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Chapter 1

Introduction

Despite the low price and ever increasing capability of commodity desktop computing hard-

ware, a strong demand still exists in many quarters for computing power beyond that

which can be delivered by the desktop PC. Examples of performance-hungry computer ap-

plications include 3D image rendering, large-scale simulations and computational biology.

Users wishing to execute applications such as these could wait for Moore’s Law [1] to de-

liver better-performing commodity hardware sometime in the future, but this approach is

unsatisfactory in many situations, particularly when execution times run to days or even

weeks.

An alternative approach is to turn to the field of High Performance Computing, i.e.,

the use of specialized architectures or an aggregation of commodity computing resources

to improve application performance. The most common method of achieving higher per-

formance is known as Parallel Computing or Parallel Processing, and involves the use of

multiple processing units working together to solve the problem at hand. Parallel computing

was traditionally performed using purpose-built supercomputers developed by companies

such as Cray, IBM, Sun Microsystems and Silicon Graphics. These systems, although enor-

mously powerful in comparison to contemporary desktop machines, are highly expensive

to purchase and maintain. Furthermore, the ongoing exponential increase in commodity

computer performance soon negates the performance advantage of supercomputers. As a

result of these factors, High Performance Computing has traditionally been a worthwhile

activity only for organizations with acute need and deep pockets.

In recent years, supercomputers have increasingly been replaced by clusters composed

of commodity hardware (see Section 1.1 below). The rise in prominence of clusters has

led to a drastic reduction in the cost associated with High Performance Computing, and

hence increased popularity. Another recent trend is the increasing interest in the use of

reconfigurable hardware (FPGAs) to create application-specific coprocessors that improve

5



1.1 Cluster Computing 6

application performance (see Section 1.2). Although still regarded as a niche area, it is likely

that interest will continue to grow as the capability of reconfigurable hardware increases

over time. The focus of this thesis will be on how both techniques (Cluster Computing and

Reconfigurable Computing) can be combined in a manner so as to yield portability, reuse and

separation of concerns and hence better and faster engineered code. In addition, attention

is paid to computational efficiency; all design decisions are cognisant of the resulting effect

on application performance.

1.1 Cluster Computing

The notion of creating compute clusters, i.e., collections of interconnected computers work-

ing together as a single parallel system, is not a new one; IBM created compute clusters

from mainframes during the 1960s [2]. However, it was not until the 1990s that the pop-

ularity of clusters gathered momentum due to the falling price and improving capability

of commercial-off-the-shelf (COTS) components such as microprocessors and networking

equipment. Efforts to create commodity clusters such as Beowulf [3] and Berkeley NOW

(Networks of Workstations) [4] demonstrated that many large-scale and grand-challenge

applications that were previously in the realm of supercomputers could be tackled using

inexpensive hardware manufactured for the desktop computing market.

Commodity clusters are typically composed of a number of compute nodes connected

by an Ethernet network. The compute nodes are usually homogeneous desktop machines

configured without monitors, keyboards and other peripherals in order to save money and

reduce space requirements (see Figure 1.1). Some clusters also contain a dedicated head

node, which can perform a number of roles: running a firewall to separate the cluster

Figure 1.1: A typical commodity compute cluster, composed of 16 compute nodes, an
Ethernet network and a head node.
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from the outside world, hosting home directories that the compute nodes can access using

NFS, running job management systems or even acting as a master in master/slave type

computations. Clusters designed for applications that deal with large amounts of data may

also contain network attached storage (NAS) units capable of storing Terabytes of data.

Although the majority of clusters are composed of dedicated machines, they may also be

constructed in an ad hoc fashion by exploiting the idle cycles of underused workstations. The

most simple method of constructing such clusters is by rebooting a collection of machines

into dedicated disk partitions during periods when they are out of use [5]. More sophisticated

schemes involve the use of daemons that allow machines to perform work during periods of

inactivity (see Section 1.1.1).

Despite the relatively poor performance characteristics (i.e., processor performance, net-

work latency and network bandwidth) of commodity clusters when compared with dedi-

cated parallel processing machines, they offer much higher price/performance ratios due to

the economies of scale achieved during the manufacture of their constituent components.

Notwithstanding their shortcomings, clusters have been shown to be capable of executing

a wide variety of High Performance Computing problems [6]. The increasing popularity

of clusters is illustrated by the rapid rise in recent years of the number of clusters on the

list of the world’s top 500 supercomputers (see Figure 1.2). In any case, the performance

gap between clusters and dedicated parallel machines has narrowed significantly over time.

Specialized minicomputers and workstations are almost a thing of the past; modern desktop

microprocessors are up to all but the most demanding tasks. The advent of Gigabit Eth-

ernet has made cheap, high performance networking a reality. Higher performance cluster

interconnects that offer improved latency and scalability, such as Myrinet [7], are available if

even Gigabit Ethernet does not suffice for the task at hand. However, many tightly-coupled,

latency-sensitive applications (such as some real-time visualization applications [8]) still lie

outside the realm of commodity hardware, and will require the use of dedicated parallel

machines for some time to come.

1.1.1 Programming Models for Cluster Computing

A variety of APIs, dedicated programming languages and middlewares are available for

developing applications on clusters. The most suitable choice for any given project may

depend on a number of factors, such as a desire for maximal performance, dependence

on existing libraries, or ease of development. The wide range of choice available can be

explained by the fact that no method has emerged that is best for all possible situations;

each has associated advantages and disadvantages, and it falls to the programmer to choose

the most appropriate model for the task at hand.
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The most widely used technique is the use of traditional low-level programming lan-

guages such as ANSI C and Fortran in conjunction with message passing libraries such as

PVM [9] and MPI [10]. The use of these libraries involves the explicit scheduling of network-

ing communications through the sending and receiving of messages. Although this method

is somewhat cumbersome and error-prone, the efficiency of a well-written message passing

application is difficult to match using higher-level techniques. The continuing popularity of

message passing libraries can also be explained by their high performance, relatively long

history (and subsequent buildup of expertise), portability and popularity on non-cluster

architectures (e.g., multiprocessors).

Another approach is to use distributed shared memory; each machine has access to the

memory of all the others participating in the computation, creating a global virtual memory.

Network communications are performed implicitly and are triggered by reads and writes

to the shared memory space. Some shared memory systems, such as Treadmarks [11] and

OpenMP [12], use APIs for existing programming languages. Others, such as Linda [13]

and Unified Parallel C (UPC) [14], are utilized through programming language extensions.

Shared memory systems require a mechanism for keeping data consistent. That is, a method

of determining how local updates to the shared memory space are reflected on the other

machines in the system. The simplest approach is to maintain sequential consistency by

immediately transmitting any changes to the memory of a machine to the memories of all the

other machines in the cluster. Unfortunately, the relatively poor performance characteristics

of commodity networking equipment makes this approach impractical. As a result, most

implementations use relaxed memory models. Reading the contents of a virtual shared

memory location in these models does not necessarily return the last value written to that

location. Knowledge of the message sequencing in the application will allow the programmer
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to extract performance when it is clear that consistency is not an issue. On the other hand,

the onus is on the application programmer to maintain global consistency by explicitly using

synchronization barrier and lock constructs.

