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A full list of authors and affiliations appears at the end of the article.

Abstract

Thiazide diuretics, commonly used antihypertensives, may cause QT interval (QT) prolongation, a 

risk factor for highly fatal and difficult to predict ventricular arrhythmias. We examined whether 

common SNPs modified the association between thiazide use and QT or its component parts (QRS 

interval, JT interval) by performing ancestry-specific, trans-ethnic, and cross-phenotype genome-

wide analyses of European (66%), African American (15%), and Hispanic (19%) populations 

(N=78,199), leveraging longitudinal data, incorporating corrected standard errors to account for 

underestimation of interaction estimate variances and evaluating evidence for pathway enrichment. 

Although no loci achieved genome-wide significance (P<5×10−8), we found suggestive evidence 

(P<5×10−6) for SNPs modifying the thiazide-QT association at 22 loci, including ion transport loci 

(e.g. NELL1, KCNQ3). The biologic plausibility of our suggestive results and simulations 

demonstrating modest power to detect interaction effects at genome-wide significant levels 

indicate that larger studies and innovative statistical methods are warranted in future efforts 

evaluating thiazide-SNP interactions.

Over the past decade, the use of prescription drugs has skyrocketed, with nearly half of all 

Americans now taking at least one prescription drug.(1) Accompanying the increased 

prevalence of drug use is a high burden of adverse drug reactions (ADRs), which account for 

approximately 100,000 deaths and 2.2 million serious health effects annually.(2–4) QT 

interval (QT) prolongation, which can trigger fatal ventricular arrhythmias, is a long-

recognized adverse effect(5) of numerous common medications, such as antipsychotics, 

antibiotics, antiarrhythmics, and antihypertensives.(6) Within the past ten years, QT 

prolongation has represented the most common cause for withdrawal of a drug from the 

market (or relabeling) after approval by the U.S. Food and Drug Administration (FDA).(7, 8) 

However, drug-induced QT prolongation remains difficult to predict.(9)

Genetic variants are known to mediate both pharmacokinetic and pharmacodynamic 

processes, thereby playing a major role in drug response. (10) Pharmacogenomics, which 

evaluates the role of genetics in drug response, offers a promising avenue for understanding 

variation in drug response,(11) illuminating novel pathways, informing drug development 
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and selection,(12–14) optimizing dosing regimens,(15–19) and avoiding ADRs.(20–22) QT 

is highly heritable (35–40%).(23–27) Previous pharmacogenomics studies of drugs 

associated with QT prolongation, including thiazide diuretics, a common antihypertensive 

therapy used by over a quarter of the U.S. hypertensive population,(28) identified multiple 

loci associated with anti-hypertensive response and ADRs.(29–34) Furthermore, thiazide 

diuretics are used unequally across race/ethnic groups in the U.S., with approximately 10% 

of Hispanic/Latinos, 13% of European Americans, and 23% of African Americans taking a 

thiazide diuretic.(28, 35, 36) Therefore, the pharmacogenomics of thiazide-induced QT 

prolongation represents an excellent but understudied candidate for pharmacogenomic 

inquiry.

We previously examined evidence for common single nucleotide polymorphisms (SNPs) 

that modified the association between thiazide use and QT and failed to identify any 

genome-wide significant loci (P<5×10−8).(37) However, our previous study was limited to 

European descent populations and cross-sectional analyses, despite many of the contributing 

studies having longitudinal drug and electrocardiographic data.(37) Here, we expand upon 

that work, applying recent statistical innovations to leverage longitudinal data and including 

an additional 44,418 participants of European, African American, and Hispanic/Latino 

descent to perform the first trans-ethnic genome-wide association study (GWAS) to examine 

genetic associations that modify the association between thiazides and QT, as well as the 

component parts of QT (JT interval [JT], QRS interval [QRS]).

