the solver to be adapted to offer explanation functionali-
ties, but rather will involve a separate procedure, which might, or not, make use of
the solver. QuickXPlain [74, 75] is an example of such an algorithm, which takes
a propagation or solving procedure as a parameter, used to detect the consistency
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of a set of constraints, and simply uses it to compute a minimal set, by inclusion,
of conflicting constraints. The advantage of such a method is, as we said, that
it does not rely on the ability to maintain explanations by the solver, which can
be potentially very costly; this method can be more efficient in some applications
where methods like the ATMS lead to high overhead. Additionally, being non-
intrusive, the algorithm is clearly separated from the solver, which does not have
to be changed. This makes for a wide range of applications, depending on the
consistency detection that is used. In particular, there are good reasons for expla-
nations specific to a propagation engine to be interesting: they can explain the be-
haviour of the propagation engine, they can be computed polynomially, etc. [74].

This procedure forms the basis, at least conceptually, of other non-intrusive
algorithms. Amongst the work we already mentioned, Friedrich [55] presents a
non-intrusive algorithm to compute well-founded explanations based on the same
ideas, which, according to his claim, incurs acceptable additional cost with regard
to classic explanation computation. O’Callaghan et al. [101] presents an algorithm
that is an adaptation of QuickXPlain to compute corrective explanations, similar
to maximal relaxations, instead of minimal conflicts.

Another instance of post-event computation is constituted by explanation enu-
meration algorithms. These are discussed at a more technical level in Section 3.3
of Chapter 3.

Consequence Finding

Consequence finding is a general term that refers to the task, in Artificial Intelli-
gence, of deriving specific knowledge that is intensionally contained in a knowl-
edge base (see Marquis [96] for a survey). Many notions of explanations intro-
duced earlier in this chapter fit this description and could be seen as instances of
consequence finding. However, consequence finding often amounts to computing
implicates and implicants of a propositional base, and several algorithms exist to
achieve that. An implicate of a propositional theory Σ is a clause c that is entailed
by the theory, i.e. such that Σ |= c. An implicant of Σ is a term t (a conjunction
of literals) that entails the theory, i.e. such that t |= Σ. If c is an implicate, and
c |= c′, then c′ is trivially an implicate too. Therefore, we are often interested
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only in the most specific implicates, i.e. those that are not entailed by any other
implicate: these are the prime implicates. Similarly, the most general implicants,
called prime implicants, are the most interesting. If trivial implicates (containing
x∨¬x, equivalent to true) and trivial implicants (containing x∧¬x, equivalent to
false) are excluded, prime implicates and implicants are set-wise minimal ones.

There are strong connections between prime implicant/prime implicates and
explanations, as shall see in Chapter 5. De Kleer at al. [28] noted the connec-
tion between prime implicate and minimal conflicts sets in diagnosis and between
prime implicant and minimal diagnoses. In particular, they note that diagnoses
corresponding to prime implicants can suitably characterise all diagnoses, which
is not always the case with minimal diagnoses (it is not true in all settings that
the superset of a minimal diagnosis is a diagnosis itself). The connection between
prime implicates and the ATMS has also been noted by Reiter and de Kleer [113]
and Selman and Levesque [123]. Essentially, the ATMS task can be described as
computing all prime implicates involving at most one literal that is not an assump-
tion.

2.4 Knowledge Compilation

2.4.1 The Approach

In some applications, a complex reasoning task has to be achieved under a short
time limit. This could involve solving a problem, adding constraints to a prob-
lem, checking the satisfiability of a set of constraints, computing an explanation,
etc., and standard techniques to tackle these artificial intelligence tasks can usu-
ally not run under these time restrictions. Knowledge compilation provides an
methodology to tackle this issue based on two assumptions: there is an underly-
ing instance that does not change over time, and the same type of operations needs
to be performed repeatedly over time. Under this setting, we can distinguish be-
tween two phases: an on-line phase, where those operations must take place under
time constraints, and an off-line phase, where as much computation as needed can
be performed, beforehand, on a particular problem instance.

The computation made during the off-line is called compilation. The result of
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the compilation procedure is a structure that offers an alternative representation of
the problem, a compiled representation, which will explicitly contain information
that will be valuable for the on-line phase. To illustrate this with an overly sim-
plistic example, suppose we want to quickly know the number of solutions of a
problem. We could spend as much time as we want in an off-line phase computing
all the solutions of the problem, then in an on-line phase, we could immediately
return the number of solutions found. Compilation methods work well when, for
a particular instance, the compiled representation is compact. This will allow on-
line queries to be efficient as their running time will typically depend on the size of
the structure they are operating on. Considering our example, suppose we want to
know the number of solutions containing a given variable assignment. If we went
through the list of all solutions and count the ones satisfying the requirement, it
would be intractably long for any problem that has any substantial number of so-
lutions. Therefore, we need a structure that can store this information in a much
more compact way, while still allowing to easily answer this query.

In summary, compilation approaches allow for fast query answering in two
ways. First, a separation is drawn between an off-line phase and an on-line phase,
allowing as much computation as needed for the off-line phase, as long as the re-
sulting structure is compact enough for the operations to be efficiently performed
during the on-line phase. Second, because in a compilation approach we focus on
a particular instance, by examining the actual size of the compiled structure for
this instance, we can have a guarantee about the efficiency of answering on-line
queries. When compiling a problem, we have to reach a compromise between the
two contradictory requirements of saving time during the on-line operations and
saving space taken by the compiled representation. The method chosen should
involve the most compact representation that allow us to efficiently perform the
required operations. The relationship between the compactness of a representa-
tion and the operations it allows have been formally and systematically studied by
Darwiche and Marquis [22], and will be further discussed in Section 4.3, Chap-
ter 4.
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2.4.2 Compilation Strategies

The principle of compactly representing the complete solution space of a problem,
as a compilation method, has been explored from various approaches. Binary De-
cision Diagrams (BDDs) [10] were first proposed to encode a boolean function as
a directed acyclic graph. They have further been extended to Multivalued Deci-
sion Diagrams [82] for non-boolean domains. Alternatively, the solution space of
a CSP can be represented by an automaton [134], and this representation can be
used as a compilation strategy for configuration [1]. These approaches form the
basis of many compilation methods, such as dDNNF [20], Cluster trees [34, 103],
tree-of-BDDS [131]. Other approaches also exist to compactly represent all solu-
tions of a problem using synthesis trees [139]. Finally, there are some methods
concentrate on prime implicates rather than solutions [36, 97].

2.4.3 Binary Decision Diagrams

Ordered Binary Decision Diagrams (OBDDs) were introduced by Bryant [10], as
a canonical representation of a boolean function. It was first applied to formal ver-
ification [11], but BDDs have been successfully applied to many other domains,
including configuration [61].

A BDD is a simple representation of a boolean function as a rooted directed
acyclic graph, consisting in decisions nodes and two types of terminal nodes, rep-
resenting the value true and false. A decision node is labelled by a variable, and
has two outgoing edges. One represents an assignment of the variable to true, the
other to false. A path from the root node to a 1-node corresponds to a variable
assignment for which the represented function is true.

Two additional properties are usually enforced in order to make BDD more
compact and efficient. A BDD is Ordered (OBDD) if for any path from the root
node to a terminal node, the variables appear in the same fixed order. This allows
the OBDD representation to be canonical given a variable ordering. The BDD
on Figure 2.8 is ordered. Choosing a good variable ordering is critical for the
efficiency of the OBDD representation [45]. An OBDD is Reduced if isomorphic

subgraphs have been merged, and decision nodes whose outgoing edges both point
to the same node, which are redundant nodes, have been eliminated. For example,
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Figure 2.8: An example BDD for the function X1 = X3 ∨X2 = X3; dashed
edges represent assignments to false, plain edges represent assignments to true

on Figure 2.8, all 0-nodes can been merged and so can all 1-nodes. Then, we can
see that the last three nodes labelled by X3 have the same successors, and can be
merged too, resulting in the BDD at Figure 2.9(a). In this BDD, two nodes are
redundant and can be removed, which yields the BDD at Figure 2.9(b). Most of
the times only Reduced Ordered BDDs are considered, and the term BDD usually
refers to Reduced Ordered BDDs.

1

X2

X1

X2

X3 X3

0

(a) Isomorphic nodes
merged

1

X1

X2

X3

0

(b) Redundant nodes re-
moved

Figure 2.9: The example BDD with reduction rules applied.

2.4.4 Automata

A generalisation to the case of multivalued CSPs has been independently pro-
vided by Vempaty [134], proposing the use of Finite State Automata, or simply
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Automata. Vempaty notes that the solution set of a CSP can be expressed as a
regular language, as, after having fixed an order on the variables of the CSP, every
solution can be expressed by a unique string. He suggests that a Minimal Deter-
ministic Finite state Automaton (MDFA) [69] that recognises this language can
be used as a canonical representation of the CSP.

Definition 2.4.1 (Automaton). A Deterministic Finite State Automaton (DFA) is
a 5-tuple 〈Q,Σ, δ, q0, F 〉, with:

• Q a finite set of states,

• Σ, a set of symbols, the alphabet

• δ a transition function Q× Σ→ Q

• q0 ∈ Q the initial state,

• F ⊆ Q the final (or acceptance) states.

A DFA recognises the regular language defined in the following way.

Definition 2.4.2 (Recognised Language). Given the transition function δ, we can
define the function δ∗ : Q × Σ∗ → Q such that δ∗(q, ε) = q and δ∗(q, a.w) =

δ∗(δ(q, a), w). In other words, δ∗(q, w) is the state reached from q following the
transition function by consumingw characters one by one. A wordw is recognised

(or accepted) by the DFA if δ∗(q0, w) ∈ F . The language recognised by the DFA
is the set of words recognised by it.

A transition links state q to state q′ with label a when δ(q, a) = q′. An automa-
ton can be represented by a labelled directed graph, where each node corresponds
to a state, and each edge corresponds to a transition, labelled with the label of the
transition. Determinism refers to the fact that a state has only one outgoing transi-
tion with a given label. Two states q1, q2 are said to be equivalent if they recognise
the exact same words. Equivalently, they are equivalent if either both are final (i.e.
they belong to F ) or neither is final, and for each a ∈ Σ, δ(q1, a) and δ(q2, a) are
equivalent. A DFA is minimal (MDFA) if no two states are equivalent. Minimi-
sation is the process of merging equivalent states, by replacing them with a new
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state having the same outgoing transitions and the union of incoming transitions.
We usually only consider MDFAs, and use the simple term of automaton to refer
to MDFAs.

An automaton gives a compact way of representing the set of solutions of
a CSP. Informally, an automaton can be seen as a representation of the part of
the search tree that leads to all the solutions of the problem, on which minimisa-
tion reduces the size. From a formal language theory point of view, each word
recognised by the automaton corresponds to a solution of the problem, given that
a particular ordering on the variables has been fixed in advance. Note too that
this automaton only recognises words of the same length (corresponding to the
number of variables in the problem). Such an automaton presents two important
properties: it is acyclic, and, more specifically, it is organised in layers, or levels.
Additionally, it only has only one final state.

0
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1 2

3

X1 X2 X3

Figure 2.10: An example automaton defined on three variables.

The incoming and outgoing transitions of a state q are denoted by in(q) and
out(q), respectively. The origin and destination state of a transition t are denoted
by in(t) and out(t), respectively. The initial and the final states (or the source and
the sink) are denoted by I and F , respectively. The level of a state q is the length
of the words from I to q. The set of all states of level i is denoted Q(i). The
level of a transition t is the level of out(t). Each level greater than 0 corresponds
to a variable of the problem. Thus, each transition t provides a support for the
instantiation of the variable of its level with the value labelling t.

Example 2.4.1. Figure 2.10 shows the automaton for a problem on three variables
X1, X2 and X3. This problem has 13 solutions, corresponding to the following
words: 001, 002, 003, 101, 102, 103, 201, 202, 203, 110, 120, 210, 220. I is
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the only state of level 0, q1 and q2 are the two states of level 1, there are two
transitions between I and q2, supporting the instantiations X1 = 1 or X1 = 2.
Also, looking at the different transitions of level 2, we can see that from state q1,
only the instantiation X2 = 0 is supported (by the unique outgoing transition of
q1), whereas from state q2, X1 = 0 or X1 = 1 or X1 = 2 is supported. Therefore,
looking at the respective ingoing transitions of states q1 and q2, we can deduce
that X1 = 0 entails X2 = 0, whereas X1 ∈ {1, 2} does not entail any restriction
to the domain of X2. Similarly, forbidding value 0 from X3 entails X2 = 0. N

When restricted to boolean domains, MDFAs are equivalent to BDDs with
some syntactic differences. First, only the removal of isomorphic nodes reduction
rule (equivalent to minimisation) is applied, but redundant nodes are kept. One
has to note that keeping redundant nodes does only increase the size of the BDD
by a polynomial factor, and that on non-boolean domains, redundant nodes are
less likely to occur. Second, the 0-node and all edges leading to it is not explicitly
represented. Again, this only reduces the size of the BDD by a polynomial factor.

1
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Figure 2.11: An automaton representing the BDD of Figure 2.9

The ability of MDFAs to represent CPSs and their power for supporting var-
ious types of queries relevant to configuration has been noted and exploited by
Amilhastre et al. [1]. Some of the ideas introduced in this paper, in particular how
MDFAs can be used to maintain global consistency, have been exploited too in
a very different context to design a propagation algorithm for a regular language
membership global constraint [104].
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2.4.5 Other Approaches

As we mentioned in the beginning of this section, the purpose of compilation
methods is to explicitly extract some knowledge contained in a theory that can
be subsequently accessed by some operations in order for them to run more ef-
ficiently. All the approaches we presented so far focused on the solutions of
the problem, or the solutions of parts of the problem and the connection be-
tween them. However, there has been some approaches that use prime impli-
cates as the basic extracted knowledge: Theory Prime Implicates [97], Tractable
Databases [36], Possible Conflicts [77]. These approaches are further discussed
in Section 5.7, Chapter 5.

2.5 Configuration

2.5.1 What is Configuration?

Configuration is an application area that has been successful for artificial intelli-
gence. The need for automated tools for configuration came from a widely ob-
served trend that in many industrial sectors, there is a move from mass production
to mass customisation [46, 130, 119, 76]. To allow for highly customised prod-
ucts while still benefitting from savings gained by increased levels of production,
such products are made from a number of different components, that are them-
selves made of subcomponents, until some are down to only standard elementary
parts. Even with a fixed number of elementary parts, such an organisation offers
a very important flexibility in terms of design. When such a flexibility is allowed,
it becomes very complex to configure a product, whether automatically (given
the latitude in manufacturing a product, try to design one that optimise some re-
quirements such as costs or that is tailored for a specific application) or with user
interaction (allow the user to interactively configure his ideal product). With such
a complexity, a software tool is needed to offer support for automated configu-
ration. There are many commercial tools that offer configuration functionalities,
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such as ILOG Configurator3, Tacton Configurator4, Selectica ACE Enterprise5,
Baan SalesPlus6, Configit7.

2.5.2 Approaches to Configuration

Product configuration involves two major tasks [119]: one consists in defining
a modelling language that makes it easy to specify and maintain a formal prod-
uct model, and one consists in developing a decision support tool that efficiently
guides users to desirable product configurations. There are several ways to carry
out the modelling part [130, 119]. These can be categorised in two main types,
using rule-based reasoning or model-based reasoning.

Rule-based reasoning is used by expert systems, where the behaviour of the
system is described by production rules. Production rules consists of a precon-
dition and an action. If, in the current state of the system, the precondition is
satisfied, the rule is triggered and the action is executed, modifying the current
state. Rules are executed in chaining, building a solution as they are executed.
Rule-based approaches suffer from a big drawback, due to the complexity such a
system very quickly reaches. This implies that they are hard to debug, when one
tries to understand why the knowledge base does not behave as expected or de-
sired, and that they are hard to maintain, when one needs to update rules to reflect
a change in the product specification [14] (incidentally, Clancey [14] proposes to
use explanation techniques to circumvent this problem).

Model-based approaches solve this issue by making a clear separation between
the knowledge of the system and how the knowledge is used. Concretely, when
dealing with a configuration problem, first, we must decide how to represent the
problem, then, we need algorithms that perform the desired task based on the
problem representation.

The first proposal for a constraint-based generic model for configuration was
presented by Mittal and Frayman [100]. They presented a generic definition of a

3www.ilog.com
4www.tacton.com
5www.selectica.com
6www.baan.com
7www.configit-software.com

www.ilog.com
www.tacton.com
www.selectica.com
www.baan.com
www.configit-software.com
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configuration problem; it is often this description that is, implicitly, taken into ac-
count when referring to configuration. More precisely, in configuration, we focus
on a system that is made of a fixed set of components. A component is described
by a set of properties, and has a set of ports to connect it to other components. For
each of these ports, a constraint describes which components can be connected to
it and how. There can also be some additional structural constraints. This descrip-
tion is fixed over time. In particular, during configuration, no new component type
can be created, and the way components can be connected cannot be modified.
Secondly, a description is given of what a desired, or possibly optimal, configura-
tion is. The configuration task then involves finding configurations satisfying the
desires or detecting inconsistencies in the requirements. A solution defines a list of
components and a description of the structure of the product. As we can see, this
can be naturally described using a CSP. Generally, elementary component types
are represented by variables, taking values corresponding to possible components,
complex components are described as large arity table constraints holding on the
variables corresponding to its subcomponents, and local constraints of small arity
describe the connections between components.8

2.5.3 The Configuration Task

Consider a configuration problem where the artefact being configured is a product.
The model fully specifies a catalog of all possible (or feasible) products, without
explicitly representing it. In fact, with most configuration problems, this catalog
would contain an extremely large number of entries. Typically, a set of options is
available to the user, who can state some choices or requirements, thus restricting
the number of entries that are compatible with her requirements. A configurator

is a software tool that assists the user in making choices, by guiding her in this
large set of possibilities. Specifically, the fundamental capabilities a configurator
must be able to provide are [76, 119, 100, 54, 48, 88, 65]:

• show the consequences of the current user choices, in order to avoid future
conflicts;

8Clib provides a configuration benchmarks library: http://www.itu.dk/research/
cla/externals/clib/

http://www.itu.dk/research/cla/externals/clib/
http://www.itu.dk/research/cla/externals/clib/
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• suggest a product or several products that satisfy all the user requirements;

• suggest a product or several products satisfying all user requirements that
optimise a set of preferences;

• explain inconsistency when it failed to find any such product;

• suggest a product that satisfies a maximum number of the user requirements.

Example 2.5.1 (Bicycle configuration). In order to clarify these ideas, consider a
concrete example of a bicycle configuration. A bicycle is made of several compo-
nents: the frame, the wheels, the different elements of the drivetrain, etc. A wheel
is itself made of a rim, a hub, etc. The drivetrain might comprise the cogset,
the crankset, the chain, and so on. Not any component can fit with any other: a
single-speed bike must have a frame with horizontal dropouts, the frame has only
provision for certain type of brakes, the fork have only clearance for tyres up to a
certain width, etc.

A user might state that she wants a bicycle with hub gears, which limits the
types of frame, with either roller brakes or disc brakes, which limits the types
of the frame or the wheels, etc. She might prefer some colours too, and it is
very likely that the manufacturer does not offer all of his models in any colour.
These are not very restrictive requirements, and the user is very likely to feel
overwhelmed by the amount of choice she is given, and at the same time frustrated
she cannot find any bicycle she likes. Sometimes, despite her apparently not very
restrictive requirements, no bicycle at all exists. She very quickly finds it tedious
to constantly browse through the catalog (especially when it contains, say, over
106 entries) as a result of setting her requirements, and feels this process should
be automated. This is the task of the configurator. N

2.6 A Synthesis

We presented the main concepts that are relevant to our work in this dissertation.
Concluding this overview, we show how these concepts are related to each other,
thus defining the setting to which the work in this dissertation belongs.
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2.6.1 Configuration and Compilation

A configuration problem can be trivially modelled as a CSP. The only refinement
to the general definition of a CSP is that we partition the set of constraints into two
sets: the background constraints and the user constraints. This partition reflects
the decomposition previously mentioned between modelling and representing the
problem, and operating on the it. The background constraints model the system:
they specify the components and express the relationship between them. They
define what a feasible product is; they cannot be violated. For the user, the basic
configuration operation involves assigning variables, corresponding to options, to
values. Essentially, she is in charge of choosing values for variables, and the con-
figurator’s role is to assist her in that task rather than actually solve the problem.
These user choices can be modelled with unary constraints, referred to as user

constraints. User constraints can be added and relaxed interactively. Restricting
user constraints to unary constraints has been the common practice in the litera-
ture [119, 1, 48, 101], and indeed in commercial configurators.

Even if constraint satisfaction techniques have been applied from a practical
point of view to configuration [46, 88], compilation techniques apply particularly
well to configuration. When choosing how to represent a configuration problem,
a compiled representation is indeed a very good candidate. In fact, many com-
pilation techniques have been developed specifically for configuration, such as
BDDs [61], Automata [1], Cluster Trees [103].

Concretely, as the background constraints are immutable, it is worth spending
offline effort to compile them to a compact representation. This defines the offline

phase. User constraints on the other hand are dynamic and transient in essence,
and, in an interactive context, during the online phase, the user will require quick
response times. We thus have a typical cycle, during configuration, where an algo-
rithm must operate efficiently on the compiled representation of the background
constraints, while taking into account the user constraints, and provide a quick
answer. For example, a configurator should almost instantly indicate whether the
background restricted by the current user constraints is consistent or not.

The structure of configuration problems in a component and subcomponent
hierarchy has a very interesting impact on the structure of the constraint model.
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Indeed, it has been well-noted in the literature that such problems are structured

problems, as defined in Section 2.2.2. In those problems, variables are loosely
connected to each other. More precisely, in the constraint graph of the constraint
model, nodes that are highly connected to each other occur only at a local level,
forming a cluster. A variable will likely occur only in a few clusters, and there
tends to be few constraints linking different cluster. Those clusters correspond to
components of the configuration problem, and they tend to be structured close to a
tree hierarchy, reflecting the component/subcomponent hierarchy. The constraint
graph of a configuration problem will likely have a low tree-width. This property
is successfully exploited by many compilation techniques (synthesis trees [139],
dDNNF [20], Tree-Driven Automata [43], DDGs [42], AOMDDs [98],Cluster
Trees [103], Tree-of-BDDs [131]). These compilation techniques produce com-
piled structures the size of which directly depends on the tree-width of the prob-
lem: the smaller its tree-width is, the more compactly it can be compiled.

These facts make configuration problems particularly good candidates for ap-
plying compilation techniques.

2.6.2 Configuration and Explanations

As we saw in Section 2.5.3, the fundamental way a configurator assists a user in
making choices is by providing explanations of the reasoning the system can make
on the current choices. Explanation is indeed a concept that is intrinsically linked
to interactive configuration [48, 1, 9], and many of the explanation techniques we
mentioned in this chapter have been applied to configuration [65].

In the setting we described, the elementary events are the user constraints,
typically corresponding to user assignments. An explanation then consists of a set
of constraints, belonging to the original problem or from the user constraints, that
is sufficient to explain another constraint, such as the removal of a value or the
assignment of a variable to a value, etc.

In configuration, explanations have to play a extra role compared to what they
do in other applications we presented in this chapter. A user is often interested
not only in understanding that some choices are incompatible, but also in having
choices recommended to her. The relevance of these suggestions is very important
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if they are to be accepted by the user. There has been little work in the literature on
proposing constructive explanations for configuration. For example, Freuder and
O’Sullivan [52] introduces the concept of tradeoff, which is a restricted definition
of an exclusion set, which helps a user relax his requirements in order to find a
feasible product. In this dissertation, we define such kinds of explanations, and
provide algorithms that efficiently compute them by using compiled representa-
tions.

In this dissertation, we use the notions of relaxation, exclusion set and conflict,
similar to the notions introduced by Junker [74, 75], O’Callaghan et al. [101].
They are formally presented in Section 3.2.3, Chapter 3.

2.6.3 Configuration vs. Diagnosis

The configuration problem and the diagnosis problem have very close connec-
tions. Just as explanations are intimately associated with configuration, diagnoses
themselves are a form of explanations. More precisely, a diagnosis corresponds
to a minimal exclusion set, and a conflict set corresponds to a minimal conflict.
In fact, the diagnosis framework is general enough that it can be adapted and ap-
plied to configuration. Felfernig et al. [44] defines diagnosis in configuration, and
shows how to use a conflict-based approach to debug a configuration knowledge
base. The question that naturally arises then is what differentiates the two areas.

From an application point of view, there is a major difference in the role of the
user, and specifically in the direction in which he acts. In diagnoses, the purpose
is to identify faulty components. Once a correct diagnosis has been identified, the
purpose is to repair faulty components, after which new observations are made,
which lead to a consistent system. In configuration, this would amount to correct-
ing the background constraints to make them consistent with the user constraints,
effectively changing the product to make it match the user’s desires. This is of
course not what is done in configuration, where the user tries instead to modify
his requirements to match the possibilities.

Furthermore, as mentioned earlier, a fundamental functionality of a diagnostic
engine is to help identify, amongst possible diagnoses (hypotheses), one that is
correct. From a theoretical point of view, this raises an important point. When
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new observations are added, the current set of diagnosis changes. In particular,
some diagnoses (or indeed all diagnoses) that initially explained the observation
become invalid in light of the new observation. This fact that new information
reduces the set of what could initially be inferred means that non-monotonic logic
are needed to model diagnostic reasoning. This non-monotonicity reasoning is a
core aspect of the diagnostic reasoning, but is irrelevant to configuration.

On a similar aspect, there is a parallel between diagnosis and configuration
concerning the choice of the right element from a set of diagnosis or relaxations.
As just mentioned, in diagnosis we need to find a correct diagnosis. To this end,
different diagnoses can be ranked in terms of likelihood (this hypothesis is more
likely than this other), involving some kind of probabilistic reasoning. For exam-
ple, single fault diagnoses (i.e. diagnoses of single cardinality) are much more
likely than multiple fault diagnoses, on the basis that it is less likely that two com-
ponents will fail at the same time. In configuration, where no notion of “correct”
relaxation exists, there is still the concept of acceptance by the user, where we
want to maximise the probability of acceptance.

Another difference between the two frameworks concerns the modelling ca-
pacity of each. In configuration, we can model very different types of systems;
indeed, any system that can modelled by CSPs, although in practice, we saw that
configuration problems present some typical structural features. In the model-
based diagnosis theory, the modelled system is made of components that might
work normally or not, and of observable features. We model the correct behaviour
of the components of the system. The inconsistency arises when the actual obser-
vation of the behaviour of the system is not consistent with the way the system was
meant to behave. The diagnosis problem consists in identifying which of the com-
ponents are behaving abnormally in such a way to explain the observed behaviour
and its discrepancy with the expected behaviour. In model-based diagnosis, we
thus model a quite specific type of problem.

