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With the seemingly inexorable increase in the use of devices designed to access the internet for 

an ever increasing series of applications, there is a constant need for data storage technologies 

with higher densities, non-volatility and lower power consumption.
3
  Single-phase, room 

temperature magnetoelectric multiferroic materials are of considerable interest for such 

applications.
4
 The unique advantage of these advanced materials is that not only could they find 

application in high storage density, low-power memory devices that can be electrically written 

and magnetically read, but also by constructing devices that exploit the presence of both 

ferroelectric and ferromagnetic states, memory technologies with 4-state logic could be 

achieved
5
 - representing a clear improvement over current 2-state logic memory. However, 

materials that are both multiferroic and magnetoelectric at room temperature are very unusual.
6
 

In this chapter, we review approaches currently under investigation for the fabrication of single 

phase magnetoelectric multiferroics, from bulk ceramics to those in thin film form. We present 



an approach of inserting magnetic ions into Aurivillius phase, layer-structured ferroelectric 

materials, whereby thin films of average composition Bi6Ti2.8Fe1.52Mn0.68O18 demonstrate room 

temperature ferroelectricity, ferromagnetism and magnetoelectric coupling.
2
 We discuss the 

importance of careful microstructural analysis of the materials and the application of a statistical 

model to determine a confidence level that the observed effects are from genuine single-phase 

magnetoelectric multiferroics and do not originate from unobserved second phase ferromagnetic 

inclusions.   

 

EXPANDED INDEX: 

21.1. Introduction to Single Phase Multiferroic Materials  

Examples of current single phase multiferroic materials are presented.  While low temperature 

multiferroics exist, the rarity of room temperature multiferroics is discussed. Current theoretical 

and experimental approaches into the design of potential room temperature single phase 

magnetoelectric multiferroics are reviewed.   

21.2. Aurivillius Phase Materials - Candidate Single Phase Multiferroics?  

The Aurivillius phase family of materials is presented as an approach for potential achievement 

of single phase multiferroicity. Previous reports of ferroelectricity and ferromagnetism / 

antiferromagnetism in the Aurivillius phases are reviewed.     

21.3. Magnetoelectric Coupling in Multiferroic Bi6TixFeyMnzO18 Systems at Room Temperature 

21.3.1 Fabrication and Structural Analysis of Bim+1Ti3(Mn/Fe)m-3O3m+1 Thin Films An approach 

for increasing the magnetic cation content in the Aurivillius phases by synthesising Bim+1Ti3Fem-



3O3m+1 thin films where m  5 and novel materials substituted with Mn cations is presented. The 

effect of Ti/Fe/Mn compositional ratios on the Aurivillius phase structures is discussed. 

21.3.2 Ferroelectric Investigations of Bi6TixFeyMnzO18 Thin Films  

Ferroelectric switching investigations of the Bi6TixFeyMnzO18 films are presented. 

21.3.3 Assessment of Ferromagnetism in Bi6TixFeyMnzO18 Thin Films  

Magnetic investigations of the Bi6TixFeyMnzO18 films are presented and a mechanism for the 

ferromagnetism is proposed. 

21.3.4 Room Temperature Magnetoelectric Coupling in Bi6Ti2.8Fe1.52Mn0.68O18 Thin Films  

Direct evidence for magnetoelectric coupling in multiferroic Bi6Ti2.8Fe1.52Mn0.68O18 thin films at 

room temperature is demonstrated. 

21.4. Confidence Level Assessment of Genuine Single Phase Multiferroicity  

An assessment of the prospect of observed multiferroic properties being intrinsic to the main 

phase in a given sample is discussed. A dedicated statistical model applied to the design of the 

analytical measurements is shown and its application to the analysis of thin films is demonstrated 

to put a high, defined confidence level (> 99.5 %) to the statement of a material being a ‘new 

single phase multiferroic material’.
7
  

21.5. Potential devices / applications based on single phase magnetoelectric multiferroics 

The potential device-type structures incorporating single phase magnetoelectic multiferroics are 

considered as prospective architectures for memory scaling beyond current technologies. 

21.6. Summary and conclusions  

21.7 References 





21.1 Introduction to Single Phase Multiferroic Materials 

To illustrate the unique potential of single phase multiferroic materials, it is important to clarify 

the distinction between magnetoelectric materials and multiferroic materials: 

 

 

 

Electrically polarisable materials possess an electrical dipole moment which can be 

affected by an external electric field and magnetically polarisable materials possess magnetic 

dipole moments which are affected by an external magnetic field. As illustrated in the Venn 

diagram in Figure 1.1, magnetoelectric materials are those where there is coupling between 

electric and magnetic order parameters such that magnetisation can be induced by an electric 

field and vice versa. This may arise through direct coupling between magnetic and electric 

polarizations in a single material (e.g. Cr2O3, magnetoelectric below 260 K)
8
, or indirectly via 

Fig. 1.1. The relationship between multiferroic and magnetoelectric materials. (Redrawn 

from
1, 2

).  



strain-mediated coupling in a multi-phase material (e.g. CoFe-BaTiO3 heterostructures)
9
.  

Examples of single-phase magnetoelectrics include: Cr2O3 (260 K)
8
, CuO (230 K)

10
, TbMnO3 

(27 K)
11

, Ni3B7O13I (64 K)
12

, DyMn2O5 (43 K)
13

. Strain-mediated indirect magnetoelectric 

coupling in composite materials can occur, for example, through a magnetostrictive strain 

(induced in one phase by a change in applied magnetic field) coupling to a piezoelectrically-

induced polarization change in a second phase mechanically-coupled to the first.  The SI unit of 

the magnetoelectric coupling coefficient, α, is [sm
-1

] which can be converted to the technical unit 

[Vcm
-1

Oe
-1

] if the permittivity () of the given material is known:  [sm
-1

] = 1.1 x10
−11
[Vcm

-1
Oe

-

1
]. A magnetoelectric coupling coefficient of 5.90 Vcm

-1
Oe

-1
 has been reported for laminate 

complexes of lead zirconate titanate (PZT) and Terfenol-D (TbDyFe2) by straining the 

magnetostrictive phase under a DC magnetic bias of 4.2 T,
14

 which induces stress on the 

piezoelectric phase, generating an electric field in the piezoelectric phase. Magnetic force 

microscopy imaging of (BiFeO3)0.65-(CoFe2O4)0.35 nanostructured composite heterostructures
15

, 

demonstrated two electrically-switchable perpendicular magnetic states at ambient conditions for 

ferromagnetic CoFe2O4 nanopillars embedded in BiFeO3. Additionally, the magnetoelectric 

coupling effect becomes controllable in a weak perpendicular magnetic field.  Thin film 

heterostructures
9
 of CoFe-BaTiO3 grown by electron-beam evaporation exhibit giant 

magnetoelectric coupling coefficients (3 x 10
-6

 sm
-1

) at room temperature.  Lahtinen et al. 

demonstrated that it is possible to precisely write and erase regular ferromagnetic domain 

patterns and to control the motion of magnetic domain walls in small electric fields over large 

areas in these composites by strain-mediated correlations between ferromagnetic domain walls 

and ferroelastic domain boundaries. 



An important subset of the electrically polarisable materials is the ferroelectrics, whose 

dipole moments can not only be switched by an applied electric field, but also their polarisation 

states remain even when the electric field is removed. This is the basis for non-volatile 

ferroelectric random access memory, where polarisation states are encoded into computer bits at 

fast writing performances which retain their memory states when the computer is powered-off. 

Similarly, the ferromagnets are a subset of magnetically polarisable materials such that their 

magnetic dipole moments align in a magnetic field to give a resultant magnetic moment which is 

retained when the magnetic field is removed.  Ferromagnetic materials are used as recording 

media in hard disc drives and have increased storage capacity over ferroelectric materials. Spin 

Transfer Torque Magnetic Random Access Memory (STT-MRAM) has been road-mapped as an 

emerging memory technology.
16

 However, a current drawback of ferromagnetic memory is the 

considerable power that is usually required for magnetic writing. 

As Figure 1.1 illustrates, materials which demonstrate both ferroelectric and 

ferromagnetic properties within the same phase are known as multiferroic materials.  The term 

“multiferroic” refers to any material in which more than one ferroic effect (ferroelectricity, 

ferromagnetism, ferroelasticity) exists in the same phase.  Magnetoelectricty, on the other hand, 

is an independent phenomenon that can arise in any material whatever the nature of magnetic 

and electrical order parameters, regardless of whether it is multiferroic or not
17

. For example, the 

first magnetoelectric discovered, Cr2O3 is neither ferroelectric nor ferromagnetic.
18

 Since the 

switched states in this material are transient and do not persist, magnetoelectric materials of this 

type are inadequate for memory storage applications.   

In this regard the synthesis of novel room temperature single-phase magnetoelectric 

multiferroic materials is particularly appealing, because the magnetoelectric and multiferroic 



coupling interactions could create a range of potential applications. These materials could 

potentially lead to a new generation of rapid, energy efficient memory devices with increased 

data storage densities based on the combined advantages of ferroelectric and ferromagnetic 

memory.  The fabrication of magnetoelectric memory devices that can be electrically written and 

magnetically read as well as magnetic field sensors where the ferromagnetic resonance could be 

tuned electrically instead of magnetically are promising avenues for exploitation in technologies 

requiring reduced energy consumption applications.
19, 20

 The unique commercial potential of 

the B6TFMO thin films lies in the opportunity for the creation of a 4-state memory technology 

using the combination of simultaneous ferroelectric and ferromagnetic polarisation states 

(positive and negative in both electrical and magnetic polarizations). The fabrication of memory 

devices with storage of multiple bits per memory element would significantly advance data 

storage capabilities to meet consumer demand for increasingly higher data density. Therefore, 

the design and identification of new mechanisms that can lead to multiferroic magnetoelectric 

coupling behaviour is in demand. 

