
Title dashc: a highly scalable client emulator for DASH video

Authors Reviakin, Aleksandr;Zahran, Ahmed H.;Sreenan, Cormac J.

Publication date 2018-06

Original Citation Reviakin, A., Zahran, A. H., and Sreenan, C. J. (2018) 'dashc: a
highly scalable client emulator for DASH video', Proceedings of
ACM Multimedia Systems Conference (MMSys 2018), Amsterdam,
The Netherlands, 12 - 15 June.

Type of publication Conference item

Link to publisher's
version

http://www.mmsys2018.org, http://www.mmsys2018.org/
program/accepted-papers/

Rights © Owner/Author ACM 2018. This is the author's version of
the work. It is posted here for your personal use. Not for
redistribution.

Download date 2024-09-06 08:44:24

Item downloaded
from

https://hdl.handle.net/10468/6408

https://hdl.handle.net/10468/6408

dashc: a highly scalable client emulator for DASH video

Aleksandr Reviakin
Dept. of Computer Science

University College Cork
Cork, Ireland

ar11@cs.ucc.ie

Ahmed H. Zahran
Dept. of Computer Science

University College Cork
Cork, Ireland

a.zahran@cs.ucc.ie

Cormac J. Sreenan
Dept. of Computer Science

University College Cork
Cork, Ireland
cjs@cs.ucc.ie

ABSTRACT
In this paper we introduce a client emulator for

experimenting with DASH video. dashc is a standalone, compact,
easy-to-build and easy-to-use command line software tool. The
design and implementation of dashc were motivated by the
pressing need to conduct network experiments with large
numbers of video clients. The highly scalable dashc has low CPU
and memory usage. dashc collects necessary statistics about
video delivery performance in a convenient format, facilitating
thorough post hoc analysis. The code of dashc is modular and
new video adaptation algorithm can easily be added. We
compare dashc to a state-of-the art client and demonstrate its
efficacy for large-scale experiments using the Mininet virtual
network.

CCS CONCEPTS
• CCS → Computing methodologies → Modeling and
simulation → Simulation support systems → Simulation tools;
CCS → Information systems → Information systems
applications → Multimedia information systems → Multimedia
streaming

KEYWORDS
DASH, video client emulator, video player, headless player,
scalability, network performance

ACM Reference format:

A. Reviakin, A. Zahran, C. Sreenan. 2018. Open Dataset &
Software Track. ACM Multimedia Systems Conference,
Amsterdam, Netherlands, June 12 – 15 2018 (MMSys’18), 6 pages.

1 INTRODUCTION
IP video traffic is growing at unprecedented rates and is

expected to account for 82% of the total Internet traffic by 2021
[1]. In this context, video delivery systems should be designed to
ensure satisfactory performance, even with significant growth in
the volumes and numbers of users. Of special interest is the

behaviour of DASH video players1 when sharing a network
bottleneck link, and implications for fairness, stability and
quality of experience. MPEG DASH (Dynamic Adaptive
Streaming over HTTP is the dominant standard for video
streaming [7].

Network researchers and engineers have a requirement to be
able to fully validate their DASH video solutions prior to
deployment. The evaluation of large-scale networked systems
can be conducted using physical testbeds. While offering a high
degree of realism, this approach is usually expensive in both
time and equipment costs, is difficult to maintain, and does not
offer a controlled environment in which experiments can be
confidently repeated. Reducing the cost of large-scale testbeds by
using cheap computing nodes has been explored [8, 20]. For
instance, Kleinrouweler et al. [8] run twenty DASH clients per
Raspberry-Pi to create a six-hundred client experiment.

Recently, novel network emulation tools, such as Mininet
[15], have evolved to enable implementation of realistic
networks in a single machine. However, experimenting with a
large number of resource-demanding applications, such as video,
could saturate the available computing and memory resources.
Hence, there is a need for developing a highly scalable DASH
video client, suitably instrumented to support controllable
experimentation of large-scale video systems.

