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Abstract 

Linking intraspecific and interspecific divergence is an important challenge 

in speciation research. X chromosomes are expected to evolve faster than 

autosomes and disproportionately contribute to reproductive barriers, and comparing 

genetic variation on X and autosomal markers within and between species can 

elucidate evolutionary processes that shape genome variation. We performed 

RADseq on a 16-population transect of two closely-related Australian cricket 

species, Teleogryllus commodus and T. oceanicus, covering allopatry and sympatry. 

This classic study system for sexual selection provides a rare exception to Haldane’s 

rule, as hybrid females are sterile. We found no evidence of recent introgression, 

despite the fact that the species co-exist in overlapping habitats in the wild and 

interbreed in the laboratory. Putative X-linked loci showed greater differentiation 

between species compared to autosomal loci. However, population differentiation 

within species was unexpectedly lower on X-linked markers than autosomal markers, 

and relative X-to-autosomal genetic diversity was inflated above neutral 

expectations. Populations of both species showed genomic signatures of recent 

population expansions, but these were not strong enough to account for the inflated 
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X/A diversity. Instead, most of the excess polymorphism on the X could better be 

explained by sex-biased processes that increase the relative effective population 

size of the X, such as interspecific variation in the strength of sexual selection among 

males. Taken together, the opposing patterns of diversity and differentiation at X 

versus autosomal loci implicate a greater role for sex-linked genes in maintaining 

species boundaries in this system. 

 

KEYWORDS 

hybridisation, faster X effect, population genomics, RAD sequencing, sex 

chromosomes, Teleogryllus 

 

1  │  INTRODUCTION 

The geographic distribution of genetic variation, within and between species, 

provides a rich source of information on a species’ evolutionary history and the 

nature of species boundaries (Hewitt, 2001; Sousa & Hey, 2013; Lexer et al., 2013; 

Gompert et al., 2014). The strength of evolutionary forces can vary across the 

genome, and specific regions, such as those differing in patterns of inheritance or 

recombination (e.g. sex chromosomes, mitochondria), might disproportionately 

contribute to population genetic differentiation and genetic divergence at different 

scales, for example among species or among populations within species 

(Charlesworth et al., 1987; Coyne & Orr, 2004; Qvarnström & Bailey, 2009, 

Nachman & Payseur, 2012). The joint analysis of genetic markers that differ in their 

pattern of inheritance provides opportunities to identify whether corresponding 

genomic regions differ in the strength of divergence, and test for evolutionary 
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processes that might be involved (Shaw, 2002; Payseur et al., 2004; Ségurel et al., 

2008; Emery et al., 2010; Lavretsky et al., 2015). Comparisons between autosomes 

and sex chromosomes are of particular interest. The latter have been suggested to 

play a key role in the establishment of reproductive barriers and, by extension, 

speciation (Charlesworth et al., 1987; Sætre et al., 2003; Coyne & Orr, 2004; 

Presgraves, 2008; Qvarnström & Bailey, 2009), and they have even been described 

as being “at different stages of speciation” to autosomes in some species 

comparisons (Ellegren et al., 2012).   

Sex chromosomes are expected to evolve faster than autosomes due to 

asymmetry in their inheritance and differences in patterns of gene expression 

between the sexes. As a result, selection and drift are predicted to exert different 

effects on sex chromosomes (Charlesworth et al., 1987; Betancourt et al., 2004; 

Bachtrog, 2006; Vicoso & Charlesworth, 2006; Ellegren, 2009). Selection is expected 

to be stronger on X (or Z in female heterogametic species) chromosomes, because 

recessive mutations are immediately exposed to selection in the heterogametic sex. 

This is known as the faster-X effect (Haldane 1924, Charlesworth et al., 1987; Meisel 

& Connallon, 2013). In addition, X chromosomes have an effective population size 

(Ne) that is only three-quarters that of autosomes (assuming an equal proportion of 

males and females), so genetic drift is expected to be more pronounced on the X 

and lead to a higher turnover of alleles (Kauer et al., 2002; Mank et al., 2007; Vicoso 

& Charlesworth, 2006). The hemizygosity of X chromosomes reduces effective 

recombination rates, which increases the potential for hitchhiking and selective 

sweeps (Maynard Smith & Haigh, 1974; Betancourt et al., 2004; Nolte et al., 2013; 

Garrigan et al., 2014; Dutheil et al., 2015). The latter may be particularly powerful on 

the X due to higher substitution rates and faster times to fixation (Betancourt et al., 
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2004). Increased linkage disequilibrium on the sex chromosomes can facilitate the 

accumulation of sex-linked barrier traits, such as mating signals and preferences, 

whose associations might otherwise be broken down by recombination (Trickett & 

Butlin, 1994; Reinhold, 1998; Ritchie & Phillips, 1998; Sæther et al., 2007; 

Qvarnström & Bailey, 2009).   

Two of the most consistent patterns seen in reproductive isolation also 

implicate sex chromosomes in establishing species boundaries: Haldane’s rule 

(Haldane, 1922) and the large X effect, or disproportionate influence of X-loci on 

hybrid incompatibilities (Coyne & Orr, 1989; Masly & Presgraves, 2007; Presgraves, 

2008; Schilthuizen et al., 2011). Studies of hybridisation have shown that X-loci tend 

to exhibit greater than expected differentiation (given the differences in Ne, 

recombination and linkage disequilibrium) and lower rates of introgression compared 

to autosomes, which is consistent with an overrepresentation of both pre- and 

postzygotic barriers on the X (Saetre et al., 2003; Payseur et al., 2004; Janoušek et 

al., 2012; Sankararaman et al., 2014; Larson et al., 2014; Lavretsky et al., 2015; 

Maroja et al., 2015; Cahill et al., 2015). Intraspecific studies have also shown that X 

chromosomes exhibit higher rates of substitutions (Betancourt & Presgraves, 2002; 

Mank et al., 2007; Mank et al., 2010; Meisel & Connallon, 2013; Garrigan et al., 

2014), reduced diversity (Andolfatto 2001; Kauer et al., 2002; Baines & Harr, 2007; 

Begun et al., 2007; with the exception of African populations of Drosophila 

melanogaster and D. simulans) and greater population differentiation (Ford  & 

Aquardo, 1996; Keinan et al., 2009; Amato et al., 2009; Lucotte et al., 2016; 

Machado et al., 2016). For example, Ford & Aquadro (1996) reported consistently 

higher differentiation at X-loci than at autosomal loci (up to 3.9x) in comparisons of 

pairs of semi-species of Drosophila athabasca.  
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Patterns of discordance among X and autosomal markers can be used to infer 

evolutionary processes that shape genomic variation, such as drift, selection, 

mutation, migration and mating system, as these sometimes act in different ways on 

sex chromosomes and autosomes (Charlesworth, 2001; Vicoso & Charlesworth, 

2006; Ellegren, 2009; Emery et al., 2010). For example, relative levels of X/A 

diversity can be compared with predictions arising from demography. Under neutral 

expectations (1:1 breeding sex ratio and no selection), X chromosomes are expected 

to exhibit lower diversity (the ratio of X-to-autosomal diversity (X/A) is expected to 

equal 0.75) and increased population differentiation due to their smaller Ne (Vicoso 

& Charlesworth, 2006). Deviations from the expected level of diversity can indicate 

selection, demographic or sex-biased processes that shape genome variation 

(Charlesworth, 2001; Ramachandran et al., 2004; Hammer et al., 2008; Ségurel et 

al., 2008; Ellegren, 2009; Keinan et al., 2009; Emery et al., 2010) or variation in 

effective recombination rates (Vicoso & Charlesworth, 2009). For example, historic 

population contractions and expansions are expected to differentially affect X-to-

autosomal diversity (X/A) (Pool & Nielsen, 2007); recent population bottlenecks tend 

to disproportionately reduce X-linked diversity while population expansions 

disproportionately elevate X-linked diversity (Schaffner, 2004).  Geographic patterns 

of genetic diversity can also inform the processes involved in shaping genome 

variation (Hewitt, 2001; Sousa & Hey, 2013; Lexer et al., 2013). The extent to which 

individuals or populations deviate from the expected association between geographic 

and genetic distance (isolation by distance, IBD) enables inference about processes 

such as migration, admixture or selection (Wright, 1943, 1946; Wang et al., 2012; 

Fields et al., 2015; Knowles et al., 2016). Demography and selection are likely to 

influence autosomes and X chromosomes differently, resulting in distinct geographic 
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patterns of variation (Laurent et al., 2016). For example, X chromosomes might 

exhibit greater differentiation in sympatry due to a greater role in reproductive 

isolation (Martin et al., 2013). 