Dedicated parallel programming languages offer a more appealing environment for the

application developer to work with compared to the traditional approach of using a se-

quential language in combination with a parallel processing library. Parallel languages fall

into two broad categories: extensions to existing sequential languages, and new languages

designed specifically with the goal of facilitating parallel processing. Extensions to existing

languages, such as High Performance Fortran (HPF) [15] and Charm++ [16], are comprised

of parallel programming constructs such as forall loops and new keywords or directives

(such as DISTRIBUTE and ALIGN) to facilitate the exploitation of distributed shared mem-

ory. Languages designed specifically for parallelism such as Occam [17] and Sisal [18] can

express parallel programming functionality in a more elegant manner since they can be

designed without the constraints of maintaining backward compatibility. Occam, for in-

stance, features seq and par statements that specify sequential and parallel sections, as

well as channels that allow processes to communicate easily in a fashion that minimizes

deadlocks. Although these languages certainly simplify the job of the application developer

to some extent, they are essentially syntactic sugar for underlying message passing or shared

memory environments. As such, responsibility for parallelizing the program remains with

the application developer.

Compilers for sequential programming languages often take advantage of chip-level par-

allel architectural features such as multiple ALUs and vector processing. Compilers such

as SUIF [19] have extended this idea further through the development of compilers that

attempt to extract the intrinsic parallelism of the application during compile-time and pro-

duce executables that can make use of multiple processors with no intervention on the part

of the programmer. This approach carries obvious appeal; the burden of parallelizing the

application is lifted from the developer and, even more importantly, preexisting code and

libraries can be utilized in a parallel fashion with little effort. Unfortunately, code written

in traditional sequential languages tends to be difficult to parallelize automatically due to

the proliferation of side-effects caused by destructive assignment and limited inherent par-

allelism. Functional languages such as Haskell [20] tend to be more amenable to parallel

compilation [21] since, due to the nature of these languages, side-effects are typically used

only when necessary. However, the use of functional languages has not found wide accep-

tance within the HPC community because appropriate compilers have not been developed

and because the necessary library codebase does not exist. All in all, parallelizing compilers

are more suited to tightly-coupled architectures than clusters, due to the very fine-grain
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nature of the parallelism they are able to exploit. Programs that express parallelism, ei-

ther explicitly or through implicit parallel constructs, can result in a more efficient HPC

implementation than a sequential equivalent that relies on extensive compiler support to

find and exploit any inherent parallelism.

All of the parallel programming schemes mentioned above present the cluster of indi-

vidual machines, to some extent, as a single system image (SSI) to the end user. Message

passing libraries, for example, allow the cluster to be programmed as a loosely coupled

parallel machine. Some projects have taken this idea to its logical extreme by allowing the

cluster to be utilized as a single virtual machine. Examples of this approach are MOSIX

[22] and Kerrighed [23]. These systems provide modified kernels allowing the user to see the

cluster as a single UNIX workstation. No recompilation of existing applications is neces-

sary; processes, and in the case of Kerrighed, threads, are migrated automatically across the

cluster. Memory can be shared between nodes as needed, allowing virtual memory to page

to the physical memory of the other nodes as well as to disk. Although undoubtedly the

easiest method of using a cluster, the limitations inherent in this approach impose severe

restrictions on the types of applications that can be parallelized. Mosix is only suited to

applications that can execute as a set of independent processes. Even though Kerrighed

allows for threads to be migrated across the cluster, the need to maintain global memory

consistency and the performance overheads imposed by commodity networking hardware

are likely to negate many of the advantages gained through thread migration. The lack of

any method of discovering and taking advantage of the fine-grain parallelism found in many

scientific applications (e.g., matrix multiplication) means that those wishing to execute such

applications efficiently must turn to other techniques.

In contrast to dedicated clusters, Networks of Workstations can be used for distributed

computing using a technique known as cycle stealing [24]. With this technique, any idle

CPU time can be exploited in an opportunistic fashion without impacting on the individual

machine users, taking advantage of an abundant resource that would otherwise be wasted.

Examples of cycle-stealing systems, in addition to the SSI systems mentioned above, include

Condor [25], Cyclone [26], and LinuxNOW (see Section 2.8.4).

The term metacomputing has recently come into vogue. In [27] it is defined as “the use

of powerful computing resources transparently available to the user via a networked environ-

ment”. However, this definition does not distinguish metacomputing from the SSI systems

mentioned above. In practice, metacomputing has come to mean the use of middlewares

to present a collection of potentially diverse and geographically distributed computing re-

sources transparently to the user as a single virtual computer. Perhaps the most well-known

metacomputing environment is the Globus Metacomputing Toolkit [28], which provides a
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middleware for constructing computational grids from distributed, heterogeneous comput-

ing resources. The term grid is most often used to mean an infrastructure for the sharing

of resources across administrative domains. Therefore, a computational grid is a hardware

and software infrastructure that provides dependable, consistent and pervasive access to

high-end computational capabilities, despite the geographical distribution of both resources

and users [29]. A computational grid may be composed of a number of clusters, or parallel

processing machines, or both. Globus is designed to be as flexible as possible, and as such

does not enforce the use of any particular programming model. Programming languages

and APIs supported include MPI, Java, Compositional C++, RPC and Perl.

Besides Globus, other metacomputing projects of interest include Legion [30] and We-

bCom [31]. Legion is an object-oriented metacomputing system that implements computa-

tions as collections of distributed objects. Programming languages supported include MPL

(a parallel version of C++ that was also used as the implementation language), Fortran

and Java. Emulation libraries are also provided for PVM and MPI, allowing legacy applica-

tions to be supported. WebCom is a metacomputing environment that allows computations

expressed as Condensed Graphs (see Section 2.3) to be executed on a variety of platforms

in a secure, fault-tolerant manner. Load-balancing is also performed over the computing

resources available without requiring any intervention on the part of the programmer. Orig-

inally designed as a means of creating ad hoc metacomputers from Java applets embedded

in web pages, WebCom has since been developed into a general-purpose distributed com-

puting environment suitable for the creation of grids. An extended version of WebCom,

entitled WebCom-G [32], allows for interoperability with other Grid Computing platforms

and includes support for legacy applications.

1.2 Reconfigurable Computing

Reconfigurable Computing is defined as “the use of systems that can alter their hardware

configuration in response to changing context or data content” [33]. In effect, this requires

the utilization of reconfigurable hardware, i.e., logic devices that can be reprogrammed with

different hardware designs. Although different types of reconfigurable hardware are available

(see Section 1.2.1), field programmable gate arrays (FPGAs) are of most interest, since

they allow complex, register-heavy and pipelined designs to be executed at comparatively

high clock speeds. These interesting properties have led to FPGAs finding applications

in a number of areas, such as ASIC design prototyping, Embedded Computing and, most

notably, High Performance Computing.

The notion of creating application-specific coprocessors using reconfigurable hardware

has gained popularity in recent years as FPGAs have increased in speed and density. Using
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this technique, applications may be accelerated by delegating some of their most commonly

used functionality (usually an innermost loop) to an FPGA coprocessor configured with a

suitable hardware implementation. Not all applications are amenable to acceleration with

reconfigurable hardware; the part of the application to be accelerated must typically exhibit

a high degree of intrinsic parallelism and data locality in order to make the conversion to

hardware worthwhile. For some classes of applications, however, the benefits are impressive,

with orders-of-magnitude increases in performance common in fields such as cryptography

[34], image processing [35], data compression [36] and neural networks [37].

1.2.1 Programmable Logic

Unlike application-specific integrated circuits (ASICs) which are fixed-function, i.e., the gates

implementing the hardware design are physically etched into the silicon die, reconfigurable

hardware is characterized by its ability to be reprogrammed with different configurations. A

variety of devices fitting this description are available, but all fall into three broad categories:

SPLDs, CPLDs and FPGAs [38].

