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Abstract

Si NWs are shown to develop internal mesoporosity during metal assisted chemical etching

from Si wafers. The onset of internal porosity in n+-Si(100) compared to p-Si(100) is examined 

through a systematic investigation of etching parameters (etching time, AgNO3 concentration, 

HF % and temperature). Electron microscopy and Raman scattering show that specific etching 

conditions reduce the size of the internal Si nanocrystallites in the internal mesoporous 

structure to 3-5 nm. Mesoporous NW are found to have diameters as large as 500 nm, compared 

to ~100 nm for p-NW that develop surface roughness. Etching of Si (111) wafers results in 

<100> oriented NWs forming a three-fold symmetrical surface texture, without internal NW 

mesoporosity. The vertical etching rate is shown to depend on carrier concentration and degree 

of internal mesoporosity formation. Raman scattering of the transverse optical phonon and 

photoluminescence measurements confirm quantum size effects, phonon scattering and visible 

intense red light emission between 685-720 nm in internally mesoporous NWs associated with 

the etching conditions. Laser power heating of NWs confirms phonon confinement and 

scattering, which is demonstrated to be a function of the internal mesoporosity development.

We also demonstrate limitation of mesoporosity formation in n+-Si NWs and development of 
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porosity within p-Si NW by controlling etching conditions. Lastly, the data confirm that 

phonon confinement and scattering often reported for Si NWs is due to surface-bound and 

internal nanostructure, rather than simply a NW diameter reduction in NW materials. 

I. Introduction

Metal assisted chemical etching (MACE) allows for large-scale, and rapid fabrication of high-

quality[1], well-aligned vertically oriented Si NWs with large areal homogeneity and tunable 

depths, which for a given etching bath can be affected by substrate doping type and doping 

concentration. The control of porosity in Si and controlled NW growth top-down has been 

beneficial for Li-ion batteries[2-10] thermoelectrics[11, 12], solar cells[13], and developments 

for artificial leaf and water oxidation[5] and electroluminescent devices.

Electrochemical etching can fine tune the direction and size of pore growth[14], which 

defines the remaining skeletal material of a range of semiconductors such as Si, but also III-Vs

such as InP[15-23] and GaAs. MACE, however, can result in high sidewall roughness, and the 

control of this surface roughness and the development of internal mesporosity[24-26] are key 

challenges for reproducible large scale formation of functional nanoscale Si. The doping 

density of the Si plays a major role in defining the type of etching[27], and the resulting 

morphology for many of the parameters that affect the electrochemistry and etching of Si.[28, 

29] The final Si nanostructure generated can be controlled by the substrate doping type 

level.[30-35]

Porous Si via MACE is conventionally made from highly doped Si (>1017 cm-3). It was 

found that with increasing doping level the Si NWs resulting from the MACE process become 

rougher and eventually porous.[31, 36-39] A key requirement for electroless etching methods 

is the need to control the degree of pore formation[40, 41]. 
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During etching, Ag nanoparticles at the roots of the NWs (NW-substrate interface) can 

be converted into Ag+ ions by H2O2.[37, 39] At a low H2O2 concentration, the generated Ag+

ions can be again reduced to Ag during further Si oxidation and etching. Hole injection via an 

electroless process is thus continued as the Ag+ is again reduced causing bond breaking of Si 

surface atoms through nucleophilic attack. Therefore porous Si NWs can be achieved for 

lightly doped wafers at a high H2O2 concentration.[42]

The direction of Si NWs relative to the surface is also important for Si NW based solar 

cells[43] and Si NW based field effect transistors[44, 45] and sensors. Initial reports showed

that etching in (100) and (111) Si occurred in the vertical direction only.[46, 47] However more 

recently, contradicting reports stated that slanted NWs have been produced from these 

orientations.[43, 46-50] Recently, it was found that (100) wafers with resistivity of 6–8 Ω·cm

relieve vertical <100> NWs at a relatively low volumetric ratio of HF/H2O2 of 3:1 while <111>

NWs are generated when the HF concentration is increased.[38] Oxidation-rate-dependent 

etching can affect the resulting orientation of NWs, and changes in these parameters could 

likely modulate zig-zag growth directions top-down[51-53], akin to bottom-up VLS methods 

for kinked NWs.[54]

Raman scattering has been found to be an effective method for analyzing the optical 

and acoustic phonons in Si NWs[55] especially since phonon transport is fundamentally linked 

to crystal size, crystallinity, and scattering promoters such as defect, porosity or surface 

roughness.[12, 30, 35, 56] There are several causes of a redshift of a Raman peak, such as: a 

rise of temperature, high carrier densities, quantum confinement effects and stress in the Si 

NWs.[57-60]

High doping levels in n+-NWs with sizes greater than their Bohr Radius may reduce the 

band gap, increasing the total power absorbed and therefore increasing the temperature of the 

NWs further[61]. Thermalized phonons that undergo confinement correspond to a reduced 
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thermal conductivity, inherently linked to the doping condition and the crystalline structure.

