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The Gamma Characteristic of Reconstructed PET
Images: Implications for ROI Analysis.

Tian Mou, Jian Huang and Finbarr O’Sullivan

Abstract—The basic emission process associated with PET
imaging is Poisson in nature. Reconstructed images inherit some
aspects of this—regional variability is typically proportional to
the regional mean. Iterative reconstruction using expectation-
maximization (EM), widely used in clinical imaging now, impose
positivity constraints that impact noise properties. The present
work is motivated by analysis of data from a physical phantom
study of a PET/CT scanner in routine clinical use. Both tradi-
tional filtered back-projection (FBP) and EM reconstructions of
the images are considered. FBP images are quite Gaussian but the
EM reconstructions exhibit Gamma-like skewness. The Gamma
structure has implications for how reconstructed PET images
might be processed statistically. Post-reconstruction inference—
model fitting and diagnostics for regions of interest are of partic-
ular interest. Although the relevant Gamma parameterization is
not within the framework of generalized linear models (GLM),
iteratively re-weighted least squares (IRLS) techniques, which
are often used to find the maximum likelihood estimates of a
GLM, can be adapted for analysis in this setting. Our work
highlights the use of a Gamma-based probability transform
in producing normalized residuals as model diagnostics. The
approach is demonstrated for quality assurance analyses asso-
ciated with physical phantom studies—recovering estimates of
local bias and variance characteristics in an operational scanner.
Numerical simulations show that when the Gamma assumption is
reasonable, gains in efficiency are obtained. The work shows that
the adaptation of standard analysis methods to accommodate the
Gamma structure is straightforward and beneficial.

Index Terms—Image processing, Gamma distribution, IRLS,
PET.

I. INTRODUCTION

POSITRON emission tomography (PET) is widely used in
the clinical management of many cancers—for staging,

therapy planning and evaluation of therapy response. So im-
proved understanding of the characteristics of PET imaging
measurements could benefit clinical decision making. The
analysis of statistical variation in PET images, and specifically
the problem of approximating standard errors for regional
means, has received considerable attention [2, 6, 7, 9, 13, 21].
Most of this work has necessarily concentrated on clas-
sical filtered-backprojection (FBP) reconstruction. With the
widespread use of positivity constrained EM [23] reconstruc-
tions in clinical practice, the nature of the distribution of such
reconstructions is receiving more careful attention. A basic
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result in probability is that sums of independent Poisson ran-
dom variables are also Poisson. With PET the emission process
can be viewed as a realization of a Poisson process, and so
the local weighted-averaging nature of classical reconstruction
kernels theoretically implies a relation between the mean and
variance of reconstructed values [7, 21]. This is a familiar
characteristic of the Poisson and other distributions such as
the Gamma and log-normal. Many factors impact on the noise
characteristics of reconstructed PET images and might lead
to a deviation from the Poisson distribution: most obviously
scaling but attenuation and scatter corrections add further com-
plexities. Barret et al. [3] and Li [12] theoretically analyzed
the noise properties/propagation of iterative reconstruction
algorithms and suggested that the probability density function
of the grey level at each pixel of the reconstructed images can
be approximated by a log-normal distribution.Teymurazyan et
al. [22] reported measurements on a GEMINI PET/CT scanner
comparing FBP and iterative EM reconstructions. While Gaus-
sian characteristics were reasonable for FBP reconstructed
images, the EM-reconstructed images were typically skewed.
Their work suggested consideration of the Gamma distri-
bution for representation of measurements. In cases where
the reconstructed images are further analyzed or quantitively
interpreted, as is the case in kinetic studies, the procedures
used should ideally incorporate a good understanding of the
statistical characteristics of the measurements in order that
they be efficient [18]. In this context least-squares (or weighted
least squares), which is efficient for Gaussian data, may not
be efficient/optimal for Gamma or log-normal data.

Motivated by experience with our own scanner, this work
explores the Gamma model in greater detail and provides
inference implications associated with such a representation of
PET images. Iteratively re-weighted least squares techniques
are described to implement likelihood inference based on
the Gamma assumption. This makes essential use of ap-
proximations for the di-gamma and tri-gamma functions [1].
The development highlights use of the Gamma probability
transform for creation of normalized residual diagnostics as-
sociated with such analyses. The methods are illustrated in
the context of routine Quality Assurance (QA) studies used to
evaluate the temporal and axial imaging characteristics of a
scanner. Results are reported for data from 3-D imaging in an
operational clinical scanner—a GE Discovery STE PET/CT.

The basic theory and methodology is developed in section
II. Studies with real and simulated data are described in
section III. Section IV presents data analysis for FBP and EM
reconstruction images. The paper concludes with discussion
including some exploration of the impact of spatial covariance
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Fig. 1. Densities of Gamma(τµ, 1/τ) with µ = 1 for different τ -values.

on the results.