The term programmable logic device (PLD) is often used to describe all types of pro-

grammable and reconfigurable hardware, but was initially used to refer to simple reconfig-

urable devices capable of replacing a small collection of combinatorial logic (i.e., AND, OR

and NOT) chips on a circuit board. More recently, these devices have been referred to as

simple programmable logic devices (SPLDs) in order to avoid confusion with the other classes

of programmable devices described below. The advantage of using SPLDs when designing

circuits is that they require less board area, power and wiring than a collection of simpler

chips. SPLDs are typically implemented as a collection of fully-connected macrocells, each

containing the logic necessary to implement a simple Boolean equation and a flip-flop to

store the result until the next clock transition [39]. Other terms for SPLDs include pro-

grammable logic array (PLA) and programmable array logic (PAL). Most SPLDs cannot

be reprogrammed; although they are capable of implementing a variety of logic functions,

the function is typically fixed by the manufacturer and cannot be changed thereafter. The

advent of SPLDs capable of being reprogrammed, referred to as generic array logic (GAL),

marked the beginning of the field of Reconfigurable Computing.

Complex programmable logic devices (CPLDs) can be thought of as a number of SPLDs

integrated on the same silicon die, along with a programmable switch matrix that connects

them. This configuration allows more complex designs to be implemented, and allows dozens

of individual logic chips to be replaced by a single device. Unlike the interconnects within

the individual PLDs, the switch matrix in a CPLD is often not fully connected, making

some designs impossible to implement even when there are sufficient logic gates available.
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Although an overlap exists between the capabilities of CPLDS and low-end FPGAs, the

simpler structure of CPLDs allows for shorter delays and hence higher clock speeds. As a

result, CPLDs are often chosen for circuits where high performance is a priority.

The most complex type of reconfigurable hardware devices are field programmable gate

arrays1 (FPGAs). FPGAs are composed of a two-dimensional array of logic blocks sur-

rounded by routing resources, with I/O resources at the periphery. The principle applica-

tion of FPGAs has traditionally been the prototyping of ASIC designs. In recent years they

have also made inroads into the embedded computing market, where their reconfigurable

nature offers the advantage of allowing hardware designs to be upgraded over time. The

cost savings achieved by mass producing low-end FPGAs have also led to them increasingly

being used in place of low-volume runs of ASICs. As the complexity of high-end FPGAs

has increased over time, they have become capable of executing many applications faster

than even top-of-the-range microprocessors, creating an interest in the use of FPGAs for

High Performance Computing purposes [40].

Figure 1.3: Simplified diagram of the internal structure of a typical FPGA, composed of
I/O blocks (IOBs), configurable logic blocks (CLBs), connection blocks (CBs) and switch
boxes (SBs).

FPGAs are composed of a collection of configurable logic blocks (CLBs) sitting in a “sea”

of routing resources. The routing resources are surrounded by a collection of I/O blocks

(IOBs) which are connected to I/O pins. Other resources, such as memory banks and ALUs,

may also be embedded in the FPGA fabric. CLBs are capable of implementing simple logic

functions and are typically implemented using lookup tables (LUTs). The routing resources

are composed of wires, connection blocks and switch boxes. Wires carry signals between the

various components. Connection blocks contain multiplexers that select which signals are to

1The field programmable part of the title refers to the fact that the devices can be programmed “in the
field” rather than any electromagnetic properties they possess.
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be connected to the terminals of nearby CLBs, and also connect short local wires to longer

routing resources. Switchboxes are used to change the direction of signals from horizontal

to vertical routing resources or vice versa. Although the architecture described here is by

far the most common, a number of alternative approaches have been developed [41].

Of the three distinct types of reconfigurable hardware described here, FPGAs are by

far the most commonly used by those wishing to create application-specific coprocessors.

In light of this, the term reconfigurable hardware will hereafter be used to refer only to a

collection of one or more FPGAs.

1.2.2 Benefits and Limitations of Reconfigurable Computing

Performance increases attained through the use of reconfigurable hardware result from the

massive levels of parallelism that exist within FPGAs. While CPUs are limited to sequen-

tial operation by the fetch/decode/execute cycle, FPGAs can carry out many operations in

parallel. Even though modern CPUs are parallel to an extent through the use of pipelining

and multiple ALUs, FPGAs offer much greater parallelism due to their ability to have many

data paths, each of which can carry out operations of much more complexity than a CPU

instruction. Unfortunately, the performance characteristics of FPGAs are in many respects

far inferior to those of CPUs, particularly in terms of clock speed and floating-point perfor-

mance (see below). The relatively low bandwidth and latency of many FPGA connection

topologies (see Section 1.2.3) further degrades performance. Application developers wishing

to improve performance by using reconfigurable hardware must be sure that the application

in question plays to the strengths of FPGAs if any improvement is to be seen.

Suitable applications for FPGA acceleration must be CPU-intensive and exhibit a high

degree of intrinsic parallelism and data locality. Applications that work with large, complex

memory structures involving many non-local memory accesses are unlikely to benefit [42].

FPGAs are also at a signicant disadvantage for applications that make heavy use of floating-

point arithmetic. The complexity associated with performing floating-point operations leads

to long delays within resulting FPGA configurations and hence poor performance. Modern

CPUs improve floating-point performance through the use of floating point units (FPUs);

FPGAs under development that contain embedded FPUs are likely to ameliorate this sit-

uation in the future. Another factor that application developers must take into account is

the sequential bottleneck imposed by the limited number of I/O pins that connect FPGAs

to the outside world. Applications may be unable to take advantage of parallelism if they

are starved of data due to the limited amount of data they can read per clock cycle. The

highest-performing applications are those that can unroll loops and execute them in parallel

inside the FPGA, with little communication occurring with the outside world. Research
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by Sun Microsystems into the development of microchip architectures that use capacitive

coupling rather than pins [43] to increase bandwidth may improve this situation in future

generations of FPGAs.

The most significant factor mitigating against the use of FPGAs is the significant dif-

ference between the clock speeds of even the highest-performing FPGA and contemporary

CPU (see Figure 1.4(a)). The problem of low FPGA clock speeds is further exacerbated

by the fact that maximum clock speeds are rarely attained in practice due to longest path

delays in hardware designs. At the time of writing, the most advanced FPGA available

is the Xilinx Virtex-4 family, which has a maximum clock speed of 500 MHz [Source: xil-

inx.com]. This figure stands in stark contrast to the clock speed of the highest-performing

Intel Pentium 4 desktop CPU, which is clocked at 3.6 GHz [Source: intel.com] – over seven

times faster. This divergence in clock speeds is likely to increase over time as the rate of

increase of CPU clock speeds is greater than that of FPGAs. Although the exact date for

the expiration of Moore’s Law is the subject of ongoing speculation (the International Tech-

nology Roadmap for Semiconductors currently extends to 2016 [44]), the laws of Physics

dictate that a limit on microprocessor clock speed must be reached at some point in the

future. Once this limit has been reached, FPGA clock speeds could begin to converge with

those of CPUs, but the degree to which this convergence can occur is, again, the subject of

speculation.

Given the increasingly large divergence between FPGA and CPU clock speeds, pes-

simism about the future of Reconfigurable Computing for high performance purposes is

understandable. However, such pessimism ignores another important performance charac-

teristic: transistor count. The number of transistors embedded in FPGAs (and hence the

complexity of the hardware designs they can accommodate) has increased exponentially

(see Figure 1.4(b)), a trend that looks likely to continue into the future as smaller-scale
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Figure 1.4: The divergence between (a) the clock speeds and (b) the densities of the Intel
Pentium family of microprocessors compared with the Xilinx Virtex family of FPGAs during
the 1990s.
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manufacturing processes are used. An increasing divergence, similar to that between clock

speeds, exists between the transistor counts of CPUs and FPGAs. It is therefore likely that

Reconfigurable Computing will deliver even greater speedups relative to CPUs in the future,

but only for those fine-grained, compute-intensive parallel applications to which they are

already suited [45].