However, until very recently, there were no single-phase ferroelectric/ferromagnetic 

multiferroics at room temperature.  One reason for the scarcity of single-phase multiferroics is 

the competing electronic requirements for ferroelectricity and ferromagnetism
21

.    Hybridization 

between the cation and anion within the unit cell is the conventional mechanism for stabilizing 

non-centrosymmetric ferroelectric distortion; therefore the cation driving ferroelectricity must 

formally be in the d
0
 state.  Conversely, d-orbital occupancy is a requirement for the existence of 

magnetic ordering. Hill
21

 has suggested that the conditions for obtaining ferroelectricity and 

ferromagnetism in a single phase can potentially be met by incorporating d
0
 and d

n
 cations into 

the same structure or where stereochemical activity of the A-site lone pair gives rise to 



ferroelectricity and magnetism arises from the B-site cation.  Multiferroic materials generated by 

this type of pathway, where ferroelectricity and ferromagnetism have different sources, are 

classified as Type I multiferroics. Generally, ferroelectric ordering temperatures tend to be 

higher than the magnetic ordering temperature and coupling between electric and magnetic order 

parameters tends to be weak in this class of multiferroics. Note that given that there are so few 

ferromagnetic ferroelectrics, the current trend is to extend the definition of multiferroic materials 

to include materials possessing the corresponding antiferroic properties such as 

antiferroelectricity/antiferromagnetism.
22

 Examples of multiferroic materials which arise from 

lone-pair effects are the extensively studied
17, 22, 23, 24, 25, 26, 27, 28, 29, 30

 room temperature 

ferroelectric (Tc 110K)/antiferromagnetic (TN 643K) BiFeO3 (which also displays a weak canted 

ferromagnetic moment) and BiMnO3
31, 32, 33

, which is a ferromagnetic oxide (Tc = 105K) 

reported to be ferroelectric (Tc = 450K). Despite the electronic limitations, several multiferroics 

have been discovered wherein ferroelectricity is induced by clever routes, including a second 

group of materials in this class called the geometrically driven multiferroics, where 

ferroelectricity results from long-range dipole-dipole interactions and oxygen rotations.
23

 For 

example, ferroelectricity (Tc 914K) in YMnO3 is driven by from polyhedral tilting of the MnO5 

block and is compatible with the coexistence of antiferromagnetism (TN 80K).
34, 35, 36

 A third 

route to multiferroism in this class is provided by non-centrosymmetric charge ordering in 

magnetic materials.
24

  This can be seen in compounds containing transition metals e.g. LuFe2O4 

(ferroelectric TC 330K and ferromagnetic TC 250K)
37, 38

 with formally different valence or 

bond lengths where formation of inequivalent sites can lead to ferroelectricity. In Type II 

multiferroics, ferroelectricity is induced by magnetic ordering and the formation of a symmetry-

lowering magnetic ground state that lacks inversion symmetry. Since magnetism causes 



ferroelectricity, there tends to be a strong coupling between order parameters, however 

ferroelectric polarization tends to be small.
24

  In TbMnO3, frustrated magnetism and spiral 

magnetic ordering (TN 41K) is accompanied by a magnetoelastically induced lattice distortion, 

which in turn induces ferroelectricity (TC 27K).
11

  Despite research of other materials in this 

class e.g. TbMn2O4 (TN 43K and Tc 38K )
39

 and DyMnO3 (TN 38K and Tc 18K)
40

, the 

discovery of a rare earth manganite that demonstrates both room temperature ferroelectricity and 

ferromagnetism still remains.
32

  

Advances in thin film growth techniques have allowed the production of high quality 

ultra-thin films where ‘strain tuning’ can induce ferroelectric polarisation
41, 42

, can lead to a 

significant increase of the spontaneous polarization
43

 and can compensate the adverse influence 

of thickness reduction and preserve ferroelectricity in ultra-thin perovskite films
44

. Sando et al.,
27

 

investigated the effect of -2.6% (compressive) to +1.3% (tensile) strain on pulsed laser 

deposition (PLD) grown thin films of BiFeO3 (50-70nm) on substrates ranging from (LaAlO3)0.3-

(Sr2AlTaO6)0.7 to PrScO3. It was found that high epitaxial strain destroys the bulk-like cycloidal 

modulation; however the antiferromagnetic state is stable at high compressive strain.  There is a 

progressive reorientation of magnetic spins from in-plane to out-of-plane as the strain is changed 

from compressive to tensile, and the authors demonstrate how epitaxial strain in BiFeO3 can tune 

the exchange bias and giant-magnetoresistive response of CoFeB/Cu/Co spin valves.
27

    

First principle calculations have predicted that epitaxial strain can provide a route to 

multiferroicity in epitaxial thin films and may lead to an increase ferromagnetic Curie 

temperature.
45, 46, 47, 48

 The paraelectric ferromagnet EuO (Tc 69K) is predicted
46

 to become 

ferroelectric under epitaxial strain.  A compressive strain of -5.5% is anticipated to yield a 

polarization of 60 Ccm
-2

 in the out-of-plane direction and in-plane polarization is predicted 



under tensile strain while the ferromagnetic state remains unchanged. If a system has a spin-

phonon coupling in which the lowest-frequency polar phonon is softer for ferromagnetic 

ordering than for antiferromagnetic ordering, then epitaxial strain enhancement of a polar 

instability is expected to decrease the energy of the ferromagnetic-ferroelectric state relative to 

that of the antiferromagnetic-paraelectric state.
48

 Via this mechanism, density functional theory 

calculates that both tensile (+4.5  1%) and compressive (-4.9  2%) strain can drive 

antiferromagnetic-paraelectric SrMnO3 system through a series of phase transitions to a 

ferromagnetic (Tc  92 K) – ferroelectric (Ps  54 Ccm
-2

) multiferroic state.
48

   Fennie et al.
47

 

proposed a spin-phonon coupling mechanism for  epitaxial strain transformation of EuTiO3, an 

antiferromagnetic-paraelectric insulator in un-strained form, into  a single phase ferroelectric (P 

10 Ccm
-2

) – ferromagnet (7 B) in epitaxial thin films compressively strained above -1.25%. 

Strong coupling between magnetic and ferroelectric ordering is realised with spin-phonon 

coupling through which ferromagnetic spin-alignment softens a low-frequency polar mode which 

is strongly coupled to biaxial epitaxial strain.
47, 49

  Whereas ferromagnetic-ferroelectric 

multiferroicity remains to be demonstrated experimentally in EuO and SrMnO3, Lee et al.
50

 were 

successful in verifying that spin-lattice coupling converts EuTiO3 into a ferromagnetic-

ferroelectric multiferroic.  Due to the lack of a suitable substrate to allow for the appropriate 

biaxial compressive strain (-1.25 to -2%), they calculated that the critical tensile strain to reach 

the ferroelectric-ferromagnetic ground state of EuTiO3 is +0.75%. 22 nm (001)-oriented EuTiO3 

films grown by reactive molecular beam epitaxy on (110) DyScO3 substrates (strain = +1.1%) 

demonstrated ferroelectricity below Tc 250K and ferromagnetism below Tc 4.24  0.02K and 

capacitance measurements demonstrate that the two order parameters are coupled, however, 



unfortunately this magnetoelectric multiferroic phase is only observed at very low 

temperatures.
50

   

 

 

 

Fig. 1.2. Scanning transmission electron microscopy (STEM) images of (a) Bi2FeMnO6 structure 

obtained on SrTiO3(001) and (b) the new Bi3Fe2Mn2Ox (BFMO322) supercell structure obtained 

on LaAlO3 substrates. (c) Displays the increased magnification image of the region outlined in 

(b) demonstrating the coherent interface between the LaAlO3 substrate and the BFMO interlayer. 

From Chen et al.
51

 

 

Chen et al.
51

 have demonstrated that substrate-induced epitaxial strain is a valuable 

approach to the formation of new structures with additional functionality which cannot be grown 

as equilibrium single crystals. Under identical pulsed laser deposition conditions, thin films of 

the conventional pseudo-perovskite Bi2FeMnO6 structure were obtained on SrTiO3(001) 

substrates (Fig. 1.2(a)), while growth on LaAlO3(001) substrates yielded the new Bi3Fe2Mn2Ox 

(BFMO322) supercell structure (Fig. 1.2(b) and (c)) which demonstrates ferroelectric (Pr 

(remanent polarization) = 6C/cm
2
, d33 (piezoelectric coefficient) 30 pmV

-1
) and ferromagnetic 

(Ms (saturated magnetization)  110 emu/cm
3
) properties at room temperature.  This BFMO322 



supercell, with a cation ratio of Bi:Fe:Mn = 3:2:2, is related to the Aurivillius
52

 phases and its 

formation is strongly substrate dependent. A lattice misfit of -2.0% enables growth on LaAlO3 

whereas no growth occurs on SrTiO3 (lattice misfit is -0.6%).
51

 Abberation corrected scanning 

transmission electron microscopy (Cs-corrected STEM) and optimized geometric phase analysis 

(GPA) establishes that the formation of biaxial lattice strain distributions and highly strained 

BFMO transition layers between the LaAlO3 substrate and the BFMO322 supercell are crucial 

for triggering the growth of the BFMO322 supercell structure.
53

  As the thickness of the BFMO 

interlayers increases, the elastic biaxial strain increases up to thicknesses of 3-4 nm, whereupon 

interfacial defects consisting of misfit dislocation partials are generated to relax the mismatch 

strain. This is followed by the growth of the BFMO322 supercell which is partially relaxed to 

3.7-4.4% (compared with Bi2FeMnO6 on SrTiO3 with a relative strain of -0.33%). The film 

crystal structure and stoichiometry evolve gradually from the highly distorted pseudo-perovskite 

structure to the BFMO322 supercell through the interfacial phases, demonstrating that 

heteroepitaxial strain is progressing as a new route for the generation of multiferroic phases.
53

 

Chemical control of functionality on a site-by site basis is possible with multi-component 

oxide systems. The hexaferrite Sr3Co2Fe24O41 demonstrates low-field magnetoelectric effects at 

room temperature, however shows no polarization at zero magnetic field and therefore is not a 

bilinear magnetoelectric.
54

 SrCo2Ti2Fe8O19 does exhibit spontaneous polarization at zero 

magnetic field (25Ccm
-2

)
55

 and decreases in magnetization of up to 6.3% on application of a 

magnetic field of 46mT and Edc of 22 kv/cm. Magnetic force microscopy investigations of this 

ceramic under various electric fields (Edc  -20 to +20 kv/cm) demonstrated decreases in 

magnetic contrast and electric-field control of magnetism at room temperature in the absence of a 



magnetic field bias (converse magnetoelectric effect), however no change in domain structure 

could be detected. 