II. METHODOLOGICAL DEVELOPMENT

While reconstructed PET images are not integer counts
they typically inherit the mean-variance property of the Pois-
son distribution [6, 13, 17, 19]. Positivity constrained EM
reconstructions [23] effectively replace negative values with
ones that are positive—inducing some skewness. As shown
in Fig. 1 the Gamma distribution, which has the flexibility to
describe such data, is plausible in this setting. We use the
parameterization Gamma(τ µφ , φ) to represent reconstructed
PET activity values. This specifies a Gamma distribution
with shape parameter τ µφ and scale parameter φ, the density
function is

f(x|τ, µ, φ) =
1

Γ(τ µφ )φ
τµ
φ

x
τµ
φ −1e−

x
φ

where Γ(·) is the gamma function. Here τ corresponds to
the injection dose. The mean and variance of the data will
be τµ and τµφ, respectively. The parameter φ represents
over-dispersion relative to a Poisson random variable. In
practice, such dispersion routinely arises from corrections for
detector sensitivity, attenuation and scatter—but other factors
such as patient movement may also play a role. Often PET
measurements are scaled by the injected dose per weight of the
patient for analysis, e.g., converted into standardized uptake
value (SUV) units [10]. If the counts are scaled by dose,
they will have a Gamma(τ µφ ,

φ
τ ) distribution—the mean is

µ and the variance is µφ/τ . Fig. 1 shows Gamma(τµ, 1/τ)
densities for different τ -values with µ = 1. When τ ≤ 1,
the Gamma distributions have an exponential-like shape. The
skewness reduces and the distribution formally converges to a
Gaussian as the value of τ or µτ

φ increases.
We address inference for a certain class of important

models involving both temporal and spatial features, when
the data have a Gamma structure. Complexity arises because
our interest is focused on the mean and variance parameter,
thus, unlike the estimation problem of the Gamma distribution
in generalized linear models where the dispersion parameter
φ is a constant and considered as known/unknown nuisance
parameter. As µ and φ are both of inferential interest, the
exponential family structure and the familiar IRLS procedures,
associated with the Gamma distribution in generalized linear
models [14], do not apply.

A. Inference for Multiplicative Models in the Gamma Setting

Consider the situation where we have region of interest
(ROI) time-course data. Hence, let zit, for t = 1, 2, ..., T
and i = 1, 2, ..., N be the set of voxel-level decay-corrected
PET tracer activity values (scaled by injected dose) for a
ROI with N voxels measured over T time-frames. Assuming
the region is relatively homogeneous, we might reasonably
expect a common temporal characteristic for the data in the
ROI, e.g., zit ∼ Gamma(µt/φt, φt) with E(zit) = µt and
V ar(zit) = φtµt. Assuming the duration of the t’th time-
frame of scanning is ∆t and the decay-correction factor for
the t’th time-frame is ft, then φt would be of the form φ ft

∆t
[8].

In the case that the ROI extended over several slices or there
were significant changes in sensitivity due to the attenuation
of radiation, the model is readily adapted to take this into
account. This leads to consideration of a general structure in
which zikt ∼ Gamma(µkt/φkt,φkt) and

µkt = αkµt and φkt = βkφt (1)

where µkt and φkt decomposed as products of two terms
depending on the slice k and time frame t, respectively. The
relevant data structure is a set of PET measurements of the
form {zikt, i = 1, 2, . . . , N ; k = 1, 2, ...,K, t = 1, 2, ..., T}
corresponding to a collection of N phantom-voxels each
recorded over T time-frames on each of K transverse slices
in the field of view of the scanner.

All component parameters are non-negative and we impose
the additional constraints,

∑
t µt =

∑
t φt = 1, for identifia-

bility.
While the above formulation connects to the ROI analysis of

PET-measured tissue time-course data, it is relevant to analysis
of physical phantom measurements used in routine quality
assurance of PET scanners. This is discussed more fully below.
For analysis purposes, we regard zikt for i = 1, 2, ..., N as
a random sample from a Gamma(µkt/φkt,φkt) distribution
in which the multiplicative constraints of equation (1) are in
force. Previous reports on constructs of this type for PET
images have been presented in [15, 16].

Estimation: We consider use of a Gamma likelihood for
estimation of parameters in the multiplicative model asso-
ciated with the {zikt} data above. Assuming {zikt} are
independent—certainly not true in the PET imaging context
but still potentially useful as a quasi-likelihood device for
producing reasonable estimators—the scaled negative log-
likelihood function is:

l(µ,φ) =
∑
ikt

{zikt
φkt
− µkt

φkt
log(

zikt
φkt

) + log(zikt)

+ log(Γ(
µkt
φkt

))} (2)

where µkt and φkt are specified by equation (1). An alternat-
ing procedure, updating (αk, µt) with (βk, φt) fixed, followed
by updating (βk, φt) with (αk, µt) fixed, is used to minimize
(2). This might be viewed as a variation of the

∏
method of

Brieman [5]. We elaborate the details of the individual steps
involved in the present setting.
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i) Updating (αk, µt) with (βk, φt) fixed: With γ =
(γ1, γ2, ..., γT ), for γt = µt/φt; θ = (θ1, θ2, ...θK), for
θk = αk/βk and uikt = zikt/φkt. The problem becomes
minimizing the following objective with respect to (γ,θ)

l(γ,θ) =
∑
k

∑
t

−γtθk log(Gkt) + log(Γ(γtθk)) (3)

where Gkt = {
∏
i uikt}1/N is the geometric mean of the

{uikt, i = 1, 2, ..., N} data.
Write ξkt = θkγt and suppose ξ0

kt = θ0
kγ

0
t = (α0

kµ
0
t )/(β

0
kφ

0
t )

where the super-script “0” indicates the current guess. Second
order Taylor series expansion of the log-Gamma function gives

log(Γ(ξkt)) ≈ log(Γ(ξ0
kt)) + ψ(ξ0

kt)(ξkt − ξ0
kt)

+
1

2
ψ1(ξ0

kt)(ξkt − ξ0
kt)