1.2.3 Reconfigurable Computing Topologies

A variety of methods for attaching reconfigurable hardware to host processors have been

proposed. The most tightly-coupled arrangement is the integration of microprocessors and

reconfigurable hardware on the same silicon die (see Figure 1.5(a)). This approach can

involve augmenting an existing microprocessor architecture with a reconfigurable functional

unit (RFU) that has direct access to the CPU’s registers, and is utilized through extensions

to the microprocessor’s instruction set. The Chimaera RFU [46] is an example of this

approach. A similar approach is the integration of reconfigurable hardware in the form

of a tightly-coupled coprocessor, for example the REMARC [47] architecture (see Figure

1.5(b)).

Other methods involve the attachment of reconfigurable computing boards to the lo-

cal bus of the motherboard, allowing the FPGA to communicate with the same latency

and bandwidth as main memory (see Figure 1.5(c)). FPGA boards are available that can

plug into unused processor slots on AMD Opteron motherboards [48]. Unfortunately, most

motherboards, especially the commodity models typically found in clusters, are not capable

of supporting such devices. An ingenious workaround for this limitation is the creation of

reconfigurable computing boards that can be fitted to the memory slots of commodity moth-

erboards, for example Pilchard [49] and SmartDIMM [50] (see Figure 1.5(d)). Such boards

have only ever been manufactured in limited quantities, however, and are not commercially

available at the time of writing2.

The most common means of attaching reconfigurable hardware to the host processor is

to use dedicated parallel processing boards that are fitted to the PCI bus of standard moth-

erboards (see Figure 1.5(e)). This approach is less than ideal due to the performance penalty

incurred by sending data back and forth over the PCI bus. The largest market for high-end

FPGAs is currently the prototyping of ASIC designs, an application much less sensitive to

the limitations imposed by the PCI bus than the creation of application-specific coproces-

sors. As a result, PCI-based reconfigurable computing boards are manufactured in large

quantities and are hence widely available at relatively low cost. Manufacturers of reconfig-

urable computing boards include Celoxica, Nallatech, Xilinx and Annapolis Microsystems.

2One company (Nuron) did briefly manufacture such devices during the late 1990s, but has since ceased
trading.
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(a) Combined CPU/FPGA (b) FPGA coprocessor

(c) Local Bus Interface (d) Memory Slot Interface

(e) PCI Board (f) Network Card

(g) Network Connection

Figure 1.5: Reconfigurable Computing Topologies
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Alternative methods of attaching FPGAs to desktop PCs include using the serial or USB

buses, but the poor performance of these buses makes this approach unsuitable in situations

where high performance is a consideration.

Another PCI-based approach is the integration of reconfigurable hardware with network

interface cards (NICs), for example the custom cards created in the construction of the

Tower of Power [51], a cluster created from commodity machines fitted with FPGA/NIC

hybrids (see Figure 1.5(f)). These cards are designed for Digital Signal Processing (DSP)

applications, where data arriving over the network is piped through the FPGA on the

network card before being passed to the host CPU for further processing.

The most loosely-coupled connection topology is direct communication with reconfig-

urable hardware over a network (see Figure 1.5(g)). For example, QinetiQ market a system

composed of a desktop workstation as well as a heterogeneous collection of FPGAs and

individual CPUs, all of which communicate directly with a Myrinet packet-switched net-

work [52]. Although very modular and adaptable, the performance limitations of even the

best-performing networking equipment limits the range of applications that can be tack-

led on systems such as this. This is due to the fact that without the supervision of a

locally-attached CPU, every communication with the FPGAs must be performed over the

network, degrading the performance of many applications. As such, network-attached FP-

GAs are suited only to the most coarse-grained of applications that are amenable to FPGA

acceleration.

Although the majority of work relating to reconfigurable computing involves the in-

tegration of FPGAs with host processors, as described above, other work has focused on

the creation of custom computing machines. These are specialized computing architectures

integrating many discrete programmable logic components into a single computing board

[53] [54]. Despite being expensive to design and construct, architectures such as these are

useful in situations where throughput requirements would limit the usefulness of a single,

complex, FPGA. For example, matrix multiplication, although not normally amenable to

acceleration using a single FPGA (see Section 1.2.2 above), could be accelerated using a

number of relatively simple devices with shared memory operating in parallel.

1.2.4 Creating FPGA Configurations

The creation of FPGA configurations (or bitstreams) is typically a two-step process. The

first step is to create a description of the logic gates and their interconnections that comprise

the hardware design, using a standard format such as Electronic Design Interchange Format

(EDIF) [55]. The hardware description is then passed through a place-and-route tool specific

to the target model of FPGA. The place-and-route tool uses a floorplanning algorithm to
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map the logic blocks contained in the hardware description to a bitstream that can be sent to

an FPGA using a suitable software driver or API. Although little choice usually exists in the

selection of place-and-route tool and support software (these are typically vendor-specific),

numerous techniques are available for the creation of hardware descriptions.

The most widely used means of creating hardware descriptions is the use of traditional

hardware description languages such as VHDL [56], Verilog [57] and ABEL [58]. When

using these languages the designer must explicitly specify the logic elements (such as gates,

flip-flops and latches) and interconnections that comprise the design. This approach is

comparable to assembly language programming for microprocessors in that it has the ad-

vantage of allowing for the creation of extremely efficient designs but at the cost of increased

development time and reduced design maintainability.

Rather than using a dedicated language, low-level hardware designs may also be cre-

ated programatically using circuit generators, i.e., APIs for existing software programming

languages. Perhaps the most popular of these is JBits [59], an API for the Java language.

Other APIs include PAM-Blox (C++) [60], PyHDL (Python) [61] and Lava (Haskell) [62].

These APIs can be used either for the creation of parameterized low-level hardware designs,

such as variable-width adders, or can be used at a higher level to create designs by linking

together predefined logic blocks.

Graphical hardware design tools, such as Simulink [63] and Viva [64], aim to reduce

the complexity associated with specifying low-level hardware designs by providing a more

user-friendly environment than text-based interfaces to hardware design languages or APIs.

When using these tools, circuits are specified by dragging and dropping predefined logic

blocks from a palette and “drawing” the connections between them. This technique is

particularly powerful when a large selection of high-level predefined components such as

adders, multipliers and counters are available. The drawbacks of these systems are that

they emphasise structural rather than behavioural development, and the fact that large

designs with many non-local interconnections can become extremely complex to develop

and maintain in a graphical fashion.

High-level general purpose hardware design languages such Handel-C [65], SystemC [66]

and Transmogrifier C [67] have also become available. All are based upon the ANSI C

language, but with some features (such as pointers) removed and others (such as parallel

programming constructs) added. By starting with a simple, poorly-performing design, anal-

ysis with place and route tools reveals the longest paths in the resulting hardware design.

Through a process of iterative refinement, various optimizations can be performed until

an acceptable level of speed/efficiency is reached. Small changes in the high-level source

code can result in major changes in the resulting logic, allowing different design strategies
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to be evaluated quickly. Although these languages offer the advantage of reduced devel-

opment time and increased agility in comparison with their lower-level counterparts, the

resulting designs cannot match the efficiency of implementation attainable using traditional

languages.

