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Abstract

Abstract

This dissertation presents a number of contributions to the field of solver portfolios,
in particular for combinatorial search problems. We propose a novel hierarchical
portfolio which does not rely on a single problem representation, but may trans-
form the problem to an alternate representation using a portfolio of encodings,
additionally a portfolio of solvers is employed for each of the representations. We
extend this multi-representation portfolio for discrete optimisation tasks in the
graphical models domain, realising a portfolio which won the UAI 2014 Inference
Competition.

We identify a fundamental flaw in empirical evaluations of many portfolio and
runtime prediction methods. The fact that solvers exhibit a runtime distribution
has not been considered in the setting of runtime prediction, solver portfolios,
or automated configuration systems, to date these methods have taken a single
sample as ground-truth. We demonstrated through a large empirical analysis that
the outcome of empirical competitions can vary and provide statistical bounds on
such variations.

Finally, we consider an elastic solver which capitalises on the runtime distribution
of a solver by launching searches in parallel, potentially on thousands of machines.
We analyse the impact of the number of cores on not only solution time but also on
energy consumption, the challenge being to find a optimal balance between the two.
We highlight that although solution time always drops as the number of machines
increases, the relation between the number of machines and energy consumption
is more complicated. We also develop a prediction model, demonstrating that
such insights can be exploited to achieve faster solutions times in a more energy
efficient manner.

vii
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Chapter 1

Introduction

1.1 Motivation

Combinatorial decision and optimisation problems arise in many important real-
world applications such as scheduling, planning, configuration, rostering, time-
tabling, vehicle routing, network design, bioinformatics, and many more. Intelli-
gent, automated approaches to these problems can provide high quality solutions
from a number of perspectives such as sustainability, energy efficiency, cost, time,
etc., and can scale to tackle large problems far beyond the reach of manual
methods. Optimisation technologies have been used to design a fibre optical
network for entire countries, minimising the amount of cable to be laid, while
also maintaining certain levels of redundancy [118]; to design electricity, water,
and data networks [146]; to schedule scientific experiments on the Rosetta-Philae
mission [145]; assign gates to airplanes [147]; as well as numerous timetabling,
scheduling, and configuration applications [139, 159].

There exist a number of alternative approaches to solve combinatorial problems,
three of the most prominent methods being Constraint Programming (CP) [139],
Boolean Satisfiability (SAT) [23], and Mixed Integer Programming (MIP) [162].
These techniques provide a generic platform to tackle a broad range of prob-
lems, from simple puzzles to large scale industrial applications. They provide a
framework upon which real-world problems can be specified declaratively, largely
relieving the user of the task of specifying how a solution should be found.

It is generally possible to solve the same problem with any of these methods,
however they differ in terms of problem representation and solution methodology.

1



1. Introduction 1.2 Thesis Statement and Contributions

In a nutshell, in the constraint programming paradigm variables take their values
from finite sets of possibilities, with solutions typically found using a combination
of systematic backtracking search and polynomial-time inference algorithms that
reduce the size of the search space. A satisfiability problem is defined in terms of
Boolean variables and a single form of constraint, namely a disjunction of Boolean
variables or their negations. Instances are also solved using backtracking search,
using unit-propagation for inference, as well as learning new clauses when failures
are encountered. The mixed integer programming problem is defined by a set of
linear expressions over integer and real-valued variables. Solutions are typically
found by branch and bound search, using linear relaxations to make decisions,
and the generation of cutting planes to prune the search space.

It is often not clear which approach is best for a particular problem, thus we
may employ a higher-level modelling language to aide in the process. Modelling
platforms such as Essence [51], MiniZinc [123], and Numberjack [78] offer the user
the ability to declare their problem in a high-level language such as constraint
programming, and enable it to be solved using one of the underlying technologies
through the application of polynomial-time transformations. Additionally, each
of these representations may be solved by one of many advanced solvers in each
field. However, this adds an additional level of complexity in that there may be
significant performance differences between different solvers on different instances.
No single solver may dominate all others. Instead, the best overall performance
might be achieved by considering a portfolio of complementary solvers. This idea
forms the basis for solver portfolios which have highly effective empirically recently.
The concept originates from the economics concept of the same name, whereby
the risk is distributed across a collection of investments.

The work presented in this dissertation considers the application of portfolio tech-
niques to combinatorial problems such as the constraint satisfaction, satisfiability,
and graphical model problems. We present a number of contributions to the field,
outlined in the following section.

1.2 Thesis Statement and Contributions

In this dissertation we defend the following two sub-theses which centre around
the exploitation of machine learning for solving combinatorial decision and op-
timisation problems. Each sub-thesis is briefly discussed and references given to
where each claim is defended.
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Sub-thesis 1. To-date the application of machine learning to improving the
efficiency with which combinatorial problems can be solved has focused on either
selecting a solver from a portfolio of possibilities, or on tuning how a specific
solver should be used. We claim that a machine learning approach can provide
even greater improvement in problem solving efficiency if it can select amongst a
set of alternative problem representations in addition to solver choice.

Discussion. In Chapter 3, we employ a number of aggregation techniques from
voting theory for a portfolio-based on case-based reasoning, we also employ lazy
clustering methods which take runtime into account and proves highly effective
in practice. Employing historical performance data, on similar instances seen
previously, we explore a number of techniques to adapt the case-base knowledge
to new instances, ranking solvers by expected performance. We demonstrate that
combining a standard k-nearest neighbour clustering with simple aggregation heur-
istics is able to effectively and accurately rank solvers by expected performance on
unseen instances. These contributions have appeared in the following publication:

Barry Hurley and Barry O’Sullivan. Adaptation in a CBR-Based
Solver Portfolio for the Satisfiability Problem. In Proceedings of the
20th International Conference on Case-Based Reasoning Research and
Development, ICCBR 2012, volume 7466 of Lecture Notes in Computer
Science, pages 152–166. Springer, 2012. doi: 10.1007/978-3-642-32986-
9_13.

We propose a novel hierarchical portfolio that does not rely on a single problem
representation but may transform the problem instance to an alternate repres-
entation using a portfolio of encodings. Additionally a portfolio of solvers is
employed for each of the representations. We show it is necessary to take the
representation into account when building the portfolio. An empirical evaluation
demonstrates the complementary nature of such a portfolio and ultimately its
superior performance to that of a portfolio based on a single representation. The
results are presented in the following publication, and are elaborated upon in
Chapter 4:

Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan.
Proteus: A Hierarchical Portfolio of Solvers and Transformations. In
Proceedings of the 11th International Conference on Integration of
AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, CPAIOR 2014, volume 8451 of Lecture Notes
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in Computer Science, pages 301–317. Springer, 2014. ISBN 978-3-319-
07045-2.

We extend the multi-representation portfolio to the domain of graphical models.
Realising a portfolio for discrete optimisation tasks in the graphical models domain,
which won the Maximum A-Posteriori (MAP) task at the UAI 2014 Inference
Competition by employing complementary solvers and representations. Supporting
material is presented in Section 4.7 and has appeared in the following publication:

Barry Hurley, Barry O’Sullivan, David Allouche, George Katsirelos,
Thomas Schiex, Matthias Zytnicki, and Simon de Givry. Multi-
language evaluation of exact solvers in graphical model discrete op-
timization. Constraints, 21(3):413–434, 2016. ISSN 1572-9354. doi:
10.1007/s10601-016-9245-y.

Sub-thesis 2. The complex runtime distributions exhibited by combinatorial
solvers on a range of interesting problem instances pose a challenge to the standard
methodology in algorithm selection and configuration which does not take a holistic
view of such distributions. Considering the runtime distribution in a more holistic
fashion provides greater insight into solver performance, but also presents a range
of challenges that the research community should focus more purposefully upon.

Discussion. We identify a fundamental flaw in empirical evaluations of many
portfolio and runtime prediction methods. The fact that solvers can exhibit
a complex runtime distribution, e.g. it might be fat- or heavy-tailed [71], has
not been considered in the setting of runtime prediction, solver portfolios, or
automated configuration systems. To date these methods have taken a single
sample as ground-truth. We demonstrated through a large empirical analysis that
the outcome of empirical competitions can vary and provide statistical bounds on
such variations. We also project the fragility of state-of-the-art runtime prediction
methods to runtime distributions, showing that it is insufficient to take a single
sample of the runtime in the current practice. These findings are presented in
Chapter 5 and have appeared in:

Barry Hurley and Barry O’Sullivan. Statistical regimes and runtime
prediction. In Proceedings of the 24th International Joint Conference
on Artificial Intelligence, IJCAI 2015, pages 318–324, 2015.

Finally, we consider an elastic solver which exploits the runtime distribution of
a solver by launching searches in parallel, potentially on thousands of machines.
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We analyse the impact of the number of cores on not only solution time, but also
on energy consumption, the challenge being to find a optimal balance between
the two. We highlight that although solution time always drops as the number of
machines increases, the relationship between the number of machines and energy
consumption is more complex. We also develop a prediction model using machine
learning, demonstrating that such insights can be exploited to achieve faster
solutions times in a more energy-efficient manner. Preliminary results on this
topic have appear in the following technical report:

Barry Hurley, Deepak Mehta, and Barry O’Sullivan. Elastic Solver:
Balancing Solution Time and Energy Consumption. Technical Re-
port arXiv:1605.06940, May 2016. URL http://arxiv.org/abs/1605.
06940.

Numberjack. Much of the implementation work of this dissertation has been
contributed to the Numberjack modelling platform1. Numberjack is an open-
source tool upon which combinatorial problems can be model by a user in a high-
level language and solved efficiently using a number of possible backend-solvers.
Contributions to the platform throughout this dissertation were widespread. Along
with general bug-fixes and maintenance work, the build-system was migrated from
a series of fragile makefiles to Python’s built-in distutils system, making it much
easier to compile and support across different platforms and versions. Support for
Python 3 was also added. The SAT encoding layer was almost entirely re-written
in such a way that variables, constraints, and expressions can be translated under
a number of encodings. New integrations to a number of CP, SAT, and MIP
solvers were added, including Minion, Gecode, Gurobi, CPLEX, and numerous
SAT solvers.

1.3 Overview of the Dissertation

This dissertation is structured as follows. Chapter 2 presents an introduction to
the fields of constraint satisfaction and satisfiability. Instances of the satisfiability
problem often originate from a higher-level description such as the constraint
satisfaction problem, so some techniques for encoding the former to the latter
are presented. Finally, we introduce the field of solver portfolios which has been

1http://numberjack.ucc.ie
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1. Introduction 1.3 Overview of the Dissertation

highly successful at leveraging complementary-strengths among solvers, eliciting
the state of the art in a number of fields.

In Chapter 3 we examine a number of adaptation methods in a portfolio based on
case-based reasoning. We demonstrate that a combination of lazy-learning tech-
niques and simple aggregation heuristics is able to achieve dramatic performance
improvements.

A powerful portfolio for the constraint satisfaction problem is presented in
Chapter 4 which additionally considers a portfolio of representations. A hier-
archical portfolio is outlined which, in addition to a portfolio of CSP solvers,
considers a portfolio of SAT encodings and subsequently a portfolio of SAT solvers.
This presents a wide-range of possible representations and solution techniques.
Machine learning and solver portfolio techniques are employed to choose amongst
the representations and solvers. An empirical evaluation on a large, extensive set
of constraint satisfaction benchmarks demonstrates that substantial performance
benefits can be achieved by considering alternate, complementary representations
on top of a portfolio of solvers. Furthermore, this knowledge was subsequently
applied to the graphical models domain whereby a portfolio was constructed and
submitted to the UAI 2014 Inference Competition, achieving first place in both
the 20 and 60 minute categories. This provides independent corroboration of the
benefits of a toolkit consisting of multiple representations and solvers.

Chapter 5 studies the effect of runtime distributions on state-of-the-art portfolio
techniques. Underpinning many portfolios is the requirement to predict the relative
performance of its component solvers. Yet the fact that solvers can exhibit a
complex runtime distribution has not been considered previously. We highlight
a fundamental flaw in certain types of empirical evaluations and advocate for a
more probabilistic approach.

In Chapter 6, we study a system which exploits the runtime distribution of solvers
in a parallel setting, which we call an elastic solver that considers overall energy
consumption when running many searches in parallel. We analyse the impact of the
number of machines (or cores) on both solution time and on energy consumption.
The overall energy consumption can be reduced by running in parallel, exploiting
the lower end of the runtime distribution to find a solution quicker and terminate
the remaining searches.

Finally, some general concluding remarks and outlook on future extensions of the
work presented in this dissertation is discussed in Chapter 7.
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Chapter 2

Background and Related Work

Summary. This chapter presents some background and related
work to the field of combinatorial optimisation. First, the constraint
satisfaction, satisfiability, and mixed integer programming problems
are introduced. Subsequently, a more detailed presentation is given
for aspects pertinent to this dissertation, such as encodings from the
constraint satisfaction to satisfiability problems, and solver portfolios.

2.1 Numberjack

This chapter will present an introduction to the field of combinatorial optimisation,
specifically in the context of Numberjack1. Numberjack is a library, written in Py-
thon, that allows the user to model and solve combinatorial optimisation problems.
It provides a common interface to a number of underlying fast C/C++ solvers
across different optimisation paradigms seamlessly and efficiently, presenting an
ideal base upon which the work of this dissertation can build.

Much of the implementation work of this dissertation has been contributed to the
Numberjack modelling platform. The background introduction to combinatorial
optimisation will thus be presented using some examples in Numberjack. This
should enable the work of this dissertation to be exploited by users of the platform
and make the work extensible.

In particular, research on satisfiability encodings are typically limited to a new
encoding of a single constraint type, with empirical evaluations being limited to

1The Numberjack website: http://numberjack.ucc.ie

7

http://numberjack.ucc.ie
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benchmarks involving solely this constraint type [4, 5, 31, 50, 60, 100, 148]. To get
a broader picture of how a new encoding behaves when used in combination with
other constraints, one should benchmark on a wide range of instance types. This
can prove difficult since it may involve implementing encodings for many different
constraints. As part of this work, Numberjack’s encoding layers were revamped
in order to provide flexibility to encode a problem under different encodings.
The encoding layers have been implemented in a flexible manner so that it is
straightforward to implement a new encoding for a constraint or variable. As a
result, it should be more practical to implement the new encoding simply for the
constraint type and reuse the existing encodings for the various other constraint
types, including any permutation of encodings available for them.

2.2 Modelling using Numberjack

A combinatorial optimisation model of a problem consists of a declarative spe-
cification, separating in so far as possible the formulation and the search strategy.
However, modelling a problem effectively can be seen as an art in itself. The
difficulty lies in producing a solvable model, i.e. one that quickly finds optimal
solutions or determines that none exist. Naturally, there are many alternative
models for a single problem; often it is not clear which one is best.

The basic process of developing a model consists of first defining what constitutes
the variables and their corresponding domains, i.e. what decisions need to be
made and what are the possible outcomes that can be taken for each one. Next,
the constraints on the relationships between the variables must be defined. If some
criterion is to be optimised, an objective function needs to be specified. Finally, if
the model is well defined it can be passed off directly to a solver which will search
for a (optimal) solution. Often, we may need to specify some heuristics about
how the solver should perform the search, such as the variable or value ordering
before the solver can effectively solve the problem.

For a user, the process of developing a suitable model often requires a number of
iterations, depicted in Figure 2.1. Two common issues arise in the development
of a solution: the model either does not accurately represent the problem, or a
solution is not found by the solver in reasonable time. The former is more of a
real-world problem requiring the assistance of a domain expert, where eliciting
the true constraints of the problem, which may not even be well understood, is a
challenge. The latter can pose a larger challenge from a number of perspectives

8



2. Background and Related Work 2.2 Modelling using Numberjack

Problem

Human

Model

Solver

SolutionHangs Wrong Solution

Figure 2.1: Abstract process of modelling a problem.

and may require the input of an expert in combinatorial optimisation.

Many different viewpoints can be taken in modelling a problem, so it can be easy
to come up with a single model, but it may not necessarily be an efficient model.
Important choices are to be made such as what are the variables, what are their
domains, and what restrictions should be stated between them. Such decisions
naturally affect the form of constraints which can be applied and unquestionably
the effectiveness of the solver in finding a solution. Empirical performance may
not be clear until it is actually evaluated.

Furthermore, solvers vary in terms of their capabilities, e.g. despite the hundreds of
global constraints that have been developed [18], each solver typically implements
a relatively small subset. Thus, the choice of which solver to use may be dictated
by the global constraints required for a problem. Modelling languages lift the
limitation of developing a model using a single solver. Instead, the model is
implemented in a high-level solver-independent language that can be translated
or encoded for a number of solvers. Nevertheless, these systems still rely on the
user to produce a good model of their problem.

The next sections describe in more detail the primary components of a combinat-
orial optimisation model.

2.2.1 Variables

The variables constitute a fundamental component of a combinatorial problem.
They are each represented by the finite set of values from which they can be
assigned, often defined by a lower and upper bound. Typically these are restricted
to integer values but some extensions do consider real-valued, set [63, 167], and
graph [41, 44] variables. Boolean variables can take the values true or false, but
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are often interpreted interchangeably as 1 and 0, respectively. The ultimate task
is to assign each variable to a value from its domain. The product of the variable
domains defines the search space. Thus, it is important that each domain is
defined as tightly as is permissible.

Some examples of how variables may be declared in Numberjack are given below.
The VarArray and Matrix constructs serve as convenience methods for declaring
groups of related variables.

Variable()
Variable(’x’)
Variable(u)
Variable(l, u)
Variable(alist)

VarArray(N)
VarArray(N, ’a’)
VarArray(N, u)
VarArray(N, l, u)

Matrix(N, M)
Matrix(N, M, ’b’)
Matrix(N, M, u)
Matrix(N, M, l, u)

# Boolean variable
# Boolean variable called ’x’
# Variable with domain of [0..u−1]
# Variable with domain of [l..u]
# Variable with domain specified as a list

# Array of N Boolean variables
# Array of N Boolean variables, called ’a’
# Array of N variables with domains [0..u−1]
# Array of N variables with domains [l..u]

# N x M matrix of Boolean variables
# N x M matrix of Boolean variables, called ’b’
# N x M matrix of variables with domains [0..u−1]
# N x M matrix of variables with domains [l..u]

2.2.2 Constraints

Constraints define relationships between the variables, forbidding invalid solutions
to the problem. A unary constraint is the simplest form of constraint involving
a single variable and is satisfied by preprocessing the domain of the variable.
Binary constraints relate two variables, such as saying they cannot be equal, and
global constraints [18] involve a larger set of variables, modelling more complex
relations. The combined collection of constraints that define a problem is called
the constraint network. A formal definition on the constraint network and how it
relates to the constraint satisfaction problem is given in Section 2.3.1.

The remainder of this section presents some common binary constraints, whereas
Section 2.2.4 is devoted to the presentation of global constraints.
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One of the most basic binary constraints is the disequality constraint which simply
states that two variables must not be assigned the same value, for example X 6= Y .
Inequalities such as 〈<,≤,≥, >〉 state a relationship which must hold between the
respective assignments. In terms of their respective abilities to narrow the search
space, these inequality constraints are stronger than the disequality constraint.

The tightness of a constraint is a measure of how many assignment tuples are
forbidden, and subsequently how much of the search space is pruned. In particular,
for a disequality constraint, with a tightness of 1

d
, we may only infer that a value

may be removed from the domain of the opposite variable when one of the variables
has been assigned, whereas for the inequalities, changes in the bounds or absence
of certain values may reduce the domain of the other variable in the constraint.
Such constraints are trivially specified in Numberjack using operator overloading,
examples of which are presented in Table 2.1.

The expressivity of these binary constraints may be augmented by using expressions
of the form X+c < Y , where c is a constant. Here, the expression X+c becomes a
view on the variable X, mirroring the offset domain without increasing the search
space. Such constraints are useful in many scenarios, for example in scheduling if
we would like to express the constraint that task2 starts after task1 has finished,
we might specify a constraint of the form:

task1start + task1duration < task2start

In many applications the model requires knowledge of the satisfiability of a
particular constraint. In this case, we may reify the truth value of a constraint to
a Boolean variable by writing something of the form:

z == (x < y) z <= (x < y) (x == y) != (a == b)

The first statement reifies the less-than relationship between x and y, enforcing

Table 2.1: Example binary constraint definitions in Numberjack.

Constraint Numberjack code
Disequality x != z
Greater than x > y
Less-or-equal y <= z
Logical-or x | y
Logical-and y & z

11



2. Background and Related Work 2.2 Modelling using Numberjack

that z is 1 iff x is less than y and 0 otherwise. The second example ensures that z
is 0 if x is not less than y, if z is 1 then the less than relationship must hold, and
other relationships are undefined. Finally, the third statement constrains the two
pairs (x, y) and (a, b) such that exactly one pair must be assigned the same value
and one pair must be assigned different values.

2.2.3 Inference

A central component in solving a CSP involves inferring variable information
based on the constraints and the current state of the search, removing values from
the domains that cannot possibly participate in any solution [116]. Based on the
current partial assignment to variables during search, a value in a domain of an
unassigned variable may, if assigned, violate a constraint then it is said to be
inconsistent. Therefore it can be removed from the domain. No possible extension
of the current assignment allows such a value to participate in a solution. These
values are said to be pruned from the domain and consequently parts of the search
tree will not be explored.

Figure 2.2 depicts the outcome of performing inference on a Sudoku problem
which has been modelled as a CSP. Figure 2.2(a) shows the initial state of the CSP,
where each cell corresponds to a single variable and its domain is the values from
1 to 9. Some cells have been pre-assigned with clues. Constraints of the problem
enforce that cells within each row, column, and 3 by 3 block take unique values,
i.e. a series of all-different constraints. Evidently, where an initial clue is given, no
cell in the corresponding row, column, or block may take this value, and so these
values can be removed from their domains. Before we start any search, inference
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(a) Initial domains with preset
clues.
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(b) After propagating the pre-
set clues.

8 1 2 7 5 3 6 4 9
9 4 3 6 8 2 1 7 5
6 7 5 4 9 1 2 8 3
1 5 4 2 3 7 8 9 6
3 6 9 8 4 5 7 2 1
2 8 7 1 6 9 5 3 4
5 2 1 9 7 4 3 6 8
4 3 8 5 2 6 9 1 7
7 9 6 3 1 8 4 5 2

(c) Complete solution.

Figure 2.2: Example of CP propagation on a Sudoku instance.
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can be performed based on the all-different constraints, and the information given
by the present clues, to remove inconsistent values in corresponding variables.
Figure 2.2(b) depicts the result of propagating this knowledge, and values which
cannot participate in any solution are removed from the domains of variables,
resulting in a smaller search space. During search, this process is repeated in
circumstances such as when a new variable has been assigned or backtracking has
occurred.

Note that iteratively propagating the constraints to the domains is typically
enough to solve quintessential Sudoku problems. However, the example Sudoku
presented in Figure 2.2 requires a combination of search, albeit a very small amount,
and inference to find the complete solution depicted in Figure 2.2(c). We must
remark that the Sudoku example depicts a rather simple aspect of consistency,
nevertheless it serves to illustrate the concept. Constraint programming and
other combinatorial optimisation systems offer the ability to perform much more
sophisticated reasoning, some of which is discussed in the following section.

Enforcing consistency during search reduces the search space but comes at an
increased computational cost at each node. A trade-off must be made between
pruning the search space and searching at a faster rate. Thus, constraint program-
ming offers different levels of consistency that can be enforced, from constraint
level local consistency to global consistency [19]. Local consistency concerns indi-
vidual constraints in isolation, whereas global consistency equates to a complete
solution satisfying all constraints. Generally speaking, each additional level of
consistency has the capability to prune larger parts of the search space but entails
a higher computational complexity. A formal definition of a general consistency
level, generalised arc-consistency, is given in Section 2.3.1.

2.2.4 Global Constraints

Global constraints define constraints over an arbitrarily sized set of variables,
presenting many benefits for constraint programming [157]. Notably, they can
succinctly convey complex relationships between variables, allowing for a concise
specification of a problem. More importantly, from a pragmatic perspective,
this enables higher levels of reasoning to be performed by dedicated inference
algorithms, reducing the search space significantly. For example, propagation
for global constraints such as all-different and cardinality constraints can be
achieved in low polynomial time using flow-based algorithms [136, 137], much
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more efficiently than general purpose consistency algorithms.

To illustrate an example of such reasoning, consider an all-different constraint
over the variables X = {X1, . . . , X5}, with initial domains D(X ) = {1, . . . , 5},
declaring that each variable in the set must be assigned a unique value. Suppose
that the domains have been reduced during search to those listed is Figure 2.3(a).
Note that the domain of variables {X1, X2, X3} constitute the Hall set {1, 2, 5},
whereby these three variables must each be assigned a unique value from the Hall
set. Thus, any assignment of these values to other variables in the constraint
can never result in a satisfying assignment, so they can be removed from the
domains of the remaining variables, {X4, X5}. Had the all-different constraint
been decomposed into a clique of dis-equalities, then such reasoning could not
have been performed.

The Global Constraint Catalogue [18] collects definitions for all global constraints
defined in the CP literature, at the time of writing this listing contains over 400
constraints and is continually increasing. Such a vast catalogue provided many
opportunities for the application of constraint programming, however one practical
issue faced by users is in identifying which one is appropriate for their problem.

2.2.4.1 Example Global Constraints

In practice, most constraint solving libraries only provide implementations for
a small number of those listed in the global constraint catalogue. This section
describes some of the most prominent and widely used global constraints.

Linear Sum. This general expression constrains the dot-product linear combina-
tion of a vector of variables and a vector of coefficients. Mathematically, these
constraints take the form: ∑

i

wi · xi 4 c

X1 ∈ {1, 2, 5}
X2 ∈ {1, 2, 5}
X3 ∈ {1, 2, 5}
X4 ∈ { 2, 3, 4 }
X5 ∈ {1, 2, 3, 4, 5}

(a) Initial domains.

X1 ∈ {1, 2, 5}
X2 ∈ {1, 2, 5}
X3 ∈ {1, 2, 5}
X4 ∈ { 3, 4 }
X5 ∈ { 3, 4 }

(b) After propagating the
Hall set.

Figure 2.3: Example of propagation on a Hall set {1, 2, 5}.
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where w is a vector of integer or real valued weights, x is a vector of variables, 4
is a relational operator from the set 〈<,≤,=,≥, >〉, and c is a constant.

This is the only constraint type expressible in integer linear programming but
it provides a flexible representation since a number of high-level constraints can
be decomposed or encoded in this form. For example, the constraint x > y can
be written in linear form as x − y > 0. Additionally, since they only deal with
problems in a standard form it enables integer programming solvers to perform
high-levels of reasoning, proving extremely powerful [162].

A linear sum of variables can be expressed in a number of ways in Numberjack,
for example each of the following are equivalent:

2∗a + b + 0.5∗ c + 3∗d == e
Sum( [ 2∗ a , b , 0 .5∗ c , 3∗d ] ) == e
Sum( [ a , b , c , d ] , [ 2 , 1 , 0 . 5 , 3 ] ) == e

In general, it is expensive and difficult for a constraint programming solver to
perform a large amount of reasoning on linear sum constraints, particularly if
there is a large number of variables or their domains are large. For example,
in a linear sum with a large number of variables, there is a huge number of
possible assignment permutations in which to check for supports, at least until
a number of variables are fixed. Thus, in practice, their use with constraint
programming solvers is often limited to cases with a small number of variables
and small domains.

All-Different. One of the most widely known, intuitive, and well studied global
constraints is the all-different constraint [108, 136] which simply specifies that a
set of variables must be assigned distinct values. Such a relation arises in many
practical applications such as resource allocation, e.g. to state that a resource may
not be used more than once at a single time point. An all-different constraint may
be specified in Numberjack simply by passing a list of variables (or a VarArray)
as follows:

AllDiff([x1, x2, x3, x4])
AllDiff(vararray)

An intuitive application of the all-different constraint is the Sudoku problem, as
illustrated in Figure 2.2, whereby each row, column, and 3× 3 cell is constrained
to take distinct values. Such a condition can be modelled using an all-different for
each row, column, and cell, giving a model with a total of 27 global constraints.
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The all-different constraint may also be decomposed into a clique of dis-equalities
between every pair of variables (∀i < j : Xi 6= Xj). This decomposition requires(
n
2

)
binary constraints for each all-different, equating to a total of 972 (810 unique)

binary disequality constraints for the Sudoku problem. However, this formulation
looses the strong propagation that all-different enables, resulting in a larger search
space to be explored.

Global Cardinality. The global cardinality constraint [3] places lower and
upper bounds on the number of occurrences of certain values amongst a set of
variables. The global cardinality constraint models restrictions in applications
such as timetabling when there may be a limit on the number of consecutive
activity types. For example in Numberjack, we can write the following:

myvariablearray = VarArray(10, 1, 5)
Gcc(myvariablearray, {3: [2, 2], 2: [0, 3], 4: [1, 10]})

to state that amongst the variables in ‘myvariablearray’, the value 3 must occur
exactly twice, the value 2 at most three times, and the value 4 at least once.

Element. The element constraint [79] allows indexing into a variable or value
array, at solving time, by the value of another variable. This can provide a very
powerful modelling construct. A simple example of its use in Numberjack is:

myvariablearray = VarArray(10, 1, 20)
indexvar = Variable(10)
y == Element(myvariablearray, indexvar)

This uses the value assigned to ‘indexvar’ as an index into the variable array
‘myvariablearray’, binding the resulting variable to be equal to the variable ’y’.