In this paper, we present dashc, a new, light-weight DASH-
compatible video streaming client, which has low system
requirements and at the same time provides necessary data for
analysis of the streaming sessions. dashc supports a set of
published video adaptation algorithms (conventional [2], BBA-0,
BBA-1, BBA-2 [3], ARBITER [4]). Our scalability test comparison
of dashc and the state-of-the-art TAPAS tool [9] shows that for
the same number of video clients, dashc uses ~20% less RAM and
2-3 times less CPU. To demonstrate dashc we evaluate it running
with Mininet for 100 clients. To the best of our knowledge, there
are no similar published experiments at that scale on a single
machine.

In Section 2 we summarise the DASH standard and state-of-
the-art players and tools. Section 3 explains the design and
implementation of dashc, focusing on its inherent scalability,

1 In line with convention, we use the terms “client” and “player” interchangeably.

MMSys’18, June 2018, Amsterdam, Netherlands A. Reviakin et al.

2

extensibility and modularity. Section 4 uses dashc to explore the
behaviour of many clients sharing a network bottleneck. Section
5 concludes.

2 BACKGROUND AND RELATED WORK
In the MPEG DASH standard a video file is split into many

small segments of the same duration, usually 2/4/6/8/10 seconds
each [7]. Every segment is encoded in a set of representations
that are defined by the video resolution and average video
bitrate. The structure of each media file is described in a MPD
(media presentation description) file, an XML-compatible
document. When a video client wants to play a movie it firstly
downloads a corresponding MPD file and then the client’s video
adaptation algorithm is responsible for requesting the most
appropriate representation for each segment throughout the
playback.

Test tools related to DASH video streaming can be split into
three categories, depending on whether a client decodes and
displays video. Regular clients decode and display, e.g. GPAC
[10], ExoPlayer [21]. Hybrid clients allow the user to select
whether video is decoded/displayed, e.g. TAPAS [9]. Others do
not support decode/display, e.g. AStream [11], dashc. Obviously,
the players with no decoding/display have much lower system
requirements. Tools vary also in regard to their degree of
support for experimentation through logging, and extensibility
to add new video adaptation algorithms.

A well-known state-of-the-art tool is TAPAS. The main goal
of TAPAS is to allow researchers to focus on development of
video adaptation algorithms and be able to easily reproduce
experiments. TAPAS is written in Python. It was tested with two
sets of DASH datasets. We note that TAPAS suffers from
compatibility problems, being unable to parse DASH datasets
(MPD file) generated by GPAC project [10]. The incompatibility
is likely caused by the fact that the parser for MPD files was
written before appearance of ISO/IEC 23009-1:20142. AStream
has similar compatibility issues.

In [13] the vertically integrated simulation framework for
HTTP-based adaptive streaming applications was presented. The
authors focused on three common issues, which appear in
research on the topic of HTTP-based streaming technologies.
The first is the use of unrealistic network environments. The
second is the lack of comparability with other studies. The third
is focusing on a narrow subset of possible parameter
configurations. The framework has a client module, adaptation
algorithm module and server module. The main purpose of the
client module is a simulation of a playback: downloading a MPD
file and requesting next segments, collaborating with an
adaptation algorithm module in order to get the next
representation index according to the chosen adaptation
algorithm. The adaptation algorithm module implements a video
adaptation algorithm. The server manages the connected clients
and serves their requests. All of these modules are integrated
into the ns-3 simulator which supports many wireless and wired

2 http://dashif.org/conformance.html

networks [22]. There is no real playback in this framework
which means there is no need for actual video content, or to deal
with scalability issues.

In [14] the authors described AdViSE, another vertically
integrated emulation framework. AdViSE is made for automated
testing of media clients. The backbone of this framework is
Mininet. The Selenium server is used as a testing framework to
automatically conduct experiments with available media players
within a web browser. The system includes nine JavaScript
media players. AdViSE consists of three servers: the first
contains video content and MySQL database for storing
performance measurements, the second one contains Mininet
and the third one is used for a web management interface for
configuring experiments and presenting real-time information.
One of the features of this framework is to provide two quality
of experience (QoE) metrics based on the number of stalls, total
stalling time, stalling frequency, average duration of a stall and
the video start-up time.