The creation of FPGA configurations directly from existing sequential languages is a

field under active investigation. Some systems map complete programs directly to FPGA

configurations. This approach has been attempted for a variety of languages, such as Occam

[68] and Smalltalk [69]. Other systems allow the developer to identify the part of an existing

sequential program most amenable to hardware acceleration (perhaps using a profiler) and

then delegate the necessary hardware/software co-design to the compiler. The Galadriel [70]

compiler, one example of such a system, converts Java byte code to FPGA configurations

(via VHDL) and modifies the byte code to transmit data to and from the attached reconfig-

urable hardware. Similarly, the NAPA C compiler [71] allows parts of an ANSI C program

to be automatically delegated to reconfigurable hardware through the use of #pragma di-

rectives. Although sequential compilers such as these allow reconfigurable hardware to be

exploited with very little effort on the part of the application designer, the resulting de-

signs are usually far less efficient than those created using more traditional methods. In

particular, dedicated hardware design languages and APIs allow the width of data paths to

be specified explicitly to avoid wasting logic resources, a feature that sequential languages

lack. NAPA C provides directives for specifying the bit-width of variables, although do-

ing so significantly increases development time and erodes the advantage associated with

automatic compilation.

A more unusual approach is the evolution of hardware designs using genetic algorithms

[72]. Starting with a random configuration, the effect of small perturbations are measured

against a fitness function to determine how close they come to meeting the desired be-

haviour. Through this evolutionary process, those designs that perform well are more likely

to be chosen for the next iteration until eventually a configuration emerges that meets all

of the design requirements. The resulting designs are often very efficient and can take ad-

vantage of characteristics of FPGAs unavailable to conventional design tools. For example,

some evolved configurations contain areas of logic completely cut off from the main circuit,

causing them at first to appear redundant. However, if these areas of logic are removed

the main circuit may cease to function. Possible explanations for this behaviour include

electromagnetic coupling or subtle interactions through the power supply or silicon sub-

strate. Although unorthodox circuit behaviour such as this may be advantageous in terms

of performance and efficiency, care must be taken to ensure that the design does not rely on

the exact conditions in which it was evolved (e.g., the precise voltage used, the individual

FPGA used for evaluation and the presence of electromagnetic interference) by including
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tests for robustness in the fitness function.

1.3 Augmenting Clusters with Reconfigurable Hardware

Given the large performance increases attainable using Cluster Computing and Reconfig-

urable Computing, it is not surprising that interest has developed in using a combination of

both techniques, i.e., the creation of clusters where the compute nodes are augmented with

reconfigurable hardware in order to improve performance [73][74][75] (see Figure 1.6 below).

This field is still in its infancy, and referred to by a number of synonymous terms in the

literature, including Distributed Reconfigurable Computing, Distributed Adaptive Computing

and High Performance Reconfigurable Computing. In order to avoid confusion, it should

also be noted that the term FPGA cluster is generally used to refer to groups of logic blocks

within FPGAs [76] rather than compute clusters augmented with reconfigurable hardware.

Network

Figure 1.6: A cluster augmented with reconfigurable hardware in the form of PCI FPGA
boards.

The most common methodology for developing applications for clusters augmented with

reconfigurable hardware is to use MPI in conjunction with high-level hardware design lan-

guages, with communications to and from the reconfigurable hardware performed using

vendor-supplied drivers. The FPGAs are typically connected to the cluster nodes using

either PCI cards or combined FPGA/NICs. A number of applications have successfully

been implemented using this technique, such as Parallel Brutus [77] (a chess playing appli-

cation), fast Fourier transforms [78], data processing for physics applications [79], and an

application for solving the n queens problem [80].

Libraries have been developed to simplify the task of developing applications for clus-

ters augmented with reconfigurable hardware. The Adaptable Computing API [81] is a

connection-oriented library that allows stream-based applications to be created that utilize

distributed reconfigurable computing boards in a portable fashion. When using this library,
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all reconfigurations and communications must be specified explicitly, and as such this ap-

proach can be regarded as a reconfigurable computing analogue of message passing libraries

for clusters. Similarly, an extension has been added to the low-level GRIM (General-purpose

Reliable In-order Messages) protocol in order to exploit clusters augmented with various

resources, such as network attached storage and FPGAs, through the creation of logical

channels [82]. Another approach is the use of existing job management systems (JMSs),

such as LSF and CODINE, to target reconfigurable hardware embedded in distributed

machines at the process level [83].

Considerable effort has been expended in developing tools for compiling and scheduling

applications both for individual custom computing machines containing multiple FPGAs

and clusters augmented with reconfigurable hardware. MATCH [84] is a Matlab compiler

that can target a collection of distributed heterogeneous FPGAs. An automated mapping

and scheduling tool has been developed [85] that statically partitions a graph description of

an application based on the distributed computational resources available and produces an

execution schedule. A similar approach is the notion of resource pools [86], which are ab-

stract representations of the computing resources available, allowing a high-level description

of an application to be mapped to both hardware and software as necessary.

CARMA (Comprehensive Approach to Reconfigurable Management Architecture) [87]

is a management framework designed to facilitate the development of applications, system

services, programming models and middlewares that utilize distributed reconfigurable hard-

ware. The services provided include board-independent application mapping, dynamic job

scheduling, distributed configuration management [88], performance monitoring [89] and

board-independent modules for interfacing with FPGAs.

On the theoretical side, a performance model has also been developed for clusters aug-

mented with reconfigurable hardware [90]. The performance model allows the behaviour of

various cluster configurations to be accurately simulated, and as such can be of significant

benefit when designing clusters before purchase. Related work includes an analysis of the

cost effectiveness of clusters augmented with reconfigurable hardware [91].

Despite the advances planned and supplied by many of the systems above, it can be noted

that these applications and systems are relatively simple to construct and do not consider

issues such as task heterogeneity and the management of multiple FPGA configurations.

Active consideration for these important characteristics was a prime motivator for the ARC

system.

Although the majority of work related to the use of reconfigurable hardware within clus-

ters is concerned with executing portions of applications on the reconfigurable hardware, as

described above, other roles for reconfigurable hardware have also been examined. A signifi-

cant body of research has been conducted on the use of FPGAs to improve the performance
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of networks for HPC purposes [92][93]. Higher networking performance is typically achieved

through the implementation of custom protocols designed specifically for that purpose. An

implementation of the Condensed Graphs (see Section 2.3) model of computation has been

developed [94] with the aim of reducing the performance overhead associated with identify-

ing subtasks. Unfortunately, the latencies associated with communicating over the PCI bus

and the sequential bottleneck imposed by access to the development board’s memory banks

resulted in poor performance. Nevertheless, this concept may become viable if adapted to

more advanced FPGA architectures and connection methods. A similar approach is the

automatic delegation of grid services to reconfigurable hardware in a platform-independent

fashion [95].

1.4 Parallel Computing Metrics

A number of useful metrics can be applied to parallel processing systems, either before

development in order to evaluate potential benefits, or afterwards so that the performance

of the system can be measured. Since the goal of parallel processing is typically to minimize

execution time, perhaps the most useful metric is the ratio of the times taken to execute the

application sequentially and in parallel. This ratio, called the speedup factor (S), is given

by

S =
ts

tp

where ts is the sequential execution time and tp is the parallel execution time. In multi-

processor systems the speedup factor is typically limited by the number of processors (n).

Superlinear speedup, where S > n, is sometimes observed in multiprocessor systems, often

due to the extra memory available in systems with distributed shared memory. However,

in the case of clusters augmented with reconfigurable hardware, when utilized effectively,

superlinear speedup should be the norm rather than the exception if the FPGAs are not

included in the processor count.