Controlling the internal crystal structure through porosity or defect inclusion, and altering the 

surface roughness of Si NWs can allow quantum confinement tunability in thermal 

conductance and photoluminescence emission in nanoscale Si.

There are few formal investigations of the influence of doping concentration and doping 

type for both roughness and porosity formation[62] within NWs, in addition to the etching 

relief of the NWs themselves. Here, we report an investigation into the development of 

mesoporosity in Si NW layers using two markedly difference conductivity wafers: p-Si(100) 

with and n+-Si(100) and n-Si(111) by varying the etching conditions used in a MACE process. 

An increase in the etching time produces longer Si NWs with low doped Si producing longer 

NWs than highly doped Si. The development of mesoporosity as a function of etching 

conditions are monitored by changes in phonon transport and scattering mechanisms by Raman 

scattering measurements and photoluminescence confirms the nanoscale nature of internal 

nanocrystallites within the mesoporous n+-Si NWs. The data is correlated to detailed electron 

microscopy examination of the microstructure. We also show that a similar change in porosity 

is not attained for lower doped Si. Direct laser heating during Raman scattering measurements 

shows that the increasingly mesoporous Si NWs contribute to a greater shift in the transverse 

optical phonon and increased FWHM of this mode when compared to the less porous Si NWs. 

II. Experimental

100 mm p-type B-doped Si(100) wafers (365 µm thickness) with a resistivity of 1 – 30 Ω·cm

corresponding to a doping density of between 1.6 – 7.0 × 1014 cm-3, n+-Si(100) wafers, As-

doped with resistivity in the range 0.001 – 0.005 Ω·cm corresponding to a doping density of 

between 1.2 – 7.4 × 1019 cm-3, and n-Si (111) wafers, P(phosphorous)-doped with resistivity in 

the range 10.5 – 17.5 Ω·cm corresponding to a doping density of between 2.5 – 4.3 × 1014 cm-
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3 were used. The substrates were immersed for a variety of times (15 mins – 3 h) in a heated 

solutions with HF added (by volume) in the range 2.5 % – 20 % HF (denoted as %HF in the 

text), containing AgNO3 (0.01 – 0.05 mol dm-3) and maintained at varying temperatures

between 25 °C and 75 °C using a thermostated water bath. The standard etching conditions 

were 1 h, 10 % HF, 0.02 mol dm-3 AgNO3 at 50 °C. When one of the etching parameters was 

being varied, the other three etching parameters were kept at the standard etching condition.

After removing the substrates from the etching bath they were washed copiously with deionized

water and then with concentrated nitric acid to remove remnant Ag deposits.  

Scanning electron microscopy (SEM) of cleaved (011) cross-sections and (001) plan 

view of the Si NWs were examined on a Hitachi S4800 FESEM operating at 5 kV. TEM was 

conducted at 200 kV using a JEOL TEM JEM-2100. The NWs were scraped into an IPA 

solution and dispersed onto holey carbon copper grids for analysis. Raman scattering 

spectroscopy was collected with a Renishaw InVia Raman spectrometer using a 514 nm 30 

mW Argon ion laser with a nominal power of 30 mW, and spectra were collected using a 

RenCam CCD camera. The beam was focused onto the samples using either a 20× or 50× 

objective lens. The incident power of the laser was adjusted using calibrated filters.

Photoluminescence (PL) were acquired using an excitation provided by a 325 nm emission 

from a cw He-Cd laser with power density of 2 W/cm2. PL spectra were acquired using a Horiba 

iHR320 spectrometer equipped with a Synapse CCD matrix. 

III. Results and discussion

Top-down Etching of Porous NW Layers

From SEM data, Fig. 1 shows that the length of the Si NWs formed from the highly doped n+-

Si(100) varies with etching time, but the etched morphology (porous surface topology) remains 

consistent. The NWs formed are perpendicular to the surface due to the preferred [100] etching 
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direction caused by HF dissolution of Si oxidized by the Ag nanoparticles (NPs) via an anionic 

SiF6
2-. The NWs are observed to clump more as they increase with length as expected from 

capillary forces, but internal porosity weakens the structure of thicker n+- mesoporous NWs. 

p-NWs also form similar arrays, as seen in Fig. 1(b) but without clumping. In Fig. 1(c), Si NWs 

are etched from Si(111) substrates. A detailed SEM study is provided in the Supporting 

Information, Section S1, Figs S1-S4. 