We can see that the described tools have been designed to
address a number of different concerns. In contrast, in this paper
we are focusing specifically on the scalability aspect of a
standalone video player that is to be used for large experiments
running on a single machine.

3 dashc DESIGN AND IMPLEMENTATION
Providing a convenient test tool for research has certain

functional requirements. Our work is guided primarily by the
need to facilitate experimentation involving large numbers of
video clients. Thus the tool should have low system
requirements – much lower than a commercial video client. On
the one hand the number of available options should be
comparable with a real player to have a real video session and on
the other side it should be able to target the necessary research-
related issues in a flexible way. One of the most important parts
of any research tool is a data log file, the future tool should give
as much available data as possible in an easy way for parsing by
other tools and for ease of reading. Furthermore, the code
structure of the future tool should be modular – easy to extend
with new functionality and to ease tracking bugs.

Guided by these requirements, we designed dashc. The code
base of dashc is very small. There are many different available
parameters (full description in help, but omitted here due to
space restrictions). If a video adaptation algorithm has certain
default values, they will be applied (for example, BBA-2 uses 240
seconds buffer size). There are 3 main logical parts:

 buffer emulator
 adaptation algorithm
 logging system

The buffer emulator keeps track of the available playback
buffer by constantly decreasing it like in the real video player
and by increasing it when new segments arrive.

The adaptation algorithm makes a decision about the quality
of the next requested segment.

The logging systems writes information about network
performance and adaptation algorithm performance to a file.

Dashc: DASH video client emulator MMSys’18, June 2018, Amsterdam, Netherlands

 3

Figure 1. Network Topology inside the VM.

The MPD-parser is written and tested with datasets from
[16], which are compatible with the ISO/IEC 23009-1:2014
standard mentioned before. Additionally, dashc has support of
the MPD format used with TAPAS tool.

The log system is implemented in a way to save as much
potentially useful information for analysis as possible. The log
file looks like a table with a header, each row contains
information about every downloaded segments. The columns
include next information:

 segment number starting from 1;
 arrival time of a segment in milliseconds;
 time spent for delivery of this segment in

milliseconds;
 stall (freeze) duration, in milliseconds;
 representation rate of downloaded segment in

Kbit/s (taken from MPD file);
 delivery rate of the network in Kbit/s (calculated as

segment size divided by time for delivery);
 the actual bitrate of this segment (segment size in

divided by the segment duration) in Kbit/s;
 segment size in bytes;
 buffer level after this segment was just

downloaded, in seconds;
The log file can be parsed and applied as raw data for post

processing. For example, the produced amount of data is enough
for calculation of QoE metrics described in [17] and [18].

To facilitate ease of development and debugging of dashc, we
selected OCaml. OCaml is a functional programming language
with a static strong inferred type system. It is used in
commercial companies and in academia, and it has an active
community [5, 6]. OCaml has several key features for our
project: it allows the development of real applications very
quickly, the type system helps to avoid many bugs typical for the
languages such as C/C++, and the native code compiler allows
the generation of fast executable files. The package manager
(opam) and the build system (jbuilder/dune) are also extremely
convenient for usage.

The architecture of dashc is similar to a real video player,
except for demuxing and decoding functions, which are omitted.
dashc was successfully compiled and tested in Ubuntu x64
16.04.3/16.10/17.04/17.10 (as well as in Ubuntu 16.04.3 with
Raspberry Pi 2/3).

4 EVALUATION
Our evaluation has two elements. Firstly it is to benchmark

dashc against a competitive state-of-the-art player. This
establishes the superiority of dashc in regard to scalability.
Secondly, we take advantage of dashc to offer new insight into
scenarios involving large numbers of clients.