Cumulative. The cumulative constraint [7] proves extremely useful in many
scheduling and packing problems. Two significant and important application areas
for constraint programming. For example, in a scheduling scenario with a given set
of tasks, each requiring a specific quantity of resource, the cumulative constraint
restricts the total consumption of the resource to not exceed a predefined limit
at each time point. Tasks are allowed to overlap but their cumulative resource
consumption must not exceed a predefined fixed limit. Figure 2.4 illustrates
an example schedule of five overlapping tasks on a resource with a capacity
of 5. Given the scheduling of task 1 at time point 0, the earliest task 2 can
start is 3 since its resource consumption is 2. Task 4 on the other hand can
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Figure 2.4: Example task assignment on a cumulative resource.

also start at 0, since its resource consumption of 1 fits within the remaining
capacity. The cumulative constraint may also be viewed as modelling the packing
of two-dimensional rectangles.

2.2.5 Optimisation

Numerous industrial applications of combinatorial optimisation require going
beyond a single satisfiable solution. Frequently the interest is in finding good,
or the absolute best, quality solution. For example, we might wish to define the
objective function to minimise cost, wastage, loss, or to maximise profit, yield,
customer satisfaction, and so on. These expressions can intuitively be specified in
Numberjack as follows:

Minimise( openingcosts + supplycosts )
Maximise( Sum(items, weights) )

Different approaches are taken to solve such optimisation problems. Constraint
programming can treat the objective function as another variable, performing
branch and bound search on its range. It solves a series of satisfaction sub-problems,
searching for a solution with an objective value below a certain threshold. On each
subsequent call, the threshold is reduced until the problem is proven unsatisfiable
or a resource limit has been exceeded. A satisfiability solver can similarly be
used to solve some optimisation approaches, although its practicality is limited to
problems where the domain of the objective function is small. Graphical model
solvers perform sophisticated reasoning on the feasibility of bounds and values of
local cost functions to tighten bounds on the objective. The application of the
technology tends to be targeted at small, highly non-linear objective functions.
Mixed integer programming solvers are most naturally suited to solving (linear)
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optimisation problems. The linear relaxations at their core yield effective lower-
bounds. Critically, a MIP solver also examines the dual of the problem, yielding
an upper-bound. Combining the two gives a precise indication of the range within
which the optimal solution lies; when the two bounds are equal, optimality has
been proven.

2.3 Solving Technologies

This section presents a more formal description of the aforementioned approaches to
solving combinatorial problems, as well as outlining some notation used throughout
the dissertation.

2.3.1 Constraint Programming

The constraint satisfaction problem (CSP) is defined by a tuple 〈X ,D, C〉, defining
the variables, domains, and constraints respectively. A solution to a CSP consists
of a mapping from each variable in X to one of the values in its domain, such that
all constraints in C are satisfied. Solutions are typically found using a combination
of inference and backtracking-style search which will be covered in Section 2.4.

The graph composed of nodes representing the variables and (hyper-)edges between
the nodes representing the scopes of each constraint is often referred to as the
constraint network. A formal definition is given Definition 2.1, adapted from [19],
and Definition 2.2 subsequently gives a formal definition of a constraint.

Definition 2.1 (Constraint Network). A constraint network is defined by a tuple
N = 〈X ,D, C〉, where:

• X = (X1, . . . , Xn) is a finite sequence of integer variables,

• D = D(X1)× . . .×D(Xn) defines the domain for X , where D(Xi) ⊆ Z is
the finite set of values that variable Xi can take (the domain for Xi), and

• C = (c1, . . . , ce) is a set of constraints.

Definition 2.2 (Constraint). A constraint c is a relation defined on a sequence
of variables X(c) = (Xi, . . . , X|X(c)|). c defines the subset of Z|X(c)| that contains
the combination of values (or tuples) that satisfy c. |X(c)| is called the arity of c.
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The concept of generalised arc-consistency describes the relationship between the
state of the domains D to the consistent assignments allowed by the constraints
in C. Definition 2.3, courtesy of [19], formally defines the concept of generalised
arc-consistency for a constraint network.

Definition 2.3 ((Generalised) Arc-Consistency ((G)AC)). Given a CSP network
N = 〈X ,D, C〉, a constraint c ∈ C, and a variable Xi ∈ X (c),

• A value vi ∈ D(Xi) is consistent with c in D iff there exists a valid tuple τ
satisfying c such that vi = τ [Xi]. Such a tuple is called a support for (Xi, vi)
on c.

• The domain D is (generalised) arc-consistent on c for Xi iff all the values
in D(Xi) are consistent with c in D.

• The network N is (generalised) arc consistent iff D is (generalised) arc-
consistent for all variables in X on all constraints in C.

• The network N is arc inconsistent if ∅ is the only domain tighter than D
which is (generalised) arc-consistent for all variables on all constraints.

In so far as is possible, constraint programming attempts to separate the definition
of a problem from the solving process, to the extent that it is said to represent
the holy grail of programming: “the user states the problem, the computer solves
it” [48].

2.3.2 Satisfiability

The satisfiability problem (SAT) [23] is one of the most prominent and long-
standing areas of study in computer science, most notably by being the first
problem to be proven NP-complete and lying at the heart of the P ?= NP
question [33]. The problem consists of a set of Boolean variables and a propositional
formula over these variables. The task is to decide whether or not there exists a
truth assignment to the variables such that the propositional formula evaluates to
true, and, if this is the case, to find this assignment.

SAT instances consist of a propositional logic formula, usually expressed in
conjunctive normal form (CNF). The representation consists of a conjunction of
clauses, where each clause is a disjunction of literals. A literal is either a Boolean
variable or its negation. Each clause is a disjunction of its literals and the formula

19



2. Background and Related Work 2.3 Solving Technologies

is a conjunction of each clause. The following SAT formula is in CNF:

(x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3) ∧ (x3 ∨ x4)

This instance consists of four SAT variables. One assignment to the variables
which would satisfy the above formula would be to set x1 = true, x2 = false,
x3 = true, and x4 = true.

2.3.3 Mixed Integer Programming

The mixed integer programming (MIP) [162] problem consists of a set of linear
constraints over integer and real-valued variables, where the goal is to find an
assignment to the variables minimising a linear objective function. More formally,
a MIP problem takes the form:

min cx+ dy (2.1)
s.t. Ax+By ≥ 0 (2.2)

x, y ≥ 0 (2.3)
y integer (2.4)

where x and y are two vectors of real-valued and integer variables, respectively. c
and d are vectors of coefficients defining the objective function to be minimised.
The matrices A and B represent coefficients of a set of linear constraints.

Analogous to the constraint and satisfiability solving techniques seen in previous
sections, modern techniques for solving a mixed integer programming problems
consist of a combination of search and various forms of inference. Firstly, a number
of pre-solving techniques are applied which rewrite and reduce some parts of the
constraints. This maintains the same form of problem, while generally resulting
in a reduced, tighter problem.

Subsequently, the space of solutions is explored using branch and bound search.
At each node in the search tree, the integrality constraints on variables in y are
relaxed, the resulting formulation, namely the LP relaxation, is solved to optimality
using linear programming techniques such as the simplex algorithm [122]. If it
happens that the solution also satisfies the integrality constraints, then a feasible
solution has been found. The best integer solution found during search is called
the incumbent and its objective value provides an upper-bound on the optimal
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solution value.

In practice however, an integer solution to the LP relaxation rarely occurs and
so the fractional solution is used to guide the search. Furthermore, the objective
value of the non-integral solution also provides a lower-bound on the solution of the
integral problem. The distance between the best lower and upper bound is deemed
the optimality gap, when its value reaches zero, optimality has been proved. The
search procedure then branches on one of the y variables for which a non-integral
value was assigned. For example, if integer variable yi was assigned the value 2.8
in the LP relaxation solution, then two sub-problems are created with constraints
yi ≤ 2 and yi ≥ 3 respectively. If the solution to the LP relaxation in any of
the resulting sub-problems is infeasible or is greater than the incumbent, then
that node can be dropped and another node explored. This process is repeated
recursively until optimality is proven or the problem is proved infeasible.

2.3.4 Cost Function Networks

A Cost Function Network (CFN) extends a Constraint Network by using non-
negative cost functions instead of constraints [120]. A CFN is a tuple (X ,D,W , k)
where X is a set of n discrete variables with a domain of possible assignments
from D, W is a set of non-negative functions, and k, a possibly infinite maximum
cost. Like the CSP, each variable Xi ∈ X has a finite domain of values that can
be assigned to it, denoted D(Xi) ∈ D. A function wS ∈ W , with scope S ⊆ X , is
a function wS : DS 7→ {α ∈ N ∪ {k} : α ≤ k}, where DS denotes the Cartesian
product of all D(Xi) for Xi ∈ S. In CFNs, the cost of a complete assignment is
the sum of all cost functions. A solution has cost less than k. Therefore a cost of k
denotes forbidden assignments, used in hard constraints. A solution of minimum
cost is sought.

The problem is also known as the Weighted Constraint Satisfaction Problem
(WCSP). It can be viewed as an optimisation version of the CSP whereby, rather
than of having a hard-restriction on satisfying every constraint, a cost is associated
with the violation of constraints and the cumulative sum is to be minimised. Such a
formalism is suited to a number of importants practical domains such as computer
vision and bioinformatics.
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2.3.5 Choice is good

As the previous sections have outlined, the solution technologies for constraint
programming, satisfiability, mixed integer programming, and cost function net-
works are all operationally different. Specifically, CP uses constraint propagation
with backtracking search; SAT utilises unit-propagation, clause learning, and
search; and MIP exploits linear relaxations, cutting planes, with branch and
bound search. Often, it is not clear which solution technology is best suited
to a particular problem so it can be worthwhile to experiment with different
approaches. Fortunately, the user does not need to manually produce a different
model for each approach since many problems can be encoded between CP, SAT,
MIP, and CFN; a process which can be significantly simplified by using modelling
frameworks such as Essence [51], MiniZinc [123], and Numberjack [78]. The
following sections illustrate the performance differences between approaches on
some example problems.

2.3.5.1 Example: Warehouse Location Problem

The Warehouse Location Problem [80] considers a set of existing shops and
a candidate set of warehouses to be opened, the problem is to choose which
warehouses are to be opened and, consequently, the respective shops which each
one will supply. There is a cost associated with opening each warehouse, as well as
a supply cost for each warehouse-shop supply pair, the objective being to minimise
the total cost of warehouse operations and supply costs. A complete Numberjack
model for the warehouse location problem is given in Figure 2.5.

Table 2.2 compares the performance of a mixed integer programming solver and a
constraint programming solver, namely SCIP and Mistral respectively, on some
instances of the Warehouse Location Problem. SCIP is able to solve each of
instance to optimality very quickly, whereas the CP solver takes over one hour of
CPU-time to find solutions of worse quality. In this case, the CP solver is not able
to perform much reasoning on the objective function for this problem, a weighted
linear sum, whereas the MIP solver is able to produce tight bounds very quickly
and narrow the search.
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1 model = Model()

3 # A vector of 0/1 variables for each warehouse to decide which ones to open
4 WareHouseOpen = VarArray(data.NumberOfWarehouses)

6 # A matrix of 0/1 variables for each shop (row) decide which warehouse (
column) will supply it

7 ShopSupplied = Matrix(data.NumberOfShops, data.NumberOfWarehouses)

9 # Cost of running warehouses
10 warehouseCost = Sum(WareHouseOpen, data.WareHouseCosts)

12 # Cost of shops using warehouses
13 transpCost = Sum([Sum(varRow, costRow) for varRow, costRow in zip(

ShopSupplied, data.SupplyCost)])

15 # Objective function
16 obj = warehouseCost + transpCost
17 model += Minimise(obj)

19 # Channel from store opening to store supply matrix
20 for col, store in zip(ShopSupplied.col, WareHouseOpen):
21 model += [var <= store for var in col]

23 # Make sure every shop is supplied by one warehouse
24 for row in ShopSupplied.row:
25 model += Sum(row) == 1

27 # Make sure that each warehouse does not exceed it’s supply capacity
28 for col, cap in zip(ShopSupplied.col, data.Capacity):
29 model += Sum(col) <= cap

31 # Load the model with a named solver
32 solver = model.load("SCIP")

34 # Ask the solver to solve
35 solver.solve()

37 if solver.is_sat():
38 ... # print solution
39 elif solver.is_unsat():
40 print "Unsatisfiable"

Figure 2.5: Model of the Warehouse Location Problem in Numberjack.
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Table 2.2: Performance comparison between a mixed integer programming solver
(SCIP) and a constraint programming solver (Mistral) on some instances of the
Warehouse Location Problem.

Instance SCIP Mistral
Objective Nodes Time Objective Nodes Time

cap44 1184690 1 0.84 1468957 10008044 >3600
cap63 1087190 14 1.82 1388391 10683754 >3600
cap71 957125 1 0.69 1297505 11029722 >3600
cap81 811324 1 0.65 1409091 3497095 >3600
cap131 954894 5 5.30 1457632 1281009 >3600
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1 model = Model()

3 # N variables with domains 1..N representing the column of point in each row
4 seq = VarArray(N, 1, N)

6 # Points must be placed in distinct columns
7 model += AllDiff(seq)

9 # Each row of the triangular distance matrix contains no repeat distances
10 for i in range(N−2):
11 model += AllDiff([seq[j] − seq[j+i+1] for j in range(N−i−1)])

Figure 2.6: Model of the Costas Array Problem in Numberjack.

2.3.5.2 Example: Highly Combinatorial Puzzles

We compare a constraint programming, a satisfiability, and a mixed integer
programming solver on some benchmarks of two arithmetic puzzles. Specifically,
constructing a Costas Array and constructing a Golomb ruler of minimal size.
Both of these problems are parameterised by a single value specifying the size of
the instance. The Costas Array problem [35] is to place n points on an n×n board
such that each row and column contains only one point, and the pairwise distances
between points is also distinct. This can be modelled using a vector of n variables
to decide the column of each point, and enforcing all-different constraints on the
vector of variables and on the triangular distance matrix. A Golomb ruler [155] is
defined by placing a set of m marks at integer positions on a ruler such that the
pairwise differences between marks are distinct. The objective is to find rulers
of minimal length. Numberjack models for the Costas Array and Golomb Ruler
problems are presented in Figures 2.6 and 2.7 respectively. Problems such as these
are not limited to academic interest but do map to many real world applications.

Table 2.3 illustrates the empirical performance differences between CP, SAT, and
MIP approaches on these problems. Here, the constraint programming solver
(Mistral) is very effective. The satisfiability solver performs comparably well on
the Costas array problem, but when dealing with the optimisation problem of the
Golomb ruler, it fails to scale. However, it does outperform the mixed integer
programming solver which performs very poorly on these problems.
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1 model = Model()

3 # A vector of finite domain variables for the position of each mark
4 marks = VarArray(m, 2∗∗(m−1))

6 # Pairwise distances are distinct
7 distance = [marks[i] − marks[j] for i in range(1, m) for j in range(i)]
8 model += AllDiff(distance)

10 # Symmetry breaking
11 model += marks[0] == 0
12 for i in range(1, m):
13 model += marks[i−1] < marks[i]

15 # Minimise the position of the last mark
16 model += Minimise(marks[−1])

Figure 2.7: Model of the Golomb Ruler Problem in Numberjack.

2.4 Systematic Search

Chronological backtracking search plays a central role in the solution process
for combinatorial problems. Nodes in the search correspond to variables, and
branches to assignments, thus the search explores the tree of possible partial
solutions. Figure 2.8 illustrates a partial example of the search tree generated by
backtracking search. Initially, from the root node, the variable X is branched on,
taking one branch for each possible value in its domain.

Modern constraint programming solvers typically perform binary-branching on the
assignment or removal of a value from the domain. The process of maintaining
arc-consistency (MAC) [142] during search has been shown to be highly effective.
This consists of making the initial CSP arc-consistent before starting search, then
again after every assignment and every backtrack. A domain wipeout occurs
when a variable has no values remaining in its domain. When this occurs search
must backtrack and explore a different path. A solution has been found when all
variables have been assigned a value in their domain which is globally consistent
with the constraints.

Notably, if a bad decision is made early in the search, then the resulting sub-tree
may be unsatisfiable. It may take exponential time for the search to prove that
no solution exists in the sub-tree, a refutation, before backtracking to the bad
decision node [84]. The thrashing phenomenon occurs when the current partial
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Table 2.3: Performance of a constraint programming, satisfiability, and mixed
integer programming solver on two arithmetic puzzles of increasing size. Values
are CPU time in seconds, ’-’ represents a timeout, and ’M’ a memory limit of
2 GB exceeded.

Instance Mistral MiniSat SCIP
Costas (11) 0.0 0.0 27.0
Costas (12) 0.0 0.0 166.0
Costas (13) 0.0 0.0 286.0
Costas (14) 1.0 0.0 1065.0
Costas (15) 9.0 0.0 2564.0
Costas (16) 52.0 16.0 -
Costas (17) 562.0 163.0 -
Costas (18) 529.0 677.0 -
Golomb (6) 0.0 0.0 2.0
Golomb (7) 0.0 0.0 17.0
Golomb (8) 0.0 2.0 59.0
Golomb (9) 0.0 34.0 1778.0
Golomb (10) 3.0 M -
Golomb (11) 133.0 M -
Golomb (12) 3006.0 M M
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Figure 2.8: A partial example of the search tree generated by backtracking search.

assignment cannot be extended to a solution but search continues backtracking
on the remaining variables, trying all possible values when the real source of
inconsistency is a bad decision higher up the tree.

To avoid such worst-case behaviour, a number of methods such as randomised
restarting, back-jumping, and explanation-based search have been proposed. Nev-
ertheless, an important decision to be made arises concerning what order the tree
should be explored. These topics are discussed in the following sections.
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2.4.1 Search Heuristics in Constraint Programming

Two closely-related decisions which are vital for success are the choice of variable
to branch on and the subsequent value it will be assigned. These decisions have a
dramatic affect on the size of the search tree that will be explored. Interestingly,
an oracle proposing the value ordering could lead search directly to a solution
without backtracking (if the problem is satisfiable), regardless of the variable
ordering. In practice however, such an oracle is implausible so heuristic methods
must be used.

The CSP community has devised a number of generic, problem independent
heuristics for users to choose from. Options range from static heuristics such a
selecting the variables in order of their domain size or degree of connectivity in
the constraint-graph, to dynamic heuristics based on the activity of the solver
during search such as weighted heuristics [26], and impact-based [135] to name a
few.

To avoid bad decisions early in the search tree, the variable ordering heuristic, in
general, follows a fail-first principle [75] whereby variables likely to lead to failure
should be chosen first. Effort should be focused on difficult parts of the problem
likely to lead to failure, which should ideally occur early in the search. Value
ordering heuristics on the other hand try to select the most promising value, one
most likely to lead to a solution [56].

Choosing an effective heuristic is a highly problem dependant task, often requiring
intimate knowledge of the underlying technology, an undertaking often beyond
the reach of many users. Automating such a task, simplifying the barrier to
entry for users, has been proposed as one of the grand challenges for constraint
programming [49]. One approach to this is to use a machine learning model to
automatically select the heuristic based on instance specific features [32, 61, 107,
119].

2.4.2 Restarting and Randomness

In practice, the search procedure will encounter many failures and have to back-
track. As mentioned previously, one risk occurs if a bad decision has been made
early in the search process and proving that no solution exists in the sub-tree may
take exponential time. One approach to avoiding such behaviour is to restart the
search from the root node after a pre-defined limit on the number of failures has
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been reached [115].

To maintain the completeness of the search process, solvers adopt a restarting
strategy whereby the failure limit eventually tends towards infinity. A restart
strategy is defined by a sequence 〈t1, t2, t3, . . .〉 whereby each ti specifies the limit
on the number of failures for a particular run of the algorithm. Once the failure
limit ti is reached, the search is restarted from the root node with the new limit
of ti+1.

Two standard restart strategies are based on the Luby and geometric sequences.
The Luby [115] sequence has the form 〈1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .〉. In
the context of Las Vegas algorithms [16] it is proven to be universally optimal,
achieving a runtime that is only a logarithmic factor from an optimal restart
strategy where the runtime distribution of the underlying algorithm is fully known,
and no other universal strategy can do better by more than a constant factor [115].
Alternatively, the geometric [160] sequence increases the cutoff by a constant
factor between each run.

Restarting is typically combined with randomisation in the variable and value
heuristics to avoid repeatedly exploring the same search space. Such stochastic
behaviour gives rise to solvers exhibiting a distribution of runtimes. In some cases,
modelled by heavy- and fat-tailed distributions [71], possibly with infinite mean
and variance. These distributions capture a non-negligible fraction of runs far to
the right or left of the median, runs taking extremely long. Rapid randomised
restarting [66, 70] has been shown to eliminate heavy-tails to the right of the
median and can even take advantage of heavy-tails to the left of the median.

2.5 Encoding a CSP as SAT

SAT, like CSP, has a variety of practical real world applications such as hardware
verification, security protocol analysis, theorem proving, scheduling, routing, plan-
ning, digital circuit design [23]. The application of SAT to many of these problems
is made possible by transformations from representations like the constraint satis-
faction problem [134]. This section describes, in detail, a number of encodings for
representing a constraint satisfaction problem as a satisfiability problem. In each
case, encodings for variable domains are presented first, followed by a description
of how the constraints are encoded.
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2.5.1 Direct Encoding

The following sections present the direct encoding [161], also known as the sparse
encoding. The translation is intuitive in that there is a very straightforward
mapping from the CSP domain to Boolean SAT variables.

2.5.1.1 Variable Domains

A CSP variable X with domain D(X) = {1, . . . , d} can be represented in SAT
using the direct encoding by creating a Boolean SAT variable for each value in
its domain: x1, x2, . . . , xd. If xv is true in the resulting SAT formula, then X = v

in the CSP solution. In order to represent a solution to the CSP, exactly one of
x1, x2, . . . , xd must be assigned true. An at-least-one (ALO) clause is added to
the SAT formula for each CSP variable as follows:

∀X ∈ X : (x1 ∨ x2 ∨ . . . ∨ xd).

For each variable X, at-most-one (AMO) of the SAT variables can be true.
A number of encodings exist to achieve this and there is a steady stream of
increasingly sophisticated encodings [31, 50, 60, 148]. The simple pairwise-AMO
encoding uses a quadratic number of clauses For each pair of distinct values in
the domain of X, a binary clause enforces that at most one of the two can be
assigned true. The series of these binary clauses ensure that only one of the SAT
variables representing the variable will be assigned true, i.e.

∀v, w ∈ D(X) : (¬xv ∨ ¬xw).

2.5.1.2 Constraints

Constraints between CSP variables are represented in the direct encoding by
enumerating the conflicting tuples. For binary constraints for example, binary
conflict clauses are added, for each disallowed assignment, to forbid both values
being used at the same time. For a binary constraint between a pair of variables
X and Y , we add the conflict clause (¬xv ∨ ¬yw) if the tuple 〈X = v, Y = w〉 is
forbidden.

For intensionally specified constraints, all possible tuples must be enumerated to
encode the disallowed assignments.
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Disequality. To enforce that two variables are not equal, X 6= Y , a binary
conflict clause is added for each value common between their domains. This can
be achieved in O(d) time (assuming that variable domains are sorted) and will
introduce O(d) binary clauses. More formally:

∀v ∈ D(X) ∩D(Y ) : (¬xv ∨ ¬yv)

Equality. Conversely, two variables can be constrained to take equal assignments,
X = Y . For each value in the intersection of the two domains, clauses are added
so that their respective Boolean variables take the same assignment. For each
value outside the intersection a unary clause is added to ensure it is false. This
encoding can be achieved in O(d) time and will introduce O(d) clauses. More
formally:

∀v ∈ D(X) ∩D(Y ) : (¬xv ∨ ¬yv)
∀v ∈ D(X) \D(Y ) : (¬xv)
∀v ∈ D(Y ) \D(X) : (¬yv)

Encoding the equality constraint may not seem useful since a natural option is
to rewrite the problem so that the two variables are replaced by a new variable
with the intersection of the two domains, but the constraint can be important in
a reified scenario. Details on how each of these constraint can be reified is given
in Section 2.5.6.

Inequalities. Constraints of inequality between two variables X and Y , such as
{<,≤, >,≥}, can be generalised to the form X + k ≤ Y . Thus, binary conflict
clauses are added for each assignment which does not satisfy this relation. This
can be achieved in O(d2) time and will introduce O(d2) binary clauses. More
formally:

∀i ∈ D(X), ∀j ∈ D(Y ), i+ k > j : (¬xi ∨ ¬yj)

Example 2.5.1 (Direct Encoding). Consider a simple CSP with three variables
X = {X, Y, Z}, each with domain 〈1, 2, 3〉. The constraints consist of Y > Z,
and all-different constraint over the variables: alldifferent(X, Y, Z), which we
represent by encoding the pairwise dis-equalities. Table 2.4 shows the complete
direct-encoded CNF formula for this CSP. The first 12 clauses encode the domains
of the variables, the remaining clauses encode the constraints between X, Y , and
Z. There is an implicit conjunction between these clauses.
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Table 2.4: An example CSP encoded to SAT under the direct encoding.

Domain Clauses
(x1∨x2∨x3) (¬x1∨¬x2) (¬x1∨¬x3) (¬x2∨¬x3)
(y1∨y2∨y3) (¬y1∨¬y2) (¬y1∨¬y3) (¬y2∨¬y3)
(z1∨z2∨z3) (¬z1∨¬z2) (¬z1∨¬z3) (¬z2∨¬z3)

X 6= Y (¬x1 ∨ ¬y1) (¬x2 ∨ ¬y2) (¬x3 ∨ ¬y3)
X 6= Z (¬x1 ∨ ¬z1) (¬x2 ∨ ¬z2) (¬x3 ∨ ¬z3)
Y 6= Z (¬y1 ∨ ¬z1) (¬y2 ∨ ¬z2) (¬y3 ∨ ¬z3)

Y > Z
(¬y1 ∨ ¬z1) (¬y1 ∨ ¬z2) (¬y1 ∨ ¬z3)
(¬y2 ∨ ¬z2) (¬y2 ∨ ¬z3) (¬y3 ∨ ¬z3)

2.5.2 Support Encoding

Related to the direct encoding is the support encoding [58, 101] which shares the
same domain representation but differs in how constraints are encoded. Instead of
clauses for the conflicting assignments, the support encoding specifies the supported
values for a given partial assignment. An interesting property of the encoding is
that if a constraint has no consistent values in the domain of the corresponding
variable, a unit-clause will be added to prune the values from the domain that
cannot exist in any solution. Also, a solution to a SAT formula without the at-
most-one constraints on variable domains, represents an arc-consistent assignment
to the CSP. Unit propagation on this SAT instance establishes arc-consistency in
optimal worst-case time for establishing arc-consistency [58].

2.5.2.1 Variable Domains

The support encoding uses the same mechanism as the direct encoding to encode
CSP domains into SAT – each value in the domain of a CSP variable is encoded
as a SAT variable which represents whether or not it takes that value. See
Section 2.5.1.1 for details on the domain encoding.

2.5.2.2 Constraints

The support encoding differs from the direct encoding in terms of how the
constraints between variables are encoded. Unlike the direct encoding which
encodes the conflicting assignments, the support encoding generates clauses with
literals that support a partial assignment. Given a constraint between two variables
X and Y , for each value v in the domain of X, let SY,X=v ⊂ D(Y ) be a strictly
smaller subset of the values in the domain of Y which are consistent with assigning
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X = v. Either xv is false or one of the consistent assignments from y1 . . . yd must
be true. This is encoded in the support clause

¬xv ∨

 ∨
i∈SY,X=v

yi

 .
Conversely, for each value w in the domain of Y , a support clause is added for
the supported values in X which are consistent with assigning Y = w. In the
case wwere all values are supported, such that SY,X=v = D(Y ), then no clause
needs to be generated, since it would be subsumed by the at-least-one clause of
the variable Y . The support encoding in general requires Θ(2d) clauses, each of
size O(d).

Example 2.5.2 (Support Encoding). Table 2.5 gives the complete support-
encoded CNF formula for the simple CSP given in Example 2.5.1. The first
12 clauses encode the domains and the remaining ones the support clauses for the
constraints. There is an implicit conjunction between clauses. Notice that for the
constraint Y > Z, two unit-clauses are generated, which prune inconsistent values
from the domains.

Table 2.5: An example CSP encoded to SAT under the support encoding.

Domain Clauses
(x1∨x2∨x3) (¬x1∨¬x2) (¬x1∨¬x3) (¬x2∨¬x3)
(y1∨y2∨y3) (¬y1∨¬y2) (¬y1∨¬y3) (¬y2∨¬y3)
(z1∨z2∨z3) (¬z1∨¬z2) (¬z1∨¬z3) (¬z2∨¬z3)

X 6= Y
(¬x1 ∨ y2 ∨ y3) (¬x2 ∨ y1 ∨ y3) (¬x3 ∨ y1 ∨ y2)
(¬y1 ∨ x2 ∨ x3) (¬y2 ∨ x1 ∨ x3) (¬y3 ∨ x1 ∨ x2)

X 6= Z
(¬x1 ∨ z2 ∨ z3) (¬x2 ∨ z1 ∨ z3) (¬x3 ∨ z1 ∨ z2)
(¬z1 ∨ x2 ∨ x3) (¬z2 ∨ x1 ∨ x3) (¬z3 ∨ x1 ∨ x2)

Y 6= Z
(¬y1 ∨ z2 ∨ z3) (¬y2 ∨ z1 ∨ z3) (¬y3 ∨ z1 ∨ z2)
(¬z1 ∨ y2 ∨ y3) (¬z2 ∨ y1 ∨ y3) (¬z3 ∨ y1 ∨ y2)

Y > Z
(¬y1) (¬y2 ∨ z1) (¬y3 ∨ z1 ∨ z2)
(¬z1 ∨ y2 ∨ y3) (¬z2 ∨ y3) (¬z3)

2.5.3 Full Regular Encoding

Unlike the direct and support encoding, which model X = v as a SAT variable,
the full regular encoding [10] encoding creates Boolean SAT variables to symbolise
X ≤ v. This encoding is also known as the order encoding in the literature
and also with the opposite semantics X ≥ v. It has been shown to maintain
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tractability when encoding certain tractable classes of CSPs, which is not the case
when encoding under the direct or support encoding [132, 133].