On a secondary matter, there are some issues in diagnosis that are irrelevant to
configuration. In diagnosis, the design of a system is a core concern. Indeed, we
often want to design systems that are easily diagnosable (i.e. such that, for any
abnormal behaviour, it will be possible to determine a unique diagnosis or few di-
agnoses), while still minimising the number of sensors in the system (typically for
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cost reasons). Furthermore, when multiple diagnoses are possible, most probably
only one will be correct, and further action has to be taken to identify it or at least
filter out some candidate diagnoses (for example by complementing the observa-
tions with further measurements, and carry out those measurements in such a way
that the number of diagnoses will indeed decrease). These are hard problems, and
is an issue that is irrelevant in the context of configuration problems. It would not
make sense to design a system with the concern of minimising the number of pos-
sible explanations in case of inconsistency (and typically the system preexists its
modelling as a configuration problem); rather, it is the configurator’s task to assist
the user when inconsistency arises, in particular when many possible explanations
exist.
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Chapter 3

Representative Sets of Explanations:
Partial Explanation Enumeration

Summary. We propose the notion of a representative set of expla-

nations. A representative set of explanations in this context means

that every constraint that can be satisfied is shown in a relaxation

and every constraint that must be excluded is shown in an exclusion

set. We study the complexity of enumerating explanations in general,

and of enumerating a representative set of explanations in particu-

lar. We present an algorithm for computing a minimal representative

set of explanations, and demonstrate its performance on a variety of

random and real-world problem instances.

3.1 Introduction

We consider a configuration tool where a user can specify preferences for options.
These preferences are expressed as constraints. When preferences conflict, we
want to help the user find which preferences to relax. In an iterative process,
the user might relax constraints until at least one consistent solution is found.
Alternatively, the user might prefer to select a solution from a list of solutions that
partially satisfy the user’s constraints. It would be good to categorise solutions
according to which constraints are satisfied/violated, and the benefits of that have

49
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been shown in earlier work [108]. However, this requires that they are in some
way representative.

Most current approaches to explanation generation in constraint-based settings
are based on the notion of a (set-wise) minimal set of unsatisfiable constraints, also
known as a minimal conflict set of constraints. However, a minimal conflict does
not necessarily give an intuitive explanation, in that many users will want to be
shown which subsets of their constraints they can satisfy and which they cannot
satisfy. Furthermore, we argue that users need more than one explanation in order
to avoid drawing false conclusions. It has also been shown, as already presented
in Chapter 2, that minimal conflict-based explanations can also be spurious and
misleading, when it comes to explaining a specific solution [55].

Computing a single explanation – a relaxation or a conflict – as well as not
being very helpful, it is (almost) not challenging either (at least, it is no more
challenging than checking for consistency or finding a solution to a problem).
Computing all relaxations and/or all conflicts of a problem provides, in principle,
all the knowledge that is required for generating more informative explanations.
The obvious pitfalls of such a naive strategy though would be twofold. From a
usability point of view, of course, an exhaustive list of all possible explanations
without any kind of synthesis has little value. From a computational point of view,
even accepting that a refined result must be given, enumerating all the explanations
would most of the times be an expensive, if not intractable, step.

The strategy we propose in this chapter lies somewhere in the middle ground:
provide a partial set of the relaxations of a problem, chosen in such a way that
it is both compact and gives a good hint of the full picture, and computationally
aim at minimising the number of explanations that are generated against what is
actually required. Such sets will be referred to as representative sets of explana-

tions. Those sets are exponentially more compact than those found using common
approaches from the literature based on finding all minimal conflicts.
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3.2 Definitions

3.2.1 Configuration Problem

The working assumption throughout this dissertation is that we are working on
configuration problems that are solved in an interactive manner.

A configuration problem is denoted as P def
= 〈X ,D,B,U〉, where B is the set

of background constraints, and U is the set of user constraints. In a configuration
problem, a user tries to find a preferred solution to 〈X ,D,B〉 by finding a solution
to 〈X ,D,B ∪ U〉. The configuration problem is said to be inconsistent when the
CSP 〈X ,D,B∪U〉 has no solution. Often, we will simply refer to a configuration
problem as 〈B,U〉, where, depending on the context, the knowledge of the vari-
ables and domains is either not ambiguous or is irrelevant. We assume that the set
of background constraints, B, is always consistent.

3.2.2 Consistency Oracle

Throughout this chapter, we will rely on a consistency oracle, Π, being provided,
thus following, and simplifying, the formalism presented by Junker [74]. Π is
simply a property that, given a problem 〈B,U〉, holds on a set C ⊆ U of con-
straints. It should be sound, verifying that B ∪ C is satisfiable ⇒ Π holds on
C. This allows us not to specify explicitly how a set of constraints is detected
to be consistent or not, but instead, we will always assume we have some way
to detect that in constant time, in particular for our complexity results. Where
ambiguity needs to be avoided, a set that is consistent according to Π will be said
to be Π-consistent. Concretely, we might consider complete consistency, which
can be checked by actually looking for a solution, or, more reasonably, by relying
on a compiled representation. Alternatively, we could consider local consistency
properties as a way to polynomially approximate satisfiability.

If a set of constraints does not admit a solution, one or several constraints must
be excluded in order to recover consistency. This is where explanations become
important.
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3.2.3 Explanations

Throughout the literature, different standard types of explanations have emerged.
We introduce here the most fundamental ones, which form the basis of what we
are interested in. We will use the following running example in order to illustration
these definitions.

Example 3.2.1. Consider a simple car configuration problem, based on an ex-
ample presented by Junker, 2004 [75], with a given set of options. Note that the
Boolean variable xi ∈ {0, 1} indicates whether option i is selected or not.

Option Selector Cost

Roof Rack x2 k2 = 500

Convertible x3 k3 = 500

CD Player x4 k4 = 500

Leather Seats x5 k5 = 2600

Assume that the technical constraints of the configuration problem forbid con-
vertible cars having roof racks. This problem can be modelled with a straight-
forward set of background constraints, as follows. Let variable x1 represent the
total cost. We have one constraint maintaining this total cost, i.e. stating that
x1 =

∑5
i=2(xi · ki) and one constraint enforcing the incompatibility between roof

racks and convertible cars, i.e. stating that x2 + x3 ≤ 1.
Suppose the user decides on the following user constraints.

Constraint Semantics

c1 x1 ≤ 3000

c2 x2 = 1

c3 x3 = 1

c4 x4 = 1

c5 x5 = 1

It is clear that not all user constraints can be satisfied at the same time. N

Definition 3.2.1 (Minimal Conflict). Given a configuration problem P def
= 〈B,U〉,

a subset C of U is a conflict of P if B ∪ C is inconsistent. The conflict C is a
minimal conflict if ∀C ′ ⊆ U/C ′ ⊆ C, B ∪ C ′ is inconsistent iff C = C ′.
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Example 3.2.2. Consider the problem at Example 3.2.1. All five constraints can-
not be satisfied at the same time. Because of the technical background constraints,
c2 and c3 form a conflict. Note that, given the budget constraint, if the user selects
option c5, it is not possible to have any of the options c2, c3, c4.

Specifically, the minimal conflicts for this example are presented in the fol-
lowing table.

Table 3.1: The set of conflicts for the over-constrained problem presented in
Example 3.2.1

Constraints
c1 c2 c3 c4 c5 Conflict

I × X X × × {c2, c3}
II X X × × X {c1, c2, c5}
III X × X × X {c1, c3, c5}
IV X × × X X {c1, c4, c5}

N

Definition 3.2.2 (Maximal Relaxation). Given a configuration problemP def
= 〈B,U〉,

a subset R of U is a relaxation of P if B ∪ R is consistent. The relaxation R is a
maximal relaxation if ∀R′ ⊆ U/R ⊆ R′, B ∪R′ is consistent iff R = R′.

Intuitively, a maximal relaxation defines a maximal set of constraints that the
user can satisfy at the same time.

We can also define the complementary notion of minimal exclusion set. For
the sake of clarity, it might be sometimes more useful to refer to this notion in-
stead.

Definition 3.2.3 (Minimal Exclusion Set of Constraints). Given a configuration
problem P def

= 〈B,U〉, and a (maximal) relaxation R ⊆ U of P , we define E def
=

U \R to be a (minimal) exclusion set.

Intuitively, a minimal exclusion set shows the user a minimal set of constraints
he must remove in order to recover consistency.

Example 3.2.3. The maximal relaxations, and the associated minimal exclusion
sets, of the problem at Example 3.2.1 are shown in the following table. I, II



54 REPRESENTATIVE SETS OF EXPLANATIONS

correspond to a choice of options free from any budget limit. III, IV, V correspond
to the scenario where the user decides to respect his budget limit.

Table 3.2: The set of relaxations and exclusion sets for the over-constrained
problem presented in Example 3.2.1

Constraints
c1 c2 c3 c4 c5 Relaxation Exclusion Set

I × × X X X {c3, c4, c5} {c1, c2}
II × X × X X {c2, c4, c5} {c1, c3}
III X × X X × {c1, c3, c4} {c2, c5}
IV X X × X × {c1, c2, c4} {c3, c5}
V X × × × X {c1, c5} {c2, c3, c4}

N

The notion of minimal conflicts is dual to the notion of maximal relaxations.
It is somehow more “explanatory” but less “constructive”. More specifically, a
minimal conflict shows the user a minimal set of constraints that it will never be
possible to satisfy at the same time, thus showing one cause for inconsistency.
Therefore, it gives a more precise explanation of the inconsistency. However, it is
not necessarily enough to break one minimal conflict (by definition, by relaxing
any one of its constraints) to recover consistency: indeed, all minimal conflicts
have to be broken to recover consistency. So while a minimal conflict shows
one cause (amongst potentially many) of inconsistency, a minimal exclusion set
shows one way to recover from this inconsistency. Additionally, a conflict might
involve some technical constraints of the problem, and can require more technical
knowledge from the user in order to be really understood. On the other hand,
a minimal exclusion set is a ready-made suggestion that the user can decide to
accept or reject.

Example 3.2.4. Consider the conflicts shown at Example 3.2.2. As explanations,
these conflicts are sufficient to explain, using a subset of the user’s constraints,
why all constraints cannot be satisfied simultaneously. However, it is not nec-
essarily sufficient to remove one of the constraints in a minimal conflict, thus
eliminating the conflict, to regain consistency.
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Consider, for example, what happens if we present {c1, c2, c5} as an explana-
tion for why the set of constraints {c1, . . . , c5} is not satisfiable. The user would
be mistaken in thinking that simply breaking this conflict by removing, say, con-
straint c2 is enough to recover consistency. It is not, because {c1, c3, c5} is also a
conflict. Similarly, relaxing c5 from {c1, c2, c5} would not have been enough be-
cause {c2, c3} is a conflict. Minimal conflicts only explain why a set of constraints
is inconsistent.

In order to recover consistency all minimal conflicts must be eliminated by re-
laxing a set of constraints that form a hitting set of the conflicts, i.e. an exclusion
set, as shown at Example 3.2.3. For example, suppose the user is presented with
the exclusion sets {c1, c2} and {c2, c5}, as two ways to obtain a feasible car by
giving up as few requirements as possible. The user can then decide which com-
promise seems best to him: have leather seats, or stay under the budget limit. N

Remark. In the above definitions, we did not make any mention to the level of
consistency. If a given consistency oracle Π is specified, the explanations can be
referred to as (maximal) Π-relaxations, (minimal) Π-exclusion sets and (minimal)
Π-conflicts. When a weaker consistency oracle is used, it has to be noted that
explanations have a lower quality. Minimal conflicts are not as small, and fewer
of them might be detected, while, more importantly, maximal relaxations might
be bigger too, which means they might actually not lead to a consistent problem.
The setting in this dissertation being that we rely on a compiled representation
to check complete consistency (see Section 4.2 of Chapter 4 for more details)
ensures that this will never be an issue.

Definition 3.2.4 (Sets of all explanations). Given a configuration problem P def
=

〈B,U〉 we define:

• R as the set of all the maximal relaxations of P;

• E as the set of all the minimal exclusion sets of P;

• C as the set of all the minimal conflicts of P .

Of course, a relaxation exists (i.e R 6= ∅) if and only if B is consistent. How-
ever, as noted earlier, we will always assume B is consistent. On the other hand,
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if P is consistent, then there is only one maximal relaxation, U , andR = {U}. In
the non-trivial case where P is inconsistent, a relaxation R is a proper subset of
U . As far as conflicts are concerned, the trivial cases are inverted: C = ∅ ⇔ P is
consistent, and C = {∅} ⇔ B is inconsistent.

Note too that every two distinct maximal relaxations are set-wise incompara-
ble, i.e. for all R,R′ ∈ R, R 6= R′ ⇒ R 6⊆ R′ and R′ 6⊆ R. Similarly, all pairs
of minimal exclusion sets in E and all pairs of minimal conflicts in C are set-wise
incomparable. The set-wise optimality of explanations is required for various rea-
sons. First, it helps rule out the trivial cases previously outlined. Additionally,
optimal sets (maximal relaxations and minimal conflicts) have the property of
covering, and thus characterising, all possible explanations. For example, a set of
constraints is inconsistent iff it is a superset of at least one minimal conflict. From
a user point of view, a smaller exclusion set is preferable as it implies giving up on
fewer user constraints. Similarly a smaller conflict gives more precise information
on what user constraints are incompatible with each other. Finally, from a com-
putational point of view, set-wise optimal sets, as opposed to sets of maximum
cardinality, as much easier to compute, as they allow for greedy optimisation, by
adding user constraints as long as consistency is maintained to compute maximal
relaxations, or by removing user constraints as long as inconsistency is present, to
compute minimal conflicts.

The incomparability of optimal explanations (maximal relaxations or minimal
conflicts) implies naturally the following result.

Proposition 1 (Worst-case Number of Explanations). Given a inconsistent prob-

lemP def
= 〈B,U〉, with |U| = n, the worst-case number of maximal relaxations/minimal

exclusion sets/minimal conflicts is
(

n
bn/2c

)
.

Proof. Immediate from Sperner’s Theorem [135].

Throughout the examples, we mentioned the relationship that links maxi-
mal relaxations and minimal conflicts. Let us finish this section with a formal
presentation of this relationship. We recall that, for a given collection of sets
X = {X1, . . . , Xk}, with Xi ⊆ U , a set H ⊆ U is a hitting set of X if for each
Xi ∈ X , Xi ∩ H 6= ∅. H is a minimal hitting set if for each H ′ ⊆ H , H ′ is a
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hitting set of X only if H ′ = H . The following property holding on the set of
maximal relaxations is a classic result from the literature [112, 27], [1, 60, 3, 7].

Proposition 2 (Hitting Set Relationship). Let P def
= 〈B,U〉 be an inconsistent

problem. The following two properties hold:

• For each C ∈ C, C is a minimal hitting set of E .

• For each E ∈ E , E is a minimal hitting set of C

Proof. This can be intuitively explained. A hitting set of all the exclusion sets of
P is a subset of U that is not contained in any relaxation of P , which means it is
not consistent. A minimal hitting set of E is thus a minimal inconsistent subset
of U , which is the definition of a minimal conflict of P . Conversely, let E be a
hitting set of C. By relaxing all the constraints of E, at least one constraint of each
minimal conflict is relaxed. But by definition of a minimal conflict, it is enough to
remove one constraint from it to render it consistent. Therefore, by relaxing all the
constraints in E, all causes for inconsistency are corrected, and thus consistency
is retrieved, which by definition means that E is an exclusion set.

Furthermore, when not all maximal relaxations are taken into account, the
following property also holds [60, 3].

Proposition 3 (Minimal Incomparable Relaxation). Let P def
= 〈B,U〉 be an in-

consistent problem. Let R′ ⊂ R be a set of some, but not all, maximal re-

laxations of P , and let E ′ be the corresponding set of minimal exclusion sets

E ′ = {U \ R/R ∈ R′}. Then there exists a minimal hitting set of E ′ that is

consistent (and is not contained in any R′ ∈ R′).

Proof. This observation is a bit more subtle. Of course, no hitting set of E ′ is
included in any R′ ∈ R′. Now let R be a maximal relaxation of P not in R′. By
definition, any of its subsets is consistent. Now consider a subset H of R that is
still incomparable with any element in R′, and suppose H is minimal, i.e. any
subset of H is also a subset of some maximal relaxation in R′. Then one has
simply to observe that H is actually a minimal hitting set of E ′.
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3.3 Explanation Enumeration

Enumerating explanations is an extremely challenging task. Much existing work
focuses on the computation of all the diagnoses of a fault [112], which in our terms
amounts to enumerating minimal exclusion sets. Many of the initial enumeration
algorithms explore a search tree, searching the subsets of the user constraints.
This tree might explore a number of subsets that is exponentially larger than the
number of minimal exclusion sets or minimal conflicts. Pruning rules allow us to
reduce this search space [70, 66], often quite significantly with the use of a variety
of subtle rules [29].

However, the most efficient methods all make use of the property that links
maximal relaxations and minimal conflicts [112, 92, 91, 90, 3, 59, 120, 121],
and essentially, while enumerating all minimal conflicts, the algorithms also enu-
merate maximal relaxations. Of course, the number of maximal relaxations and
minimal conflicts can still be exponentially larger than each other, but empirical
evidence shows that in practice they are both smaller than the search tree that
would otherwise be explored[3].1

For historical reasons, let us mention first that, in his original work on diag-
noses, Reiter [112] presents an algorithm that outputs all (not necessarily minimal)
conflict sets (with the use of a theorem prover) and all diagnoses (i.e. minimal ex-
clusion sets) using the hitting set duality between those concepts. In the context
of explanations however, two independent approaches have exploited this duality
for the enumeration of explanations [3, 90]. The first, called Dualize and Advance
[3], simultaneously generates the set of maximal relaxations and minimal con-
flicts, using consistent minimal hitting sets of minimal exclusion sets as seeds to
compute the next maximal relaxation; those that are not consistent are the mini-
mal conflicts. The algorithm terminates when no such seed exists, meaning that
the two complete sets have been generated.2

The second method, from Liffiton and Sakallah [90, 91], on the other hand,

1Note too that we establish in Section 3.5 that none of the two problems of enumerating maxi-
mal relaxations or minimal conflicts is harder than the other.

2Reiter’s algorithm works in a similar way, but in the opposite direction: conflicts are gen-
erated first (they correspond to refutations of a propositional sentence) and from those maximal
relaxations (i.e. diagnoses) are computed using to hitting set computations.
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computes those two sets independently. It first computes the set of maximal re-
laxations, and then derives the set of minimal conflicts, using minimal hitting set
computations. This method claims better results on Boolean formulas, and the
presented algorithm is indeed focused purely on SAT – search for maximal re-
laxations is done by iteratively solving a MaxSAT problem on a reformulation of
the original SAT model, and the MaxSAT is solved by an ad-hoc adaptation of
the SAT solver that trivially handles a single ATMOST-k constraint. More specif-
ically, the MaxSAT problem involves maximising the number of clauses that are
satisfied in an inconsistent SAT instance. This corresponds to a relaxation (of
maximal cardinality).

In order to solve this MaxSAT problem, the model is reformulated by adding to
every clause of the model a selector variable; when it is false, the rest of the clause,
i.e. the original clause, has to be satisfied. If the number of selector variables set
to true is set to k, a solution to the reformulated model corresponds to a relaxation
of size at least m − k (where m is the number of clauses). The search procedure
can be set to look first for all solutions of the reformulated model for a given k
before looking for solutions for an incremented value of k (by instantiating to 0 all
remaining selector variables as soon as k selector variables have been instantiated
to 1). The search is started with k = 1, and for every new solution, corresponding
to an exclusion set, a new clause is added to the model preventing any exclusion
set that is a superset of it to be considered again, thus ensuring that only minimal
exclusion sets (i.e. maximal relaxations) are generated.

As an idea, this methods provides a general approach, but the actual algorithm
for enumerating maximal relaxations has to be domain and solver-specific, and
therefore cannot be straightforwardly adapted to our setting. In particular, it seems
very hard to rely on abstracted consistency detection, which is one of the basic
aspects of our formalism. For this reason 3, we consider Dualize and Advance
as being the current state-of-the-art in explanation enumeration, at least for our
context. This method has then been adapted to Disjunctive Temporal Problems
[128, 129] by the same authors [92]. It has also been further improved by the

3And also because the way Dualize and Advance is presented contains an error, raising some
doubts about the way it has been implemented and thus possibly about the validity of their exper-
imental results – actually the authors themselves acknowledged it later [91].
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use of a local search preprocessing that records potential minimal exclusion sets,
which are then confirmed or rejected during the complete phase of the original
approach [59].

3.4 Definition of Representative Explanations

3.4.1 The Approach

We present a sequence of examples, based on Example 3.2.1, demonstrating the
approach we propose in this chapter. We presented in Table 3.2 the set of all
explanations, each showing how the user can satisfy at least some of his con-
straints. Each explanation comprises a maximal consistent relaxation, i.e. the set
of constraints that can be satisfied, and the corresponding minimal exclusion set
of constraints that must be excluded. We show both the subset of the constraints in
the relaxation (marked with aX) and those that are in the exclusion set, i.e. those
that must be removed (marked with a ×). For example, consider Explanation I:
we can simultaneously satisfy constraints c3, c4 and c5, but in order to do so we
must exclude c1 and c2.

However, in general we cannot present the user with every possible relax-
ation/exclusion set for his set of preferences, because the number of maximal
relaxations is exponential in the number of user constraints in the worst case.
The best we can hope for is to, therefore, present a subset of all possible relax-
ations/exclusion sets of the user’s constraints. For example, we might require that
every constraint that appears in a relaxation appears at least once in a relaxation
in our chosen subset. This is the scenario presented in Table 3.3. However, this
approach has the potential to mislead the user. In our example, the user might
believe that it is never useful to exclude c4, and might miss that it is possible to
get option c5 while still satisfying the budget constraint c1, drawing the wrong
conclusion.

A similar problem arises if we present a set of explanations that ensures that
every constraint that must be relaxed once appears in at least one exclusion set as
shown in Table 3.4. Here, the user might be lead to believe that constraint c2 must
always be excluded.
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Table 3.3: A set of representative relaxations.

Constraints
Explanation c1 c2 c3 c4 c5

I × × X X X
II × X × X X
III X × X X ×

Table 3.4: A set of representative exclusion sets.

Constraints
Explanation c1 c2 c3 c4 c5

I × × X X X
III X × X X ×
V X × × × X

Instead, we propose that the subset of explanations that are presented to the
user should be both representative of the relaxations and exclusion sets of the
problem. Specifically, a set of explanations should be presented that contains at
least one maximal relaxation containing each constraint that can be satisfied at
least once, and at least one minimal exclusion set containing each constraint that
must be excluded at least once. The set of explanations must satisfy the property
that a constraint should only appear in all relaxations if it is always satisfied, or that
one should only appear in all exclusion sets if it never participates in a maximal
relaxation. A set of explanations that satisfies these properties is presented in
Table 3.5.

Table 3.5: A set of representative explanations.

Constraints
Explanation c1 c2 c3 c4 c5

I × × X X X
IV X X × X ×
V X × × × X

In the following subsections we formalise our approach, and prove the in-
tractability of one of the fundamental decision problems that underpins the ap-
proach. We discuss the implications this has for what we can hope to achieve
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from an algorithmic perspective. The succeeding section presents an algorithm
for finding representative sets of explanations for over-constrained problems.

3.4.2 Representative Explanations

A maximal relaxation defines a maximal set of constraints that the user can satisfy,
while the corresponding minimal exclusion set tells the user which constraints he
must remove. However, the user might not be satisfied with an arbitrary expla-
nation. Since the size of R can be exponential in the number of constraints in
U , presenting all explanations is not practical in general. We are, therefore, in-
terested in selecting a subset of the explanations that are “representative” of all
possibilities.

Definition 3.4.1. [Representative Set of Explanations] Given a constraint problem
P def

= 〈B,U〉 that is inconsistent, R′ ⊆ R a set of maximal relaxations of P ,
E ′ = {U \ R/R ∈ R′} the corresponding set of minimal exclusion sets, and
X def

= (R′, E ′), we say that X is a representative set of explanations iff

1. ∀R ∈ R, ∀c ∈ R, there exists a relaxation R′ ∈ R′ such that c ∈ R′, and

2. ∀E ∈ E , ∀c ∈ E there exists an exclusion set E ′ ∈ E ′ such that c ∈ E ′.

Clearly, the example set presented in Table 3.5 is a representative set of ex-
planations since it contains a relaxation (respectively, an exclusion set) containing
each constraint that appears in a relaxation (respectively, an exclusion set). Of
course, we wish to restrict the size of our representative sets to an optimal size.
It is more computationally efficient to focus on set-wise minimal sets of explana-
tions. We therefore, define the notion of minimal representative set.

Definition 3.4.2 (Minimal Representative Set of Explanations). Given a constraint
problem P def

= 〈B,U〉 that is inconsistent, we say that a set of representative set of
explanations is minimal if any strict subset of it is not representative.

For sake of simplicity, we will implicitly assume that a representative set is
minimal, unless ambiguity is to be avoided.
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Theorem 1 (Number of Explanations). The size of any minimal representative set

of explanations is at most |U|, and this bound is exact.

Proof. Let (R, E) be a minimal representative set of explanations, and let R =

R1, ..., Rm and E = E1, ..., Em. R2 is incomparable to R1 so it must contain a
constraint that is not in R1, and E2 is incomparable to E1 so it must contain a
constraint not in E1. Let |R1| = k and thus |E1| = |U| − k. Since (R, E) is
minimal, for every explanation (Ri, Ei) either Ri has to cover a constraint not
covered by any other Rj or Ei has to cover a constraint not covered by any other
Ej . There are only |U| − k − 1 constraints not covered by R1 or R2, and k − 1

constraints not covered by E1 or E2, so there are no more than |U| − 2 such
constraints to be covered by the remaining m − 2 explanations. Thus, m ≤ |U|.
To show that the bound is tight, consider an example where the only minimal
conflict is the set U . Then there are |U| minimal exclusion sets, each containing
one of the constraints.

Of course, two minimal representative sets of explanations can have a very
different size. The following example illustrates a case where one of them has a
linear size while the other has a constant size.