Calculating the maximum speedup attainable for an application is an important aspect

of parallel application design; there is little point in attempting to parallelize an application

unless a significant speedup will result. Any parallel application not composed of completely

independent processes is composed of some parts that, by their nature, must execute se-

quentially. Amdahl observed in 1967 that the sequential fraction of a computation limits

the maximum speedup that can be achieved, even if all parallel processing resources are

fully utilized during the parallel parts. As Amdahl put it: “the effort expended on achieving
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high parallel processing rates is wasted unless it is accompanied by achievement in sequen-

tial processing rates of very nearly the same magnitude” [96]. This observation has become

known as Amdahl’s Law, and although Amdahl’s original paper did not contain an equation

form of the law, it is usually formulated in terms of multiprocessor systems and expressed

as follows:

S(n) =
1

f + 1−f
n

where S(n) is the maximum speedup attainable for n processors and f is the fraction of

the computation that must be executed sequentially. Even with an infinite number of

processors, the maximum speedup is limited to 1

f
:

lim
n→∞

S(n) =
1

f

It should be noted that this limitation applies equally to Reconfigurable Computing; the

fact that the parallel processing resources available are logic gates rather than processors

makes no difference. Despite the fact that the law was originally published as an attack

on the viability of parallel systems, proponents of parallel processing have argued that any

significant speedup is of benefit, particularly in long-running computations.

Others have questioned the reasoning behind Amdahl’s Law, in particular the assump-

tion that the amount of computation to be performed is fixed and not dependent on the

number of processors available. Gustafson observed in 1988 [97] that in practice users tend

to scale the amount of computation performed to the resources available. For example, the

grid resolution of a weather prediction application may be increased to improve accuracy.

In many cases, it is therefore execution time that is held constant rather than the amount

of computation to be performed. Furthermore, it is frequently the case that the sequential

fraction of such applications is constant rather than scaling with the amount of computation

to be performed. In this case, the scaled speedup is given by

SS(n) = n(1 − f) + f

where SS(n) is the scaled speedup for n processors and f is the fixed sequential fraction of

the program. Note that the scaled speedup increases linearly with the number of processors.

This observation has become known as Gustafson’s Law.

When deciding on the number and complexity of subtasks in a parallel application,

it is essential that inter-task communication does not dominate the overall computation

time. The application designer must therefore strike the right balance between maximizing
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parallelism in the application and minimizing time spent communicating. A useful metric

in this case is the granularity (G) or “work/talk” ratio

G =
tcomp

tcomms

where tcomp is the computation time and tcomms is the communication time.

Computational Efficiency (E) is a measure of how effectively an application takes ad-

vantage of the parallel computing resources available to it, and is given by

E =
ts

tpn

where ts is the sequential execution time, tp is the parallel execution time and n is the

number of processors in the system. Note that if efficiency of utilization of FPGAs as well

as CPUs in the system is being considered, then the number of FPGAs present should be

included in the processor count. This definition of efficiency does not take into account

the limitations imposed by Amdahl’s Law; in most situations full efficiency (according to

definition above) is unattainable due to the presence of sequential sections in the application.

As a result, the following alternative definition of computational efficiency is sometimes

given:

E =
Sa

Si

where Sa is the actual speedup and Si is the ideal speedup.

1.5 Research Motivation and Objectives

1.5.1 Shortcomings of Current Techniques

The current standard practice when targeting commodity clusters is to leave the task of

extracting parallelism from the application and performing network communications to the

programmer. Existing sequential languages coupled with message passing libraries are used

to reduce the learning curve associated with parallel programming. This approach, although

somewhat primitive and labour intensive in comparison with some of the more advanced

programming models outlined in Section 1.1.1, is the methodology of choice for the major-

ity of cluster applications. Reasons for the continuing popularity of the message passing

approach over alternative methods include better performance, portability and resistance

to change due to the large body of existing code and expertise accumulated through many
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years of use. However, the resulting applications are large and intricate where the im-

plementation of the desired algorithm is scattered amongst frequent calls to the message

passing library.

The complexity imposed by the message passing approach is manageable in simple scat-

ter/gather type applications where the parallelism can be divided evenly over the available

resources and all parallel subtasks take the same amount of time to execute. Unfortunately,

not every application can be decomposed into identical parallel subtasks, and there may be

many more tasks to execute than processors available. In this case, load balancing must be

performed in order to efficiently utilize the computational resources, whereby unassigned

tasks are sent to the most lightly loaded nodes, i.e., the nodes with the least amount of

work left to perform. Message passing libraries by their nature offer no support to the

programmer in situations such as this – load balancing must be performed explicitly.

The lack of load balancing support in message passing libraries is particularly disad-

vantageous to those wishing to exploit reconfigurable hardware efficiently within cluster

nodes. If the resources available (CPUs and FPGAs) are to be exploited most effectively,

then they must be utilized as much as possible during the lifetime of the computation. In

order to achieve this, the application must partition the computation and balance the load

between the CPUs and FPGAs available both on each node and over the cluster as a whole.

This situation is further exacerbated by computations where multiple FPGA configurations

are in use throughout the cluster, in effect requiring load balancing across heterogeneous

resources. Furthermore, this heterogeneity is dynamic in that FPGA reconfigurations take

place and need to be planned with a view to minimizing execution time.

Given the difficulties associated with scheduling tasks across clusters augmented with

reconfigurable hardware on an application-by-application basis, prudent programmers will

trade off this cost with the potential speedups that could be achieved. Complex applications

may require a disproportionate effort to load balance effectively. The load balancing effort

dominates the application development costs when the number of processors exceeds a

particular threshold and/or when the application processes are heterogeneous in size or

function. These limitations stem from the lack of expressiveness of the message passing

libraries, making it difficult to succinctly express complex policies; the purpose of message

passing libraries is to move data from one node to another, they do not assist in deciding

where to send it. Furthermore, message passing libraries do not address the sending of data

to and from reconfigurable hardware – this task is beyond the scope of their design.
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1.5.2 Research Question and Thesis Overview

The prospect of developing complex applications for clusters augmented with reconfigurable

hardware can be a challenging one, as evidenced by the previous section. A reasonable

question to ask is the following: Would the average programmer, aware of the potentially

large speedups attainable using reconfigurable hardware embedded in clusters, attempt to

develop for such a system using the techniques currently available?

The answer would appear to be largely in the negative because of the lack of uptake

of the technique despite its availability for a number of years. It follows that a more

developer-friendly environment may be beneficial if Reconfigurable Computing is to find

wider acceptance within the field of Cluster Computing. However, any system attempting

to provide a higher-level view by abstracting details will invariably incur a performance

overhead. There is a lesson to be learned here from the continued popularity of the message

passing paradigm in Cluster Computing – any system that exhibits what is deemed to be

an unacceptably high degradation in performance is unlikely to find favour among parallel

programmers since the ultimate goal in the field is, after all, high performance. As a

result, it can be concluded that any system designed to simplify the task of developing

applications for clusters augmented with reconfigurable hardware should make efficient use

of the computational resources available as well as the programmer’s time.

The Accessible Reconfigurable Computing (ARC) system, which is the subject of this

thesis, is a collection of software tools created with the aim of providing the application

developer with an efficient high-level abstraction of a cluster augmented with reconfigurable

hardware. The overriding design goal during the development of the ARC system was to

create an environment where the implementation of applications for clusters augmented

with reconfigurable hardware is cleanly separated, insofar as possible, from the details of

the hardware upon which they are to be executed. Using this approach, application logic

is not cluttered with calls to message passing APIs or to FPGA drivers. Instead, the

distinct tasks of implementing the application logic, specifying high-level parallelism and

accelerating parts of the application using reconfigurable hardware are treated separately.