Here, we compare the geographic distribution of genome-wide variation at 

autosomal and X-loci among populations of two closely related field cricket species, 

Teleogryllus commodus and T. oceanicus. These species are a classic system for 

sexual selection studies (Hoy & Paul, 1973; Hoy et al., 1977; Hennig & Weber, 1997; 

Bailey & Macleod, 2013), are partially interfertile (Moran et al., 2017) and overlap 

across a broad area of sympatry on the eastern coast of Australia (Hill et al., 1972; 

Otte & Alexander, 1983). Laboratory studies have found both pre-mating and post-

mating barriers exist between them (Fontana & Hogan, 1969; Hennig & Weber, 

1997; Moran, 2017), most notably hybrid females are sterile in both cross directions 

which provides a rare exception to Haldane’s rule (Moran et al., 2017). Nevertheless, 

hybrid males mate successfully with females of both species, so while F1 hybrids are 

expected to be rare in sympatry, backcrossing and introgression might be expected. 

These species have an XO sex determination system, and the X chromosome 

appears to account for a substantial portion of their genome, (~20% - 30% of the 

genome (K Klappert; unpublished data/pers. comm.)).   

There have been no previous genome-scale analyses of these Australian 

species (Pascoal et al., 2014 examined Hawaiian populations of T. oceanicus). Here, 

we used RADseq to compare patterns of genetic variation seen in putative X-linked 

and autosomal markers, and tested whether differentiation at X-loci was consistently 

greater both within and between species. As there is no published reference genome 

for this species, we focused on identifying X-loci using a series of stringent 

bioinformatic filters; this produced a smaller number of X-loci that would be predicted 
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given the predicted size of the X, but enabled us to produce a very high confidence 

set of X-loci.   

We focused on testing two predictions: (i) Within population diversity (πS) 

should be lower at X compared to autosomal loci due to increased selection 

(exposure of beneficial recessive mutations), drift (smaller Ne compared with 

autosomes) and systematic variation in the opportunity for recombination (reviewed 

in Schaffner et al., 2004, Vicoso & Charlesworth, 2006, Ellegren et al., 2009; Mank et 

al., 2010). This would be expected to lead to greater population differentiation (FST) 

at X-loci. However, an alternative result is that faster-X dynamics might drive lower 

population divergence on the X if adaptive mutations are globally beneficial and 

spread readily across populations, despite also leading to reduced X-diversity (Nolte 

et al., 2013). We also tested whether species differentiation at X-loci differs between 

sympatric and allopatric comparisons. (ii)  If demographic processes, such as 

population size changes, contributed to deviations from expected levels of X/A 

diversity then there should be an association between the demographic history of the 

populations and the observed level of X/A diversity. Due to its smaller Ne, the X is 

more sensitive to changes in population size such as occur during population 

bottlenecks or rapid expansions (Pool & Nielsen, 2007). Population contractions tend 

to reduce X diversity, whereas population expansions equalize levels of X/A diversity 

(Hammer et al., 2008). We therefore tested whether changes in population size 

contribute to observed levels of X/A diversity. The demographic history of the 

species can be inferred based on the site frequency spectrum and coalescent 

methods such as those implemented in Fastsimcoal (Excoffier et al., 2013). We 

report strong support for our prediction that interspecific divergence at X-loci is 

substantially higher than at autosomal loci. However, this pattern was unexpectedly 
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reversed in intraspecific population comparisons and X/A diversity was inflated for 

both T. commodus and T. oceanicus. 

 

2 │ MATERIALS AND METHODS 

2.1 │ Sample collection  

Individual crickets were sampled from 16 sites between March and April, 2013. 

Sampling encompassed a ca. 2,500 km latitudinal transect along the eastern coastal 

region of Australia and included allopatric and sympatric populations of both T. 

commodus and T. oceanicus (Figure 1). Areas of sympatry were located with 

guidance from published studies (Hill et al., 1972; Otte & Alexander, 1983; Bailey et 

al., 2017). Males and females were sampled from each population and preserved in 

methylated spirits followed by absolute ethanol. Sample sizes were approximately 30 

individuals per population, except for “KH” and “UQ” where only 14 and 15 

individuals were collected, respectively. Sample sizes and locality information for 

each population are provided in Table S1, Supporting Information. In the most 

northern population sampled (KH), we identified a third putative Teleogryllus species, 

T. marini, which has only previously been described once based on its distinct calling 

song and genitalia (Otte & Alexander, 1983). We disregarded putative T. marini 

samples when comparing patterns of genetic differentiation for X vs. autosomal 

markers due to a lack of adequate sampling, but report genomic population 

clustering results to definitively confirm its distinct species identity (see Results). 
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2.2 │ Genomic library preparation 

Genomic DNA was individually extracted from tissue removed from cricket head 

capsules (n=480, Table S1) with the DNeasy Blood and Tissue kit (Qiagen) following 

the manufacturer’s instructions for animal tissue. The extracted DNA was 

subsequently quantified and quality checked using Nanodrop and Qubit. RAD library 

preparation was carried out following Baird et al. (2008), with some modifications. 

Briefly, 250 ng of each DNA sample was digested with SbfI (New England BioLabs) 

and each individual cricket was barcoded by ligating P1 adapters (8 nM). Fragments 

were sonically sheared and size-selected to 300–700 bp and P2 adapters were 

ligated to sheared ends. Libraries were PCR amplified and paired end sequencing 

was conducted on 3 lanes of Illumina HiSeq 2000 and 2500 each. This protocol 

provides two sets of reads at each RAD site: read 1 extends either side of the 

restriction site (~ 100bp), while read 2 sequences are more loosely distributed 

extending up to ~700 bp from the restriction site (Davey et al., 2013).  

 

 

2.3 │ De novo assembly and SNP calling 

The sequences were analysed using the Stacks RAD pipeline (Catchen et al., 2013) 

and following the RADmapper approach [https://github.com/tcezard/RADmapper]. 

Individual samples were demultiplexed with process_radtags from Stacks, allowing 

one mismatch in the restriction enzyme recognition site. Read 1 sequences from 

each sample were individually clustered using ustacks (parameters –M 2 –N 4). The 

resulting stacks were merged across samples within each species separately, and 

for all samples together, using cstacks with default parameters (Catchen et al., 

2013).   
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 The effect of assembly protocol and variant filtering is an important 

consideration for comparing divergent non-model species using RADseq (Lexer et 

al., 2013; Nadeau et al., 2014). Therefore, three different de novo assembly 

approaches were implemented to determine the most appropriate method for 

creating a consensus reference for calling single nucleotide polymorphisms (SNPs) 

that would enable us to obtain a maximum number of SNPs with minimal effects of 

ascertainment bias. The three different assemblies were constructed as follows: (i) a 

combined species assembly used individuals randomly subsampled from all 

populations and pooled together, (ii) a T. commodus assembly used pooled 

allopatric T. commodus individuals, and (iii) a T. oceanicus assembly used pooled 

allopatric T. oceanicus individuals. The final merged stacks were filtered to remove 

potential erroneous stacks by retaining only those supported by a minimum number 

of individuals (combined species assembly, n = 200; T. commodus assembly, n = 

100; T. oceanicus assembly, n = 50). 

 

Read 1 sequences of all individual samples were mapped back against the 

consensus sequences using BWA v0.7.9a (aln/samse algorithm) (Li & Durbin, 2009). 

The mapping statistics were generated using samtools flagstat. To extend the usable 

sequence for SNP calling, the read 2 sequences for each read 1 stack were 

assembled using the IDBA-UD v1.1.0 assembler following the methods of Peng et al. 

(2012). The resulting read 2 assembly was then merged with the read 1 stack where 

possible, otherwise the sequences were concatenated. Variants were called using 

SAMtools/BCFtools (v0.1.18) (Li et al., 2009; Li, 2011) and SNPs outputted in 

Variant Called Format (VCF) files.  
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To assess if the different de novo assemblies influenced the downstream 

analysis, we compared the number of SNPs obtained from each and the overlap 

among them. The three different assemblies resulted in a similar number of SNPs 

and the structuring of population genetic variation was broadly the same, with no 

sign of species bias. Detailed comparisons of the number of SNPs returned from the 

three different assemblies is provided in Figure S1, Supporting Information. 

Therefore, we proceeded using the combined species assembly to address patterns 

of interspecific genotypic variation, whereas we used species-specific assemblies for 

intraspecific analyses to maximize the number of potentially informative markers. 