 

 

Fig. 1.3. Ferroelectric domain configuations of [Pb(Zr0.53Ti0.47)O3]0.6-[Pb(Fe0.5Ta0.5)O3]0.4  

changing dramatically with an applied magnetic field.
56

 Lateral piezoresponse force microscopy 

images before (a) and after (b) the application of 1.8 T magnetic field. 

 

Recently, a newly-discovered single-phase multiferroic, [Pb(Zr0.53Ti0.47)O3]0.6-

[Pb(Fe0.5Ta0.5)O3]0.4 has been shown to exhibit dramatic changes to ferroelectric domain 

configurations on application of applied magnetic fields (-0.3 to +1.8 T) (Fig. 1.3) and 

significant (60% change in polarization) bilinear magnetoelectric coupling in lamellae of the 

ceramic at room temperature (1 x 10
-7

 sm
-1

).
27, 57, 58

 In addition, magnetic and dielectric 

anomalies appear at similar temperatures to the elastic data, giving further indications that the 



multiple ferroic order parameters are strongly coupled.
58 Evans et al.

56
 put forward a strain-

mediated coupling mechanism for these observations of ferroelectric domain switching in 

[Pb(Zr0.53Ti0.47)O3]0.6-[Pb(Fe0.5Ta0.5)O3]0.4  on application of a magnetic field.   

For a period in the 2000s, there had been a number of contradictory studies
30, 59, 60

 on the 

multiferroic properties of BiFeO3 thin films. Wang et al.
30

 reported an enhancement of room 

temperature ferromagnetism (150 emu/cm
3 

or 1
 
B/Fe) in 70 nm heteroepitaxially strained 

films compared with the weak ferromagnetism expressed in bulk BiFeO3. However Béa et al.
61

 

demonstrated that the large ferromagnetic moment was not as a result of epitaxial strain in the 

films, rather, virtually all of the ferromagnetic signal observed in BiFeO3 thin films could be 

attributed to the presence of ferrimagnetic -Fe2O3 (magnetic moment 420 emu/cm
3
 or 1.25 

B/Fe) precipitates. This parasitic -Fe2O3 phase was detectable and quantifiable by x-ray 

absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD); however it was 

not easily detectable by the less sensitive X-ray diffraction technique. The intrinsic 

magnetization of BiFeO3, without detectable parasitic phases, is confirmed to be low ( 0.02 

B/Fe).
61

 This work demonstrates the importance of detailed phase analysis when designating 

materials as room temperature ferroelectric/ferromagnetic multiferroics. 

By inserting magnetic ions into lead-free layered-structured ferroelectric materials in the 

Aurivillius phase, we outline (Section 21.3 to Section 21.6) how Keeney et al.
2
 were successful 

in synthesising thin films of average composition, Bi6Ti2.8Fe1.52Mn0.68O18 (B6TFMO), which 

demonstrate ferroelectric and ferromagnetic properties at room temperature. Given that trace 

levels of magnetic impurity inclusions can significantly affect the observed ferromagnetic 

response from the main phase
30, 61, 62, 63

, Section 21.4 reviews how careful phase analysis and 

statistical treatment of the data confirmed that B6TFMO phase is a single phase multiferroic to a 



confidence level of 99.5%.  Section 21.3.4 summarises how direct evidence of magnetoelectric 

coupling in the B6TFMO thin films was obtained.  This review demonstrates that with materials 

development and design, the development of room temperature multiferroic materials can be 

achieved. 



21.2 Aurivillius Phase Materials - Candidate Single Phase Multiferroics? 

The layered-structured Aurivillius phase materials (Fig. 2.1),
52

 described by the general 

formula Bi2O2(Am-1BmO3m+1), are a particularly attractive class of oxides for the design of 

prospective new single phase multiferroic systems as they offer the potential to include 

substantial amounts of magnetic cations within a strongly ferroelectric system. The materials are 

members of an homologous family of Bi-layered oxides, where the structure is a naturally 

layered nano-composite. The 2-dimensional nano-structures have large c-axis lattice parameters 

(the stacking axis), in the nanometer range, and consist of fluorite-structured (Bi2O2)
2+

 layers of 

thickness f (typically ~0.4nm) lying in the (001) plane. These phases are very flexible, as 

between the bismuth oxide layers, a wide range of B-site cations can be sandwiched in the form 

of mABO3 perovskite-type layers. The number of ABO3 perovskite units (m) per half unit cell can 

be altered within the range 1 to 9, depending on composition, and a variety of over 50 Aurivillius 

phase compounds have been reported.
64, 65, 66, 67

 In Fig. 2.1., one unit of BiFeO3 has been inserted 

into Bi4Ti3O12 to form the four-layered material, Bi5Ti3FeO15. The average thickness of the 

perovskite-type block, h, is influenced by the number of octahedral perovskite units (m) in the 

block: h = pm where p is the average thickness of the perovskite-like units (also typically ~0.4 

nm).
68

 (Note that this is only an approximation, as octahedral tilting, and choice of A & B cations 

will change the average height of each perovskite unit.
69, 70, 71

) The value of m can be an integer 

or fractional.
72

 Fractional values of m usually occur with “mixtures” between a pure Aurivillius 

phase compound and a perovskite end member.  These are formed by recurrent intergrowth of the 

perovskite blocks of two Aurivillius end-members, eg. BaBi8Ti7O27 (m = 3.5) is formed from 

(Bi4Ti3O12)0.75-(BaTiO3)0.25.
73, 74

 The values of f and h are related to the c cell parameter by f + h 

= c/2.  Table 2.1. demonstrates that this formula fits quite well for a variety of Aurivillius phase 



compositions, and it provides a reasonable model from which the values of m can be obtained for 

any Aurivillius compound. 

 

Table 2.1.  Comparison of c-lattice parameter predicted by f + h = c/2 with that obtained from 

diffraction data for Aurivillius phase compositions of m = 2-4.  Where h = pm and values of 

4.11Å and 4.08Å for p and f respectively, were used for the prediction. 

Aurivillius phase  m c (Å) predicted  c (Å) obtained 

SrBi2Ta2O9 2 24.60 25.02641(50)
75

 

(Bi3TiNbO9)0.5–(Bi4Ti3O12)0.5 2.5 28.71 29.05
76

 

Bi4Ti3O12 3 32.82 32.8111(4)
77

 

BaBi8Ti7O27 3.5 36.93 37.198
74

 

Bi5Ti3FeO15 4 41.04 41.197(1)
71

 

 

 



 

Figure 2.1.  a-axis (plus 4) projection of the m = 4 Aurivillius phase Bi5Ti3FeO15. Drawn using 

structural parameters from Hervoches et al.,
78

 Crystallographica v1.60d
79

 and VESTA 3.0 3D 

visualization program for crystal structures
80

.   

   

 

Lomanova et al
81

 explored a homologous series of ceramics with general formula Bim-

1Fem-3Ti3O3m+1, and demonstrated the existence of structures with m from 4 to 9 using X-ray 

diffraction and electron probe X-ray microanalysis, including some with fractional m. These 

compounds were achieved by inserting bismuth ferrite units, BiFeO3, into 3-layered bismuth 

titanate, Bi4Ti3O12. For this particular homologous series, Lomanova et al.
68

 have pointed out 

that, as the number of perovskite-like layers increases, the cell c parameter rises almost linearly, 

implying that the perovskite-like units incorporated into the Aurivillius phase structure 



experience only slight changes along the c axis with increasing m. An average thickness of the 

perovskite layers, p 4.11Å and the fluorite layers, f 4.08Å was estimated for this series.
68

  

Due to the thermodynamic stability curves of the high m-number phases being very 

similar; there is only a small thermodynamic driving force for any individual m phase. This leads 

to a tendency for intergrowths of a mixture of different-m intergrowths in bulk-processed 

Aurivillius phase samples, particularly with increasing m.
82

 Due to the insensitivity of X-ray 

diffraction to local disorder, this technique is not sufficient to distinguish between large-period 

superlattices (e.g. m = 7) and intergrowths of multiple shorter–period members (e.g. intergrowths 

of m = 3 and m = 4).
83, 84

 Therefore, transmission electron microscopy (TEM) is necessary for the 

confirmation of higher m-number Aurivillius phases.
83

  Zurbuchen et al.
85

 have demonstrated 

that precise control of temperature and epitaxial growth onto (001) SrTiO3 has enabled the 

synthesis of an m = 8 Sr5Bi4Ti8O27 phase by pulsed laser deposition (PLD) which is free from 

intergrowths of other m-phases, as confirmed by both X-ray diffraction and TEM. 