For the evaluation we emulated a network using Mininet-
WiFi (master branch from July 2017 [19]). All tests were made
inside of the virtual machine created with VirtualBox 5.1.26 with
1 dedicated logical core (the host machine has Intel Core i7-
6700HQ 2.6 Ghz Skylake with 4 physical cores or 8 logical), 4096
Mb of RAM (the host machine has 16 Gb of RAM), OS is Ubuntu

17.04 (kernel 4.10) – guest one and host one (with all available
updates in August 2017), OCaml 4.05.0 version was used. We
used the topology depicted in the Figure 1. Where caddy web
server version 0.10 has a role of the web server 3, openvswitch is
used as a switch 4, and video clients are dashc or TAPAS.

The data set “bbb-264” from the iVID project [16] was used
(Big Buck Bunny movie encoded in x264 format, 10
representation levels, the lowest one has ~235kbps bitrate and
320x240 resolution, the highest one has ~4300kbps bitrate and
1920x1080 resolution). Only the first 5 minutes were used for
playback.

We decided to use the well-known state-of-the-art TAPAS
tool for scalability comparison 5. We had to apply numerous
changes in the code in order to be able to run it with Python
libraries (TAPAS dependencies) delivered in Ubuntu 17.04
repository (the similar issues most likely will come up with older
versions as well). We used the TAPAS “fake” engine which does
not decode the video. We modified the Conventional algorithm
[22], in the TAPAS tool to make the operating configuration the
same as in dashc: the buffer size was increased from 15 seconds
to 60 seconds, the alpha coefficient was decreased from 0.2 to 0.1
in the conventional controller class, the inactive_cycle options
(the number of the first segments which are downloaded in the
lowest quality) was increased from 1 to 2. The conversion of the
target rate to the representation level is made differently in the
TAPAS tool, so we implemented the same logic in dashc (it can
be easily turned on/off by a flag).

4.1 Scalability
To verify that the implementation of the conventional

algorithm is the same in the TAPAS tool as in dashc, we made a
couple of tests and compared the downloaded representation
levels. In the first test the link between the switch and the host
with a client had a static rate limit of 3 Mbit/s. The link between
the host (web server) and the switch didn’t have any limits.
Results were the same for dashc and TAPAS. In the second test
the topology was the same, however the bandwidth between the
switch and the client host was changing every 20 seconds from 3
Mbit/s initially to 1 Mbit/s and vice versa. These regular changes
in the rates were added to make experiments more realistic. The
highest target achievable rate was equal to 2350 kbps (this is the
rate from the MPD file), the real delivery rate during period of 3

3 https://caddyserver.com/
4 http://www.openvswitch.org/
5 https://github.com/ldecicco/tapas

caddy web

server

switch

Video client N

Video client 1

Video client 2

MMSys’18, June 2018, Amsterdam, Netherlands A. Reviakin et al.

4

Mbit/s limitation was around 2.8 Mbit/s, the pattern of the
requested representation levels was similar between TAPAS and
dashc. For the scalability tests 1, 2, 3, 10, 20, 30, 40, 50
simultaneous video clients were tested. To record the CPU load
and RAM usage we used /usr/bin/time application.

Figure 2 shows that the CPU load is 2-3 times lower during all
experiments with dashc in comparison with experiments with
the TAPAS tool. The RAM usage is lower by 20% when dashc
was used in comparison with the TAPAS tool. During the
experiment with 50 TAPAS clients the OS was much slower than
usually. At the same time with 50 simultaneously running dashc
the OS was almost as responsive as without running any
experiments. In addition, we noticed that the swap file started to
grow during the experiment with 50 TAPAS clients, which
almost certainly does not guarantee an optimal performance.

Figure 2. CPU load of 1 core.

Figure 3. RAM usage.

The higher the CPU load and memory consumption in case of
the TAPAS tool can be partially explained by its use of the
Python language [9]. OCaml has a static type system and
produces native binary code. This difference may not be critical
if a small number of clients is used, on the contrary, the available
computing resources deplete for large scale experiments.