 

2.4 │ SNP quality control and genetic diversity estimates 

VCF files were filtered using VCFtools (Danecek et al., 2011) using the following 

steps: all indels were removed, only sites with a minor allele frequency greater than 

or equal to 0.05 were kept, and all individual genotypes with a quality score less than 

20 were recoded as missing (--min GQ 20 – VCFtools command). Next, all loci that 

were not present in at least 80% of the individuals were excluded using the --max-

missing VCFtools command. Fifteen individuals were dropped due to low mapping 

coverage or a high proportion of missing genotypes (< 50 % mapped reads or 

genotypes present). For population genetic analysis, the quality filtered VCF files 

which contained only biallelic SNPs were converted to required file types using 

PGDSpider (Lischer & Excoffier, 2012). The number of SNPs varied in some 

analyses due to subsetting of the data, which changes the proportion of missing 

data.  
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2.5 │ Putative autosomal and X-loci 

A set of high-confidence, putative autosomal and X-loci were identified using custom 

scripts to filter markers based on expected sex differences in heterozygosity and 

read coverage. Teleogryllus spp. females carry two X chromosomes while males 

only carry one, so X-loci should have twice the read depth in females and should 

appear homozygous in males. The following criteria were applied to filter X SNPs. 

Criterion 1: For a given locus, all male samples must be homozygous and at least 

one female sample must be heterozygous. Criterion 2: To filter based on coverage, 

first the overall coverage was normalised by the total number of reads in each 

sample (to minimise artefactual heterogeneity in read depth introduced by variation 

among libraries or sequencing lanes), and then male vs. female samples were 

compared using a Student’s t-test. After adjusting for multiple testing (Bonferroni 

correction) candidates with p-values < 0.05 were retained (where coverage was 

lower in males compared to females). Criterion 3: Finally, the mean fold change in 

coverage was calculated between male and female samples, and only candidate 

SNPs within the range of 1.8 – 2.2 fold change were selected.  

 

A similarly stringent set of filtering criteria were implemented to filter 

autosomal loci. Criterion 1: For a given locus, at least one male and one female 

sample must be heterozygous. Criterion 2: First normalize the overall level of 

coverage as before and select candidates which show no significant difference in 

coverage between males and females (Student’s t-test: select SNPs with p-values > 

0.05). Criterion 3: Only candidate SNPs within the mean fold change range of 0.8 – 

1.2 were selected.  
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Overall, this yielded: n = 2,405 X SNPs and n = 26,447 A SNPs using the T. 

commodus assembly, n = 1,288 X SNPs and n = 34,010 A SNPs using the T. 

oceanicus assembly, and n = 1,838 X SNPs and 23,411 A SNPs using the combined 

assembly. The relatively low number of X-linked SNPs obtained (~4 – 9% of the 

overall SNPs) might be due to our conservative approach to filtering markers 

(putative X SNPs must pass all three filtering criteria), or a lower X diversity, which 

results in a small but high confidence set of X-loci . Loci that failed to be assigned to 

either the X or autosomal groups were omitted from further analyses ensuring a high 

confidence in the distinction between X and autosomal marker groups (Figure S2). 

To ensure our results were robust to the filtering procedure we varied the filtering 

thresholds by increasing the fold-change range and removing the p-value check 

(Table S3). To visualize the distinction between the X and A SNPs retrieved we 

plotted the fold-change and heterozygosity (males vs. females) for each SNP (Figure 

S2). We compared the results of the different filtering criteria based on the number of 

SNPs retrieved and downstream summary statistics such as FST and nucleotide 

diversity (Tables S4-6). Overall the results were highly consistent between the 

different filtering approaches. 

 

2.6 │ Population genetic structure 

We used a combination of approaches to test for introgressive hybridization and to 

characterise the pattern of genotypic variation within and between species. The 

ancestries of individuals were examined using FastStructure (Raj et al., 2014), which 

applies a Bayesian method to assign individuals to genetic clusters and estimate an 

admixture proportion for each individual. We first ran the analysis on the total dataset 
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(combined assembly) and then subsetted the data into species-specific groups to 

explore how genetic variation is distributed within each species. The analysis was 

run for K = 1-10 groups using simple priors (i.e. a flat beta-prior over population 

specific allele frequencies for each SNP) (Raj et al., 2014). The most likely number 

of groups (K) was assessed with the “chooseK.py” script from FastStructure, which 

identifies the range of K values that provide the lowest model complexity while 

maximizing the marginal likelihood and the minimum number of components needed 

to explain structure in the data. To detect fine-scale genetic structuring of 

populations, the analysis was rerun using logistic priors (i.e. a logistic normal 

distribution for each SNP used to estimate the population-specific allele frequency), 

based on the previously obtained most likely value of K. Multiple replicates (30 - 50) 

were run and the average from the top 25 most likely replicates was used. Admixture 

proportions were plotted using the “distruct.py” script. To further explore population 

genetic structure, principal component analysis (PCA) was applied using the R 

packages SNPRelate (Zheng et al., 2012) and Adegenet (Jombart et al., 2010). 

Individual scores were plotted to visualize the distribution of genetic diversity across 

populations, and the genetic relationships among populations of both species were 

visualized using hierarchical clustering trees for pairwise FST values. 

 

2.7 │ Comparison of genetic variation at autosomal and X-linked markers 

Genetic summary statistics were estimated for each population, including observed 

heterozygosity (Hobs), expected heterozygosity (Hs), and the inbreeding coefficient 

(FIS), using the R packages Adegenet (Jombart et al., 2011; Jombart, 2008) and 

Hierfstat (Goudet, 2005). Nucleotide diversity (π) was calculated per-site (SNP) 
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using VCFtools (--site-pi) (Danecek et al., 2011). This measure represents an 

approximation based on variant sites only. To account for sequence length including 

invariant sites, we standardized π per-population and per-species by overall SNP 

density from each of the four combinations of species and chromosome type (π per-

site/ (total sites/variable sites)) (Zhang et al., 2016). We report the standardized 

measure of π in our Results and Discussion although both measures resulted in very 

similar levels of X/A diversity (Table S7). Total diversity (πT) was partitioned into 

within-population diversity (πS) and between-population diversity (πB) (πB = πT – πS;  

Charlesworth, 1998). Genetic summary statistics for X and autosomal-loci estimates 

were based on female only datasets to avoid the influence of male hemizygosity. 

Pairwise population FST values were calculated using Hierfstat (Goudet, 2005), 

following the method of Weir & Cockerham, (1984). Significance of population 

comparisons was tested with 1,000 bootstraps (using the boot.ppfst function), and 

significance was inferred if the confidence intervals did not overlap zero. To test 

whether autosomal and X-loci differed in the pattern of differentiation we used one-

tailed Wilcoxon sum rank tests. We examined the relationship between population 

diversity (intra-population (πS) and total population diversity (πT)) and FST using an 

equation originally proposed by Hudson et al., (1992; eq. 3: FST = 1- πS / πT). 

 

Estimates of linkage disequilibrium (LD) were obtained using the R package 

Genetics (Warnes et al., 2013). Only SNPs that passed the following quality criteria 

(applied using VCFtools) were retained for LD estimation; only a single SNP per 

locus, no missing genotypes, minor allele frequency > 0.1 and an overall genotype 

quality score >20. This resulted in 437 X SNPs for T. oceanicus and 836 X SNPs for 

T. commodus. A large number of A SNPs passed the quality filtering for both species 
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but in order to reduce the number of pairwise comparisons a random subset of 1,000 

SNPs were selected from the quality filtered set. 

 We tested whether discordance between marker types could be explained by 

differences in the relative effective population size of the X by calculating expected 

values of FST at X markers using the formulas proposed by Ramachandran et al., 

(2004) and Ségurel et al., (2008). These formulas allow one to predict the expected 

level of differentiation at X-loci based on the observed autosomal values, given a 

particular breeding sex ratio and migration rate, according to Suppl. Eq. 1 & 2 

(Ségurel et al., 2008; Machado et al., 2015). Suppl. Eq. 1 & 2 and associated 

formulas are described in the Supplemental Formulas section of the Supporting 

Information. We checked whether pairwise FST values for autosomal loci were 

correlated with those for X-loci, using a Mantel test implemented in the R package 

ade4 (Dray & Dufour, 2007). Significance was based on 1,000 permutations. Sex-

biased dispersal may also alter the relative Ne of the X compared to autosomes, so 

we tested for this by comparing the average FST values at autosomal loci between 

males and females for both species (however this is a conservative approach as 

sex-biased dispersal would need to be strong and consistent to be detected using 

this method).  

 

2.8 │ Population demographic history 

To examine the demographic history of populations we used a composite likelihood 

approach implemented in Fastsimcoal2 (Excoffier and Foll, 2011). Fastsimcoal uses 

a coalescent-based approach to obtain the expected site frequency spectrum (SFS) 

under different demographic models and estimates the parameter combinations that 
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maximize the composite likelihood (Excoffier et al., 2013). In the absence of 

information on the derived allele state the minor allele frequency was used to 

calculate the folded SFS using a custom R script (available here: 

https://github.com/shenglin-liu/vcf2sfs). To increase the numbers of SNPs for better 

model fitting we examined single populations instead of joint populations. In addition, 

we selected 10 females per population which had the lowest amount of missing data. 