The Fe distribution over the two non-equivalent octahedral B cation sites in the 

perovskite block (classified as B(1) inside the block and B(2) for the octahedra on the outer sides 

of the block adjacent to the Bi2O2
2-

 layers) has been investigated for the Bim+1Fem-3Ti3O3m+3 

series.
72

  This report has shown that for m = 3.5 to 7, Fe
3+

 ions preferentially occupy the B(1) 

sites, however the ordered distribution of ions over B(1) and B(2) sites decreases with the 

increase in the perovskite-like block thickness.  At m 7, the distribution of Fe
3+

 and Ti
4+

 ions of 

the perovskite-type block tends to become more random and when the value of m increases up to 

8-9, concentrations of ions at B(1) and B(2) sites equalize.
72

  

The Aurivillius phase materials are well known ferroelectrics, with high Curie 

temperatures (500°C) and large in-plane spontaneous polarisations.
62, 86, 87, 88, 89

  SrBi2Ta2O9 



(m = 2), SrBi2NbxTa2-xO9 (m = 2) and Bi3.25La0.75Ti3O12 (m = 3) Aurivillius phase materials have 

been developed for commercial use in Fe-RAM (ferroelectric random access memory) devices.
90, 

91, 92, 93, 94
 Interestingly, symmetry differences between structures with even and odd numbers of 

m means that their ferroelectric properties behave differently, as explained by Newnham et al.
95

 

The spontaneous polarization in the Aurivillius phases originates from the rotation and tilt of the 

BO6 octahedra in the perovskite block, however, even and odd m-numbered structures rotate 

differently. At the ferroelectric phase transition, a strong bond is formed between a bismuth ion 

of the (Bi2O2)
2+

 layer and an apex oxygen of the perovskite layer, therefore the BO6 octahedra 

receive strain energy from the bismuth oxide layer.  Strain is minimized in even m-numbered 

structures by retaining mirror symmetry perpendicular to the c-axis, however retaining the mirror 

plane perpendicular to the c-axis in the odd m-numbered structures is not energetically 

favourable as it would result in deformation of the BO6 octahedral.
95

 The presence of a mirror 

plane results in cancellation of polarizations along that plane. Thus, even m-numbered 

Aurivillius phase materials exhibit spontaneous polarization along the a-axis only because of the 

glide and mirror planes perpendicular to the b- and c-axis, respectively, whereas odd m-

numbered phases exhibit minor polarization along the c-axis and major polarisation along the a-

axis when the glide planes are perpendicular to the b-axis.
96

  The (Bi2O2)
2+ 

layer is considered to 

be paraelectric and it is difficult for the bismuth ions to move in the direction of an applied 

external field. On increasing the number of m-layers, the strain energy that the BO6 octahedra 

receive from the bismuth oxide layers decreases and the octahedral cations can move easier 

toward the direction of the applied electric field.  As a result, the saturated coercive field and the 

minimum electric field for ferroelectric hysteresis loop saturation tends to decrease as m 

increases.
97

  



Given that the layered nature of the Aurivillius phase materials also allows for the 

incorporation of significant amounts of magnetic ions with +3 to +5 oxidation states
98

 within the 

mABO3 perovskite units, the normally-conflicting electronic structure requirements for 

ferroelectricity (unoccupied d orbitals, d
0
) and ferromagnetism (partially filled d orbitals, d

n
)  in a 

single phase
21

 can potentially be circumvented and the fabrication of single-phase 

magnetoelectric multiferroic materials could conceivably be accommodated.  

 

 

Fig. 2.2. Images of BTF7M3O on SiO2-Si: (a) topography, (b) out-of-plane PFM (piezoresponse 

force microscopy) amplitude, and (c) out-of-plane PFM phase after PFM lithography with an 

applied dc bias of 33.0 V.
99

 

 

Weak room temperature ferromagnetism has been reported for Bim+1Fem-3Ti3O3m+3 

Aurivillius phases with m=4
100

, and antiferromagnetism (80 to 300K) for m=6
101

 and m=7
102

.  

Ferroelectricity was preserved and fine ferroelectric patterns could be written (Fig. 2.2) in 

manganese-substituted Bi5Ti3Fe0.7Mn0.3O15 (m = 4), however the lack of an appreciable room 

temperature ferromagnetic hysteresis demonstrates that it is not a room temperature 

multiferroic.
99

 Zurbuchen et al.
103

 revealed that the manganese substituted Bi7Mn3.75Ti2.25O21 

(tetragonal with m=6) was ferromagnetic below 55K, but not ferroelectric.  Ferroelectricity and 

ferromagnetism above room temperature was reported for cobalt-substituted, 4-layered 

Bi5Ti3Fe0.5Co0.5O15 ceramic
104

, with a small remanent magnetisation (7.8memu/g). Subsequent 



investigations
17, 105, 106, 107

 of Bi5Ti3Fe0.5Co0.5O15 ceramics and Bi5Ti3Fe0.7Co0.3O15 thin films also 

displayed ferroelectric and ferromagnetic behaviour at room temperature. However, extensive 

micro-structural phase analyses detected trace (2 to 3.95  vol.%) levels of CoFe2-xTixO4 second 

phase inclusions, not observed by X-ray diffraction, but which accounted for the observed 

magnetization. A remanent magnetisation of 7.8memu/g as observed by Mao et al.
104

 would 

correspond to a trace CoFe2O4 second (or impurity) phase level of only 0.03 wt.%, which would 

be very hard to see by any microanalytical method. Additionally, XAS-PEEM (X-ray absorption 

spectroscopy photoemission electron microscopy) and XMCD-PEEM (X-ray magnetic circular 

dichroism photoemission electron microscopy) imaging (Fig. 2.3) confirmed that the majority of 

magnetic response in the Bi5Ti3Fe0.7Co0.3O15 thin film samples arises from the Fe sites of Fe/Co-

rich spinel phase inclusions.
62

  While the magnetic contribution from the main phase could not 

be determined by the XMCD-PEEM images, this data however implies that the 

Bi5Ti3Fe0.7Co0.3O15 thin films are likely not single phase multiferroics at room temperature. This 

observation clearly demonstrates the difficulty of explicit assignment of magnetic effects to the 

parent Aurivillius phase. Other work
108

 has reported ferroelectric and ferromagnetic behavior in 

thin films of Bi4.15Nd0.85Ti3Fe0.5Co0.5O15. Compounds with higher values of m, such as 

Bi6Ti3Fe2O18 (B6TFO, m=5), provide pathways for increasing the proportion of magnetic cations 

in the Aurivillius phase thin films.  For instance, weak ferromagnetic/antiferromagnetic 

behaviour was reported in rare-earth and Co doped B6TFO
109, 110, 111, 112 

 ceramics and thin films, 

but none of the work presented phase analyses at a level which would exclude the possibility that 

the ferromagnetic responses were due to trace-level second phases.  



 

Fig. 2.3. (a) XAS-PEEM image at Fe L-edge resonance (707.32 eV) and (b) XMCD-PEEM 

image at Fe L-edge resonance (707.32 eV) demonstrating magnetic signature at the Fe edge for 

the Fe-rich inclusions. (c) XAS-PEEM image at Co L-edge resonance (775.75 eV) and (d) 

XMCD-PEEM image at Co L-edge resonance (775.75 eV) demonstrating no magnetic signature 

at the Co edge for the Co-rich inclusions. Frame of view is 6 m.
62

 

 

In the proceeding sections, we will summarise how such a higher m an Aurivillius phase 

material, Bi6Ti2.8Fe1.52Mn0.68O18 (m = 5)
2
, demonstrates magnetoelectric multiferroicity at room 

temperature, with a confidence level of 99.5% that the effects are intrinsic to the Aurivillius 

phase.  



21.3. Magnetoelectric Coupling in Multiferroic Bi6TixFeyMnzO18 Systems at Room 

Temperature 

21.3.1 Fabrication and Structural Analysis of Bim+1Ti3(Mn/Fe)m-3O3m+1 Thin Films 

Liquid injection chemical vapour deposition (LI-CVD), sometimes called atomic vapour 

deposition since its method of operation lies in between that of atomic layer deposition, is an 

industrially-friendly method for depositing multi-component oxide thin films.
113

  This technique 

allows high gas phase saturation of precursors of low volatility and the growth of multi-

component thin films with stoichiometric control at high throughput. Highly oriented and 

epitaxial thin films of Bi4Ti3O12
86

 and Bi5Ti3FeO15
89

 have been successfully grown by LI-CVD. 

When designing new materials however, chemical solution deposition methods are often chosen 

to screen promising compositions since they offer flexibility, control of purity and homogeneous 

mixing at molecular level with precursors which are generally significantly cheaper than those 

used for LI-CVD. 

 

 



 

Fig. 3.1.1. (a) TEM image taken from a cross section of the annealed Bi5Ti3FeO15 film. (b) 

HRTEM image of the lattice structure.
112 

 

To synthesise thin films of Bi7Ti3Fe3O21 (m = 6; B7TFO) and Bi6Ti2.8Fe1.52Mn0.68O18 (m 

= 5; B6TFMO)
2
, a chemical solution deposition technique was developed by adapting techniques 

developed for the m = 4 materials Bi5Ti3FeO15
88

, Bi5Ti3Fe0.7Mn0.3O15
99

 and Bi5Ti3Fe0.7Co0.3O15
62

. 

Metal salts (Bi(NO3)3.5H2O, Fe(NO3)3.9H2O)  and organometallics (Ti(OCH2CH2CH2CH3)4 , 

Mn(C5H7O2)3) were used as precursors and lactic acid and acetylacetone acted as solvents to 

prepare 0.03 moldm
-3

 solutions of B7TFMO/B6TFMO.
2
  For all solutions, the reactions were 

conducted at room temperature and 17.5 mol% excess bismuth
99

 was used to compensate for 

evaporation of bismuth during the annealing process and prevent pyrochlore formation. The 

films were spin-coated on c-plane sapphire substrates by a commercial spinner operating at 1000 

rpm for 30 s. Immediately following this, residual organics were removed from the films by 



baking on a calibrated hot plate.  The spin-coating/baking steps were repeated to achieve desired 

thicknesses. Films were annealed in ambient air for 1 hour in a conventional furnace at 

temperatures of 850C.  Final thicknesses of 100nm and 200nm were obtained for B7TFO and 

B6TFMO, respectively, as observed from cross-section HR-SEM (high resolution scanning 

electron microscopy) measurements. 

 In fact, Keeney et al.
2
 intended to synthesise thin films of m = 6 structure only, i.e. 