Materials and Methods

Study Populations

Fourteen cohorts from in the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE)(38) Pharmacogenomics Working Group (PWG) participated in 

this analysis, contributing 78,199 participants: European descent (51,601), African 

American (11,482), and Hispanic/Latino (15,116) participants (Table 1, Supplementary 

Text). Among the fourteen cohorts, six (55% of the total population) had repeated 

measurements of medication use and electrocardiogram (ECG) assessments and contributed 

longitudinal data to the analysis: Age, Gene/Environment Susceptibility – Reykjavik Study 

(AGES), Atherosclerosis Risk in Communities (ARIC) Study, Cardiovascular Health Study 

(CHS), Rotterdam Study (RS), Multi-Ethnic Study of Atherosclerosis (MESA), and 

Women’s Health Initiative (WHI). The remaining eight cohorts contributed cross-sectional 

data to the analysis: Framingham Heart Study (FHS), Erasmus Rucphen Family (ERF) 

Study, Health 2000 (H2000), Health, Aging, and Body Composition (Health ABC), 

Prospective Study of Pravastatin in the Elderly at Risk (PROSPER), Jackson Heart Study 

(JHS), Netherlands Epidemiology of Obesity (NEO) Study, and Hispanic Community 

Health Study/Study of Latinos (HCHS/SOL).

Study Design

Participants with ECG measurements, medication assessment, and genome-wide genotype 

data were eligible for inclusion. The following exclusion criteria were applied: poor ECG 

quality, atrial fibrillation detected by ECG, pacemaker implantation, second or third degree 
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atrioventricular heart block, QRS greater than 120 milliseconds (ms), prevalent heart failure, 

pregnancy, missing ECG, missing medication assessment, missing genotype information, or 

race/ethnicity other than European descent, African American, or Hispanic/Latino. For 

studies with longitudinal data, exclusion criteria were applied on a visit-specific basis.

Medication Assessment

Medication use was assessed through medication inventories conducted during clinic visits, 

home interviews, or through pharmacy databases (Supplementary Table 1). Six studies 

captured medication used on the day of the study visit. A further six of the 14 participating 

cohorts captured medications used one to two weeks preceding ECG assessment. 

HCHS/SOL ascertained medications used within four weeks preceding ECG measurement, 

and the RS captured medication used within 30 days preceding ECG assessment. 

Participants were classified as thiazide diuretic users if they took a thiazide or thiazide-like 

diuretic in a single or combination preparation, with or without potassium (K)-sparing 

agents, and with or without K-supplements.

For cross-sectional studies, the number of exposed participants (Nexposed) was defined as the 

number of participants classified as thiazide users. For studies with longitudinal data, 

Nexposed was calculated as follows:

where ni is the number of observations for participant i, ρ̂ is an estimate of the pairwise visit-

to-visit correlation within participants from a Generalized Estimating Equation (GEE)-

exchangeable model that does not contain genetic data, and #{Eit = 1} is the number of 

observations for which participant i was exposed.(39)

ECG Interval Measurement

QT and QRS were digitally recorded by each participating study using resting, supine or 

semi-recumbent, standard 12-lead ECGs (Supplementary Table 2). Comparable procedures 

were used for preparing participants, placing electrodes, recording, transmitting, processing, 

and controlling quality of ECGs. Studies used Marquette MAC 5000, MAC 12, MAC 1200, 

or MAC PC (GE Healthcare, Milwaukee, Wisconsin, USA), University of Glasgow (Cardiac 

Science, Manchester, UK), or ACTA (EASOTE, Florence, Italy) machines. Recordings were 

processed using one of the following programs (Marquette 12SL, MEANS, University of 

Glasgow, Digital Calipers, or Health 2000 custom-made software. JT was calculated by the 

formula: JT=QT−QRS.

Genotyping and Imputation

Each study conducted genome-wide genotyping independently using either Affymetrix 

(Santa Clara, CA, USA) or Illumina (San Diego, CA, USA) arrays (Supplementary Table 3). 

Sex mismatches, duplicate samples, and first-degree relatives (except in ERF, FHS, HCHS/

SOL, and JHS) were excluded. DNA samples with call rates less than 95–98% were 
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excluded, as were SNPs with SNP call rates less than 90–98%, minor allele frequencies 

(MAF) less than 1%, or that failed Hardy-Weinberg equilibrium. To maximize genome 

coverage and comparisons across genotyping platforms, genotypes were imputed using 

HapMap2,(40–42) 1000 Genomes Phase 1, or 1000 Genomes Phase 3 reference panels.(43, 

44) Genotypes imputed using build 37 were lifted over to build 36(45, 46) to enable 

comparisons between imputation platforms and results were restricted to SNPs present in 

HapMap2.