Only SNPs that passed the following quality criteria (applied using VCFtools) were 

retained for constructing the observed SFS; only a single SNP per locus, no missing 

genotypes, minor allele frequency > 0.05 and an overall genotype quality score >20. 

The number of monomorphic sites was calculated based on the total sequence 

lengths (reads which contained the quality filtered SNPs) minus the number of 

polymorphic sites (SNPs and linked sites which were removed prior to this analysis). 

After quality filtering we retained ~14,000 – 21,000 SNPs per population.  

 

Four different demographic models were compared for populations of both 

species: a simple model of a population of constant size, a second model of 

exponential growth, a third model of population contraction and a fourth model of a 

population bottleneck. For each model we conducted, 50 independent runs per 

population and 100,000 simulations (40 ECM cycles and a stopping criteria of 0.001) 

for maximum likelihood estimation. We used a mutation rate of 3.5 x 10-9 per 

generation (Keightley et al., 2009). The run with the highest maximum likelihood was 

used for parameter estimation and model comparisons. To test the sensitivity of our 

results to the mutation rate, we also estimated parameters based on a mutation rate 

of 2.5 x 10-8 for one of our study populations (AM). As expected this resulted in 

parameter estimates which differed in scale but most importantly the relative level of 
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population size change (NPOP/NANC) remained the same. To decide which 

demographic model fitted our data best we used AIC model comparisons and Akaike 

weights. 95% confidence intervals were estimated from 100 parametric bootstraps 

(20 runs and 100,000 simulations per simulated site frequency dataset).Our primary 

focus was on model comparison rather than parameter estimation as the absolute 

values for the latter may be sensitive to uncertainties such as the mutation rate.  

 

To test whether population size changes can account for the level of X/A 

diversity we calculated expected X/A diversity given a population size change using 

a formula proposed by Pool & Nielsen (2007) (Suppl. Eq. 3). The demographic 

parameter estimates (e.g. current effective population size, population size prior to 

the size change and the time in generations ago the size change occurred) were 

obtained from the models with highest likelihoods from Fastsimcoal. Under neutral 

assumptions the effective population size of the X is 0.75 and for autosomes is 1. 

Applying Suppl. Eq. 3 and adjusting the inheritance factor (h) we examined how 

changes in both the effective population size of these genomic regions and 

population size changes jointly impact X/A diversity.  

2.9 │ Geographic distribution of genetic variation 

We examined patterns of IBD at either X or autosomal loci by testing the relationship 

between pairwise population FST values and Euclidean geographic distances 

(estimated from each site’s latitude and longitude coordinates obtained from Google 

maps (https://www.google.co.uk/maps)) using Mantel tests in ade4 (Dray & Dufour, 

2007) using 10,000 permutations.  
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T. commodus and T. oceanicus could differ in their relationship with 

geographic distance and genetic divergence, i.e. patterns of IBD vary between 

species, so to test this we estimated and compared the frequency distribution of 

1,000 slopes and intercepts at autosomal and X-loci using the R package boot 

(Canty & Ripley, 2008; following the methods of Baselga, 2010). The probability of 

one species having a higher slope or intercept than the other, at autosomal versus 

X-loci, was estimated by examining the proportion of bootstraps for which one 

species had higher parameters than the other. To obtain p-values, we used the 

probability of obtaining the opposite result by chance by comparing the estimated 

distribution of parameters (Baselga, 2010). 

 

3 │ RESULTS 

3.1 │ Population genetic structure and the species boundary 

FastStructure analysis on the total dataset (16 populations; combined species 

assembly) revealed four genetic groups corresponding to three putative species and 

a north-south latitudinal gradient among T. commodus populations (Figure 2A). 

There was no evidence for recent species admixture among either T. commodus and 

T. oceanicus or T. oceanicus and T. marini, with a clear bimodal distribution of pure 

species individuals in sympatry (admixture proportions either > 0.9 or < 0.01) (Figure 

2B). An admixture proportion of ca. 0.5 would indicate F1 hybrids, while >0.25 and 

<0.75 would be classified as recent backcrosses (Pritchard et al., 2000; Raj et al., 

2014). Because sympatric individuals were clearly assigned to either T. commodus 

or T. oceanicus species groups, we subsetted the data into species-specific groups 

to further examine intraspecific population genetic structure. Intraspecific analyses 
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revealed that for both species, the most likely number of groups ranged between 2 – 

3 (Figure 2.C). T. commodus populations exhibited a clear latitudinal gradient of 

genetic variation distinguishing southern from northern populations. In contrast, there 

was no clear geographic structuring among T. oceanicus populations, with 

individuals from multiple populations sharing similar admixture proportions (one 

exception being the DV population; Figure 2.C). 

Principal components analysis clearly differentiated genotypic variation 

among the species along the first principal component (PC), which explained 18% of 

the variation in the data (Figure 3A). Individuals of the putative species T. marini 

clustered separately from the two other species. PC2 distinguished southern and 

northern populations of T. commodus, but accounted for only 1.18% of the variation. 

Sympatric individuals were clearly placed within the two main clusters, and there was 

no evidence of intermediates. In separate, species-specific analyses, PC1 and PC2 

accounted for far less genotypic variation (1-3%). Among T. commodus populations, 

PC1 distinguished southern from northern populations (Figure 3B), but T. oceanicus 

was less structured and showed considerable overlap among allopatric and 

sympatric populations (Figure 3C).  

 

3.2 │ Inflated X/A diversity 

Nucleotide diversity (πS) was slightly higher at X-loci compared to autosomal loci for 

T. commodus (X/A: 1.084 [95% CI: 1.069 – 1.099]; two-tailed Wilcoxon sum rank test 

W = 118, p = 0.0002) but lower at X-loci within T. oceanicus populations (X/A: 0.923 

[95% CI: 0.902 – 0.944; W = 6, p = 0.007) (Figure 4.i). Nevertheless, the ratio of X-

to-autosomal diversity (X/A) was significantly greater than the expected value of 0.75 
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(under neutral assumptions) for both species (T. commodus one-tailed Wilcoxon 

test, V = 66, p < 0.001; T. oceanicus : V = 36, p = 0.004). There was a non-

significant trend for between-population diversity (πB) to be lower at X-loci within both 

species (Table 1) (T. commodus: two-tailed Wilcoxon sum rank test; W = 80, p = 

0.211; T. oceanicus: W = 39, p = 0.495), possibly due to the overall low level of 

between-population diversity which is bounded at 0, and the large variance in the 

estimates. There was also a non-significant trend for the inbreeding coefficient (FIS) 

to be higher at X-loci among both species (T. commodus: two-tailed Wilcoxon sum 

rank test; W = 55.5, p = 0.768; T. oceanicus: W = 26, p = 0.574) (Table 1). Estimates 

of LD (r2 and D’) were very low for both species at X and A markers and there was 

no clear difference between marker types (Table S9). Similarly, there was no 

obvious difference in the site frequency spectrum (folded) for X and A markers in 

populations from both species groups (Figure S7). 

 

 

3.3 │ Population growth does not account for inflated X/A diversity  

There was a clear signal of population growth across the broad range of populations 

sampled (Table 3, S10). A model of exponential growth fitted best compared to 

models of constant population size, contraction or bottleneck, with most of the 

relative AIC weight assigned to the model of population growth (Table S10). 

Although there was not a large difference in support for the bottleneck and 

population expansion model (Delta AIC < 2), parameter estimates from the 

bottleneck model were consistent with those of the expansion model, indicating a 

similar level and timescale of population growth (Table S11). 
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The extent of population growth was not sufficient to account for the inflated 

X/A diversity (Figure 5). Adjusting the inheritance factor (h) (Suppl. eq. 3) to reflect 

an increase in the effective population size of the X revealed that sex-biased 

processes could have had a greater impact on X/A diversity (Figure 5). However, for 

T. commodus populations even after accounting for population size changes and an 

increased effective population size of the X, the observed X/A diversity was still 

higher than expected (X/A observed vs. X/A expected (given the pop size change 

and adjusted X inheritance factor of 0.95): two-tailed Wilcoxon sum rank test W =16, 

p =0.021). Demographic parameter estimates were roughly similar across 

populations suggesting a similar timing and rate of population growth (Table 3).   