Bi7Ti3Fe3O21 (m = 6; B7TFO) and Bi7T3Fe2.1Mn0.9O21 (m = 6; B7TFMO). The syntheses were 

carried out under identical conditions; the only difference for the latter sol was that 30% of Fe 

was replaced by Mn. However, X-ray diffraction (Fig. 3.1.1.) and high resolution transmission 

electron microscopy (HR-TEM) studies revealed that the intended B7TFMO system fitted with a 

5-layered B6TFMO system (a
 
= 5.497, b = 5.415 and c = 49.280 Å) with reflections and d-

spacings differing to the 6-layered B7TFMO system (a
 
= 5.468, b = 5.472 and c = 57.554 Å). 

Therefore, inclusion of Mn in the B7TFMO sol has driven the film from an m = 6 to an m = 5 

Aurivillius phase. Multiple HR-SEM energy dispersive x-ray (EDX) surface scans revealed an 

average film composition of Bi6Ti2.8Fe1.52Mn0.68O18, which is slightly deficient in Fe and Mn 

relative to the sol. It was noted that as a considerable excess of Bi is included in the sol, the 

minor changes in excess given by producing an m=5, rather than an m=6 film is not significant. It 

was also noted that there were no detectable lines from minor phases visible in the XRD patterns 

of the films.  However, the noise level in any XRD scan places a limit on the detectability on 

such minor phases and the method is intrinsically unable to detect trace levels (typically 1-3 vol 

%) of strongly magnetic secondary phases which may affect the overall magnetization of the 

sample.
61, 62

  

 



 

 

Fig. 3.1.2. (a) XRD patterns from B7TFO and B6TFMO thin films, (b) HR-TEM image and (c) 

electron diffraction pattern of B6TFMO.
2
  

 

 AFM (atomic force microscopy) and SEM investigations demonstrated that the B7TFO 

and the B6TFMO thin films crystallised in the typical Aurivillius phase plate-like morphology. 

72 hour long HR-SEM-EDX data collection over a 1600m
2
 area and signals produced maps 

which showed areas of excess Fe and Mn for the B7TFO and B6TFMO films. In conjunction 

with detailed cross-sectional HR-TEM/SAED (selected area electron diffraction), these maps 

showed extremely small amounts (0.01 vol %) of FeOx oxide inclusions in B7TFO and slightly 



larger amounts (0.1 vol%) of a rock-salt Mn0.53Fe0.47O phase in the B6TFMO.  This rock-salt 

composition is non-ferromagnetic, and antiferromagnetic at low temperatures with a Nèel point 

of 150K.
114

 Also visible in these surface HR-SEM-EDX maps were larger areas (1 m in 

diameter; 1 vol%), similar in shape to the Aurivillius grains, where the Fe content slightly 

exceeded the surrounding grains. Detailed cross-sectional HR-TEM/SAED and HR-STEM-EDX 

compositional surveys of these grains showed that they were m=5 Aurivillius-structured grains 

with some m=6 intergrowths possessing a higher Fe content than the average of the film 

composition determined by surface area HR-SEM-EDX. The range of grain compositions 

spanned both the composition of the sol used in the synthesis (Bi6Ti2.5Fe1.75Mn0.75O18) and the 

average film composition Bi6Ti2.8Fe1.52Mn0.68O18 determined by EDX. This microstructural data 

was important in explaining why a sol which was set-up to deliver an m=6 structure could 

produce an m=5 structure without large amounts of second phase appearing in the film. 

 Note that in order to make up for the deficiency in Ti
4+

 at the B-site of 

Bi6Ti2.8Fe1.52Mn0.68O18, the charge balance can only be accommodated by a variable valency in 

Mn: Bi6Ti2.8Fe1.52Mn
III

0.48Mn
IV

0.2O18. It was also noted that the content of Mn
4+

 varied within the 

1 vol% Aurivillius phase structures containing increased Fe content.  It is believed that this has 

important consequences for the magnetic properties of the grains,
2
 as will be discussed in 

Sections 21.3.3 and 21.3.4. 



21.3.2 Ferroelectric Investigations of Bi6Ti2.8Fe1.52Mn0.68O18 Thin Films 

The Aurivillius phase materials are well-known ferroelectrics
62, 86, 87, 88, 89

 where even m-

numbered Aurivillius phase materials exhibit spontaneous polarization along the a-axis only, 

whereas odd m-numbered phases exhibit minor polarization along the c-axis and major 

polarisation along the a-axis.
95, 96

 Bi6Ti3FeO18 ceramics have ferroelectric Curie temperatures 

above 1021K
115

 and remant polarization of 9C/cm
2
 which has been reported

116
 to increase to 

17.6C/cm
2
 on 30% substitution of Fe with Co. 

Keeney et al.
2
 investigated the local room temperature electromechanical properties of the 

Bi7Ti3Fe3O21 (m = 6; B7TFO) and Bi6Ti2.5Fe1.75Mn0.75O18 (m = 5; B6TFMO) thin films by using 

piezoresponse force microscopy (PFM)
117, 118, 119, 120, 121

.  As these films are preferentially c-axis 

oriented, most of the grains have their crystallographic a-axis lying in the lateral plane of the 

film. As a result, the single frequency lateral PFM images demonstrate greater piezoresponses 

(25 pm/V for B7TFO & 19 pm/V for B6TFMO) than the single frequency vertical PFM images 

(3 pm/V for B7TFO & 8 pm/V for B6TFMO). Given the minor polarization along the c-axis for 

Aurivillius phases with odd numbers of perovskite layers, the difference between lateral and 

vertical PFM responses for the B6TFMO (m = 5) films is less than that of the B7TFO (m = 6) 

films. In order to amplify the weaker vertical piezoresponse and reduce effects of topography 

cross-talk, the DART-PFM (Dual AC Resonance Tracking Piezoresponse Force Microscopy) 

mode was employed (Fig. 3.2.1). This method uses the cantilever resonance frequency to boost 

the piezo signal in the vertical direction, while reducing crosstalk between changes in the 

sample-tip contact stiffness and the PFM signal by tracking the resonance frequency based on 

amplitude detection feedback.
122

  Investigations of the local room temperature ferroelectric 

switching behaviour in the films by vertical DART-PFM switching spectroscopy measurements 



in the absence of an applied DC bias demonstrate clear 180 ferroelectric switching for both 

types of film (Fig. 3.2.1 (a) to (d)).  Ferroelectric polarization reversal over areas of the 

B6TFMO film were achieved by applying an applied field of 525 V/m vertically to an area of 

the thin films via the PFM tip (in a “write” step).  The written areas could be detected by a 

subsequent PFM scan (“read” step), (Fig. 3.2.1 (e) and (f)).  Tests conducted over an 8 hour 

period demonstrated that the films retained polarization for this period of time.
2
 

 

 

 

 

 



Fig. 3.2.1. Vertical DART-PFM switching spectroscopy (a) phase and (b) piezoresponse loops 

of B7TFO and (c) phase and (d) piezoresponse loops of B6TFMO thin films in the absence of an 

applied DC bias. Images of B6TFMO on c-plane sapphire: (e) out-of-plane PFM phase and (f) 

out-of- plane PFM amplitude after PFM lithography with an applied electric field of 70 V.
2
 



21.3.3 Assessment of Ferromagnetism in Bi6Ti2.8Fe1.52Mn0.68O18 Thin Films  

Lately the particular class of ferroelectric perovskite compounds Bi2O2(Am-1BmO3m+1) containing 

Fe/Co/Mn ions are found to exhibit magnetic behaviour at room temperature which have been 

reported in several papers.
101, 102, 123, 124, 125, 126

 Ferroelectricity and ferromagnetism above room 

temperature was reported for the cobalt-substituted, 4-layered Bi5Ti3Fe0.5Co0.5O15 ceramic
127

, 

with a small remanent magnetisation. Further investigations
62, 63 

of Bi5Ti3Fe0.5Co0.5O15 ceramics 

and Bi5Ti3Fe0.7Co0.3O15 films also demonstrated ferroelectric and ferromagnetic behavior at room 

temperature. Subsequently it was observed that Fe/Co-rich spinel phase, likely to be CoFe2-

xTixO4, coexist in the film, which accounts for the observed ferromagnetic moment in the films. 

In a recent study, room temperature ferromagnetic investigations of thin films of Aurivillius 

phase Bi7Ti3Fe3O21 (B7TFO) and Bi6Ti2.8Fe1.52Mn0.68O18 (B6TFMO) was conducted by an 

intensive magnetometry examination.
2
 The ZFC (zero field cooled)-FC (field cooled) 

measurement protocol which has been used in this study is a widely used protocol to investigate 

the magnetic properties as a function of temperature and bias field. From the temperature 

dependent FC-ZFC magnetization, and remanence curves (Fig. 3.3.1 (a)), phase transitions are 

determined. The point at which splitting between ZFC-FC curves occurs denotes the transition 

temperatures, for example Néel (TN) or blocking (TB) temperatures, below which, the material is 

antiferromagnetic or ferromagnetic, and result in small or large positive remanences respectively. 

Another important measurement is the (M-H) measurement, where the magnetization (M) of the 

sample is measured as a function of applied magnetic field (H) (Fig. 3.3.1 (b)). For paramagnetic 

and diamagnetic materials, the curves obtained are straight lines through the origin with positive 

and negative slopes respectively. For other types of materials (ferromagnetic/ ferrimagnetic/ 

antiferromagnetic/ superparamagnetic, etc.) the M-H measurement is non-linear, and takes the 



form of the schematic hysteresis loop in Fig. 3.3.1 (b). Other magnetic parameters such as 

coercivity, remanence, saturation magnetization, etc. help to determine the type of magnetic 

materials. 