Example 3.4.1. LetP def
= 〈B,U〉 be a problem on the boolean variables x1, . . . , xn,

with n even, with a single background constraint stating
∑n

i=1 xi ≤ n/2 and
U = {c1, . . . , cn} with ci stating xi = 1. Then we have E = {S ⊆ U/|S| = n/2}.
We have |E| =

(
n
n/2

)
= n!

(n/2)!2
≥ 2

n
2 ,∀n ≥ 0. Let E1 = {{c1, ...cn/2−1, ci}/n2 ≤

i ≤ n}: E1 is a representative subset of E of size n/2 + 1. Now let E2 =

{{c1, ..., cn/2}, {cn/2+1, ..., cn}}: E2 is a representative subset of E , of size 2. N

3.4.3 Complexity

Let us consider the fundamental decision problem associated with finding repre-
sentative sets of explanations. To ensure that we have found a representative set
of explanations, we must at least find a minimal exclusion set for each constraint,
provided that each constraint appears in at least one minimal exclusion set. Un-
fortunately, checking that this condition holds is NP-Complete.
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Theorem 2 (Complexity). Given an inconsistent constraint problem P def
= 〈B,U〉,

a procedure Π for testing consistency of a set of constraints, and a constraint

c ∈ U , deciding whether there is a minimal exclusion set E such that c ∈ E, is

NP-Complete.

Proof. Given a relaxationR, we can test in polynomial time whether it is maximal
by running the consistency checker Π on R∪{c′} for every c′ 6∈ R. We can easily
test that c 6∈ R. Thus, the problem is in NP. To show completeness, we will use
a reduction from 3SAT. Let x1, . . . , xn be the variables and f the CNF formula
of an instance of 3SAT. We build an instance of the problem of deciding whether
there exists a maximal relaxation of an inconsistent problem that does not contain
a given constraint. For each variable xi, let ci (resp. c′i) be the constraint that
enforces xi = 1 (resp. xi = 0) and ⊥ the constraint that holds iff the variables
form an instantiation that violates one of the clauses of f . We define P with U =

(∪ni=1{ci, c′i})∪{⊥} and no background constraint. Clearly, P is inconsistent (any
{ci, c′i} set is inconsistent). There are 2n maximal relaxations, each corresponding
to a different value assignment to each of the n variables. Let R be a relaxation
corresponding to an assignment of the n variables. This assignment satisfies f
iff ⊥ cannot be added to R, i.e. R is a maximal relaxation. Therefore, f has a
solution iff there is a maximal relaxation not containing ⊥.

Corollary. Given an inconsistent problem P def
= 〈B,U〉, a set of explanations

(R′, E ′), withR′ ⊆ R, testing if (R′, E ′) is representative is CoNP-Complete.

Proof. To test if (R′, E ′) is representative, one must particularly check point 2 of
Definition 3.4.1. In particular, if some constraint c ∈ U is not contained in any
E ∈ E ′, one must make sure c is not contained in any exclusion set of P at all. If
there exists an exclusion set containing c, then (R′, E ′) is not representative.

3.5 Complexity of Explanation Enumeration

As we saw in Section 3.3, the most efficient enumeration algorithms effectively
enumerate both sets of maximal relaxations and minimal conflicts. Therefore, the
complexity of such algorithms depends on both the number of maximal relax-
ations and minimal conflicts. However, as mentioned earlier, these two numbers
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are independent and each can be exponentially larger than the other. As a conse-
quence, if one is interested only in the maximal relaxations of an over-constrained
problem, he will incur a potential computational overhead resulting from the num-
ber of minimal conflicts. Strangely enough, no formal complexity discussion, to
our knowledge, has ever justified the need for this overhead. We can actually
prove that enumerating the maximal relaxations of an over-constrained problem,
with a consistency oracle, is “intractable”, even in terms of the output, as it will
be discussed in the following sections.

3.5.1 Complexity of Enumerating Maximal Relaxations

Let us consider, given a problem, its enumeration version, i.e. the problem of
finding all the solutions instead of one solution. When the number of solutions to
a problem is not polynomial in the size of the input, clearly the enumeration prob-
lem is not in P. But as this happens for any but the most trivial enumeration prob-
lems, we need a more subtle way to analyse the complexity of enumeration. An
obvious way to circumvent this issue is to bring into consideration the size of the
output too. An algorithm is output-polynomial [102] if it runs in time polynomial
in the input and the output. For enumeration procedures, this means that the algo-
rithm can enumerate all solutions in polynomial time in the number of solutions.
When considering enumeration algorithms, the notion of incremental-polynomial

[73, 102] is more suitable a characterisation of what one might consider as an
efficient enumeration procedure. An enumeration algorithm runs in incremental-

polynomial time if it can generate k solutions in polynomial time in the size of the
input and k, for any arbitrary k. Clearly, an incremental-polynomial enumeration
algorithm is also output-polynomial. However, this property has an added practi-
cal interest in that it implies an anytime behaviour: the algorithm can be stopped at
any particular moment if the current output is satisfactory; in particular, if we only
want to enumerate a polynomial number of solutions, an incremental-polynomial
algorithm will be polynomial, whereas we have no complexity guarantee that an
output-polynomial algorithm will not be exponential.

An equivalent definition of an incremental-polynomial algorithm is that an al-
gorithm is incremental-polynomial if it can compute a new solution in polynomial
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time in the number of solutions computed so far. Indeed, given k − 1 solutions,
we can generate a new one by generating k solutions: at least one solution will be
new, the equivalency in the other direction being trivial.

Let us consider our problem of enumerating the maximal relaxations of a prob-
lem. Even though generating one maximal relaxation is easy; with what we mean
by easy having already been discussed, enumerating them is actually, and some-
how counter-intuitively, hard. We can prove that enumerating the maximal re-
laxations of an over-constrained problem is not incremental-polynomial, unless
P=NP.

Theorem 1. Given a set of maximal relaxations and an consistency oracle, com-

puting a maximal relaxation different from any in the given set is NP-Hard.

In order to prove that theorem, the following proposition holding on the deci-
sion version of the problem must be proved:

Proposition 2. Given a set R1, . . . , Rn of maximal relaxations, deciding if there

exists another maximal relaxation that is different from any of those is NP-Complete.

Proof. Consider the problem slightly reformulated: given a set R1, . . . , Rn of
maximal relaxations, does a consistent set exist that is minimally incomparable
with any of those relaxations? Let COMPMR denote that problem. Obviously,
these two formulations are equivalent: if this set exists, it can be extended poly-
nomially to a new maximal relaxation.

COMPMR is clearly in NP: given a set T ⊆ U , it is polynomial to check that
it is incomparable with any Ri, that it is set-wise minimal with regards to this
property, and that it is consistent (using the consistency oracle).

Now, let MINHST denote the problem of deciding whether, given a collection
of subsets S1, . . . , Sn of a universe U and an integer k, there exists a hitting set
H of S1, . . . , Sn of cardinality |H| ≤ k. In order to show completeness, we will
reduce MINHST to COMPMR.

A problem P is built as follows:

• a boolean variable Xi corresponds to each element of U = {1, . . . ,M};

• let C1 = ∨i≤n(∧j∈Si
¬Xj);
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• let C2 = ∧i≤n((∨j∈Si
Xj) ∧ (∨j 6∈Si

¬Xj));

• let ci be the constraint stating Xi = 1;

• let B = {C1 ∨ (C2 ∧ ATMOSTk(X1, . . . , XM))};

• let U = {ci|i ≤M}.

Checking the consistency of B ∪ U for some set U ⊆ U is polynomial. U is
consistent with C1 if, for some i ≤ n, it is included in {cj/j 6∈ Si}. It is consistent
with C2 if, for each i ≤ n, ∃j ∈ Si with cj ∈ U and ∃j 6∈ Si with cj 6∈ U ; in other
words, for each i ≤ n, U is incomparable with {cj/j 6∈ Si}. It follows that U is
consistent with B if either it is included in one of the sets {cj/j 6∈ Si} or if it is
incomparable with any of those sets and it has a cardinality of at most k.

Obviously, B ∧ U is inconsistent. The sets Ri = {cj|j 6∈ Si} are all maximal
relaxations, i.e. the sets Si correspond to minimal exclusion sets. Amongst all the
sets minimally incomparable with any Ri, all and only those of cardinality less
than or equal to k are consistent, and they correspond to a hitting set of the Si sets
of cardinality ≤ k.

Example 3.5.1. As an illustration of the proof, consider the following instance
of MINHST: let U = {1, 2, 3, 4, 5}, S1 = {1, 2}, S2 = {1, 3}, S3 = {1, 5},
S4 = {2, 5} and k = 2. The minimal hitting sets are {1, 2}, {1, 5} and {2, 3, 5},
two of which are of size ≤ 2.

R1 = {c3, c4, c5}, R2 = {c2, c4, c5}, R3 = {c2, c3, c4} and R4 = {c1, c3, c4}
are maximal relaxations. Let H1 = {c1, c2}, H2 = {c1, c5}, H3 = {c2, c3, c5}.
None of these sets is consistent with C1. However they are all consistent with
C2, but only H1 and H2 are also consistent with ATMOSTk(X1, . . . , XM), and,
therefore, with B. H1 and H2 are therefore minimal hitting sets of cardinality 2.
N

The complexity of enumerating all the maximal relaxations, in other words
the existence of an output-polynomial algorithm for the enumeration of maximal
relaxations, has not been considered here, and is to our knowledge an open ques-
tion. However similar complexity results, both positive and negative, have been
found in the parallel field of abduction with Horn theories [41, 121, 84].
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3.5.2 Complexity of Enumerating Minimal Conflicts

The previous result implies that enumerating the minimal conflicts is also in-
tractable, with intractable having the same meaning as per the previous discussion.
Given any problem, we can create a new problem whose exclusion sets correspond
to the conflicts in the initial problem, as follows.

Let P = 〈B,U = {c1, . . . , cn}〉 be a problem. We build a problem P ′ =

〈B′,U ′〉 as follows. We have n boolean variables X1, . . . , Xn, one background
constraint stating that an assignment of X1, . . . , Xn is valid iff B ∪ {ci ∈ U/Xi =

0} is inconsistent, and n user constraints c′i each stating that Xi = 1. If B is
consistent, B′∪U ′ is inconsistent; if B∪U is inconsistent, B′ is consistent (setting
all variables to 0 is a solution); for a given set U ⊂ U ′, B′ ∪ U is consistent iff
B ∪ {ci ∈ U/c′i 6∈ U} is inconsistent. We thus have a constant time consistency
checker for P ′ iff we have a consistency oracle for P , and the minimal exclusion
sets of P ′ are in one to one correspondence with the minimal conflicts of P .

3.6 Computing Representative Sets of Explanations

The previous discussions in Section 3.4.3 and Section 3.5 show two crucial inher-
ent intractabilities in computing representative sets of explanations, and therefore
prove that we cannot expect to have a polynomial algorithm for computing repre-
sentative sets of explanations unless P=NP. An exact polynomial algorithm would
consist of a partial enumeration algorithm the behaviour of which can be roughly
depicted as follows:

1. is the current set of explanations representative? (halting condition)

2. if not, generate a new maximal explanation that covers a new constraint and
go back to step 1.

This algorithm would only generate a polynomial number of explanations,
according to Theorem 1. However, we saw that such an algorithm cannot exist,
unless P=NP: both of the steps just depicted are intractable. In particular, step 2 is
intractable because of the two intractabilities that have been raised: knowing if a
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relaxation exists that does not contain a constraint is NP-Complete, and computing
just a new relaxation (without any additional property) is NP-Hard too. As a result,
we have to compromise between run-time and the guarantee of the result. In our
approach, we decided to guarantee the maximality of relaxations, which means the
complexity of generating a new maximal relaxation will have to be accepted, as
with any explanation enumeration algorithm, but we relax the need to guarantee
representativeness. Ideally, we would like to relax the second requirement in a
soft way, by having an anytime behaviour. Such an algorithm, in the best case,
would quickly find, in practice, a representative set of explanations, while it might
need to spend most of its time actually proving representativeness or, in the worst
case, computing only a few explanations that are missing to form a representative
set. We cannot have a guarantee that, although only looking for a partial and
polynomially sized subset of explanations, this algorithm would not possible incur
the cost of a complete enumeration. With this consideration in mind, we decided
to adapt an existing enumeration procedure to fit these requirements.

3.6.1 The Algorithm

As we saw in Section 3.3, amongst the best algorithms for computing all mini-
mal conflicts [3, 59], one is an algorithm tailored for SAT problems [59], while
the other, called Dualize and Advance, has the advantage in that it is for general
constraints [3], and we consider it as being state-of-the-art. The algorithm we
propose, REPRESENTATIVEXPLAIN, is based on a modification of this existing
algorithm.

This algorithm operates in three steps: first REPRESENTATIVEDA computes a
set of explanations such that every constraint that belongs to at least one exclusion
set of the problem belongs to an exclusion set of the returned set of explanations.
Next, this set is rendered representative by adding into it, for every constraint that
belongs to at least one relaxation of the problem (i.e. such that B ∪ {c} is consis-
tent) and that belongs to no relaxation in the returned set (i.e. ∀E ∈ E , c ∈ E),
a relaxation containing this constraint. As a post-processing step, we can reduce
the set of explanations to obtain a minimal representative set of explanations, pro-
vided (or assuming) the original set was representative too. This post-processing,
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which we call minimisation, involves greedily removing explanations not required
to ensure representativeness. This is also the opportunity to apply heuristics on the
order of removal to try and minimise the cardinality of the final set, although we
did not give any such consideration. The guarantee, or not, of representativeness
of the final set follows from how REPRESENTATIVEDA terminated. We can de-
cide either to stop it when a time limit or any other heuristical criterion has been
met (number of constraints covered, number of explanations generated), or let it
reach its halting condition, when representativeness has been proved.

Algorithm 2: REPRESENTATIVEXPLAIN

Data: P def
= (B,U), an inconsistent problem, B consistent.

Result: X a minimal representative set of explanations.
E ← REPRESENTATIVEDA(P)1

R ← {U \ E/E ∈ E}2

foreach c ∈ U do3

if consistent(B ∪ {c})∧(∀E ∈ E , c ∈ E) then4

R← grow({c},U)5

R ← R∪ {R}6

E ← E ∪ {U \R}7

X ← (R, E)8

minimise(X)9

The grow() function takes a consistent subset as a seed and grows it to
a maximal relaxation by greedily adding from the remaining constraints in M

those that do not create inconsistency, as detected by our propagator, called by the
consistent() function.

The key property that is exploited in the algorithm is the duality between min-
imal exclusion sets and minimal conflicts that was previously outlined. At each
point of the iteration of the repeat loop in function REPRESENTATIVEDA (Line
6), H contains all the minimal hitting sets of the current E . The important prop-
erty used in this function is that when E contains some but not all of the minimal
exclusions, there must be at least one consistent minimal hitting set in H (see
Proposition 3). Therefore, the condition R = ∅ is satisfied iff all elements in H
are inconsistent iff E contains all the minimal exclusions. The hitting sets are
incrementally computed in Line 12 by computing the cross product of two sets,
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Algorithm 3: REPRESENTATIVEDA(P)

Data: P def
= (B,U), an inconsistent problem, B consistent.

C ← ∅1

E ← ∅2

H ← {∅}3

R← ∅4

U ← U5

repeat6

R← grow(R,U \ U)7

R← grow(R,U)8

if (U \R) ∩ U 6= ∅ then9

U ← U \ (U \R)10

E ← E ∪ {U \R}11

H ←Min(H⊗ {{c}, c ∈ U \R})12

R← ∅13

for H ∈ H \ C do14

if consistent(B ∪H) then15

R← H16

break17

else C ← C ∪ {H}18

until limit reached ∨(U = ∅ ∨R = ∅)19

return E20

Algorithm 4: Auxiliary functions
function minimise((R, E))

foreach R ∈ R do
E ← U \R
if (∀c ∈ R,∃R′ 6= R, c ∈ R′) ∧ (∀c ∈ E,∃E′ 6= E, c ∈ E′) then
R ← R \ {R}
E ← E \ {E}

function grow(S,M)
foreach c ∈M \ S do

if consistent(B ∪ S ∪ {c}) then S ← S ∪ {c}
return S

function Min(H)
ifH = ∅ then return ∅
Let H ∈ H such that ∀H ′ ∈ H, |H| ≤ |H ′|
return {H}∪Min({H ′ ∈ H/H 6⊆ H ′})
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whereH1⊗H2 = {H1∪H2/H1 ∈ H1∧H2 ∈ H2}, and then reducing the result,
where Min() keeps all set-wise minimal elements of the given set. Example 3.6.1
shows an illustration of this behaviour.

Example 3.6.1. Suppose we have a problem such that the maximal relaxations
are {1, 2}, {1, 3}, {4}; the minimal exclusion sets are {3, 4}, {2, 4}, {1, 2, 3}; the
minimal conflicts are {1, 4}, {2, 3}, {2, 4}, {3, 4}, as depicted on Figure 3.1.
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Figure 3.1: Enumeration of three maximal relaxations

Consider Figure 3.1(a). Suppose the maximal relaxation 12 has been pro-
duced. The dashed part of the lattice correspond to consistent sets, i.e. to re-
laxations, but that are all included in 12. In order to guarantee a new maximal
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relaxation is found, we need to start from a consistent set that is minimally incom-
parable with 12, i.e. from a consistent minimal hitting set of the corresponding
minimal exclusion set 34. There are two such sets: 3 and 4, both of which are
consistent.

Suppose we pick 3. We can still add 1 to form a new maximal relaxation. Now,
as shown on Figure 3.1(b), there are two minimal hitting sets of the two minimal
exclusions sets 34 and 24. 23 is inconsistent, and is therefore a minimal conflict,
while 4 is consistent, and is in fact a maximal relaxation.

Now, all minimal hitting sets, shown in Figure 3.1(c), are inconsistent: they
all are minimal conflicts, and all maximal relaxations have been found. N

The algorithm used in REPRESENTATIVEDA is an adaptation of Bailey and
Stuckey’s [3] Dualize and Advance algorithm. The essentials of the modifica-
tion are that we change the termination condition at Line 19 to either (a) having
reached some limit, or (b) having proved representativeness. This happens after
either (a) having covered all the user constraints, or (b) having found all minimal
exclusions, whichever occurs first.

Of course, when not all the user constraints belong to at least one minimal
exclusion set, only condition (b) is met, and we cannot expect to do much better
than generating all minimal exclusion sets. However, even in this case, our algo-
rithm can still find a representative set of explanations quickly, while the rest of
the effort is spent proving representativeness, as shown in the next section.

Additionally, we prefer that user constraints be covered as quickly as possible,
in order to converge to a representative set of explanations as quickly as possible.
An obvious heuristic (which we refer to as Heuristic 1) to speed up the conver-
gence is simply to consider the order in which the constraints are added to the
current relaxation by the grow() function. We try to first add constraints not
in U so that as many constraints as possible in U will remain in the exclusion
set (Line 7).

We considered two additional heuristics which are not depicted in the algo-
rithm’s pseudo-code. A second heuristic (which we refer to as Heuristic 2) would
be to consider which consistent hitting set we choose in H as a seed for the next
maximal relaxation. If we have a consistent H ∈ H and ∃c ∈ U such that the
addition of c in H causes a conflict, then by choosing H as a seed, we will find
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a maximal relaxation that will relax c. A third heuristic (which we refer to as
Heuristic 3) would be to choose the H ∈ H that causes a conflict with the largest
number of constraints in U (instead of just one at least). Of course it could be the
case that none of the constraints in U can create on its own an inconsistency with
any of the consistent hitting sets.

3.6.2 Experiments

We studied the performance of our algorithm on both random and real-world prob-
lems4. The objective of the experiment was to study the reduction in the number of
explanations one achieves by considering a minimal set of representative expla-
nations, as computed using REPRESENTATIVEXPLAIN, rather than all minimal
exclusions, as computed using the algorithm of Bailey & Stuckey [3], which we
will refer to as the baseline algorithm.

Random Problems

The random problems consisted of fifteen boolean variables with one 15-ary back-
ground constraint defined on those variables. We varied the proportion of all pos-
sible assignments that were consistent with this background constraint, i.e. its sat-
isfiability, taking 20 settings in all. Since we have assumed that the background
constraints are always consistent, the least satisfiable background constraint ac-
cepted only one assignment.

For a given level of satisfiability, we randomly generated 10 background con-
straints. For every background constraint, we generated 10 inconsistent queries
for which each algorithm generated a set of explanations. Each query was defined
in terms of a set of user constraints that assigned a random value to each variable
such that the whole set of constraints was inconsistent. We plot the average results
over 100 queries at each satisfiability setting in the next figures.

Consider the size of the representative set of explanations in Figure 3.2. The
data in this plot represents the number of representative explanations found, be-
fore the minimisation process. For most settings of satisfiability we observe a

4Experiments were implemented in Java and run on an iMac (2.33GHz Intel Core 2 Duo), 3GB
RAM, running Mac OSX 10.4.8.
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Figure 3.2: Cardinality of the sets of explanations

significant gap between the total number of exclusions, as found by the baseline
algorithm, and the number of representative explanations found by our algorithm.
We noted that in the vast majority of cases, the set of explanations was already
(set-wise) minimal, and was already representative. However, with Heuristic 2
and Heuristic 3, the total computation time was almost always higher than the
time needed for a complete enumeration with the baseline algorithm, while the
number of the exclusions found was almost the same as with the basic algorithm
with Heuristic 1. This suggests that these heuristics are too complex to give an
advantage on convergence speed, at least with these random problems. Therefore,
we will now on only consider the algorithm with Heuristic 1.

From Figure 3.3 we can see that the difference between algorithms in terms
of running time mimics the difference in the size of the sets of explanations they
generate. As we saw, REPRESENTATIVEXPLAIN can avoid enumerating all the
relaxations of one instance if all the user constraints of this problem are involved
in at least one exclusion set. We refer to instances in which this occurs as “true”
instances. As we highlighted before, we can hope for a potentially large decrease
in the total execution time on these “true” instances. Figure 3.4 confirms this, as
we see that the difference in running times tends to decrease as the proportion of
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Figure 3.3: Times required to generate sets of explanations.

“true” instances decreases.
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involved in at least one exclusion set.

To analyse this behaviour more deeply on pure “false” instances, we ran a
second kind of experiment. We used exactly the same process for generating
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random instances as before, and just added a trivially satisfied constraint to each
instance, so that it belongs to all maximal relaxations. The results are presented in
Figure 3.5. On these instances, if we let REPRESENTATIVEXPLAIN reach termi-
nation, we cannot hope to be much faster than a full enumeration of all maximal
relaxations. We measured two different times: the time when the last relaxation
has been found by REPRESENTATIVEXPLAIN and the time when it terminates,
i.e. the time to find a representative set of explanations and the time to also prove
representativeness, respectively. Here again, the results are positive. We observe
that we actually find a representative set much faster than it takes to find all relax-
ations. This is very interesting in an interactive context, where we can be confident
a user will stop the computation quickly once he is indeed satisfied with the few
relaxations he has been shown (because they form a representative set of expla-
nations), regardless of whether they are guaranteed to be representative or not.
However, unexpectedly, REPRESENTATIVEXPLAIN can terminate a little quicker
than the baseline algorithm.
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Figure 3.5: Average times for finding all relaxations, a representative set of
explanations and the last explanation.
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A Real-world Problem

We also ran experiments on a real-world problem, the Renault Megane car config-
uration problem [1]. This problem is defined by 99 variables and has 2.8 × 1012

solutions. We extracted four problem instances of this problem by restricting it in
the following way. We ordered the variables by increasing domain size. Then, by
a dichotomic search, we instantiated the variables with the largest domain sizes
in order to reduce the number of solutions to a more reasonable level for an inter-
active application, while still honouring the real-world structure of the problem.
The restricted instances of the problem provided four possible sets of background
constraints, reducing the number of solutions by a factor of 106, 107, 108 and 109

in each case. We compiled each instance into a tree-driven automaton [43], simi-
lar to that presented in [1], and further detailed in the next chapter. In short, this
allows for very efficient consistency checks (in time polynomial in the size of the
automaton). The user’s set of constraints was generated by randomly assigning 30
of the remaining uninstantiated problem variables. The results of this experiment
are presented in Table 3.6; the instances are labelled by the reduction factor in the
number of solutions as compared with the original Renault problem. For each in-
stance of the background constraint we computed explanations for 15 inconsistent
queries, presenting the medians (due to the size of the instances) in this table.

These results confirm those on the random problems, except on one point. All
of the instances are “false” instances, which was expected, and the total running
time of REPRESENTATIVEXPLAIN is a little higher than the time for the baseline
algorithm. This can be explained by the fact that REPRESENTATIVEXPLAIN per-
forms more set operations (intersection and filtering on U ) which have not been
optimised for this bigger instance. However, the important results that the set of
representative explanations is much more compact than the set of all explanations,
and very compact in absolute terms indeed, and the last explanation can be found
faster, are very encouraging.
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Baseline REPRESENTATIVEXPLAIN

Instance time #exps time last time all #exp
renault 106 474.76 17 318.87 618.76 3
renault 107 263.95 11 125.51 324.71 3
renault 108 205.82 8 97.98 232.32 3
renault 109 293.00 12 139.67 350.51 3

Table 3.6: The results for the Renault problem.

3.7 Possible Extensions

We can generalise the definitions to richer forms of representativeness. For exam-
ple, we might want to insist that all pairs, triples, etc. of constraints appearing in a
relaxation or exclusion set also appear as such in our representative explanations.

Given a set of exclusion sets E and a set of maximal relaxations R, let Ck
E =⋃

E∈E Pk(E), and Ck
R =

⋃
R∈RPk(R), where Pk(S) is the set of all subsets of S

of size k, be the set of the combinations of k user constraints that can be excluded
in at least one minimal exclusion set of E or satisfied in at least one maximal
relaxation ofR, respectively.

Definition 3.7.1 (Strictly k-Representative Set of Explanations). LetR′ ⊆ R and
E ′ be the corresponding set of exclusion sets. (R′, E ′) is a strictly k-representative

set of explanations if it is a minimal set of explanations containing all the possible
ways of satisfying and excluding k constraints in U , i.e. such that Ck

R′ = Ck
R and

Ck
E ′ = Ck

E , and any strict subset ofR′ does not satisfy this property.

Definition 3.7.2 (k-Representative Set of Explanations). (R′, E ′) is a k-representative

set of explanations if ∀l ≤ k, it is strictly l-representative and any strict subset of
Φ does not satisfy with this property.

Obviously, the representative sets of explanations and the 1-representative sets
are the same. Obviously enough, ensuring a stronger level of representativeness
can only be done at the expense of compactness.