2 (4)

where ψ and ψ1 are the di-gamma and tri-gamma functions
[1]. Substitution into (3), yields a quadratic approximation to
objective function used for updating (γ,θ)

WRSS(γ,θ) =
∑
k

∑
t

wkt(ykt − ξkt)2

=
∑
k

∑
t

wkt(ykt − θkγt)2

where

ykt = ξ0
kt +

log(Gkt)− ψ(ξ0
kt)

ψ1(ξ0
kt)

; wkt = ψ1(ξ0
kt)

This gives the updating process—given θk, update γt (normal-
izing so that

∑
t φt = 1) and given γt, update θk

γ̂t ←
∑K
k=1 wktθkykt∑K
k=1 wktθ

2
k

, t = 1, 2, ..., T ;

θ̂k ←
∑T
t=1 wktγtykt∑T
t=1 wktγ

2
t

, k = 1, 2, ...,K.

On convergence set µ̂t = γ̂tφ
0
t and α̂k = θ̂kβ

0
k .

ii) Updating (βk, φt) with (αk, µt) fixed: With µ = αkµt,
ζ = ζtωk, ζt = 1/φt, ωk = 1/βk, the objective function (2)
can be expressed as

l(µ, ζ) =
∑
ikt

{ziktζtωk − µktζtωk log
(
ziktζtωk

)
+ log(zikt) + log

(
Γ(µktζtωk)

)
} (5)

Now hold ωk constant, and minimize (5) with respect to ζt.
The relevant first and second derivatives of l are

g(ζt) =
dl

dζt
=

∑
ik

{ziktωk − µktωk log
(
ziktζtωk

)
− µktωk + µktωkψ

(
µktζtωk

)
}

h(ζt) =
d2l

dζ2
t

= N ·
∑
k

µktωk{µktωkψ1

(
µktζtωk

)
− 1/ζt}

This gives the Newton updating process: ζ1
t = ζ0

t −
g(ζ0

t )/h(ζ0
t ). On convergence, φ̂t = 1/ζ̂t and scaled so that∑

t φ̂t = 1.

With ζt (equivalently φt) fixed, the Newton process for
updating ωk proceeds as: ω1

k = ω0
k − g(ω0

k)/h(ω0
k) where

g(ωk) =
dl

dωk
=

∑
it

{ziktζt − µktζt log
(
ziktζtωk

)
− µktζt + µktζtψ

(
µktζtωk

)
}

h(ωk) =
d2l

dω2
k

= N ·
∑
t

µktζt{µktζtψ1

(
µktζtωk

)
− 1/ωk}

On convergence, β̂k = 1/ω̂k. We update µt, αk and φt, βk
sequentially by iterating the procedures in section i) and ii)
above. The iterative process continues until relative differences
are lower than the specified tolerance.

εµ =

∥∥∥∥µnkt − µn−1
kt

µnkt

∥∥∥∥ < 0.001 ; εφ =

∥∥∥∥φnkt − φn−1
kt

φnkt

∥∥∥∥ < 0.001

The process is initialized in a simplified least squares (LS)
way, alternating between the following two steps for µ and
α—with starting values µ̃t = 1

N×K
∑N
i=1

∑K
k=1 zikt

• α̃k =
1
N

∑
it ziktµ̃t∑
t µ̃

2
t

• µ̃t =
1
N

∑
ik ziktα̃k∑
k α̃

2
k

, normalizing so that
∑
t µ̃t = 1.

This is followed by setting yikt = (zikt − α̃kµ̃t)/
√
α̃kµ̃t and

alternating the two steps

• β̃k =
1
N

∑
it y

2
iktφ̃t∑

t φ̃
2
t

• φ̃t =
1
N

∑
ik y

2
iktβ̃k∑

k β̃
2
k

, normalizing so that
∑
t φ̃t = 1

for determining φ and β. In this setting, IRLS is equivalent
to Newton’s method and can therefore be expected to benefit
from its convergence properties [14]. The process is self-
consistent in the sense that if the parameters are set at the
true values, any of the individual updating steps is unbiased
for the target. We evaluate the efficiency of these simplified
estimators in results section.

B. Probability Transformed Normalized Residuals

Let F (·|µ, φ) be the cumulative distribution for a Gamma
random variable Z with density Gamma(µ/φ, φ). Consider
the probability transformation of Z

R = Φ−1(F (Z|µ, φ))

where Φ−1 is inverse cumulative distribution function of a
standard Gaussian. Theoretically, R must have a standard
normal distribution—Fig. 2. If the model is correct, the
probability-transformed data might be considered as realiza-
tions from a normal distribution.

In the context of the multiplicative model, where µkt and
φkt are estimated, we can use this to construct a set of
normalized model residuals for the analysis

rikt = Φ−1(F (zikt|µ̂kt, φ̂kt))

for i = 1, 2, ..., N , k = 1, 2, ...,K and t = 1, 2, ..., T .
If the model is appropriate, these residuals should conform
to the assumptions of a random sample from a standard
normal distribution. There is of course considerable experience
with similar residual diagnostics in the context of the linear
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Fig. 2. Theoretical probability transformation of a Gamma random variable
(Z) with distribution function F to a normal random variable R.

model—see Weisberg [25] for example. It is worth noting
that as µ̂kt/φ̂kt increases, zikt becomes Gaussian and the
normalized residuals take the familiar form

rikt ≈
zikt − µ̂kt√
φ̂ktµ̂kt

.