Figure 1 (and Figs S1-S4) demonstrate the characteristic difference in array uniformity 

and morphology of NW layers from each different wafer type and orientation. As the fast etch 

direction in Si is the [100], Si NWs in Fig. 1 are perpendicular to the (100) surface. However 

MACE is maintained in the <100> direction(s) in Si(111), and NWs form a defined angle to 

the substrate. The plan-view images show the NWs facing three distinct directions in relation 

to each other, delineated by the relative reactivity of the Si in <111> versus <100> directions.

While III-V semiconductors have different etch rates depending on whether the surface is III-

atom or V-atom terminated[63] the anisotropy is Si etching is related to the effective H-

passivation of {111}[5, 12] surfaces acting as stop planes, facilitating preferential etching along 

the three crystallographically equivalent [100], [010] and [001] directions. Unlike [100] 

oriented nominally parallel NWs etched from Si(100) substrates that are susceptible to 

clumping when either porous and/or of high aspect ratio, [100] NWs formed from Si(111) 

substrates do not clump, irrespective of their length.

Si NW layers etched from Si(111) substrates do not have uniform NW-substrate 

interfaces and due to the three relative orientations of NWs. Cross-sectional data in Fig. 1(c) 

and Fig. S4 shows that as the NWs increase in length (greater etch depth), the relief of the tri-

directional morphology is such that any cross-section will have deeper regions where the 

angled NW orientation is parallel to the cleave plane. The magnified plan-view image of the Si 

NWs formed from the Si(111) wafer shows they form a three-fold symmetry. Considering the 
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(111) surface orientation and that the plan-view image comprises NWs that are oriented out of 

the plane of the image, all wires have a general [100] orientation. [31, 64]  Lee et al. [64]

reported that in Si(111), Au particles caused etching at approximately 55º to the surface in 

[100] direction. A p-Si (111) wafer also produced Si NWs at an angle of 40º to the substrate 

surface in the <100> direction.[65] It was also demonstrated that changes to the etching 

direction in n-Si(111) was possible by varying the HF:AgNO3 ratio, temperature and etching 

time. The etching direction of the Ag particles was shown to be <111>, <110>, <211>, <311>

and zigzag depending on the etching conditions.[66]

Figure 1. SEM images of MAC etched (a) n+-Si(100) NWs (1.2 – 7.4 × 1019 cm-3), (b) p-
Si(100) (1.6 – 7.0 × 1014 cm-3) and (c) n-Si(111) wafers (2.5 – 4.3 × 1014 cm-3). A magnified 
image of the n-Si(111) NWs indicating the NW orientations post etching with respect to the 
(100) substrate. The schematic defines the orientations of Si NWs from Si(111) wafers as 
defined by the octahedral (111) diamond cubic cleavage plane. (d) EDX point mapping and 
associated SEM images of Ag nanoparticles by electroless deposition on the Si surface after 
10s immersion.
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Nanoparticle coarsening and agglomeration on the Si surface during the initial stages 

is believed to cause the non-uniformity in porosity, i.e. larger regions of efficient dissolution 

take place, whereas NW regions occur from more sparsely distributed, smaller Ag NP clusters. 

This distribution of etching also influences the degree of clumping. In the MAC approach 

reported here, Fig. 1(d) confirms that a random distribution of reduced Ag particles forms on 

the Si surface after 10 s immersion in the Ag+-containing solution.

Since etching is preferential along the <100> directions, the relative length of low-

doped p- and highly doped n+-NWs from Si(100) and n-NWs from Si(111) were examined.

Figure 2 is a plot of the measured NW length by SEM as a function of etching time for n+- and 

p-(100) and n-(111) Si NWs. 

Figure 2. NW length vs etching time for highly doped n+-Si(100), low doped p-Si(100) and 
low doped n-Si(111). Measurements for NW formed on Si(111) were taken along their entire 
length.

NWs etched from each type of substrate exhibit linear electroless etching rates. Both p-

NWs from Si(100) surfaces and n-Si(111) NWs on exhibit near-identical lengths and etch rates 
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(0.87 and 0.81 µm/min, respectively). n+-NWs on the other hand, etch more slowly at 0.33 

µm/min. The faster etch rate for the p-Si NWs is a consequence of the higher majority carrier 

hole density.  Thus, the etch rate of n-Si(111) is similar to p-Si(100). The similarity between 

n-Si(111) and p-Si(100) cannot be explained by relative hole concentrations alone. Whether 

SiH bonds passivate (111) faces until a hole is available for nucleophilic Si-Si bond attack 

during the electroless dissolution, or whether other proposed mechanism that consider 

H:Si(111) planes being etch-stop planes, the electroless process is still limited by hole 

concentration. For Si(111) wafers, the NWs are observed to be relieved at an angle equivalent 

to the separation between {111} and {100} planes. While the NW length is commensurate with 

etching time and rate, the depth of the entire layer is thus less (via Pythagorean geometry) than 

NWs formed perpendicularly to a Si(100) surface. Thus, the NW surface on Si(111) 

approximates a roughness planar surface rather than a high aspect ratio vertical NW surface. 