Property 3.7.1. If (R′, E ′) is minimal k-representative then, ∀k′ ≤ k, (R′, E ′) is

(not necessarily minimal) k′-representative.
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Example 3.7.1. Slightly abusing notation, suppose we have a problem such that
R = E = {c1, c2c3, c2c4, c3c4}. ThenC1 = {c1, c2, c3, c4},C2 = {c2c3, c2c4, c3c4},
and R1 = {c1, c2c3, c2c4} is 1-representative, R2 = {c2c3, c2c4, c3c4} is strictly
2-representative, andR1 ∪ {c3c4} is 2-representative. N

These extensions are straightforward (albeit involving heavy formalism) to the
basic definitions used throughout this chapter. The algorithms we presented can
be simply adapted to take into account these extensions, and therefore we will not
present further details on the matter. The practical usefulness of these extensions
are very context-dependent and model-dependent. For example, depending on
the type of user constraints, one user “requirement” could be made up of one or
(at least) two user constraints, and the user could then wish to have either both
constraints satisfied at the same time or none, whereas it would not make sense to
him to have only one constraints satisfied at a same time, and therefore would not
be interested in being shown any such explanation. Such considerations could be
taken into account either in the way the problem is modelled or by the property of
representativeness that is ensured by the algorithm.



Chapter 4

Compiled Representations for
Explanation Generation

Summary. We consider the problem of generating maximal relax-

ations by reasoning about their solubility, in the context of product

configuration, where the constraint model of the problem has been

compiled into an automaton. Two novel algorithms are presented.

The first finds from amongst the longest relaxations to a set of incon-

sistent user constraints, the one that is consistent with the most/fewest

solutions; while the second considers the problem for maximal relax-

ations. Based on a large real-world configuration problem we demon-

strate the value of our approach. Finally, we generalise our results by

identifying the properties that the target compilation language must

have for our approach to apply.

4.1 Introduction

In the previous chapter, we discussed how considering some well chosen sets of
explanations instead of single explanations can be more informative. We proposed
a definition of representative sets of explanations, that are representative of which
user constraints may be kept and which may be relaxed. On the other hand, when
we restrict the explanations we consider, we also restrict the solutions that the

81
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user can eventually reach. If we ignore this aspect altogether, we are missing in
some sense a part of the challenge, as the final purpose of the user is indeed to
find a solution, not just a relaxation. We will now look how we can define sets of
explanations keeping in mind the solutions they allow.

In many real-world settings, e.g. product configuration, constraint satisfaction
problems are compiled into automata or binary decision diagrams, which can be
seen as instances of Darwiche’s negation normal form. In this chapter, we con-
sider a setting in which the background constraints are compactly represented in
a compiled form. We further assume, as already explained earlier in this disser-
tation, that user constraints are unary constraints. This chapter is organised as
follows. We first describe the general framework used in this chapter. In particu-
lar, we provide insights into the compilation methods we use for our work. Then,
we present two novel algorithms for finding relaxations based on automata. The
first algorithm finds from amongst the longest relaxations to a set of inconsistent
user constraints, the one that is consistent with either the fewest/largest number
of solutions; this algorithm is linear in the size of the automaton. The second
algorithm considers the same objectives in the context of set-wise maximal relax-

ations. Furthermore, we generalise our approach to other compiled representa-
tions by studying the properties that these must have in order for our results to
carry over. We show that basically our algorithms do not need all the power of au-
tomata and that they work with more general, i.e. more compact, representations.
Finally, we show empirically that, while it is not polynomial in the size of the
automaton, the second algorithm, by being specific to our setting, can be on aver-
age more than 500 times faster than a much more general-purpose state-of-the-art
algorithm.

4.2 General Framework

We recall here that we work in a setting where we consider configuration prob-
lems. As explained in Section 2.6.1, Chapter 2, these problems are ideal candi-
dates for compilation methods. First, the partition between immutable background
constraints and transient user constraints makes compilation well worth the invest-
ment for the background, to allow for fast computation times when dealing with
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the user constraints. Additionally, configuration problems are real-life problems
that often benefit from good compression levels by compilation methods, espe-
cially those that take advantage of their hierarchical structure. Moreover, we also
recall that we restrict user constraints to unary constraints. In many cases, algo-
rithms can take advantage of this specific case and operate more efficiently on
compiled representations.

To summarise the precise setting used in this chapter and in the rest of this
dissertation, we operate as follows: a given configuration problem is converted
to some form of compiled structure; a user query, i.e. a set of user constraints, is
stated during an interactive process; an algorithm provides a result concerning this
user query, such as whether it is consistent or not, within an acceptable response
time, by querying the compiled structure.

Concerning relaxations, we can impose on maximal relaxations and minimal
exclusion sets the stronger property that they be of maximum/minimum cardinal-
ity.

Definition 4.2.1 (Longest Relaxation). Given a constraint problem P def
= 〈B,U〉

that is inconsistent, a relaxation R of P , R is a longest relaxation if for any other
each maximal relaxation R′, |R′| ≤ |R|.

Accordingly, shortest exclusion sets are defined as follows.

Definition 4.2.2 (Shortest Exclusion Set). Given a constraint problemP def
= 〈B,U〉

that is inconsistent, an exclusion set E of P is shortest exclusion if U \ E is a
longest relaxation.

While intuitively we might believe that longer relaxations have fewer solu-
tions, the story is not that simple. Theoretically, there is no reason why the num-
ber of solutions of two maximal relaxations should be similar. We can illustrate
this both theoretically and with a concrete example.

Example 4.2.1. Consider variables x0, . . . , xn with respective domains D(x0) =

{0, 1} and D(xi) = {0, . . . , d}, i > 0, and the constraints x0 < xi,∀i > 0,
x0 > xi,∀i > 0 and x0 = 0. This problem is inconsistent, and R1 = {x0 <

xi, ∀i > 0} ∪ {x0 = 0} and R2 = {x0 > xi, ∀i > 0} are two maximal relaxations
of the constraints. The number of solutions to R1 is dn, while there is only one
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solution to R2. The problem of selecting the maximal relaxation consistent with
the largest set of solutions is intractable, in general. N

Example 4.2.2. More concretely, in Figure 4.1 we show the results of a simple
experiment on the Renault Mégane configuration problem [1], which has been
compiled in an automaton. This problem has 99 variables and about 2.8 × 1012

solutions. We built inconsistent user queries that instantiated 40 randomly chosen
variables with a random value. We ran 20 such queries. For each query, we
generated the complete set of maximal relaxations using the Dualize & Advance
algorithm [3]. Using the automaton we could efficiently count the number of
solutions consistent with each relaxation. In Figure 4.1, we plot, for each maximal
relaxation, its length and the number of solutions of the problem consistent with
it. It is clear from this figure that the number of solutions of a maximal relaxation
is not necessarily correlated with its length. N
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Figure 4.1: Results from a simple experiment showing that number of solutions
of a maximal relaxation is not necessarily correlated with its length.

It is also important to understand how maximal relaxations partition the solu-
tions to the background. In particular, it is important to note we cannot cover the
same set of solutions with fewer maximal relaxations.

Definition 4.2.3 (Solution Set). Given a constraint problem P def
= 〈B,U〉, a subset

C ⊆ U , the solution set of C, denoted sol(C), is the set of solutions to B ∪ C.
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Proposition 1 (Disjoint Solutions between Maximal Relaxations). Given a con-

straint problem P def
= 〈B,U〉 that is inconsistent, let R1 and R2 be two maximal

relaxations of P . We have sol(R1) ∩ sol(R2) = ∅.

Proof. Let s ∈ sol(R1) be a solution consistent with R1. Suppose s ∈ sol(R2)

too. In particular, s ∈ sol(R2 \R1), i.e. s must be consistent with any constraint c
in R2 \R1. As R1 and R2 are incomparable, R2 \R1 is not empty, and thus there
must exist at least one such constraint c. Then R1 ∪ {c} has at least one solution
s, which is in contradiction with R1 being maximal.

This tells us that, from the moment we decide not to consider some maxi-
mal relaxations, we are necessarily excluding some potential solutions. In other
words, if we decide not to show the user all maximal relaxations, we are pre-
venting him access to some solutions. As it is indeed unreasonable to show all
possible maximal relaxations, as it has been discussed in the previous chapter, in
order to maximise acceptance of a maximal relaxation, care has to be taken not
only concerning the constraints it involves, but more generally the solutions it al-
lows. However, it is not possible or desirable to reason at the solution level. On
the one hand, we have to note that some solutions to the background – i.e. some
possible products – will be left out by any maximal relaxation, and, therefore, if
the user wants to reach one of these solutions, more user constraints, if not all,
have to be relaxed. This is not an option however, as we do not want to give up on
the notion of maximal relaxation, i.e. on the idea that we want to satisfy as many
user constraints as possible. On the other hand, even if the desirable solutions are
actually covered by some maximal relaxations, we have to keep in mind that the
number of solutions covered by any maximal relaxation can sometimes be very
high. This implies that it is not possible to show all the solutions of a maximal
relaxation for the purpose of assisting the user in his decision of accepting the
maximal relaxation or not.

This leads to the idea of aggregating the information on solutions by con-
sidering instead the number of solutions. More specifically, we propose to rank
maximal relaxations depending on the number of solutions they allow, or their
solubility for short. The solubility can serve as a preference metric: the higher
the number of solutions for some maximal relaxation, the more preferred it is,
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in the sense that it leaves the user with the largest choice. On the other hand,
a low solubility has also an interest. In their work on partial constraint satisfac-
tion, Freuder and Wallace [53] defined the distance between two problems by the
number solutions not shared between the two problems. The problem containing
the relaxation with lowest solubility is, according to this metric, the closest to the
original inconsistent problem. In this regards, it is the closest to the user’s initial
intentions.

4.2.1 The Basics of Automaton-based Configuration

As we explained in Section 2.4.4, Chapter 2, in a configuration context, a typ-
ical approach is to compile the problem into a minimal deterministic finite state
automaton (MDFA), or simply an automaton, in order to facilitate interactive solv-
ing [134, 1].

Different operators are efficiently implemented on problems represented as
MDFAs [134, 1]. To give a few examples, given an automaton, one can: compute
its negation (i.e. the automaton representing the negation of the problem repre-
sented by the input automaton); count the number of solutions of the problem it
represents; answer entailment and consistency queries; and given two automata,
one can compute the conjunction or the disjunction of the two automata. By ef-
ficiently, we mean that the running times of those operators depend only in the
size of the automata themselves, and not the size of the problem they represent.
On instances where the reduction factor between the size of the automaton and
the number of solutions of the problem it represents is exponential, this means the
operators will run exponentially faster than a naive algorithm.

Using these operators it is very easy to compile a problem consisting only of
table constraints, i.e. constraints given in terms of their list of allowed or forbidden
tuples. For a given constraint, we can compile it by converting each of its tuples
into an automaton (in a straightforward way) and then applying the disjunction
between each of them, and negating the result in the case of constraints defined
with forbidden tuples. Then, all the constraints can be combined by applying the
conjunction operator. Note that the size of the output automaton of the conjunction
and disjunction automaton can theoretically be exponentially related to the size of
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the input automata. Compilation to an MDFA works well for those cases where,
in practice, the automaton obtained by the successive incorporation of constraints
through conjunction increases in a tractable way.

4.2.2 Compiling a Single Constraint Into an MDFA

Relying on a constraint being extensionally defined is often too restrictive. In
fact, a constraint might have a very high number of solutions, while still having a
good automaton representation. A good compromise can be to rely simply on an
arc-consistent propagator. In that case, an automaton can be greedily constructed,
by adding transitions level by level, each of them being guaranteed to reach a
final state (the automaton is indeed representing the backtrack-free search-tree).
Additionally, it is possible to maintain a minimal automaton at each stage, thus
avoiding an intermediate result having a size equal to the number of solutions of
the constraint. That procedure is still not ideal, as we would like to operate at a
declarative level, and not at the resolution level, to which propagation pertains. In
this situation, the user can specify a constraint at the modelling level, which, for
example, could be modelled with a set of intensional constraints, and the compiler
will build an automaton that represents it. As a side effect, this has the added
benefit of providing a generic arc-consistent propagation procedure for constraints
that do not already have one, that will be efficient when the resulting automaton
has a reasonable size (particularly against generic GAC schemes operating on
table constraints [6]). We show an algorithm that performs this task, using the
ideas introduced by Daciuk et al. [17].

Algorithm 5 compiles a single constraint into an automaton. As we want to
keep the space usage as low as possible, not only in the end but also during the
computation, the algorithm always maintains an (almost) minimal automaton.

In order to obtain the solutions of C, we must solve a problem P consisting
(semantically at least) of the single constraint C, and search for all its solutions.
For that, we are only assuming that we have one way of solving this constraint,
and that solutions can be output in increasing lexicographic order. For example,
this could mean that we have an equivalent decomposition, or that we have a
propagator that achieves some weaker level of consistency. In practice however,
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Algorithm 5: CONSTRAINTCOMPILATION

Data: A constraint C
Result: A minimal deterministic automaton representing all the solutions

of C
P ← 〈scope(C), {C}〉
A ← empty automaton with only an initial state q0

while exists next solution of P do
t← next solution of P in increasing lex. order
tp ← common prefix in A
q ← δ(q0, tp)
ts ← t \ tp
if hasChildren(q) then MinimiseLastWord(q)
addSuffix (q, ts)

MinimiseLastWord(q0)

function MinimiseLastWord(q)
qLast ← lastChild(q) // the successor with the

biggest value
i← level(qLast)
if hasChildren(qLast) then MinimiseLastWord(qLast)
if ∃q′′ ∈ Q(i) such that equiv(q′′, qLast) then

lastChild(q)← q′′

delete(qLast)

in a typical CP solver, most constraints will have an arc-consistent propagator,
so that resolution will consist indeed in a single backtrack-free traversal of the
solution tree. In particular, for a table constraint, this algorithm will effectively be
equivalent to adding each tuple one by one to the current automaton.

The invariant that is kept during the procedure is that, before the addSuffix

call, the current automaton is minimal. After the suffix is added (as a new disjoint
path in the automaton), at the beginning of next iteration, we know that noth-
ing will change that will affect state equivalence, for the part of this last suffix
starting from q to the end of the automaton. Therefore, at that point, we can
merge the states on this path with equivalent existing ones, which is what the
MinimiseLastWord function does.
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4.2.3 Tree-Driven Automata

We briefly described how CSPs can be compiled into MDFAs. Unfortunately,
even if MDFAs reduce the space required to represent the solution set of real-
world configuration problems, to levels that make it an acceptable compilation
strategy, they still suffer from extremely high memory usage and long compilation
times. Fargier and Vilarem [43] introduced the concept of tree-driven automata to
improve the achieved compactness. Roughly, the idea is, instead of representing
the whole solution set of the problem, to exploit independence between parts of
the problems in order to represent smaller parts of the problems and only encode
how these parts combine to each other1. This is particularly relevant to configu-
ration problems, which are indeed structured in terms of loosely interconnected
components, as we noted in Chapter 2. For all practical applications throughout
this dissertation, we used our own-developed CSP compiler, which compiles any
problem modelled in Choco [87] to a tree-driven automaton. For this reason, we
will briefly and informally present this concept here, illustrating the concepts with
the help of Figure 4.2.

Example 4.2.3 (Tree-Driven Automaton). Consider a problem defined on three
variables X1, X2, X3, with two constraints X1 = X2 and X1 ⇒ X3. There are
three solutions to this problem: 000, 001, 111. Figure 4.2 shows a support for this
problem, and the tree-driven automaton representation of this problem for this
support. The dashed part of the tree-driven automaton corresponds to the solution
001.

Definition 4.2.4 (Support). A support for a problem is a directed tree, the edges
of which are labelled by the variables of the problem (where each variable is
associated with exactly one edge of the tree). This tree gives rise to a partial
order ≤ between the variables of the problem, where Xi ≤ Xj iff there is a
path from the edge labelled with Xi to the edge labelled with Xj . We impose an
additional restriction that for each constraint, the variables in its scope must be

1The idea is conceptually similar to the idea, in databases, of breaking large database (i.e.
holding on a large set of variables) to smaller ones, by identifying functional dependencies, thus
avoiding redundant information being copied to many tuples in the original database – the original
database can still be generated by the join of the smaller tables without information loss [71].
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Figure 4.2: An example tree-driven automaton and its associated support.

totally ordered by the order ≤, or, in other words, that all the edges labelled with
the variables of the constraint must be on one path of the tree.

In the example at Figure 4.2, the support is a tree with four nodes, rooted at
node 0, such thatX1 ≤ X2 andX1 ≤ X3. X1, X2 are on the same path indeed, and
X1, X3, the scope of the second constraint, are on a same path too, but different
from the first. X2 and X3 are incomparable, and they indeed do not appear in any
common constraint.

Note that this generalises the concept of automaton previously introduced, in
that it does not require a total order to be defined between all the variables of the
problem, but instead only a partial order satisfying some additional conditions.

Definition 4.2.5 (Tree-Driven Automaton). A tree-driven automaton for a prob-
lem and an associated support is a labelled directed graph such that:

• Every node (or state, to follow automaton terminology) corresponds to a
node of the support,

• there is an edge (or transition) between two nodes only if there is an edge
between the corresponding nodes in the support, and
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• every solution to the problem represented by the tree-driven automaton cor-
responds to a subgraph of the tree-driven automaton that is isomorphic with
the support.

This generalises the concept of automaton previously introduced, which can
be referred to as a linear automaton (the support of which contains just one single
path). The level of a state is the node of the support it corresponds to. The level
of a transition is the level of its destination state. Every node in the support other
than the root corresponds to a unique variable.

In the example at Figure 4.2, state I is of level 0, corresponding to the root
0 of the support, and is therefore the initial state. State F1 and F2 are of level
respectively 2 and 3, corresponding respectively to the leaf nodes 2 and 3 of the
support, and are therefore final states. q1 and q2 are both of level 1. The transition
between I and q1, labelled by 0, is of level 1, and therefore supports X1 = 0. The
transition between q1 and F2 labelled by 0 supports X3 = 0. The dashed subgraph
of Figure 4.2 corresponds to the solution 001.

It is not easy to see on simple examples how tree-driven automata allow for a
more compact representation than classic linear automata. We show in Figure 4.3
the constraint graph of a simple problem that acts as a basic pattern. Bigger prob-
lems can be recursively defined by appending by its root a copy of the basic pattern
to any leaf node. These problems admit a straightforward support that allow for a
tree-driven automaton representation that grows polynomially in size as the prob-
lem size grows, whereas any linear automaton representation (i.e. for any total
order of the variables of the problem) grows exponentially in size as the problem
size grows.

6=
6= 6=

6=

6=
6=

Figure 4.3: A problem that illustrates the compactness of tree-driven automata
against linear automata

All the usual properties on automata, such as determinism and minimality, can
be generalised to tree-driven automata in a straightforward way. Additionally, all
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usual operators on automata, such as union and intersection, can be generalised
to tree-driven automata. Therefore, the compilation procedure can operate as de-
scribed for linear automata, once a support has been extracted.

In practice, it is easy to extract a support from a CSP that is acyclic, by con-
verting its join-tree to a support (see Fargier and Vilarem [43] for the procedure).
The compilation procedure will be straightforward and will have a worst case run-
ning time and result size that is exponential only in the tree-width of the CSP, but
polynomial in the size of the CSP (which is an effect of a well-known result about
the tractability of acyclic CSPs [50]). For non-acyclic CSPs, one has first to find a
cluster-tree decomposition of the constraint graph – as first explained by Dechter
and Pearl [34]. The compilation can be performed on the resulting acyclic CSP
as just outlined, and the performance will depend on the width of the decompo-
sition. It is therefore important to find a good decomposition, i.e. one with the
lowest possible width, or equivalently that is the closest to the tree-width of the
CSP. As we mentioned in Section 2.6.1 of Chapter 2, configuration problems are
structured, in the sense that they have a low tree-width. Therefore, they can be
efficiently compiled into tree-driven automata. It has to be noted though that it
is generally intractable (it is NP-Hard [2]) to determine the cluster-tree decom-
position with the lowest width, but good heuristics exist to find one that is close
enough [132, 8, 86]. On the real-world configuration problems we compiled, we
observed a reduction in size and compilation time by a factor ranging between 10
and 100.

4.3 A Unifying Framework: the Compilation Map

Although automata, and their boolean counterparts BDDs (Reduced Ordered BDDs
to be exact), are becoming widely used in real-world applications, other ways of
compiling and representing a problem exist. An extensive survey of such represen-
tations for propositional formulas has been carried out by Darwiche and Marquis
[22], which classifies the different representations from the perspective of their
compactness, while showing which operations each representation efficiently sup-
ports. The fact that this work concerns propositional formulas means it does not
apply directly to our framework. However, it does capture the complexity, com-
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pactness and representation power of each language, and gives a methodology to
compare and abstract different CSP compilation methods by relating them to lan-
guages in the Compilation Map. To quote Darwiche and Marquis, “[this map]

also provides an example paradigm for studying and evaluating further target

compilation languages” [22], which is precisely our motivation for introducing
their work here.

After presenting the Compilation Map, we will study, in this rest of this chap-
ter and dissertation, how non-boolean compilation methods relate to the languages
introduced in the Compilation Map, and conversely how some languages intro-
duced in this map can be generalised to our setting.

4.3.1 Compiling Propositional Formulas

The Compilation Map [22] presents a set of compiled representations of a prob-
lem, referred to as target compilation languages. Only boolean problems are con-
sidered. The most general language is NNF (for Negation Normal Form). A
sentence Σ in NNF, holding on the set of variables vars(Σ), can be represented
as a directed acyclic graph (DAG), where the leaf nodes are labelled with> (true)
or⊥ (false), X , ¬X (with X ∈ vars(Σ)), and the internal nodes are labelled with
∧ or ∨, and can have arbitrarily many children.

Example 4.3.1. Figure 4.4 shows an example (taken from Darwiche [19]) of a
DAG representing an NNF for the odd-cardinality function 2. This function holds
on four boolean variables X1, X2, X3 and X4 and is satisfied when there is an
odd number of variables set to true. The formula reads as a big disjunction of the
form: ((X1 ∧ ¬X2) ∨ (¬X1 ∧X2)) ∧ ((X3 ∧X4) ∨ (¬X3 ∧X4))

∨
· · · . N

Additionally, some key properties are defined that a sentence can satisfy.

decomposability An NNF satisfies decomposability if the children of every and-
node hold on disjoint sets of variables, i.e. if for every and-node ∧iαi,
vars(αi)∩ vars(αj) = ∅, for i 6= j. Every and-node of Figure 4.4 satisfies
this property and therefore this sentence satisfies decomposability.

2We use a bold-face font to refer to a language, e.g. NNF, while a regular font is used to denote
a formula in a specific language, e.g. NNF.
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Figure 4.4: An example NNF for the odd-cardinality function.

determinism An NNF satisfies determinism if the children of every or-node are
mutually inconsistent, i.e. if for every or-node ∨iαi, αi ∧ αj |= ⊥, for
i 6= j. Every or-node in Figure 4.4 satisfies this property and therefore this
sentence also satisfies determinism.

smoothness An NNF satisfies smoothness if the children of every or-node hold
on the same set of variables, i.e. if for every or-node ∨iαi, vars(αi) =

vars(αj), for i 6= j. The sentence of Figure 4.4 also satisfies smoothness.
It is important to mention that smoothness can be enforced on any NNF. In
fact, any child αi of an or-node C = ∨iαi such that vars(αi) ⊂ vars(C)

can be replaced by αi∧(∧X∈vars(C)\vars(αi)(X∨¬X)). This preserves equiv-
alence, decomposability, determinism, and results in a new sentence whose
size is O(|Σ|.|vars(Σ)|). From a practical perspective, this means that any
language is equivalent to its smooth version as far as its succinctness and
the satisfiability of queries are concerned.

Classic Reduced Ordered BDDs [10], which are effectively equivalent to au-
tomata restricted to boolean domains, can be represented under this framework by
imposing some additional properties, which essentially describe the form of or-
nodes. Figure 4.5 shows a BDD in both its usual representation (where a plain line
stands for a transition of value 1 and a dashed line for a transition of value 0) and
its NNF representation, where the decision nodes of the BDD are encoded by an
or-node of the form (X ∧α)∨ (¬X ∧ β). On any path from the root to a terminal



4.3. A UNIFYING FRAMEWORK: THE COMPILATION MAP 95

node of a BDD, a variable should appear only once. This can be obtained by en-
forcing decomposability on the associated NNF. Finally the usual properties can
be described in terms of the NNF framework to define Reduced Ordered BDDs.

¬X1X2

X1

1 0

X2

∧ ∧

∨

> ⊥

∧

X2

∧ ∧ ∧

X2¬X2 ¬X2

∨∨ X1

Figure 4.5: A simple BDD and its NNF representation

We introduce here some of the languages defined by Darwiche and Mar-
quis [22]. The languages DNNF, d-NNF and s-NNF are the subset of NNF that
satisfy decomposability, determinism, smoothness, respectively. The language
d-DNNF is the subset of DNNF that also satisfies determinism. The languages
s-DNNF, sd-DNNF, sd-NNF are corresponding subsets that also satisfy smooth-
ness. The language OBDD< is the language corresponding to Reduced Ordered
BDDs, and is a subset of d-DNNF. Some other languages are worth mentioning
here. DNF is the subset of DNNF containing DNF sentences, CNF is the set of
CNF sentences, and PI (for prime implicates) is the subset of CNF of the sen-
tences represented as the conjunction of their prime implicates. Finally, MODS
is the language where sentences are represented by their set of models. It is the
subset of DNF satisfying determinism and smoothness.

Those languages can be ranked according to their succinctness. Informally,
a language L1 is at least as succinct as L2 if any sentence in L2 is equivalent to
a sentence in L1 that is at least as small. L1 is strictly more succinct, or, sim-
ply, more succinct, than L2 if L2 is not at least as succinct as L1. This relation
between languages is fundamental, as one typically wants to find the most suc-
cinct language that satisfies some desired properties. The relation between all the
aforementioned languages in terms of succinctness is given in Figure 4.6, where
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NNF is the most succinct language. A plain arrow links a language L1 to another
language L2 when L1 is more succinct than L2. When no arrow links L1 to L2

(and no relationship can be inferred from transitivity), L1 is not more succinct
than L2. When a dotted arrow links L1 to L2, the relationship is unknown. For
example, MODS is not more succinct than PI, but it is unknown whether PI is
more succinct than MODS, though we can easily be tempted to conjecture it is
not, and see PI and MODS as the two least succinct languages.

d-DNNF

NNF

PI

CNF

OBDD<

MODS

DNNF

DNF

Figure 4.6: The succinctness of the different languages; more succinct languages
are higher up.