Thus the probability-transformed Gamma model residuals
reduce to Pearson residuals as µ̂kt/φ̂kt increases—c.f. gener-
alized linear models [14]. It should be appreciated that trans-
formation to the normal distribution for residual diagnostics is
somewhat arbitrary, a referee has suggested transforming to a
uniform distribution.

III. EXPERIMENTAL METHODS

A. Physical Phantom Data

A standard part of routine quality assurance for PET scan-
ners involves evaluating accuracy and reliability from imaging
of a known source. A range of phantoms and imaging proto-
cols, matched to operational clinical practice, are used for this.
We consider the data of this type collected at a PET imaging
facility at a local hospital—the Cork University Hospital. The
scanner is a GE Discovery STE used clinically for imaging
of cancer patients. Routine clinical image reconstruction is
performed with 3-D iterative EM reconstruction (IR). Classical
linear 3-D Fourier rebinning filtered-backprojection recon-
structions (FBP) are also produced. In our study, an uniform
cylindrical phantom filled with F-18 radiotracer is placed
in the scanner and imaged in accordance with a standard
dynamic PET-FDG brain imaging protocol established by the
CQIE project of the American College of Radiology Imaging
Network (ACRIN) [20]. The brain imaging field of view
(FOV) for PET is 700 mm trans-axially and 157 mm axially.
The phantom is 215 mm in diameter and placed centrally so
that its axis aligns with the long-axis of the scanner. A dynamic
sequence of 45 time-frames is acquired for 55 minutes. For
each time-frame, the reconstructed image has 128×128 pixels
in 47 slices, with the pixel size of 5.47× 5.47 mm2 and
slice thickness of 3.27 mm. After discarding the two extreme
slices, the dimension of the full 4-D phantom image data
set is 128×128×45×45. The ROI data for the interior cross-
sectional circular volume of the phantom, acquired for each
axial slice, k, and time-frame, t, are available for analysis.
There are N = 680 voxels in the ROI. The data for the set
of all K = 45 slices and T = 45 time-frames structured as
{zikt, i = 1, 2, ..., N, k = 1, 2, ...,K, t = 1, 2, ..., T}. These

measurements are decay-corrected and scaled by the known
dose per unit volume within the phantom. The perfect scanner
would have z-values close to unity throughout. We use these
data to evaluate the plausibility of the Gamma distribution
versus the more conventional Gaussian assumption. We go
on to use the multiplicative model to analyze the axial and
temporal patterns in the bias and variance of measurements.
Note that the central placement and small diameter of the
phantom, makes radial effects negligible in this setting.

1) Assessment of the Gamma and Log-normal Distribu-
tions: The cross-sectional voxel-data for each time-frame and
slice are evaluated for conformity to a Gaussian, Gamma
and log-normal law. The Gamma and log-normal model are
estimated using the function fitdistr in R [24]. The
likelihood ratio statistic comparing twice the negative log-
likelihood of the best fitting Gaussian model is compared to
twice the negative log-likelihood for the best fitting Gamma
model. From standard parametric likelihood theory, we would
expect that if the models were equally valid the deviation of the
Gamma model log-likelihood from the Gaussian log-likelihood
should be on the order of a χ2

2 random variable. To formally
assess the strength of evidence in favour of the Gamma
model, we compute the difference between the Gaussian log-
likelihood and the Gamma model log-likelihood and evaluate
the probability (p-value) that a χ2

2 random variable could be
more than the computed amount. This calculation is carried
out individually for each slice and time-frame combination.
A graphical comparison between the Gamma and Gaussian
is also carried out. This is based on the overall structure of
probability transformed residuals under Gamma and Gaussian
model assumptions for the data. The likelihood ratio of the
Gamma and log-normal fits are also evaluated. These are
summarized by the duration of the time-frame.

2) Application of the Multiplicative Model: The model
described in section II is used to evaluate the axial and
temporal bias and variance. The Gamma model fit is com-
pared to the fit achieved using the simplified least squares
approach—optimal under Gaussian assumptions. In addition,
the normalized residuals are analyzed and compared to the
corresponding residuals obtained without the multiplicative
modeling constraints.

B. Numerical Phantom Study

A numerical phantom study was conducted to explore
effects of iteration and count rate on the noise distribution
characteristics of EM reconstructed images. The 2-D uniform
elliptical disk phantom, shown in Fig. 5, was used. The sim-
ulation model was based on simple analytical projection. One
thousand replicates of Poisson simulated projection data were
created with counts rates from 104 to 106 events. This lead
to a collection of 1000 reconstructed images for each count
rate. The central pixel value over these sets were evaluated for
conformity to Gamma and log-normal distributions.