2.5.3.1 Variable Domains

A Boolean SAT variable x≤v is created for each value v in the domain of a variable
X. If X is less than or equal to v, then X must also be less than or equal to
v + 1 (x≤v+1). Therefore, clauses are added to enforce this consistency across the
domain:

∀v ∈ D(X) : (¬x≤v ∨ x≤v+1).

This linear number of clauses is all that is needed to encode the domain of a CSP
variable into SAT under the order encoding. In contrast, the direct and support
encodings require a quadratic number of clauses in the domain size. In practice
the final variable x≤d can be omitted since it must necessarily be true if x≤d−1 is
false.

2.5.3.2 Constraints

The order encoding is naturally suited to modelling inequality constraints. To
state X ≤ 3, the unit clause (x≤3) can be posted. The constraint X = v, can be
rewritten as (X ≤ v ∧ X ≥ v); X ≥ v can then be rewritten as ¬X ≤ (v − 1).
To state that X = v in the order encoding, we would encode (x≤v ∧ ¬x≤v−1).
A conflicting tuple between two variables, for example 〈X = v, Y = w〉 can be
written in propositional logic and simplified to a CNF clause using De Morgan’s
Law as follows:

¬((x≤v ∧ x≥v) ∧ (y≤w ∧ y≥w))
¬((x≤v ∧ ¬x≤v−1) ∧ (y≤w ∧ ¬y≤w−1))
¬(x≤v ∧ ¬x≤v−1) ∨ ¬(y≤w ∧ ¬y≤w−1)

(¬x≤v ∨ x≤v−1 ∨ ¬y≤w ∨ y≤w−1)

Example 2.5.3 (Full Regular Encoding). Table 2.6 gives the complete full-regular
encoded CNF formula for the simple CSP specified in Example 2.5.1. There is an
implicit conjunction between clauses in the notation.
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Table 2.6: An example CSP encoded to SAT under the full regular encoding.

Domain Clauses
(¬x≤1 ∨ x≤2) (¬x≤2 ∨ x≤3) (x≤3)
(¬y≤1 ∨ y≤2) (¬y≤2 ∨ y≤3) (y≤3)
(¬z≤1 ∨ z≤2) (¬z≤2 ∨ z≤3) (z≤3)

X 6= Y
(¬x≤1 ∨ ¬y≤1)
(¬x≤2 ∨ x≤1 ∨ ¬y≤2 ∨ y≤1)
(¬x≤3 ∨ x≤2 ∨ ¬y≤3 ∨ y≤2)

X 6= Z
(¬x≤1 ∨ ¬z≤1)
(¬x≤2 ∨ x≤1 ∨ ¬z≤2 ∨ z≤1)
(¬x≤3 ∨ x≤2 ∨ ¬z≤3 ∨ z≤2)

Y 6= Z
(¬y≤1 ∨ ¬z≤1)
(¬y≤2 ∨ y≤1 ∨ ¬z≤2 ∨ z≤1)
(¬y≤3 ∨ y≤2 ∨ ¬z≤3 ∨ z≤2)

Y > Z (¬y≤1) (z≤1 ∨ ¬y≤2) (z≤2 ∨ ¬y≤3) (z≤3)

2.5.4 Regular Encoding

The full regular encoding can be augmented with the additional direct encoding
representation of variable domains to produce the regular encoding [10]. A vari-
able’s domain is encoded in both representations and clauses are added to chain
between them:

∀v ∈ D(X) : xv → x≤v ∧ ¬x≤v−1 .

Chaining the two domain representations in this way allows for the at most one
clauses from the direct encoding to be omitted, it is enforced through the chained
representations. Thus only a linear number of clauses are required to encode a
domain, rather than a quadratic number, albeit requiring twice the number of
SAT variables.

Having both encodings gives flexibility in the representation of each constraint.
For example, for inequalities the regular encoding can be used since it is natur-
ally suited, but for a (dis)equality the direct encoding would be more natural.
Throughout this dissertation, where the regular encoding is used, the encoding
which gives the most compact formula is chosen, like in the previous example.

Example 2.5.4 (Regular Encoding). Table 2.7 gives the complete regular-encoded
CNF formula for the simple CSP specified in Example 2.5.1. There is an implicit
conjunction between clauses in the notation.
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Table 2.7: An example CSP encoded to SAT under the regular encoding.

Domain
Clauses

(x1 ∨ x2 ∨ x3)
(¬x1 ∨ x≤1) (¬x2 ∨ x≤2) (¬x2 ∨¬x≤1) (¬x3 ∨ x≤3) (¬x3 ∨¬x≤2)
(¬x≤1 ∨ x≤2) (¬x≤2 ∨ x≤3) (x≤3)
(y1 ∨ y2 ∨ y3)
(¬y1 ∨ y≤1) (¬y2 ∨ y≤2) (¬y2 ∨ ¬y≤1) (¬y3 ∨ y≤3) (¬y3 ∨ ¬y≤2)
(¬y≤1 ∨ y≤2) (¬y≤2 ∨ y≤3) (y≤3)
(z1 ∨ z2 ∨ z3)
(¬z1 ∨ z≤1) (¬z2 ∨ z≤2) (¬z2 ∨ ¬z≤1) (¬z3 ∨ z≤3) (¬z3 ∨ ¬z≤2)
(¬z≤1 ∨ z≤2) (¬z≤2 ∨ z≤3) (z≤3)

X 6= Y (¬x1 ∨ ¬y1) (¬x2 ∨ ¬y2) (¬x3 ∨ ¬y3)
X 6= Z (¬x1 ∨ ¬z1) (¬x2 ∨ ¬z2) (¬x3 ∨ ¬z3)
Y 6= Z (¬y1 ∨ ¬z1) (¬y2 ∨ ¬z2) (¬y3 ∨ ¬z3)
Y > Z (¬y≤1) (z≤1 ∨ ¬y≤2) (z≤2 ∨ ¬y≤3) (z≤3)

2.5.5 Additional Encodings

Many more encodings have been proposed in the literature citing various alternate
benefits. One notable encoding, namely the full-log encoding [57, 97, 161], encodes
the binary representation of an integer variable. Encoding the domain of each
CSP variable is highly compact in that it requires only dlog2 de Boolean variables,
however the encoding of constraints can be more intricate. The full-log encoding
may also be combined with the direct encoding to produce the log encoding.
Channeling the domain representations removes the need for the at-most-one
clauses in the direct encoding and allows constraints to be encoded using either
representation. This opens the door to many possibilities such as producing a
more compact representation or one which encodes information from multiple
perspectives.

DPLL-based SAT solvers obtain propagation similar to forward checking on a
direct encoded instance, and maintaining arc-consistency on a support encoded
instance. One disadvantage to the log encoding is that such properties are lost.
The log-support encoding [53] aims to recover some higher level of propagation by
combining the log and the support encodings.

2.5.6 Encoding Reified Constraints

Encodings for a number of CSP constraints can be reified with the addition of
a slack variable to each clause which encodes the base-constraint. For example,
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to reify Z ⇔ (X = Y ), the clauses representing X = Y are added as described
in previous sections, but an additional literal (¬z) is also added to each clause;
additionally clauses representing X 6= Y must be added and should include the
additional literal (z). Thus, if z is true, the literal (¬z) is falsified and the X = Y

clauses must be satisfied as normal, but the X 6= Y clauses are satisfied by the
additional literal (z).

2.6 Solver Portfolios

In many empirical comparisons, such as the CSP and SAT competitions, the winner
is determined by the total number of instances solved across a heterogeneous
benchmark set. Solvers thus compete to be crowned as the best general purpose
solver for the benchmark set by solving the most problems within the time limit.
However, this is often not representative of the state of the art for the field. Many
solvers are often more efficient on specific classes of benchmarks, possibly by being
designed purposely for them. They may not solve the most instances overall but
may be the most efficient on a subset of instances. Thus, the state of the art may
be elicited by taking the most efficient solver for each individual instance, not
simply the best general purpose solver.

Solver portfolios [67, 83, 106] aim to exploit this property by replacing a single
solver with a set of complementary solvers, along with a mechanism for selecting a
subset to use on a particular problem. By making decisions at an instance-specific
level, it is possible to make significant performance gains over any of the individual
component solvers. Solver portfolios have been used with great success for solving
both SAT and CSP instances in systems such as SATzilla [165], ISAC [98], and
CPHydra [128].

Solver portfolios are an instance of the Algorithm Selection Problem [138] where
the goal is to select the most appropriate algorithm for solving a particular
problem. Figure 2.9 depicts an abstract model of the algorithm selection problem
for combinatorial search. The model consists of a problem space x ∈ P, an
algorithm space A ∈ A, a performance measure p(A, x) ∈ Rn, and a selection
model S. The goal of the selection model is to map each instance to the best
algorithm according to the performance measure.

The majority of modern portfolio approaches employ some form of machine learning
to take the role of the selection model. This involves a training phase whereby a
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reference set of instances, a domain-specific feature description, a candidate set of
algorithms, and a performance metric are defined. Feature descriptions for each
instance and performance data of each algorithm on each instance is recorded. The
machine learning model is built such that the performance metric is maximised
on this training data. Numerous additional machine learning techniques such as
cross-validation, parameter tuning, feature normalisation or transformations, etc.,
may be employed at this stage to further improve the performance of the model.
Subsequently, to apply this trained model to a new test instance at runtime, first
the feature description must be computed and passed to the model to make a solver
section. The chosen solver is then applied to the problem instance. Additionally
some portfolio approaches may interrupt the chosen solver in place of another,
based on the observed performance, illustrated by the dashed feedback arc in the
figure.

The model illustrated in Figure 2.9 is by no means a comprehensive depiction of
the real-world application of a solver portfolio, a number of practical issues must
be accounted for. Firstly, we may encounter many easy instances for which it
would be wasteful to spend time computing features and making a solver decision
when it could be trivially solved directly. Thus, it is practical to have a static
schedule of pre-solvers which will be run briefly before any intelligent selection
takes place. Conversely, for certain larger instances we may be unable to compute
features due to timeouts or memory limits, so it is useful to have a backup-solver
which may be run in this scenario. Additionally, if the chosen solver is unable to
handle the instance or crashes, then a successive solver may be run. Despite such
practical issues, the figure serves to exemplify the concept at the heart of modern
model-based solver portfolios. In the following sections, a number of different
forms of these core selection models are discussed.

Kotthoff
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Figure 1: Basic model for the Algorithm Selection Problem as published in Rice (1976).
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Figure 2: Contemporary algorithm selection model. Dashed lines show optional connections.

experimentally evaluate their performance. This training data is used to create a performance model
that can be used to predict the performance on new, unseen instances. The term model is used only
in the loosest sense here; it can be as simple as a representation of the training data without any
further analysis.

Figure 2 sketches a contemporary algorithm selection model that corresponds more closely to
approaches that use machine learning. At the heart of is the selection model S, which is trained using
machine learning techniques. The data for the model comes from the algorithms A ∈ A and the
problems x ∈ P , which are characterised by features. S is created either by using training data that
contains the performances of the algorithms on a subset of the problems from the problem space, or
feedback from executing the chosen algorithm on a problem and measuring the performance. Some
approaches use both data sources.

The model S makes the prediction of a specific algorithm A given a problem x. This algorithm is
then used to solve the problem. At a high level, this describes the workings of an algorithm selection
model, but there are many variations. The figure is meant to give a general idea, not describe every
approach mentioned in this paper.

Arguably, one of the most prominent systems to do algorithm selection is and has been SATzilla
(Xu, Hutter, Hoos, & Leyton-Brown, 2008). There are several reasons for this. It was the first
system to really bring home the point of algorithm portfolios in combinatorial search by dominating

2

Figure 2.9: Model of the algorithm selection problem. Figure courtesy of [106].
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2.6.1 Selection Models

At the heart of the system is the selection model, which typically consists of
some form of machine learning. The machine learning model is built from some
historical training data, such as performance information for the algorithms on a
set of reference instances, along with appropriate feature descriptions. A model is
fitted mapping the feature vector to the performance metric.

Eliciting a representative feature description for instances is crucial to the effective
application of the machine learning models. Features for combinatorial search
instances comprise of both static and dynamic features extracted from the instance.
Static features range from simple statistics such as the number of variables,
constraints, types of constraints, etc; to intricate graph statistics extracted from
the constraint and variable graph representations. Dynamic features are recorded
from short runs of solver to collect information such as probing data, or the
distribution of constraint weights.

Once a meaningful feature vector has been built, there are typically three main
approaches to using machine learning to build solver selection models, namely
using classification, clustering, and regression techniques [106]. The following
sections briefly explain the respective methods and mention some relevant work.

2.6.1.1 Classification for Solver Selection

The problem of predicting the best solver can be treated as a classification problem
where the label to predict is the solver that will be run. For each instance, solvers
are ranked based on their performance and the target prediction label becomes
the solver with the best performance.

On the surface, this sounds like a natural model and a straightforward mapping to
the application. However, one issue with this approach is the lack of consideration
for the relative performance differences between solvers, whether two solvers are
almost identical or orders of magnitude different is not considered. One alternative
is to build an ensemble of pairwise classification models, whereby each model
assumes the role to predict solver A versus B, A versus C, B versus C, and so
on. The winner is chosen by the solver with the most votes. Additionally, this
may be augmented by directly including the relative performance difference by
weighting the classification task. This approach proved highly effective as the core
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mechanism in the latest iteration of SATzilla [165], winning numerous medals at
recent SAT competitions.

2.6.1.2 Clustering for Solver Selection

Alternatively, based on the hypothesis that a solver’s performance is consistent
across closely-related instances, instances can be clustered based on their features.
The solver with the best performance on a particular cluster is assigned as the
cluster’s label. The cluster membership of any new data decides the solver to use.

This clustering approach is adopted by Instance Specific Algorithm Configuration
(ISAC) [98], a successful portfolio system for the SAT. Instances are clustered
using the g-means algorithm, a variation of k-means with automated selection of
the number of clusters parameter, k. The best performing solver in each cluster is
then run through an automated algorithm configuration system to optimise its
performance on that cluster of instances. At run time, cluster membership of the
instance decides the solver to be run.

Such an approach depends on a very close relationship between the feature
description and the performance. It relies on instances that look similar from the
feature description perspective to have a similar performance by the respective
solvers. Taking the performance metric into account during clustering is not
something which has been tackled in the literature, to the best of our knowledge.
Nevertheless, the clustering method has proved to be quite successful in empirical
competitions and in the literature.

A lazy form of clustering, such as k-nearest neighbour clustering, may also be
applied. At runtime, the k most similar instances are recalled. A number of
aggregation techniques may then be applied in order to choose a solver, or produce
a schedule of solvers. A notable application of this is CPHydra [128] which
aggregates this information by solving an optimisation model, deciding on a
schedule of the solvers which maximises the probability of solving the instance
within the time limit.

2.6.1.3 Regression for Solver Selection

Finally, perhaps surprisingly, regression models can be trained to predict the
performance of each portfolio solver in isolation. For each solver, a model learns
a function mapping the feature vector to its performance, and the solver with
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the best predicted performance is chosen. When solver runtime is used as the
performance metric, the typical practice in the literature is to predict the log
of the runtime. We may also employ a collection of models in order to predict
pairwise performance differences. The chosen solver is subsequently the one with
the most votes from the pairwise models.

Solver portfolios based on regression models have been highly successful in em-
pirical competitions. Most notably, initial versions of SATzilla [164] built ridge
regression models to predict the log of the runtime for each component solver.
Their analysis noted that the predicted runtimes can often be off by orders of
magnitude but that the relative ordering of the predictions among solvers is
generally correct, which is sufficient for the purposes of building a portfolio.

2.6.2 Non-Model Based Portfolios

The portfolio methods highlighted so far use machine learning models to make a
prediction at runtime of the solver to be run, an alternative is to build a static
schedule of solvers without the need for a selection mechanism at runtime. One
strength of non-model based approaches is their applicability to new domains
without the need for a domain-specific feature description.

One notable non-model based portfolio is ppfolio [140], which proved surprisingly
successful, winning 16 prizes at the 2011 SAT Competition. The idea is quite
simple, essentially consisting of a number of handcrafted rules to launch different
sets of solvers depending on the number of cores available. Hoos et al. subsequently
took a more refined approach by modelling the choice of solver schedule as a
combinatorial problem in the aspeed [82] system. Based on empirical data, a
multi-objective answer set programming model is solved to decide the optimal
schedule of solvers, including the ability to generate parallel schedules exploiting
multiple cores.

2.6.3 Disparity of Approaches

Many entries in the algorithm selection literature aim to tackle problems that are
fundamentally similar but exist in different domains, for example portfolios for
the CSP, SAT, MaxSAT, etc. However, there is a disparity between approaches
such that no single approach has proved dominant. Recently, AutoFolio [114] was
proposed as a generic meta-portfolio to tackle this issue. The decision of which
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algorithm selection approach to use is treated as a configuration problem. It
constructs portfolios in a form resembling that of SATzilla, with initial pre-solvers,
followed by feature and machine learning model selection. Automated configuration
methods are used to make such decisions like the choice of machine learning model
and subsequently to tune its parameters. Additionally, the aforementioned aspeed
is employed to build its pre-solving component.

For further reading, an extensive survey of the wide-range of literature on the
algorithm selection problem was recently published [106], with an additional
tabulated form online. 2

2.7 Chapter Summary

This chapter reviews the literature relevant to this dissertation. Combinatorial
decision and optimisation problems such as the constraint satisfaction, satisfiability,
and mixed integer programming have been introduced in the context of the
Numberjack system. Some encodings from CSP to SAT have been described, and
various methods for building solver portfolios have been presented. Subsequent
technical chapters will present more focused background material, where relevant.

2Online Algorithm Selection Survey at http://larskotthoff.github.io/assurvey/
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Chapter 3

Case-Based Reasoning for Solver
Selection

Summary. This chapter examines a number of adaptation methods
for a portfolio for solving constraint satisfaciton problems based on
case-based reasoning. Employing the knowledge of performance on
previously seen similar instances, we explore a number of techniques
to adapt to the new instance and select the candidate solver.

The objective of the work reported in this chapter is to study a simple case-based
reasoning approach to a portfolio for the Boolean satisfiability (SAT) problem. We
present three large case-bases of problem-solving experience with a large number
of modern SAT solvers in three distinct domains, including one comprising almost
1200 industrial problems (Section 3.1). We focus primarily on the problem of
adaptation of problem-solving experience to solve new cases, having retrieved
a suitable set of similar experiences involving problems similar to the one we
wish to solve (Sections 3.2 and 3.3). Our results (Section 3.4) demonstrate that
a case-based reasoning approach would perform close to oracle performance on
the domains we evaluate, exhibiting a potential “killer” application domain for
case-based reasoning. These results are consistent with the belief held in the
SAT community that experience plays a key role in selecting a good solver for a
problem instance [106].
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3.1 Building Case-bases for SAT Solving

We summarise the representation, cases and similarity measure used in our three
case-bases for SAT solving. Our case-bases relate to three domains: industrial
instances, hand-crafted instances, and randomly generated instances.

3.1.1 Feature Representation

We employed the same set of SAT instance features as those used in SATzilla1.
SATzilla is a successful algorithm portfolio for SAT, i.e. a system that uses
machine learning techniques to select the fastest SAT solver for a given problem
instance. That system uses a total of 48 features, summarised in Figure 3.1 [165].

These features can be summarised under nine different categories: problem size
features; variable-clause graph features; variable graph features; balance features;
proximity to Horn formula; DPLL probing features; and local search probing
features. The first category of features are self explanatory, and simply relate to
the number of variables and clauses in the SAT instance. The next two categories
relate to two different graph representations of a SAT instance. The variable-

SATzilla: Portfolio-based Algorithm Selection for SAT

Problem Size Features:
1. Number of clauses: denoted c

2. Number of variables: denoted v

3. Ratio: c/v

Variable-Clause Graph Features:
4-8. Variable nodes degree statistics: mean,
variation coe�cient, min, max and entropy.
9-13. Clause nodes degree statistics: mean, varia-
tion coe�cient, min, max and entropy.

Variable Graph Features:
14-17. Nodes degree statistics: mean, variation
coe�cient, min and max.

Balance Features:
18-20. Ratio of positive and negative literals in each
clause: mean, variation coe�cient and entropy.
21-25. Ratio of positive and negative occurrences of
each variable: mean, variation coe�cient, min, max
and entropy.
26-27. Fraction of binary and ternary clauses

Proximity to Horn Formula:
28. Fraction of Horn clauses
29-33. Number of occurrences in a Horn clause for
each variable: mean, variation coe�cient, min, max
and entropy.

DPLL Probing Features:
34-38. Number of unit propagations: computed at
depths 1, 4, 16, 64 and 256.
39-40. Search space size estimate: mean depth to
contradiction, estimate of the log of number of nodes.

Local Search Probing Features:
41-44. Number of steps to the best local minimum
in a run: mean, median, 10th and 90th percentiles for
SAPS.
45. Average improvement to best in a run: mean
improvement per step to best solution for SAPS.
46-47. Fraction of improvement due to first local
minimum: mean for SAPS and GSAT.
48. Coe�cient of variation of the number of un-
satisfied clauses in each local minimum: mean over
all runs for SAPS.

Figure 2: The features used for building SATzilla07; these were originally introduced and described
in detail by Nudelman et al. (2004a).

3.4 Computing Features and Runtimes

All our experiments were performed using a computer cluster consisting of 55 machines with
dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, running Suse Linux 10.1. As in
the SAT competition, all runs of any solver that exceeded a certain runtime were aborted
(censored) and recorded as such. In order to keep the computational cost manageable, we
chose a cuto↵ time of 1 200 CPU seconds.

3.5 Identifying Pre-solvers

As described in Section 2, in order to solve easy instances quickly without spending any time
for the computation of features, we use one or more pre-solvers: algorithms that are run
unconditionally but briefly before features are computed. Good algorithms for pre-solving
solve a large proportion of instances quickly. Based on an examination of the training
runtime data, we chose March dl04 and the local search algorithm SAPS (Hutter et al., 2002)
as pre-solvers for RANDOM, HANDMADE and ALL; for SAPS, we used the UBCSAT implementation
(Tompkins & Hoos, 2004) with the best fixed parameter configuration identified by Hutter
et al. (2006). (Note that while we did not consider incomplete algorithms for inclusion in
the portfolio, we did use one here.)

Within 5 CPU seconds on our reference machine, March dl04 solved 47.8%, 47.7%, and
43.4% of the instances in our RANDOM, HANDMADE and ALL data sets, respectively. For the
remaining instances, we let SAPS run for 2 CPU seconds, because we found its runtime to be
almost completely uncorrelated with March dl04 (Pearson correlation coe�cient r = 0.118

577

Figure 3.1: A summary of the features used to describe SAT instances in our
case-base. These are the same features which used in SATzilla and which have
been show to have a good correlation with instance hardness [165].

1http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
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clause graph is a bipartite graph with a node for each variable, a node for each
clause, and an edge between them whenever a variable occurs in a clause. The
variable graph has a node for each variable and an edge between variables that
occur together in at least one clause. The balance features are self explanatory
and relate, primarily, to the distribution of positive and negative literals within
the SAT instance. Another category measures the proximity to a Horn formula.
This captures how close the SAT instance is to an important polynomial class of
SAT that can be solved using the unit-propagation inference method used in all
systematic SAT solvers. The DPLL probing features are related to statistics that
a standard systematic search algorithm gathers while testing the difficulty of the
instance [38]. The local search features are the non-systematic analogue of the
latter category.

3.1.2 Case-Bases

We built three case-bases from the training data used by the SATzilla system [165].2

Each case in the case-base represents one SAT problem instance and the individual
performance of a set of solvers when applied to it. For each benchmark instance
in the dataset, there is a record of whether each solver solved the instance within
a specified cut-off time (1 hour), the time taken by each to solve the instance, and
whether the solver crashed during execution. Each solver is run independently of
each other. Thus, each case is a pair, (F, S), where F is a set of feature values and
S is a set of pairs encoding the performance of each solver on the query instance.

The problem instances were originally taken from the benchmarks suites associated
with the annual International SAT Competition.3 We combine the instances from
each year of the SAT Competition into a single combined dataset. Each instance is
assigned to one of three categories based on the instance origin: handcrafted (HAN),
industrial (IND) and randomly generated (RAN) instances. The instances are
additionally separated into what SATzilla classified as satisfiable and unsatisfiable
instances. For our evaluation, instances from these two classifications were
combined into a single dataset. Table 3.1 gives the resulting size of each case-base.4

Table 3.1 also shows the number of solvers in each. Note that the random category
contains eight additional solvers, purposely designed for random instances, that
are not present in the dataset for the handcrafted and industrial categories.

2SATzilla data: http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
3http://www.satcompetition.org
4The case-bases are available at http://osullivan.ucc.ie/datasets/iccbr2012/
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Table 3.1: The number of problem instances and the number of solvers associated
with each of our three case-bases.

Case-base # Instances # Solvers
Handcrafted (HAN) 1181 19
Industrial (IND) 1183 19
Random (RAN) 2308 27

3.1.3 Similarity Metric

The features that encode the cases are all numeric. Therefore, we will be assuming
that the similarity between two cases is computed using the unweighted normalised
Euclidean distance. Feature values are normalised to the interval [0, 1]. Specifically,
for the ith feature of case γ, we compute the normalised value η(γ[i]) of feature
value γ[i] as follows:

η(γ[i]) = γ[i]−min(i)
max(i)−min(i) ,

where min(i) and max(i) are the minimum and maximum values respectively for
feature i across all cases.

When evaluating a test case, one finds the k cases with highest similarity (smallest
Euclidean distance) in the case-base. The challenge is then, given the set of
performance data for each solver, how should one adapt this experience to the
current problem instance. We frame this problem as a label ranking problem [52],
which we will discuss in greater detail in the following section.

3.2 Adaptation Strategies

The specific task of adaptation in our portfolio context is to decide which solver
should be used to solve a given instance. We will consider a setting in which we
are allocated one hour to solve each instance. The objective is, given a set of
problem instances, to solve as many of them as possible within the cutoff in the
shortest time. In other words, we lexicographically order these two objectives:
maximise the number of solved instances, and tie-break by running time, which
we prefer to minimise. In our setting, each nearest neighbour can be seen as giving
an ordering over the performance of the available solvers. We can interpret this
order as a ranking, possibly time-weighted.

In traditional classification, we are interested in assigning one or more labels
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from a finite set to a case. In contrast, label ranking deals with assigning a total
ordering of labels to a case. This ranking of labels can be much more useful
than assigning a single label, e.g. rank aggregation methods have been used to
combine query results from multiple search engines [42]. In this chapter, the labels
represent different algorithms in our portfolio solver and the ranking of labels
represents the expected order of run time on an instance.

Label ranking may also be seen as a generalization of multi-label classification.
Instead of classifying a case with a subset of the classes, we instead, assign a
totally ordered ranking of the classes. Multi-label ranking is the task whereby in
addition to producing a total ordering of the labels for an instance, the task is to
also identify a partition of the labels into relevant and irrelevant labels [28, 30].
This introduces an additional layer of complexity to the task. Methods for learning
pairwise preferences between labels have been proposed [52]. It has been shown
that case-based label ranking compares well against model-based approaches [29].
An in depth survey of additional label ranking methods is given in [158].

We will consider a variety of voting based approaches for label ranking and
consensus ranking; we refer the reader to the literature for further details of the
various methods [130]. We will use examples throughout, based on the sample
data presented in Table 3.2. In this table, we present an example of the retrieval
set from our case-based system, but do not present the running times. Instead we
simply order the solvers by running time, using the notation a ≺ b to annotate
the relative performance.

3.2.1 Kendal-Tau Distance

To compare two rankings, we define a function to compute the distance between
them. The Kendal-Tau distance between two rankings A and B is the number of

Table 3.2: An example list of label rankings, which we will use as a running
example. Each ranking contains a total ordering of the labels a, b, c, d . The
operator ≺ can be read as ‘faster’.

Name Label Ranking
A a ≺ b ≺ c ≺ d
B c ≺ b ≺ a ≺ d
C b ≺ a ≺ d ≺ c
D a ≺ c ≺ d ≺ b
E b ≺ a ≺ c ≺ d
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discordant pairs, i.e. the number of pairs who’s relative ranking is different. Let L
be the set of all labels and let A and B be two complete rankings of these labels.
More formally, the Kendal-Tau distance is defined as:

KT-distance(A,B) =
∑

c,d∈L, c 6=d

1 if A and B rank c and d in a different order

0 otherwise .

Example 3.2.1. Using the example rankings given in Table 3.2, the Kendal-Tau
Distance between rankings A and B is:

KT-distance(A,B) = 3 .

This is because the relative ranking between pairs of candidates (a, b), (a, c), and
(b, c) is different amongst the two rankings. A and B both rank the other pairs,
e.g. (c, d) , in the same order.

3.2.2 Kemeny Consensus Ranking

The Kemeny Score of a ranking, R, is the sum of all the Kendal Tau distances
from R to all rankings among the set of votes, V .