While a language might be more succinct than another, it might provide for
efficient answers to fewer questions. Darwiche and Marquis [22] introduce the
term of query to refer to those “questions”. This can be misleading, as we already
introduced this term for a set of user constraints, of course, an entirely different
concept. Nevertheless, we decide to preserve the terminology and we will use the
same term with its two meanings, making the effort to avoid any lack of clarity
and making sure the proper concept is understood.

A query allows us to efficiently retrieve information from a given sentence.
A language satisfies the query CO (Consistency) if there exists a polynomial al-
gorithm that decides the consistency of any sentence in it; it satisfies CT (Model
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counting) if there exists a polynomial algorithm that counts the number of solu-
tions of any sentence in it; it satisfies ME (Model enumeration) if there exists an
algorithm that enumerates the models of any sentence in time polynomial in its
size and the number of models.

A transformation transforms a sentence into another one. We will only recall
one such transformation. A language satisfies the transformation CD (Condition-
ing) if there exists a polynomial algorithm that maps a sentence Σ of that language
and a term γ to a sentence, denoted Σ|γ, in the same language, equivalent to Σ∧γ.
Queries, and transformations, are said not to be supported when no polynomial al-
gorithm exists unless P=NP.

4.3.2 Generalisation to Non-Boolean Settings

Although the Compilation Map only involves representations for propositional
formulas, in our setting we are interested in CSP compilation methods. This
methodology allows us to formally compare different compilation methods, by
attaching them to their NNF counterpart, consisting of their restriction to boolean
domains. Conversely, it can be interesting to define new compilation methods by
generalising an NNF language to non-boolean domains.

Let us briefly mention the link between the previously mentioned compila-
tion methods and the Compilation Map. Automata restricted to boolean domains
correspond to Reduced Ordered BDDs, and therefore correspond to the OBDD<

language. Conversely, by design BDDs encode boolean functions. Non-boolean
problems are dealt with either by encoding them to an equivalent boolean model,
using standard boolean encodings of multi-valued variables [137], and represent-
ing it by a BDD, where the log encoding appears to give the most compact re-
sult [62], or by generalising BDDs to multivalued decision diagrams (MDDs) [82].

There is a strong connection between tree-driven automata and dDNNF. This
connection is better seen by considering AND/OR Multi-valued Decision Dia-
grams, or AOMDDs [98]. Clearly, AOMDDs and TDAs are equivalent, and can
be considered as two independently discovered and differently presented versions
of the same concept. Clearly too, AOMDDs are a subset of dDNNF. However,
they are a strict subset. An additional property has to be enforced on dDNNF,
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which has been formalised as structured decomposability [105]. Very informally,
this imposes and-nodes to be in correspondence with a node in a tree defining a
partial order between the variables of the formula. This generalises the ordered
property on BDDs, exactly in the same way the support of a TDA generalises
the order of an automaton. It is interesting to note that apparently the c2d com-
piler [21] that compiles a CNF to a DNNF implicitly enforces determinism and
structured decomposability.

Finally, the generalisation of the PI language to non-boolean problems will be
dealt with in the next chapter.

4.4 Enriching the Compilation Map with Explana-
tion Related Queries

In this section, we introduce new queries relevant to explanation generation. We
first show in an algorithmic way how these queries can be computed on automata.
We then formalise these queries in the terms of the Compilation Map formalism,
and we study how to generalise our algorithms beyond automata so that more
succinct representations can be used. We present some sufficient conditions that
the compiled representations must satisfy in order to guarantee that efficient algo-
rithms exist for finding the kinds of relaxations we study in this chapter.

4.4.1 Algorithms for Automata

We present two novel algorithms for finding relaxations that are consistent with
either the largest or fewest number of solutions, based on an automaton represen-
tation of the configuration problem. For a particular user query, comprising a set
of unary constraints that restrict the domain of each variable, a valuation φ(t) is
associated with each transition t of the automaton: φ(t) = 0 meaning that this
transition supports a valid instantiation (i.e. is labelled by an allowed value) and
φ(t) > 0 meaning it does not. Thus, to each complete path from I to F there cor-
responds a relaxation of the user’s constraints, composed of the user’s constraints
supported by the transitions of the path with a valuation of 0.
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If we restrict the valuation of the transitions only to 1 in case of a violation,
the cost of a path from the source to the sink, which is the sum of the valuations
of the transitions it is composed of, corresponds to the number of user constraints
violated. If no such path of cost 0 exists, then the set of user constraints is incon-
sistent. A procedure is described in [1] that associates with each transition t of an
automaton a cost cost(t) of the best path (i.e. of minimal cost) of the automaton
that uses t. This allows us to explore only the shortest paths in the automaton
and, thus, only the longest relaxations of the user’s constraints. Therefore, this
can give our first exact algorithm (Algorithm 6) that finds, amongst all the longest
relaxations, the one that is consistent with the largest or the smallest number of
solutions, in time linear in the size of the automaton.

Algorithm 6: Finding a most or least soluble longest relaxation.
Data: An automaton updated for a user query.
Result: An optimally soluble longest relaxation.

relax (I)← ∅1

nsols(I)← 12

for i← 1 to n do3

forall q′ ∈ Q(i) do4

candidates ← ∅5

forall t ∈ in(q′) such that t is optimal do6

q ← in(t)7

if φ(t) = 0 then R← relax (q) ∪ {ci}8

else R← relax (q)9

if R 6∈ candidates then10

candidates ← candidates ∪ {R}11

nsols(R)← 012

nsols(R)← nsols(R) + nsols(q)13

nsols(q′)← optR∈candidates nsols(R)// opt ∈ {max,min}14

relax (q′)← R ∈ candidates such that nsols(R) = nsols(q′)15

return relax (F )16

Obtaining the most, or least soluble, longest relaxation is simply a matter of
selecting the appropriate relaxation at line 14. Let us consider the max case; a
similar presentation can be used for the min case. Algorithm 6 associates with
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each state q′ of the automaton, the most soluble longest relaxation restricted from
I to q′ (the automaton “to the left of” q′), stored in relax (q′), with nsols(q′) storing
the corresponding number of solutions. This is valid because of the following
property.

Proposition 1. After the end of the for loop starting at line 6, the value of nsols(R)

is the number of solutions of the part of the automaton from I to q′ that supports

R.

Proof. In the implementation of the algorithm, at some state q′, equal relaxations
must be uniquely identified, and thus, for the same relaxation R, nsols(R) takes
into account all ways to reach R, i.e. it is the sum of the numbers of solutions of
all the known occurrences ofR∩{c1, . . . , ci−1}, which, by induction, are assumed
to admit a maximal number of solutions.

The set candidates , after the iteration (starting at line 6), will contain all the
longest relaxations ending at q′. At this point, we can choose the most soluble
relaxation, as a less soluble one could not result in a longer relaxation globally
more soluble. As the size of candidates is bounded by the number of states of the
previous level, this algorithm runs in time linear in the size of the automaton.

However, restricting ourselves to the longest relaxation can prove to be too
strong. For example, the plot in Figure 4.1 suggests that there is quite a concen-
tration of long maximal relaxations, but very few of maximum length. Focusing
on candidates amongst the maximal (by inclusion) relaxations seems to be a good
trade-off between solubility and maximality. Therefore, we can adapt the previ-
ous algorithm to explore the whole automaton so as to consider all relaxations.
The difference is that we cannot now greedily keep partial optimal solutions, be-
cause what is locally a maximal relaxation may not eventually be maximal. For
example, in the automaton of Figure 2.10, suppose we post three unary constraints
c1, c2, c3 forcing every variable to be 0. Two maximal relaxations start in the sec-
ond state of level 1: c2 and c3. The first has three solutions while the second
has only two. But the first will be, at the next step, included in the relaxation c1c2,
which has three solutions, while c3 will still be a maximal relaxation, but with four
solutions. Therefore, we need to maintain for each state the list of all the max-
imal relaxations. This procedure has, therefore, a complexity linear in the size
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Algorithm 7: Finding all maximal relaxations.
Data: An automaton updated for a user query.
Result: All maximal relaxations and their number of solutions

relax (I)← {∅}
nsols(I, ∅)← 1
for i← 1 to n do

forall q′ ∈ Q(i) do
forall t ∈ in(q′) do

q ← in(t)
forall R ∈ relax (q) do

if φ(t) = 0 then R′ ← R ∪ {ci}
else R′ ← R
relax (q′)← relax (q′) ∪ {R′}
nsols(q′, R′)← nsols(q′, R′) + nsols(q, R)

Sort relax (q′) by decreasing cardinality
forall R ∈ relax (q′) do Remove in relax (q′) subsets of R

return relax (F )

of the automaton times the number of maximal relaxations. The corresponding
modification is presented in Algorithm 7.

This is an ad-hoc procedure that lists all maximal relaxations of a query. How-
ever, being specifically designed for our context, it can be more efficient than
generic algorithms, such as Dualize & Advance [3] (which can be theoretically
exponential in the number of maximal relaxations), and gives, at the same time,
the number of solutions of each relaxation. In this algorithm relax (q) is a set of re-
laxations, and for each of them, say R, nsols(q, R) stores its number of solutions.
At lines 12 and 13, any relaxation that is a subset of another is removed, so as to
keep only the maximal elements. As the size of the list relax (q) is bounded by the
total number of relaxations, the complexity is linear in the size of the automaton
times the number of relaxations.

4.4.2 Generalisation to Other Compiled Representations

We define two new queries: SES (Shortest exclusion set, in Section 4.4.2) and MR
(Maximal Relaxation, in Section 4.4.2). Table 4.1 summarises the results known
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for the queries previously introduced and our contribution of two new queries.
The support of those two queries by PI is left unanswered; it will be dealt with in
the next chapter.

Table 4.1: The queries supported by the introduced languages

L CO CT ME CD SES MR
NNF × × × X × ×

DNNF X × X X X X
d-DNNF X X X X X X
FBDD X X X X X X
OBDD X X X X X X

OBDD< X X X X X X
DNF X × X X X X
CNF × × × X × ×

PI X × X X ? ?
MODS X X X X X X

Counting solutions

Counting the number of solutions can be efficiently performed on d-DNNF [19].
We recall here the function that counts the number of solutions of an sd-DNNF,
adapted to take into account ⊥ and > nodes. Note that because of smoothness,
a > node can appear only as a child of an and-node, making it therefore neutral
with respect to the conjunction, hence its value. Decomposability is required for
case (4.5): the set of models of every child of the and-node hold on disjoint sets
of variables, so they combine by simple product. Determinism and smoothness
are required for case (4.6): the set of models of every child of the or-node hold
on the same set of variables and are mutually disjoint, so the overall number of
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solutions is simply the sum.

count(>) = 1 (4.1)

count(⊥) = 0 (4.2)

count(l) = 1, if ¬l 6∈ S (4.3)

count(l) = 0, if ¬l ∈ S (4.4)

count(∧iαi) =
∏
i

count(αi) (4.5)

count(∨iαi) =
∑
i

count(αi) (4.6)

This methodology is the skeleton to define other functions on DNNF.

Longest relaxations

Let Σ be a sentence. A set of user choices on it can be defined as a term S, i.e.

an assignment of a subset of vars(Σ). If Σ ∧ S is inconsistent, then we can find
a longest relaxation of S, i.e. a way to satisfy the largest number of assignments,
or equivalently a shortest relaxation set of S, i.e. a way to give up on the fewest
possible assignments. Formally, for a sentence Σ and a query S, ses(Σ, S) is the
size of a shortest exclusion set. In particular, Σ∧S is consistent iff ses(Σ, S) = 0.
Also, if Σ is inconsistent, ses(Σ, S) is undefined. We must consequently assume
that only consistent nodes are considered. Practically, because of decomposability,
inconsistent nodes are only⊥-nodes, and-nodes that have at least one inconsistent
child, and or-nodes that have only inconsistent children.

We define a new query SES: a language L satisfies SES iff there exists a
polynomial algorithm that computes ses(Σ, S) for every formula Σ from L and
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every term S.

ses(>, S) = 0 (4.1)

ses(l, S) = 0, if ¬l 6∈ S (4.2)

ses(l, S) = 1, if ¬l ∈ S (4.3)

ses(∧iαi, S) =
∑
i

ses(αi, S) (4.4)

ses(∨iαi, S) = min
i
ses(αi, S) (4.5)

Case (4.4) only works with decomposable languages. In fact, if the exclusion sets
of two children of the and-node hold on variables that do not overlap, they can be
combined in a new one whose size is the sum. However, if the variables overlap,
no greedy choice can be made, and different possibilities must be tested. Case
(4.5) needs only smoothness: the exclusion sets of the children of the or-node
hold on the same set of variables, it is just a matter of choosing the optimal one.
Any language satisfying decomposability supports SES, as for example DNNF,
d-DNNF, OBDD<. On the other hand, this definition does not hold on non-
decomposable languages.

Obviously, any language that does not support CO cannot support SES. In-
deed, every language supports CD, and ses(∆, γ) = 0 iff ∆|γ is consistent. No-
tably, CNF does not support CO. However, PI is the only non decomposable lan-
guage that supports consistency. It remains, therefore, a question to know whether
it supports SES or not.

Once ses(Σ, γ) is known, one or all the shortest exclusion sets can be found.
The only point of choice is at an or-node: children that have a minimal value
correspond to the shortest exclusion sets, and thus, we only need to explore those.
If we rely on an oracle for counting the number of solutions of a given exclusion
set (like a complete enumeration or an incomplete estimation), enumerating the
shortest exclusion sets to pick a most soluble longest relaxation is enough. On
the other hand, for languages satisfying determinism, we can also combine the
computation of one shortest exclusion set with the solution counter to find a most
soluble longest relaxation.

Letmse(Σ, S) be the function that returns the number of solutions of the most
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soluble shortest exclusion set. For the sake of clarity, we do not keep track of the
corresponding exclusion set at each level, but of course that can be easily done.
mse(Σ, S) is defined as follows:

mse(>, S) = 1 (4.1)

mse(l, S) = 1, if ¬l 6∈ S (4.2)

mse(l, S) = 0, if ¬l ∈ S (4.3)

mse(∧iαi, S) =
∏
i

mse(αi, S) (4.4)

mse(∨iαi, S) = max
i such that ses(αi,S)=ses(∨iαi,S)

mse(αi, S) (4.5)

Algorithm 6 (Section 4.4.1) is effectively a special application of this proce-
dure for automata (compare lines 6 with the condition in Case (4.5) and 14 with
the selection of the maximal child in Case (4.5)). Of course, we achieve, in the
same way, a minimally soluble longest relaxation by changing the max of Case
(4.5) to a min.

Maximal Relaxations

We now consider the enumeration of all maximal relaxations. A language L sat-
isfies MR if, for each Σ of L and each query S, there exists an algorithm that
enumerates all the maximal relaxations of Σ ∧ S in time polynomial in the size
of Σ and the number of maximal relaxations. Similar to the previous case, the
set of all maximal relaxations can be found in time linear in their number in all
languages satisfying decomposability. Moreover, we can observe again that any
language that does not satisfy CO does not satisfy MR, and thus there only re-
mains the question about PI, which is not decomposable but supports CO.

For any decomposable sentence Σ, the function mr(Σ, S) defined as follows.
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returns the set of all maximal relaxations of Σ ∧ S:

mr(>) = 1 (4.1)

mr(l) = {{l}}, if ¬l 6∈ S (4.2)

mr(l) = {∅}, if ¬l ∈ S (4.3)

mr(∧iαi) = ⊗imr(αi) (4.4)

mr(∨iαi) = simplify(∪imr(αi)) (4.5)

where R ⊗ R′ = {R ∪ R′|R ∈ R ∧ R′ ∈ R′} and simplify(R) = {R ∈
R|∀R′ ∈ R R 6⊂ R′}, i.e., we retain only set-wise maximal elements. Assuming
we have determinism, we can associate with each maximal relaxation its number
of solutions, exactly in the same way we did for mse (which does not depend
at all on the nature of the relaxations). This way, we obtain a generalisation of
Algorithm 7.

It is very interesting to note that basically this shows that, under some assump-
tions, we have a procedure that lists all maximal relaxations of an over-constrained
problem that is theoretically more efficient than the best known one [3] (which is
not linear in the number of maximal relaxations). These assumptions are that we
post unary constraints, which is relevant in a configuration context, and that we
have a problem compiled at least in a DNNF. Again, compilation is common in
configuration, and DNNF is one of the most general, and succinct, forms to which
a problem can be compiled.

4.5 Empirical Evaluation

The objective of our evaluation was to demonstrate the effectiveness of Algo-
rithm 7 against a state-of-the-art algorithm for enumerating all maximal relax-
ations. We also considered two generic heuristic methods. We did not evaluate
Algorithm 6 since it is an exact algorithm, linear in the size of the automaton. We
based our experiments on the Renault Mégane Problem, also introduced in [1],
which was compiled to a tree-driven automaton. This problem has 99 variables
and over 2.8 × 1012 solutions. We built inconsistent sets of user choices that in-
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stantiated 40 randomly chosen variables with a random value. We ran 20 such
queries. For each of them, we generated the complete set of relaxations using the
state-of-the-art Dualize & Advance algorithm [3], for finding all maximal relax-
ations in a constraint satisfaction context, and compared its performance against
that of Algorithm 7 from this chapter. For both algorithms, we recorded the time
for each to find the most satisfiable maximal relaxation.

In addition to comparing Algorithm 7 against Dualize & Advance, we com-
pared two heuristic techniques in terms of the number of solutions of the best
relaxation they found. The goal is to find efficient heuristics for deciding which
user constraints to add first when building a maximal relaxation. Each heuristic
chooses as its next assignment the one that would reduce the number of solutions
of the remaining problem by the least (respectively, largest) amount (minimise/maximise
solution loss). The key measurements taken in each case were the number
of solutions of the relaxation found as well as the time taken to find that relaxation.

In Figure 4.7 we compare each method in terms of the solubility of the best
relaxation each found based on each query; note that we sorted the queries by the
solubility of the most satisfiable relaxation for the purposes of clarity. We observe
that the heuristics find very good relaxations, and very often an optimal one.
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Figure 4.7: Solubility of the best relaxation found by each method.

Concerning running time, the heuristics minimise/maximise solution

loss were prohibitively slow (i.e. not much better than a complete method). We,
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Table 4.2: Running times in seconds for both algorithms

times (seconds)
Algorithm minimum maximum average
Dualize and Advance [3] 255 726 416
Most soluble maximal relaxation (Algorithm 2) 0.4 1.3 0.8

therefore, do not discuss time results for these. The most interesting comparison
regarding time is between the Dualize & Advance algorithm and our exact algo-
rithm (Algorithm 7) for finding the most soluble maximal relaxation. Our results,
summarised in Table 4.2, show the obvious advantage of our algorithm. Not only
does our algorithm guarantee that it will find the maximal relaxation consistent
with the most solutions of the problem, it is over 500 times faster than a current-
state-of-the-art algorithm. Also, the times required by Algorithm 7, is of the order
of one second, ideal for interactive applications.

4.6 Related Work

As we saw in Chapter 2, much work has focused on finding all conflicts and all
relaxations. Our approach is complementary to these by providing a basis for se-
lecting from amongst the set of alternative explanations. Furthermore, it can be
seen as a specialisation of these algorithms to the case where consistency is deter-
mined using an automaton. Furthermore, the concept of minimum cardinality (i.e.

the minimum number of literals that are set to false in the models of a sentence),
although not conceptually identical to the one of relaxations, involves similar pro-
cedures on DNNF [18]. Our work establishes a link between this work and the
work on automata [1], and extends it.



Chapter 5

Towards Explanation-Oriented
Compilation

Summary. We present a new approach for compiling a problem into

a form that is particularly well-suited for the context of explanations.

This approach basically generalises the concept of prime implicate to

constraint problems. We show how domain consequences can be used

for computing different types of explanations, and explain the basics

of their computation. As a proof of concept, we set up a framework

under which further work will be carried out.

5.1 Introduction

In the previous chapter, we saw how the use of common compilation techniques
can, under a certain framework, drastically improve the performance of some
types of explanation-related queries. However, not all explanation queries can
be dealt with using classic compilation techniques. Indeed, most of compilation
techniques were not conceived with explanation generation in mind. Compiled
representations tend to encode, more or less explicitly, which values or sets of
values are consistent with other values or set of values; we can characterise them
as being “solution driven”. However, these representations do not tend to encode
which values or sets of values are in conflict with other values or sets of values;

109
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we can characterise these as being “conflict driven”). However, precise and ex-
tensive information about conflicts is key for determining explanations; obviously
explanations are only needed when inconsistency arises.

From this point of view, all the representations previously introduced are ruled
out. Consider a very simple example: given an inconsistent query, we might sim-
ply want to find a set of conflicting constraints of minimum cardinality. This is a
hard task indeed, and, as we will see, none of the previously seen representations
can provide any help in this regard. Another motivating example is provided by
representative sets of explanations. Deciding if a set of explanations is represen-
tative requires global knowledge of the conflicts of a problem and, as we saw in
Chapter 3, this is indeed the bottleneck of the algorithm we presented. Neverthe-
less, the effective power of compilation in reducing computation times (after an
initial time investment), and the high complexity typically associated with expla-
nation computation, give both a strong motivation for the development for a new
type of compiled representation, fulfilling the requirements set out above.

Our approach to deal with this objective will consist in computing in advance
all possible conflicts, as a compilation step. Of course, this must happen in an of-
fline phase, before a user made any choices. Therefore, the concept of “possible”
conflict does not refer to the concept of conflict as used throughout this disser-
tation, but rather to inherent incompatibilities between values of the variables of
the problem, independently from any user query. This idea, or more precisely the
complementary idea, is formalised by the concept of domain consequence, which
we define in Section 5.4.

5.2 Preliminaries

Following the practice observed throughout this dissertation, we recall first some
relevant notations. We focus on problems that are solved in an interactive manner,
in which we distinguish between a background set of constraints, B, that cannot
be relaxed, and a set of user constraints, U , that are added by the user as he finds
a preferred solution to B by finding a solution to B ∪ U , the constraint problem
we denote as P def

= 〈B,U〉. We assume that the set of background constraints, B,
is consistent. If B ∪ U is not consistent, we can provide an explanation of the
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inconsistency: a relaxation is a subset of U that is consistent with B, an exclusion

set is the complement in U of a relaxation, a conflict is a subset of U that is
inconsistent with B.

We recall the relationship between maximal relaxations, or rather minimal ex-
clusion sets, and minimal conflicts (Chapter 3, Proposition 2). A minimal conflict
is a minimal hitting set of all minimal exclusion sets, and a minimal exclusion set
is a minimal hitting set of all the minimal conflicts.

5.3 Prime Implicates and Explanations

In Chapter 4, amongst all languages introduced in the Compilation Map, one in
particular did not attract our attention, and this is PI, standing for Prime Impli-
cates. We will concentrate on this language in this chapter, and see how it can be
of interest for constraint problems, beyond proposition logic. But before, we need
to recall first some basic notions from proposition logic, along with some main
results from the literature.

Let Φ be a finite set of clauses in Conjunctive Normal Form (CNF) (or any
NNF for the purposes of the following definitions), and let C be a disjunction of
literals (a clause).

Definition 5.3.1 (Implicate). Let C and C ′ be two clauses.

• C is an implicate of Φ if Φ |= C.

• C subsumes C ′ iff C |= C ′.

A clause that is a tautology (i.e. a clause that contains a literal in both negated
and non-negated form) is a trivial implicate of any formula, and can be discarded.
In the following, we will consider only non-trivial implicates, i.e. we will assume
implicates to be non-trivial ones. For two non-tautology clauses, C |= C ′ is
equivalent to C ⊆ C ′, where the inclusion refers, with a slight abuse of notation,
to the inclusion of the set of literals of the clause.

A prime implicate is defined as follows.

Definition 5.3.2 (Prime Implicate). C is a prime implicate of Φ iff:



112 TOWARDS EXPLANATION-ORIENTED COMPILATION

1. C is a (non-trivial) implicate of Φ and

2. ∀C ′ which is an implicate of Φ, C ′ |= C ⇒ C |= C ′.

Taking into account that entailment and inclusion are equivalent for non-tautological
clauses (as noted above), an implicate, when considered as a set of literals, is a
prime implicate iff it is a set-wise minimal implicate, so that we can reformulate
Condition 2 of Definition 5.3.2 as:

∀C ′ ⊂ C,Φ 6|= C ′.

Finally, we introduce a notation to refer to the set of all prime implicates of a
formula.

Definition 5.3.3 (Set of Prime Implicates). Given a formula Φ, the set PI(Φ) is
the set of all the prime implicates, i.e.

PI(Φ) = {C/C is a prime implicate of Φ}.

Prime implicates, variants of them, and their generation, are used, amongst
other things, for consequence finding. Consequence finding is a general term that
refers to the task, in Artificial Intelligence, of deriving specific knowledge that
is intensionally contained in a knowledge base (see [96] for a survey). But of
particular concern to us is that they are of very valuable use in the context of
explanations (as first noted for diagnosis [28]).

In order to illustrate that, let us first slightly adapt the previously introduced
notations for the boolean case as follows. Suppose the background set of con-
straints is given by a single formula Φ, and a user query is a conjunction of literals
γ. The literals involved in γ are denoted by lit(γ). Suppose the query is inconsis-
tent, i.e. Φ ∧ γ |= ⊥. From the definition of a prime implicate, ∃C ∈ PI (Φ) such
that lit(¬C) ⊆ lit(γ). Indeed, Φ ∧ γ |= ⊥ ⇔ Φ |= ¬γ, which means that ¬γ is
an implicate of Φ. Because C is a prime implicate, ¬C is also a set-wise minimal
subset of the literals of γ that is inconsistent with Φ, and so corresponds to a min-
imal conflict of the query γ. And indeed, the subset of PI(Φ) of prime implicates
the literals of which are included in those of γ is the set of all the minimal conflicts
of the user query γ.
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Example 5.3.1. Let Φ be a CNF of the form (¬a ∨ b) ∧ (a ∨ d) ∧ (. . .). b ∨ d is a
prime implicate. That tells us that if we want ¬b∧c∧¬d∧ (. . .), it is inconsistent,
and a minimal conflict for that query is ¬b ∧ ¬d. N

Concerning the computation of prime implicates, most existing algorithms
rely on repeatedly resolving pairs of clauses. Consider two clauses of the form
x ∨ C and ¬x ∨ C ′. Then the resolvent C ∨ C ′ is another implicate, which has
been obtained by resolving the two clauses on x. If there exists another variable
y such that y ∈ lit(C) and ¬y ∈ lit(C ′), then C ∨ C ′ is a tautology, and should
not be kept. This is the basis of the Tison method [133]. Note that the method
described in [125] is the first one to claim a scalable method for representing and
computing the prime implicates of a problem.