 

 

Fig. 3.3.1. Typical Zero Field Cooled (ZFC) – Field Cooled (FC) – Remanence curve (a) and 

magnetic hysteresis (MH) loop (b) measured in SQUID magnetometer.
2
 

 

The magnetic behaviour of the B6TFMO and B7TFO thin films (by L. Keeney et.al.
2
) revealed a 

strong room temperature ferromagnetic signature for the B6TFMO samples, which was evident 

from SQUID (superconducting quantum interference device) magnetization measurements as a 

function of magnetic field (Fig. 3.3.2 (a) and (b)) and temperature (Fig. 3.3.2 (c)), whereas a 

clear antiferromagnetic behaviour was reported in the case of B7TFO. The geometrical defects of 

the samples such as roughness and inhomogeneity in sample thickness, (including the fact that 

2.44 area of the substrate was not covered by the Aurivillius phase thin film due to pore 

formation, (inset Fig. 3.3.2(a))) were taken into account for a precise calculation of the magnetic 



properties. The calculated saturation magnetization (MS) measured for Aurivillius phase 

B6TFMO is reported as 0.74 emu/gm with   remanent magnetization (Mr) of 0.022 emu/g (0.18 

emu/cm
3
) and coercivity (0Hc) of 7mT at 300 K. The coercivity and remanence increased 

gradually with a decrease in temperature (Fig. 3.3.2 (d)).  ZFC–FC measurements (Fig. 3.3.2 

(b)) with a relatively low field of 10 mT were performed to investigate the magnetization 

behaviour of the B6TFMO sample as a function of temperature.  A clear split between the ZFC-

FC curves was observed which demonstrates the ferromagnetic nature of the sample since 

otherwise the ZFC-FC lines would normally coincide
128

 with each other. The compound without 

Mn substitution, B7TFO (Bi7Ti3Fe3O21), demonstrated an antiferromagnetic Nèel temperature at 

190 K and a magnetic transition to weak ferromagnetism below 35K (Fig. 3.3.2 (c)) as reported 

previously by A. Srinivas, et. al.
101

 The antiferromagnetic secondary phase Mn0.53Fe0.47O 

observed in B6TFMO by HR-SEM is reported to have a Nèel  Temperature at ~150K.
114

 

However no  magnetic transition at 150K was detected in the magnetization vs. temperature 

measurement (MT) for B6TFMO by L. Keeney et.al.
2
  Rather, the ZFC-FC curves are well 

separated below 350K which strengthens the evidence for B6TFMO being ferromagnetic, with a 

TC greater than 350K. It was additionally observed that the  FC curve of B6TFMO drops down at 

190K and increases again sharply below 35K which is similar in nature with the MT behaviour 

of B7TFO (Fig. 3.3.2 (c)). A qualitative explanation of the non-monotonic behaviour of the FC 

curve for B6TFMO was described.
2
 Most likely, a significant part of the parent B6TFMO phase 

was modified to become ferromagnetic at the nanoscale, with the remainder being 

antiferromagnetic in the same way as in the case of unmodified B6TFO
92, 111, 129, 130

. The 

variation of magnetization of B6TFMO as a function of temperature (Fig. 3.3.2 (c)) was thus 



non-monotonic in nature due to the influence of a proportion of grains behaving as it would be 

expected from the unmodified parent antiferromagnetic B6TFO phase.
129, 130

  

 

Fig. 3.3.2. The magnetic properties of B7TFO phase were investigated. Figure (a) shows the 

magnetic hysteresis measured at 2K and the inset shows hysteresis after direct subtraction of the 

diamagnetic substrate contribution. Figure (b) shows the zoomed hysteresis loop of B6TFMO 

measured at different temperatures. 

 

In the magnetic hysteresis loop measurement (Fig. 3.3.2 (a)), the B6TFMO film shows a 

saturation magnetization (2.19 emu/gm at 2 K temperature under 5T field) which is substantially 

higher than the unsubstituted B7TFO phase (0.2 emu/gm at 5 K temperature under 5T field).   

For antiferromagnetic materials the remanent magnetization is understood to be negligibly small 

(ideally zero) as the opposite spins cancels out each other. The observation of both high 



remanence and a simultaneous increase of remanence and coercivity of B6TFMO with a 

decrease in temperature strongly support the existence of ferromagnetism in this material. 

 A possible mechanism for the observed ferromagnetism in B6TFMO can be explained by 

assuming that there is Mn
4+

 present in the structure which can couple with Fe
3+

 in a 

ferromagnetic super-exchange interaction via the Goodenough-Kanamori rule: 

As a result of a transition metal’s coordination geometry, the degeneracy of electronic d 

orbital states is lifted. This occurs because the electrons in the metal d-orbitals and those in the 

ligands that the metal ion are coordinated to repel each other due to like charge repulsion. In 

octahedral symmetry, the 5 d-orbitals split into two sets with an energy difference, Δoct, where 

one set, the inter-axial orbitals (t2g orbitals, comprised of dxy, dxz and dyz) are lower in energy than 

the other set, the axial orbitals (eg orbitals, comprised of dz
2
 and dx

2
-y

2
) since these are further 

from the ligand orbitals and therefore experience less repulsion. The size of the gap, Δoct, 

between the sets of orbitals depends on various factors including ligand type and the geometry of 

the complex. 

According to the Aufbau Principle, electrons fill lowest available energy levels first, 

therefore when Δoct is large, the t2g orbitals are occupied before the eg orbitals.  As such, 

coordination environments which generate large splitting energies, Δoct, lead to “low-spin” 

complexes. Conversely, “high-spin” complexes are formed when there is a sufficiently small Δoct 

to obey Hund’s rule, which states that if two or more orbitals of equal energy are available, 

electrons occupy them singly before filling them in pairs. To obey the Pauli Exclusion Principle, 

when two electrons occupy the same energy level, they must have opposite spin. The electronic 

arrangement of the 5 d electrons of Fe(III) in both its “low spin” and “high-spin” configurations 



is displayed in Fig. 3.3.3 (a).  The use of these splitting diagrams can assist in the prediction of 

the magnetic properties of transition metal complexes.  

If orbital degeneracy is lost in a real environment - by chemical bonding or crystal field 

effects – the orbital contribution to the total magnetic moment is said to be quenched and the 

spin-only equation can be used to calculate the effective magnetic moment, eff (Bohr 

magneton):  

eff = (n(n + 2))
1/2 

where n is the number of unpaired electrons.  This relationship holds quite well for first row 

transition metal ions at room temperature. 

For transition metals with 1 to 3 d electrons only the t2g orbitals will be occupied.  

Therefore, for Mn(IV) eff will be 3.87 BM and the eg orbitals will be empty in all octahedral 

coordination environments irrespective of the extent of the octahedral splitting energies Δoct.  

The mechanism involving ligand orbitals to facilitate coupling between metal electrons is 

referred to as super-exchange.  According to the Goodenough-Kanamori rule, super-exchange 

interactions are antiferromagnetic where virtual electron transfer is between overlapping 

orbitals that are each half-filled, for example between the eg orbitals in high-spin Fe(III).  In 

antiferromagnetic materials, adjacent metal ions couple with their spins antiparallel – there are 

always equal numbers with the two arrangements so that there is no resultant magnetization in 

the absence of a magnetic field.  

On the other hand, the Goodenough-Kanamori rule predicts that super-exchange 

interactions are strong and ferromagnetic (Fig. 3.3.3 (b)) when virtual electron transfer is from 

a half-filled orbital to an empty orbital, for example between a half-filled eg orbital in high-spin 

Fe(III) and an empty eg orbital in low-spin Mn(III) or in Mn(IV) where the eg orbitals are always 



empty regardless of the extent of the octahedral splitting.  In ferromagnetic materials, the 

electron spins of each of the atoms couple strongly together to form a resultant unit cell magnetic 

moment in an applied magnetic field.  When the field is then removed, the magnetization does 

not return to its original value unless heated to the ferromagnetic Curie point temperature. 

 

 

Fig. 3.3.3 (a) Electronic Arrangement of 5 d electrons in “low spin” and “high-spin” 

configurations and (b) mechanism for ferromagnetic ordering. 



21.3.4 Room Temperature Magnetoelectric Coupling in Bi6Ti2.8Fe1.52Mn0.68O18 Thin Films 

Direct evidence of magnetoelectric coupling in the Bi6Ti2.8Fe1.52Mn0.68O18 (B6TFMO) thin films 

was demonstrated by Keeney et al.
2
 by performing piezoresponse force microscopy under a 

variable magnetic field to locally image the coupled piezoelectric-magnetic switching. On 

application of an in-plane magnetic field of +250 mT during single frequency PFM 

measurements in the lateral plane (Fig. 3.4.1), two situations, (i) piezoelectric domain formation 

(blue and green circles in the amplitude and phase images) and (ii) piezoelectric domain 

switching (red and orange circles in the phase images) were observed.  Induction of piezoelectric 

polarization reversal by application of a magnetic field in the positive direction (+250 mT) was 

also observed by vertical PFM imaging of the out-of-plane piezoresponses (Fig. 3.4.2 (e), (f)). 

When a magnetic field of 250 mT was applied in the opposite (negative) direction, additional 

areas exhibiting polarization inversion were obtained (Fig. 3.4.2 (h), (i)). The switching regions 

were approximately 250nm in size, clearly related to the Aurivillius grains, of which they were a 

small fraction of the total number (average change in polarization was 4% for Fig. 3.4.1 and 7% 

for Fig. 3.4.2) and widely dispersed throughout the film. The fundamental mechanism mediating 

the magnetoelectric coupling is not obvious from these experiments, however this direct 

observation of the switching and formation of a ferroelectric polarisation induced by a change in 

magnetic field within a single phase is significant as it provides strong evidence for the 

multiferroic character of the B6TFMO thin films.  It was proposed that the Aurivillius phase 

grains that demonstrate magnetoelectric coupling may be those containing the highest levels of 

Fe/Mn, for which the majority of the Mn will be present as Mn
4+

.
2
 

 



 

Fig. 3.4.1 Representative images of B6TFMO thin films: (a) topography; (c) lateral PFM 

amplitude; and (e) lateral PFM phase under 0 mT H field and (b) topography; (d) lateral PFM; 

and (f) lateral PFM phase under +250 mT H field.
2
 

 



 

 

Fig. 3.4.2. Representative images of B6TFMO thin films: (a) topography; (b) vertical PFM 

amplitude; and (c) vertical PFM phase under 0 mT  H field; (d) topography; (e) vertical PFM 

amplitude; and (f) vertical PFM phase under +250 mT H field; and (g) topography; (h) vertical 

PFM amplitude; and (i) vertical PFM phase under  -250 mT H field.
2
 



21.4 Confidence Level Assessment of Genuine Single Phase Multiferroicity 

Per definition, the magnetic properties of a single phase multiferroic material are due to only 

one phase. It is therefore necessary to exclude the possibility that magnetic effects, for example 

the remanence magnetization, are caused by the presence of secondary phase of inclusions. In 

general, it is not practical to scan the whole sample for inclusions, therefore Keeney et al.
2
 

needed to resort to statistical methods. A statistical approach was developed which only requires 

a set of measurements at various resolutions to establish an upper limit for the contribution to the 

remanence magnetization due to the presence of second-phase magnetic inclusions.  