Kemeny-Score(R, V ) =
∑
v∈V

KT-distance(R, v) .

Example 3.2.2. Let R = 〈a ≺ c ≺ b ≺ d〉. If we take all the rankings from
Table 3.2 as the votes, then the Kemeny Score of R is 9. This is the sum of:

KT-distance(R,A) = 1 KT-distance(R,B) = 2 KT-distance(R,C) = 3
KT-distance(R,D) = 1 KT-distance(R,E) = 2

The Kemeny Consensus is the ranking of the labels that minimises the Kemeny
Score. This may also be referred to as the optimal Kemeny ranking. It is the
ranking which minimises, among the votes, the number of disagreements on the
pairwise preference between every pair of labels.

Aggregating multiple rankings into a single optimal Kemeny ranking is NP-
hard [42]. Section 3.3 formulates the problem of computing the optimal Kemeny
ranking as a combinatorial optimisation problem and illustrates that such an
approach can be highly efficient and practical.
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Example 3.2.3. For the votes given in Table 3.2, the optimal Kemeny ranking is
〈b ≺ a ≺ c ≺ d〉 with a Kemeny Score of 7. All other possible permutations of the
labels have a higher Kemeny Score than this. In this case the Kemeny Optimal
ranking matches one of the rankings in the votes, but this may not necessarily be
the case.

The Kemeny Consensus ranking is said to satisfy the Condorcet criterion. This
states that if a candidate is preferred by most voters to any other candidate, then
it should be ranked first in the aggregation ranking [25]. It expresses no condition
on the remainder of the positions, however.

3.2.3 Borda Voting

Borda Voting is a polynomial time approximation scheme for the Kemeny Con-
sensus ranking. Each of the k-nearest neighbours will vote for a label in the
order for which that solver performed on that case. A label in position p receives
n−p+1 points based on its position in the ranking. The points for each candidate
are summed up. The ranking is produced by sorting these tallies in decreasing
order. Borda Voting does not satisfy the Condorcet criterion.

Example 3.2.4. For vote B in Table 3.2, candidates c, b, a and d would receive
4, 3, 2 and 1 points respectively. If we sum up the points from all the votes in
this table, the a would have a score of 16 points, b of 15, c of 12 and d of 7. The
resulting ranking would be 〈a ≺ b ≺ c ≺ d〉 .

3.2.4 Weighted Borda Voting

Weighted Borda Voting takes extra information about each neighbour into account
during the Borda voting. The vote for a particular solver is multiplied by the
weight in one of the two weighting schemes we consider. In distance-weighted
borda voting (DW-BV), the weight WD is given as WD = 1

1+d where d is the
Euclidean distance between the neighbour and the test instance.

In time-weighted borda voting (TW-BV) the weight WT is given as WT = cutoff−t
cutoff ,

where ‘cutoff’ is the cut-off execution time limit and t is the time taken for the
solver on a given neighbour. Time-weighted borda voting gives a large weight to
solvers that take very little time to solve the instance and a weight of zero to any
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that timeout or do not solve the instance. In theory this would seem to suit our
goal of choosing the solver which will perform fastest for a given instance.

3.2.5 Copeland Voting

Copeland Voting looks at every pair of labels (a, b) and counts the difference
between the number of votes that prefer a to b and those that prefer b to a. The
label with the higher number of preferences gets one added to its score. The
label with the lower number of preferences, gets one deducted from its score. The
resulting ranking of the labels is obtained by sorting by their respective scores.

Example 3.2.5. Given the votes in Table 3.2, the label ranking produced by
Copeland Voting would be 〈b ≺ a ≺ c ≺ d〉. The scores for each label would be:
(a, 1), (b, 3), (c, -1), (d, -3).

3.2.6 Bucklin Voting

Bucklin Voting is a means of choosing the label with the best median ranking. The
algorithm first attempts to select the label which has a majority of first preference
votes. The number of first preferences for each label is counted across the votes.
If one of the labels has a majority, then that label is the winner. If no label has a
majority, then the second preference votes are added to the first. Again, if there
is a label that has a majority of votes, then that label is the winner. There may
be multiple labels with a majority. In this case, the winner is the one with the
highest vote tally.

Since this voting mechanism only outputs the top ranked candidate, it is excluded
from our area under the curve comparison as described in Section 3.4.2. It is
included in our portfolio evaluation in Section 3.4.3.

Example 3.2.6. Given the votes in Table 3.2, the count of first preferences for
labels a, b, c, and d would be 2, 2, 1, and 0 respectively. Since no label has a
majority of first preferences, we add the seconds preferences. This gives a tally
of 4, 4, 2, and 0 for labels a, b, c, and d respectively. Since two labels share the
majority, we add the third preference from each of the votes. This gives tallies of
5, 4, 4, and 2, indicating a as the winner of the Bucklin Voting election.
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3.2.7 Coomb’s Voting

Coomb’s Voting is similar to Bucklin Voting in that it first attempts to select the
label which has the majority of first preference votes. If no label has a majority,
a separate election is held between the labels which are ranked last in the votes.
The label with the most last-place votes is then removed from all votes. A tally of
the first preference votes is taken again and this is repeated until there is a label
with a majority.

Example 3.2.7. Again, we use the votes from Table 3.2 for this example. As
with Buckling voting, the count of first preferences for labels a, b, c, and d would
be 2, 2, 1, and 0 respectively. Looking at the label ranked last in each vote, we
see that d occurs most frequently so d is removed from all votes. The tallies for
first preference are reset and counted again. Since removing d does not change
the tallies for first preferences, we hold another election to remove the last ranked
candidate. Since c is now ranked last in 3 of the votes, it is removed from every
vote. This bumps label b to the top in ranking B, alterting the number of first
preference votes, leaving a with 2 and b with 3. Signifying b as the winner of the
Coomb’s Voting election.

3.2.8 Instant Runoff Voting

In Instant Runoff Voting (IRV), we again stop if there is a label with a majority
of first place votes. If not, then the label with the fewest first preference votes is
eliminated. This label is removed from each of the votes. For each vote where
the eliminated label held a first place preference, the next preference votes are
added to their respective label’s tally. This is repeated until there is a candidate
with a majority of votes. This voting scheme is similar to Coomb’s Voting except
instead of eliminating the label that is ranked last, we eliminate the label that
has the fewest first preference votes.

Example 3.2.8. We use the votes from Table 3.2 for this example. The tallies of
first preference votes for labels a, b, c, and d are again 2, 2, 1, and 0 respectively.
Since there is no vote where d is the first preference, it is removed from all votes.
This leave us with first preference tallies of 2, 2, 1 for a, b, and c respectively,
without a majority winner. Of the remaining labels, c now has the fewest first
preferences so is removed from all votes. This bumps b to the top of ranking B,
altering the number of first preference votes to give a 2 and b 3, electing b as the
winner of the Instant Runoff Voting.
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3.2.9 Best Average Score

Among the data for the k nearest neighbour instances is the run time for each
solver on that neighbour instance. The borda voting and distance weighted borda
voting methods above do not take this valuable data into account when performing
their aggregation. Another strategy to get a ranking of the solvers from this data
is to order them by their average score across these k instances. This gives us
an ordering of the solvers by their performance, averaged across the k nearest
neighbours. We refer to this aggregation as ordering by Best Average Score.

3.2.10 Very Best Ranking

The Very Best Ranking (VBR) is the ranking produced by an oracle, who knows
the best ranking for each instance by solver performance. We use this ranking as
a benchmark to compare the rankings produced by the aggregation methods.

3.2.11 Summary of Voting Methods

Table 3.3 summarises the aggregate rankings produced by the voting methods
described in previous sections. Since each voting method is an approximation
of the Kemeny Consensus, it may differ in terms of the ranking, as can be seen
with Borda and Bucklin voting. Additionally, Bucklin, Coomb’s, and Instant
Runoff voting each only elect a single winner but it may not necessarily be the
highest-ranked label in the Kemeny Consensus ranking.

Table 3.3: Summary of aggregate rankings.

Voting Method Label Ranking
Kemeny Consensus 〈b ≺ a ≺ c ≺ d〉

Borda Voting 〈a ≺ b ≺ c ≺ d〉
Copeland Voting 〈b ≺ a ≺ c ≺ d〉
Bucklin Voting 〈a〉
Coomb’s Voting 〈b〉

Instant Runoff Voting 〈b〉

52



3. CBR for Solver Selection
3.3 An Exact Method for Computing Optimal

Kemeny Rankings

3.3 An Exact Method for Computing Optimal
Kemeny Rankings

The ranking methods presented in the previous section, with the exception of the
optimal Kemeny and VBR rankings, are heuristics. In this section we compute
an exact aggregate ranking by formulating the problem as a combinatorial op-
timisation problem. We present a Mixed Integer Programming (MIP) model for
computing the optimal Kemeny ranking from a set of rankings (votes), in our case
the k nearest neighbors of a query SAT instance. This model was implemented
using Numberjack with SCIP5 as the underlying MIP solver.

Let L be the set of all labels. Let V be the set of votes from each of the k nearest
neighbors. We encode each ranking as a list where each label takes the value of
the number of labels ranked higher than it. For example, if we are given a ranking
of the labels c ≺ a ≺ d ≺ b, then this would be converted to 〈1, 3, 0, 2〉 because
a has 1 candidate ahead of it, b has 3, and so on. This simplifies the process of
finding the index of a label within a ranking for the MIP model. We define the
MIP model as follows:

• R is the array of the rank indexes in the Kemeny Consensus ranking. Ri

states the number of labels that are ranked before label i in the aggregation
ranking. The domain of values that each position in R can take is therefore
0 . . .m− 1. This array contains all the decision variables.

• We add the constraint AllDiff(R) because only one candidate can occupy each
position. There is no AllDifferent constraint in MIP but Numberjack allows
us to encode the problem at a high level like this and it will automatically
decompose the constraint into inequalities.

• For each pair of labels i and j, we have a Boolean variable rij which is
encoded to take the value 1 if i is ranked higher than j in the target ranking
R, zero otherwise.

• For each pair of labels i and j in each vote Vk we have a Boolean variable
vkij which takes the value 1 if label i is ranked higher than label j in vote
Vk, zero otherwise.

• For each pair of labels i and j in each vote Vk we have the Boolean variable
Dkij which is the exclusive-or between rij and vkij. This means Dkij will

5SCIP website: http://scip.zib.de/
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take the value 1 if R ranks i and j in a different order to Vk.

• The Kendal Tau distance to vote Vk from R is KTk, which is the sum over
all Dkij for every pair of candidates i and j.

• The Kemeny Score of the target ranking R is ∑KTk. We attempt to
minimise this value.

For a set of votes among 19 labels, this MIP model is able to solve the difficult
aggregation problem in a matter of seconds. Consider that a greedy naive algorithm
for commuting the Kemeny Optimal ranking may need to examine every possible
permutation of the labels, which is O(n!). It must compute the Kemeny Score
for each permutation and choose the ranking which minimises this function. This
approach quickly becomes infeasible.

Model Improvements

This section presents some practical improvements to the MIP model by reducing
the domain of the variables, upper-bounding the Kemeny Score, and linearising
the exclusive-or constraint. These allow the model to scale to larger problems and
solve instances more effectively.

Domain of variables in R. The domain of positions that each candidate can
take can be bounded by the each candidates average position plus/minus the
average KT-distance [20]. The average KT-distance, d, is defined as:

d = 1
|L|(|L| − 1) ·

∑
l1,l2∈L, l1 6=l2

KT-distance(l1, l2)

Upper-bound on Kemeny Score. Each ranking in V could be chosen as the
target ranking. Although it may not be the Kemeny Consensus ranking, it may
be used to compute an upper-bound on the Kemeny Score. The Kemeny Score of
each ranking in V can be computed against all rankings in V with the smallest
value for this constituting an upper-bound on the Kemeny Score. This may be
time consuming to compute if the number of votes is large as it takes n2 calls to
the KT-distance function.

Encoding Exclusive-or to MIP. Since we are limited to linear constraints in
a MIP formulation, the exclusive-or constraint must be encoded to a linear form
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before it can be solved by the MIP solver. Let x be a Boolean variable which will
take the value of the exclusive-or between two other Boolean variables a and b:
x = a⊕ b. An auxiliary variable h will be introduced to replace the expression
2 · a · b and additional constraints will be imposed on h as follows:

x = a(1− b) + b(1− a) (3.1)
x = a+ b− 2ab
x = a+ b− 2h (3.2)
0 ≤ h

0 ≤ a− h

0 ≤ b− h

0 ≥ a+ b− h− 1

Effectiveness. By bounding the domain of the variables by the candidates
average position plus/minus the average KT-distance, we reduce the domain size
of our decision variables by an average of 13.5%, 13.7%, and 1.2% for Industrial,
Handcrafted, and Random instances respectively. This may not seem like much,
particularly in the case of Random instances, but it is enough to reduce the
domains from a complete overlap. When combined with the upper-bound on the
Kemeny Score, it can be the difference between solving the instance in milliseconds
or not at all.

3.4 Evaluation of a CBR-based Portfolio for
SAT

We present an evaluation of both the quality of the adaptation strategies for
ranking solvers by run time (Section 3.4.2), and the performance of our case-based
reasoning-based algorithm portfolio for SAT (Section 3.4.3). We use the case-bases
described in Section 3.1. In terms of the quality of the rankings, we show that
rankings that consider running time, rather than relative position in the rank,
give better performance. This is somewhat unsurprising, but it is interesting to
see that the effort spent in finding the optimal Kemeny ranking is not worthwhile.

Of much greater significance is our demonstration that our CBR portfolio out-
performs all of its constituent solvers by a considerable margin. In fact, the
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superiority of the CBR approach is observed regardless of the adaptation scheme
used. Again, rankings that consider time are superior to all others, and compare
well in terms of performance against the oracle (VBR) that always selects the
best solver for a particular SAT instance.

3.4.1 Methodology

In all experiments we used a 10-fold cross validation approach, studying each of our
three case-bases (Section 3.1) separately. We report averages, where appropriate.
We always seek five nearest neighbours (5-NN), having observed that setting
k to this value gave good typical-case performance. For the purpose of this
chapter, unweighted normalised Euclidean distance is used as a similarity metric
throughout. All adaption methods use the same distance measure, therefore each
are tasked with aggregating the same set of neighbours.

3.4.2 Evaluation of the Adaptation Schemes

Given a ranking of the solvers, using a particular adaptation scheme, and their
respective execution times, we can plot the cumulative time of the execution time
of each solver against its position in the ranking. Let s(i) be the solver ranked
in position i of a ranking, and t(α) be the time taken by solver α to solve the
instance. The plot of the cumulative time of the solvers in a ranking is given by:

f(x) =
x∑
i=1

t(s(i)).

If the solvers are ordered in strict order of increasing run time, the area under the
curve in this plot will be minimised. On the other hand, the ranking which is as
poor as possible will have maximum area. We compare each of our adaptation
strategies that produce a ranking in this way. Figure 3.2 shows an example plot
of the curve for each of the label rankings produced by an adaptation method.

Paired t-tests were performed to compare two label ranking methods on the
basis of the area under the curves in our ranking plots. Such a paired t-test was
performed between every pair of adaptation methods on every instance across
the 10 splits in each dataset category. Table 3.4 gives the complete table of
these results showing the 95% confidence interval and the p-value. In this table a
confidence interval with negative lower and upper bounds, which is highlighted in
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Figure 3.2: An illustration of the curve produced by accumulating the time taken
by each solver in a ranking. Each line represents a curve produced by the rankings
from each of the adaptation methods that produce a ranking.

bold, signifies that the ranking on the left is statistically significantly better than
the ranking on the right.

On hand-crafted and industrial problems, which are really the most interesting
from a practical viewpoint, the best-average-solver (BAS) and three variants of
Borda voting out-perform all other methods; the statement is almost also true in
the random category. It is clear, and not unsurprising, that the methods that take
running time into account, out-perform all others. The Kemeny ranking never
out-performs another method.

While comparing the rankings is interesting in itself, the more important question
is how effective are these rankings in a CBR-based algorithm portfolio for SAT.
We study this below.

3.4.3 A CBR-based Solver Portfolio for SAT

A variant of the CBR-based solver portfolio was implemented using each adaptation
scheme in turn. We name these using the acronym of the adaptation scheme used.
Given a SAT instance, the portfolio system will apply the relevant adaptation
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scheme to the set of cases retrieved using our 5-NN method. The highest ranked
solver is selected. We record the total number of instances solved by the chosen
solvers and the cumulative time summed over all solved instances, given a cut-off
time of 1 hour per instance, in a 10-fold cross validation setting. This setup is
very similar to that of the International SAT Competition.
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Table 3.5: Leader board for the Handcrafted category of problem instances.

Solver Name Nr. Solved Cumulative Time
on Solved In-
stances (s)

1 VBR 114.9 (± 1.4) 24703.4 (± 4972.5)
2 TW-BV 110.5 (± 2.2) 25668.9 (± 5855.8)
3 BAS 109.5 (± 2.7) 26147.9 (± 7106.6)
4 DW-BV 109.3 (± 1.8) 26239.2 (± 6779.6)
5 BV 109.2 (± 1.8) 25561.7 (± 6541.9)
6 IRV 108.0 (± 1.8) 23872.8 (± 6121.4)
7 COOMBS 107.9 (± 2.5) 24553.9 (± 6317.8)
8 KEMENY 107.8 (± 2.4) 24163.2 (± 6683.3)
9 BUCKLIN 107.6 (± 2.5) 22892.7 (± 6783.0)
10 COPELAND 107.6 (± 2.5) 24060.7 (± 6140.9)
11 minisat20SAT07 88.1 (± 4.1) 33700.5 (± 9455.9)
12 mxc08 86.2 (± 3.9) 30312.6 (± 9620.1)
13 march_dl2004 85.1 (± 3.5) 22245.3 (± 7770.6)
14 picosat846 84.0 (± 3.6) 28713.1 (± 8167.2)
15 minisat2.0 82.5 (± 4.3) 32019.3 (± 7527.4)
16 vallst 73.1 (± 5.2) 18904.4 (± 4995.6)
17 rsat20 67.0 (± 4.4) 20652.4 (± 5934.4)
18 zchaff_rand 62.6 (± 4.5) 17362.4 (± 6541.4)
19 march_pl 44.2 (± 4.8) 6817.7 (± 2814.7)
20 tts 43.1 (± 5.3) 6360.1 (± 3461.8)
21 SATenstein_r3sat 25.7 (± 4.7) 4278.6 (± 5091.6)
22 ranov 25.5 (± 5.6) 3789.9 (± 3098.3)
23 adaptg2wsatplus 24.3 (± 5.0) 1572.6 (± 1804.6)
24 gnoveltyplus 24.3 (± 4.6) 3433.5 (± 2446.2)
25 adaptg2wsat0 23.4 (± 4.7) 1987.7 (± 2177.6)
26 kcnfs04SAT07 22.5 (± 4.2) 10022.1 (± 3416.3)
27 SATenstein_qcp 22.2 (± 3.8) 2347.4 (± 2197.6)
28 SATenstein_swgcp 22.2 (± 3.8) 2347.8 (± 2196.6)
29 SATenstein_hgen 18.4 (± 3.8) 2179.7 (± 1570.3)

We compare this to the Very Best Ranking (VBR), which chooses the best solver
for the instance given. We report the average number of instances solved and the
average run time, with standard deviation in both cases. In our results tables,
Tables 3.5, 3.6 and 3.7, we sort the variants in terms of number of instances solved,
and then by run time. The VBR, the oracle, is therefore always ranked at the top.

The overall result here is that the best SAT solvers are out-performed in every
problem class by each of the CBR-based portfolios. The CBR portfolio compares
very well against the oracle (VBR) in each category. For example, in the random
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Table 3.6: Leader board for the Industrial category of problem instances.

Solver Name Nr. Solved Cumulative Time
on Solved In-
stances (s)

1 VBR 113.1 (± 2.5) 24561.0 (± 5164.6)
2 BAS 110.3 (± 3.3) 30003.9 (± 4674.8)
3 TW-BV 109.8 (± 3.0) 27742.0 (± 4430.4)
4 KEMENY 105.4 (± 3.7) 26500.6 (± 5287.4)
5 DW-BV 105.1 (± 3.4) 25699.3 (± 4611.6)
6 BV 105.0 (± 3.5) 26364.8 (± 4243.5)
7 COPELAND 104.5 (± 4.1) 26650.9 (± 5209.8)
8 COOMBS 104.2 (± 3.9) 26758.2 (± 6411.9)
9 IRV 103.6 (± 3.7) 26317.2 (± 5540.3)
10 BUCKLIN 102.6 (± 4.5) 25574.9 (± 5617.2)
11 mxc08 101.8 (± 3.9) 30144.6 (± 6091.5)
12 picosat846 96.4 (± 3.7) 29688.2 (± 6551.8)
13 rsat20 93.8 (± 4.8) 34573.7 (± 6666.6)
14 minisat20SAT07 89.8 (± 3.2) 31467.8 (± 8382.5)
15 minisat2.0 87.2 (± 2.4) 34332.8 (± 7641.0)
16 zchaff_rand 80.6 (± 5.3) 33037.2 (± 4045.4)
17 vallst 65.9 (± 4.8) 29617.0 (± 3576.8)
18 march_dl2004 43.3 (± 4.4) 6027.4 (± 1751.3)
19 adaptg2wsatplus 21.3 (± 5.3) 3492.1 (± 1987.2)
20 march_pl 21.2 (± 3.6) 3210.8 (± 2758.8)
21 SATenstein_r3sat 21.1 (± 4.0) 2816.8 (± 1925.5)
22 tts 20.2 (± 3.6) 2342.4 (± 2489.1)
23 adaptg2wsat0 20.1 (± 4.7) 2854.1 (± 2210.5)
24 SATenstein_swgcp 16.8 (± 4.4) 2547.4 (± 2406.1)
25 SATenstein_qcp 16.8 (± 4.4) 2552.4 (± 2412.5)
26 SATenstein_hgen 15.4 (± 4.0) 2576.1 (± 2164.6)
27 gnoveltyplus 14.3 (± 4.2) 3507.7 (± 2883.7)
28 kcnfs04SAT07 9.1 (± 3.0) 1026.4 (± 1441.9)
29 ranov 8.7 (± 3.0) 1672.0 (± 1517.6)

problem category, the CBR portfolio solves 33% more instances than the best
SAT solver on its own, and solves within 5% of the instances solved by the oracle.

Both BAS and TW-BV portfolios perform consistently well, which would not be
obvious a-priori in this setting in which it is most important to solve instances
within a cut-off. Once again, the Kemeny ranking is not competitive amongst the
CBR-based portfolios.

Notably, in all categories, the cumulative time on solved instances is lower for
all portfolio approaches than the single best solver, despite solving many more
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Table 3.7: Leader board for the Random category of problem instances.

Solver Name Nr. Solved Cumulative Time
on Solved In-
stances (s)

1 VBR 227.6 (± 1.4) 28960.0 (± 5745.6)
2 BAS 216.7 (± 3.2) 30463.4 (± 5284.6)
3 TW-BV 211.8 (± 2.6) 25250.1 (± 4005.0)
4 COOMBS 206.2 (± 3.1) 24303.7 (± 4554.8)
5 IRV 206.1 (± 3.9) 25405.7 (± 5249.5)
6 COPELAND 205.8 (± 3.1) 24590.6 (± 5769.9)
7 DW-BV 205.6 (± 3.5) 24019.9 (± 4382.9)
8 BV 205.4 (± 3.5) 23753.5 (± 4606.5)
9 BUCKLIN 203.2 (± 3.9) 24111.5 (± 5774.5)
10 KEMENY 194.0 (± 4.5) 27713.1 (± 4651.7)
11 march_dl2004 149.8 (± 6.3) 38318.5 (± 4934.1)
12 gnoveltyplus 148.1 (± 6.0) 21884.0 (± 6398.8)
13 SATenstein_T7 146.8 (± 6.4) 23124.2 (± 3713.5)
14 ranov 146.0 (± 6.4) 19454.8 (± 4909.5)
15 SATenstein_swgcp 142.7 (± 7.5) 16795.1 (± 5327.9)
16 SATenstein_qcp 142.7 (± 7.5) 16801.1 (± 5325.8)
17 SATenstein_2P8 141.8 (± 6.6) 15242.8 (± 4268.1)
18 SATenstein_L5 141.6 (± 6.0) 9293.6 (± 3807.0)
19 SATenstein_T3 141.6 (± 7.0) 12863.9 (± 4687.7)
20 adaptg2wsat0 139.8 (± 6.7) 23592.5 (± 6028.6)
21 SATenstein_2P7 139.5 (± 6.9) 12376.5 (± 3575.3)
22 SATenstein_2P9 138.4 (± 7.5) 12624.7 (± 4294.2)
23 adaptg2wsatplus 138.4 (± 6.4) 26437.6 (± 10217.9)
24 SATenstein_r3sat 138.1 (± 6.5) 12813.8 (± 3148.8)
25 SATenstein_T5 137.9 (± 6.9) 16251.8 (± 4443.1)
26 SATenstein_hgen 121.5 (± 8.8) 9396.6 (± 1917.0)
27 mxc08 115.4 (± 6.7) 40052.7 (± 6010.6)
28 SATenstein_L3 115.2 (± 6.6) 11852.6 (± 2615.7)
29 minisat2.0 115.1 (± 6.2) 38166.2 (± 6136.8)
30 minisat20SAT07 114.0 (± 7.3) 36482.2 (± 10084.8)
31 picosat846 112.6 (± 7.8) 35309.7 (± 5667.0)
32 march_pl 89.1 (± 4.4) 11450.7 (± 3655.8)
33 rsat20 78.4 (± 7.6) 19388.4 (± 9251.8)
34 kcnfs04SAT07 75.8 (± 4.8) 20189.9 (± 5584.9)
35 vallst 74.9 (± 6.8) 31666.5 (± 6851.4)
36 zchaff_rand 62.1 (± 6.3) 18108.5 (± 4398.4)
37 tts 25.1 (± 4.5) 5520.7 (± 3062.5)

instances. This demonstrates the significant performance gains that may be
achieved by employing a portfolio of solvers that are potentially solver on average
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than the single best solver.

These results are consistent with the expectations of experts in the field of SAT.
It is regarded as a challenge to be able to select a good performing solver for a
given instance, and the choice is heavily reliant on the experience of the user who
makes this choice. Therefore, this domain is perfect for CBR, and the results
demonstrate that it is also a very useful technique to use here.

3.5 Chapter Summary

In this chapter we studied a variety of adaptation schemes for a family of CBR-
based algorithm portfolios for the SAT problem. The results clearly demonstrate
that the choice of adaptation scheme is important for performance with schemes
that consider run time rather than relative ranking giving superior performance.

We clearly demonstrated that a CBR approach to this task is extremely competitive,
and out-performs individual high-performing SAT solvers in a wide variety of
disciplines. A feature of the domain of SAT, and constraint solving in general, is
that experience is important.
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Chapter 4

A Hierarchical Portfolio of
Representations and Solvers

Summary. A hierarchical portfolio is outlined which, in addition
to a portfolio of CSP solvers, considers a portfolio of SAT encodings
and subsequently a portfolio of SAT solvers. We demonstrate the
complementary nature of such a portfolio and ultimately its superior
performance to that of a portfolio based on a single representation.

Additionally, we apply the portfolio to the domain of graphical models,
demonstrating that significant performance gains can also be achieved
in this domain.

4.1 Introduction

The pace of development in both CSP and SAT solver technology has been
rapid. Combined with portfolio and algorithm selection technology, impressive
performance improvements over systems that have been developed only a few
years previously have been demonstrated. Constraint satisfaction problems and
satisfiability problems are both NP-complete and, therefore, there exist polynomial-
time transformations between them. We can leverage this fact, whereby in addition
to a set of CSP solvers, we may choose to convert CSPs into SAT problems and
solve them using SAT solvers.

In this chapter we exploit the fact that different SAT solvers have different
performances on different encodings of the same CSP. In fact, the particular
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choice of encoding that will give good performance with a particular SAT solver
is dependent on the problem instance to be solved. We show that, in addition to
using dedicated CSP solvers, to achieve the best performance for solving a CSP
the best course of action might be to translate it to SAT and solve it using a
SAT solver. We name our approach Proteus, after the Greek god Proteus, the
shape-shifting water deity that can foretell the future.

Our approach makes a series of decisions – whether a problem should be solved as
a CSP or a SAT problem, which encoding should be used for converting into SAT,
and finally which solver should be assigned to tackle the problem. Approaches
that make a series of decisions are usually referred to as hierarchical models.
Hierarchical models have also been used in the context of a SAT portfolio [73, 163].
They first predict whether the problem to be solved is expected to be satisfiable or
not and then choose a solver depending on that decision. Our approach is closer
to [62], which first predicts what level of consistency the all-different constraint
should achieve before deciding on its implementation.

To the best of our knowledge, no portfolio approach that potentially transforms
the representation of a problem in order to be able to solve it more efficiently
exists at present.

The remainder of this chapter is organised as follows. Section 4.2 presents some
background material and discusses some related work. In Section 4.3 we motivate
the need to choose the representation and solver in combination. Details of the
hierarchical portfolio is presented in Section 4.4. A detailed empirical evaluation
of the portfolio is presented in Section 4.5. Section 4.6 undertakes some analysis
comparing the empirical performances of CSP versus SAT. Proteus is extended
and applied to the domain of graphical models in Section 4.7. Finally, a summary
of the chapter is presented in Section 4.8.