 

3.4 │ Intraspecific differentiation is lower for X-loci 

Contrary to our prediction that X-loci would show more pronounced population 

genetic structuring compared to autosomal loci, there was a striking reduction in 

differentiation at X-loci among populations within each species (Figures 4.iii). The 

discordance between autosomal and X-linked markers was particularly pronounced 

among T. oceanicus populations, with all pairwise population comparisons showing 

reduced FST values at X-loci (one-tailed Wilcoxon sum rank test: H0: FST (A) = FST 

(X), H1 FST (A) > FST (X), W = 711.5, p < 0.001) (Figure S3). For autosomal loci, 

nearly all T. oceanicus populations were differentiated (albeit weakly) (average 

pairwise population FST = 0.018 [95% CI: 0.017 - 0.02]). In contrast, there was very 

little population structuring at X-loci (FST = 0.001 [-0.002 - 0.005]), with most pairwise 

population comparisons not significant (95% CIs overlapping with 0). Genetic 

differentiation was also lower at X-loci among T. commodus populations (FST (A) = 
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0.036 [0.034 - 0.037] vs. FST (X) = 0.018 [0.013 - 0.023]) (one-tailed Wilcoxon sum 

rank test: W = 2057, p < 0.001).  

The observed level of differentiation at X-loci was much lower than that 

expected under an equal sex ratio (r = 0.5) in both T. commodus (0.046 [95% CI: 

0.037 – 0.056]) (one-tailed Wilcoxon sum rank test: W = 2223; p < 0.001) and T. 

oceanicus (0.024 [0.016 – 0.032]) (W = 727; p < 0.001) (Figure 6). Sex-biased 

processes that increase the effective population size (Ne) of females (and therefore 

X chromosomes) should lead to reduced differentiation at X-loci, bringing it closer in 

line with the autosomes (Figure 6). However, even under an extreme female sex-

ratio bias (e.g. r = 0.9) and a strong female biased migration rate (e.g. mf/m = 0.9) 

expected differentiation at X-loci (T. commodus: 0.028 [95% CI: 0.022 – 0.034]; T. 

oceanicus : 0.014 [0.009 – 0.019]) is still significantly greater than our observed level 

in both species (T. commodus: one-tailed Wilcoxon sum rank test: W = 1891; p 

=0.012; T. oceanicus : W = 687, p < 0.001). Similarly, examining the relationship 

between population diversity (πS and πT) and FST using equation 3 from Hudson et 

al., (1992), the expected FST was also higher than that observed (Figure S4). Other 

factors may contribute to the discrepancy between the observed and expected level 

of differentiation such as the simplified assumptions of these models (based on 

Wrights infinite island model (Ségurel et al., 2008)) which strong isolation by distance 

(which we observe in this system) may violate. In addition we found no evidence to 

support strong sex-biased dispersal in either species as there was no difference in 

the average FST values at autosomal loci among males and females (Wilcoxon sum 

rank test: T. oceanicus, W = 398.5, p = 0.922; T. commodus W = 1570.5, p = 0.731) 

(however, this method is conservative as sex-biased dispersal would need to be 

strong and consistent for its signal to be detected using this approach).    



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Within each species, the strength of isolation by distance (IBD) differed 

between marker types (Figure 7, Tables 2, S9). However, this marker-associated 

difference in IBD was of greater magnitude in T. oceanicus populations than in T. 

commodus populations (Figure 7, Table 2). Within both species, IBD was stronger at 

autosomal loci compared to X-loci. There was a particularly strong reduction in 

differentiation among T. oceanicus populations for X-linked compared to autosomal 

loci, with significant positive IBD at autosomal loci (Mantel: r = 0.562, p = 0.016) but 

a weakly negative, non-significant association at X-loci (Mantel: r = -0.378, p = 

0.973). In contrast, genetic differentiation for both marker types among T. commodus 

populations exhibited a positive relationship with geographic distance, but while IBD 

was very strong for autosomal loci (Mantel test: r =0.916, p <0.001), it was weaker 

for X-loci (r = 0.495, p = 0.005).  

 

3.5 │ Interspecific differentiation is higher for X-loci 

In line with our main prediction, there was stronger differentiation between T. 

commodus and T. oceanicus at X-loci than at autosomal loci (Figures 4.vi, 6). 

Interspecific population comparisons resulted in an average pairwise population FST 

of 0.331 (95% CI: 0.324 – 0.336) at autosomal loci in contrast to 0.484 (0.461 – 

0.507) at X-loci (one-tailed Wilcoxon sum rank test: H0: FST (A) = FST (X), H1 FST (A) 

< FST (X), W = 7744, p < 0.001). Species differentiation at X-loci was greater than 

expected even after accounting for the reduced effective population size of the X 

(assuming an equal sex ratio by assigning r = 0.5 in Suppl. eq.1: expected FST (X): 

0.397 [0.394 – 0.4]) (X observed vs. X expected: W = 7734, p < 0.001). 
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The potential for species interactions between T. commodus and T. oceanicus 

appeared to influence X-linked differentiation: there was greater interspecific 

differentiation at X-loci in sympatry (FST: 0.523 [95% CI: 0.499 – 0.546]) than in 

allopatry (0.468 [0.445 – 0.490]) (one-tailed Wilcoxon sum rank test: W = 378, p < 

0.001) (Figure 4.vi). However, the sample sizes in sympatry, in particular for T. 

commodus, were relatively small so caution is advised when interpreting these 

differences. 

The greater differentiation between the species at X- compared to autosomal-

loci appears to be driven at least partially by a reduction in X diversity, particularly 

within T. oceanicus (Figure 4.iv). Nucleotide diversity (π) was substantially reduced 

at X-loci within T. oceanicus populations X/A: 0.634 [95% CI: 0.621 – 0.648]; two-

tailed Wilcoxon sum rank test W = 64, p < 0.001) but higher at X for T. commodus 

(X/A: 1.244 [95% CI: 1.226 – 1.262]; two-tailed Wilcoxon sum rank test W =121, p 

<0.001) when estimates were based on the combined species approach (see 

Methods 2.3). Importantly, the extent of the reduction in X diversity appears to be 

sensitive to the filtering method used (Figure 4.i - iv). In particular, X/A diversity 

among T. oceanicus populations was much lower when the SNPs were retrieved 

from the combined species pool of individuals (X/A: 0.634 [0.621 – 0.648]) (Figure 

4.iv), than when estimates were based on SNPs ascertained from only T. oceanicus 

individuals (0.923 [0.902 – 0.944]) (Figure 4.i). We elaborate on this potential 

ascertainment bias further in the Discussion.  
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4 │ DISCUSSION 

4.1 │ Opposing patterns of differentiation on the X at different scales 

Geographic areas where interfertile species overlap provide important testing 

grounds for determining how porous species boundaries are, and for identifying the 

main barriers to gene flow (Payseur & Rieseberg, 2016). We investigated genetic 

structure at autosomal and X-loci in two closely related field cricket species, T. 

commodus and T. oceanicus, to test predictions about the consistency of patterns in 

intra- versus inter-specific comparisons. Theory predicts reduced genetic diversity on 

X chromosomes and increased differentiation within and between species relative to 

autosomes, due to differences in the efficacy of selection and drift on these regions 

(Charlesworth et al., 1987; Betancourt et al., 2004; Vicoso & Charlesworth, 2006; 

Mank et al., 2010). In line with this prediction, we found greater species 

differentiation at X-loci even after accounting for their reduced effective population 

size (Figures 6). However, within species comparisons revealed an unexpected and 

striking pattern of reduced population differentiation at X-loci and higher than 

expected X-to-autosomal diversity (Figures 4, 5).  

The results from our intraspecific comparisons are counterintuitive and 

contradict most previous studies, which reported reduced diversity and higher levels 

of genetic differentiation for X-loci, both within and between species, across a range 

of taxa including humans (Ramachandran et al., 2004; Keinan et al., 2009; Amato et 

al., 2009; Lucotte et al., 2016), birds (Borge et al,, 2005; Ellegren et al., 2012; Ruegg 

et al., 2014; Lavretsky et al., 2015), butterflies (Martin et al., 2013), rabbits (Carneiro 

et al., 2010), and Drosophila (Ford & Aquadro, 1996; Andolfatto, 2001; Machado et 

al., 2016). However, there are some exceptions in which populations have been 
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found to exhibit higher levels of genetic differentiation at autosomal loci, and in which 

X/A diversity is greater than expected, notably in African populations of humans 

(Ségurel et al., 2008; Hammer et al., 2008) and Drosophila (Andolfatto, 2001; Nolte 

et al., 2013; Machado et al., 2016; Sedghifar et al., 2016).  The magnitude of 

discordance in the level of differentiation at X and autosomal markers in our study, in 

particular in T. oceanicus, is much greater than the exceptions listed above.  