C. Numerical Simulation with the Gamma Model

Our study here investigates the performance of the method
proposed in section II for estimation of the accuracy (µkt)
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Fig. 3. 3D dynamic PET study on a cylindrical phantom using FBP (A,C) and EM (IR) (B,D) reconstructed methods. The ROI data within white outline are
used in analysis. Figure A and B: Left: The cross-section and sagittal image of the phantom data (24th time frame of slice 23). Right: Histograms generated
from ROIs on different time frames and slices. The lines on the plots are Gamma (red), log-normal (green) and normal (blue) model fits for particular time
and slice combinations of ROI data. Figure C and D: Top: χ2

2 p-values (log-scale) calculated for each time and slice combinations and plotted by time
frame and slice location. The green lines indicate the significant level—0.05. Bottom: Histograms and normal Q-Q plots of Pearson residuals (left blue) and
normalized Gamma residuals (right red) for entire phantom data.

and dispersion (φkt) characteristics. Data were simulated
according to

zikt ∼ Gamma(τ
µkt
φkt

,φkt/τ)

for i = 1, ..., N , k = 1, ...,K, and t = 1, ..., T , with
µkt = αkµt, φkt = βkφt and the values of µt, αk, φt and
βk, matched to typical patterns observed in the CUH phantom
data. A range of dose levels τ and ROI sizes N are considered.
The dose ranges are set to explore values which would be
one to two orders of magnitude greater and less than that
seen in the CUH sets. The ROI sizes of N = 10, 100, 1000
were considered. Mean square errors (MSE) for the component
parameters, µt, αk, φt and βk, are evaluated as function of
dose and ROI size.

IV. RESULTS

We begin by presenting results of the analysis of physical
phantom data, this is followed by numerical simulation studies.

A. Physical Phantom Data

Temporal and Spatial Data Distribution: Fig. 3 A and B
shows images of slice 23 and time frame 24 located near the
center of the phantom, which are reconstructed using FBP
and IR methods, respectively. Voxel-level data in a cylindrical
volume, within white outline, are used in analysis. The ROI
histograms with the best fitting normal model (blue dotted
lines), Gamma model (red lines) and log-normal model (green
dashed lines) for the data in different slices and time frames
are also exhibited in Fig. 3 A and B. In the present study,
the FBP images show no skewness supporting the Gaussian
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Fig. 4. Multiplicative model fit on FBP (A,C) and EM (iterative) (B,D) reconstructed PET images. Figure A and B: Multiplicative model estimates of bias
and variance using Least Square (LS) versus Maximum Likelihood (ML) estimation. Figure C and D: show multiplicative model residuals and the Q-Q plot
of normalized Gamma residuals with and without the multiplicative constraint.

distribution consistent with previous studies [22]. By contrast,
the IR images show skewness particularly in the early time
frames (Fig. 3 B) and towards the axial limits (edge) of the
scanner. However, for images in late time frames and towards
the middle of the scanner the skewness disappears and there
is convergence to the normal distribution. The red lines in
this plot indicate that the IR images can be approximated by
the Gamma model, while the blue dashed lines show that the
normal model fails to describe the IR images in early time
frames. The log-normal model appears similar to the Gamma
model for most slices. The detailed analysis of discrimination
between the log-normal and Gamma model will be presented
in section V. Since the measurable count rate (τ ) diminishes
with decay (time) and sensitivity (axial extremity), the data
shown in Fig. 3 agree with the structure of Gamma(τ µφ , φ/τ)
distribution—showing less skewness as τ increases (see Fig.
1).

Comparison of Gaussian and Gamma model: The top row
of Fig. 3 C and D, plots χ2

2 p-values (pkt) by slice location
(k) and time frame (t). This calculation has been described in

section III-A1. For FBP images, the majority of p-values are
in the range of 0.05 to 1 and there is no obvious temporal or
axial pattern. Overall there is no significant difference between
the Gaussian model fit and Gamma model fit for FBP images.
With the IR images, there is strong evidence against the Gaus-
sian model at early time frames and in extreme axial slices.
These areas have less counts and show more skewness. The
probability transformations of FBP and IR images are shown
on the bottom row of Fig. 3 C and D, respectively. The plots on
the left showing the histograms and normal quantile-quantile
(Q-Q) plots of Pearson residuals rGikt = (zikt − µ∗

kt)/σ
∗
kt,

where µ∗
kt and σ∗

kt are the means and variances of each slice
and time-frame combination. On the bottom right of Fig. 3
C and D shown the histograms and normal Q-Q plots of
normalized Gamma residuals rΓ

ikt = Φ−1(F (zikt|µ̂∗
kt, φ̂

∗
kt)),

where µ̂∗
kt and φ̂∗kt are obtained by fitting Gamma distribution

for each slice and time-frame combination using fitdistr
function in R. Both Pearson and Gamma residuals of FBP
images appear Gaussian, suggesting that either model is rea-
sonable. However the Gamma residuals of IR images are
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strongly Gaussian in comparison to the Pearson residuals,
favoring the Gamma model. To sum up, the Gamma model
is superior to the Gaussian for iterative reconstruction PET
images, but both models are equivalent for FBP reconstruction
images.

Evaluation of Temporal and Spatial Scanning Characteris-
tics: The maximum likelihood (ML) estimation, described in
section II, is used to evaluate the axial and temporal bias and
variance. The ML fit is compared to the fit achieved using
the least squares (LS) approach. Note LS estimates are used
as initial values for the ML computation. The estimated bias
and variance using LS and ML method are shown in Fig. 4 A
and B, respectively. For FBP reconstruction, the bias remains
stable and stays near zero temporally and axially while the
variance shows more fluctuations at the early time. In the
case of IR reconstruction, the bias and variance show more
fluctuations than in FBP. The variance shows some increase
over time. Both FBP and IR images show a strong axial
pattern of variance—low variance in the center of the scanner
and high variance towards axial edge. There is no significant
difference between LS and ML estimates for FBP images, but
the ML estimates for IR images tend to fluctuate less than
the LS estimates. Since the true variances are unknown, it is
not possible to compare the accuracy of two estimates here,
however our simulation study, which is reported in IV-C below,
would suggest the ML estimation should be more reliable.
Fig. 4 C and D show the probability transformation (multi-
plicative model residuals) and Q-Q plot of normalized Gamma
residuals with and without the multiplicative constraint. The
linear patterns of Q-Q plots suggest that the distribution of
multiplicative model residuals rikt (with the constraint) and
normalized Gamma residuals rΓ

ikt (without the constraint) are
similar.