4.2 Competing video clients
In this section, we evaluate streaming performance when a

large number of clients share a link. These experiments take
advantage of the fact that dashc can scale to many clients, and
are included in the paper to illustrate the potential value of using
dashc.

HTTP video streaming is often used for the investigation of
competition between several video clients of a sharing limited
link. A typical real example is family members in one house
watching simultaneously different videos (on demand or live)
would compete for a sharing bandwidth. In [12] authors focused
on three performance problems: player’s instability unfairness
between players and bandwidth underutilization.

With low system requirements of dashc, we can evaluate
large numbers of clients. Here we show 100 competing video
clients. Experiments were made for 2, 4, 6, 8, 10, 20, 40, 80, 100
video clients, each experiment was repeated three times and then
the average QoE was calculated as a final result (for 2, 4, 6, 8, 10
clients, 15 runs instead of 3 were used so as to ensure statistical
accuracy). The link between the switch and the web server has a
rate limit of (N*k), where N is the number of clients and for k 5
rates were used: 0.375, 0.75, 1.5, 3.0, 4.5 Mbit/s. In addition, the
link between the switch and the web server has a constant one-
way delay of 10 ms, 100 ms or 250 ms. The same movie “bbb-264”
described in the scalability tests section was used (only the first 5
minutes were used for playback).

Initially we made our experiments with a default queue size
(1000 packets) in the switch. This caused undesirable throughput
restrictions, so we changed it to the recommended 1xBDP
(bandwidth delay product) requirement. The precise value is
rounded up to the closest divisible by 100.

Due to space restrictions, we present here only the most
interesting results in our opinion (not the whole range of
combinations of rate limits, delays, video adaptation algorithms).
The further analysis was made based on four dimensions: rate
limit, delay, number of clients, video adaptation algorithm.

Firstly, if we look at the average representation rate plot of
any adaptation algorithm there is a clear differentiation between
rate limits – the higher the rate limit the higher the
representation rate. Secondly, for the 3.0 and 4.5 Mbit/s rate
limits we can see the decline of average representation rate: the
clearest decline can be noticed for ARBITER adaptation
algorithm due to its nature to request higher representation
levels on average than the BBA-2 algorithm. In Figure 4, we
plotted results for ARBITER for 5 tested rate limits and 10 ms
delay (results for 100 and 250 ms delays have similar trends to 10
ms delay ones).

The main differences between BBA-2 and ARBITER is that
BBA-2 mostly relies on buffer size and future segment sizes, and
is quite conservative – if the buffer is low it will request the low
quality. ARBITER on the other side is a riskier algorithm. If it
sees that the delivery rate is high and the variance of delivery
rate in the past is low, it will take advantage of this situation and
will request a higher video quality.

Dashc: DASH video client emulator MMSys’18, June 2018, Amsterdam, Netherlands

 5

If we look at the average representation rates with the
ARBITER adaptation algorithm in Figure 4, we can see a clear
trend decreasing as the number of clients increases. This drop is
noticeable for 3.0 and 4.5 Mbit/s rate limits. It can be partly
explained by the discrete nature of average rates for different
representation levels, the higher the representation level the
bigger the gap between the average representation rate. Despite
satisfying the 1xBDP requirement, we can see a negative effect
of a large number of clients.

Figure 4. Average representation rate per session,
ARBITER.

The other metric, which slightly changes with the rate limit,
is the total stall duration. Only for the lowest rate limit of 0.375
Mbit/s the total stall duration has risen up to 0.95 average total
stall duration per video client (exactly this situation happens
with 40 simultaneous video clients) from 0.11 average total stall
duration for 2 clients. The value 0.11, for example, means that in
one of 30 video clients (15 runs with 2 video clients) had 3 stalls
with a total duration of 3.341 second – by dividing 3.341 by 30
we get 0.11 average value. Investigation of per trace results
showed that with the 0.375 Mbit/s rate limit, some clients can
temporary get a much higher bandwidth share, up to 1 Mbit/s,
meanwhile the other clients suffer from the lack of available
bandwidth even to be able to support streaming with the lowest
possible representation level.