An important consideration is whether our use of FST as a measure of 

divergence could have confounding effects on estimates of divergence, as it is a 

relative measure and thus dependent on the proportion of within- and between-

population variation (Charlesworth, 1998; Jakobsson et al. 2013; Cruickshank & 

Hahn, 2014). Low levels of within-population diversity could inflate FST, whereas high 

diversity could reduce FST (Cruickshank & Hahn, 2014). We therefore considered 

whether the reduced differentiation among populations within species at X-loci could 

be due to higher than expected X diversity within populations? In T. commodus, 

intra-population diversity was slightly higher at X-loci compared to autosomal loci 

(X/A: 1.084 [95% CI: 1.069 – 1.099]). This higher diversity is likely to contribute to 

the reduced differentiation at X-loci, which was 2 times lower than at autosomal loci 

(mean FST X: 0.018 [0.013 – 0.022], A: 0.036 [0.034 – 0.037]) while between 

population diversity was 1.6 times lower (mean πB X: 0.142 x 10-4, A: 0.232 x 10-4). 

Therefore among T. commodus populations higher intra-population diversity could 

contribute to the reduced X differentiation. In contrast, nucleotide diversity within T. 

oceanicus populations, was lower at X-loci compared to autosomal loci (X/A: 0.922 

[95% CI: 0.902 – 0.944]). While between-population X diversity was 5.2 times lower 

(X: 0.243 x 10-5, A: 0.126 x 10-4) and X differentiation was 18 times lower (X: 0.001 [-

0.002 – 0.005], A: 0.018 [0.017 – 0.02]). As X diversity is lower within T. oceanicus 
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populations compared to autosomal loci the reduced X differentiation is unlikely to be 

solely an artefact of within population diversity. Overall, X/A diversity was inflated 

above neutral expectations in both species. 

In contrast, for inerspecific comparisons, could the greater species 

differentiation at X-loci be an artefact of reduced X diversity? Analysis based on 

SNPs retrieved from the combined species pool revealed substantially lower intra-

population diversity at X compared to autosomal loci for T. oceanicus ; (X/A: 0.634), 

but the opposite for T. commodus (X/A: 1.244) (Figure 4.iv). Between-species 

diversity was 1.6 times higher at X- compared to autosomal loci (mean πB: X: 0.2 x 

10-3 , A: 0.13 x 10-3) while species differentiation was 1.46 times higher (mean X FST: 

0.484 [95% CI: 0.459 – 0.508]; A FST:0.331 [0.324 – 0.336]) (Figure 4.vi). This 

suggests that the reduced X diversity within T. oceanicus populations drives the 

greater species differentiation at X-loci. We discuss below whether the reduced X 

diversity for T. oceanicus might reflect an ascertainment bias during SNP filtering.   

Technical problems such as null alleles or paralogous loci are an important 

consideration in any RADseq study as they can potentially lead to biased diversity 

estimates (Gautier et al., 2013; Arnold et al., 2013). Null alleles may lead to an 

excess of homozygous loci as any individual that is heterozygous at a SNP 

associated with a null allele will be classified as a homozygote for the alternate 

successfully digested allele. A high level of null alleles is expected to bias diversity 

estimates downwards (heterozygous deficit), whereas paralogues are expected to 

inflate diversity estimates (heterozygous excess). In our study, removal of loci which 

significantly deviated from HWE did not affect our overall results or conclusions 

(Tables S3-4). 
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Another important consideration is the ascertainment of SNPs. As RADseq 

data can be highly variable in the amount of missing data, different sets of variants 

might be retrieved when SNPs are retrieved from the combined species pool of 

individuals (for the interspecific analysis; Figure 4.iv-vi) or from the smaller species 

specific groups (intraspecific analyses Figure 4.i-iii) due to filtering thresholds on the 

amount of missing data per SNP (in our analysis a valid SNP must be present in at 

least 80% of the individuals). The amount of missing data can influence the 

estimates of summary statistics such as π and theta (Gautier et al., 2013), although 

FST has been suggested to be more reliable (Arnold et al., 2013). In our study, there 

was a discrepancy in the estimate of X/A diversity, in particular among T. oceanicus, 

depending on whether SNPs were ascertained from the combined species group or 

the smaller species specific groups. X/A diversity among T. oceanicus populations 

was much lower when the SNPs were retrieved from the combined species pool of 

individuals (X/A: 0.634 [0.621 – 0.648]), than when estimates were based on SNPs 

ascertained from only T. oceanicus individuals (0.923 [0.902 – 0.944]) (Figure 4.i-iv). 

This suggests an ascertainment bias when retrieving X SNPs from the combined 

species pool, leading to an underestimation of X diversity among T. oceanicus. This 

bias is not due to the disproportionately greater number of samples from T. 

commodus compared to T. oceanicus (265 vs. 200) or the assembly method used 

(combined species assembly vs. species specific assemblies) (Table S12) but 

instead is due to the quality filtering criteria which removes variants that are not 

present in at least 80% of the individuals and that have a minor allele frequency 

greater than or equal to 0.05 (Figure S5). The fact that X diversity was 

disproportionately reduced in T. oceanicus in the combined species analysis 

supports the conclusion of greater species divergence at X-loci.  Overall, SNPs that 
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were ascertained based on the species-specific groups (i.e. those used in the 

intraspecific analyses) are likely to provide more reliable estimates of within species 

X/A diversity. Analyses based on the species specific SNP datasets strongly support 

the conclusion that X/A diversity is inflated for both species. 

 

4.2 │ Evolutionary processes driving X/A patterns at different scales 

What factors could contribute to the apparently contradictory pattern of greater 

differentiation between species but lower differentiation within species at X-loci? 

Greater species differentiation at X-loci, in particular among sympatric populations 

(Figure 4.vi), may reflect an important role for X chromosomes in reproductive 

isolation (Nachman & Payseur, 2012; Martin et al., 2013 but see Cruickshank & 

Hahn, 2014). This is supported by numerous hybrid zone studies which show greater 

differentiation and reduced introgression at X-loci (Payseur et al., 2004; Teeter et al., 

2010; Carneiro et al., 2010; Maroja et al., 2015) possibly due to a greater role for X 

chromosomes in hybrid incompatibilities (Masly & Presgraves, 2007). However, in 

our study system, there was no evidence for recent gene flow between the species 

across a broad area of sympatry (Figure 2). Although small amounts of introgression 

or ancestral periods of species admixture may have occurred, these would require 

more in-depth demographic modelling to account for. The absence of recent 

hybridization suggests strong assortative mating (or fertilization) and/or habitat 

segregation (Jiggins & Mallet, 2000). A combination of both pre and post-mating 

barriers have been detected in Teleogryllus spp., including reduced courtship 

behaviour (Hill et al., 1972; Hennig & Weber, 1997; Bailey & Macleod, 2013; Moran, 

2017) and hybrid female sterility (Moran et al., 2017). Stronger selection on the X in 
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sympatry possibly driven by species interactions (e.g. character displacement) might 

have contributed to the greater species differentiation at X-loci in sympatry. 

Deviations from expected neutral patterns of diversity of sex and autosomal 

markers are usually interpreted as resulting from selection or demographic effects 

that alter the Ne of these genomic regions (Charlesworth, 2001; Vicoso & 

Charlesworth, 2006; Emery et al., 2010; Garrigan et al., 2014). For example, sex-

biased processes, such as occur due to sex differences in adult mortality and fertility, 

can alter the relative effective population size of X and autosomal regions 

(Charlesworth, 2001). In Teleogryllus, a number of different processes acting 

together might have contributed to the higher than expected level of X/A diversity. In 

particular, strong sexual selection and a high variance in male reproductive success 

would increase the female effective population size, which could dramatically inflate 

the relative genetic diversity of X chromosomes (Figure 5) (Charlesworth, 2001; 

Hammer et al., 2008). In line with this, previous studies have shown that males of 

both Teleogryllus species mate multiply and there is a strong skew in reproductive 

success, with the bias being higher in T. oceanicus (Simmons & Beveridge, 2010). 

Sex-biased dispersal can also alter the relative Ne and genetic variation at X and 

autosomal loci. If females dispersed more frequently than males this could equalize 

the level of X/A divergence among populations and increase the relative genetic 

diversity of the X (Ellegren, 2009). However, we found no evidence for strong 

female-biased dispersal for either of the species (although, a sex-bias in dispersal 

would need to be strong and consistent to be detectable in comparisons between the 

sexes at autosomal loci). In addition, sex-biased dispersal is unlikely to uniformly 

influence X/A diversity across all populations (Laporte & Charlesworth 2002; 

Hammer et al., 2008). As the pattern of reduced differentiation at X loci is consistent 
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across populations (Figure 7), it suggests the driving factor is likely to be common 

across the species range rather than a localized environmentally induced effect. 