B. Numerical Phantom Simulation

Phantom data results are shown in Fig. 5. Higher skewness
is seen at the lower counts. The red solid lines in Fig. 5
represent fits of Gamma distributions to the measured data.
The fits are very reasonable. The log-normal shows similar
fits to the data (green broken lines). Fig. 5 demonstrates that
the distribution of the measured data becomes closer to the
normal distribution as count rate increases. The result suggests
that measured data becomes closer to the normal distribution
as count rate increases, in agreement with analysis of physical
phantom data.

C. Numerical Simulation with the Gamma Model

The simulated data were generated as described in section
III-C. The top row of Fig. 6 shows the overall histogram
of Pearson residuals rGikt for 3 different values of τ for a
simulated dataset (N = 1000). The Pearson residuals become
more Gaussian distributed as τ increases. This result agrees
with the property of Gamma distribution as shown in Fig. 1.
The bottom row shows the Gamma model residuals rikt for the
same dataset. The Gamma-transformed residuals are strongly
Gaussian in comparison to the Pearson residuals.

Fig. 5. Results of numerical phantom simulation study. Top: Phantom image
and EM reconstructed images for two count rates (N = 105 and N = 106).
Middle and bottom: Histograms of pixel values for different count rates. The
Gamma and log-normal model fits are shown in red and green, respectively.

Fig. 6. Histograms and normal Q-Q plots (dots) of the Pearson (top) and
Gamma-transformed residuals (bottom) for different τ values.

Considering the data with same dose τ = 1, Fig. 7 compares
the initial least squares estimates (blue)—µ̃t, α̃k, φ̃t, β̃k
with the multiplicative model/maximum likelihood estimates
(red)—µ̂t, α̂k, φ̂t, β̂k. The ML estimates follow the true values
more closely indicating that the Gamma distribution-based
multiplicative model improves the accuracy of estimation.

Fig. 8 shows the log mean square error (MSE) of the
component ML (red) and LS (blue) parameter estimation
evaluated as a function of the dose τ and ROI size N . The
results indicate that compared to LS, ML estimates have
reduced MSEs. The amount of reduction depends on τ , N and
the parameter being estimated. The percentage reductions of
MSE for µt and αk are 2% and 78%, respectively, with τ = 1
and N = 1000—these values match the physical phantom
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Fig. 7. Initial (LS) and multiplicative (ML) estimates for µt, αk , φt and βk
when τ = 1.

data. The MSE reduction of φt and βk are higher, 96% and
95%. The compute time for ML is about four times that of
the LS estimation method—for a sample size of N = 1000
the total compute time was 111 seconds on a laptop with a
2.9 GHz processor. The results also show that the estimation
is consistent as τ and N increase. The empirical rate of
convergence of the MSE of the mean value parameters µt
and αk, was analyzed by linear regression using the model,
log(MSE) ∼ a0+a1 log(N)+a2 log(τ). The regression lines
are shown on the plot. The estimated regression coefficients â0,
â1 and â2 of the log MSE of the ML estimation of µt and αk
are presented in Table I. The empirical behaviour MSE of ML
estimation for φt, βk shows a rate change close to τ = 1. After
τ = 1 the MSE shows little improvement with increasing τ . In
light of this regression separate lines were fitted for τ ≤ 1 and
τ ≥ 1, respectively. The estimated regression coefficients are
given in Table II. An asymptotic explanation of the behaviour
is offered in the next section.

TABLE I
EMPIRICAL MSE ESTIMATION CHARACTERISTIC FOR µt AND αk

log(MSE) ∼ a0 + a1 log(N) + a2 log(τ)

µt αk

â0 −4.727 ± 0.243 −5.969 ± 0.172
â1 −0.818 ± 0.049 −0.893 ± 0.035
â2 −1.311 ± 0.066 −1.135 ± 0.047

TABLE II
EMPIRICAL MSE ESTIMATION CHARACTERISTIC FOR φt AND βk

log(MSE) ∼ a0 + a1 log(N) + a2 log(τ)

φt βk

τ ≤ 1
â0 −3.685 ± 0.278 −3.578 ± 0.420
â1 −0.579 ± 0.050 −0.755 ± 0.075
â2 −1.004 ± 0.121 −0.686 ± 0.183

τ ≥ 1
â0 −3.359 ± 0.434 −2.449 ± 0.185
â1 −0.625 ± 0.064 −1.013 ± 0.027
â2 −0.127 ± 0.213 −0.067 ± 0.091

-14

-12

-10

-8

-6

-4

  

                 
                 
                 

      
N=10
N=100
N=1000

lo
g(
M
SE

) -14

-12

-10

-8

-6

-4

  

                 
                 
                 

      
N=10
N=100
N=1000

-10

-8

-6

-4

-2

0

2

4

τ
0.125 0.25 0.5 1 2 4 8

τ

  

                 
                 
                 

      
N=10
N=100
N=1000

τ
0.125 0.25 0.5 1 2 4 8

-10

-8

-6

-4

-2

0

2

4  

                 
                 
                 

      
N=10
N=100
N=1000

!µt µ̂t !α k α̂ k

!βk β̂k
!φt φ̂t

Fig. 8. The log MSE of the parameter estimation evaluated as function of
dose τ and ROI size N . The log MSE for initial (LS) estimates are shown
in blue and multiplicative model (ML) estimates are shown in red.