The number of switches between different representation
levels is much smaller for the lowest rate limit – 0.375 Mbit/s,
which is expected, because with such a low rate limit an
adaptation algorithm just doesn’t have an opportunity to request
higher levels. For 0.75 Mbit/s and bigger rate limits the number
of switches doesn’t have a clear dependency, because at these
rates, the adaptation algorithm plays the main role in this
parameter.

The delay parameter does not have any clear effect (clear
trend) on any final result.

The Figures 5 and 6 show that the average number of
switches scales with the number of clients. The same trend is
observed across all tested clients with ARBITER and BBA-2. This
increase can be explained by the fact that sometimes several of

video clients get higher bandwidth share (sometimes quite
suddenly) and the other get lower than average, which at the end
triggers an adaptation algorithm to adapt. The results of the
number of switches for all 5 tested rate limits and 100 ms delay
with ARBITER and BBA-2 adaptation algorithms are shown in
the figures 5 and 6 correspondingly. We can see in the Figure 5
that the most noticeable “rump up” in the number of switches
happens between 2 and 20 video clients. The value is more stable
for 20-100 clients.

Figure 5. Average number of switches per session,
ARBITER.

Figure 6. Average number of switches per session, BBA-2.

From Figure 6 we can make a conclusion that BBA-2
adaptation algorithm is not so sensitive to changes in bandwidth.
The steady state of BBA-2 is based on the buffer level and
reservoir size.

The low number of switches for 0.375 Mbit/s rate limit in
Figures 5 and 6 can be explained by the fact that an adaptation
algorithm just does not have enough capacity to switch
frequently.

MMSys’18, June 2018, Amsterdam, Netherlands A. Reviakin et al.

6

Figures 7 and 8 show the average representation rate for
ARBITER and BBA-2 adaptation algorithms correspondingly. 250
ms delay and all 5 tested rate limits are shown.

Figure 7. Average representation rate per session,
ARBITER.

Figure 8. Average representation rate per session, BBA-2.

We can see that for 0.375 and 0.75 Mbit/s rate limits, BBA-2
adaptation algorithm requests slightly higher representation
rates than ARBITER. With the rate limit of 1.5 both algorithms
perform very similar. ARBITER perform better than BBA-2
algorithm when the rate limits are 3.0 and 4.5 Mbit/s.

CONCLUSIONS
We introduced dashc as a test tool for DASH video streaming.
dashc is flexible in terms of available options, the code base is
small and easy to extend. Of most significance is that dashc by
design and implementation has low system requirements,
allowing it to scale in experiments with large numbers of client.
We benchmarked dashc against a state-of-the-art player,
showing its scalability advantage. To illustrate its utility, we
showed results from experiments using 100 video clients
simultaneously on a single core machine. We believe that dashc

will prove a valuable tool for use by network researchers and
engineers. The code of dashc is available at
https://github.com/uccmisl/dashc

ACKNOWLEDGMENTS
The publication has emanated from research conducted with

the financial support of Science Foundation Ireland (SFI) under
Grant Number 13/IA/1892.

REFERENCES
[1] Cisco Visual Networking Index, 2016-2021. White paper, June 7, 2017.
[2] Z. Li, X. Zhu, at al. Probe and Adapt: Rate Adaptation for HTTP Video

Streaming At Scale. IEEE J. Sel. Area in Commun., vol. 32, issue 4, pages 719-
733, April 2014.

[3] Te-Yuan Huang, at al. A buffer-based approach to rate adaptation: Evidence
from a large video streaming service. Proc. of the 2014 ACM conf. on
SIGCOM, Chicago, Illinois, USA, 2014, pages 187-198.

[4] A. H. Zahran, C. J. Sreenan. ARBITER: Adaptive rate-based intelligent HTTP
streaming algorithm. 2016 IEEE International Conference on Multimedia
Expo Workshops (ICMEW). Seattle, WA, USA, 1–6.