In the following we will first review the statistics of a single measurement, and following the 

introduction of the inclusion size distribution function, a set of measurements is generalized at 

various resolutions. This then allows the provision of an upper limit for the grain size distribution 

function and the contribution to the remanence magnetization at a given confidence level.  

 

21.4.1 Statistics of a Single Measurement  

In a single measurement, a volume of size V is scanned and the number of inclusions in this 

volume is detected. In general, this volume will be small compared to the sample size. If in the 

whole sample, inclusions are present at a volume density   and the inclusions are randomly 

distributed independently of each other, then the probability  of finding precisely  

inclusions is given by the Poisson distribution, equation (1): 

 



 

This formula also predicts the probability of finding no inclusions as equation (2): 

 

This probability decreases exponentially with the scan volume V.   

A slightly different situation is now assumed, where rho () is not known and in a given scan 

of a volume V no inclusions are found. Then formula (2) can be used to  provide an upper bound 

for the inclusion density rho (). For this it is assumed that the event of not finding any 

inclusions happened with a probability of more than , i.e. . Solving formula 

(2) for the inclusion density, and introducing the symbol  for the 

confidence level, an estimation for the upper bound of rho () is obtained as equation (3): 

 

Subject to this confidence level, the  defined in equation (3) establishes an upper bound for 

the unknown inclusion density .  

 

21.4.2 The inclusion size distribution function 



For a realistic sample, inclusions can be present at various sizes and the volume density might 

vary with the inclusion size. Therefore an inclusion size distribution function, , can be 

defined such that for small  the quantity  is the density of inclusions with diameters 

in the interval  . The approach is now generalized from the previous section to the 

case of a size dependent distribution function. If in a scan of a certain volume  no inclusions are 

present which are larger than a given minimal detectable size , then the upper bound from 

equation (3) becomes a constraint on the size distribution function given by equation (4): 

 

  

21.4.3 Series of measurements at varying resolutions 

In practice, the minimal detectable inclusion size decreases with the scan volume. It is 

therefore often necessary to scan a sample at a number of different resolutions to detect for the 

presence of inclusions. It is therefore assumed that a number of  scans at different volume sizes 

 and different minimal detectable grain sizes  were performed. Here the index   runs from 

1 to   starting at large  (i.e.  ). It is also assumed that there is a physical upper 

bound  on the grain size. The probability that no inclusion was detected in measurement 



number  is given by . If the grain distribution function  is known,  is given by 

equation (5): 

 

It is again assumed that in each individual scan no inclusion larger than the minimal inclusion 

size,  was found. The probability for this zero outcome is given by the product of the 

probability for not detecting inclusions over all scans, i.e. 

 

Using equation (5),  it then follows that the condition in equation (6): 

 

holds with a confidence level of %. Equation (6) gives us an estimate of the upper 

limit of the grain size distribution function   integrated over grain size intervals from  to 

.  In practice, observable quantities (for example the remanence) are more naturally 

connected to the volume fractions of the inclusions at certain grain sizes. This motivates the 

rewriting of equation (6) using volume fractions.   



If it is assumed for simplicity that the inclusions are spherical, then the volume fraction  of 

inclusions between sizes  and   can be calculated from the grain size distribution  

via 

 

In the last step the worst case scenario is employed in that the weight of the grain distribution 

function is located at the large inclusion sizes. Using this inequality in equation (6) yields a 

convenient upper limit for the allowed volume fractions,  

 

 

which again holds with a confidence level of  It therefore follows that there is an upper limit on 

the volume fraction  of inclusions with diameter in the interval  given by  

 

 

21.4.4 Upper limit on the contribution to remanent magnetization  



 

Fig. 4.1. Remanent magnetization  of  as function of grain size. The blue line shows 

literature data from 
131

 (blue dots) and 
132

 (red dot). Because there are only a few literature 

values, a conveniently chosen (piecewise constant) green line is chosen which is assumed to 

conservatively overestimate (up to the chosen confidence level) the true remanent magnetization 

for all grain sizes .  

 

So far it has been discussed how the absence of inclusions in a number of volume scans at 

various resolutions limits the possible inclusion size distribution function . In many 

applications however, this quantity is not in itself of primary interest, but a possible physical 

effect caused by the inclusions. In Keeney et al.’s case the physical quantity of interest is the 



magnetic remanence, and the aim was to find an upper bound for the contribution of undetected 

inclusions to this quantity.
2
 Using the upper bound estimates for the volume fractions  given 

in equation (9), the maximal contribution to the remanence from inclusions with diameters in the 

interval   is given by equation (10): 

 

Here  is the remanence magnetization of pure  grains of diameter . The 

literature
131, 132

 values for this function are plotted in Fig. 4.1. For simplicity it is assumed that 

 vanishes for  . Furthermore  is set for  

and  for  which are conservative estimates as shown in figure 

Fig. 4.1.  

The total contribution from inclusions to the remanent magnetization is then simply given as a 

sum over the contributions from the individual size intervals: 

 

Because of equations (7) and (10) the parameters  fulfill the constraint  



 

with a confidence level . Therefore it can be concluded that the contribution to the 

magnetization remanence from inclusions  has an upper bound  

 

with confidence %.  From the analysis by Keeney et al.,
2
  it was concluded that the 

contribution to the remanence in the B6TFMO (Bi6Ti2.8Fe1.52Mn0.68O18) thin films from 

unobserved magnetic inclusions is less than 2.8memu/g with a confidence level better than 

99.5%. 



21.5 Potential devices / applications based on single phase magnetoelectric multiferroics 

The semiconductor technology industry has provided remarkable developments in computer 

processing speeds and miniaturisation since Moore’s prediction in 1965
133

 and has had a 

dramatic impacts on our lives. However, for future advances in miniaturisation, the memory 

capacity of digital devices will also need to improve at exponential rates. The development of an 

ideal energy-efficient non-volatile memory having the potential to retain high densities of data in 

the absence of power or an external stimuli
134

 is still an elusive goal. The most common primary 

memory used in computers and electronic devices today is dynamic access memory (DRAM), 

which is a volatile memory allowing each bit of data to be stored in a separate capacitor and 

accessed at clock cycle times in the order of nano-seconds. However, the data is lost quickly 

when the power is removed; therefore information must be transferred to a secondary memory, 

such as a non-volatile magnetic hard drive. Examples of other non-volatile memory devices 

include EEPROM (Electrically Erasable Programmable Read-Only Memory) and flash type 

memory. However, both of these memories suffer from limited life-spans, increased write times 

and production costs.
135 

In the 1970s, Esaki
136

 proposed that ferroelectric materials could be ideal candidate for 

use in non-volatile data storage  devices (ferroelectric random access memory (FeRAM)) by 

taking advantage of their two spontaneously switchable polarization states.
137

 Among the known 

ferroelectric materials, the solid solution PbZrO3–PbTiO3 (PZT) and Aurivillius phase 

SrBi2Ta2O9 (SBT) have been developed for FeRAM applications. Both these materials 

demonstrate some drawbacks which restrict their applications however, such as PZT exhibits 

polarization fatigue, while in the case of SrBi2Ta2O9 (SBT), the high processing temperatures 

required makes them difficult to process in conjunction with functional silicon technologies.
138

 



In addition, FeRAM has number of technical drawbacks which restricts their full fledge 

production in the memory technology industry. Firstly, the data read-out is performed by 

measuring the net flow of transient current during charge polarization reversal across the circuit. 

This implies that read out step is destructive in FeRAM.
139

 Secondly, FeRAM based devices 

function by charge sensing and when the lateral size of the ferroelectric capacitor is reduced to 

the sub-micron scale, the stored charges tend to be very small and beyond detectability limits.
134

 

An alternative to a non-volatile memory with the destructive data read-out of FeRAM is 

magnetic random access memory (MRAM). MRAMs  equal or surpass alternative non-volatile 

memory technologies in terms of access time and endurance,
3, 4

 however, a current drawback of 

these devices in obtaining a competitive cost/bit is the considerable power that is usually 

required for magnetic writing. Energy-efficient approaches to reduce the write energy have 

received much focus recently. One way is to reverse the stored magnetisation by spin transfer, 

employing spin polarization current rather than an external magnetic field.  Another way that 

write-energy could be significantly decreased is by using a write-scheme which relies on applied 

voltage rather than current.  The ability to control the direction of magnetization in a 

ferromagnetic layer by purely electrical means would overcome the current requirement of high 

current densities in spin-transfer torque MRAM and offer low-power approaches for spin-based 

information control. A relatively simple device to demonstrate electric field control of 

ferromagnetism was shown by Chu et al.
140

  The device (Fig. 5.1.) consists of in-plane electrodes 

that enable the application of in-plane electric fields to the BiFeO3 layer which in-turn changes 

the magnetic state of the CoFe ferromagnetic top layer.   