V. DISCUSSION

Using quantile-quantile (Q-Q) plots and less formal statisti-
cal methods, Teymurazyan et al. [22] showed that the noise in
RAMLA-reconstructed PET images was well characterized by
the Gamma distribution while FBP reconstructions produced
comparable conformity with both normal and Gamma statis-
tics. This study uses a more formal likelihood based approach
to investigate evidence in support of the Gamma model in
the EM and FBP reconstructed images. The test method is
applied to QA data from a phantom study obtained from
a PET scanner in routine clinical use. The analysis shows
strong evidence in support of the Gamma-model representation
of EM reconstructed images. FBP reconstructed images are
adequately described by Gaussian distributions. On the basis
of these results, we have described an approach for improved
statistical analysis of PET images that has been reconstructed
using practically used iterative (EM) methods. It involves a
novel use of IRLS for implementation of a Gamma-based
likelihood. Our experience with various data sets shows that
the algorithm is always converged after a modest number
of iterations. The approach also involves consideration of
probability transformed residuals for diagnostic analysis. The
approach is developed in the context of multiplication spatial-
temporal models used in QA of PET scanners. The method is
applied to estimate the bias and variance in QA data from a
phantom study obtained from a PET scanner in routine clinical
use.

A. Theoretical Interpretation of MSE Characteristics

The simulation results presented describe the Gamma-model
MSE characteristics for the class of multiplicative spatial-
temporal models used in QA evaluation of PET scanners.
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Potential benefits in efficiency are found by use of the Gamma-
likelihood approach, when the data are Gamma in nature. A
simplified analysis of this setup allows the measured empirical
behaviour of the MSE as a function of dose and ROI size to be
interpreted theoretically—see Fig. 8. Consider {z1, z2, ..., zN}
a random sample of size N from a Gamma(τµ/φ, φ/τ)
distribution. For τ large, the Gamma distribution is well
approximated by a Gaussian with mean µ and variance µφ/τ .
In this limit, the maximum likelihood estimator (MLE) for µ
is the sample mean

µ̂ =
1

N

N∑
i=1

zi.

The expected MSE of this (approximate ML) estimator is

E(MSE(µ̂)) =
Var(zi)
N

=
µφ

Nτ

Hence log(MSE) ∼ a0 + a1 log(N) + a2 log(τ) where a1 =
−1 and a2 = −1. This captures the empirical behaviour of
the MSE of µ and α as a function of τ and N found in the
numerical simulations—see Table I.

The analysis of the error characteristics in φ and β in the
QA multiplicative model can be examined by consideration
of MLE for φ in the simplified setup. Here analysis is made
easier if we suppose µ is known. If µ is known, the (MLE)
of φ is

φ̂ =
1

N

N∑
i=1

(zi − µ)2

µ/τ
.

Using the approximate χ2
1 distribution for [zi−µ]2/(µφ/τ)—

because zi is approximately Gaussian—the expected MSE of
φ̂ is

E(MSE(φ̂)) =
Var([zi − µ]2)

τ2µ2N
≈ 2µ2φ2/τ2

µ2N/τ2
=

2φ2

N
.

This analysis predicts that the asymptotic MSE of φ̂ or β̂
will not diminish with increasing τ , but it will reduce with
increasing ROI size (N ). So log(MSE) ∼ a0 + a1 log(N) +
a2 log(τ) where a1 = −1 and a2 = 0. While Fig. 8 does not
agree with this analysis—there is an apparent non-linearity
in the dependence of the log(MSE) as a function of dose
(τ ), the characteristic becomes remarkably flat for large dose.
Table II presents estimated coefficients at large doses. These
are in good agreement with the theoretical analysis.

B. Discriminating Between the log-normal and Gamma Dis-
tributions

As well known, both the log-normal and Gamma distri-
butions may be used to describe skewed non-negative data.
Kundu and Manglick [11] propose to discriminate between
these two distributions using the ratio of the maximized
likelihoods. Applying this procedure to our physical phantom
data, we used likelihood to fit both the log-normal and Gamma
model to the cross-sectional voxel data for each combination
of time frame t and slice k and then calculate the ratio of the
maximized likelihoods for Gamma and log-normal models.
If the ratio is greater than 1, the Gamma model would be
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Fig. 9. The likelihood ratio of Gamma model compare to log-normal. Choose
the Gamma distribution if the value is greater than 1, otherwise the log-normal
distribution is preferred.

preferred, otherwise, the log-normal model is preferred. For
the non-Gaussian cross-sectional data (cf. IV-A) there are
79.77% of ratio values are greater than one, which means the
Gamma model is generally found more appropriate than the
log-normal model in these data. Fig. 9 (left) shows box-plots
of the ratio distribution across the three levels of the time
frames. At the early short duration time frames (less than
30 seconds), all the ratios are greater than 1, showing very
strong evidence supporting the Gamma model over the log-
normal model. The evidence gets weaker with longer duration
time-frames (between 30 and 1 minute) and diminished at
the longest duration late time frames (more than 1 minute
duration). In addition, the numerical simulation study, shown
in Fig. 9 (right), agrees with this result that the Gamma model
is preferable at lower count. Barrett et al. [3] provided a
theoretical argument indicating how the reconstructed images
might be approximated by the log-normal distribution. This
was based on the assumption that the noise in the reconstructed
images is relatively small—i.e. high-count settings. The analy-
sis here indicates that especially in the shorter duration (lower
count) time frames (the other end of the spectrum), the Gamma
model is more plausible—Fig. 9.