Population size changes are expected to differentially affect the relative X/A 

diversity (Pool & Nielsen, 2007). Recent population bottlenecks are expected to lead 

to lower-than-expected levels of X/A diversity, whereas population expansions tend 

to equalize levels of X/A diversity (Hammer et al., 2008). Demographic models 

strongly supported population expansions across the range of both Teleogryllus 

species (Table S9) with roughly similar estimates for the timing and scale of 

population growth (Table 3). However, the magnitude of population size changes 

were not strong enough to account for the inflated X/A diversity we observed (Figure 

5).  

Both species are likely to have undergone cycles of inter-glacial contractions 

and expansions and  more recent population shifts due to human disturbances 

(Chapple et al., 2011; Moritz et al., 2009; Singhal & Moritz, 2013), In the wet tropics 

of northeastern Australia, where we encountered the third putative species T. marini, 

an unusually high level of cryptic species diversity has been characterized, mainly in 

amphibians and reptiles, and appears to be due to the repeated sequestration of 

species ranges into mesic refugia during glacial periods, followed by population 

expansions during interglacials (Hilbert et al., 2007; Moritz et al., 2009; Singhal & 

Moritz, 2013). A previous study by Cairns et al., (2010) found evidence for a recent 

population expansion in a T. commodus population from New South Wales which 

they suggested was due to recent human disturbance and the expanse of 

agricultural land. The approximate estimated time of population expansion for our 

study populations is 37,500 generations ago, which predates recent human 

disturbance in Australia. However, caution is advised interpreting parameter 
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estimates as absolute values depend on the mutation rate which is unknown for our 

study species (using a mutation rate of 2.5 x 10-8 we obtain a time of expansion of 

~4,900 years ago for AM population). 

Finally, background selection (selection against deleterious mutations) is 

predicted to disproportionately reduce autosomal diversity as the autosomes contain 

a higher frequency of deleterious recessive mutations (Charlesworth, 1996; 

Betancourt et al., 2004). Such effects are generally expected not to be large, as the 

strength of background selection is dependent on rates of recombination, with the 

strongest effect in regions of low recombination (Charlesworth, 1996; Hammer et al., 

2008). Autosomes are often expected to experience higher recombination than X 

chromosomes as male hemizygosity restricts X recombination to females. However, 

in many insect species, most notably Drosophila and Lepidoptera (reviewed in 

Wright et al., 2016; Stapley et al., 2017), but also in some Orthopterans (White 

1965), recombination only occurs in the homogametic sex which would lead to more 

similar rates of recombination between X and autosomal regions (Betancourt et al., 

2004). In cases where recombination is restricted to the homogametic sex linked-

selection can lead to inflated X/A diversity (greater than 1 when variants under 

selection are dominant) (Betancourt et al., 2004). In our study species the lack of a 

clear difference in linkage disequilibrium between X and A loci suggests 

recombination rates may be similar between both marker types (Table S9), but the 

potential impact of background selection is difficult to quantify without knowledge of 

sex-specific recombination rates and the selection and dominance coefficients of loci 

under selection. Ancestral selective sweeps on the X could also have contributed to 

the reduced X differentiation if the same variants were selected or spread across 

populations (Nolte et al., 2013). Different selective sweeps on the X within both 
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species could contribute to the greater species differentiation at X-loci. However, 

recent or frequent bouts of sweeps on the X would be expected to lower the relative 

X/A diversity (<0.75), which was not the case (Garrigan et al., 2014). 

 

5 │ CONCLUSIONS 

Sex chromosomes are predicted to exhibit reduced diversity and greater divergence 

between species and populations compared to autosomes, due to differences in the 

efficacy of selection and drift on these regions (reviewed in Schaffner et al., 2004, 

Vicoso & Charlesworth, 2006, Ellegren et al., 2009; Mank et al., 2010). Here we 

compared genetic variation at X and autosomal loci within and between two 

Australian Teleogryllus field cricket species and quantified the relative diversity and 

divergence of putative X and autosomal markers. Our results are unusual in two 

respects. Although X-loci in interspecific comparisons exhibited increased 

differentiation compared to autosomes, in line with previous theoretical and empirical 

evidence, in intraspecific comparisons population differentiation was substantially 

reduced at X loci compared to autosomes, contrary to expectation. Moreover, 

intraspecific analyses revealed higher than expected (under neutral assumptions) X-

to-autosomal diversity (X/A). These features are consistent with a prominent role for 

X loci in the development of barriers to reproduction. 

 Most studies that detect deviations from neutral expectations of X/A 

divergence tend to find reduced X diversity accompanied by increased population 

differentiation compared to autosomes, in contrast to our findings. Sex-biased 

processes, such as strong sexual selection and a high variance in male reproductive 

success are likely to have played an important part in the higher than expected level 

of X/A diversity in Teleogryllus spp. Although populations of both species have 
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undergone recent population expansions roughly straddling the Pleistocene-

Holocene boundary (17,000 – 5,000 B.P. depending on mutation rate), the strength 

of these size changes were not sufficient to account for the inflated X/A diversity. 

Further work should examine whether other demographic and selective process, 

which can alter the relative diversity of autosomes and X chromosomes, such as 

sex-biased dispersal or background selection also contribute to the unexpected level 

of X/A diversity in Teleogryllus spp. Research into the causes and consequences for 

the inflated X/A diversity in these species might provide important insights into the 

processes involved in the evolution of X chromosomes, and their contributions to the 

establishment and maintenance of reproductive isolation. 
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Figure 1 │ Species distributions and DNA sampling sites in Australia 

T. oceanicus is found across the north (represented by light grey area), while T. 
commodus (dark grey areas) is mainly restricted to the south-eastern coast, but has 
also been documented in the south west (Otte & Alexander, 1983; Bailey et al., 
2017). Both species overlap in an area ~400km long on the mid-eastern coast in 
Queensland (wavy white lines). Orange squares indicate allopatric populations of T. 
oceanicus, green diamonds represent sympatric populations of both species, and 
blue circles indicate allopatric populations of T. commodus. The red dot in the north 
indicates the site where we encountered and sampled the putative closely-related 
species T. marini (Otte & Alexander, 1983). Two-letter population codes and 
sampling details correspond to populations described in Table S1, Supporting 
Information. 
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Figure 2 │ Population genetic structure within and between Teleogryllus 

species 
Plots of individual assignments to the inferred genetic clusters for the most probable 
K-values for different data subsets. Populations are arranged in latitudinal order from 
south (left) to north (right). (A) Combined species assembly for all populations (n = 
478, SNPs = 36,566, K = 4). (B) Subset of sympatric populations (n = 127, SNPs = 
60,841, K = 2 or 3). (C) Fine scaled analysis of intraspecific allopatric and sympatric 
population genetic structure based on species-specific data subsets in which 
individuals were assigned to either species group based on the initial analysis (T. 
commodus : n = 269, SNPs = 38,121; T. oceanicus : n = 195, SNPs = 41,928, K = 2 
or 3).   
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Figure 3 │ Genome-wide population genetic structure inferred across 
populations and species of Teleogryllus 
PCA for three different data sets. (A) Both species encompassing 16 populations 
(combined assembly: n = 470, SNPs =39,238 (LD-pruned SNPs 23,393)). The LD-
pruned SNPs reflects the SNPs retained after removing loci in high linkage 
disequilibrium. The three clusters correspond to the putative species: T. commodus, 
T. oceanicus and T. marini. (B) T. commodus individuals from 11 populations, 
encompassing 8 allopatric and three sympatric populations (T. commodus assembly; 
n = 265, SNPs = 40,728 (LD-pruned SNPs 26,742). (C) T. oceanicus individuals 
from 7 populations (T. oceanicus assembly; n = 200, SNPs = 44,941 (LD-pruned 
SNPs 27,350). Each point represents an individual cricket and colours correspond to 
sampling sites.  
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Figure 4 │ Genetic diversity and differentiation within and between 
Teleogryllus species at X and autosomal loci 

To compare genetic diversity within and between species two SNP datasets were 
used which differ in the assembly and filtering protocol (detailed in methods section). 
Species specific approach: i) πS is the within population diversity ii) πB is the 
between population component of diversity within each species. iii) FST among 
populations within each species. Intraspecific FST between allopatric and sympatric 
regions are omitted for clarity. Combined species approach: iv) πS v) πT as above 
with mean values from allopatric and sympatric regions for both species shown. v) 
FST between species. Mean values from allopatric and sympatric regions for both 
species shown. Error bars indicate 95% confidence intervals. 
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Figure 5 │ Observed and expected X/A diversity within T. commodus and T. 