Statistical Analyses

Genome-wide pharmacogenomic analyses were performed by each cohort independently 

across approximately 2.5 million SNPs for QT, QRS, and JT separately. Drug-SNP 

interactions were estimated assuming an additive genetic model, using mixed effect models, 

GEE, or linear regression with robust standard errors. The analytic model varied based on 

study design and the availability of longitudinal data (Supplementary Table 4). All analyses 

were adjusted for age (years), sex when applicable, study site or region, principal 

components of genetic ancestry, visit-specific RR interval (ms), and visit-specific QT 

altering medications defined using the University of Arizona Center for Education and 

Research on Therapeutics (UAZ CERT) QT-prolonging drug classification.(6) Furthermore, 

ERF, FHS, and HCHS/SOL incorporated estimates of relatedness into all analyses. Study-

specific results were corrected for genomic inflation (λ).

Previous simulations demonstrated that models using robust standard errors underestimate 

the variance of coefficient estimates for SNPs with low MAFs.(39) To account for this 

underestimation, corrected standard errors were calculated using a (Student’s) t-reference 

distribution.(39) The degrees of freedom (df) for the t-reference distribution were estimated 

using Satterthwaite’s method.(47) When cohorts were unable to implement Satterthwaite’s 

method, an approximate df was calculated as twice the cohort- and SNP-specific product of 

the SNP imputation quality (range: 0,1), the MAF (range: 0.0,0.50), and Nexposed. Standard 

errors were then “corrected” by assuming a normal reference distribution that yielded the t-
distribution based P-values from the beta estimates.(39) Furthermore, because simulations 

demonstrated that corrected standard errors were unstable when minor allele counts among 

the exposed were low, a cohort-specific df filter of 15 was applied across all SNPs.(39)

For each trait, race-stratified and trans-ethnic betas and corrected standard errors were 

combined with inverse-variance weighted meta-analysis conducted in METAL.(48) We used 

a genome-wide significance threshold of P<5×10−8 and a suggestive threshold of P<5×10−6. 

However, the assumptions of a fixed-effects meta-analysis do not always hold between race/

ethnicities due to differences in patterns of linkage disequilibrium (LD) across ancestral 

populations, potential allelic heterogeneity, differences in gene-environment and gene-gene 

interactions, and differences in environmental and lifestyle factors.(49, 50) Therefore, trans-

ethnic meta-analysis was also conducted using the Bayesian MANTRA approach and a 

genome-wide threshold of log10(Bayes Factor [BF])>6 and a suggestive threshold of 

log10(BF)>5.(51) Additionally, previous studies have demonstrated the potential to increase 

power and detect evidence of pleiotropy by conducting multi-trait analysis across correlated 

traits.(52, 53) To examine potential pleiotropy across ventricular depolarization and 
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repolarization, we conducted cross-phenotype meta-analysis combining t-statistics across 

QRS and JT using an adaptive sum of powered score (aSPU) test, which tests for both 

concordant and discordant associations across some or all of the included traits.(54) The 

reference distribution for the aSPU test was calculated using 108 simulations.

Genome-wide significant and suggestive meta-analysis results were examined for gene or 

pathway enrichment. Previous work has shown that it is beneficial to apply multiple methods 

of gene-set analysis (GSA) when the underlying etiology of the genetic mechanism is 

unclear.(55–57) We therefore used two methods of GSA. We performed a multiple 

regression gene analysis approach followed by a self-contained GSA using gene-level 

regression as implemented in MAGMA.(58) Post-meta-analysis P-values were used as input 

in the analysis and gene-sets were collected from Ingenuity,(59) Panter,(60) KEGG,(61) and 

ConsensusPathDB(62, 63) and restricted to biologically motivated pathways involved in the 

following: ion transport and homeostasis, transcription and translation, renal and cardiac 

development and function, and pharmacokinetic/dynamic pathways. Additionally, we 

selected all SNPs with P<1×10−5 for analysis with DEPICT, which searches for gene, gene-

set, and tissue enrichment among 14,461 reconstituted gene-sets, eliminating the need to 

select candidate gene-sets.(64) To account for multiple testing, we applied a false discovery 

rate (FDR) threshold of 5% for both GSA approaches.