[5] Teaching OCaml, https://ocaml.org/learn/teaching-ocaml.html (last access:
February 2018).

[6] Companies using OCaml, https://ocaml.org/learn/companies.html (last
access February 2018).

[7] T. Stockhammer. Dynamic adaptive streaming over HTTP –: standards and
design principles. MMSys ‘11 Proc. of the second annual ACM conf. on
Multimedia systems, San Jose, CA, USA, pages 133-144.

[8] J. W. Kleinrouweler, B. Meixner, P. Cesar, Improving Video Quality in
Crowded Networks Using a DANE, ACM NOSSADAV’17 Proceedings of the
27th workshop on network and operating systems support for digital audio
and video, pages 73-78, Taipei, Taiwan, June 20-23, 2017.

[9] L. De Cicco, at al. TAPAS: A Tool for rApid Prototyping of Adaptive
Streaming algorithms. VideoNext ‘14 Proceedings of the 2014 Workshop on
Design, Quality and Deployment of Adaptive Video Streaming, Sydney,
Australia, pages 1-6.

[10] GPAC, https://gpac.wp.imt.fr (last access: February 2018).
[11] P. Juluri, V. Tamarapalli, Deep Medhi, “SARA: Segment aware rate

adaptation algorithm for dynamic adaptive streaming over HTTP,”
Communication Workshop (ICCW), 2015 IEEE International Conference on
Communication Workshop, London, UK.

[12] S. Akhshabi, at al. What happens when HTTP adaptive streaming players
compete for bandwidth?, NOSSDAV’12 Proceedings of the 22nd
international workshop on Network and Operating System Support for
Digital Audio and Video.

[13] H. Ott, K Miller, A. Wolisz. Simulation Framework for HTTP-Based Adaptive
Streaming Applications. WNS3’17 Proceedings of the Workshop on ns-3,
Porto, Portugal, June 13 – 14, 2017, pages 95-102.

[14] A. Zabrovskiy, at al. AdViSE: Adaptive Video Streaming Evaluation
Framework for the Automated Testing of Media Players. MMSys’17
Proceedings of the 8th ACM on Multimedia Systems, Taipei, Taiwan, June
20 – 23, 2017, pages 217-220.

[15] Mininet. http://mininet.org (last access: February 2018).
[16] J. J. Quinlan, A. H. Zahran, C. J. Sreenan. Datasets for AVC (H.264) and

HEVC (H.265) evaluation of dynamic adaptive streaming over HTTP
(DASH). MMSys’16 Proceedings of the 17th International Conference on
Multimedia Systems, Klagenfurt, Austria, May 10 – 13, 2016.

[17] Y. Liu, at al. Deriving and Validating User Experience Model for DASH
Video Streaming. IEEE Transactions on Broadcasting, volume 61, issue 4,
December 2015, pages 651 – 665.

[18] S. Petrangeli, at al. QoE-Driven Rate Adaptation Heuristic for Fair Adaptive
Video Streaming, ACM Transactions on Multimedia Computing,
Communications and Applications (TOMM), volume 12, issue 2, March 2016,
article No 28.

[19] R. R. Fontes, at al. Mininet-WiFi: emulating software-defined wireless
networks, Proceedings of the 11th International Conference on Network and
Service Management (CNSM '15), pp. 384–389, Barcelona, Spain, November
2015.

[20] A. K. I. Remke, at al. Capabilities of Raspberry Pi 2 for Big Data and Video
Streaming Applications in Data Centres, Proceedings of the 18th
International GI/ITG Conference on Measurement, Modelling and
Evaluation of Dependable Computer and Communication Systems (MMB &
DFT 2016), pp. 183-198, Switzerland, April 2016.

[21] ExoPlayer, https://github.com/google/ExoPlayer (last access: March 2018).
[22] Ns-3 simulator, https://www.nsnam.org/ (last access: March 2018).