The most appropriate tools and methodologies can then be used for each of these tasks in

isolation, instead of specifying all of these activities as a large and intricate program written

in a sequential language, as is the current practice.

The remainder of this thesis is organized as follows: Chapter 2 describes in detail the

design, implementation and operation of the ARC system. An example application (cryp-

tographic key search) is presented in Chapter 3. The development of a performance model

of the ARC runtime environment is described in Chapter 4, along with a program that au-

tomatically generates ARC applications. The ARC load balancing framework is presented
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in Chapter 5, and various load balancing algorithms and optimizations are evaluated with

the aid of the performance model. Finally, conclusions and future work are presented in

Chapter 6.



Chapter 2

ARC: A Distributed

Reconfigurable Metacomputing

System

The Accessible Reconfigurable Computing (ARC) system [98] is a collection of software

tools created with the aim of providing the application developer with an efficient high-level

abstraction of a cluster augmented with reconfigurable hardware. The following sections

present the motivation behind the project as well as a detailed description of the architecture

and operation of the system itself, both at compile-time and at runtime. The process

of developing applications for the system is also described through the development of a

sample application. A more detailed example of application development will be presented

in Chapter 3.

2.1 Design Philosophy

ARC’s overriding design goal was to create an environment where the implementation of

applications for clusters augmented with reconfigurable hardware is cleanly separated, in-

sofar as possible, from the details of the hardware upon which they are to be executed.

Using this approach, application logic is not cluttered with calls to message passing APIs or

FPGA drivers. Instead, the distinct tasks of implementing the application logic, specifying

high-level parallelism and accelerating parts of the application using reconfigurable hard-

ware are treated separately. The most appropriate tools and methodologies can then be

used for each of these three tasks in isolation, in contrast to specifying all of these activities

as a single large and intricate program.

1. ANSI C was chosen as the most appropriate language for implementing the application

29
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logic. Despite the increasing popularity of higher-level languages such as C++ and

Java, ANSI C is still considered the best choice for high performance applications

due to the existence of very efficient compilers and a large body of existing code

and libraries that can be leveraged when implementing applications. Performance

considerations aside, and despite the fact that ANSI C lacks many of the features

(such as exception handling and object-oriented constructs) found in many modern

languages, it is still regarded as a very capable procedural language, much more so than

its predecessor, Fortran, in the field of High Performance Computing. Although the

language has its detractors [99], the continuing popularity of ANSI C is illustrated by

the fact that it has consistently ranked highly in the TIOBE Programming Community

Index1, a monthly independent survey of programming language popularity. In the

period from January 2001 to the time of writing it has never dropped below second

place in the survey.

2. The Condensed Graphs model of computation (see Section 2.3) was chosen as the

means of specifying the high-level parallelism within applications. Unlike message

passing libraries, the Condensed Graphs model does not require network commu-

nications to be explicitly specified within application code; communications can be

performed implicitly by the runtime environment based on the high-level relationships

contained in the application’s definition graphs. Other graph-based means of express-

ing parallelism and data dependency, such as control-flow and data-flow graphs [100],

lack the flexibility of the Condensed Graphs model, especially its ability to allow large,

complex graphs to be modularized using condensation and its ability to express mul-

tiple sequencing constraints such as demand-driven, data-driven and control-driven

modes within the same application. XML was chosen as the file format for specifying

graph definitions (see Section 2.4). This format was chosen for its flexibility; XML

specifications can be easily created manually using a text editor or high-level GUI.

Furthermore, XML documents are simple to generate automatically using a variety

of XML APIs on many different platforms.

3. In keeping with the theme of providing the application developer with as much flex-

ibility as possible in terms of implementing the various application components, no

particular method of creating FPGA configurations was mandated. Developers are

free to use any of the hardware design methodologies outlined in Section 1.2.4, and

as such may choose to maximize performance at the cost of increased development

time using low-level hardware design languages such as VHDL. Alternatively, they

may decide to use a more agile development system such as Handel-C.

1See http://www.tiobe.com/tpci.htm
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Unfortunately, the goal of abstracting the application from the underlying execution

environment breaks down somewhat when FPGA configurations are considered. Although

well-written ANSI C code and the XML Condensed Graphs file format are completely

portable across cluster installations, in most cases FPGA configurations are targeted to-

wards a specific model of FPGA. This drawback is not caused by any defect in the hardware

tools; indeed, EDIF files are completely cross-platform and in theory could be compiled for

any logic device containing enough gates to implement the logic specified therein. When

trying to maximize performance, the parallelism within a hardware design is tuned so as to

take advantage of as much of the available resources on a particular FPGA model as possi-

ble. One can only hope that in the future this lack of available abstraction can be remedied

through the availability of FPGAs containing more logic gates than most applications can

leverage.

Linux was chosen as the sole target operating system due to its position as the cluster

operating system of choice in the majority of high performance computing centres. Other

UNIX variants were not considered; the extra effort involved in writing portable code and

performing comprehensive testing across multiple platforms was deemed to be too great

when compared with the questionable benefits. One particular obstacle to portability is

the limited availability of drivers for reconfigurable boards on more niche platforms such as

FreeBSD. In fact, very little Linux-specific functionality is used in the implementation of

ARC, so a portable version could certainly be developed without undue effort in the future.

A Microsoft Windows port would represent a more formidable undertaking, but this task

could be simplified through the use of the Linux-emulating Cygwin tools and libraries.

Once an (albeit imperfect) abstraction of clusters augmented with reconfigurable hard-

ware is available, any such cluster can be regarded from the developer’s perspective as a

single virtual machine rather than a collection of discrete entities. The task of maintain-

ing the illusion of a single system falls to the compile-time and runtime environments that

comprise the ARC system (subsequent sections will describe the operation of these in some

detail). If the illusion proves successful, developing for the ARC system can be regarded as

a form of declarative programming, where the developer specifies what is to be computed

rather how it is to be computed.

The application development process can be summarized as follows: Starting from a

sequential implementation of the application, this implementation is broken down into a

collection of atomic operators bound together by a collection of implicitly parallel graph

definitions. Next, those atomic operators that lend themselves to hardware acceleration are

reimplemented with hardware equivalents. Finally, a compiler is used to convert these ele-

ments to a format capable of execution by the runtime environment. Upon execution of the

application, the runtime environment performs all communications between cluster nodes
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and data transfers between host CPUs and attached reconfigurable hardware. Therefore

the runtime environment, rather than the developer, is responsible for ensuring that the

computational resources available are utilized in the most efficient manner possible.

It should be noted that the ARC system does not automatically create FPGA configu-

rations. For now, the FPGA configurations necessary for acceleration must be implemented

using standard hardware development tools. Nevertheless, the design of the system does not

preclude an automation of this task. If, at some point in the future, hardware compilation

techniques and the capabilities of reconfigurable hardware advance to the point where ANSI

C hardware compilation becomes feasible, then the ARC system will be in a position to

take advantage of this development. In this scenario, ARC applications could be specified

simply as collections of graph definitions and ANSI C functions, and the ARC compiler

would automatically convert the ANSI C portions to hardware configurations as necessary.