Statistical Power Simulations

Statistical power to detect drug-SNP interactions using cross-sectional and longitudinal 

modeling approaches was estimated via simulation studies. Assumptions, which were 

informed by European ancestry populations, included: (1) 50,000 participants; (2) a two-

sided, per-SNP α=5×10−8; (3) a mean heart rate-corrected QT (standard deviation)=400 (30) 

ms; (4) Nexposed=8,100; (5) a mean drug effect for those with zero copies of the minor 

allele=5 ms; (6) a mean SNP effect for those not exposed to drug=0 ms; (7) a MAF=0.05 or 

0.25; (8) an additive model of inheritance; (9) two study visits for longitudinal simulations; 

(10) within-person QT correlation=0.80; (11) an attrition rate between visits for longitudinal 

simulations=0.13; (12) random missingness rate across study visits=0.09; and (13) an 

independent GEE correlation structure for longitudinal simulations. For longitudinal 

simulations, drug use was either temporally constant or variable. When variable, drug 

exposure was assumed to be completely random at both visits.

Results

Study Characteristics

A total of 78,199 participants were included in the analysis, of which 13,730 (18%) were 

exposed to thiazides (Table 1). Thiazide use was most common among African Americans 

(36%), compared with 16% and 9% among European descent and Hispanic/Latino 

populations, respectively. Mean age ranged from 40 (FHS) to 75 years (PROSPER) and the 

percentage of females ranged from 47% (NEO, PROSPER) to 100% (WHI). Average QT 

was between 389 ms (H2000) and 416 ms (HCHS/SOL).

Seyerle et al. Page 5

Pharmacogenomics J. Author manuscript; available in PMC 2018 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Genome-Wide Analysis of Thiazide-SNP Interaction and QT Interval

Q-Q plots for individual study results, as well as for meta-analyzed results, demonstrated 

adequate calibration of study specific test statistics (Supplementary Figures 1–4). However, 

the family-based studies (ERF, FHS, HCHS/SOL) showed modest evidence of over-

dispersion (λ=1.07 – 1.16).

No genome-wide significant thiazide-SNP interaction effects were detected in any race/

ethnic group (Figure 1). However, suggestive interaction effects (P<5×10−6) were found for 

22 loci in at least one race/ethnic group: European descent (seven loci), African American 

(six loci), Hispanic/Latino (six loci), or trans-ethnic (nine loci) (Figure 1, Table 2). Only the 

DNAH8/BTBD9 locus was suggestively significant in more than one race/ethnic group 

(rs862433 in African Americans, rs1950398 in Hispanic/Latinos). Only two of the 

suggestive SNPs were heterogeneous across populations with Phet<0.05 (rs4890550 and 

rs13223427).

Additionally, examination of 35 loci previously associated with QT in a published main 

effects GWAS(65) found no significant associations in European descent populations using a 

Bonferroni corrected threshold of P<0.001 (0.001=0.05/35; Supplementary Table 5). The 

magnitude of the interaction effect was close to zero for all but six of the 35 SNP, which had 

interaction effects greater than 0.50 ms.

Similarly, while no locus showed genome-wide significance in our trans-ethnic MANTRA 

analysis (Supplementary Figure 5), one SNP (rs2765279) was above the suggestive 

threshold, with a log10(BF) of 5.2. Rs2765279, located in RGSL1, a gene involved in G-

protein signaling regulation, was also the most significant SNP in the fixed-effects trans-

ethnic analysis (P=3×10−7).

Genome-Wide Analysis of Thiazide-SNP Interaction and QRS Interval or JT Interval

Results for QRS showed a similar pattern to those for QT (Supplementary Figure 6, 

Supplementary Table 6). Whereas no results achieved genome-wide significance, 28 loci 

showed suggestive evidence of modifying the thiazide-QRS association (four loci in 

European descent populations, 11 in African Americans, eight in Hispanic/Latinos, and 

seven in trans-ethnic populations) and only one SNP had a Phet<0.05 (rs11591185). The 

most significant SNP, rs7638855 (P=2×10−7), located upstream from GAP43, was also 

suggestively significant after trans-ethnic analysis in MANTRA (log10(BF)=5.4; 

Supplementary Figure 5).

Similarly, no SNPs showed genome-wide significant interaction for JT, although 19 loci 

were suggestively associated (five loci in European descent populations, four in African 

Americans, five in Hispanic/Latino, and seven in trans-ethnic populations; Supplementary 

Figure 6, Supplementary Table 7). No SNPs showed significant heterogeneity between 

populations. Moreover, MANTRA analysis identified two SNPs that achieved suggestive 

significance (Supplementary Figure 5). The rs1264878 variant near KCNIP4, a voltage-

gated potassium channel interacting protein was the most significant SNP in our fixed-

effects meta-analyses (P=3×10−7) and had a log10(BF)=5.1. However, most significant SNP 

in MANTRA meta-analyses was rs9303589, in CA10, with a log10(BF)=5.1.