The NW layer on (111) surface is fully open to the electrolyte. Upon drying, the capillary forces 

found in parallel vertical dense NW arrays prevents clumping in n-Si(111) NW layers.

The etching rate is observed to be slower for the n+-Si when compared to the p-Si, but 

NW length, as relieved during etching, increases linearly with time in all cases. As discussed 

earlier, some of MACE processes in the vertical direction (on (100) surface) cause Ag to diffuse 

out and re-deposit on the NW sidewalls. The n+-NWs are internally mesoporous whereas the 

p-NWs are solid.[67] The etch rate is affected by several parameters. The anodic and cathodic 

bias of p- and n-type wafers respectively (versus Ag+ reduction) defines the rate generation of 

holes and electrons that cause nucleophilic and electrophilic bond breaking. Unlike 

electrochemical etching, electroless etching requires the presence of the Ag+ cathode in the 

reaction – complete dissolution is prevented by the ‘dead’ layer formed within the mesoporous 

nanocrystalline structure at sizes less than the depletion layer width. Figure 2 shows the etched 

depth (or NW length) as determined for each wafer type from SEM examination. Separately, 
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effects of minority carrier diffusion have been known to contribute to sidewall and further 

etching in some cases.[68, 69] Here, Ag-mediation MACE in a non-vertical direction in highly 

doped Si is possible compared to low doped Si due to the higher carrier concentration and 

narrower depletion region under opposite bias condition at the Si/electrolyte interface. 

However, for a finite and consistent density of Ag+, less Ag contributes to the vertical etching, 

resulting in a slower vertical etch rate for n+-Si as seen in Fig. 2.

Assuming a consistent surface porosity between p- and n+-NWs from Si(100) surfaces 

(Figs 1 and 3), the relative difference in NW lengths can provide as estimate of differences in 

NW porosity, i.e. for an equally efficient electroless etching process, the NW length indicated

the depth of etching 

                                       dNW,p/n = QVM,Si/nF                                                               (1)

where Q is the total charge corresponding to the etching, Vm,Si is the molar volume of Si, n is 

the number of electrons involved in the electroless process (n = 4) and F is Faradays constant.

Without hole generation from peroxide reduction in this particular reaction, the mechanism is 

assumed to follow

                                Si + 6HF → SiF6
2- + 6H+ + 4e-                                                  (2)

at the anode. Where the total etched volume of Si within the layer is similar, a % effective 

porosity increase in n+-NWs is dNW,n/dNW,p ~ 260%. While the n+-NWs are likely more porous 

than this value (from TEM analysis), they are wider than p-NWs and consequently have a lower 

volumetric density within the etched region.

Phonon Scattering and Confinement in Mesoporous Si NWs

Examination of phonon scattering characteristics using Raman scattering measurements allows 

direct comparison between changes in internal and surface structure or morphology of NWs as 

a function of etching processes. Figure 3(a) shows a Raman scattering spectrum of the p- and 

the n+-Si(100) NWs after 1 h of etching, and is consistent with the Raman spectra of crystalline 
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Si and porous Si.[70] The Raman shift relationship with crystallite size within the mesoporous 

nanowire structure is estimated by the following relation[71, 72]: 

                                                         ∆𝜔𝜔(𝐷𝐷) =  −𝐴𝐴(𝑎𝑎
𝐷𝐷

)𝛾𝛾                                                      (3)

where ∆𝜔𝜔(𝐷𝐷) is the Raman shift in a nanostructure of diameter 𝐷𝐷, a is the lattice constant of 

Si (a = 0.543 nm), and A = 47.41 cm-1 and γ = 1.44 are fit parameters that describe the phonon 

confinement in nanostructures of diameter D. 

A clear peak shift and broadening of the TO phonon is found for n+-NWs, indicative of 

phonon scattering mechanisms with contributions from confinement effects from nanoscale Si 

structure below the mean free path length of the TO phonon.  The TO phonon observed (512 

cm-1) is red-shifted (from crystalline Si (520 cm-1))[73, 74]. These phonon modes shift away 

from the Brillouin zone center (q ≠ q0) as crystal momentum is no longer conserved, causing

the shift and asymmetric widening of the TO phonon to lower frequencies. Additionally, 

contributions to asymmetry and shifts in the TO phonon can also occur due to internal boundary 

scattering and surface scattering from rough NW edges. The shape of the phonon mode 

influence by quantum confinement effects is described by

𝐼𝐼(𝜔𝜔) = ∫ 𝑑𝑑3𝑞𝑞𝑞𝑞(0,𝑞𝑞)2

[𝜔𝜔−𝜔𝜔(𝑞𝑞)]2+�Γ02 �
2                                                           (4)

where ω(q) is the phonon dispersion curve (q, the phonon wave vector); Г0 is the natural 

linewidth = 4.6 cm-1 for Si at RT (inversely proportional to the intrinsic phonon lifetime); 