Prime implicates are also interesting from a compilation viewpoint. The prime
implicates of a given CNF, provide a classic technique for representing this for-
mula in a canonical way. As such, it can be seen also as a compilation technique.
We presented the Compilation Map [22] in the previous chapter. Amongst the lan-
guages introduced, the one holding our attention in this context is the PI language,
characterised as follows:

Definition 5.3.4 (PI language). An NNF Φ belongs to PI iff Φ is in CNF and
Clauses(Φ) = PI(Φ), where naturally Clauses(Φ) is the set of clauses of Φ.

In the previous chapter, we explained what it means for a language to support a
query, and how different languages of the Compilation Map can support different
queries. It introduced some queries relevant to explanations. We recall that: SES
is the query that asks for the size of the shortest exclusion set of a given user
query; MR is the query that asks for the set of all maximal relaxations of a given
user query. We can now add the query SC that asks for the size of the shortest
conflict of a given query. We already explained that PI supports SC. We can now
complete Table 4.1 of Chapter 4 with the following results, showing that other
languages do not support SC, and showing the queries supported by PI PI.

Proposition 1. PI supports MR.

Proof. Given a query γ inconsistent with Φ, we first compute the set of
minimal conflicts C(Φ, γ) = {C ∈ Φ/lit(¬C) ⊆ lit(γ)} then com-
pute all the minimal hitting sets of the minimal conflicts R(Φ, γ) = {γ \
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e/e is a minimal hitting set of C(Φ, γ)}. Obviously the size of each of these two
sets (as well as the time to compute them) is linear in the size of Φ times the
number of maximal relaxations.

On the other hand, PI does not support SES. Before proving this, let us first
introduce some auxiliary notation.

Definition 5.3.5. Let S = {S1, . . . , Sn}, with Si ⊆ T , be a collection of subsets
of some set T . By definition, the CNF associated with S, denoted Φ(S), is the
CNF built such that:

• a literal xv is introduced for every element v ∈ T ;

• a clause Ci is built for every set Si ∈ S, with xv ∈ Ci iff v ∈ Si;

• Φ(S) =
∧
i≤nCi.

Consider now the following intermediate result.

Proposition 2. Let S = {S1, . . . , Sn}, with Si ⊆ T , be a collection of subsets of

some set T , and let Φ(S) be the CNF associated with it. We have Φ(S) ∈ PI.

Proof. A solution of Φ(S) corresponds to a hitting set of S. By definition, a (resp.
minimal) clause satisfied by every solution of Φ(S) is a (resp. prime) implicate
of Φ(S). A minimal clause satisfied by every solution of Φ(S) corresponds to a
minimal hitting set of all the hitting sets of S. Thus a minimal hitting set of all
the hitting sets of S corresponds to a prime implicate of Φ(S). But the minimal
hittings of the hittings sets of S are precisely the sets in S themselves. Thus the
clauses of Φ(S) are all and the only prime implicates of Φ(S).

Theorem 3. PI does not support SES unless P = NP .

Proof. Let S = {S1, . . . , Sn}, with Si ⊆ T , be an collection of subsets of T .
Consider the sentence Φ(S) ∈ PI, and the user query γ =

∧
v∈T ¬xv, where xv is

the literal corresponding to the element v ∈ T . Clearly Φ(S) ∧ γ is inconsistent.
A shortest exclusion set gives a smallest subset of literals we must set to true in
order to satisfy Φ(S), which corresponds to a smallest subset of elements T that
is a hitting set of S. In other words, the size of the shortest exclusion set of Φ ∧ γ
is the size of the smallest hitting set of S, which is NP -Hard to compute.
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Finally, we can prove that most other languages do not support SC.

Theorem 4. MODS does not support SC, unless P = NP .

Proof. The proof is similar to the one of Theorem 3. Let S = {S1, . . . , Sn}, with
Si ⊆ T , be a collection of subsets of some set T . Now we define Φ as the DNF∨
i≤n ti, with ti = (∧v∈Si

xv) ∧ (∧v 6∈Si¬xv). Clearly Φ ∈MODS. The user query
Φ∧ γ with γ =

∧
v∈T ¬xv is inconsistent too, as it is incompatible with any of the

models of the DNF Φ. A conflict of the user query corresponds to a hitting set of
S: a subset of γ is inconsistent with Φ if, for each model in the DNF, the query
contains a negative literal that is positive in the model, and the positive literals of
each model correspond to the elements in the corresponding set in S. Therefore,
a minimal subset of γ inconsistent with Φ corresponds to a minimal hitting set of
S.

Theorem 5. OBBD< does not support SC unless P = NP .

Proof. This follows from Theorem 4. A sentence in MODS is equivalent to a
sentence in OBDD< of smaller or same size. Furthermore, it is polynomial to
compute this sentence (with classic BDD operations). Supposing OBBD< sup-
ported SC, it would thus be polynomial to compute the size of the smallest con-
flict for any user query on any sentence in MODS, which contradicts the previous
theorem.

We can summarise these results in the extended Table 5.1.

Having given some insights into the application of prime implicates to expla-
nations, we will now generalise these concepts to our framework, that is, define
the PI language for constraint problems.

5.4 Domain Consequences

Suppose we have a problem defined on a set of variables X1, . . . , Xn, taking their
values from the domains D(X1), . . . , D(Xn). We are interested in simple pref-
erences consisting of domain restrictions, expressed as unary constraints of the
form Xi ∈ Di, with Di ⊆ D(Xi), holding on a subset of the variables of the
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L CO CT ME CD SES MR SC
NNF × × × X × × ×

DNNF X × X X X X ×
d-DNNF X X X X X X ×
FBDD X X X X X X ×
OBDD X X X X X X ×

OBDD< X X X X X X ×
DNF X × X X X X ×
CNF × × × X × × ?

PI X × X X × X X
MODS X X X X X X ×

Table 5.1: The queries supported by the different languages – extended

problem. Given an inconsistent user query, giving one or all or some, according
to some criteria, minimal conflicts can be a highly intractable problem. Further-
more, compilation with any of the classic techniques, such as automata, BDDs,
dDNNF, does not help either, as we saw in the previous section. It is, therefore,
interesting to have a way to compute in advance all the potential minimal con-
flicts of a problem, or, to reuse the terminology of the literature, to infer all the
consequences of the given problem.

In the absence of any particular user query, as we are working in an offline
phase, we must define a new, mathematically richer, notion of minimal conflict,
which we will call domain conflicts.

Definition 5.4.1 (Domain Conflict). A domain conflict for given problem is given
by the sequence of domains C = 〈D1, . . . , Dn〉, such that imposing Xi ∈ Di for
each Xi is inconsistent. Such a conflict can be seen as a conjunction of unary
constraints, which is inconsistent.

Given two domain conflicts C1 = 〈D1, . . . , Dn〉 and C2 = 〈D′1, . . . , D′n〉, we
say that C1 ⊆ C2 if ∀Xi, Di ⊆ D′i.

Definition 5.4.2 (Maximal Domain Conflict). A maximal domain conflict is a
domain conflict C such that no domain conflict C ′ 6= C exists with C ⊆ C ′. In
other words, every component Di of C is maximal.



5.4. DOMAIN CONSEQUENCES 117

Another way of seeing a domain conflict is by considering it defines the Carte-
sian product×i≤nDi. This product contains all the tuples that this domain con-
flict recognises as being inconsistent. However, defining this list of inconsistent
tuples as the elements of a Cartesian product is far more informative than giving
an explicit list. More specifically, a sequence of sets states that all the tuples that
can be obtained from their product are conflicts of the problem. One implication
of that observation is that a domain conflict allows us to take into account conflicts
resulting from unary constraints, rather than simply variable assignments.

In this regard, we can observe that the notion of maximal domain conflict can
be seen as a generalisation of the classic one of minimal conflict, in the sense that
for a given i having Di = D(Xi) is equivalent to having no constraint at all on
Xi. Thus, the more values that are in the Di sets, the fewer constraints there are
on the corresponding Xi variables.

As to why this definition can be regarded as being “richer” than the classic
one, consider the following example. Suppose that 〈{a, b, c}, {a, b}, {b, c}〉 is a
minimal domain conflict (with the domain of each variable being {a, b, c}). If the
user asks X1 ∈ {a, b}, X2 ∈ {a}, X3 ∈ {b}, it is inconsistent, and a minimal
conflict is c2c3 (ci being the constraint holding onXi). However, seen as a domain
conflict, this conflict is not minimal. For example, it does not tell the user that
X2 ∈ {a, b}, X3 ∈ {b, c} is also inconsistent. Also, we can see that a single max-
imal domain conflict can cover many potential minimal conflicts resulting from a
later user query. Conversely, a minimal conflict can be recognised by more than
a single maximal domain conflict, thus the potential minimal conflicts covered by
different maximal domain conflicts may overlap. Finally, let us point out that this
notion is in its definition very close to the one of generalized nogood [83], global
cut seed [47], or clausal constraints [12], but used in a very different context.

With that definition in mind, we can define the consequence of a given prob-
lem, thus generalising the concept of prime implicate.

Definition 5.4.3 (Domain Consequence). A domain consequence of a problem is
given by P = 〈D1, . . . , Dn〉 such that 〈D1, . . . , Dn〉, with Di = D(Xi) \Di, is a
domain conflict.

Given two domain consequences P and P ′, whose corresponding domain con-
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flicts are C and C ′, we have P ⊆ P ′ if C ′ ⊆ C. To reuse classic terminology, we
may say that P subsumes P ′.

Definition 5.4.4 (Maximal Domain Consequence). A domain consequence P is
minimal if its corresponding domain conflict is maximal. In other words, no do-
main consequence P ′ 6= P exists such that P ′ ⊆ P .

A given consequence of the problem is read as a disjunction. In other words,
for any solution of the problem, it must be true that X1 ∈ D1 or X2 ∈ D2 or... and
so on.

Definition 5.4.5 (Set of domain consequences). Let Π be a problem. Cons(Π) is
the set of all the minimal domain consequences of Π, that is if P is a domain con-
sequence of Π, then ∃P ′ ∈ Cons(Π) such that P ′ ⊆ P , and ∀P, P ′ ∈ Cons(Π),
P ⊆ P ′ ⇒ P = P ′.

A set of domain consequences must be seen as a conjunction, and so Cons(Π) ≡
Π. The strategy will thus be, given a problem, to compute all of its consequences,
as efficiently as possible, and represent them as compactly as possible. In other
words, we intend to compile a problem to a new representation, in a manner or-
thogonal to the existing approaches like automata, that supports queries related to
conflicts (e.g. finding shortest conflicts, minimal conflicts, specific subsets of all
the conflicts with a completeness guarantee).

By representing a problem by minimal consequences that characterise all po-
tential consequences (or, equivalently, all potential conflicts), we soundly and
completely characterise this problem. The main focus in this chapter is to in-
troduce the concepts and the approaches we propose. How the consequences of a
problem can be compactly represented, and how we can operate on this represen-
tation to compute the consequences or to perform the subsequent online queries is
addressed in the next chapter.

We show of how domain consequences can help answer conflict-related queries.
Suppose we are given the user query U , where each constraint c ∈ U is of the
form X ∈ D, with D ⊆ D(X). We additionally assume that every unary con-
straint holds on a distinct variable. From that query, we can build the domain
sequence S = 〈D1, . . . , Dn〉, where Di = D if there is a constraint Xi ∈ D
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in U , or Di = D(Xi) otherwise. To see whether U is inconsistent, we simply
have to check if S is a domain conflict, by checking if its associated domain con-
sequence is subsumed by a minimal domain consequence of the problem. Let
C = 〈D′1, . . . , D′n〉 be a maximal domain conflict such that S is included in it.
The set {c ∈ U/c holds on Xi ∧D′i 6= D(Xi)} is a minimal conflict of the query.
If we want a smallest conflict of the query, we only have to iterate over all maximal
domain conflicts and pick the one the corresponding minimal conflict of which is
of minimal cardinality. Additionally, when looking for specific subsets, i.e. satis-
fying a given property, of all minimal conflicts of a query, reasoning on the set of
minimal domain consequences allows us to efficiently make consistency checks as
well as guarantee the desired property, without generating online all the minimal
conflicts of a specific user query.

5.5 Computation of all Domain Consequences

5.5.1 Generation

Similar to the way implicates can be deduced from other prime implicates, new
domain consequences can be deduced from existing consequences.

Definition 5.5.1. Let P1 = 〈D1, . . . , Dn〉 and P2 = 〈D′1, . . . , D′n〉 be two domain
consequences of a given problem. Then, for any Xi, we denote resXi

(P1, P2) =

〈D1 ∪D′1, . . . , Di ∩D′i, . . . , Dn ∪D′n〉

Proposition 1. Let P1 = 〈D1, . . . , Dn〉 and P2 = 〈D′1, . . . , D′n〉 be two domain

consequences of a given problem. Then, for any Xi, resXi
(P1, P2) is also a do-

main consequence of the problem.

Proof. Let us fix, without loss of generality, i = 1. P1 tells us that X1 6∈ D1 ⇒
X2 ∈ D2 ∨ . . . ∨Xn ∈ Dn. Similarly, X1 6∈ D′1 ⇒ X2 ∈ D′2 ∨ . . . ∨Xn ∈ D′n.
In either case, we have (X1 6∈ D1 ∨X1 6∈ D′1) ⇒ (X2 ∈ D2 ∪D′2 ∨ . . . ∨Xn ∈
D′n ∪Dn), i.e. (X1 ∈ D1 ∩D2) ∨ (X2 ∈ D2 ∪D′2) ∨ . . . ∨ (Xn ∈ D′n ∪Dn).

We can say, reusing the existing terminology, that P has been inferred on
Xi from P1 and P2. Note that if Di ∩ D′i is empty, the consequence becomes
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independent from the variable Xi, thus retrieving the classical notion of resolvent
in the boolean setting.

Some consequences are trivial and therefore useless:

• Di andD′i have to be incomparable; if one is included in the other, sayDi ⊆
D′i, the consequence that is obtained will necessarily be non-minimal, as
the one containing Di will be included in it. For example, suppose we have
〈ab, ab, c〉 and 〈a, a, cd〉, we can infer, on X1, the consequence 〈a, ab, cd〉,
which will not be minimal as 〈a, a, cd〉 is included in it. This condition is
equivalent to the fact that the resolvent of two clauses exists only when one
contains some literal X and the other ¬X .

• if some Dj ∪D′j , for any j ≤ n, contains all values allowed for Xj , the in-
ferred consequence is always true. For example, suppose we have 〈ab, ab〉
and 〈bc, bc〉, with D1 = D2 = abc, we can infer on X1 the consequence
〈b, abc〉, which is trivially true. This condition is equivalent to the fact that
two clauses that are resolved on some literal and that also contain another lit-
eral in both the negated and non-negated form will result in a trivial clause.

The following example will help illustrate the concepts of conflicts, conse-
quences, minimal consequences, resolution, as well as the representation capabil-
ities of these concepts.

Example 5.5.1. Suppose we have a constraint on three variables X1, X2, X3 with
domain {a, b, c}, given by the nogoods in Table 5.2. We can notice that a nogood
corresponds to a trivial domain conflict. For example, knowing that aaa is for-
bidden is equivalent to saying that X1 6= a ∨ X2 6= a ∨ X3 6= a. The domain
consequence thus corresponding to each nogood is given in the second column of
the table.

From this set, different new consequences can be inferred, thus resulting in the
set of minimal domain consequences for that constraint show in Table 5.3, along
with their corresponding domain conflict.

The consequences that we end up with somehow “factorise” common parts
amongst existing consequences. For example, the consequence 〈bc, ac, a〉 has
been obtained from the two initial consequences 〈bc, ac, ac〉 and 〈bc, ac, ab〉 (on
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nogood domain consequence
aaa 〈bc, bc, bc〉
aac 〈bc, bc, ab〉
abb 〈bc, ac, ac〉
abc 〈bc, ac, ab〉
bab 〈ac, bc, ac〉
bbb 〈ac, ac, ac〉

Table 5.2: An example constraint

minimal consequence maximal domain conflict
〈c, ac, ac〉 〈ab, b, b〉
〈bc, c, ab〉 〈a, ab, c〉
〈ac, c, ac〉 〈b, ab, b〉
〈bc, bc, b〉 〈a, a, ac〉
〈bc, ac, a〉 〈a, b, bc〉

Table 5.3: The minimal domain consequences of the problem introduce in
Table 5.2

the variable X3). In terms of conflicts, we obtain the conflict 〈a, b, bc〉, which
factorises the common prefix of the two conflicts abb and abc. That is, of course,
very similar to what automata perform, with some differences. First, automata
merge only common prefixes, while a conflict resulting from two other conflicts
might “factorise” the common part of an arbitrary subset of the variables, and is,
therefore, independent of any order on the variables.

But most importantly, automata are merely just a compact representation of
a list of tuples. As previously stressed, this does not allow us to easily answer
queries consisting of domain restrictions. Consider a problem where the forbidden
tuples are aaa, aab, baa. By inferring domain conflicts, we eventually obtain the
two maximal domain conflicts 〈a, a, ab〉 and 〈ab, a, a〉. Suppose we required the
three variables to be assigned the value a. While an automaton representing these
nogoods would easily determine that the query is inconsistent no matter what
value we assign to X3, it would not easily show that the query is also inconsistent
regardless of the value we assign to X1. In either case, it is also not obvious that
these two subconflicts are minimal. N
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Having considered the production rules, we can now present how consequences
can be initialised. The basic idea is to start by representing each constraint as the
set of its minimal domain consequences. We already saw that trivial domain con-
sequences can be initialised from the nogoods of a constraint. However, most
problems that are to be compiled, especially in the context we will eventually ad-
dress, define constraints as their lists of valid tuples, and it would be intractable
to first generate all the corresponding nogoods. Our working assumption will,
therefore, be that we are given the valid tuples of each constraint.

Definition 5.5.2. Let P1,P2 be two sets of minimal domain consequences, P1 ∪
P2 = µ{P1 ∪ P2/P1 ∈ P1, P2 ∈ P2}, where µP is the subset of P where sub-
sumed elements have been removed.

It is quite easy to see that P1 ∪P2 contains the minimal domain consequences
equivalent to the logical disjunction between P1 and P2. The following proposi-
tion shows how minimal consequences are built by iteratively taking into account
the tuples of a constraint. Slightly abusing notation, for a list of tuples T , we use
Cons(T ) to denote Cons(C) (which in turn is an abuse of notation), where C is
the constraint defined by the valid tuples T .

Definition 5.5.3. Let t = a1 . . . an be a tuple defined on the variablesX1, . . . , Xn.
For each ai, we define the consequence P (ai) = 〈D1, . . . , Dn〉 as follows:

Dj =

{ai}, if i = j

∅, otherwise.

We thus associate with tuple t the set of domain consequencesP(t) = {P (ai), i ≤
n}.

Proposition 2. For a list T of tuples, we have:

Cons(T ) =

∅, if T = ∅

µ(Cons(T \ {t}) ∪ P(t)), otherwise.

Example 5.5.2. Consider a constraint with two valid tuples 012 and 021. We
have:
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Cons(012) = P(012) =〈{0}, ∅, ∅〉,

〈∅, {1}, ∅〉,

〈∅, ∅, {2}〉

Cons(012) ∪ P(021) =〈{0}, ∅, ∅〉, 〈{0}, {2}, ∅〉, 〈{0}, ∅, {1}〉,

〈{0}, {1}, ∅〉, 〈∅, {1, 2}, ∅〉, 〈∅, {1}, {1}〉,

〈{0}, ∅, {2}〉, 〈∅, {2}, {2}〉, 〈∅, ∅, {1, 2}〉

and finally:

Cons(012, 021) =〈{0}, ∅, ∅〉,

〈∅, {1, 2}, ∅〉,

〈∅, {1}, {1}〉,

〈∅, {2}, {2}〉,

〈∅, ∅, {1, 2}〉

Although the size of the final set is greater than the number of tuples, it is
smaller than the number of nogoods (i.e. 25), and so is the size of the intermediate
set, that is before removal of non-minimal domain consequences. N

5.5.2 Algorithm

We present an algorithm for compiling a CSP as its set of all minimal domain con-
sequences as Algorithm 8. In order to establish the correctness of the algorithm,
let us first introduce some notation and results.

Definition 5.5.4. Let P be a set of domain consequences, and Xi be a variable.
P is a domain consequence of P on Xi if ∃P1, P2 such that P = resXi

(P1, P2),
where P1 and P2 either belong to P or are themselves consequences of P on Xi.
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Definition 5.5.5. Let P be a set of domain consequences, and Xi be a variable.
ResXi

(P) is the set containing all the minimal domain consequences that can be
inferred on Xi from P . Formally, ∀P that is a domain consequence of P on Xi,
∃P ′ ∈ ResXi

(P) such that P ′ ⊆ P , and ∀P, P ′ ∈ ResXi
(P), P ⊆ P ′ ⇒ P = P ′.

Example 5.5.3. Let P = {〈ab, bc〉, 〈ac, bc〉, 〈bc, bc〉}. 〈ab, bc〉, 〈ac, bc〉, 〈bc, bc〉,
〈a, bc〉, 〈b, bc〉, 〈c, bc〉 and 〈∅, bc〉 are all domain consequences of P on X1, and
ResX1(P) = {〈∅, bc〉}. This tells us that given P , we can infer that a is forbidden
for X2. N

Definition 5.5.6. Let P be a set of domain consequences, and [X1, . . . , Xk] be a
sequence of variables. Res[X1,...,Xk](P) = ResXk

◦· · ·◦ResX2 ◦ResX1(P) (where
◦ represents function composition).

A very well-known result used in most algorithms for PI generation (as first
established in [85]) can be formulated in our context as follows:

Proposition 3. Let P be a set of domain consequences, Xi and Xj two variables.

Then Res [Xi,Xj ,Xi](P) = Res [Xi,Xj ](P).

In other words, it is useless for new consequences inferred on some variable to
be tested again with another consequence on a variable that has already been con-
sidered. This is a direct consequence of the associativity and the commutativity of
the res operation. Indeed, resXj

(P3, resXi
(P1, P2)) = resXi

(P2, resXj
(P1, P3)).

This result is of huge computational importance, as, by fixing in advance an order
on the variables, a given consequence will be discovered in a unique way.

Example 5.5.4. Let C = {〈a, ∅, a〉, 〈b, a, ∅〉, 〈∅, b, b〉},ResX1(C) = C∪{〈∅, a, a〉},
and ResX2(C) = ResX1(C) ∪ {〈b, ∅, b〉, 〈∅, ∅, ab〉}. Take for example 〈b, ∅, b〉, it
does not need to be resolved again on X1 with any other consequence, as it will
inevitably give an element already in ResX2(C). N

Corollary. We have Cons(Π) = Res [X1,...,Xn](P0) where P0 is the initial set of

domain consequences corresponding to each constraint.
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Algorithm 8: CONSEQUENCECOMPILATION

Data: A problem Π
Result: N = Cons(Π)

N ← ∅1

foreach Ci ∈ Π do2

N ← N ∪ Cons(Ci)3

foreach Xi ∈ Π do4

S ← N5

N ← ∅6

while S 6= ∅ do7

D ← first(S)8

foreach D′ ∈ N do9

if non-trivial(Xi, D,D
′) then10

D∗ ← resolve(Xi ,D ,D
′)11

if No element of N ∪ S subsumes D∗ then12

Remove from N ∪ S any element subsumed by D∗13

Add D∗ to the end of S14

if D is still in S then Remove D from S and add to N15

return N16

function non-trivial(Xi, 〈D1, . . . , Dn〉, 〈D′1, . . . , D′n〉)17

if Di ⊆ D′i ∨D′i ⊆ Di then18

return false19

if ∃Xj 6= Xi such that Dj ∪D′j = D(Xj) then20

return false21

return true22
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Proposition 4. Algorithm 8 computes Cons(Π).

Proof. Lines 6-16 basically perform the ResXi
operation, where S contains the

initial domain consequences. During each iteration, the invariant that is main-
tained is that N ∪ S contains only minimal consequences. Every pair of elements
is tested exactly once, and for each newly inferred consequence, it is added to
N ∪S only if it is currently minimal. It is added specifically to S so that it can be,
in turn, tested against other consequences. When a domain consequence D in S
is processed, it is resolved against all known minimal consequences contained in
N . If D is not subsumed by any new consequence thus inferred, it is added to N .
Therefore, when, in the end, S is empty, N contains exactly ResXi

(S).

Concerning implementation details, each domain consequence has been im-
plemented using a single bitset, which allows for very efficient operations, like
the non-trivial test, the subsumption test, and the resolve operation, which
are by far the most frequent operations in this algorithm. Also, some simple op-
timisations can be performed when computing the disjunction of two sets of do-
main consequences while generating the domain consequences of each constraint
(line 3). For example, when the union P of two domain consequences is equal to
one of them, then this original domain consequence can be discarded, as any sub-
sequently generated consequence will be subsumed by P , as it can be observed in
Example 5.5.2.

5.5.3 Complexity

The complexity of Algorithm 8 is determined by the size of Cons(Π). We saw
that introducing a new valid tuple to the domain consequences of a constraint of
arity k can add up to k times more new domain consequences. Therefore, we
have an upper bound on |Cons(Π)| of n|S|, where |S| is the number of solutions
of the problem. |S| itself is in O(dn), which gives an idea of the potential number
of domain consequences. Additionally, the number of intermediate domain con-
sequences that have been generated during the procedure can be far larger than
the final number, as most become eventually subsumed by fewer domain conse-
quences, as we shall see in the next section. These simple facts show that there
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is very little hope that an efficient way to generate all the consequences explicitly
will exist, no matter what algorithm we design.

5.6 Experimental Study

We show how the concepts we introduced are put into practice on some very
simple instances. The purpose is not to test the validity of the algorithm, whose
implementation has been kept intentionally naive, for the reasons stated in the last
section. Indeed, we do not expect that, in the present stage, this algorithm can
scale up to any other than trivial problems.