Seyerle et al. Page 6

Pharmacogenomics J. Author manuscript; available in PMC 2018 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cross-Phenotype Meta-Analysis

Cross-phenotype meta-analysis found no genome-wide significant evidence of pleiotropy 

across QRS and JT (Figure 2, Supplementary Figure 7). However, eight loci had a 

suggestive evidence of thiazide-SNP interaction after meta-analyzing QRS and JT results 

(Table 3). These included three loci that were nominally associated with QRS and JT 

(P<0.05), but whose effects did not reach the suggestive association threshold in either 

univariate analysis (rs1295230 [PIK3R6], rs6931354 [ADGRB3], and rs8119517 [PREX1]).

Gene and Pathway Enrichment Analysis

Although analysis with DEPICT found no enrichment in a single gene or tissue, gene-set 

enrichment analysis in European descent populations found enrichment in the ATXN3 
subnetwork for the interactive effect of genotype and thiazide use on QT (P=1×10−6). There 

was no enrichment found in QRS or JT analyses. MAGMA analyses found significant 

enrichment in six genes among African Americans in the interactive effect of genotype and 

thiazide use on QRS: CNTRL, CPN1, FAM65B, RAB14, ISY1, NELL1 (Supplementary 

Table 8). No other MAGMA analyses found gene enrichment. MAGMA GSA for QT and JT 

analyses found significant enrichment for transcription and translational pathways, although 

no gene-set enrichment was found in QRS analyses (Table 4).

Statistical Power

Given the biologic plausibility of the suggestive results for all three traits, we examined 

statistical power for our analysis to assess our ability to detect interaction effects. 

Simulations demonstrated that all analyses were underpowered to detect thiazide-SNP 

interaction effects less than 3 ms (e.g. 15% power to detect an interactive effect of 2 ms; 

Figure 3). However, even with time-varying drug exposure (i.e. observed QT measurement 

on and off drug within an individual), which demonstrated the greatest power, analyses for 

SNPs with MAF=5% did not achieve 80% power until the thiazide-SNP interaction effect 

reached 6 ms.

Discussion

In this study, we examined 78,199 participants of European, African American, or Hispanic/

Latino descent for evidence of thiazide-SNP interactions influencing QT. Although we used 

a comprehensive approach that considered multi-ethnic populations, leveraged pleiotropy, 

accommodated population heterogeneity, and examined QT as well as its component parts 

(QRS, JT), we did not identify any genome-wide significant SNPs modifying the association 

between thiazides and these ECG intervals. However, we identified 74 loci with suggestive 

evidence of association through either univariate or cross-phenotype analyses as well as 

evidence of enrichment in pathways involved in transcription and translation.

Interestingly, our suggestive results included multiple loci involved in ion transport and 

handling, the disruption of which is believed to be an underlying mechanism in drug-

induced QT prolongation,(66) supporting the hypothesis that common SNPs modify the 

thiazide-QT relationship. For example, the NELL1 locus was previously associated with 

changes in fasting plasma triglyceride levels in response to hydrochlorothiazide use.(67) 
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Other interesting suggestive results include the PITX2 and RYR3 QRS loci identified in 

Hispanic/Latinos, which may directly regulate ion channel genes and genes involved in 

calcium handling.(68) Moreover, we found suggestive evidence of thiazide-SNP interactions 

on QT, QRS, or JT in other genes involved in ion transport and handling, including STC2,
(69) EDN1,(70) TRPC7,(71) PKP2,(72) and DISC1,(73) as well as a voltage-gated 

potassium channel gene (KCNQ3).

Despite these intriguing results, our power simulations suggested there was limited power to 

detect interaction effects of 2 ms, sizes consistent with QT main effects analyses.(65) The 

low power suggests that larger sample sizes and/or innovative statistical methods may be 

required to study gene-environment interactions given the stringent genome-wide 

significance threshold.(74–76) Furthermore, our power simulations demonstrated 

insufficient power to detect interaction effects of 5 ms or less for less common SNPs 

(MAF=5%). Therefore, future work should utilize larger sample sizes, particularly studies 

with longitudinal data, if available.