4.2 Background and Related Work

This section provides some background and discusses some work related to this
chapter. First, we discuss some related portfolio approaches, followed by some
related approaches that have used SAT to solve CSPs, and finally, we describe
some details of the randomly generated benchmarks that will be used for the
initial investigation.
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4.2.1 Related Portfolios

The approach presented in this chapter employs algorithm selection techniques to
dynamically choose whether to translate to SAT, and if so, which SAT encoding
and solver to use, otherwise it selects which CSP solver to use. There has been a
great deal of research in the area of algorithm selection and portfolios; we refer
the reader to Section 2.6 and to a recent survey of this work [106].

Specifically, we note three contrasting example approaches to algorithm selection
for the constraint satisfaction and satisfiability problems, namely CPhydra
(CSP), SATzilla (SAT), and isac (SAT). CPhydra [128] contains an algorithm
portfolio of CSP solvers which partitions CPU time between components of the
portfolio in order to maximize the probability of solving a given problem instance
within a fixed time limit. SATzilla [165], at its core, uses cost-sensitive decision
forests that vote on the SAT solver to use for an instance. In addition to that, it
contains a number of practical optimisations, for example running a pre-solver to
quickly solve the easy instances. isac [98] is a cluster-based approach that groups
instances based on their features and then finds the best solver for each cluster.

The Proteus approach is not a straightforward application of portfolio techniques.
In particular, there is a series of decisions to make that affect not only the solvers
that will be available, but also the information that can be used to make the
decision. Because of this, the different choices of conversions, encodings and
solvers cannot simply be seen as different algorithms or different configurations of
the same algorithm.

4.2.2 Solving a CSP using SAT

The approach presented in this chapter offers a novel perspective on using SAT
solvers for constraint solving. The idea of solving CSPs as SAT instances is not
new; the solvers Sugar, Azucar, and CSP2SAT4J are three examples of SAT-based
CSP solving which have been successful.

Sugar [152] has been very competitive in recent CSP solver competitions. It
converts the CSP to SAT using a specific encoding, known as the order encoding,
which was presented in detail in Section 2.5.4. Azucar [153] is a related SAT-based
CSP solver that uses the compact order encoding. However, both Sugar and
Azucar use a single predefined encoding and solver to solve the encoded CSP
instances. Our work does not assume that conversion using a specific encoding
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to SAT is the best way of solving a problem, but considers multiple candidate
encodings and solvers.

CSP2SAT4J [109] uses the SAT4J library as its SAT back-end and a set of static
rules to choose either the direct or the support encoding for each constraint. For
intensional and extensional binary constraints that specify the supports, it uses
the support encoding. For all other constraints, it uses the direct encoding. The
Proteus approach does not have predefined rules but instead chooses the encoding
and solver based on features of the problem instance to solve.

4.2.3 Uniform Random Binary CSPs

This chapter will employ uniform random binary (URB) CSPs [59] in order to
study the performance of a SAT solver on a number of encodings from CSP
to SAT. Artificially generated random benchmarks have commonly been used
to benchmark the development of new algorithms and solvers. Although the
generated instances lack some of the structure inherent in industrial instances,
they provide a controlled manner with which a sufficient number of benchmarks
can be constructed in order to make meaningful observations. Large numbers
of instances can be generated with similar characteristics such as domain size,
constraint tightness and density, and so on. Such control enables researchers to
study the behaviour of approaches in various conditions.

A uniform random binary CSP is described by a tuple 〈n, d, c, t〉, representing the
number of variables, the uniform domain size, the density of the constraint graph,
and the constraint tightness respectively. Intuitively, the number of variables and
their domain size correspond to the size of the problem. The constraint density
specifies the ratio of possible constraint pairs, i.e. |C| = dc ·

(
n
2

)
e. The tightness

corresponds to the fraction of disallowed value-pairs for each constraint, i.e. the
number of forbidden tuples for each constraint is t · d2.

A number of methods can be used for determining how the random selection of
constraint and value tuples are chosen, namely models A, B, C, D, and E [6, 68].
Each differs subtly in how the edges and constraints are selected, such as selecting
each of the n(n−1)/2 possible edges independently with probability c, or selecting
exactly c·n(n−1)/2 edges. This chapter will use the model B method, which selects
exactly c ·n(n− 1)/2 constraints, and exactly t ·d2 forbidden pairs of incompatible
values. This model has been widely used in the constraint programming literature
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as it enables problems to be generated with a precise and consistent size, allowing
empirical performance to be studied in a highly controlled manner [68].

4.3 Multiple Encodings and Solvers

This section analyses the performance of multiple encodings and solvers in two
contrasting scenarios. Firstly, a controlled experimental evaluation using uniform
random instances studies the performance behaviour across the phase transition.
A subsequent evaluation employs structured CSP Competition instances, demon-
strating how the additional encodings and solvers can be exploited to achieve
significant performance gains.

4.3.1 Uniform Random Instances

To motivate our work, we performed a detailed investigation for two solvers to
assess the relationship between solver and problem encoding with features of the
problem to be solved. For this experiment we considered uniform random binary
CSPs with a fixed number of variables, domain size and number of constraints,
and varied the constraint tightness. Tightness was varied from 0 to 1, where 0
means that all assignments are allowed, in increments of 0.005. At each tightness
the mean runtime of the solver on 100 random CSP instances is reported. Each
instance contains 30 variables with domain size 20 and 300 constraints, resulting in
instances with a constraint density of 0.69. This allows us to study the performance
of SAT encodings and solvers across the phase transition.

Figure 4.1 plots the runtime for MiniSat and Clasp on uniformly random binary
CSPs that have been translated to SAT using three different encodings. Observe
that in Figure 4.1(a) there is a distinct difference in the performance of MiniSat
on each of the encodings, sometimes an order of magnitude. Before the phase
transition, we see that the order encoding achieves the best performance and
maintains this until the phase transition. Beginning at constraint tightness 0.41,
the order encoding gradually starts achieving poorer performance and the support
encoding now achieves the best performance.

Notably, if we rank the encodings based on their performance, the ranking changes
after the phase transition. This illustrates that there is not just a single encoding
that will perform best overall and that the choice of encoding matters, but also that
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(a) Performance using MiniSat.
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(b) Performance using Clasp.

Figure 4.1: MiniSat and Clasp on random binary CSPs.
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this choice is dependent on problem characteristics such as constraint tightness.

Around the phase transition, we observe contrasting performance for Clasp, as
illustrated in Figure 4.1(b). Using Clasp, the ranking of encodings around the
phase transition is direct � support � order; whereas for MiniSat the ranking is
order � direct � support. Note also that the peaks at the phase transition differ
in magnitude between the two solvers. These differences underline the importance
of the choice of solver, in particular in conjunction with the choice of encoding
– making the two choices in isolation does not consider the interdependencies
that affect performance in practice. Thus, in the context of a portfolio it is not
sufficient to consider the choice of solver or problem representation independently,
instead they should be considered in tandem.

4.3.2 CSP Competition Instances

In addition to the random CSP instances, our analysis also comprises 1493
challenging benchmark problem instances from the CSP solver competitions that
involve global and intensional constraints. The empirical setup is described in
detail in Section 4.5. Figure 4.2 illustrates the respective performance of the virtual
best CSP-based and SAT-based methods on these instances. The virtual best
CSP method relates to the best performance of any of the considered CSP solvers.
Likewise, the virtual best SAT method equates to the absolute best performance
amongst any of the encoding and solver combinations. The figure’s axes show
runtime (in seconds) to solve the instance, in log-scale. Each point of the scatter
plot represents the time in seconds of the two approaches. A point below the
dashed line indicates that the virtual best SAT portfolio was quicker, whereas
a point above means the virtual best CSP portfolio was quicker. Equivalent
performance would place the point along the dashed line.

Unsurprisingly the dedicated CSP methods often achieve the best performance.
There are, however, numerous cases where considering SAT-based methods has
the potential to yield significant performance improvements. In particular, there
are a number of instances that are unsolved by any CSP solver but can be solved
quickly using SAT-based methods, illustrated by the points along the right hand
edge. Conversely, there are many instances unsolved by the SAT methods which
are solved quickly by a CSP solver, as seen by the points along the top edge of
the plot. Moreover, in cases where both paradigms are able to solve the instance,
often one approach can be orders of magnitude faster than the other.
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Figure 4.2: Performance of the virtual best CSP portfolio and the virtual best
SAT-based portfolio.

Clearly the two approaches are complementary: there are numerous instances for
which a SAT-based approach does not perform well or fails to solve the instance but
a CSP solver does extremely well, and vice-versa. Additionally, both paradigms
boast a number of instances that can be solved orders of magnitude faster, showing
their highly complementary nature. The hierarchical portfolio presented in the
following sections, named Proteus, aims to unify the best of both worlds and take
advantage of the substantial potential performance gains that can be achieved.

4.4 Proteus: A Hierarchical Portfolio for CSPs

In order to exploit the potential performance gains presented in the previous
section, a portfolio could be built using multiple CSP solvers, multiple SAT
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4.4 Proteus: A Hierarchical Portfolio for
CSPs

encodings, and multiple SAT solvers. Such a portfolio could be modelled as a flat
decision by taking the CSP solvers along with the Cartesian product of the SAT
encodings and SAT solvers, as depicted in Figure 4.3(a). One disadvantage of this
approach however is that there may be a large number of choices for the portfolio
to choose from. This can hinder some machine learning models which encounter
difficulties such as the inability to generalise or make meaningful deductions when
the number of outcomes is large [121]. Subsequently, a portfolio based on this
flattened approach will not scale if the set of representations, encodings, or solvers
is extended.

Conversely, our approach, proposed under the name Proteus, makes a series
of decisions – first choosing a representation of the problem such as whether
a problem should be solved as a CSP or a SAT problem, subsequently which
encoding should be used, and finally which solver should be assigned to tackle the

CSP Solvers Direct
Encoding
Solvers

Support
Encoding
Solvers

Regular
Encoding
Solvers

Product of solvers and encodings?

(a) A flattened approach where the models choose from the product of the encodings and solvers.

CSP or SAT?

CSP Solver?

CSP

SAT Encoding?

SAT

SAT Solver for
Direct encoding?

Direct

SAT Solver for
Support encoding?

Support

SAT Solver for
Regular encoding?

Regular

(b) The hierarchy makes a series of decisions: first which paradigm, secondly which encoding,
and finally which solver.

Figure 4.3: A contrasting example of a flattened versus hierarchical approach
to selecting from a set of four CSP solvers, three SAT encodings, and four SAT
solvers.
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problem. An example of this hierarchy is depicted in Figure 4.3(b).

This hierarchical approach offers a number of advantages over the flattened
setting. Even though there are a larger number of decisions to be made, the
set of choices at each is more reasonable. Each decision is easily extensible
with additional paradigms, solvers, encodings, feature sets, and machine learning
models. Moreover, we may decide to use different machine learning models for
each of the decisions. Since some decisions may be binary, we might choose a
model which performs well on binary decisions. Furthermore, different feature sets
may be used for each decision, possibly providing further insight into the problem.
For example, for choosing the SAT solver to run under the direct encoding we may
compute features of the SAT instance [165] in order to make a better decision.

Caution must be taken however, since machine learning models can be liable to
making imperfect decisions, which could in turn be multiplied in the Proteus
hierarchy. However, in practice this did not occur in our empirical evaluations,
rather the hierarchical model was more reliable than any flattened approach, as
will be demonstrated in Table 4.2.

4.5 Experimental Evaluation

4.5.1 Setup

The hierarchical model we present in this chapter consists of a number of layers to
determine how the instance should be solved. At the top level, we decide whether
to solve the instance using as a CSP or using a SAT-based method. If we choose
to leave the problem as a CSP, then one of the dedicated CSP solvers must be
chosen. Otherwise, we must choose the SAT encoding to apply, followed by the
choice of SAT solver to run on the SAT-encoded instance.

Each decision of the hierarchical approach aims to choose the direction which has
the potential to achieve the best performance in that sub-tree. For example, for
the decision to choose whether to solve the instance using a SAT-based method or
not, we choose the SAT-based direction if there is a SAT solver and encoding that
will perform faster than any CSP solver would. Whether this particular encoding-
solver combination will be selected subsequently depends on the performance of
the algorithm selection models used in that sub-tree of our decision mechanism.
For regression models, the training data is the best performance of any solver
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under that branch of the tree. For classification models, it is the label of the
sub-branch with the virtual best performance.

This hierarchical approach presents the opportunity to employ different decision
mechanisms at each level. We consider 6 regression, 19 classification, and 3
clustering algorithms, which are listed below. For each of these algorithms, we
evaluate the performance using stratified 10-fold cross-validation. The dataset is
split into 10 equally sized partitions with approximately the same distribution of
the best solvers. One partition is used for testing and the remaining 9 partitions
as the training data for the model. This process is repeated with a different
partition considered for testing each time until every partition has been used for
testing. This enables the entire dataset to be considered in the evaluation while
maintaining a consistent training and testing isolation.

Solver performance is measured in terms of the PAR10 score (penalised average
runtime). The PAR10 score for an instance is the time it takes the solver to solve
the instance, unless the solver times out. In this case, the PAR10 score is ten
times the timeout value. The sum over all instances is divided by the number
of instances. In essence, the PAR10 measure quantifies the coefficients in our
overall multi-objective problem, whereby we first want to minimise the number
of unsolved instances, and subsequently the overall CPU-time. It offers a more
holistic and discriminative measure than just CPU-time or number of instances
solved alone. The factor of ten for unsolved instances is rather arbitrary but has
typically been the standard in the portfolio and related communities for a number
of years.

Instances. In our evaluation, we consider CSP problem instances from the
CSP solver competitions [1]. Of these, we consider all instances defined using
global and intensional constraints that are not trivially solved during 2 seconds
of feature computation. We also exclude all instances that were not solved by
any CSP or SAT solver within the time limit of 1 hour. Altogether, we obtain
1,493 non-trivial instances from problem classes such as Timetabling, Frequency
Assignment, Job-Shop, Open-Shop, Quasi-group, Costas Array, Golomb Ruler,
Latin Square, All Interval Series, Balanced Incomplete Block Design, and many
others. This set includes both small and large arity constraints and all of the
global constraints used during the CSP solver competitions: all-different, element,
weighted sum, and cumulative. Note that the benchmark set is comprised entirely
of satisfaction instances.
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The optimisation problems mentioned above, such as the Golomb ruler problem,
were modelled in the CSP Competitions as a satisfaction problem with an objective
bound as a constraint.

For the SAT-based approaches, Numberjack [78] was used to translate a CSP
instance specified in XCSP format [141] into SAT (CNF) and pass the resulting
instance to the SAT solver.

Features. A fundamental requirement of any machine learning algorithm is a
set of representative features. We explore a number of different feature sets to
train our models: i) features of the original CSP instance, ii) features of the
direct-encoded SAT instance, iii) features of the support-encoded SAT instance,
iv) features of the direct-order-encoded SAT instance and v) a combination of all
four feature sets. These features are described in further detail below.

We computed the 36 features used in CPHydra for each CSP instance using Mistral,
listed below. The set includes static features like statistics about the types of
constraints used, average and maximum domain size; and dynamic statistics
recorded by running Mistral for 2 seconds: average and standard deviation of
variable weights, number of nodes, number of propagations and a few others.
Instances which are solved by Mistral during feature computation are filtered out
from the dataset.

• Average Domain Continuity,
• Average Predicate Arity,
• Average Predicate Shape,
• Average Predicate Size,
• Dynamic - Log Average Constraint

Weight,
• Dynamic - Log Number of Nodes

Visited,
• Dynamic - Log Number of

Propagations,
• Dynamic - Log Std. Dev. Con-

straint Weight,
• Log Number of Bits,
• Log Number of Booleans,
• Log Number of Constants,

• Log Number of Constraints,
• Log Number of Extra Bits,
• Log Number of Extra Booleans,
• Log Number of Extra Ranges,
• Log Number of Extra Values,
• Log Number of Lists,
• Log Number of Ranges,
• Log Number of Search Variables,
• Log Number of Values,
• Maximum Arity,
• Minimum Continuity,
• Number of All-Differents,
• Perc. of Constraints - AllDiff,
• Perc. of Constraints - Binary Ex-

tensional,

75



4. A Hierarchical Portfolio of
Representations and Solvers 4.5 Experimental Evaluation

• Perc. of Constraints - Cumulative,
• Perc. of Constraints - Dec. Predic-

ate,
• Perc. of Constraints - Element,
• Perc. of Constraints - Extensional,
• Perc. of Constraints - GAC Pre-

dicate,
• Perc. of Constraints - Global,

• Perc. of Constraints - Large Ex-
tensional,

• Perc. of Constraints - N-ary Ex-
tensional,

• Perc. of Constraints - Weighted
Sum,

• Sqrt. Average Domain Size, and
• Sqrt. Maximum Domain Size

In addition to the CSP features, we computed the 54 SAT features used by
SATzilla [165] for each of the encoded instances and different encodings. The
features encode a wide range of different information on the problem such as
problem size, features of the graph-based representation, balance features, the
proximity to a Horn formula, DPLL probing features and local search probing
features.

We also consider the super-set of all 198 available features, 36 CSP plus 3× 54
SAT features. This extracts the largest amount of information from the instance,
but comes at a much higher computational cost.

Constraint Solvers. Our CSP models are able to choose from four complete
CSP solvers:

• Abscon [111],
• Choco [154],

• Gecode [55], and
• Mistral [76].

Satisfiability Solvers. We considered the following six complete SAT solvers:

• clasp [54],
• cryptominisat [151],
• glucose [15],

• lingeling [21],
• riss [117], and
• Minisat [43].

Learning Algorithms. We evaluate a number of regression, classification, and
clustering algorithms using WEKA [74]. All algorithms, unless otherwise stated,
use the default parameters. The regression algorithms we used were LinearRegres-
sion, PaceRegression, REPTree, M5Rules, M5P, and SMOreg. The classification
algorithms were BayesNet, BFTree, ConjunctiveRule, DecisionTable, FT, Hyper-
Pipes, IBk (nearest neighbour) with 1, 3, 5 and 10 neighbours, J48, J48graft, JRip,
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LADTree, MultilayerPerceptron, OneR, PART, RandomForest, RandomForest
with 99 random trees, RandomTree, REPTree, and SimpleLogistic. For clustering,
we considered EM, FarthestFirst, and SimplekMeans. The FarthestFirst and
SimplekMeans algorithms require the number of clusters to be given as input. We
evaluated with multiples of 1 through 5 of the number of solvers in the respective
data set given as the number of clusters. The number of clusters is represented by
1n, 2n and so on in the name of the algorithm, where n stands for the number of
solvers.

We use the LLAMA toolkit [105] to train and test the algorithm selection models.

4.5.2 Portfolio and Solver Results

The performance of each of the six SAT solvers was evaluated on the three SAT
encodings of 1,493 CSP competition benchmarks with a time-out of 1 hour and
limited to 2GB of RAM. The four CSP solvers were evaluated on the original
CSPs. Our results report the PAR10 score and number of instances solved for
each of the algorithms we evaluate. The PAR10 is the sum of the runtimes over all
instances, counting 10 times the timeout if that was reached. Data was collected
on a cluster of Intel Xeon E5430 Processors (2.66Ghz) running CentOS 6.4. This
data is available online1 and has been integrated into ASlib [24].

The performance of a number of hierarchical approaches is given in Table 4.1. The
hierarchy of algorithms which produced the best overall results for our dataset
involves M5P regression with CSP features at the root node to choose SAT or CSP,
M5P regression with CSP features to select the CSP solver, LinearRegression with
CSP features to select the SAT encoding, LinearRegression with CSP features
to select the SAT solver for the direct encoded instance, LinearRegression with
CSP features to select the SAT solver for the direct-order encoded instance, and
LinearRegression with the direct-order features to select the SAT solver for the
support encoded instance. The hierarchical tree of specific machine learning
approaches we found to deliver the best overall performance on our data set is
labelled Proteus and is depicted in Figure 4.4.

We would like to point out that in many solver competitions the difference between
the top few solvers is fewer than 10 additional instances solved. In the 2012 SAT
Challenge for example, the difference between the first and second place single
solver was only 3 instances and the difference among the top 4 solvers was only 8

1Proteus runtime data: http://4c.ucc.ie/∼bhurley/proteus/
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Table 4.1: Performance of the learning algorithms for the hierarchical approach.
The ‘Category Bests’ consists of the hierarchy of algorithms where at each node
of the tree of decisions we take the algorithm that achieves the best PAR10 score
for that particular decision.

Classifier Mean PAR10 Number Solved
VBS 97 1493
Proteus 1774 1424
M5P with CSP features 2874 1413
Category Bests 2996 1411
M5Rules with CSP features 3225 1398
M5P with all features 3405 1397
LinearRegression with all features 3553 1391
LinearRegression with CSP features 3588 1383
MultilayerPerceptron with CSP features 3594 1382
lm with CSP features 3654 1380
RandomForest99 with CSP features 3664 1379
IBk10 with CSP features 3720 1377
RandomForest99 with all features 3735 1383

solve as CSP solve as SAT

encode with direct
encoding

encode with
direct-order

encoding

encode with support
encoding

Linear regression with CSP features

M5P regression with CSP features

M5P regression with CSP features Linear regression with CSP features

Linear regression with CSP features

Linear regression with direct-order
features

Figure 4.4: Overview of the machine learning models used in the hierarchical
approach.
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instances. The results we present in Table 4.1 are, therefore, very significant in
terms of the gains we are able to achieve.

Our results demonstrate the power of Proteus. The performance it delivers is
very close to the virtual best (VBS), that is the best performance possible if an
oracle could identify the best choice of representation, encoding, and solver, on an
instance by instance basis. The improvements we achieve over other approaches
are similarly impressive. The results conclusively demonstrate that having the
option to convert a CSP to SAT does not only have the potential to achieve
significant performance improvements, but also does so in practice.

An interesting observation is that the CSP features are consistently used in each of
the top performing approaches. One reason for this is that it is quicker to compute
only the CSP features instead of the CSP features, then converting to SAT and
computing the SAT features in addition. Computing the SAT features may elicit
more information about the instance structure, but it incurs increased overhead,
which may only be worthwhile in some cases. For example, the LinearRegression
model gives its best performance using all feature sets, despite the overhead of
translating and computing features of each encoding. Note that for the best tree of
models (cf. Figure 4.4), it is better to use the features of the direct-order encoding
for the decision of which solver to choose for a support-encoded SAT instance
despite the additional overhead.

Table 4.2: Ranking of each classification, regression, and clustering algorithm to
choose the solving mechanism in a flattened setting. The portfolio consists of all
possible combinations of the 3 encodings and the 6 SAT solvers and the 4 CSP
solvers for a total of 22 solvers.

Classifier Mean PAR10 Number Solved
VBS 97 1493
Proteus 1774 1424
LinearRegression with all features 2144 1416
M5P with csp features 2315 1401
LinearRegression with csp features 2334 1401
lm with all features 2362 1407
lm with csp features 2401 1398
M5P with all features 2425 1404
RandomForest99 with all features 2504 1401
SMOreg with all features 2749 1391
RandomForest with all features 2859 1386
IBk3 with csp features 2877 1378
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We also compare the hierarchical approach to that of a flattened setting with a
single portfolio of all solvers and encoding solver combinations. The flattened
portfolio includes all possible combinations of the 3 encodings and the 6 SAT
solvers and the 4 CSP solvers for a total of 22 solvers. Table 4.2 shows these
results. The regression algorithm LinearRegression with all features gives the
best performance using this approach. However, it is significantly worse than the
performance achieved by the hierarchical approach of Proteus.

4.5.3 Greater than the Sum of its Parts

Given the performance of Proteus, the question remains whether a different
portfolio approach that considers just CSP or just SAT solvers could do better.
Table 4.3 summarizes the virtual best performance that such portfolios could
achieve. We use all the CSP and SAT solvers for the respective portfolios to give
us VB CSP and VB SAT, respectively. The former is the approach that always
chooses the best CSP solver for the current instance, while the latter chooses the
best SAT encoding/solver combination. VB Proteus is the portfolio that chooses
the best overall approach/encoding. We show the actual performance of Proteus
for comparison. Proteus is better than the virtual bests for all portfolios that
consider only one encoding. This result makes a very strong point for the need to
consider encoding and solver in combination.

Proteus outperforms four other VB portfolios. Specifically, the VB CPHyrda is
the best possible performance that could be obtained from that portfolio if a
perfect choice of solver was made. Neither SATzilla nor ISAC-based portfolios
consider different SAT encodings. Therefore, the best possible performance either
of them could achieve for a specific encoding is represented in the last four lines
of Table 4.3.

These results not only demonstrate the benefit of considering multiple CSP solving
techniques, but also eliminate the need to compare with existing portfolio systems
since we are computing the best possible performance that any of those systems
could theoretically achieve. Proteus impressively demonstrates its strengths by
significantly outperforming oracle approaches that use only a single encoding.
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4.6 CSP versus SAT Analysis

This section presents a more detailed study of the crucial decision of when to
choose CSP or SAT. We first examine the performance differences between CSP
and SAT by breaking it out by instance category. Subsequently, we attempt to
explain the performance of the portfolio, how it is able to exploit the performance
differences between the two paradigms so effectively.

4.6.1 Empirical Setup

Using the empirical performance data of the 1493 instances collected in Sec-
tion 4.5, we take the time in seconds of the virtual best CSP solver tCSP and the
virtual best SAT solver tSAT . The absolute difference in orders of magnitude is
δ = |log(1 + tCSP )− log(1 + tSAT )|. Instances where δ is less than one order of
magnitude are excluded, giving 1249 instances where the difference between the
virtual best CSP and virtual best SAT is significant. Each instance is labeled CSP
or SAT, corresponding with the paradigm giving the virtual best performance,
under any encoding and solver. This gives a set which is biased towards CSP, 976
versus 273.

Table 4.3: Virtual best performances ranked by PAR10 score.

Method Mean PAR10 Number Solved
VB Proteus 97 1493
Proteus 1774 1424
VB CSP 3577 1349
VB CPHydra 4581 1310
VB SAT 17373 775
VB DirectOrder Encoding 17637 764
VB Direct Encoding 21736 593
VB Support Encoding 21986 583
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acad/allsquaresUnsat (22/0)
acad/bibd (3/11)
acad/bibdVariousK (3/7)
acad/chessboardColoration (3/1)
acad/costasArray (1/5)
acad/golombRulerArity (11/0)
acad/knights (12/0)
acad/langford (14/0)
acad/largeQueens (1/0)
acad/latinSquare (1/0)
acad/magicSquare (5/0)
acad/nengfa (4/0)
acad/queenAttacking (3/0)
acad/queens (6/0)
acad/queensKnights (14/1)
acad/ramsey (3/2)
acad/schurrLemma (1/0)
acad/socialGolfers (0/6)
bool/aim (0/10)
bool/chnl (0/6)
bool/course (0/1)
bool/fpga (18/18)
bool/ii (7/15)
bool/mps (10/0)
bool/mpsReduced (32/11)
bool/niklas (2/0)
bool/par (1/16)
bool/ppp (0/6)
bool/primesDimacs (0/3)
bool/pseudoGLB (199/93)
bool/routing (0/10)
bool/ttp (2/1)
bool/uclid (3/19)
patt/bqwh_glb (0/2)
patt/cjss (1/0)
patt/fischer (10/0)
patt/haystacks (16/0)
patt/hos (0/3)
patt/insertion (3/15)
patt/jobShopeddr (0/1)
patt/jstaillard (56/8)
patt/leighton (0/2)
patt/mknap (1/0)
patt/mug (0/4)
patt/myciel (2/1)
patt/osgpsat (1/0)
patt/osgpunsat (2/0)
patt/ostaillard (83/5)
patt/primes (14/0)
patt/radar (4/0)
patt/rcpsp (2/0)
patt/rcpspTighter (5/0)
patt/school (1/0)
patt/sgb (6/4)
patt/superjobShop (1/22)
patt/superjs (16/0)
patt/superos (35/36)
patt/tdsp (8/0)
real/compet (6/26)
real/fapp (388/0)
real/medium (0/5)
real/rlfapScens (9/0)
real/small (0/4)
real/test (41/0)
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4.6.2 Orders of Magnitude Differences

Figure 4.5 summarises the complete performance difference between the virtual
best CSP solver and the virtual best SAT solver. The difference between the two
is shown in the form of a box-plot, where the central box ranges between the
first and third quartiles, with whiskers extending to the minimum and maximum
values, and the central red line plotting the median. Instances are grouped by
their respective problem category, as defined on their source [1]. It is difficult
to garner concrete insights from some instance categories which only contain a
handful of instances but we present some from the reasonably sized categories.

First, note that there are a number of problem categories where all instances are
clearly suited more to CSP, and likewise there are categories clearly more suited to
SAT. For example, the real/fapp category has a large number of instances which
are clearly more suited to a CSP solver. These are instances of the Frequency
Assignment Problem with Polarization, having relatively large, sparse domains
(in the hundreds of values) and complex, non-linear expressions as constraints.
The SAT encoding of such problems is quite large, requiring a large number of
variables and auxiliary encodings of the intermediate non-linear expressions.

Many of the bool categories, containing instances with only Boolean domains,
perform relatively well in SAT. These instances will elicit quite compact SAT
representations so it would seem natural that the SAT solvers would perform well.
Interestingly, this category also includes some pseudo-Boolean instances which
contain linear expressions over the Boolean variables. SAT encodings of linear
expressions is a highly-active research topic as it has huge implications [4, 5, 31,
50, 60, 100, 148]. In this work, we have employed a naïve encoding whereby the
linear expression is decomposed, chaining the cumulative sum of each variable to
a new variable. Therefore, it is encouraging to still see the SAT solvers achieve
relatively good performance on these instances. If a more sophisticated encoding
were used for these expressions, the performance may have been even better.