 



 

 

Fig. 5.1. Dynamic switching device structure.  Three dimensional (a) and cross-sectional (b) 

schematic diagram of the co-planar epitaxial electrode device showing a structure that could 

enable controlled ferroelectric switching and electrical control of ferromagnetism.
140

 

 

Hence, miniaturisation and feature scaling, increased density and processing speeds, non-

volatility and decreased power dissipation are major challenges to overcome in the creation of a 

universal memory which can scale beyond the current state-of-the art. These physical 

requirements are potentially achievable by incorporating multi-state logic in a memory cell 

which can be electrically written and magnetically read (or vice versa) in the form of  

multiferroic magnetoelectric (ME) logic memory. With strong magnetoelectric coupling between 

the ferroelectric and ferromagnetic states however, the four available switching states (+P, +M), 

(+P, -M), (-P, +M) and (-P, -M), where P represents the polarization state and M represents the 



magnetization state, are not absolutely independent of each other
141

 and the only combinations 

that are independently achievable are either (+P, +M) and  (-P, -M) or (+P, -M) and (-P, +M), 

which of course is not a 4-state memory. This problem can be circumvented by forming a 

ferromagnetic-magnetoelectric tunnel junction, where combination of electroresistance and 

magnetoresistance can result in four state memory effect.
5
  Multiferroic tunnel junctions 

(MFTJs) (Fig. 5.2.) consist of two asymmetric oxide and/or metal electrodes separated by an 

ultra-thin multiferroic barrier layer.  The approach exploits the tunnelling of electrons through 

an ultra-thin ( 10 nm) multiferroic thin film, providing giant 

electroresistance/magnetoresistance effects and a means for non-destructive read-out of non-

volatile memory states with increased storage densities and data rates with low-power 

electrical write operation.
5, 142

 Recent investigations of ferroelectric oxide thin films have 

demonstrated that ferroelectricity can persist down to the nanometre scale
143

 and therefore can 

function as ultra-thin barriers for tunnel junctions. Depending on the direction of the remanent 

polarization in the ferroelectric, charges are accumulated or depleted in the barrier layer, which 

influences its electroresistance (ER).  Resistive memories can be read more simply than 

ferroelectric capacitors (where the polarization is read by an applied voltage) by monitoring the 

source-drain current in a field-effect transistor. If the barrier layer can also act as a ferromagnet, 

as in the case of single-phase multiferroic materials, the ferromagnetic barrier layer can yield 

different tunnel barrier heights for spin-up and spin-down electrons.  Magnetization may be 

easily readout from resistance measurements as is done for magnetic tunnel junctions. Non-

polarized electrons from a non-magnetic metal crossing a ferromagnetic-multiferroic barrier will 

be transmitted differently depending on their spin, thereby acquiring a finite spin polarization, 

which is referred to as spin-filtering.  If a half-metallic ferromagnetic counter electrode is added, 



aligning its magnetization parallel or antiparallel to that of the barrier yields different resistance 

levels, where the magnitude of the tunnel magnetoresistance (TMR) is larger for antiparallel 

arrangements.
144

 

Ferroelectricity and ferromagnetism has been shown to persist down to a thickness on 2 

nm in the single-phase multferroic La0.1Bi0.9MnO3.
5
  A large TMR (90%) and an ER of 22% has 

been obtained at a 2V bias operation in a four-resistance-state MTFJ system using this material 

as a barrier separating La0.66Sr0.33MnO3 and SrTiO3 electrodes; however these results were 

obtained at very low temperature (4 K), requiring liquid helium cooling.  The search for an ultra-

thin room-temperature multiferroic remains before a 4-state-logic device based on MTFJs is 

practically useful.
145

  The B6TFMO Aurivillius phase is therefore an ideal candidate for testing 

the feasibility of a MFTJ functional at room temperature based on a single-phase multiferroic 

barrier layer. 

 

 

 

 

 

 



 

 

Fig. 5.2. The binary information is stored by the magnetization direction of the bottom 

ferromagnetic layer (blue), read by the resistance of the magnetic trilayer (Rp when the 

magnetizations of the two ferromagnetic layers are parallel), and written by applying a voltage 

across the multiferroic ferroelectric antiferromagnetic layer (FE-AFM; green). If the 

magnetization of the bottom ferromagnetic layer is coupled to the spins in the multiferroic (small 

white arrows) and if the magnetoelectric coupling is strong enough, reversing the ferroelectric 

polarization P in the multiferroic changes the magnetic configuration in the trilayer from parallel 

to antiparallel, and the resistance from Rp to antiparallel (Rap). A hysteretic dependence of the 

device resistance with voltage is achieved (blue curve).
139

  

 



Another application of multiferroic materials is in the fabrication of magnetic field sensors. 

Magnetic sensors have been used in analysing and controlling various functions for many 

decades. The high storage capacity of computers is due to the use of magnetic sensors in 

magnetic storage disks and tape drives. Aeroplanes fly with improved safety standards due to the 

increased reliability of non-contact switching with magnetic sensors
130

. Magnetic field sensors 

have other numerous applications which include automotive sensors, navigation systems, non-

destructive material testing, security systems, structural stability, medical sensors, and military 

instruments. These numerous applications have led to great deal of research in improving upon 

the current magnetic sensors. There are various ways of preparing magnetic sensors including 

fabrication by exploiting various effects such as Faraday’s induction law, the Hall Effect, the 

magneto-resistive effect and using magnetic tunnel junctions. A comprehensive review is 

provided by James Lenz and Alan S. Edelstein
131

 for further reading. 

In most of the magnetic field sensors, the basic principle of change in the electrical properties 

of a material on application of a magnetic field can be exploited
131

. The magnetoelectric 

multiferroic coupling between two materials can also be used to fabricate magnetic field sensors. 

This multiferroic coupling can be exploited in two different ways. The first method uses 

composites made from piezoelectric and magneto-strictive materials. Two different layers of 

magneto-strictive and piezoelectric materials are glued together with a binder. A magneto-

strictive material such as NiFe2O4
132

, or alloys, e.g. TbDyFe2 (Terfenol-D)
133, 134

 is glued with a 

binder to a piezoelectric material with a high piezoelectric coefficient such as Pb(Zr,Ti)O3 

(PZT)
130

. The application of a magnetic field will create a strain in magneto-strictive layer which 

in turns will be transferred to the piezoelectric material. The binder plays an important role as it 

helps in transferring the strain from one material to another. 



The second method is by using single phase multiferroics showing magnetoelectric 

switching. These kinds of sensors work on the principle of linear coupling between magnetic and 

electrical orders. Fig. 5.3. shows the structure of a possible magnetic field sensor. 

 

Fig. 5.3. Image of a possible single-phase multiferroic magnetic field sensor where the 

multiferroic material is sandwiched in between two magnetic electrode layers. 

 

This magnetic field sensor consists of a tri-layer structure where the multiferroic material is 

sandwiched between two magnetic electrodes (Fig. 5.3.). Any change near the vicinity of the 

magnetic layer will change the magnetization in multiferroic layer. Since there is a coupling 

between magnetic and electric orders, this change in magnetization will change the polarization 

values in the multiferroic layer with standard circuitry. The only requirement for this kind of 

device is strong magnetoelectric coupling in single phase multiferroic material which is usually 

hard to achieve at room temperature. However, recent work on Bi6Ti2.8Fe1.52Mn0.68O18 

(B6TFMO) demonstrated multiferroic magnetoelectric coupling which in principle could be used 



to prepare future magnetic field sensors. The use of a single phase multiferroic material has an 

added advantage of faster response times due to the direct coupling between the ferroic order 

parameters. Fabrication of single phase sensors is a less complex process without the need for a 

binder layer to couple piezoelectric and magneto-strictive materials. The need for lead-based 

materials with high piezoelectric coefficient such as PZT, for composite sensors, should be 

replaced with less toxic and more environmentally-friendly substitutes. Single phase materials 

such as B6TFMO, based on bismuth based systems, are good candidates for fabrication of future 

magnetic field sensors and can provide less toxic way of preparing magnetic-based sensing 

devices. 

 

 



21.6 Summary and conclusions 

By inserting magnetic ions into layered-structured ferroelectric materials in the 

Aurivillius phase, Keeney et al.
2
 were successful in synthesising thin films of average 

composition, Bi6Ti2.8Fe1.52Mn0.68O18 (B6TFMO), which demonstrate ferroelectric and 

ferromagnetic properties at room temperature. Direct evidence of magnetoelectric coupling was 

demonstrated by performing piezoresponse force microscopy (PFM) under a variable magnetic 

field, whereupon magnetic-field-induced ferroelectric domain switching and formation was 

demonstrated under application of modest (250 mT) magnetic fields. Although no spinel 

impurity phases visible in the XRD patterns, a thorough microstructural phase analysis 

performed on the films to investigate whether trace levels of ferromagnetic spinel inclusions 

could be responsible for the observed ferromagnetism in B6TFMO. This detailed analysis 

demonstrated no evidence for ferromagnetic impurity inclusions above the detection level of the 

experiments (0.01 vol.%). Statistical analysis based on the volumes inspected placed a 

confidence of 99.5% that the observed ferromagnetism was not coming from 

unobserved/undetected ferromagnetic spinel grains. This analysis, coupled with the direct 

observation of the switching and formation of a ferroelectric polarisation induced by a change in 

magnetic field within a single phase, is significant as it provides strong evidence that that 

B6TFMO thin films are single-phase ferroelectric ferromagnetic magnetoelectric multiferroics at 

room temperature. The body of evidence reported indicates that the origin for the 

ferromagnetism/magnetoelectric coupling arises from Aurivillius phase grains containing higher 

Fe
3+

/Mn
4+

 content; however this remains to be verified. The fundamental mechanism for how the 

ferroelectric and magnetic order parameters are coupled also remains to be understood. The 

study by Keeney et al.
2
 demonstrate that with materials development and design, the 



development of room temperature multiferroic materials can be achieved and that the B6TFMO 

thin films are exciting candidates for potential use in multiferroic, magnetoelectric logic devices 

that could potentially meet future industry requirements in energy efficient, high density memory 

applications. 
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