Another limitation of our work was that medication use data were collected infrequently, e.g. 

years apart. Particularly, medication assessments covered only one to two weeks of 

medication use in most participating cohorts and variables such as medication dosage and 

duration of use were not available universally across studies. Previous work has 

demonstrated a dose-dependent relationship between thiazide use and cardiac arrest, a 

potential outcome of QT prolongation.(77) However, we were unable to identify participants 

using high dose thiazides because medication dosage data was unavailable in all cohorts. 

Furthermore, K+ measurements and information on K+ supplements was not obtained across 

all cohorts so we were unable to adjust for K+ levels in our analyses, despite the known role 

of thiazide diuretics in inducing hypokalemia and the role of hypokalemia in causing QT 

prolongation.(78, 79)

Furthermore, ECG intervals are known to vary in the presence of cardiovascular disease 

(CVD).(80) While we did exclude participants with certain types of CVD including 

prevalent heart failure and atrial fibrillation, we were not able to further characterize the role 

of CVD in the pharmacogenomics of thiazide use and QT duration. Given that we saw larger 

mean QT and JT intervals in Hispanic/Latino populations than in European descent or 

African American populations in our study sample, as well a substantial difference in mean 

exposure to thiazides, ranging from just 9% in Hispanic/Latinos to 37% in African 

Americans, our analyses are limited by the heterogeneity of exposure and outcome in our 

population. The large difference in thiazide exposure between race/ethnic groups could also 

indicate an underlying difference in CVD prevalence among our populations. Considering 

that pharmacogenomic studies such as this one are already limited in their power to detect 

effects, the addition of unmeasured heterogeneity such as CVD status could further reduce 

our power to detect genetic effects modifying the relationship between thiazides and QT. 

Therefore, future work should consider alternate study designs, such as clinical trials or 

specially collected cohorts, as settings for pharmacogenomics work. In clinical trials or 

specialty cohorts, populations can be more closely controlled and therefore more 

homogeneous in traits that may confound the relationship between thiazides and QT.
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Additionally, observational cohort studies are known to be susceptible to selection biases, 

such as prevalent user bias, whereby long-term medication users are least likely to suffer 

from ADRs and users with ADRs often stop therapy and therefore have a lower chance of 

being seen while on therapy.(81, 82) Unfortunately, without information on duration of use, 

it is difficult to evaluate the effect of prevalent user bias on study results. Indeed, it is unclear 

if these biases are of concern in pharmacogenomic studies.(83, 84) Additional work is 

needed to assess whether selection bias requires more consideration in pharmacogenomic 

research and to assess possible advantages of alternative designs, such as active comparator 

designs (whereby the control group contains participants using a different class of 

medications with similar indications to the medication of interest) or new user designs 

(whereby prevalent users are excluded). Moreover, medication inventories may be associated 

with non-negligible measurement error. For example, while Smith et al. reported good 

agreement between thiazide use measured using medication inventories and serum thiazide 

measurements, specificity remained moderate. (85)

Given the challenges associated with assembling an adequately powered pharmacogenomics 

study, electronic medical records (EMRs) represent a potential untapped resource that may 

merit evaluation. Strengths of EMRs include the potential to provide a more complete 

medication history, which could enable sensitivity analyses examining variables such as 

medication dose and duration of use. Furthermore, consortia such as eMERGE have 

demonstrated the feasibility of linking EMRs to genetic data for use in genetic research,(86) 

and have successfully identified genetic variants modifying drug response.(87) However, 

EMRs have limitations. Investigators using EMR data cannot control participant recruitment, 

timing and accuracy of data collection, or population representativeness.(88) Considering 

ECG research specifically, cohort studies administer ECGs to all participants at study visits, 

whereas EMRs may capture ECGs for patients with medical indications, providing an 

inherently different population. EMRs therefore have the potential to greatly advance 

pharmacogenomic research but warrant further evaluation.

In conclusion, our findings suggest that additional work is needed to fully elucidate potential 

pharmacogenomic effects influencing the thiazide-QT relationship. Our suggestive results 

support a possible role of genetics in modifying the association between thiazides and QT. 

However, these findings can inform the biology of thiazide-induced QT-prolongation and do 

not preclude the possibility of common variants with small effects or rare variants with 

larger effects. Future work that leverages larger sample sizes, such as those available in 

EMRs, and innovative statistical methods to validate these suggestive findings is needed. 