Contrary to this, there are several categories which have a mixture of instances
where CSP is faster and some where SAT is the faster choice, such as bool/fpga,
bool/pseudoGLB, patt/jstaillard, and patt/superos. In particular,
the patt/superos category has an even split between CSP and SAT being
faster. These are instances of Taillard’s Open Shop Scheduling problem which
have been modified to include constraints for finding super-solutions [77]. The
problems consist of the original disequality constraints from the scheduling problem

83



4. A Hierarchical Portfolio of
Representations and Solvers 4.6 CSP versus SAT Analysis

and additional constraints of the form (X1 + X2 ≤ X3 ∨ X0 + X3 ≤ X1) and
(X0 +X1 ≤ X2∨X1 +X2 ≤ X0) to find super-solutions. Given that these problems
contain variables with domain size in the range of hundreds to thousands, it was
unexpected to see the SAT solvers perform so well. We could not distinguish
any specific characteristics about the individual instances which would indicate
the expected performance one way or the other, in particular the performance
differences were not tied to instance satisfiability nor size. There is certainly scope
for a more detailed investigation of this behaviour, which we consider as potential
future work.

4.6.3 Explaining Portfolio Performance

At the top of the Proteus hierarchy is the decision to choose the CSP or SAT
route, aiming to choose the paradigm which is most likely to be the fastest. A
bad decision at this point could have a detrimental effect which is compounded
by decisions later on in the hierarchy. This section studies the top-level CSP or
SAT decision, demonstrating that a relatively simple machine learning model can
be highly accurate at choosing the best paradigm.

For the purpose of this analysis, a decision tree classifier will be employed to make
the CSP/SAT decision. It is not the model which formed part of the overall best
hierarchical portfolio, but it is more transparent, allowing us to study instance
features which the model considered most important to distinguishing CSP versus
SAT.

Table 4.4 summarises the results of a stratified 10-fold cross-validation whereby
the dataset is split into 10 evenly sized folds with a consistent distribution of the
labels across the folds. For each fold, the table lists the size of the training and test
sets, broken out by the number of instances where CSP/SAT was faster, accuracy,
precision, recall, and Matthews Correlation Coefficient. The first four metrics are
susceptible to bias in the dataset, for example simply predicting the majority label
of CSP gives an accuracy of 78.1%. On the other hand, Matthews Correlation
Coefficient (MCC) is designed to measure the quality of binary classifiers, aiming
to be a balanced measure even when the classes are of very different sizes. A
MCC of +1 means perfect prediction, −1 an inverse prediction, and 0 an average
random prediction. Predicting the majority label of CSP gives a MCC of 0. Also,
a uniformly random-classifier and one that predicts according to the training set
distribution gives values very close to 0 also.
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Table 4.4: Stratified 10-fold cross validation predicting CSP or SAT by a decision
tree classifier using CSP features.

CSP/SAT
Fold Train Test Accuracy Precision Recall F1-Score Matthews
1 879/245 97/28 0.9680 0.9697 0.9897 0.9796 0.9066
2 879/245 97/28 0.9440 0.9787 0.9485 0.9634 0.8467
3 879/245 97/28 0.9440 0.9688 0.9588 0.9637 0.8412
4 878/246 98/27 0.9520 0.9600 0.9796 0.9697 0.8554
5 878/246 98/27 0.9440 0.9789 0.9490 0.9637 0.8430
6 878/246 98/27 0.9440 0.9691 0.9592 0.9641 0.8371
7 878/246 98/27 0.9200 0.9151 0.9898 0.9510 0.7524
8 878/246 98/27 0.9440 0.9596 0.9694 0.9645 0.8326
9 878/246 98/27 0.9440 0.9691 0.9592 0.9641 0.8371
10 879/246 97/27 0.9839 1.0000 0.9794 0.9896 0.9549
Overall 976/273 0.9488 0.9663 0.9682 0.9672 0.8496

Table 4.5: Mean feature importance for stratified 10-fold cross validation predicting
CSP or SAT by a decision tree classifier using CSP features.

Feature Gini Importance
Average Predicate Arity 0.28357
Log Number of Values 0.12687
Average Predicate Size 0.10092
Log Number of Ranges 0.08386
Maximum Arity 0.05512
Perc. of Constraints - Weighted Sums 0.05190
Log Number of Bits 0.04287
Log Number of Booleans 0.04166
Log Number of Search Variables 0.04008
Log Number of Constraints 0.03872
Sqrt. Average Domain Size 0.03555
Sqrt. Maximum Domain Size 0.02569
Log Number of Extra Booleans 0.02037
Perc. of Constraints - Element 0.01321
Log Number of Extra Ranges 0.00982
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Achieving accuracy of 95% overall and a MCC of 0.85, all metrics clearly show
that a single decision tree is highly effective at choosing when to solve an instance
as CSP or SAT. Next, we examine what instance specific features the decision
tree employs in order to effectively make its choice.

Table 4.5 presents the set of features used by the decision tree, sorted by their
Gini importance. The Gini importance measure is the accumulated sum of the
reduction in Gini-impurity that the feature contributed, i.e. its effectiveness at
separating different instances. The arity of predicates is by far the most important
feature for the decision tree, accounting for 28% of the reduction in Gini-impurity.
The next two most important features, the number of values and average predicate
size, also relate to the size of constraint expressions. As an aside, if a single rule
classifier is built, i.e. a decision tree with depth limited to one node, it also chooses
the predicate arity as the distinguishing feature in all folds, achieving an accuracy
of 84% overall and MCC of 0.501.

For illustration purposes, we limit the decision tree to a node-depth of 3 and
present the resulting decision tree, trained on fold number 10, in Figure 4.6. Based
on the set of features that the decision tree chooses to distinguish CSP versus
SAT, there appears to be a consistent pattern emerging. In general terms, it
appears that instances involving smaller arity expressions, or smaller domains
are more suited to SAT. This seems like a natural explanation of SAT’s superior
performance, but there are also some large arity constraints, with small domains

Average Predicate Arity <= 21.5903
gini = 0.341703111111

samples = 1125

Average Predicate Size <= 48.8206
gini = 0.221098632727

samples = 956

Log Number of Values <= 21.5291
gini = 0.38514057631

samples = 169

Maximum Arity <= 100.5000
gini = 0.395950006312

samples = 445

gini = 0.0000
samples = 511

value = [   0.  511.]

gini = 0.4811
samples = 288

value = [ 116.  172.]

gini = 0.0617
samples = 157

value = [   5.  152.]

Sqrt. Average Domain Size <= 5.4448
gini = 0.285075215999

samples = 151

gini = 0.0000
samples = 18

value = [  0.  18.]

gini = 0.2378
samples = 145

value = [ 125.   20.]

gini = 0.0000
samples = 6

value = [ 0.  6.]

Figure 4.6: An example decision tree (limited to depth 3) choosing SAT or CSP.
Each node is labelled with the feature and threshold value to decide a split, values
below (resp. above) the threshold take the left (resp. right) branch. The values in
brackets on leaf nodes denote the number of instances in the training set labelled
SAT and CSP respectively.
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where SAT performs well. CSP seems to be the paradigm of choice for larger, more
complex expressions. Additionally, looking at the left most branch in Figure 4.6,
containing instances with smaller predicates and lower maximum arity, there is an
almost even split of CSP versus SAT, suggesting it not simply the small instances
where SAT dominates.

The set of CSP instance features we consider here did not include features
studying the detailed structure, such as summarising the constraint graph, tree
width, etc. The features we employ in this chapter emanate from their successful
application in the CPHydra and Proteus portfolios. If additional structural
features were considered they might provide further insight into the relative
empirical performances. This may be considered as an avenue for future work.

4.7 Proteus for Graphical Model Optimisation

A number of paradigms closely-related to constraint programming present new
challenges and ample opportunity to apply Proteus-like techniques to potentially
improve the state-of-the-art. In particular, Graphical Models are an important
and widely studied area of artificial intelligence and statistics. They provide
the capability to tackle some highly-important applications, ranging from image-
processing to bioinformatics. It benefits from an active research community,
dedicated annual conferences, and a semi-regular solver competition. Unlike mixed
integer programming, which has a very small collection of high-performing solvers,
the graphical model community has a wide range of closely-related complementary
paradigms as well as competitive solvers.

The field presents an excellent opportunity for the application of portfolio tech-
niques, yet has remained relatively untouched to-date. Nevertheless, in order to
apply such techniques, a number of significant challenges must be faced. Spe-
cifically, with the switch to an optimisation problem, not only does the validity
of the solution need to be considered, but also the quality of the solution, and
whether it was proven to be optimal, can be quite important. Additionally, a set
of empirically distinguishing features is lacking in the area.

The remainder of this section presents an application of some Proteus-like tech-
niques to the graphical models domain, with its effectiveness independently verified
through a first place entry to the UAI 2014 Probabilistic Inference Competition.
The contents of this section have been published in [93], we present here the
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details pertinent to this thesis. For further details on areas such as background,
please refer to the journal article.

4.7.1 Graphical Models Background

Weighted variants of constraint networks such as Cost Function Networks (CFNS),
also known as Weighted Constraint Satisfaction Problems (WCSPs), aim at finding
an assignment to all variable that minimises the sum of local cost functions [120].
With a language restricted to Boolean variables and clausal form constraints, the
weighted partial Max-SAT (WPMS) problem has the same target [120].

In artificial intelligence and statistics, probabilistic graphical models [102] use the
same idea to concisely represent probability distributions over random variables.
These models include Bayesian Networks and Markov Random Fields (MRFs).
The problem of identifying a variable assignment that has maximum probability is
called the Maximum Probability Explanation in Bayesian networks, or Maximum
A-Posteriori (MAP) in MRF. By a simple (− log) transformation, these problems
can be reduced to CFNs. Graphical Models can also be easily encoded as 0/1 Linear
Programming (01LP) problems, a standard language for Operations Research
(OR). Two encodings will be considered, namely the direct encoding, and the tuple
encoding which is based on the so-called local polytope [64, 104, 143].

4.7.1.1 Combinatorial Optimisation Languages

We briefly describe the combinatorial optimisation languages that will be used.
Each language has emanated from individual applications, with dedicated al-
gorithms for solving instances of each being developed over the decades. However,
it is possible to translate problems between these languages, something which will
be presented in the subsequent section.

[CFN] Cost Function Networks extend Constraint Networks by using non-
negative cost functions instead of constraints [120]. A CFN is a triple (X,W, k)
where X = {1, . . . , n} is a set of n discrete variables, W is a set of non-negative
functions, and k, a possibly infinite maximum cost. Each variable i ∈ X has
a finite domain Di of values that can be assigned to it. A function wS ∈ W ,
with scope S ⊆ X, is a function wS : DS 7→ {α ∈ N ∪ {k} : α ≤ k}, where
DS denotes the Cartesian product of all Di for i ∈ S. In CFNs, the cost of a
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complete assignment is the sum of all cost functions. A solution has cost less than
k. Therefore a cost of k denotes forbidden assignments, used in hard constraints.
A solution of minimum cost is sought.

[MRF] Markov Random Fields define a pair (X,Φ) where X = {1, . . . , n}
is a set of n random variables, and Φ is a set of potential functions. Each variable
i ∈ X has a finite domain Di of values that can be assigned to it. A potential
function φS ∈ Φ, with scope S ⊆ X, is a function φS : DS 7→ R ∪ {∞}. We
consider the MAP query that aims at finding a complete assignment of maximum
probability (or equivalently, minimum energy).

[WPMS] Weighted Partial MaxSAT problems are CFNs restricted to Bool-
ean domains and a language of weighted clauses [23]. An instance is defined as a
set of pairs 〈C,w〉 and an upper bound k. Each C is a clause and w is a number
in N ∪ {k}, the weight of clause C. A clause is a disjunction of literals, and a
literal is a Boolean variable or its negation. A clause with weight ≥ k is a hard
clause, otherwise it is soft. The objective is to find an assignment to the variables
appearing in the clauses that minimises the sum of the weights of all falsified
clauses, which should be of cost < k.

[01LP] A 0/1 Linear Program is defined by a linear objective function over
a set of 0/1 variables to minimise under a conjunction of linear equalities and
inequalities [162].

[CP] Constraint Programming problems are defined by a set of discrete
variables and a set of constraints. The aim is to minimise the value of a given
objective variable while satisfying all constraints [139].

4.7.2 Translations Between Formalisms

Table 4.6 summarises for each input formalism the different translations used to
produce instances in the corresponding output formalism.

Additive MRFs can be reduced to CFNs using a fixed decimal point representation
of energies which are scaled to integers and shifted to enforce non-negativity.
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Table 4.6: Summary of translations between graphical model formalisms.

In/Out MRF (uai) CFN (wcsp) WPMS
(wcnf) 01LP (lp) CP

(minizinc)

MRF - − log(prob) Through
CFN

Through
CFN

Through
CFN

CFN exp(−cost) - Direct/tuple
encoding

Direct/tuple
encoding

Extra cost
vars &

table cons.

WPMS Through
CFN

Direct
translation

Direct
encoding

only

Through
CFN

Extra cost
vars &
reified

logical or

CP Through
CFN

Decomposed
objective &

global
constraints

Through
CFN

Through
CFN -

Multiplicative MRFs can be transformed to additive MRFs using a simple (− log)
transform, and then to CFNs.

As weighted partial MaxSAT is a CFN with Boolean variables and a language of
clauses, thus a WPMS instance is already a CFN. For a CFN, we consider two
encodings to WPMS based on CSP to SAT encodings: the direct encoding [14],
and the tuple encoding introduced by Bacchus [17].

The 01LP encodings of CFNs are similar to those for WPMS, using the direct
and tuple encodings but with 0/1 variables. The additional expressivity of linear
constraints enables some simplifications.

Translating CFNs into crisp CSPs involves adding additional cost variables and
table constraints for each cost function. Likewise for translating WPMs to CSP
but using reified Boolean expressions. The converse translation of CP models
with a cost variable into a CFN (and then MRFs and WPMSs) that does not
use cost variables is a complex task requiring local cost functions to be identified,
starting from the objective variable, while removing intermediate cost variables.
Global constraints are decomposed into ternary cost functions in extension, which
limits the translation to instances with small domain sizes.

For a more detailed description of these translations, see [93].

In the portfolio evaluation to follow, we consider a subset of the benchmarks and
the solvers such that all the instances could be translated to all the solvers, i.e.
we exclude the WPMS and CP benchmarks, and the gecode solver due to the
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prohibitive size of the encoded problem. The information for these languages are
presented here for completeness, performance details outside the context of the
portfolio evaluation are available in [93].

4.7.3 Graphical Model Benchmarks

An extensive set of benchmarks representing optimisation problems from various
areas was collected from different sources including deterministic (CFN, MaxCSP,
WPMS), probabilistic (MRF, BN), as well as CP collections. Each collection
contains several categories of instances, each category corresponding to a specific
class of problems.

Together, these benchmark resources contain problems offering a large variety in
terms of size, maximum arity, domain size, and cost range. WPMS and CVPR
categories have the highest number of variables (close to 1 million variables for
WPMS/TimeTabling, half a million for CVPR/PhotoMontage and ColorSeg).
The WPMS benchmark also has the largest arities (a weighted clause on 580
variables appears in Haplotyping). For the other benchmarks, maximum arity
varies from 2 to 5. Graph connectivities are usually very small for MRF & CVPR
(often based on grid graphs where vertices represent pixels in images) and WPMS
benchmarks. MRF/ObjectDetection, CFN/ProteinDesign, MaxCSP/Langford,
and CVPR/Matching have complete graphs. MRF/ProteinFolding has the largest
domain size (503 values). Most CVPR instances have very large cost ranges (8-
digit precision), whereas MaxCSP instances contain only 0/1 costs. The emphasis
between optimisation and feasibility also varies a lot among the problems: almost
all deterministic GM categories, except MaxCSPs and CFN/CELAR, contain
forbidden (k) tuples in their cost functions. On the contrary, probabilistic GMs
usually have no forbidden tuples (except for MRF/Linkage and DBN).

Table 4.7 reports the number of instances per benchmark resource and its gzipped
size for the seven formulations. The uai format appears to be the most compact
to express local functions as tables. It relies on a complete ordered table of costs
which does not require describing tuples whereas the other formats explicitly
describe tuples associated to non-zero costs. The price to pay for this conciseness
is the inability of the uai format to represent large arity functions with a few
non-zero costs (such as large weighted clauses). As seen before, the tuple encoding
is usually larger than the direct one, except for MRF/CVPR lps where the local
polytope is a good choice since there are almost no zero costs. CP instances
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Table 4.7: Number of instances and their total compressed (gzipped) size per
format for each benchmark resource

Benchmark Nb. uai wcsp lp lp wcnf wcnf minizinc(direct) (tuple) (direct) (tuple)

MRF 319 187MB 475MB 2.4G 2.0GB 518MB 2.9GB 473MB
CVPR 1461 430MB 557MB 9.8GB 11GB 3.0GB 15GB N/A
CFN 281 43MB 122MB 300MB 3.5GB 389MB 5.7GB 69MB
MaxCSP 503 13MB 24MB 311MB 660MB 73MB 999MB 29MB
WPMS 427 N/A 387MB 433MB N/A 717MB N/A 631MB
CP 35 7.5MB 597MB 499MB 1.2GB 378MB 1.9GB 21KB

Total 3026 0.68GB 2.2GB 14GB 18GB 5GB 27GB 1.2GB

benefit from global constraints in the minizinc language, which are decomposed
in large tables in the other formats.

4.7.4 Experimental Setup

We consider state-of-the-art MRF solvers daoopt [129], winner of PIC 2011, and
toulbar2 version 0.9.8 [39, 45] (including Virtual Arc Consistency (VAC) as
preprocessing [34], dominance rule pruning [40], and hybrid best-first search [9]),
winner of MaxCSP 2008 and UAI 2010 & 2014 Evaluations, against WPMS maxhs
solver [36, 37], winner of crafted WPMS MaxSAT 2013, the CP solver gecode,
winner of MiniZinc Challenges 2012, and IBM-ILOG cplex 12.6.

All computations were performed on a single core of AMD Opteron 6176 at
2.3 GHz and 8 GB of RAM with a 1-hour CPU time limit.

4.7.5 Graphical Model Instance Features

In order to build a prediction model for the portfolio, a set of distinguishing
features is required. To describe graphical model instances, we consider the
following feature set:

1. the input file size,
2. the CPU time to read the instance,
3. an initial upper bound on the solution,
4. the time to compute the initial upper bound,
5. the number of variables,
6. the number of cost functions.
7. The ratio of unary,
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8. binary, and
9. ternary cost functions, i.e. the fraction of the total number of cost functions

of each arity.
10. The ratio of cost functions which have arity 4 or greater.
11. Finally, a number of statistics such as the mean, standard deviation, coeffi-

cient of variation, minimum, and maximum for domain size, and
12. cost function arity.

By no means does this list constitute a comprehensive list of possible features
for graphical models, nevertheless in initial evaluations these proved effective and
have the benefit of being relatively cheap to compute.

Table 4.8 presents the Gini importances [27] of the above features according to a
decision tree classifier aiming to predict the fastest solver. The Gini importance
measure is the accumulated sum of the reduction in Gini-impurity that the feature
contributed, i.e. its effectiveness at separating different instances. The most
important features are the ratio of binary cost functions, the minimum domain
size, and the value of the initial upper bound. These features enable instances
with differing fastest solvers to be separated, accounting for between 10-15% of
the reduction in the Gini-impurity. The next three most valuable features, namely
the time to read, the time to compute the initial upper bound, and the file size
may be viewed as a proxy for the size of the problem.

Table 4.8: Gini importances of graphical model features, truncated at 1%.

Feature Gini importance
1 Ratio of binary cost functions 14.445%
2 Minimum domain size 13.928%
3 Initial upper bound 10.988%
4 Time to read 9.211%
5 Time to compute upper bound 8.393%
6 File size 8.305%
7 Coefficient of variation of constraint arity 7.546%
8 Stadard deviation of constraint arity 7.149%
9 Mean constraint arity 6.555%
10 Number of variables 4.304%
11 Number of cost functions 3.875%
12 Mean domain size 1.634%
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Table 4.9: Summary of portfolio approaches sorted by decreasing number of
problems solved over the 2,564 instances.

Solver Solved time (sec.) Num. Num. Misclass. pen.
Mean Std. dev. solved best solved total time

VBS(6) 93.0 385.1 2,321
M5P regression 91.5 376.1 2,298
J48 classification 84.7 368.1 2,294
Random Forest 74.6 327.6 2,279
k-means clustering 66.9 301.4 2,259
toulbar2 105.2 408.3 2,220 1,863 224 28,000.1
cplextuple 55.4 316.6 1,852 27 3 10,345.3
daoopt 535.1 340.1 1,812 3 0 3,236.8
maxhstuple 140.0 414.5 1,551 3 1 8.4
maxhs 199.0 565.4 1,078 208 4 9,261.4
cplex 127.7 433.4 1,002 217 36 14,381.9

4.7.6 Offline Evaluation Results

Table 4.9 presents an offline evaluation of a simple portfolio approach based on
6 graphical model solvers listed in Section 4.7.4. We consider a subset of the
benchmarks and the solvers such that all the instances could be translated to all
the solvers, i.e. we exclude the WPMS and CP benchmarks, and the gecode
solver from our portfolios and evaluation. For a detailed breakdown of their
respective contributions overall see [93].

The portfolio is built using llama [105], with 10-fold stratified cross validation.
This involves splitting the dataset into 10-equally sized folds with an equal
distribution of the best solver across folds. For brevity, we present results only for
the best performing regression, classification, and clustering methods, plus the
Random Forest classifier. The Virtual Best Solver (VBS) corresponds to an oracle
deciding the best solver for each instance. The table lists the mean and standard
deviation of CPU time on the solved instances, the number of instances solved to
optimality in less than 1 hour, the number of times each solver was the fastest. In
addition, the misclassification penalty shows the contribution of each solver to the
portfolio, i.e. the number of instances that were not solved by any other solver,
and, where another one solved the instance, the additional CPU time needed by
the next best solver.

From these statistics alone, it is clear that each of the component solvers (except
maxhstuple) play a valuable contribution to the portfolio both in terms of being
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able to solve more instances, and reducing the overall CPU time needed. All
six solvers contribute to improving the performance of the virtual best solver.
Additionally, each of the portfolio methods are able to outperform the single best
solver and close most of the gap to the virtual best solver. The single best solver,
toulbar2, is quite dominant on its own, yet there are 101 additional instances
solved by the remaining solvers, as well as a significant amount of CPU-time to
be saved by faster solvers.

4.7.7 UAI 2014 Probabilistic Inference Competition –
Portfolio Entry

Based on the offline evaluation of Section 4.7.6, a portfolio was trained and
submitted to the UAI 2014 Inference Competition (MAP task). The source code
to train and run the portfolio is available online2. It was built from five constituent
solvers: i) toulbar2, ii) a version of toulbar2 taking a starting solution from
an initial run of the incop [124] local search solver, iii) the Message Passing Linear
Programming mplp2 solver [149, 150], iv) cplex using the direct encoding, and
v) cplex with the tuple encoding. These solvers were selected based on their
complementary performances in previous empirical evaluations.

The submitted portfolio was built using a random forest classifier from scikit-
learn [131] with default parameters except increasing the number of classifier trees
to 99, and using the feature set listed in Section 4.7.5. Additional classifiers such
as a pairwise random-forest and decision trees were also evaluated offline but, for
our purposes, were no better than a single random-forest.

4.7.7.1 Offline Evaluation

In order to gauge the respective performance and contributions of the component
solvers, we undertook an offline evaluation, considering the 2,564 benchmark
instances described in Section 4.7.3. Table 4.10 summarises the performance of
the portfolio and its component solvers.

Firstly, the virtual best solver is composed of all five solvers, with each solver
playing a non-negligible part. incop+toulbar2 is a highly effective combination,
solving more instances than any other solver, and having a mean solution time
faster than toulbar2 alone. It solved 23 instances which went unsolved by

2Source code for UAI-Proteus portfolio https://github.com/9thbit/uai-proteus
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any other solver, and improves on the next faster time of any other solve to a
cumulative 82,616 seconds. toulbar2 alone is a close second, solving a similar
number of instance to optimality, and notably being the fastest overall on 1,449
occasions. mplp2 pays little contribution to the portfolio in this scenario, only
helping to improve the virtual best cumulative CPU-time by 1,183 seconds.

Somewhat surprisingly, cplexdirect has a relatively poor performance overall,
solving the lowest number of instances to optimality, less than half that of the
best single solvers. However, it is able to solve 46 instances that went unsolved by
any other solver, twice that of the next-best unique contribution.

Finally, the fact that there is a total of 88 instances uniquely solved, and 163,000
seconds of CPU-time to be saved, shows strong potential for a portfolio. The
UAI’14 portfolio is able to exploit the majority of these complementary strengths,
solving the most instances overall and closing 56% of the gap between the best
single and the virtual best solvers.

4.7.7.2 Competition Results

The effectiveness of this multi-language portfolio was independently verified in
the UAI 2014 Inference Competition, achieving two first places in the MAP task
under both the 20 and 60 minute timeouts3.

The UAI 2014 Inference Competition used the cumulative solver rankings as the
overall evaluation metric. For each instance, solvers are ranked by their relative
performance, in terms of solution quality, and the respective ranks are added
across instances. We note that ties may occur in instance rankings, and lower is

Table 4.10: Offline evaluation of the UAI 2014 portfolio on 2,564 instances

Solver Solved time (s) Num. Num. Misclass. pen.
Mean Std. dev. solved best solved time (s)

VBS(5) 63.5 276.3 2,315
UAI’14 portfolio 71.8 312.4 2,276
incop+toulbar2 87.6 361.2 2,227 352 23 82,616.2
toulbar2 105.2 408.3 2,220 1,449 13 56,339.3
cplextuple 55.4 316.6 1,852 27 6 9,584.7
mplp2 66.2 424.6 1,537 198 0 1,183.3
cplexdirect 127.7 433.4 1,002 289 46 13,276.0

3See MAP/Proteus entry at http://www.hlt.utdallas.edu/∼vgogate/uai14-
competition/leaders.html.
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better in this metric. Figure 4.7 plots the cumulative ranking across instances for
the MAP category, to which the Proteus portfolio described in this section was
entered.

Three of the portfolio’s component solvers were submitted to the same competition
as independent entries. The two 01LP encodings performed extremely well
on certain instances but extremely poorly on the remaining4. Based on the
competition’s overall evaluation metric, the cumulative sum of a solver’s rank
on each instance, the 01LP encodings did not rank high overall but were the
top-ranked solvers in a number of cases. Likewise, the incop+toulbar2 solver
was the highest ranked in some cases but ranked in mid-field in many others5.

The UAI 2014 portfolio solver was highly successful in deciding when to run these
solvers or not, achieving first place overall. This independent empirical evaluation
supports the findings demonstrated in this dissertation, that significant speedups
can be achieved by exploiting various encodings to related languages.

4.8 Chapter Summary

This chapter presented a hierarchical portfolio, named Proteus. The portfolio was
first applied to the constraint satisfaction problem, considering a portfolio of CSP
solvers, as well as a number of encodings to SAT and subsequently a portfolio of
SAT solvers. Detailed empirical evidence across the phase-transition established
that it is not sufficient to consider the decisions of which representation or solver
to use in isolation, but that they must be considered in tandem.

The hierarchical nature of the portfolio makes it highly extensible with additional
encodings and solvers. Moreover, different models and features may be used to
make different decisions in the hierarchy, providing greater flexibility to exploit
additional knowledge such as features of the chosen representation. We empirically
demonstrated the complementary nature of such a portfolio and ultimately its
superior performance to that of a portfolio based on a single representation.

The relationship between CSP and SAT, in terms of empirical performance, was
studied in detail. Specifically, the faster paradigm is not necessarily distinguishable
by the instance category. We also provided some insight to highlight certain
characteristics of the instance which hint at the preferred paradigm.

4See MAP/MIP-UAI and MAP/MIP-T-UAI entries.
5See MAP/IncTb entry.
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Figure 4.7: Cumulative solver ranking of UAI 2014 MAP solvers. Figures courtesy
of http://www.hlt.utdallas.edu/∼vgogate/uai14-competition/
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Proteus was also applied to the domain of graphical models. A number of languages
were considered, employing several translations between them, and subsequently
a set of solvers. We demonstrated the complementary nature between languages
in this domain, and that it can be exploited by a portfolio to achieve significant
empirical gains. The effectiveness of such a portfolio was proven through a winning
entry to the UAI 2014 Inference Competition.
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Chapter 5

Runtime Distributions and Solver
Selection

Summary. This chapter studies the effect of runtime distributions on
state-of-the-art portfolio techniques. Underpinning many portfolios is
the use of machine learning to predict the performance of its component
solvers. Yet the fact that a randomised solver exhibits a runtime
distribution on a problem instance has not been considered in this
setting. We highlight a fundamental flaw in certain types of related
empirical evaluations and make recommendations for a more holistic
approach.

5.1 Introduction

Modern combinatorial search solvers contain many elements that are stochastic in
nature, such as randomised variable and value selection, tie-breaking in heuristics,
and random restarting [65, 66]. These elements add a degree of robustness
to the solver, by helping it to avoid worst-case behaviour. Nevertheless, this
stochasticity results in variations in runtime between repeated runs of the solver on
a problem instance, a fact which is often not considered. This chapter illustrates the
consequences that such assumptions can have when comparing solver performance.