oceanicus populations 

The observed and expected X/A diversity given changes in population size and Ne 

for X-loci. The expected X/A diversity was calculated based on demographic 

parameters estimated using Fastsimcoal (current effective population size and the 

intensity of a population size change) and equations proposed by pool & Nielsen, 

(2007) which relate population size changes to X/A diversity (Suppl. Eq. 3). In 

addition, we adjusted the inheritance factor (h1) for X-loci to encompass other 

processes which might alter the relative effective population size (Ne) of X and 

autosomal genes. We calculated expected X/A diversity using three different values 

of h1, representing differences in the female effective population size. Under neutral 

assumptions of an equal sex-ratio of breeding individuals h = 0.75, whereas higher h 

values (e.g.  h = 0.85 - 0.95) represent a large female-biased Ne. The dashed line 

indicates the expected neutral level of X/A diversity 0.75. Comparisons are based on 

a subsample of populations, encompassing the broad geographical range of both 

species. 
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Figure 6 │ Observed and expected differentiation at X-loci within and between 
T. commodus and T. oceanicus  
The expected mean FST for X-markers was calculated based on autosomal FST given 
a particular effective population size (Ne) and female-biased migration rate, using 
formulas proposed by Ramachandran et al., (2004) and Ségurel et al., 2008 (Suppl. 
Eq. 1, Eq. 2, Supporting Information). We calculated expected FST for X loci using 
three different values of r (the female fraction of the effective population size), 
encompassing the full range of sex ratios: r = 0.5 for an equal mix of males and 
females, r = 0.9 for an extreme female bias, and r = 0.1 for an extreme male bias. In 
addition, we examined the effect of a strong female-biased migration rate (mf=0.9). 
Interspecific FST values (left panel) were based on comparisons between eleven T. 
commodus populations (three of which are sympatric) and eight T. oceanicus 
populations (four are sympatric), whereas intraspecific FST values (right panel) were 
based on comparisons among the respective populations within each species. Error 
bars indicate 95% confidence intervals. 
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Figure 7 │ Isolation by distance in both species for X and autosomal markers 
Relationship between population genetic differentiation (mean FST) and geographic 
distance (Euclidean) at autosomal and X-linked markers (left and right columns, 
respectively) for T. commodus and T. oceanicus (top and bottom rows, respectively). 
Comparisons between the species for the slopes and intercepts are in the 
supplementary (Table S10).  
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Table 1 │ Population genetic summary statistics for autosomal and X-loci 

Ho is the observed heterozygosity, total nucleotide diversity (πT) was partitioned into 

within-population diversity (πS) and the between-population component (πB). FIS is 

the inbreeding coefficient, which can range from -1 to 1 (low inbreeding - high 

inbreeding, respectively). The ratio of X to autosomal diversity (X/A) is provided and 

the 95% confidence intervals (CI) are in parentheses. Mean FST is shown, with 95% 

CI based on 1,000 bootstraps in parentheses. “Area” indicates allopatry (“allo”) or 

sympatry (“sym”). Based on the A1 and X1 filters and only females were included to 

avoid bias introduced by male hemizygosity. 

 

   (♀) Autosomal  loci X-linked  loci 

 Pop 

 

Area n 

 

 

Ho πS FIS Ho πS FIS 

T
. 
c
o

m
m

o
d

u
s

 

AM Allo 16 0.213 0.529 x  10-3 0.063 0.223 0.578 x  10-3 0.076 
BN Allo 17 0.223 0.526 x  10-3 0.027 0.233 0.569 x  10-3 0.032 
CC Allo 17 0.215 0.552 x  10-3 0.094 0.224 0.581 x  10-3 0.085 
MV Allo 16 0.215 0.547 x  10-3 0.083 0.233 0.595 x  10-3 0.067 
BL Allo 17 0.200 0.519 x  10-3 0.097 0.203 0.548 x  10-3 0.102 
CH Allo 13 0.205 0.494 x  10-3 0.044 0.217 0.545 x  10-3 0.058 
UQ Allo 10 0.206 0.515 x  10-3 0.062 0.209 0.555 x  10-3 0.088 
SV Allo 17 0.203 0.526 x  10-3 0.101 0.215 0.559 x  10-3 0.083 
HB Sym 3 0.197 0.510 x  10-3 0.049 0.216 0.562 x  10-3 0.043 
TS Sym 6 0.197 0.526 x  10-3 0.107 0.205 0.564 x  10-3 0.112 
RH Sym 4 0.198 0.494 x  10-3 0.028 0.217 0.562 x  10-3 0.054 

 Mean  0.207 0.522 x  10-3 0.069 0.218 0.565 x  10-3 0.073 
 πT   0.543 x  10-3   0.578 x  10-3  
 πB   0.232 x  10-4   0.142 x  10-4  
 X/A (πS)  1.084 (1.069 – 1.099)    
 FST  0.036 (0.034 – 0.037) 0.018 (0.013 – 0.022) 

  
  
  
 T

. 
o

c
e
a
n

ic
u

s
 

HB Sym 12 0.218 0.622 x  10-3 0.105 0.494 

x  10-3 

0.593 x  10-3 0.133 
TS Sym 11 0.221 0.617 x  10-3 0.082 0.515 

x  10-3 

0.578 x  10-3 0.085 
RH Sym 12 0.219 0.624 x  10-3 0.103 0.526 

x  10-3 

0.571 x  10-3 0.084 
YP Sym 17 0.219 0.632 x  10-3 0.122 0.510 

x  10-3 

0.576 x  10-3 0.104 
PL Allo 15 0.227 0.607 x  10-3 0.054 0.526 

x  10-3 

0.527 x  10-3 0.067 
JC Allo 17 0.215 0.622 x  10-3 0.121 0.494 

x  10-3 

0.561 x  10-3 0.107 
DV Allo 15 0.220 0.556 x  10-3 0.011 0.212 0.537 x  10-3 0.033 
KH Allo 8 0.216 0.599 x  10-3 0.075 0.171 0.559 x  10-3 0.203 

 Mean  0.219 0.610 x  10-3 0.084 0.202 0.563 x  10-3 0.102 
 πT   0.622 x  10-3   0.566 x  10-3  
 πB   0.126 x  10-4   0.243 x  10-5  
 X/A (πS)  0.923 (0.902 – 0.944)    
 FST  0.018 (0.017 – 0.020) 0.001 (-0.002 – 0.005) 

 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 2 │The strength and significance of correspondence between 

autosomal and X-loci and tests for isolation by distance 

Species Marker n SNPs A vs. X Geographic association 

T. com Autosomal 265 26447 r = 0.535, p = 0.004** r = 0.916, p < 0.001*** 

 X-linked 265 2405  r = 0.495, p = 0.005** 

T. oc Autosomal 200 34010 r = -0.227, p = 0.821 r = 0.562, p = 0.016 * 

 X-linked 200 1288  r =  -0.378, p = 0.973 

Significance tested using 10,000 permutations (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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Table 3. │Demographic parameter point estimates and 95% confidence intervals 

in parentheses calculated in Fastsimcoal2 

Pop SNPs NPOP NANC TEXP 
 

NPOP/NANC 

AM 16992 363213 36445 34776  9.97 

  

360565.3 - 364606.1 36228.7 - 36643.7 34551.7 - 34897.4  

MV 21666 351480 39250 35139 

 

8.95 

  

347863.2 - 351955.9 38949.5 - 39364.9 35029.8 - 35383.6  

CH 16370 350943 27536 40774 

 

12.74 

  

348602.3 - 352647.5 27181.1 - 27590.0 40696.3 - 41108.8  

TS 18731 373993 38598 34627 

 

9.69 

  

369303.8 - 373741.1 38394.1 - 38846.7 34435.5 - 34824.3  

HB 19007 294634 43362 39854 

 

6.79 

  

292443.6 - 294913.5 43116.8 - 43621.3 39610.8 - 40141.9  

YP 19712 308630 48041 37717 

 

6.42 

  

305470.3 - 309170.1 47493.3 - 48021.3 37692.8 - 38239.4  

JC 18865 289760 42935 42274 

 

6.75 

  

286936.2 - 289770.7 42583.4 - 43116.6 42074.4 - 42663.5  

DV 14793 482748 34621 35108 

 

13.94 

  

475546.4 - 481149.8 34367.6 - 34743.3 35042.54 - 35351.1  

Demographic parameter estimates are from the model with the highest likelihood 

which in our case was a model of population expansion. NPOP is the current 

effective population size, NANC is the ancestral population size and TEXP is time in 

generations ago when exponential growth started. 95% confidence intervals were 

estimated from 100 parametric bootstraps (20 runs and 100,000 simulations per 

simulated site frequency dataset).  

 

 

 