C(0,q) is  the coefficient describing the phonon confinement at q0 = 0, which is appropriate for 

first-order Raman scattering. The dispersion relation, 𝜔𝜔(𝑞𝑞) =  𝜔𝜔(𝑇𝑇𝑇𝑇)(1 − 0.25𝑞𝑞2) accounts 

for the size distribution of the nanocrystalline regions within the mesoporous NWs and the 

frequency of the roughness that contributes to phonon scattering. The integration is be 

performed over the entire Brillouin zone with the confinement function was chosen to be 

Gaussian as  
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|C(0, 𝑞𝑞)|2 = exp �−𝑞𝑞
2L2

16π2
�                                                          (5)

where L is a parameter describing the grain size with a unit of a, where a is the lattice constant 

of crystalline silicon. The TO phonon for crystalline Si(100) is located at 520.2 cm-1 with a 

full-width at half-maximum (FWHM) of 4.6 cm-1, and as shown in Fig. 3(a), the TO phonon

of Si NWs is at 516.2 cm-1 with a FWHM of 14.2 cm-1. Following Eqn (3), the reduction in

crystalline grain size results from a larger frequency shift of the TO mode with associated 

broadening and asymmetric profile. The relation predicts a crystallite size of 2.9 – 3.1 nm, 

which is in good agreement with HRTEM data of the internal skeletal Si nanocrystal structure 

within mesoporous NWs. In Fig. 3(b), an increased redshift and broadening of the TO phonon 

mode is observed when the n+-NWs etched for longer durations as more internal mesoporosity 

develops in time.

As the p-NWs are solid (i.e. non porous) with limited surface roughness (whose rms 

values that do not contribute significantly to surface phonon scattering[75]), there is no 

appreciable shift or asymmetric broadening of the TO mode observed (Fig. 3(c)) after extended 

etching periods [55, 58, 76]. In our case, internal mesoporosity in n+-Si NWs from (100)-

oriented substrates dominates scattering and phonon confinement, even in wires of larger 

diameter (n+-NWs here can be ~5× wider than p-NWs, but internally mesoporous), and thus 

nanoscale features are a requirement for significant Raman mode shifts. Depending on the 

catalyst type and etching conditions, NWs formed exhibit either rough (high rms roughness >5 

nm with a range of roughness frequencies) or smooth surfaces. One hypothesis states that Ag 

nanoparticles can disintegrate, detach or leach, diffuse outward, redeposit randomly and sink 

into the newly formed NWs surfaces continuously during the entire process of MACE process 

to induce a secondary etching step on the NW sidewalls to form pits.[31, 38, 42, 53] Chern et 

al.[38] stated that the holes generated in the MACE reaction can diffuse out before the primary 

reaction (vertical etching of the Si) and contribute to etching of the Si sidewalls resulting in the 
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porous Si NWs (Fig. 3(e)). This mechanism agrees with our previous work[67] wherein highly 

doped Si has facilitates a faster reaction rate than the p-Si because high carrier concentration 

favours charge transfer. In addition, as shown in [67] higher doped n+-Si has a much narrower 

depletion region, allows tunneling of carriers and etching of the internal Si structure to much 

smaller dimensions, as evidenced by the Raman scattering characterization.

Figure 3. (a) Raman spectra of n+-NWs and p-NWs etched for one hour (b) Raman spectra of 
n+-NWs that were etched for varying lengths of time. (c) Raman spectra of p-NWs that were 
etched for 15 mins and 3 hours and (d) Raman spectra for NWs from n-Si(111) etched for 15 
mins and 3 hours. (e) Schematic of the etching mechanism of highly doped Si. (f) Schematic 
of Ag particles deposited on Si substrate. (g) Schematic of etching mechanism of low doped 
Si.

The redshift and broadening of the TO phonon mode is not observed for the p-NWs

(Fig. 3(c)) nor the n-NWs formed from the Si(111) wafer (Fig. 3(d)). Further work is needed 

to clarify if a high carrier concentration under reverse bias initiates a reverse tunneling 

n-doped Si
Narrow depletion region
High carrier (e-) conc.

(a)

p-doped Si
Wide depletion region
Low carrier (e-) conc.

(e)

(b)

(c)

(d)

(f)

(g)
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mechanism that allows etching limited by the depletion region (Fig. 3(g)). This mechanism is 

well established in electrochemical etching protocols for porous silicon for example.