C. Impact of Spatial Covariance

Fig. 10. One dimensional profiles of 3-D ACF of FBP and IR reconstruction
physical phantom images through the center of the phantom, showing from
left to right, horizontal, vertical and axial profile.
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The analysis presented does not take account of the co-
variance characteristics of reconstructed PET images. In prac-
tice this is clearly important. The MSE behaviour of the
Gamma-based estimation technique relative to LS could well
be impacted by covariance in the ROI data. To investigate
this, we adapted our simulation study to take account of the
type of covariance seen in the physical phantom data. The
auto-covariance used was matched to our physical phantom
data by considering a hyper-rectangular volume placed inside
the physical phantom (III-A) and extracting the normalized
Gamma-transformed residuals {rijk, i = 1, 2, . . . , I; j =
1, 2, . . . , J ; k = 1, 2, ...,K}.

Following the Wiener-Khinchine theorem [4], the 3-D au-
tocorrelation function (ACF) was estimated as the inverse
FFT of the 3-D power spectrum of hyper-rectangular volume
data. Very similar 3-D autocorrelation patterns are observed
across time frames (not shown). This is expected since time-
frames are independent and the resolution filter bandwidth
is not varied with frame duration. We averaged the ACF’s
across time-frames to produce a final 3-D ACF function. One
dimensional ACF profiles through the center of the hyper-
rectangular volume are shown in Fig. 10. Horizontal profiles
(left) look almost same as the vertical ones (middle), indicating
isotropic correlation behaviour within each slice for both FBP
and EM images. There is stronger correlation in the FBP
images compared to the EM images. This is no doubt due
to the different mechanisms affecting the smoothness of the
two data sets—the correlation is affected by the filter cut-off
frequency for the FBP images [26] and, in addition, by the
iteration number for the EM images [27].

We note that the simulation method in III-C generates non-
correlated data. To investigate the effects of correlation on
estimation accuracy of µkt and φkt, we modify the simu-
lation method in III-C to simulate the PET images with 3-
D autocorrelation matched to the one observed in the EM
data for each time frame and slice. To simulate data, we first
create T independent realisations {εijkt for i = 1, ..., I; j =
1, 2, ..., J ; k = 1, 2, ...,K and t = 1, 2, ..., T} of a Gaussian
process with 3-D autocorrelation structure matching the spatial
ACF of the phantom data. Each realisation is then transformed
to produce a realisation of a Gamma process with a desired
specified mean and variance pattern

zijkt = F−1(Φ(εijkt)|µijkt, φijkt)

where
µijkt = αkµt and φijkt = βkφt

Note the zijkt data has a Gamma distribution and a covariance
pattern matched to the PET phantom data.

Fig. 11 shows comparison of µt, αk, φt and βk esti-
mation based on simulated data with (blue) and without
(red) 3-D autocorrelation structure. Although less accurate,
estimates based on the auto-correlated data follow the true
values well. The log MSE of the two estimations evaluated
as a function of dose τ and ROI size N are presented in
Fig. 12. N = I × J . The regression model of MSE is
log(MSE) ∼ a0 + a1 log(N) + a2 log(τ)—same as Fig. 8.
Fig. 12 shows that the MSE of auto-correlated data behaves
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Fig. 11. Parameter estimation for i.i.d. simulation versus correlated simula-
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(LS) estimates are shown in blue and multiplicative model (ML) estimates
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similar to the non-correlated data (compare to Fig. 8). The
MSE is consistent as τ increases as well as N increases. The
ML algorithm significantly reduces the MSE compare to LS.
The ML algorithm is under the assumption of i.i.d. data, it is
not optimal for correlated data, however, the ML estimation is
still acceptable and the MSE behavior follows the theoretical
interpretation discussed in section V-A.

D. Generalizability to other PET Scanners

We have evaluated a collection of 34 phantom data sets
collected by the ACRIN on PET scanners that use positivity
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Fig. 13. The Kolmogorov-Smirnov test p-values of Gamma and normal model
for numerical phantom simulation data with different iteration numbers (4, 16,
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constrained reconstructions. These data sets are reconstructed
using different iterative methods, such as RAMLA, OSEM and
True-X. Our analysis, which will be reported separately, finds
strong support for the Gamma distribution. In light of this we
anticipate that there is potential to use the Gamma model to
generally describe the behaviour positively constrained PET
scanner data.

E. Concluding Remarks

Overall the work shows that statistical adaptation to the
Gamma-structure of iteratively reconstructed PET images is
readily achieved. This has the potential to enhance the statisti-
cal efficiency of inferences obtained from such data. As shown
in Fig. 13, in our Numerical Phantom Study simulation setting
the Gamma model is superior to normal model especially at
higher iteration numbers and lower counts. The data is more
skewed as iteration number increases so that the Gamma model
fit is better compared to normal. The probability transformed
Gamma residuals provide a very useful diagnostic in this con-
text. Refinement of these techniques to provide a full treatment
of the distribution of PET scanner data in 3-D, including the
covariance patterns, is clearly of interest. The model above
is a starting point for that development. Investigation of that
approach is currently underway and will be reported in future
work.
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