We tested the algorithm on random uniform constraint networks of binary con-
straints1, using the seed 100. These instances contained 10 variables, with 10 val-
ues, 10 constraints. The tightness of each constraint varied from 1 to 19 allowed
tuples, then from 95 to 99. We expected our approach to work better on problems
with many conflicts. In Figure 5.1, we show the average number of consequences
produced after the resolution of each variable, as well as the final total. This av-
erage number was in direct correspondence with the overall number of iterations.
This shows that the tighter the constraints are, the fewer iterations it takes for the
algorithm to finish. Not surprisingly, no instance with a tightness outside the ex-
treme values could be resolved in any reasonable amount of time. Note that for
the harder instances (1 to 19 allowed tuples per constraint), the final number of
consequences is only 1, as they were unsatisfiable. On satisfiable instances, this
number ranged from 250000 to 120. It is particularly striking, especially on the
unsatisfiable instances, that most of the consequences discovered are not minimal
in the end, as they end up being subsumed by the empty consequence.

To further illustrate this point, we show some more detailed figures on two in-
stances, an unsatisfiable instance with 17 allowed tuples per constraint, and a satis-
fiable one with 95. Table 5.4 shows for each instance and at the end of each basic
iteration (i.e. the resolution on each variable) the number of generated conse-
quences (i.e. that passed the non-trivial test), the number of non-subsumed
consequences (i.e. the part of those that have been successfully added to S), and

1we used the generator at: http://www.lirmm.fr/˜bessiere/generator.html.

http://www.lirmm.fr/~bessiere/generator.html
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Figure 5.1: The total number of consequences and the average for each variable
per instance

eventually the final variation of the current number of minimal consequences (i.e.
the difference in size between N at the end and at the beginning of the iteration).

Table 5.4: The intermediate number of consequences generated

Variable
17 tuples 95 tuples

generated non-subsumed variation generated non-subsumed variation
0 239179 6227 730 423 85 85
1 26843 1027 105 0 0 0
2 88841 4894 85 266531 2894 2894
3 16102 609 145 377234 2882 2056
4 397594 21603 -1545 6027194 13708 13708
5 259702 7844 481 13674500 29420 8121
6 58563 2987 -980 51688417 40006 40006
7 1371 225 -263 70889441 50362 18689
8 18 5 -22 63317577 0 0
9 0 0 0 1009075634 263964 165954

These results are encouraging. They show that the size of the final set we
aim to produce is tractable on those instances. With an adequately compact rep-
resentation of the set of minimal consequences, we can manage very satisfactory
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sizes. As a comparison, it is a notable fact that automata can represent very effi-
ciently a number of solutions several orders of magnitude higher than the figures
shown here. The practical ability of such a representation to represent effectively
a large number of potential conflicts will depend a lot on different parameters of a
problem. These could be parameters like the number of actual conflicts for a user
query, the size of such conflicts, value interchangeability, etc. That is of course
a fundamental point that will need to be studied in further work. We conjecture
that the properties yielding compact consequence compilation will be different
from those needed for an automaton representation, where structural considera-
tions (the topological properties of the constraint graph) and variable orderings
are crucial.

5.7 Related Work

Work on consequence-finding has been an important task in Artificial Intelligence
for the past thirty years, with a particular interest for diagnosis, which closely re-
lates to our setting. A very complete survey of the field and its applications has
been presented in Marquis [96], in particular of the many existing algorithms for
prime implicate generation. de Kleer et al. [28] presents the application of prime
implicants and implicates to diagnosis, noting in particular this link between con-
flicts and implicates. Prime implicates generation is also valuable for comput-
ing abductions. An abduction has to be consistent with the knowledge base, but
checking for consistency can be an expensive operation. A subset of the hypothe-
ses that is inconsistent with the knowledge base forms a conflict, and cannot be
part of an explanation. These conflicts corresponds to the prime implicates of the
theory that contain only hypothesis literals, and detecting that a knowledge base
is conflict-free can allow us to speed up abduction computation [64].

One of the foundation works about prime implicate generation dates from
1967 [133]. Kernel resolution [37, 38] generalises this idea. At each step of
the algorithm, a clause is partitioned in the skip and the kernel. The skip contains
the variables smaller that the variable upon which the clause has been resolved
and the kernel those that are greater (according to a given order on the variables).
Kernel resolution generalises the idea of [133] (referred to as ordered resolution),
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by resolving a given clause only upon kernel variables, i.e. variables that are
greater than the variable by which this clause has been resolved. Consequence
finding aims at computing a set of clauses implied by a sentence belonging to
some given clause language, like clauses of a bounded size, clauses containing
only some literals. Kernel resolution facilitates focused resolution, by only ac-
cepting resolvents whose skip belongs to the target language. In 1992, de Kleer
[26] proposed a practical implementation, where clause bases are stored using
TRIE structures, which allows for a more compact representation and more effi-
cient subsumption operations, such as testing if there exists a smaller implicate,
adding a prime implicate, removing all the bigger implicates, which are the most
frequent and costly. Another approach is to work on the representation of all
the prime implicates. The TRIE representation [26] and clause resolution can be
extended to a ZBDD representation and multi-resolution [13, 125], which we dis-
cuss further in the next chapter. Alternatively, Coudert and Madre [16] proposes
an implicit representation based on meta-products. In particular, the main contri-
bution of Simon and del Val [125], is an extensive experimental study; it seems
to be the first method for full prime implicates generation that scales to instances
of real practical interest. Finally, Junquera and González [77] presents a similar
approach to ours (though the concepts are different) in using a pre-analysis of the
problem as a compilation technique, in order to facilitate conflict and diagnosis
computation. Approximation anytime algorithms have also been proposed to deal
with the computational complexity of this task. Arguments, or explanations, can
be scored by relevance, according to probabilistic considerations, and an anytime
approximation algorithm has been proposed that outputs all arguments in decreas-
ing order of relevance [63]. This algorithm is the state of the art approximation
method for computing abductive explanations.

There has been previous work that use prime implicate generation as a com-
pilation technique, with the common approach of limiting the amount of prime
implicates that are generated. In 1995, Marquis [97] introduced the concept of
theory prime implicates, which allows us to reduce the number of generated impli-
cates by defining a stronger notion of entailment. In 1994, del Val [36] introduced
the concept of tractable databases, allowing to reduce the number of generated
implicates by only selecting a subset that is refutation-complete (a set of clauses



5.7. RELATED WORK 131

is said refutation-complete if any clause can be tested to be an implicate only by
unit resolution deduction). Both papers show encouraging experimental results.
We present here the technical aspects of these papers.

Theory prime implicates. Marquis defines a more general entailment: σ |=Φ τ

(σ entails τ given Φ) if Φ ∪ {σ} |= τ , where Φ is a theory. Given that operator,
theory prime implicates are defined in the same way as prime implicates are de-
fined with regards to the classic |= operator. Let TPI (Σ,Φ) be the set of all the
theory prime implicates of Σ w.r.t. Φ, for some Φ such that Σ |= Φ. The formula
Σ is compiled into COMPΦ(Σ) =def 〈TPI (Σ,Φ),Φ〉. In order to test if a clause
π is entailed by Σ, one must check if there exists some π′ in TPI (Σ,Φ) such that
π′ |=Φ π. That can be done in time O(|π′| × |Φ ∪ {π}|α), if Φ is tractable, that is
if clausal entailment on Φ (checking if Φ |= π for some clause π) is polynomial.
Thus, the whole query answering process takes O(|TPI (Σ,Φ)| × |Φ ∪ {π}|α)

time, thus depending on the number of theory prime implicates.

This method allows us to take advantage of computationally tractable entail-
ment for formulas more complicated than just clauses. Whereas π′ |= π can be
trivially decided (by checking inclusion), being able to make that test in polyno-
mial time for more general formulas allows us to reduce the number of theory
prime implicates we produce, without giving up on tractability. It is indeed shown
that the stronger Φ is, the smaller is the number of theory prime implicates (and
as a corollary the number of theory prime implicates is always less than or equal
to the number of prime implicates).

The key point of the compilation process is the choice of the theory Φ. In the
paper, it is chosen according to some heuristics, but a better study of that choice
is left for future work. Some preliminary experimental results show indeed good
savings in the number of theory prime implicates.

Tractable Databases. The approach here is to compile a formula Σ to a logi-
cally equivalent Σ∗ which is unit refutation complete. A set of clauses Σ is unit
refutation complete if for some clause C, Σ |= C iff Σ ∧ ¬C can be detected in-
consistent by unit resolution deduction. Σ∗ is effectively some subset of the prime
implicates of Σ. Several compilations schemes are introduced, each of which
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computes the prime implicates that can be obtained using a specific resolution de-
duction; each have or may have advantages in the number of produced clauses.
Some experimental results show savings in the size compared to full prime impli-
cate generation, with a factor raging from 5 to 40.

5.8 Applications and Extensions

Having a complete picture of the potential conflicts of a problem allows us to
generate explanations with much richer properties. As a straightforward exam-
ple, let us consider back representative sets of explanations that were defined in
Chapter 3. We saw that the main bottleneck of any algorithm that generates a rep-
resentative set of explanations for a particular query lied in the fact that is hard to
verify the representativeness of a set of explanations. More particularly, it is hard
to check if a constraints appears in all exclusion sets. However, when a constraint
appears in all minimal exclusion sets, it appears also in all minimal conflicts. This
means that if a problem is represented in terms of all its domain consequences,
the representativeness check is easy to perform, i.e. it is polynomial in the size of
the problem representation. Indeed the set of conflicts of a query is given by the
set of domain conflicts that are supersets of the query, and we only need to check
if some given user constraint of the query belongs to all those domain conflicts.

Based on this remark, we can further extend the notion of representativeness.
A constraint that appears in all conflicts can clearly never be satisfied, and the
user must be told that. However, a constraint that appears in most conflicts can be
satisfied, but, coming close to inconsistency, it will be at the expense of other con-
straints, typically leaving very small flexibility on the amount of other constraints
that the user will be able to keep. It would be good if the user could be told this
information too. We can therefore define the concept of “constrainedness” of a
constraint within a specific user query as the ratio of conflicts of the query where
this constraint appears, a ratio of 1 meaning the constraint appears in all conflicts
and cannot be satisfied. The constrainedness of each constraint can be given as
such to the user, so as to give a better understanding of the inconsistency. Alter-
natively, it can be used to refine the notion of representative set of explanations.
For example, we can chose that a constraint must be relaxed by a relaxation in the



5.8. APPLICATIONS AND EXTENSIONS 133

representative set with a probability equal to its constrainedness. Such sets would
obviously be also representative according to the definition of Chapter 3.

Example 5.8.1. Consider again Example 3.2.1 at Page 52. The conflicts in this
example are {c2, c3}, {c1, c2, c5}, {c1, c3, c5}, {c1, c4, c5}. We can see that both
constraints c1 and c5 appear in all but one conflict. From this we can deduce that
they are somehow the “hardest” to satisfy. Indeed, they correspond to keeping
below a budget limit and choosing the most expensive option. The user can then
be told that it will be hard to either stay within his budget limit, or have leather
seats, or both (and c1c5 is indeed a maximal relaxation).
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Chapter 6

Representing and Reasoning on
Large Sets of Domain Consequences

Summary. We present how ordered automata can be used to repre-

sent sets of domain consequences. Operators are defined that, com-

bined with each other, define a compilation procedure of a problem to

an ordered automaton encoding its set of domain consequences. The

operators constitute the basic pieces to query a database of domain

consequences encoded as an ordered automaton.

6.1 Introduction

As we saw in Section 5.4, although having interesting properties, representing a
problem in terms of the set of all its domain consequences is, as such, a very poor
compilation technique. Indeed, we unequivocally revealed the number of conse-
quences a problem entails can be intractably high. Therefore, the actual set of
domain consequences has to be, in turn, compactly represented. It is worth noting
that all compilation techniques essentially involve compactly representing the set
of all the solutions of the problem being compiled: the least compact compiled
representation involves simply listing all the solutions, and more and more com-
pact representations encode more and more implicitly those solutions. Represent-
ing a problem in terms of its domain consequences would be indeed as brutal as

135
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representing it in terms of its solutions; in this section we introduce a more com-
pact method of representing the domain consequences of a problem. In terms of
the compilation map, note that PI and MODS are possibly the two least succinct
languages (see Figure 4.6). “Solution-driven” compilation methods aim at repre-
senting MODS more succinctly. In this chapter, we propose a “conflict-driven”
compilation method that represents PI more compactly.

Zero-suppressed Binary Decision Diagrams (ZBDDs) have already been showed
to be an efficient data structure for representing a collection of subsets of a uni-
verse, by representing the characteristic function of each subset contained in the
collection [72]. This property has been successfully exploited by Chatalic and Si-
mon [13] to represent sets of clauses (which can be seen as sets of literals), with
a very efficient compression power. Exploiting this particular semantics, i.e. that
it is a set of literals and not any set that is represented (see Figure 6.1), Chatalic
and Simon propose some additional specific operators that allow in the end to
generate and represent very efficiently all the prime implicates of a CNF. This
approach is the first (and, to our knowledge, single) approach of a consequence
finding algorithm that scales up to real problems. It can, remarkably, implement
and use the original Davis and Putnam resolution procedure. We propose to adapt
this approach for our context.

Example 6.1.1. Consider the ZBDD in Figure 6.1. Each node is labelled by
a literal, and has two outgoings arcs: a 1-labelled arc, represented by a plain
line, meaning the literal is present, a 0-labelled arc, represented by a dashed line,
meaning the literal is omitted. Paths from the root node to a terminal node, those
labelled by 0 or 1, correspond to sets of literals, only those of which end at node
1 being kept.

A domain consequence can be seen as merely a subset of a universe, which
would contain the union of the domains of all the variables. Consequently, at
first glance, one could think that the ZBBD approach could be straightforwardly
applied to our case. However, this approach would need to be extended to take
into account the particular semantics of domain consequences. This is actually a
fundamental difference and makes this extension not so straightforward. In order
to do this, we propose a slightly different approach, based on automata, on which
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z

¬x

1 0

x

y

Figure 6.1: An example ZBDD encoding a collection of two sets of literals
{xy,¬xz}.

it will be more convenient to perform this generalisation.

6.2 Ordered Automata for Collection of Subsets

6.2.1 General Definition

We propose to use regular automata to represent a collection of subsets, with an
added property that values must be ordered. Concretely, we impose a total order
on the alphabet, and this order affects how values can be introduced: a recognised
word can be composed only of symbols in strictly increasing order.

Definition 6.2.1 (Ordered Automaton). An ordered automaton M is defined as a
6-tuple 〈Q,Σ,≤, δ, q0, F 〉, with:

• Q a finite set of states,

• Σ a set of symbols (the alphabet),

• ≤ a total order on Σ,

• δ a function Q×Σ→ Q (the ordered transition function), such that for any
string s recognised by M , ∀i < j ≤ |s|, s[i] < s[j],

• q0 ∈ Q the initial state,

• F ⊆ Q the final states.
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We additionally impose the usual properties on the automaton, precisely that
it should be deterministic, trimmed (remove transitions that cannot reach final
states) and minimal. These properties will be implicitly assumed.

We introduce some additional notation:

• σ(q) = {a ∈ Σ/δ(q, a) is defined}, the set of labels of the outgoing transi-
tions of a state;

• δ(q) = {δ(q, a)/a ∈ σ(q)}, the successors of a state;

• δ∗(q) = {q′ ∈ Q/(q′ = q) ∨ (q′ ∈ δ(q′′) ∧ q′′ ∈ δ∗(q))}, the set of states
accessible from a state;

• the digraphD = (Q,E), withE = {(q, q′)/q, q′ ∈ Q∧∃a ∈ Σ such that δ(q, a) =

q′}, is called the underlying digraph of the automaton.

Let us remark that, as an ordered automaton can only recognise strings of finite
length, its underlying digraph must be acyclic.

The semantics that we attach to an ordered automatonM is defined as follows.
Given a collection of subsets of a universe U , we build a corresponding ordered
automaton M such that:

• Σ is in one-to-one correspondence with U ;

• ≤ can be the natural total order holding on U , or any arbitrarily chosen total
order;

• a subset S ⊆ U is uniquely represented by the string composed of the
symbols corresponding to each element in S, in increasing order;

• a subset S ⊆ U is in the collection iff the corresponding string is recognised
by M .

Let us observe that, with this semantics, a minimal DFA representing a col-
lection of subsets has a single final state if all the subsets of the collections are
incomparable. Indeed, if a minimal DFA has more than one final state, then at
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least one final state must have a successor (two final states with no successor be-
ing equivalent). This state recognises a given set which is a subset of any set
recognised by any successor of this state.

Some particular cases of this semantics include the empty collection, and the
collection containing the empty set only. The empty string represents the empty
set. An automaton with only one state that is both initial and final recognises the
empty string only, and thus interprets as {∅}. An automaton that has no final state
does not recognise any string, and thus interprets as ∅ (if it is minimal, the initial
state is the unique state).

6.2.2 Domain Sequences

We can use this data structure to represent a collection of domain sequences. In-
deed, if we assume, without loss of generality, that the domains of each variable
do not share common values, we can notice that a domain sequence is merely a
subset of the universe defined by the union of all domains. Therefore, we can
apply the approach just described.

From a logical point of view, if the considered domain sequences represent
domain consequences, a collection of domain consequences interprets as a con-
junction (of disjunctions). In particular, ∅ interprets as true and {∅} interprets as
false.

In order to encode a collection of domain sequences with an ordered automa-
ton, we first have to match the values of the initial domains to unique values for
each variable, then to impose a total order on the resulting universe (which can re-
sult from an existing total order on the original domains). More formally, given a
sequence of variables X1, . . . , Xn, with domains D(Xi), we define an automaton
M as follows:

• ∀a ∈ D(Xi), we create a unique symbol, denoted aXi
, thus Σ = {aXi

/a ∈
D(Xi)};

• we set an order ≤ such that aXi
≤ bXj

iff i ≤ j or i = j ∧ a ≤ b.

Then, we can encode a specific domain consequence as a string over Σ, and
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a collection of domain consequences as the automaton recognising the set of the
corresponding strings.

Example 6.2.1. LetP = {〈ab, ab, a〉, 〈b, bc, a〉, 〈b, ∅, b〉}, on the variablesX, Y, Z
(we assume a < b < c). We define Σ = {aX , bX , cX , aY , bY , cY , aZ , bZ , cZ},
declared in increasing order, and the MinDFA encoding P is given in Figure 6.2.
Conceptually, we are basically labelling the transitions of the automaton with vari-
able assignments.

aX

bX

bX

bY

bZ

aY

bY

aZ

cY

Figure 6.2: An automaton representing three domain consequences

6.3 Querying Ordered Automata

With the given semantics, we can realise operations on sets of domain conse-
quences as operations on automata. There are two types of operations: operations
that, given one or two automata return a new automaton (a transformation) and
operations that given one automaton answers a question (a query). The different
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transformation operations are used to actually compile a problem into the au-
tomaton representing the set of its domain consequences, while queries are used
to answer questions that make use of this representation.

We will make use of the following notation:

• Given a state q0 belonging to a certain automaton, as a shortcut notation,
we denote by P(q0) the collection of domain consequences encoded by the

automaton whose initial state is q0.

• Let q∅ be a constant dummy state.

• Let M∅ = 〈{q∅}, ∅, ∅, ∅, q∅, ∅〉. We have here P(q∅) = ∅; q∅ is not an
accepting state.

• Let M{∅} = 〈{q∅}, ∅, ∅, ∅, q∅, {q∅}〉. We have here P(q∅) = {∅}; q∅ is an
accepting state.

In order to simplify presentation, we will assume that, for a given state q and
symbol a, δ(q, a) being undefined is equivalent to having δ(q, a) = q∅. In par-
ticular, we can express σ(q) as {a ∈ Σ/δ(q, a) 6= q∅}. This allows us, in the
algorithms, not to consider explicitly the case where a transition for a given sym-
bol is undefined.

Finally, we assume that the considered automata are always defined with the
same alphabet and the same order.

6.3.1 Auxiliary Functions

Register State. All operators use a function register-state, which is given
a newly built state that will not be further modified (i.e. no transition will be added
or removed and no successor will be modified). If the newly built state has no out-
going transition, or equivalently, that all transitions lead to q∅, q∅ is returned; this
ensures that the automaton is trimmed. If a state already exists that is equivalent
to the newly built state, i.e. the same symbols lead to the same states, that state is
returned instead. Otherwise, the newly built state itself is returned. This way, the
invariant that all states in the register are pairwise inequivalent is maintained.
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If this function is called in a bottom-up order, i.e. when called on a state, it
has already been called on all of its successors, and as the considered automata
are acyclic, this is sufficient to ensure minimality.

Function register-state(q)

if σ(q) = ∅ ∧ ¬isFinal(q) then return q∅
if ∃q′ in the register such that q is equivalent to q′ then return q′
Add q to the register
return q

Merge. This function is given two states and merges them to one state such that
it remains deterministic. Essentially, transitions on common values between the
given states are merged into a single transition, the destination states of which are
recursively merged.

Function merge(q1, q2)

q ← Create new State
if isFinal(q1) ∨ isFinal(q2) then isFinal(q)← true
forall a ∈ σ(q1) do δ(q, a)← δ(q1, a)
forall a ∈ σ(q2) do δ(q, a)← δ(q2, a)
forall a ∈ σ(q1) ∩ σ(q2) do

δ(q, a)← merge(δ(q1, a), δ(q2, a))

return q

6.3.2 Subsumed Removal

This is a fundamental operator. Let P1 and P2 be two collections of domains
consequences. We define P1 \|= P2 as the set of all the domain consequences of
P1 that are not subsumed by any domain consequence of P2.

Let M1 and M2 be two ordered automata, with respective initial state q1
0 and

q2
0 . We define the operator q1

0 \|= q2
0 in the following function:

Proposition 1. P(q1
0 \|= q2

0) = P(q1
0) \|= P(q2

0).
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Function q1
0 \|= q2

0

S ← {a ∈ σ(q1
0)/a ≤ maxσ(q2

0)}
if S = ∅ then

if q2
0 is final then
return q∅

else
return q1

0

else
q0 ← Duplicate q1

0

forall a ∈ S do
q2

0 ← merge(δ(q2
0, a), q2

0)
δ(q0, a)← δ(q1

0, a) \|= q2
0

return register-state(q0)

Proof. Let P1 = P(q1
0), P2 = P(q2

0) and P = P(q1
0 \|= q2

0). Consider first the
trivial cases, i.e. the cases where P1 or P2 is equal to ∅ or {∅}. If P2 = {∅}, i.e.
q2

0 is final, P = ∅. If P2 = ∅, q2
0 is not final, so P = P1. If P1 = ∅, i.e. q1

0 = q∅,
then q∅ is returned, regardless of q2

0 , and so P = ∅. If P1 = {∅} (and P2 6= {∅}),
P = P1.

If S = ∅ and none of the above cases hold, then all the domain consequences
of P2 contain a symbol which is not contained in any domain consequence of P1,
because of the ordered property, and so no domain consequence of P2 subsumes
any one of P1. In this case, as q2

0 is not final, q1
0 is returned, and P = P1.

Consider now the non-terminal case, i.e. S 6= ∅. Let a ∈ S. Suppose a do-
main consequence P1 fromP1 containing a is subsumed by a domain consequence
P2 of P2. Either P2 contains a too, and then the domain consequence P2 \ {a} of
P(δ(q2

0, a)) subsumes the domain consequence P1\{a} of P(δ(q1
0, a)), or P2 does

not contain a, in which case P2 itself also subsumes P1 \ {a} of P(δ(q1
0, a)). Let

q be the state returned the end of the recursive call. After the call to merge(),
P(q2

0) = P(δ(q2
0, a)) ∪ P2, and by the induction hypothesis, P(q) is equal to

P(δ(q1
0, a)) where all the domain consequences such as P1 \ {a} have been re-

moved. If a 6∈ S, then all domain consequences of P2 contain a symbol which is
not in any domain consequence of P1, so nothing needs to be changed.

In order for the resulting automaton to be minimal it is enough to ensure that
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all states of M1 have been added to the register prior to calling this operator.

Example 6.3.1. As an example, consider the automata in Figure 6.3. The tran-
sitions of M1 labelled by a symbol greater than max(σ(q2

0)) are ignored, by def-
inition of S. Here, the transition labelled by d will not be traversed, and its sub-
automaton will remain unmodified. Similarly, transitions of M2 labelled by a
symbol less than min(σ(q1

0)) are also ignored, as they are never taken into ac-
count by the function. Here, the transition labelled by a is never considered and
indeed its presence or absence does not affect the result of the function.

M1 M2\|=

b dc b ca

Figure 6.3: Subsumed removal on two automata

6.3.3 Minimisation

Let P be a collection of domain consequences. We denote µP the set of domain
consequences of P that are not subsumed by any other domain consequence of P .

Let M be an ordered automata, with initial state q0. We define the operator
µ(q0) in the following function:

Function µ(q0)

if q0 is final then
return q0

else
q′0 ← Create new state
forall a ∈ σ(q0) in decreasing order do

δ(q′0, a)← µ(δ(q0, a)) \|= q′0
return register-state(q′0)

Proposition 2. P(µ(q0)) = µP(q0).
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Proof. At a given iteration of the forall statement, let P1 = P(µ(δ(q0, a))) and
P2 = P(q′0). By induction hypothesis, both are free from subsumed elements.
Any element from P2 subsumed by an element P of P1 will not be subsumed by
P ∪{a}. However, if an element from P1 is subsumed by an element of P2, it will
still be after adding a to it. By removing those subsumed elements, we obtain a
subsumption-free automaton.

P1

P2
a

q′0

P1 \|= P2

P2
a

q′0

Figure 6.4: Adding P1 without introducing subsumed elements

6.3.4 Union

Let P1,P2 be two collections of domains consequences free from subsumed ele-
ments. We defineP1∪µP2 as the set µ(P1∪P2), i.e. the union ofP1 andP2 where
only non-subsumed elements are kept. From a logical point of view, P1 ∪µ P2 is
the conjunction between P1 and P2.

Let M1 and M2 be two ordered automata free from subsumed elements, with
respective initial states q1

0 and q2
0 . We define the operator q1

0 ∪µ q2
0 in the following

function:

Function q1
0 ∪µ q2

0

if q1
0 is final then return q1

0

if q2
0 is final then return q2

0

else
q0 ← Create new state
forall a ∈ σ(q1

0) ∪ σ(q2
0) in decreasing order do

δ(q0, a)← (δ(q1
0, a) ∪µ δ(q2

0, a)) \|= q0

return register-state(q0)
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Proposition 3. P(q1
0 ∪µ q2

0) = P(q1
0) ∪µ P(q2

0).