To verify that the n+-NWs become more internally mesoporous with etching time 

compared to p-NWs that exhibit surface roughening of smaller NWs, we examined the Si NWs 

by TEM. Figure 4 shows the n+-NWs etched for 15 mins (a,b), 1 h (c,d) and 3 h (e,f). The 

images indicate that the NWs themselves become more mesoporous with etching time, and 

porosity develops from the outer surface initially (Fig. 4(a)). The inset to Fig. 4(f) shows a 

HRTEM image of the edge region of a typical mesoporous n+-NW and shows the network of 

nanocrystal that comprises the skeletal structure of the NWs.

Figure 4. TEM images of n+-NWs etched for 15 mins (a,d), 1 hour (b,e) and 3 hours (c,f). (g) 
HRTEM image of the edge region of a typical mesoporous NW showing the network of 
nanocrystalline silicon.

In p-Si in Fig. 5, the higher hole concentration at the surface under accumulation mode 

because of a forward bias electrochemical condition, facilitates thinning of the overall wire 

rather than site selective etching of the sidewalls. Such a process would leave rough walls and

narrower wires, but no internal porosity under the same etching conditions[67], which agrees 

with observation. Figures 5(a) and (c) show the p-NWs etched for 15 mins and 3 h respectively, 

while NWs from n-Si(111) wafers etched for similar duration are shown in Figs 5(b) and (d). 
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The p-NWs are never found to develop internal mesoporosity with increasing etching time. An 

electron diffraction pattern of a NW etched from the Si(111) wafer is an inset in Fig. 5(b) 

confirming the [100] orientation nature of the smooth-surfaced NW. NW lattice planes as 

etched from a (111) substrate are measured to be at 51.7° to the <100> directions.

Figure 5. TEM images of (a) p-NWs etched for 15 mins (b) NWs etched from Si(111) for 15 
mins (c) p-NWs etched for 3 hours and (d) NWs etched from Si(111) for 3 hours. (Inset) SEM 
image of NWs etched from a n-Si(111) wafer showing the [100] orientation of the NWs.

Phonon scattering and NW mesoporosity – Effect of Temperature, AgNO3 and HF 
concentration 

Silver nanoparticles can disintegrate and redeposit on the sidewalls of Si NWs resulting in 

porous Si NWs. The development of mesoporosity in MAC etching of Si NWs was examined 

at higher temperatures to examine the effect of thermal excitation that promotes electron 

(b)(a)

(c) (d)

[100]
[111]
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transfer on the etching[31, 38, 42, 53]. Figure 6(a) shows the TO phonon mode response of n+-

Si NWs that were etched at 25-75 ºC, respectively and multi-phonon confinement processes (a 

peak shift and asymmetric broadening) are found, indicative of mesoporosity development. 

TEM images in Figs 7(a) and (b) confirm Si NWs etched at 25 and 75 ºC develop and retain 

internal mesoporosity. A better degree of consistent mesoporosity is found at the higher 

temperature (Fig. 7(b), with other conditions constant. 

Figure 6. (a) Raman spectra of n+-Si(100) NWs etched at various temperatures. (b) Raman 
spectra from n+-Si NWs etched with various AgNO3 concentrations. (c) Raman spectra of n+-
Si NWs etched with different HF concentrations.  (d) Raman spectra of p-NWs etched under 
both extremes of each etching condition in (a-c).

The AgNO3 concentration was varied between 0.01 M and 0.05 M to examine the 

influence of a higher concentration of Ag+ ions (or there reduction, re-oxidation and re-

(a)

(b)

(c)

(d)
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deposition on the NW surface) may influence the formation of internal mesoporosity in n+, n 

and p-Si.[31, 42]. For n+-Si NWs that become mesoporous, a higher [Ag+] resulted in a red

shift and asymmetric broadening of the TO phonon mode, as shown in Raman spectra in Fig.

6(b), consistent with a reduction in Si nanocrystallite size within the mesoporous structure. 

TEM analysis (Figs. 7(c) and (d)) confirms the increase in porosity within NWs at greater

AgNO3 concentration up to 0.05 M. 

Unlike the development of mesoporosity in n+-Si NWs via increases in Ag 

concentration and temperature, the %HF variation (from 2.5 to 20%) results in an increase is 

mesoporosity (reduction in average Si crystallite size within the NWs) up to 15% HF, as shown 

in Fig. 7(c). The Raman shift of the TO phonon mode confirms increasing porosity, but also 

highlights that 20% HF does not appreciably alter the degree of porosity beyond that found for 

2.5-15% HF. TEM examination in Fig. 7(e) and (f) shows porous NWs with slightly rougher 

overall morphology, which tends toward greater mesoporosity throughout as the NW reaches 

the limit of internal mesoporosity. NWs formed at 20% HF (Fig. 7(f)) are semi-transparent to 

the 200 kV electron beam and typically. No redshift nor asymmetric broadening from quantum 

confinement effects or internal boundary phonon scattering are found for p-NWs for any of the 

etching conditions (Fig. S2, Supporting Information).  
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Figure 7. TEM images of n+-NWs etched at (a) 25 ºC and (b) 75 ºC; (c) 0.01 M and (d) 0.05 
M AgNO3; and (e) 2.5% HF and (f) 20% HF. (g) PL spectra acquired at room temperature 
from p-NWs and n+-NWs.