The FDA considers further regulation of drugs that prolong QT by as little as 5 ms, a small 

increment easily achieved by the combination of genetic and pharmaceutical effects,(37, 89) 

making it critical that we unravel the complex etiology of drug-induced QT prolongation.

(90) Pharmacogenomics remain a promising avenue for understanding variability in drug 

response and for utilizing genetics to improve public health but innovative solutions are 

needed to overcome inherent challenges.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plots of P-values for thiazide-SNP interaction estimates for QT interval analyses 

after fixed effects meta-analysis among European descent populations (N = 51,601), African 

American populations (N = 11,482), Hispanic/Latino populations (N = 15,116), and all 

populations (trans-ethnic). Each study was analyzed using linear regression, mixed-effects 

models, or generalized estimating equations and SNPs with a study-specific degree of 

freedom measure (df = twice the cohort- and SNP-specific product of the SNP imputation 

quality (range: 0,1), the MAF (range: 0.0,0.50), and the number of individuals exposed to 

thiazide [Nexposed]) < 15 were excluded from meta-analysis. The x-axis represents the 

chromosomal position and the y-axis represents the −log10(P-value). On each plot, genome 

wide significance (P < 5×10−8) and suggestive significance (P < 5×10−6) are denoted with 

dashed lines.
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Figure 2. 
Manhattan plots of P-values thiazide-SNP interaction estimates after cross-phenotype meta-

analysis (QRS interval, JT interval) using aSPU among European descent populations (N = 

47,836), African American populations (N = 11,482), and Hispanic/Latino populations 

(15,116). For each trait separately, each study was analyzed using linear regression, mixed-

effects models, or generalized estimating equations and SNPs with a study-specific degree of 

freedom measure (df = twice the cohort- and SNP-specific product of the SNP imputation 

quality (range: 0,1), the MAF (range: 0.0,0.50), and the number of individuals exposed to 

thiazide [Nexposed]) < 15 were excluded from cross-phenotype meta-analysis. The x-axis 

represents the chromosomal position and the y-axis represents the −log10(P-value). On each 

plot, genome wide significance (P < 5×10−8) and suggestive significance (P < 5×10−6) are 

denoted with dashed lines.
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Figure 3. 
Statistical power of a simulated pharmacogenomics study of QT. The x-axis represents the 

range of tested drug-SNP interaction effects in milliseconds (ms). The y-axis represents the 

power to detect the tested drug-SNP interaction effect. The following assumptions were used 

for the calculations: 2 serial visits measuring electrocardiograms (ECGs) and drug exposure, 

N=50,000 participants, a single-nucleotide polymorphism (SNP) minor allele frequency 

(MAF) of 5% or 25%, and the Nexposed = 8,100. Simulation analyses were run using only the 

baseline visit (cross-sectional) and a longitudinal model. Under the longitudinal model, 

simulations were run with all participants having constant drug exposure across visits or 

having varied drug exposure across visits. Cross-sectional models were run using linear 

regression and longitudinal models were run using a generalized estimating equation with an 

independence working correlation.
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Table 4

Gene-Sets with Enrichment for Genotype-Thiazide Interaction Effects

Trait Population Gene-Set P FDR

QT Hispanic/Latino Nucleotide Binding 5×10−6 0.004

Metal Ion Binding 6×10−6 0.004

tRNA Adenine-N1 Methyltransferase Activity 6×10−5 0.03

Transcription Coactivator Activity 8×10−5 0.03

Transcriptional Activity of SMAD2, SMAD3, SMAD4, Heterotrimer 0.0001 0.03

Zinc Ion Binding 0.0002 0.04

Other RNA Binding Protein 0.0002 0.04

Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPS/IMPS/VICKZS) 0.0003 0.05

Trans-Ethnic General RNA Polymerase II Transcription 4×10−6 0.006

Transcription 4×10−5 0.03

JT African American Transcription Factor TFIID Complex 7×10−5 0.05

Aminoacyl-tRNA Synthetase Multienzyme Complex 0.0001 0.05

tRNA Aminoacylation for Protein Translation 0.0001 0.05

Transcription Factor TFTC Complex 0.0001 0.05

Trans-Ethnic Transciption 3×10−5 0.03

General RNA Polymerase II Transcription Factor Activity 4×10−5 0.03

Abbreviations: FDR, False discovery rate; JT, JT interval; P, P-value; QT, QT interval
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