In the field of solver portfolios [67, 106], which has consolidated and advanced
the state-of-the-art across a broad range of problem domains such as Constraint
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Programming (CP) [89, 128], Satisfiability (SAT) [99, 165], MaxSAT [12], Plan-
ning [144], and many more. The effectiveness of a portfolio relies on their ability
to identify the best solver for each individual instance. At its core, training a
portfolio involves collecting the runtime performance of each of its constituent
solvers on a collection of benchmark instances [67, 106]. From this, machine learn-
ing techniques are used to choose amongst the solvers based on instance features.
Existing work in this area has only considered a single sample of the solver runtime
for each instance, and makes the assumption that the behaviour is consistent over
repeated runs of the solver. However, as we will see, the performance of a solver
can vary by many orders of magnitude between repeated runs. This behaviour is
related to fat- and heavy-tailed distributions [66, 69, 71].

In a related field, automated solver configuration tools [11, 47, 95] have successfully
been able to tune solvers to surpass their default configuration. Their effective-
ness relies on obtaining consistent, representative performance data for a given
parameterisation on a sample of input instances. Crucially, these methods will not
typically make allowances for any stochastic behaviour in the underlying solvers.

Related to the above is the task of solver runtime prediction [96]. This focuses on
building an empirical hardness model to predict the performance of a solver based
on instance-specific features. Such models often form the basis of the portfolio
and configuration techniques previously mentioned.

However the fact that a solver can exhibit a runtime distribution that does
not have finite mean and/or variance has largely been ignored in each of these
fields. Instead the typical approach is to characterise the behaviour by taking a
single sample runtime. This chapter demonstrates that state-of-the-art runtime
prediction methods do not account for the stochastic aspect of solver runtime and,
as such, can have a substantial effect on their accuracy.

5.2 Background

This section discusses some studies of runtime distributions relevant to the current
chapter.

A large body of work, particularly in the CP and SAT communities, has studied
runtime variations when running deterministic backtracking algorithms on distri-
butions of random instances, but also by repeated runs of randomised backtracking
algorithms on a individual instances. The seminal work of Gomes et al. modelled
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such performance variations under heavy- and fat-tailed distributions [69, 71].
Unlike standard distributions such as normal, exponential, and Weibull that
have exponentially decreasing tails, the heavy- and fat-tailed distributions have a
considerable probability mass in their tails. Their tails follow a power-law decay,
namely tails of the Pareto–Lévy form:

P (X > x) ∼ Cx−α, x > 0

where 0 < α < 2 and C > 0 are constants. When 1 < α < 2, the distribution
has a finite mean but infinite variance. When α ≤ 1, the distribution has neither
a finite mean nor a finite variance. In practice, even though the search space
may be exponentially large, it is in fact finite. The effect of this disparity was
studied by Gomes through a comparison to a bounded heavy-tail distribution.
Such a distribution exhibited a very similar power-law decay over an extensive
portion of the tail, but exhibits a sudden drop-off further out in the tail [65]. They
concluded that one must sacrifice some small inaccuracies in calculations, such
as in the index of stability. Nevertheless, the fat- and heavy-tailed distributions
have proved valuable as models of solver performance in a number of studies. In
essence, these statistical models convey the non-negligible risk of extremely long
runs for the solver to solve the instance.

A number of techniques have been proposed as counter-measures to avoid such
worst-case behaviour. Randomised restarting randomly restarts the search after
a specified number of backtracking failures, or nodes, and has been shown to
eliminate heavy-tailed behaviour [69]. Restarting is now common-place in modern
state-of-the-art solvers [66]. Gomes et al. demonstrated that an exponential
distribution for the depth of inconsistent subtrees corresponded to the presence of
heavy-tailed behaviour in the overall search method [72].

The Handbook of Satisfiability dedicates a chapter to runtime variations in
complete solvers, modelling them as complex physical phenomenon [66]. Solver
performance is again described in terms of fat- and heavy-tailed distributions.
The chapter focuses on an analysis and prevention of extreme variations using
the framework of fat- and heavy-tailed distributions. However, no consideration
is given to less extreme runtime distributions, nor to their effect on empirical
comparisons.

While running one of the SAT solver competitions, Le Berre and Simon accidentally
observed the so called lisa syndrome, whereby dramatically different performances
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Comparisons

were observed for many solvers on two randomly shuffled versions of the same
instance [110]. Even an early version of the SATzilla portfolio solver was shown
to have given two majorly different runtimes on the same shuffled instance [110].

The papers on heavy-tailed runtime distributions referenced previously were
written during a time before randomised restarting was common and the fastest
complete-search algorithms for SAT were based on the DPLL method. Modern
SAT and CP solvers have come a long way since, with runtime distribution studies
contributing largely to advances [66]. In most cases, the aforementioned papers
also modified the algorithms to add an element of randomisation and a new
heuristic equivalence parameter to increase its frequency. The solvers considered
in this dissertation have not been modified in any way, current state-of-the-art
solvers are used. Nevertheless, it is evident that modern solvers have an element of
stochasticity built in, resulting in runtime distributions with significant variance.
Undoubtedly, it is time such studies are revisited given the considerable advances
in solver technology over the last decade.

5.3 Runtime Variation in Empirical Comparis-
ons

Much of the work mentioned in Section 5.2 studies the heavy-tailed behaviour of a
solver’s runtime, with the motivation of improve search algorithms. However, little
consideration has been given to the effect of such runtime variations in empirical
comparisons of solvers. The typical methodology for evaluating deterministic
solvers in empirical comparisons such as the the CSP, SAT, MAX-SAT competitions
is to take a single statistic of each solver’s runtime on a collection of benchmarks.
This may be a single sample of the runtime, or an average over multiple runs.
This section illustrates a deficiency in such a methodology, showing that a more
holistic view needs to be taken.

Figure 5.1 shows the runtime distribution of the top three solvers [8, 22, 127] on
two industrial instances from the 2014 SAT Competition. Vertical lines mark
the solver’s observed runtime during the competition, and the other lines plot
the survival function of the empirical runtime distribution over 100 runs. In Fig-
ure 5.1(a), the solver SWDiA5BY solved the instance faster than Lingeling during
the competition, however we can clearly deduce from the runtime distribution
that over repeated runs there is a larger probability of SWDiA5BY having a
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Figure 5.1: Log-log plots showing the empirical runtime distribution of two
instances from the application category at the 2014 SAT Competition. The three
solvers were the top-ranked from the competition. The vertical lines mark their
observed runtime during the competition.
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longer runtime than Lingeling. In this instance, the runtime distribution shows
a clear ranking of the solvers: Lingeling ≺ SWDiA5BY ≺ Riss BlackBox. In
Figure 5.1(b) the distinction between solvers is not as pronounced in the tail, but
we could compare these runtime distributions in several ways. Interestingly, in
the competition, SWDiA5BY is ranked as the fastest of the three solvers on this
instance, however when you consider its runtime distribution, it is most likely to
take the longest.

This exemplifies a critical flaw in this type of empirical evaluation that is often
performed when comparing solvers, only a single statistic, normally a single runtime
or an average, of the solver’s runtime is taken on each benchmark instance. The
current evaluation metric used in the SAT Competition purely considers the
number of instances solved within a specified timeout, and only uses runtimes
in the case of ties. However, the runtime distribution can often span over the
timeout value, thus affecting the number of instances solved. Section 5.5 will
demonstrate the ramifications of this, showing that these three solvers could have
been ranked in any permutation. However, first, Section 5.4 will present a more
holistic, statistically-founded methodology which is lacking in current comparisons.

5.4 Expected Performance

The performance of a solver on a set of benchmark instances can be modelled
as a random variable, doing so enables statistical bounds to be defined on the
possible outcomes. Let pi be the probability that instance i is solved within a
given timeout. pi will be simply 0.0 or 1.0 if a single sample runtime is taken, or a
continuous value if a solver is run multiple times on the same instance. Naturally,
the accuracy of pi is proportional to the number of repeated runs performed.

Next, let Xi be a discrete random variable that takes the value 1 if instance i is
solved within the timeout, and 0 otherwise. The expected value of Xi is pi:

E[Xi] = Pr(Xi = 0)× 0 + Pr(Xi = 1)× 1 ≡ pi . (5.1)
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We can define a bound on the variation of Xi by taking the critical value for
pi = 0.5; thus the standard deviation of Xi can be bounded by 1

2 :

σ2(Xi) = E[X2
i ] − (E[Xi])2

= E[Xi] − p2
i

= pi − p2
i

= pi(1− pi)
≤ 1

4 for any pi

(5.2)

σ(Xi) =
√
pi(1− pi) ≤

1
2 (5.3)

If the benchmark set contains k instances, then the success rate S, or ratio of
instances solved within the timeout, is simply the mean of the Xi variables over
the k instances. This allows the definition of the expected value of S as being the
mean over the pi values:

E[S] =
∑k
i=1 E[Xi]
k

=
∑k
i=1 pi
k

(5.4)

Finally, bounds on the variation and standard deviation of S can be defined:

σ2(S) = σ2
(∑k

i=1 Xi

k

)
= 1

k2

(∑k
i=1 σ

2(Xi)
)

= 1
k2

(∑k
i=1 pi(1− pi)

)
≤ k

4k2 = 1
4k

(5.5)

σ(S) ≤ 1
2
√
k

(5.6)

Importantly, this means that even over repeated runs, the variation in the total
number of instances solved is bounded by a function of the number of instances.
This fact should be of great consequence to the designers of empirical comparisons.

5.5 SAT Competition 2014

This section will project the analysis of Section 5.4 onto one annual empirical
solver comparison. Consider the top three solvers from the application category
at 2014 SAT Competition, namely, Lingeling [22], SWDiA5BY5by [127], and
Riss BlackBox [8] which solved 231, 228, and 226 of the 300 instances in this
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Table 5.1: Number of instances solved out of 300 by the top-3 solvers in the
application category of the 2014 SAT Competition along with the upper-bound
on the deviation from these values if the competition was rerun.

Solver #Solved S δ(S) 95% bounds
Lingeling 231 0.770 0.0289 214..248
SWDiA5BY5by 228 0.760 0.0289 211..245
Riss BlackBox 226 0.753 0.0289 209..243

category, respectively. Note that, like many other empirical competitions, only
a single sample of each solver’s runtime is taken during the evaluation and the
scoring metric is purely based on the number of instances solved within the
specified timeout. Using the equations of Section 5.4, we can postulate on possible
outcomes and give upper-bounds on the variation that could occur in such empirical
evaluations, this is presented in Table 5.1.

Given that the performance difference amongst the top-ranked solvers is so narrow,
it is not unreasonable to suspect that the outcome could have been different
if the competition was re-run. To assess the potential outcomes, each of the
three solvers above were re-run 100 times on each of the 300 instances from the
industrial/application category at the SAT Competition 2014. Since Lingeling
is the only one of these solvers to support the ability to pass a random seed as
input, we emulate the functionality across all solvers simply by shuffling the input
instance, a process which is described in detail in Section 5.6.2.1.

Performance data was collected on a cluster of Intel Xeon E5430 2.66Ghz processors
running CentOS 6. The solvers were limited to 1 hour and 2GB of RAM per
instance. All times are reported in CPU-time. Note that these experiments are
run on different hardware to that used in the SAT Competition and used a shorter
timeout due to the increased computational complexity. In total, 322 CPU-weeks
were used to record the data.

Considering the observed runtime distributions across 100 runs, together with
the analysis from Section 5.4, we can quantify more statistically well-founded
outcomes to the SAT Competition; these are presented in Table 5.2. Additionally,
we can derive 95% confidence bounds on the expected success rate if we assume
it to be normally distributed. Significantly, the 95% confidence bounds of the
solvers overlap, and as such, any permutation of the ordering could be possible.

Figure 5.2 augments these results by visualising the distribution of the total
number of instances solved by each solver across the runs. Ordering by probability
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Table 5.2: Expected success rates over multiple runs on 300 application instances
from the SAT Competition 2014.

Solver E[S] δ(S) 95% bounds
Lingeling 0.553 3.6 159..173
Riss BlackBox 0.530 3.3 152..165
SWDiA5BY5by 0.571 2.6 166..176

mass would rank the solvers SWDiA5BY ≺ Lingeling ≺ Riss BlackBox, consistent
with the ranking from Table 5.2. Interestingly, this is a different ranking to that of
the official competition. The histograms appear, at least visually, to be normally
distributed. Fitting a normal distribution, over 100 samples, gives confidence
values of 64%, 47%, and 19% for Lingeling, Riss BlackBox, and SWDiA5BY
respectively. The fitted distributions are overlaid in Figure 5.2. Studying these
distributions in more detail, possibly over a larger number of samples, would be
an interesting avenue for further investigation.
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Figure 5.2: A histogram of the number of instances solved across 100 runs on 300
instances from the application category of the SAT Competition 2014. The three
solvers are the top-ranked solvers from the competition.

108



5. Runtime Distributions and Solver Selection 5.5 SAT Competition 2014

Ta
bl
e
5.
3:

Su
m
m
ar
y
of

th
e
ru
nt
im

e
va
ria

tio
ns

of
th
re
e
so
lv
er
s
on

a
se
t
of

sa
m
pl
e
in
st
an

ce
s
fro

m
th
e
20
14

SA
T

C
om

pe
tit

io
n.

T
he

’C
om

p.’
co
lu
m
n
co
nt
ai
ns

th
e
ru
nt
im

e
ob

se
rv
ed

in
th
e
co
m
pe

tit
io
n,

A
U
C

is
th
e
ar
ea

un
de
r
th
e
su
rv
iv
al

fu
nc
tio

n
of

th
e
em

pi
ric

al
di
st
rib

ut
io
n.

Bo
ld

en
tr
ies

m
ar
k
in
st
an

ce
s
wh

er
e
th
er
e
is

at
lea

st
on

e
or
de
ro

fm
ag
ni
tu
de

be
tw

ee
n
th
e
be

st
&

wo
rs
to

bs
er
ve
d
ru
nt
im

e.

In
st
an

ce
N
am

e
So

lv
er

#
ru
ns

M
ed
ia
n

M
ea
n

St
d.
de
v

M
in

M
ax

C
om

p.
A
U
C

15
00

6-
23

-8
0.

cn
f

Li
ng

el
in

g
10

0
36

00
.0

35
09

.6
43

8.
3

63
.5

36
00

.0
50

00
.0

35
09

.6
15

00
6-
23
-8
0.
cn
f

R
iss

B
la
ck
B
ox

10
0

36
00
.0

36
00
.0

0.
0

36
00
.0

36
00
.0

50
00
.0

36
00
.0

15
00
6-
23
-8
0.
cn
f

SW
D
iA

5B
Y

10
0

36
00
.0

36
00
.0

0.
0

36
00
.0

36
00
.0

50
00
.0

36
00
.0

21
00

8-
80

-4
.c

nf
Li

ng
el

in
g

10
0

12
74

.4
17

52
.1

12
64

.6
14

2.
0

36
00

.0
62

1.
0

17
52

.5
21

00
8-

80
-4

.c
nf

R
is

s
B

la
ck

B
ox

10
0

80
8.

8
81

8.
9

38
2.

3
85

.3
36

00
.0

79
4.

0
81

9.
4

21
00

8-
80

-4
.c

nf
SW

D
iA

5B
Y

10
0

20
9.

7
20

2.
7

78
.2

10
.5

35
9.

6
85

.4
20

3.
2

53
6s

16
8-

op
t.

cn
f

Li
ng

el
in

g
10

0
26

0.
5

47
3.

4
62

2.
6

26
.6

36
00

.0
37

0.
8

47
3.

9
53

6s
16
8-
op

t.c
nf

R
iss

B
la
ck
B
ox

10
0

13
.1

14
.2

4.
5

7.
4

36
.8

17
.5

14
.6

53
6s
16
8-
op

t.c
nf

SW
D
iA

5B
Y

10
0

83
.9

87
.0

21
.8

51
.9

16
2.
5

56
.7

87
.4

11
7

U
C
G
-1
5-
10
p0

.c
nf

Li
ng

el
in
g

10
0

55
6.
7

56
2.
9

75
.0

40
4.
6

86
3.
9

26
3.
2

56
3.
4

11
7

U
C
G
-1
5-
10
p0

.c
nf

R
iss

B
la
ck
B
ox

10
0

21
17
.1

21
65
.9

51
0.
9

12
90
.1

36
00
.0

47
8.
4

21
66
.5

11
7

U
C
G
-1
5-
10
p0

.c
nf

SW
D
iA

5B
Y

10
0

13
85
.2

14
45
.4

40
2.
9

75
7.
4

36
00
.0

20
2.
4

14
45
.9

25
8

q_
qu

er
y_

3_
..
.l
i.s
at
.c
nf

Li
ng

el
in
g

10
0

30
7.
8

37
9.
6

16
5.
1

22
6.
7

10
71
.9

14
8.
6

38
0.
0

25
8

q_
qu

er
y_

3_
..
.l
i.s
at
.c
nf

R
iss

B
la
ck
B
ox

10
0

26
8.
7

30
8.
5

78
.5

19
8.
2

51
5.
1

71
.5

30
8.
9

25
8

q_
qu

er
y_

3_
..

.l
i.s

at
.c

nf
SW

D
iA

5B
Y

10
0

42
2.

3
50

7.
9

32
0.

6
14

1.
3

14
87

.7
52

.9
50

8.
4

26
5

rp
oc
_
xi
ts
_
15
_
SA

T
.c
nf

Li
ng

el
in
g

10
0

7.
3

5.
5

2.
9

1.
6

11
.9

1.
9

6.
0

26
5

rp
oc

_
xi

ts
_

15
_

SA
T

.c
nf

R
is

s
B

la
ck

B
ox

10
0

12
.1

59
.7

35
9.

1
4.

9
36

00
.0

3.
6

60
.2

26
5

rp
oc
_
xi
ts
_
15
_
SA

T
.c
nf

SW
D
iA

5B
Y

10
0

5.
3

5.
8

2.
0

2.
1

11
.7

1.
1

6.
3

27
1

st
ab

le
-4

00
..

.1
40

01
1.

cn
f

Li
ng

el
in

g
10

0
36

00
.0

34
58

.7
56

8.
3

12
5.

6
36

00
.0

50
00

.0
34

58
.7

27
1

st
ab

le
-4

00
..

.1
40

01
1.

cn
f

R
is

s
B

la
ck

B
ox

10
0

36
00

.0
34

82
.0

53
2.

4
13

3.
6

36
00

.0
50

00
.0

34
82

.0
27
1

st
ab

le
-4

00
..

.1
40

01
1.

cn
f

SW
D

iA
5B

Y
10

0
36

00
.0

25
77

.2
13

46
.1

78
.3

36
00

.0
50

00
.0

25
77

.4

28
7

vm
pc

_
32

.r
e.

..
5-

19
19

.c
nf

Li
ng

el
in

g
10

0
36

00
.0

29
29

.7
11

13
.6

19
.3

36
00

.0
50

00
.0

29
29

.8
28
7

vm
pc

_
32

.r
e.

..
5-

19
19

.c
nf

R
is

s
B

la
ck

B
ox

10
0

14
45

.9
18

31
.9

13
65

.0
17

.2
36

00
.0

19
31

.7
18

32
.2

28
7

vm
pc

_
32

.r
e.

..
5-

19
19

.c
nf

SW
D

iA
5B

Y
10

0
25

33
.8

21
87

.1
14

88
.7

3.
1

36
00

.0
14

9.
5

21
87

.4

109



5. Runtime Distributions and Solver
Selection 5.6 State-of-the-art Runtime Prediction

Table 5.3 presents some more detailed statistics about the performance of the three
solvers, only a sample of the 300 instances is presented due to space constraints.
We list the runtime which was observed in the SAT Competition under the ’Comp.’
column. Notice that for numerous instances where a solver recorded a timeout
in the SAT Competition we also observe many timeouts across the runs, but
critically, the solver may also solve the instance very quickly.

We observe dramatic variations in runtime, often more than three orders of
magnitude between a solver’s best and worse time on an instance. Note that three
orders of magnitude covers the entire range of the specified time limit, thus, larger
variations might have been possible had a longer timeout been used. In numerous
cases, on a single instance, a solver will timeout on a large proportion of the runs
but conversely may solve the instance very quickly in other cases. This could
be the critical difference between solved or unsolved in the competition setting.
Given that the difference amongst the top ranked solvers in the SAT Competitions
is typically only a handful of instances, this constitutes a significant observation.

5.6 State-of-the-art Runtime Prediction

The ability to predict the runtime of a solver is interesting from a number of
perspectives. Solver designers can make use of it as an informative analytical
tool and it frequently serves as a central component in solver portfolios and
configuration tools. Often, these tools base their decisions on underlying runtime
prediction models. The prediction target is the runtime of the solver on an
instance, which has conventionally been collected by recording a single statistic
from the runtime distribution [96]. However this approach is flawed, since in
reality we are dealing with highly variable runtime distribution, a single value is
simply not representative. This section highlights the detrimental effects that this
fundamental flaw can have on state-of-the-art runtime prediction methods.

5.6.1 Log Transformation

The typical practice when predicting solver runtime is to log-transform the runtime
in seconds [96]. Error calculations on this, like root-mean-squared error and mean
absolute error, will over-penalise runtimes of less than one second. Differences
between runtimes of 0.01 seconds and 0.1 seconds are valued to the same extent
as the difference between 10 and 100 seconds. These are all an order of magnitude
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different, but we argue that the first order of magnitude for runtimes should range
from [0..9) seconds, the second from [9..99), and so on. Thus, the runtimes should
be transformed as log(1 + runtime). This additionally eliminates the need to
censor runtimes of zero seconds which would have been needed when performing
the log transformation. For the predictions in this section we will use the adjusted
log-transformed runtime, log10(1 + runtime).

5.6.2 Experimental Setup

The benchmark set comprises 1676 industrial instances from 9 years of the
SAT Competitions, Races, and Challenges between 2002 and 2011. We use
MiniSat 2.0 [43] as the solver with a timeout of 1 hour and a limit of 2GB RAM.
Performance data was collected on a cluster of Intel Xeon E5430 Processors
(2.66GHz) running CentOS 6. A total of 315 weeks of CPU-time was consumed
to accumulate this performance data.1 Table 5.4 presents a sample summary of
the runtimes.

5.6.2.1 Instance Shuffling

Two intuitive options that can be used to affect the stochastic decisions made by
the solver are to pass a seed for the random number generator, or to shuffle the
input instance. Both options will lead to different search trees being explored by
the solver. Only a limited number of solvers support the ability to pass a random
seed as input. Therefore the experiments in this chapter opt to pass a randomly
shuffled version of the instance to all solvers for consistency.

Shuffling a SAT instance requires randomly renaming the variables, shuffling their
order in each clause, and reordering the clauses. This preserves the same structure
and semantics of the original instance but may result in the algorithm taking
different paths in the solving process across runs. This is because solvers often
resort to lexicographically ordering variables and clauses. Note that it is common
in the SAT Competition to re-use instances from previous years by performing
this type of shuffling [110].

1The dataset is available at http://ucc.insight-centre.org/bhurley/
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Table 5.4: Samples of the runtime variations of MiniSat on a set of sample
industrial category instances from the SAT Competitions, Races, and Challenges
between 2002 and 2011. The AIJ’14 column contains the runtime observed in [96],
AUC is the area under the survival function for the empirical distribution.

Instance Name #runs Median Mean Std.dev Min Max AIJ’14 AUC

dated-10-13-s 100 82.0 337.4 675.3 7.5 3600.0 12.6 337.9
fvp-unsat 100 94.4 1294.5 1642.6 8.0 3600.0 3600.0 1294.8
gri. . . s05-34 100 3600.0 2963.2 1189.9 9.6 3600.0 3600.0 2963.3
gss-23-s100 100 3600.0 3542.7 310.8 1243.9 3600.0 3600.0 3542.7
k2fix_gr. . . w8 100 3600.0 3394.9 818.5 5.6 3600.0 3600.0 3394.9
mizh-md5-47-4 100 200.3 283.3 254.0 18.8 1458.7 595.2 283.8
q_que. . . coli 100 609.4 763.3 522.6 129.6 2236.2 139.0 763.8
rbc. . . SAT 100 3.7 50.6 373.1 1.1 3600.0 1.9 51.1
shuff. . . t04-461 100 6.2 1455.6 1642.4 3.3 3600.0 6.1 1456.0
uts. . . unknown 100 234.7 276.4 173.0 109.0 1546.4 228.9 276.9
vel. . . at-3.0-b18 100 34.9 65.3 69.7 16.4 372.3 6.2 65.8
vel. . . sat-1.0-03 100 127.4 153.6 92.6 52.9 628.4 71.7 154.1
vmpc_31 100 2179.5 2080.3 1395.9 2.9 3600.0 3600.0 2080.7
vmpc_33 100 2591.9 2244.0 1311.2 15.6 3600.0 305.8 2244.3

5.6.3 Prediction Fragility

To perform the runtime prediction we use a random forest with the same parameters
as [96], that is using 10 regression trees, using half of the variables as split variables
at each node (perc = 0.5), and a maximum of 5 data-points in leaf nodes (nmin = 5).
This configuration was shown to be the most accurate for runtime prediction
in comparison to ridge regression, neural networks, Gaussian processes, and
individual regression trees. The random forest may choose from a set of 138
SAT features [166] which have been used for runtime prediction and many award
winning portfolios. As per [96] and other work on runtime prediction, we do not
treat runs that timeout with any speciality, they are considered to just have taken
the timeout value and not penalised in any particular way. We use a standard
randomised 10-fold cross-validation, where the dataset is split in 10 folds. Each of
the folds takes a turn as the test set, with a model being built from the remaining
9 folds of training data. We use a standard error metric for regression, namely,
the root-mean-squared error (RMSE) from the predicted value to the true test
value.

Some simple statistical values are extracted from the runtime distribution of each
instance in order to model a range of scenarios that may arise using the current
methodology, where it is possible for the models to be trained on completely
different runtime samples to that considered in testing. Table 5.5 presents a set
of these scenarios, highlighting the fragility in current state-of-the-art runtime
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Table 5.5: Mean RMSE on log(1 + runtime) predictions across 10-fold cross-
validation, lower is better. Comparison of training and testing on different samples
of each instance’s observed runtimes. ’sample’ is simply a single random sample
from the observed runtimes for an instance. For each column, values in bold
represent the best mean RMSE, italicised values are statistically significantly
different from this best.

Test
sample min median mean max

Tr
ai
n

sample 0.698 0.812 0.683 0.659 0.723
min 0.812 0.611 0.816 0.832 0.987

median 0.675 0.820 0.659 0.647 0.725
mean 0.681 0.848 0.667 0.637 0.700
max 0.782 1.010 0.755 0.702 0.663

prediction methods. Columns vary the target metric and rows vary the training
sample. Within each column, bold values highlight the best mean RMSE, values
in italics are those which produced predictions statistically significantly different
(95% confidence) from this best.

The closest setting to typical methodology is shown in the sample entries, this
simply uses a random sample of the observed runtimes. The predictions produced
by these models are reasonable but are not the most accurate. Unsurprisingly,
the most accurate predictions typically arise when we are using the same sample
statistic for both training and testing. For example, when aiming to predict the
median runtime it is best to have used the median runtime of the training set
instances, likewise for predicting the minimum and maximum runtimes.

Conversely, another setting, albeit the most extreme, is if the training data consists
of the minimum value from each distribution and we are attempting to predict
the maximum runtime. Likewise for predicting the minimum runtime where the
maximum is used as training. These settings give the largest error in predictions,
with RMSE of 1.0.

It is clear, and should seem natural, that the origin of the training sample has a
considerable impact on the outcome of the models, but surprisingly, this is not
something that is considered in existing methodology.
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5.7 Runtime Variation Analysis

This section presents some further analysis of the runtime variations observed in
this chapter. Figure 5.3 summarises the runtime variation across the 1676 bench-
mark instances catalogued in Section 5.6.2. The figure presents a histogram of
the standard deviation of the runtime, on a log scale, for MiniSat across repeated
runs.
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Figure 5.3: Histogram of runtime standard deviations.

Firstly, 268 instances have a standard deviation of less than 0.1 second. These
are instances for which the solver produced a highly consistent behaviour across
repeated runs. Additionally, 292 instances were not solved within the specified
timeout across any run and are excluded from this figure. Nevertheless, throughout
the centre of the plot, we can see that many instances have large deviations, often
up to 3 orders of magnitude. Furthermore, note that these figure are right-censored
due to the imposed timeout of 1 hour. Thus, in certain cases these under-represent
the true standard deviation which would be measured if the runs had been run to
completion.

Figure 5.4 divides this analysis between satisfiable and unsatisfiable instances.
647 (resp. 737) of the 1676 instances were satisfiable (resp. unsatisfaible), with
an additional 292 unsolved. Of the 268 instances with a standard deviation less
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(a) Satisfiable instances.
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(b) Unsatisfiable instances.

Figure 5.4: Histogram of runtime standard deviations, broken out by satisfiability.
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than 0.1 second, 204 are satisfiable compared to just 64 unsatisfiable instances.
Additionally, there are few satisfiable instances which elicit a log standard deviation
in the range −0.5 to 1.5. The runtime of satisfiable instances tends to either
have a very narrow, consistent behaviour, or have a very large standard deviation;
whereas unsatisfiable instances tend to have a more even mixture of small to large
deviations. This is consistent with the fact that a heavy-tailed distribution is
never elicited by a solver from unsatisfiable instances. We note that this analysis
may be different if a different solver is used, for example one which is tuned for
unsatisfiable instances.