Si NWs, porous silicon and some silicon nanoparticle systems have been shown to be

efficient light emitters at room temperature, with intense red light from confined photons [72-

74]. The procedures here for induced internal mesoporosity into the Si NWs are very effective 

at producing a high density of nanocrystallites with dimensions less than the Bohr radius in an 

internal random network arrangement. At room temperature, there is negligible recombination 

of photo-generated carriers from electron-phonon coupling, yet as seen in Fig.  7, we observe 

intense red light emission from the mesoporous NW layers. Figure 7 shows PL spectra from 

rough p- and mesoporous n+-Si NWs obtained by exciting with the 325 nm line of a HeCd cw 

laser. The PL emission is centered at about 720 nm for n+-Si NWs with internally mesoporous 

structure, and at ~685 nm for p-NWs that are <100 nm in diameter with a high density of small 

surface crystallites on the rough surface. While quantum confinement effects are responsible

for the observed light emission, the higher emission energy for rough, solid p-NW is from 

smaller surface roughness asperities that have much lower intensity compared to the red

emission from n+-Si NWs. The emission for n+- mesoporous NWs is very bright red and clearly 

visible with the naked eye, but emission from the p-NW is very weak and invisible to the naked 

eye. 

The experimental conditions that lead to electroless etching conditions for highly 

mesoporous Si NWs have been shown to directly affect the formation of internal mesoporosity.  

These mesoporous NWs and the etching conditions that affect their structure are also amenable 

to analysis by Raman scattering by thermalizing phonons directly using high laser powers. As 

quantum confinements and phonon scattering effects lead to reduced thermal conductivity, 

direct focused laser heating of NW bundles can relate the degree of mesoporosity formed from 
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each experimental etching condition to the nanoscale structure by probing variations in 

effective thermal diffusivity. Pristine but labyrinthine arrangement of unetched Si comprising 

the mesoporous internal structure as reported here may be sufficient to reduced phonon 

transport; each are governed by specifically different Raman scattering responses that may or 

may not include size effects [77]. 

The laser power was varied for the n+-NWs that were etched for (a) 15 mins, (b) 1 h 

and (c) 3 h shown in Fig. 8, corresponding to localized heating of the NWs. From Fig. 8(c) the 

highly porous wires cause a greater Raman redshift and a broadening than less porous wires in 

Fig. 8(a+b). The shift and broadening of the n+-Si NW Raman peaks is due to anharmonic 

effects as a result of thermally excited lattice phonons that are both confined and scattered in 

the networked mesoporous NW structure. [76] The highly porous Si NWs do not dissipate heat 

efficiently due to a reduced thermal conductivity. Mesoporous n+-NWs, as shown in Fig. 8, 

exhibit the greatest shift in TO phonon scattering with increased temperature consistent with 

multi-phonon processes from an optimum degree of internal mesoporosity is reached.
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Figure 8. Raman spectra for n+-NWs etched for (a) 15 mins (b) 1 h and (c) 3 h and heated at 
various laser powers. A Raman scattering spectrum of a bulk Si wafer (black dashed curve) is 
shown for reference.

Non-porous Si NWs produced from highly doped n+-Si

It is now known that highly doped n+-Si produces mesoporous Si NWs under many etching 

conditions, as demonstrated earlier. Next, we show how non-porous Si NWs can be formed 

within the NW layer from a highly doped Si wafer, i.e. secondary intra-NW etching is 

prevented during NW layer formation. We etched the highly doped n+-Si(100) used in this 

study using the following “low” etching conditions: 2.5 % HF, 0.01 M AgNO3, at 25 ºC for 15 

mins. What resulted were extremely short Si NWs as shown in the SEM image in Fig. 9(a). 

The Si NWs are ~500 nm in length and are so short and rigid (no internal porosity) that 
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clumping observed during drying for longer, less rigid NWs does not influence the Si NWs 

layer uniformity. The Raman scattering data in shown in Fig. 9(c) indicates that the Si NWs 

are non-porous and the TO phonon remains similar to that of bulk Si. This is verified by the 