Proof. The proof is similar to that of Proposition 1. For a given symbol a, if
both states have an outgoing transition labelled with a, then the union of respec-
tive consequences starting with a must be performed. If only one state has an
outgoing transition with a, then the recursive call will be performed with q∅ as
one of the operands, and so the other operand will be returned unmodified. Fi-
nally, as we assume that the result of the recursive call will be free from subsumed
consequences, and with the same reasoning as for the proof of Proposition 1, the
resulting automaton will also be free from subsumed consequences.

6.3.5 Product

This is also one of the key operators. Let P1,P2 be two collections of domain con-
sequences free from subsumed elements. We define P1 ⊗ P2 = µ{P1 ∪ P2/P1 ∈
P1, P2 ∈ P2 ∧P1 ∪P2 is not trivial}. Intuitively, P1⊗P2 contains all the domain
consequences formed by the union of a domain consequence respectively from
P1 and from P2 that are not trivial and that are not subsumed by any other such
domain consequence. From a logical point of view, P1 ⊗ P2 is the disjunction
between P1 and P2.

In order to deal with trivial consequences, we need to introduce the follow-
ing notation. For each Xi, 1 ≤ i ≤ n, we define the domain sequence PXi

=

〈Di
1, . . . , D

i
n〉, with Di

i = D(Xi) \ {minD(Xi)}, and Di
j = ∅ otherwise if j 6= i.

For each Xi, 1 ≤ i ≤ n, we define the state q∧Xi
as the initial state of the or-

dered automaton recognising {PXi
}. For example, suppose n = 3, i = 2 and

D(X2) = {abc}. We have P(q∧X2
) = {〈∅, {bc}, ∅〉}.

Let M1 and M2 be two ordered automata free from subsumed elements, with
respective initial states q1

0 and q2
0 . We define the operator q1

0 ⊗ q2
0 in the following

function:

Proposition 4. P(q1
0 ⊗ q2

0) = P(q1
0)⊗ P(q2

0).

Proof. LetP = P(q1
0⊗q2

0),P1 = P(q1
0) andP2 = P(q2

0). Consider first the trivial
cases. When P1 (resp. P2) is equal to {∅}, i.e. q1

0 (resp. q2
0) is final, P = P2 (resp.

P = P1), so q2
0 (resp. q1

0) is returned. If P1 = ∅ or P2 = ∅, then one of q1
0 or
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Function q1
0 ⊗ q2

0

if q1
0 is final then return q2

0

if q2
0 is final then return q1

0

if σ(q1
0) = ∅ ∨ σ(q2

0) = ∅ then return q∅
else

q0 ← Create new state
forall a ∈ σ(q1

0) ∪ σ(q2
0) in decreasing order do

q1
0
′ ← Create new state

forall b ∈ σ(q1
0)/b > a do

δ(q1
0
′, b)← δ(q1

0, b)

q1
0
′ ← register-state(q1

0
′)

q2
0
′ ← Create new state

forall b ∈ σ(q2
0)/b > a do

δ(q2
0
′, b)← δ(q2

0, b)

q2
0
′ ← register-state(q2

0
′)

δ(q0, a)←

 δ(q1
0, a)⊗ δ(q2

0, a)
∪µ δ(q1

0, a)⊗ q2
0
′

∪µ q1
0
′ ⊗ δ(q2

0, a)

 \|= q0

Let Xi be the variable to which a belongs
if a = minD(Xi) then

δ(q0, a)← δ(q0, a) \|= q∧Xi

return register-state(q0)

q2
0 is not final and has no successor, in which case q∅ is returned, and so P = ∅.

Consider now the non-terminal case. For some given a, q1
0
′ (resp. q2

0
′) contain the

domain consequences of P1 (resp. P2) involving symbols strictly greater than a.
The domain consequences ofP starting by a are of the form {a}∪P∪P ′, such that
P and P ′ involve only symbols strictly greater that a, where either {a} ∪ P ∈ P1

and {a} ∪ P ′ ∈ P2, or {a} ∪ P ∈ P1 and P ′ ∈ P2, or P ∈ P1 and {a} ∪ P ∈ P2.
By induction hypothesis, we assume P(δ(q0, a)) will contain all such P ∪ P ′.
Finally, with the same reasoning as for above, the result automaton will be free
from subsumed consequences. Filtering out trivial consequences on Xi is only a
matter of performing subsumed removal with q∧Xi

. Note that this needs only be
performed when the return state contains an outgoing symbol that is the smallest
value of the domain ofXi, as this is a necessary condition for a trivial consequence
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on Xi to be present.

For the resulting automaton to be minimal, we have to ensure that all states
of M1 and M2 are in the register prior to the call to this operator, which implies
that they are all pairwise inequivalent (i.e. states from M1 and M2 that would be
equivalent have been merged).

6.4 Compiling a Problem to an Ordered Automaton

We can make use of the different operators we defined in the previous section on
ordered automata, in order to compile a problem in the representation we suggest.
Essentially, we want to generate all the domain consequences of a problem and
represent them as an ordered automaton, with both steps being carried at the same
time.

At the core of this compilation procedure is the closure by resolution. Put
simply, given an ordered automaton M encoding a collection P of domain conse-
quences, we need to apply an operator that builds an ordered automaton Cons(M)

that encodes Cons(P). We define this operator in this section.

6.4.1 The Operator for the Boolean Case1

To simplify presentation, we will first consider the boolean case. Let us first define
the “distribution” operator as follows.

Definition 6.4.1 (Distribution). Let Φ be a collection of sets of literals. The distri-
bution of Φ, denoted �Φ, is the collection of sets of literals obtained by keeping
exactly one literal from each set in Φ, and such that non-minimal and trivial sets
(i.e. sets containing a literal in non-negated and negated forms) are omitted.

If Φ is a CNF, the operator consists in distributing the conjunction over the
disjunction, and thus converting from a CNF to an equivalent DNF. Conversely if
Φ is a DNF, the operator distributes the disjunction over the conjunction, thus con-
verting it to an equivalent CNF. In case a DNF is obtained, trivial sets correspond

1I would like to thank Hélène Fargier for her very helpful explanations and for pointing me to
some very relevant papers, which helped me develop this section.
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to contradictions (containing l∧¬l), and in the case a CNF is obtained, trivial sets
correspond to tautologies (containing l ∨ ¬l).

Example 6.4.1. Let Φ = {xy,¬xz}, �Φ = {xz,¬xy, yz}. If Φ = (x ∧ y) ∨
(¬x ∧ z), �Φ = (x ∨ z) ∧ (¬x ∨ y) ∧ (y ∨ z).

Quite trivially, if we invert the literals in �Φ, for a given CNF (resp. DNF) Φ,
we obtain a CNF (resp. DNF) that is the logical negation of Φ.

Proposition 1. Let Φ′ = {C ′/l ∈ C ′ ⇔ ¬l ∈ C,C ∈ �Φ}. We have Φ′ ≡ ¬Φ.

Corollary. �� Φ ≡ Φ.

Let us now make some observations. Let Φ be a CNF, Φ′ be the DNF defined
as Φ′ =

∨
C such that C|=ΦC, and Φ′′ the CNF defined as Φ′′ =

∧
C′ such that Φ′|=C′ C ′,

where both Φ′ and Φ′′ are free from tautologies, contradictions and subsumed
elements. We have:

• Φ ≡ Φ′ ≡ Φ′′;

• ∀C ∈ Φ′, C is a prime implicant of Φ;

• ∀C ′ ∈ Φ′′, C ′ is a prime implicate of Φ.

Theorem 2. Φ′′ = �� Φ.

Proof. Let us simply observe the following:

• A (minimal) hitting set of the sets in Φ that is not a contradiction is a (prime)
implicant of Φ: indeed, if every clause in Φ is satisfied, then Φ is satisfied
too.

• Conversely a (minimal) hitting set of the sets in Φ′ that is not a tautology is
a (prime) implicate of Φ′, and thus of Φ too.

In summary, this discussion tells us that converting a CNF to a DNF and then
back to a CNF produces all the prime implicates of the initial CNF. In other words,
applying twice the � operator is an alternative way to compute all prime impli-
cates of a formula.
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Example 6.4.2. Consider again Example 6.4.1, with Φ = {xy,¬xz}. We have
�Φ = {xz,¬xy, yz}, and � � Φ = {xy,¬xz, yz}. The new clause y ∨ z is a
prime implicate of (x ∧ y) ∨ (¬x ∧ z).

The last step in our approach is to implement this operator on ZBDDs encod-
ing collections of sets of literals. Let Φ be a collection of sets of literals, and
suppose we interpret it as a DNF. Let l be a literal involved in Φ. We can rewrite
this DNF as Φ = (l ∧ fl) ∨ f̄l, where fl is a DNF containing all the sets in Φ

involving l, from which l has been removed, and f̄l is a DNF containing all the
sets in Φ that do not involve l. Then �Φ = (l ∨�f̄l) ∧ (�f̄l ∨�fl). This allows
us to represent �Φ as a ZBDD as shown in Figure 6.5.

l

fl f̄l

l

�fl ⊗�f̄l�f̄l
\|=(�fl ⊗�f̄l)

�

Figure 6.5: Implementing the � operator on ZBDDs

6.4.2 Generalisation to Domain Consequences

The operator for the boolean case can be generalised in a straightforward way to
the non-boolean case. Most of the previous discussion holds irrespective of the
size of the domains. The only point of attention arises from the definition of trivial
sets.

Let P be a set of domain sequences. So far, we interpreted P as a set of
domain consequences. In that case, we can say that P is interpreted in conjunctive
form, i.e. that ∀P = 〈D1, . . . , Dn〉 ∈ P , P is interpreted as the disjunction
X1 ∈ D1 ∨ . . . ∨ Xn ∈ Dn, and P is interpreted as the conjunction

∧
P∈P P of

its domains consequences. Conversely, we say that P is interpreted in disjunctive
form when ∀P = 〈D1, . . . , Dn〉 ∈ P , P is interpreted as the conjunction ∀i ≤
n∀a ∈ Di, Xi = a, and P is interpreted as the disjunction

∨
P∈P P . In particular,

if P = ∅, it interprets as true in conjunctive form and false in disjunctive form,
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and if P = {∅}, it interprets as false in conjunctive form and true in disjunctive
form.

For a given P ∈ P , whereP is interpreted in conjunctive form, P = 〈D1, . . . , Dn〉
is a tautology if ∃i such that Di = D(Xi), i.e. all possible values are allowed
for Xi. For a given P ∈ P , where P is interpreted in disjunctive form, P =

〈D1, . . . , Dn〉 is a contradiction if ∃i such that |Di| > 1, i.e. Xi must have two
distinct values at the same time. Note that the definitions of tautologies and con-
tradictions are equivalent in the case of domains of size 2. This implies that the
� operator could be defined simply on collections of sets of literal, irrespective of
whether they interpret as CNF or DNF. When generalising to domains of arbitrary
size, two distinct operators must be defined, taking into account the interpretation
of P: one for the conversion from conjunctive to disjunctive form, denoted �∨,
and another for the conversion back to conjunctive form, denoted �∧. At the end
of this double conversion, we obtain that �∧ �∨ P = Cons(P).

6.4.3 The Algorithm

Let M be an ordered automata free from subsumed elements, with initial state q0.
The two operators �∨ and �∧ can be described in a general fashion as follows,
where either operator is simply denoted by �q0.

Trivial elements may be filtered similarly to what was done with the product
operator. We need to introduce some additional notation to deal with the case of
the disjunctive form, i.e. when trivial elements are in the form of contradictions.
For each Xi, 1 ≤ i ≤ n, we define, for each a ∈ D(Xi), the domain sequence
P a
Xi

= 〈Di
1, . . . , D

i
n〉, with Di

i = {a}, and Di
j = ∅ if i 6= j. For each Xi, 1 ≤ i ≤

n, we define the state q∨Xi
as the initial state of the ordered automaton recognising

{P a
Xi
/a > minD(Xi)}. For example, suppose n = 3, i = 2 and D(X2) = {abc}.

We have P(q∨X2
) = {〈∅, {b}, ∅〉, 〈∅, {c}, ∅〉}.

Proposition 3. P(�∨q0) = �∨P(q0) and P(�∧q0) = �∧P(q0).

Proof. Consider first the terminal cases.
If P(q0) = {∅}, q0 is accepting, and q∅ is returned, and thus P(�q0) = ∅.
If P(q0) = ∅, q0 = q∅. In that case, the forall loop is not executed, and q′0 is

returned as such, in which case P(�q0) = {∅}.
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Function �q0

if q0 is final then return q∅
else

q′0 ← Create new state
isFinal(q′0)← true
q′0 ← register-state(q′0)
forall a ∈ σ(q0) in decreasing order do

q′′0 ←Duplicate q′0 ⊗�δ(q0, a)
Let Xi be the variable to which a belongs
if Operator implemented is �∨ then

q′0 ← q′0 \|= qX∨
i

if Operator implemented is �∧ then
if a = minD(Xi) then

q′0 ← q′0 \|= qX∧
i

δ(q′′0 , a)← (q′0 \|= q′′0)
q′0 ← register-state(q′′0)

return q′0

Consider now the general case, without taking into account trivial element
filtering. Figure 6.6 shows how the operator can be recursively represented by
an ordered-automaton, very similarly to the ZBDD representation previously dis-
cussed. The invariant that is maintained in the forall loop is that q′0 = �P2 (with
P2 referring to the notation used in Figure 6.6). It is indeed the case at the first
iteration, as P2 = ∅. During an iteration, q′′0 is built according to the method
depicted in Figure 6.6, and at the end of the iteration, the result is assigned to q′0.

Consider the filtering of trivial elements, which is what differentiates the two
actual operators. q′0 is the state that will be reached by value a. Initially, it is set
to �P2. In the case of the distribution to disjunctive form, all elements in �P2

that contain at least one value (but never more than one, by induction hypothesis)
belonging to the domain of the same variable Xi must be removed from �P2.
This is achieved by applying q′0 \|= q∨Xi

, as any such element will be subsumed by
one of the elements in P(q∨Xi

). On the other hand, in the case of the distribution to
conjunctive form, all elements in �P2 that contain all the values but a from of the
domain of the same variable Xi must be removed from �P2. This is achieved by
applying q′0 \|= q∧Xi

, as any such element will be subsumed by the unique element
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in P(q∧Xi
). Note that we have to assume also that the automaton returned by

�P1 ⊗ �P2, to which q′′0 points in the algorithm, is free from trivial elements.
This is the case when the �∧ operator is considered, as the product operator, as
it has been presented in 6.3.5, filters out tautologies, but in the case of the �∨
operator, the product operator has to be adapted to filter out contradictions in the
same way as it has been presented here.

�

P1

P2
a

q0

�P1 ⊗�P2
a

q0

�P2

\|=(�P1 ⊗�P2)

Figure 6.6: The general form of the distribution operator on ordered automata

It follows that these operators allow us to compute the closure by resolution
of a set of domain consequences encoded by an ordered automaton.

Corollary. P(�∧ �∨ q0) = Cons(P(q0)).

Concerning the complexity, note that computing the closure by resolution does
not have a complexity that is polynomial in the size of the initial input and final
output. Indeed, the size of the intermediate automaton in disjunctive form is un-
related to that of the initial and final input. But this is not surprising and cannot
be overcome. Indeed, if one could generate all the domain consequences of a
problem in a time polynomial in the number of the domain consequences, then
this would provide a method to generate all conflicts of a problem in a time poly-
nomial in the number of conflicts. But this contradicts the complexity result in
Section 3.5, stating that generating all the minimal conflicts or all the maximal
relaxations of a problem can only be achieved by incurring the cost related to the
number of both (unless P = NP).

6.4.4 Initialising the Compilation

The last step for compiling a problem into an ordered automaton, representing
its set of domain consequences, consists in describing how we build the initial
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set of domain consequences that is equivalent to the problem, and on which the
closure by resolution can be computed to infer all domain consequences. Just
as Algorithm 8 of Chapter 5 initialises the set of domain consequences with the
domain consequences of each constraint, we first build an ordered automaton for
each constraint, then combine each of them to a single ordered automaton, and
then apply the closure by resolution operator to infer all the domain consequences
of the problem. All these steps are straightforward with the use of our operators.

The first step consists in inferring all the domain consequences of a single
constraint. Assuming we have an ordered automaton representing the constraint
in disjunctive form, it is simply a matter of applying the �∧ operator to it. But
then, an ordered automaton in disjunctive form is simply a classic automaton.
We can therefore use the following procedure. Using the procedure described in
Section 4.2.2, we build an automaton encoding the list of tuples of the constraint.
We then map the values in this automaton to the values of the alphabet of the
target ordered automaton. For example, the tuple 000 on variables X1, X2, X3,
with domain D(Xi) = {012} will be mapped to 036. Finally, we apply the �∧
to the resulting automaton to obtain an ordered automaton representing all the
domain consequences of the constraint.

The second step consists in combing the automata corresponding to each con-
straint to a single one. This can be simply done using the ∪µ operator. We then
obtain an ordered automaton representing a set of domain consequences that is
equivalent to the problem. We can now apply the closure by resolution operator
to it.



Chapter 7

Conclusion

Summary. In this chapter, we conclude this dissertation with a sum-

mary of our contributions and the thesis we have defended. We then

briefly examine several directions for future work.

7.1 Thesis Defence

The thesis defended throughout this dissertation was the following. Existing meth-
ods for computing explanations in constraint programming do not provide satis-
factory explanations to users of interactive configuration systems. We study new
approaches to enable improved explanations. We claim that we can compute such
type of explanations by defining and operating within a framework where user in-
teraction consists of unary constraints, and where different compilation strategies
are applied to allow for fast computation times during interactive phases. This
thesis can be regarded as the conjunction of three sub-theses, which we present
here along with a summary of their defence by this dissertation.

Sub-thesis 1. Showing a set of relaxations that is at the same time informative

and compact, while giving a better picture of a problem than showing a single

relaxation, can be achieved in practice.

In Chapter 3, we defined the concept of a representative set of relaxations,
which shows the user at least one way to satisfy each of his requirements and at
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least one way to relax them. We studied the complexity of computing such a set
in Sections 3.5 and 3.4.3, which we overcome with an algorithm that heuristically
converges to a representative set of relaxations (Section 3.6). We showed how this
notion can be extended to take into account combinations of a user’s requirements,
or a user’s preferences between his requirements in Section 3.7.

Sub-thesis 2. The choice of a relaxation needs to take into account the solutions

it allows. This can be done in an aggregate form by computing most soluble or

least soluble relaxations. A relaxation with the highest number of solutions leaves

the user with the largest choice. A relaxation with the lowest number of solution

corresponds the most closely to the user’s original requirements.

In Chapter 4, we defined algorithms to compute such relaxations using com-
piled representations of a problem to cope with the complexity of computing
those. We defined algorithms based on automata in Section 4.4.1 and generalised
these procedures to make them independent from any particular representation in
Section 4.4.2, by identifying the structural properties a representation must satisfy
for them to apply. We showed through an experimental study in Section 4.5 how
the choice of a compact representation resulted in very efficient procedures.

Sub-thesis 3. We claim that a complete knowledge of the conflicts of a problem

helps compute more useful explanations. It is possible to circumvent the com-

plexity associated with computing conflicts and arising from their high number by

compiling a problem to a new type of representation that contains explicit knowl-

edge of its conflicts.

In Chapter 5, we defined the concept of domain consequence, which gen-
eralises the concept of prime implicate to constraint problems, and proposed to
represent a problem in terms of its domain consequences. This defines a new
compilation strategy that represents the conflicts inherent to a problem, before the
user specifies any particular requirement. In Sections 5.3 and 5.8, we demon-
strated how doing this computation in advance can benefit to the computation of
explanations. In Chapter 6, we presented a data structure and a series of algo-
rithms to represent in a compact way a large set of domain consequences, and that
enable to compute the domain consequences of a problem in a more efficient way.
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7.2 Directions for Future Work

There are several possible directions for the work carried out in this dissertation
to progress, some dealing with theoretical issues, but other concerning practical
aspects. We outline these below.

Implementation of Ordered Automata. We need to efficiently implement the
operators outlined throughout Chapter 6. The algorithms we presented intended to
be as close as possible to a function definition, rather than be of practical interest
concerning their implementation. The actual implementation of these procedures
require additional technical work. In particular, the operators need to be expressed
in a more procedural way, and attention has to be given to careful memory man-
agement. As this can lead to minute technical considerations, it is worth instead
implementing our data structures and operators on top of an existing powerful
BDD package, such as BuDDy [93], thus benefitting from experience in the mat-
ter. Their efficiency, as well as the efficiency of the overall compilation procedure
has to be experimentally evaluated. What is the size of the resulting structure in
relation to the number of domain consequences it encodes? What is the size of
the intermediate structure? As such a procedure could be used to enumerate ex-
planations, is the overall procedure competitive against explanation enumeration
procedures?

Performance of the Compilation Method. We need to understand the char-
acteristics of problems for which this new compilation method achieves the best
results. What influences the number of domain consequences of a problem? Does
this method work better on problems presenting a particular structure, similar to
the way traditional compilation methods exploit tree-structured problems? In an
orthogonal way, another, maybe more realistic, direction will be to define inter-
esting restrictions on the domain conflicts we compute.

Querying Ordered Automata. In order to make use of the result of this com-
pilation method, we need to be able to efficiently query this structure. We need
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to define what type of queries are needed. Examples of tasks we need to achieve
include the following:

• Add to the current database a new minimal domain consequence if it is not
subsumed by any element currently in the database.

• Find a maximal domain conflict in the database for a user query.

• Compute a smallest conflict of a user query.

• Count the number of conflicts for a user query.

Some of them only require a straightforward application of one or several of
the operators we defined, but some require further algorithmic study. We will
have to carefully measure the efficiency of explanation computation from this
representation, as well as, of course, compare it with other existing representations
and algorithms.

Explanation Enumeration Algorithms. Explanation enumeration algorithms
is still a challenging research direction, and there is potential for new approaches.
In particular for the case of partial enumeration, there are two important require-
ments for an enumeration procedure: it should find each new relaxation quickly,
and it should generate diverse relaxations, where the notion of diversity is un-
derpinned by the notion of representativeness. It seems promising to apply an
approach similar to the approach of Liffiton and Sakallah [90] to constraint pro-
gramming. In particular, propagating an ATMOST constraint in a constraint model
can be highly beneficial, in particular in our setting where user constraints consist
in unary equality or membership constraints. The advantage of an enumeration
procedure based on a CP model is that it has the flexibility to easily support the
additional requirements we mentioned at the beginning of this paragraph.

Representative Explanations. Future work should focus on developing suit-
able user interfaces for presenting representative explanations to users, informed
by in-depth user studies. Also, we should study how to inform our choice of repre-
sentative explanations by considering the user’s preferences over constraints. The
acceptance by users of the explanations provided has to be evaluated.
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Most Soluble Explanations. One direction for future work concerns the de-
sign of non-exact methods to compute most soluble explanations. We saw in
Section 4.5, Chapter 4, that using compiled presentations resulted in very ef-
ficient exact procedures. Heuristic procedures are, therefore, needed in situa-
tions where compilation is not practical. The heuristics mentioned in Section 4.5,
minimise/maximise solution loss, are interesting as an indication for
future work; we want to look for heuristics that achieve the same purpose but in a
less brutal way.

Toolkit. Finally we should develop a toolkit based on the various explanation
algorithms and compilation procedures developed in this dissertation.
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[30] Ramon López de Mántaras and Lorenza Saitta, editors. Proceedings of

the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004, in-

cluding Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia,

Spain, August 22-27, 2004, 2004. IOS Press. ISBN 1-58603-452-9. 163,
166

[31] J. L. de Siqueira N. and Jean-Francois Puget. Explanation-based generali-
sation of failures. In ECAI, pages 339–344, 1988. 4

[32] Rina Dechter. Enhancement Schemes for Constraint Processing: Back-
jumping, Learning, and Cutset Decomposition. Artif. Intell., 41(3):273–
312, 1990. 25

[33] Rina Dechter, editor. Principles and Practice of Constraint Programming -

CP 2000, 6th International Conference, Singapore, September 18-21, 2000,

Proceedings, volume 1894 of Lecture Notes in Computer Science, 2000.
Springer. ISBN 3-540-41053-8. 169, 172, 175

[34] Rina Dechter and Judea Pearl. Tree Clustering for Constraint Networks.
Artif. Intell., 38(3):353–366, 1989. 13, 14, 34, 92

[35] Rina Dechter and Peter van Beek. Local and Global Relational Consis-
tency. Theor. Comput. Sci., 173(1):283–308, 1997. 21

[36] Alvaro del Val. Tractable Databases: How to Make Propositional Unit
Resolution Complete Through Compilation. In KR, pages 551–561, 1994.
34, 39, 130

[37] Alvaro del Val. A New Method for Consequence Finding and Compilation
in Restricted Languages. In AAAI/IAAI, pages 259–264, 1999. 129

[38] Alvaro del Val. The Complexity of Restricted Consequence Finding and
Abduction. In AAAI/IAAI, pages 337–342. AAAI Press / The MIT Press,
2000. ISBN 0-262-51112-6. 129

[39] Marc Denecker and Antonis C. Kakas. Abduction in Logic Programming.
In Antonis C. Kakas and Fariba Sadri, editors, Computational Logic: Logic



BIBLIOGRAPHY 165

Programming and Beyond, volume 2407 of Lecture Notes in Computer Sci-

ence, pages 402–436. Springer, 2002. ISBN 3-540-43959-5. 24

[40] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction.
J. ACM, 42(1):3–42, 1995. 3, 4

[41] Thomas Eiter and Kazuhisa Makino. On Computing all Abductive Expla-
nations. In AAAI/IAAI, pages 62–67, 2002. 3, 67

[42] Hélène Fargier and Pierre Marquis. On the Use of Partially Ordered Deci-
sion Graphs in Knowledge Compilation and Quantified Boolean Formulae.
In AAAI. AAAI Press, 2006. 44

[43] Hélène Fargier and Marie-Catherine Vilarem. Compiling CSPs into tree-
driven automata for interactive solving. Constraints, 9(4):263–287, 2004.
44, 78, 89, 92

[44] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Stumptner. Consistency-based diagnosis of configuration knowledge bases.
Artif. Intell., 152(2):213–234, 2004. 45

[45] E. Felt, G. York, R. Brayton, and A. Sangiovanni-Vincentelli. Dynamic
variable reordering for BDD minimization. In Design Automation Con-

ference, 1993, with EURO-VHDL ’93. Proceedings EURO-DAC ’93. Eu-

ropean, pages 130–135, Sep 1993. doi: 10.1109/EURDAC.1993.410627.
34

[46] Gerhard Fleischanderl, Gerhard Friedrich, Alois Haselböck, Herwig
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