Instance Category Analysis

This section illustrates and compares the runtime variations across multiple solvers
by grouping instances into their respective categories. We demonstrate that the
existence of large runtime variations between repeated runs is not limited to a
small set of instances or specific types of instances, rather it occurs across many
categories. Additionally, the behaviour is not limited to a single solver, but is
evident in each of the solvers we considered.

Figure 5.5 plots a comparison of the runtimes among the three solvers of the dataset
presented in Section 5.5, where each instance is grouped into its respective category.
The boxplots illustrate the range of observed runtimes. The red horizontal line
marks the median value, the central box ranges from the first to the third quartile,
and its whiskers extend to the fifth and ninety-fifth percentiles.

Firstly, note that the majority of the runtimes are towards the higher end of the
scale, closer to the timeout. This may be due, in part, to the selection mechanism
used by competition organisers to select instances that are sufficiently hard, but
not too hard such that no solver is able to solve it. In nearly all categories, every
solver encounters timeouts on many of the runs.

For some instance categories the range of runtimes is very narrow, for example
fpga-routing and hardware-bmc, but these categories constitute a small number of
instances. In other cases, the typical behaviour is that the majority of a solver’s
runtimes span one order of magnitude. For the larger categories of instances,
the runtimes consistently range across three orders of magnitude for each solver.
For example, with the argumentaion instances, Lingeling’s performance spans a
relatively tighter range than both Riss BlackBox and SWDiA5BY. Lingeling’s
median runtime is a timeout on these instances but it does also solve the instances
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Figure 5.5: Boxplot comparison of the runtime variations between solvers on
300 SAT instances. Instances are grouped by their category, values in brackets
correspond to the number of instances in the category, each of which has been
run 100 times.
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in a matter of seconds on rare occasions. This is not the case for Riss BlackBox
nor SWDiA5BY as their median runtime is much lower, with their second and
third quartiles spanning a larger range.

In summary, the existence of large runtime variations between repeated runs is not
limited to a small set of instances or specific types of instances, rather it occurs
across many categories. Additionally, the behaviour is not limited to a single
solver, but is evident in each of the solvers we considered. In particular, note that
these are all of the industrial instances from the most recent SAT Competition,
using three state-of-the-art solvers which have not been modified in any way.
Thus, it seems prudent that a more holistic view should be taken in empirical
evaluations of solvers, portfolios, configuration, and related areas.

5.8 Related Work

A large body of work in the CSP and SAT communities has studied runtime
variations when running deterministic backtracking algorithms on distributions
of random instances, but also by repeated runs of randomised backtracking
algorithms on individual instances. The Handbook of Satisfiability dedicates a
chapter [66] to runtime variations in complete solvers, modelling them as complex
physical phenomena. The chapter focuses on an analysis and prevention of extreme
variations using the framework of fat- and heavy-tailed distributions.

Gomes et al. first presented the heavy- and fat-tailed phenomenon in solver
runtime [71]. That paper was written before randomised restarting was common
and the fastest complete-search solvers for SAT were based on the DPLL method;
modern SAT solvers have come a long way since. The paper also modified the
algorithms to add an element of randomisation and a new heuristic equivalence
parameter to increase the frequency of random tie-breaking. Our work has not
modified the solvers in any way, we use the current state-of-the-art performers.
Nevertheless, it is evident that modern solvers have an element of stochasticity
built in, resulting in runtime distributions with significant variance.

Nikolić proposed a methodology for statistically comparing two solvers given obser-
vations from their runtime distributions [126]. This chapter provides substantial
additional evidence to support the need for such comparisons. Van Gelder pro-
poses a new careful ranking method for competitions which addresses a number of
issues with existing ranking methods, but the system is still based on individual
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runtime samples [156].

Hutter et al. presents the state-of-the-art for solver runtime prediction, evaluating
the effectiveness of a number of machine learning methods for runtime prediction
across a wide range of SAT, MIP, and TSP benchmarks [96]. Our comparison in
Section 5.6 does not compare different models on their accuracy, but does question
a fundamental assumption being made about the underlying runtime behaviour.

Fawcett et al. tackles runtime predictions for state-of-the-art planners where they
observe substantial runtime variations of planners across different domains [46].
The authors propose new feature sets which improve the accuracy of predictions.
However the work does not consider runtime variations on individual instances,
only a single sample runtime is taken. Leyton-Brown et al. identified features of
combinatorial auction problems to predict the runtime of CPLEX on different
distributions of instances, but only one sample runtime is taken despite elements
of randomness in the solver [112].

5.9 Conclusions and Discussion

This chapter questions a fundamental assumption that is made about the runtime
behaviour of complete search solvers. Modern solvers usually have some form of in-
built randomness. As a consequence their runtime can exhibit significant variation,
sometimes by orders of magnitudes on individual instances. We have shown that
the outcome of empirical comparisons such as the SAT Competitions can fluctuate
simply by re-running the experiments, and we provide statistical bounds on such
variations, under some assumptions. We also project the fragility of state-of-
the-art runtime prediction methods to these runtime distributions, showing that
it is insufficient to take a single sample of the runtime in the current practice.
Such observations have broad reaching implications for empirical comparisons in a
number of fields, solver analysis, portfolios, automated configuration, and runtime
prediction.

There may not be a single solution that should be applied to overcome this
phenomenon, but rather a context dependant approach should be taken. For
empirical evaluations, solvers should be compared based on their runtime distri-
butions. Statistical tests such as the Kolmogorov-–Smirnov or Chi-squared tests
seem applicable. Of course, this increases the computational cost of evaluating
solvers but gives the advantage of more authoritative and robust conclusions.
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One related question concerns the appropriate number of runtime samples required
to obtain representative results. For the fields of runtime prediction, solver
portfolios, and automated configurators, there remain a great number of open
questions. It is simply insufficient to rely on a single statistic of a solver’s runtime as
ground-truth. Alternatively we should consider predicting statistics or parameters
of the runtime distribution. Depending on the application we may attempt to
maximise the probability of solving an instance within a certain time, we may
prefer solvers that give more consistent behaviour, or conversely a solver which
varies dramatically in the hope that we might get lucky. Additionally, in a parallel
setting this would have knock-on effects. There are many avenues for future study
in these areas.
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Chapter 6

Balancing Solution Time and
Energy Consumption

Summary. With the proliferation of cloud computing, it is natural to
think about a solver which can scale up by launching searches in parallel
on thousands of machines (or cores). However, this could result in
consuming a lot of wasted energy. Moreover, not every instance would
require thousands of machines. The challenge is to resolve the tradeoff
between solution time and energy consumption optimally for a given
problem instance. We analyse the impact of the number of machines
(or cores) on not only solution time but also on energy consumption.
We highlight that although solution time always drops as the number of
machines increases, the relationship between the number of machines
and energy consumption is more complicated. In many cases, the
optimal energy consumption may be achieved by a middle ground, and
we analyse this relationship in detail. The tradeoff between solution
time and energy consumption is studied further, showing that the energy
consumption of a solver can be reduced drastically if we increase the
solution time marginally. We also develop a prediction model using
machine learning, demonstrating that such insights can be exploited to
achieve faster solutions times in a more energy efficient manner.
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6.1 Motivation

Energy consumption for cloud providers and data centres is a growing concern,
being one of the largest consumers of electricity [103]. Recently, practitioners in
the areas of Constraint Satisfaction (CSP) [139], Boolean satisfiability (SAT) [23],
Integer Programming (IP) [162], and numerous other combinatorial search frame-
works have turned to the cloud to solve larger and more challenging combinatorial
problems efficiently. Many industrial solvers such as IBM ILOG CPLEX and
Gurobi already exploit the elasticity of the cloud. These solvers can run on many
machines in parallel to solve difficult combinatorial problems. The traditional view
of parallel computing has focused on minimising execution time, in which case
one might simply launch the solver on all the available machines. An issue arises
in that one does not know a-priori the optimal number of machines to be used in
parallel, nor has the energy consumption of such a decision been considered. In
the context of solving combinatorial problems in the cloud, solution time alone
cannot be viewed as a single objective. Instead, one needs to assess the tradeoff
in solution time against energy consumption. In our context, the total energy
consumption is approximated by the solution time multiplied by the number of
searches done in parallel (number of cores).

In general, solving combinatorial search problems is an NP-complete task, typ-
ically solved using a combination of search and inference to prune the search
space. Choices for parameters such as the search heuristics, restarting policy, and
even random seed can affect the size of the search space and subsequently the
time it takes to find a solution [66]. Variable and value selection heuristics have
elements that are stochastic in nature, so the slightest difference over repeated
runs can magnify performance variations [86]. Thus, as seen in Chapter 5, mod-
ern combinatorial search solvers often exhibit a very high variation in solution
time. Such variations can be modelled by heavy- or fat-tailed distributions [71].
Intuitively, these model a non-negligible probability of a solver taking exponential
time. However, the runtime distributions can be exploited, either by randomised
restarting [66], or parallelisation [81]. An instance for which the runtime is variable
may be solved more-effectively if several searches are performed in parallel using
different seeds, with search terminating as soon one finds a solution.

In this respect, we exploit the runtime distribution through parallel searches and
study its impact, not only on solution time but also on energy consumption as the
number of CPU-cores (or machines) is increased. We show that the relationship
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between the number of cores and the total energy consumption is not a simple
linear relationship. The natural intuition is to assume that as the number of
machines is increased, energy increases correspondingly. In fact, in many cases
the minimal energy consumption may be achieved by a using a larger number
of machines, with the increased likelihood of finding a solution faster meaning
the search can be terminated sooner across all machines, resulting in a reduced
energy consumption overall. Secondly, we analyse the trade-off between the
solution time and the total energy consumption. We motivate the need for a
multi-objective optimisation problem to decide the number of (virtual) machines
offered by cloud providers in order to strike a balance between solution time and
energy consumption. Finally, we demonstrate that it is possible to use machine
learning to predict the number of machines (or number cores) that are required
to meet a desired level of balance between energy consumption and solution time.

6.2 Solution Time, Number of Cores, Energy

This section analyses the behaviour of the solution time and the total energy
with respect to the number of cores. Without loss of generality we assume each
physical machine is associated with one CPU-core.

6.2.1 Empirical Setup

We reuse the benchmark set from Chapter 5, comprised of 1676 industrial instances
of combinatorial problems from 9 years of the SAT Competitions, Races, and
Challenges between 2002 and 2011 [2]. Each instance was run using MiniSat 2.0 [43]
as the solver with 100 different seeds, a timeout of 1 hour CPU-time for each run,
and a limit of 2GB RAM. Performance data was collected on a cluster of Intel
Xeon E5430 Processors (2.66GHz) running CentOS 6. A total of 315 weeks of
CPU-time was consumed to accumulate this performance data. Instances that
were not solved within the time limit across any run, or were solved in under 1
second across every run were excluded, leaving a total of 902 challenging industrial
instances.

The solution time for a instance, when running on k cores in parallel, is equal to
the minimum of k parallel runs, since all other runs will be terminated as soon as
one finds a solution. If the precise distribution of the runtime is known, then we
may use order statistics to model the expected time of running k parallel searches.
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However, since many of the instances considered did not fit any well known
distribution with high-confidence, we will sample from the empirical distribution
to compute this value. By repeatedly taking a minimum of k sample runtimes we
get an approximation of the expected runtime for k parallel searches. By doing
this over 100,000 iterations we should achieve an accurate approximation of the
true expected runtime.

6.2.2 Solution Time versus Number of Cores

Figure 6.1 illustrates how the expected solution time changes as the number
of cores (number of parallel searches) increases. Only a sample of the most
challenging instance are presented, but they are representative of the complete
data set. Naturally, solving the same instance many times in parallel by using more
cores reduces the solution time. It is interesting to see that in some cases multiple
orders of magnitude speedup can be achieved by only a handful of additional
cores. The solution time for any given problem instance is always non-increasing
with respect to the number of cores.

Figure 6.1: Illustration of solution time versus the number of cores for some
sample instances. The minimal solution for each instance is marked.
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Figure 6.2: Illustration of the total energy versus the number of cores in log-scale
for some sample instances. The minimal energy point is marked for each instance.

6.2.3 Energy versus Number of Cores

Figure 6.2 illustrates the energy consumed with respect to the number of cores for
the same set of instances as used in Figure 6.1. Let E[sk] denotes the expected
solution time using k cores. The energy consumed using k cores is going to be
proportional to the expected solution time with respect to k cores multiplied by k,
i.e. E[sk]× k. Recall that each point in the figure is the mean of 100,000 samples.

Although the expected solution time is non-increasing with respect to number
of cores, the product of the number of cores and the expected time results in a
number of interesting profiles. Sometimes the energy cost initially decreases as the
number of cores increases, reaches a minima, and steadily climbs again. In other
cases, the energy cost initially increases with respect to the number of cores and
thereafter it declines as the number of cores increases further. Other interesting
profiles are also visible in the figure. Evidently, there is no consistent behaviour
between instances which achieves the minimal energy cost. The relationship
between the total energy consumed with respect to the number of cores is more
complicated as evident by a variety of behaviours shown in the figure.
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The total energy consumed for solving an instance depends on the runtime
distribution. For example, if in certain cases the runtime is uniform, showing
no variation in runtime between different runs, then the minimal energy cost is
achieved by sticking to a single core, adding any more only serves to increase the
energy cost. In contrast, if the distribution is heavy-tailed and if the expected
solution time using 100 cores is 100 times less than the running time using 1 core
for a given instance then the most energy efficient manner is by running it on 100
cores. Additionally, a middle grounds also exist, where the most energy efficient
solution is somewhere between 1 and 100 cores. Thus, the energy consumed is
minimal using k cores if E[sk]× k is less than E[s′k]× k′ for any k′ ≥ 1.

6.2.4 Expected Solution Time versus Energy

Figure 6.3 plots the trade-off between the expected solution time and the energy
consumption for a sample of instances. It shows that the energy consumption curve
with respect to solution time can be significantly different for different problem
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Figure 6.3: Illustration of solution time versus total energy in log-scale for some
sample instances. The plus symbol marks the minimal energy for each instance.
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instances. The benefit in terms of energy consumption from k independent parallel
searches is determined by the nature of the full distribution of runtimes. We
remark that if the expected solution time is minimum using k cores then the total
energy curve would be linear with respect to the number of cores beyond the point
k. In other words, the total energy required by k′ where k′ > k would always be
more than that required by k cores. Thus, if the expected time stops improving
beyond a given number of cores k, then any solution obtained by using k′ cores
where k′ > k would not be part of the pareto-frontier. Consequently it will be
dominated by at least one solution obtained using k′′ cores where k′′ ≤ k.

6.2.5 Solution Time versus Energy Tradeoff

Figure 6.4 presents the trade-off between the expected solution time and energy
consumption, aggregated over all instances. The figure depicts that on average by
increasing the solution time by just 10%, the energy consumption can be reduced
by 20%, and by increasing the solution time by 20%, the total energy can be
reduced by 40%. Thus, depending on the preferred bound on the expected solution
time, it might be possible to select a number of cores that minimises the energy
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Figure 6.4: Illustration of trade off between solution time and the best energy
achievable over all instances.
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consumption on a per-instance level. More precisely, the objective would be to
predict a number of cores that can minimise the energy consumption and solve a
given problem instance within a given target solution time.

6.3 Predicting the Optimal Number of Cores

The previous sections have presented evidence that there is no consistent number
of cores to run in order to achieve the desired level of balance between energy
consumption and solution time. This section demonstrates that a machine learning
algorithm can be built to exploit this knowledge and make intelligent decisions on
an instance specific basis. In particular, we will develop a model for predicting
the number of cores for minimising energy consumption.

To develop a prediction model, we employ the same state of the art collection of
138 features [166], that were used in Chapters 4 and 5. These have proved highly-
effective in the areas of runtime prediction [86, 96] and solver portfolios [99, 165].
Random forest regression is used as the machine learning model, with default
parameters except for setting the number of estimator trees to 100. This model
has been shown to be highly effective, robust, and is capable of modelling highly
non-linear relations. The model is built using stratified 10-fold randomised
cross-validation. This splits the dataset into 10 equally sized folds with an even
distribution of the label in each. One fold is set aside for testing with the remaining
folds used to train the model. This is repeated with each fold taking a turn as
the test set.

Each instance is labelled with the number of cores that minimised the overall
energy consumption, i.e. the minima values marked in Figure 6.3. The goal of
the machine learning algorithm is to predict this value. For the evaluation, we
take the predicted number of cores and compute its success rate, total energy, and
expected solution time.

Table 6.1 summarises the comparison between the intelligent machine learning
model to various baseline policies. Results are sorted by success rate first and then
by solution time. The success rate shows the expected percentage of the jobs to
produce a valid result within the specified time limit of 1 hour. The solution time
shows the expect time in which a solution would be found and returned to the
user. As a proxy for the total energy consumed, we use the cumulative CPU-time
across all cores. More sophisticated energy functions may also be employed, but
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Table 6.1: Evaluation of various parallel policies.

Total Solution
Policy Success% Energy Time (s)

1 Fixed 100 cores 100.0% 23227 232.3
2 VB Solved 100.0% 7727 362.4
3 ML Prediction 98.7% 5494 366.8
4 Fixed 8 cores 96.4% 3228 403.5
5 Fixed 4 cores 94.9% 1883 470.9
6 Fixed 2 cores 93.0% 1107 553.3
7 VB Energy 92.6% 583 556.9
8 Fixed 1 core 90.5% 654 654.2

the one used here serves to be intuitive.

The first set of baseline policies consider a static approach where the instance
is always run on a fixed number of k cores. Two other baselines correspond to
the virtual best (VB) energy policy, and the virtual best solved policy. These
respectively correspond to an oracle choosing, for each instance, the number of
cores leading to i) the overall minimal energy cost, and ii) the highest expected
success rate with minimal energy cost.

Firstly, as would be expected, the fixed policy of 1 core is the worst in terms of
both success rate and solution time. Interestingly, the virtual best energy policy,
as well as having a lower energy consumption has a slightly better success rate
and lower solution time than the single core policy. As the number of cores in the
fixed policies increases, both the success rate and solution time improve, but the
overall total energy increases. Naturally, the largest policy, where all 100 cores
are used in parallel provides the highest success rate and best solution time but
its energy cost is wasteful.

Most importantly, the machine learning model that predicts the number of cores
to be run for each instance can provide a success rate of almost 99% and a solution
time very close to the VB Solved policy. Interestingly, its energy consumption is
much better than that of the VB Solved; by sacrificing a success rate of 1%, it
reduces the total energy usage by 29%.

It was surprising that the random forrest performed so well given that the problem
was modelled as a classification task. The target predictions are essentially
discrete values representing the number of cores, but they do in fact have an
ordinal relationship. The benefit of using a random forrest initially was that little
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normalisation or scaling of the features is needed. The model presented above
was intended as a prototype, we expected to have to refine it in some form, such
as bucketing the number of cores, or by switching to a regression model.

In the end, the random forrest ended up making predictions that were relatively
close to the optimal value. Where the number of cores it predicted was not
optimal, it was often close and the resulting energy cost for that is not far from the
optimal. This is surprising, and impressive, as the final evaluation metric differs to
that which the random forrest tries to minimise during the training phase. When
training the random forrest, it tries to minimise the misclassification penalty,
treating the corresponding labels as simply right or wrong. So, in some sense,
the decision trees of the random forrest are picking up some latent information
about the relationship between the instance features and its runtime distribution,
warranting some investigation in future work.

6.4 Chapter Summary

In this chapter we have proposed an elastic solver that can balance the solution
time and energy consumption. The solver can scale up in the cloud setting by
predicting the number of cores required to strike the balance between the two
criterion. We have studied the behaviour of the energy consumed by the solver
for many real-world industrial instances when different number of cores are used
and provided some insight into their intricate relationship. Despite the non-trival
relationship between solution time and energy, the prediction model is highly
effective at predicting the optimal number of cores which will minimise the overall
energy consumption.
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Conclusions and Future Work

Summary. To conclude this dissertation, this chapter first sum-
marises the theses defence, and subsequently outlines some possible
avenues for future work.

7.1 Thesis Defence

We conclude this dissertation by recapitulating the two sub-thesis which centred
around the exploitation of machine learning for solving combinatorial decision
and optimisation problems, and summarising their defence.

Sub-thesis 1. To-date the application of machine learning to improving the
efficiency with which combinatorial problems can be solved has focused on either
selecting a solver from a portfolio of possibilities, or on tuning how a specific
solver should be used. We claim that a machine learning approach can provide
even greater improvement in problem solving efficiency if it can select amongst a
set of alternative problem representations in addition to solver choice.

Defence. In Chapter 3, we studied a variety of adaptation schemes for a family of
portfolios using case-based reasoning. We can conclude that adaptation schemes
that consider runtime rather than relative ranking give superior performance. We
also proposed a constraint programming model for the NP-hard task of computing
the Kemeny optimal ranking, and describe an encoding to which linearises to
a mixed integer programming model. Given a set of voter rankings, we can
effectively compute the Kemeny optimal aggregate ranking.
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In Chapter 4 we presented a hierarchical portfolio, named Proteus. The portfolio
was first applied to the constraint satisfaction problem, considering a portfolio of
CSP solvers, as well as a number of encodings to SAT and subsequently a portfolio
of SAT solvers. Detailed empirical evidence across the phase-transition established
that it is not sufficient to consider the decisions of which representation or solver
to use in isolation, but that they must be considered in tandem.

The hierarchical nature of the portfolio makes it highly extensible with additional
encodings and solvers. Moreover, different models and features may be used to
make different decisions in the hierarchy, providing greater flexibility to exploit
additional knowledge such as features of the chosen representation. We empirically
demonstrated the complementary nature of such a portfolio and ultimately its
superior performance to that of a portfolio based on a single representation.

The relationship between CSP and SAT, in terms of empirical performance, was
studied in detail. Specifically, the faster paradigm is not necessarily distinguishable
by the instance category. We also provided some insight to highlight certain
characteristics of the instance which hint at the preferred paradigm.

Proteus was also applied to the domain of graphical models. A number of languages
were considered, employing several translations between them, and subsequently a
set of solvers. We demonstrated the complementary nature between languages in
this domain, and that it can be successfully exploited by machine learning models
in a portfolio to achieve significant empirical gains.

Sub-thesis 2. The complex runtime distributions exhibited by combinatorial
solvers on a range of interesting problem instances pose a challenge to the standard
methodology in algorithm selection and configuration which does not take a holistic
view of such distributions. Considering the runtime distribution in a more holistic
fashion provides greater insight into solver performance, but also presents a range
of challenges that the research community should focus more purposefully upon.

Defence. Chapter 5 questioned a fundamental assumption being made about the
runtime behaviour of complete search solvers. Modern solvers usually have some
form of in-built randomness. As a consequence their runtime exhibit significant
variation, sometimes by orders of magnitudes on individual instances. We have
shown that the outcome of empirical comparisons such as the SAT Competitions
can fluctuate simply by re-running the experiments, and we provide statistical
bounds on such variations. We also projected the fragility of state-of-the-art
runtime prediction methods to these runtime distributions, showing that it is
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insufficient to take a single sample of the runtime in the current practice. Such
observations have broad reaching implications for empirical comparisons in a
number of fields, solver analysis, portfolios, automated configuration, and runtime
prediction.

There may not be a single solution that should be applied to overcome this
phenomenon, but rather a context dependant approach should be taken. For
empirical evaluations, solvers should be compared based on their runtime distri-
butions. Statistical tests such as the Kolmogorov-–Smirnov or chi-squared tests
would be applicable.

For the fields of runtime prediction, solver portfolios, and automated configurators,
there remains a great number of open questions. It is simply insufficient to take
a single sample of a solver’s runtime as ground-truths. Alternatively we should
consider predicting statistics or parameters of the runtime distribution. Depending
on the application we may attempt to maximise the probability of solving an
instance within a certain time, we may prefer solvers which give more consistent
behaviour, or conversely a solver which varies dramatically in the hope that we
may get lucky. Additionally, in a parallel setting this would have knock-on effects.

The runtime distribution of a solver can be exploited in a cloud computing setting.
We proposed an elastic solver, in Chapter 6, that considers the overall energy
consumption when running many searches in parallel. We studied the impact of the
number of machines on not only the solution time, but also on energy consumption,
providing some insights into their intricate relationship. We demonstrated that
the overall energy consumption can be reduced by running search in parallel,
exploiting the lower end of the runtime distribution to find a solution quicker and
terminate the remaining search. In sacrificing some solution quality, we can also
achieve significant reductions in energy consumption. A machine learning model
can be built to effectively exploit this knowledge by predicting the optimal number
of parallel searches to be run, in order to achieve a low energy consumption.

7.2 Future Work

7.2.1 SAT Encodings

Pre-processing. There is much scope for improvements and optimisation around
the process of encoding a CSP instance to SAT. Pre-processing the original CSP
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or employing some transformations before encoding could be a promising direction
which could reduce the size or complexity of the encoded instance. Common
subexpression elimination has recently been used to improve the encoded SAT
instance, resulting in dramatically reduced search effort by the SAT solver [125].
Additional pre-processing techniques such as performing a single round of CSP
propagation, possibly a higher-level of consistency such as singleton arc-consistency,
could lead be further gains. Naturally, there is an additional cost associated with
performing this reasoning, but this may elicit a reduced time to encode the instance
and/or reduce the time required to solve the instance.

Mixed Encodings. Throughout this dissertation, when encoding the instance
to SAT, the complete instance has been encoded using the same encoding. A
natural extension would be to consider mixed-encodings whereby the encoding is
varied depending on characteristics of the problem. The regular encoding which
we employ does this to some extent whereby the domains are encoded in two
representations and the encoding for particular types of constraints is determined
by hand-crafted rules. CSP2SAT4J [109] employed a similar methodology, varying
between the direct or support encoding according to hand-crafted rules.

The creation of such rules could be automated by learning from past performance
data. Alternatively, machine learning models could be employed to learn and
predict what encoding to be used on a per-constraint or variable basis. However,
it is not obvious how such a model could be trained. It is not as simple as varying
the encoding on a single constraint to learn from its performance, rather the
performance on the solver is tied to a number of other combinatorial factors.

7.2.2 Multi-language

Chapter 4 demonstrated the significant performance gains achievable by employing
alternate representations, showing that SAT solvers can compliment CSP solvers
nicely, and that the same benefits are attainable for graphical model languages.
It would be natural to extend the Proteus approaches with additional languages
such as satisfiability modulo theories, answer set programming, mixed integer
programming, and so on. Furthermore, we conjecture that such utility can be
obtained in other related languages by employing translations such as done in
Proteus.
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7.2.3 Runtime Distributions

Much progress has been made on understanding problem hardness, the behaviour
of backtracking search, and their runtime distributions. Many seminal papers
modelling solver performance in the context of heavy- and fat-tailed distributions
were written over a decade and a half ago, during a time before randomised
restarting was common and the fastest complete-search algorithms for SAT were
based on the DPLL method. Modern SAT solvers have come a long way since,
albeit with much of the evolution stemming from such runtime distribution studies.
Nevertheless, it is evident that modern solvers have an element of stochasticity built
in, resulting in runtime distributions with significant variance. Undoubtedly, it is
time such studies are revisited given the considerable advances in solver technology
since. We may ask questions such as whether the heavy-tailed phenomenon has
been reduced or even completely eliminated by recent advances. Does modern
solver performance fit into different classes of distributions, are the variations and
probability of exponential worst-case time as extreme. Such a study would be
complicated by a multitude of techniques which form part of modern solvers, such
as randomised restarting, learning between restarts, explanations, etc. We are
almost at a level where solvers need to be treated as black-boxes.

7.2.4 Portfolios

Chapter 5 raises some questions regarding the confidence in empirical comparisons
of solvers that exhibit a highly variable distribution of their runtimes, including
those presented in Chapter 4. It is insufficient to take a single sample as ground-
truth, as is the current practice. The findings in Chapter 5 do not invalidate such
results completely but rather argue for a more statistically founded method in
which we can have more confidence. We could gain more empirical confidence in
Chapter 4’s findings by rerunning the experiments, but given the large computation
expense incurred already, 100 weeks CPU-time, it was not reasonable to re-run
the entire dataset again. Besides, we do not propose any absolute solution in
Chapter 5, but there are clearly a great number of open questions that should
be answered first, and many possible avenues to consider for fields such as solver
portfolios, automated configuration, and runtime prediction. Firstly, much of
this work could be guided by a better understanding of modern solver runtime
distributions which have evolved dramatically since the majority of these studies.

Instead of trying to predict the exact runtime, maybe we should predict parameters
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of the runtime distribution. This would give a much more holistic approach, enable
greater flexibility, and be much more reliable all round. In the context of local
search SAT solvers, where it is natural to consider dramatic variation between
runs, predicting the runtime distribution is an active area of research [13].

Existing portfolio approaches are generally designed for maximising an objective
such as the number of instances solved. If we are able to consider the runtime
distribution of a solver, it opens up new possibilities in terms of objectives and
enables more flexible, practical applications. For example, we may want to
maximise the probability of solving an instance within a certain time limit, or
ensure that the median solution time is below a certain threshold. For portfolios
which run solvers in parallel [82, 113, 140], it should be necessary to take the
runtime distribution into account.

Many opportunities emerge with the proliferation of cloud computing, such as
guaranteeing a certain response time for computing solutions, or considering the
energy cost [92]. There are many avenues of potential study here when considering
solvers with highly variable runtime distributions. In particular, the effectiveness
of an elastic solver such as that presented in Chapter 6 could be improved by a
more in-depth understanding of the runtime distribution across different instance
categories, as well as incorporating a portfolio of solvers that exhibit contrasting
runtime distributions.
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