TEM images in Figs 9 (c) and (c), where predominantly crystalline silicon is observed with 

minimal surface roughness. An electron diffraction pattern in Fig. 9 (e) shows the quasi-

polycrystalline nature of the Si NWs superimposed with arcing of the diffraction spots from 

rotated crystallites within the NW structure. The data demonstrate that Si NWs formed from 

highly doped Si begin as single crystalline NWs and the more gentle etching conditions result 

in the development of surface inhomogeneities and some degree of internal modification to the 

crystal structure. The NW remain solid and eventually become porous during etching if etching 

conditions as defined in this work are modified. The initiation of porosity by the formation of 

thinner regions within the NWs is believed to allow rotation of crystalline regions that 

contributes to a degree of multi-axial nanocrystalline texture. Multiple lattice fringes or 

oriented crystallites comprising the rough outer surface of the NWs can also be seen in Fig. 9 

(d).
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Figure 9. (a) SEM image of the n+-Si NW layer. (b) Raman spectra of the n+-NWs and of bulk 
Si wafer. (c) TEM image of a non-porous n+-Si NW and (d) HRTEM and electron diffraction 
pattern of the non-porous, polycrystalline n+-Si NWs formed under the “low” etching 
conditions.

Porous Si produced from low doped p-type Si

Porous p-type NWs were also produced from the low carrier concentration p-Si(100) wafers

used in this study. Etching under “high” etching conditions, namely 0.1 M AgNO3, 20% HF, 

for 3h at 63 ºC were used. The porous nature of the NWs, similar to n+-NWs, caused a redshift 

and broadening of the TO phonon mode (Fig. 10(a)). The NWs produced within the layer (Fig. 

10(a)) were internally mesoporous in nature as shown in the TEM image of a single NW in 

Fig. 10(c) and (d), where regions of underdeveloped mesoporosity is characteristic. It should 
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be noted that that mesoporosity in p-type NWs was not attainable when any one of the etching 

parameters was reduced.

Figure 10. (a) Raman spectra of p-NWs under normal etching condition and under the “high” 
etching conditions under which internal mesoporosity develops. (b) Plan-view SEM image of 
the NW layer. (c) TEM image of a single mesoporous p-NW and (d) TEM image showing 
regions of underdeveloped internal porosity within the mesoporous p-NW.

Overall, the variation is Raman phonon mode shape is not found to be consistent with 

stress-induced changes, as mesoporous crystal are inherently lower stress condition that bulk 

silicon. Nonetheless, the relationship between the phonon mode shift, peak shape, and 

crystallite size reported here for mesoporous provide a useful means for using Raman scattering

as a tool to measure size and the etching mode in a range of semiconductor systems. The ability 

to tune the etching conditions for different Si conduction types and wafers, to form black silicon 
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made from arrays of internally mesoporous Si NWs may be useful for Li-ion batteries, light 

emission and absorption, sensors and other systems that rely on electrochemical, optical or

thermal characteristics that are affected by internal crystal structure and size.

IV. Conclusions

Silicon etched in a HF and AgNO3 containing solutions for various times form layers of 

mesoporous and rough NWs, respectively from a MACE process. Our results show how the 

change in wafer conductivity affects the nature of the NW layer formed during etching. As 

selectively etched NW layers, p-Si(100) etches at a higher rate than n+-Si, but does not develop 

internal mesoporosity under standard etching conditions. The influence of a range of etching 

conditions were examined in detail, including variations in AgNO3 concentration, HF 

concentration and etching temperature. The Raman scattering spectra for each condition was 

characterized by a TO phonon mode a peak redshift and asymmetric broadening when etching 

parameters were increased (increase in porosity). TEM analysis confirmed a mesoporous Si 

structure in n+ Si NWs which are made up of a random internal network of nanoscale 

crystallites of silicon, as a mesoporous NW. 

The development of mesoporosity as a function of etching conditions are monitored by 

changes in phonon transport and scattering mechanisms by Raman scattering measurements, 

and confirmed through detailed electron microscopy. Direct laser heating during Raman 

scattering measurements shows that the increasingly mesoporous Si NWs contribute to a 

greater shift in the transverse optical phonon and increased FWHM of this mode when 

compared to the less porous Si NWs, because of a reduced thermal conductivity and 

confinement of acoustic phonons. Non porous Si NWs are also produced from highly doped Si 

under a specific etching protocol, so that conductive solid-core n+-NWs are formed. n-Si(111) 
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also relieved NWs oriented along preferential <100> directions, in three distinct orientations

and do not develop internal mesoporosity.  

This hierarchical porosity is characterized by increased NW surface roughness, a high 

degree of internal boundary scatterers, and a carrier depleted mesoporous skeleton. The 

response is characteristic of surface scattering and multi-phonon processes including 

confinement. The formation of such small internal structure, in the absence of stress-related 

effects and Si-OSi and similar species, is likely necessary to explain the shift in the TO phonon 

modes often reported from NW diameter reduction. These factors are ideal for phonon 

scattering and reducing the thermal conductivity for Si NW based thermoelectric and thermal 

interface materials, and for producing electrochemically in active (or inactive when full porous) 

high surface area materials for pseudocapacitor or Li-ion battery applications.
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