2.2 System Overview

The ARC system is composed of a number of individual components, which when taken as a

whole implement the vision outlined in the previous section, i.e., the ability for application

developers to treat clusters augmented with reconfigurable hardware as a single virtual

machine. This section provides a high-level view of the operation of the system, and each

of the major components is examined in some detail in subsequent sections. Individual

components fall into two categories: those that comprise the compile-time environment and

those that comprise the runtime environment.

2.2.1 Compile-time Environment

The compile-time environment is responsible for converting the various application source

files to a format capable of execution by the runtime environment. A number of third-party

tools are required to complete the compilation process: an ANSI C compiler, a hardware

description language compiler and a place-and-route tool. ARC-specific functionality is pro-

vided by the Condensed Graphs Compiler and the header files required to compile the native

and FPGA operators. The final output is one or more shared object files (suffixed with .so,

these are the Linux equivalent of Windows DLLs) and one or more FPGA configurations

(suffixed with .bit, an abbreviation of bitstream). Figure 2.1 illustrates the relationship

between the various tools that implement the ARC compilation process, showing input files,

intermediate outputs and the files comprising the finished application.

The shared object files of an application contain the implementation of operators in-

tended for execution on the host processors of the cluster. These operators can be either
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atomic, and implemented using ANSI C, or graph definitions, specified as XML. The Con-

densed Graphs Compiler (see Section 2.5) is responsible for compiling the graph definitions

and incorporating the implementations of the atomic operators into the resulting shared

object files. Although the compiler operates directly on the XML graph definition files,

the atomic operators must first be compiled to object code (.o) format using an ANSI C

compiler before being linked into a shared object file. Each object file can contain multiple

operator definitions and ancillary functions.

To reduce the complexity of the Condensed Graphs Compiler’s command-line interface,

the decision was taken to require that all atomic operators be precompiled before the CGC

is invoked; it was deemed counterproductive to add an extra layer of indirection to already

convoluted compiler command line interfaces. The GNU C Compiler (GCC) [101] was used

for the compilation of all atomic ARC operators developed so far, and for the implementation

of the metacomputer itself. GCC was chosen for its ubiquity on Linux platforms across

machine architectures rather than for performance reasons. Better-performing compilers,

such as Intel’s C++ Compiler [102], can be used where available.

Those operators destined for execution on reconfigurable hardware contained in the

cluster are developed using standard hardware development tools. Header files that simplify

communications with the ARC runtime environment are provided for Handel-C; similar

headers for other hardware description languages could be implemented with little effort.

Whatever the choice of hardware description language, the resulting EDIF (.edf) files must

then be passed through a place-and-route (P&R) tool to produce a bitstream compatible

with the specific model of FPGA contained in the cluster. Although no technical reason

exists to prevent bitstreams from being linked directly into application shared object files,

it was deemed more convenient to distribute them separately due to their relatively large

size (up to several Megabytes each).

Figure 2.1: The process of compiling a ARC application from its constituent source files.
Handel-C was chosen as an example hardware description language; in practice any HDL
could be used.
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2.2.2 Runtime Environment

The role of the runtime environment is to physically execute ARC applications, and to

present a simple interface that preserves, as far as is practical, the illusion of a single virtual

machine. This illusion is realized by the ARC daemon running on each cluster node, and

the computation processes spawned by the daemons when applications are executed. A user

interface program is also provided for starting, stopping and monitoring ARC application

instances (see Figure 2.2).

A typical use case for the runtime environment is as follows: First, the user copies the

executable files produced by the compile-time environment and any required data files to

a shared directory in the cluster. Next, the UI program (see Section 2.6) is used to start

computation process instances (see Section 2.8) on the requisite number of cluster nodes.

Each application contains a single top-level graph instance (the ARC equivalent of a C

main function), and application execution commences with the creation of a top-level graph

instance in a computation process on an arbitrary cluster node. Any parameters required

by the top-level graph are specified by the user and passed by the UI program to the cluster

node on which the top-level graph is created.

As nodes in the top-level graph fire, instructions are generated, with each representing

either an atomic operation or an unevaluated subgraph2. These instructions are distributed

in a peer-to-peer fashion amongst the computation processes executing on the cluster. The

scheduling component of the computation process is responsible for spreading the compu-

tation load as evenly as possible across the participating cluster nodes, minimizing overall

execution time and thus maximizing computational efficiency. Once an instruction has been

evaluated, the resulting data value is plugged back into the graph instance that created it,

progressing the computation and possibly uncovering further parallelism.

Instructions are of three categories, depending on the type of operator present at the

node in the graph instance that created them (see Section 2.3 below). triple manager (TM)

instructions represent node manipulation operations to be performed on a particular graph

instance; these are always executed locally. Condensed graph instructions represent new

graph definition instances and can be executed either locally or on another cluster node, but

always on the host processor. Primitive instructions represent atomic operations that can

be evaluated anywhere. The corresponding primitive operator can have an implementation

in software (as a native operator), or in hardware (as an FPGA operator), or both. If an op-

erator has implementations both in software and hardware, evaluation can take place either

on a host CPU or FPGA, with the scheduling component of the supervising computation

process deciding which is most appropriate in order to minimize overall execution time.

2In Condensed Graphs terminology, the term instruction denotes an operation of arbitrary complexity
(or task) rather than the more common meaning of individual microprocessor instructions.
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Execution of a computation continues until the computation as a whole has been eval-

uated, i.e., the top-level graph has completed execution. This process can be stopped

prematurely through the use of the allDone TM operator. The use of allDone is some-

what inelegant but necessary in some cases. For example, when one of the parallel branches

in a search application finds a goal state, exiting prematurely avoids the delay of waiting

for all the other branches to continue searching fruitlessly. Execution may also be disrupted

through unforeseen circumstances, such as a segmentation fault produced by an incorrectly

coded native operator. Finally, the user may halt execution manually via the UI program.

The operation of the ARC runtime environment can now be summarized as follows:

an executing computation is composed of a distributed collection of graph instances. Any

of these instances can generate instructions, which are in turn distributed throughout the

cluster for execution. Instructions, once evaluated, produce results that are returned to the

appropriate machine and incorporated into the graph instance that created the correspond-

ing instruction. Result values become operands for other graph nodes and thus trigger the

creation of new instructions. This process continues until evaluation is completed, an error

occurs, or the computation is halted by the user.

While a computation is in progress, its state can be monitored in real time using the UI

program. Extensive log messages are sent to the UI program by the computation processes

that comprise a metacomputer instance, and, if present, from application code. By exam-

ining these messages, the user can follow the evaluation of the computation by watching

where instructions are generated and consumed. Problems such as logic errors in graph

definitions, native operators and FPGA operators can be diagnosed by isolating the exact

moment during the life of the computation at which the problem arises. For example, a fault

in an FPGA operator could be discovered by observing that operands were passed to an

instance of the operator but no corresponding result was received. If the user is confident in

the correctness of the application, remote logging can be disabled to improve performance

and conserve network bandwidth, although this may alter the behaviour of the application

LAN

ARC Virtual Machine

UI Program

Figure 2.2: At runtime, users start, stop and monitor application instances via the UI
program. ARC daemon instances and computation processes executing on each cluster
node create the illusion of a single virtual machine.
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due to the nondeterministic nature of the runtime environment.

The distributed debugging example presented above demonstrates that it is desirable in

some cases to relax the virtual machine abstraction and expose execution details directly

to users of the system. The abstraction, after all, is intended as an aid to the application

developer rather than an end in itself.

2.3 The Condensed Graphs Model of Computation

The Condensed Graphs (CG) model of computation [103] plays a fundamental role in the op-

eration of the ARC system by providing the means through which the high-level parallelism

in ARC applications is expressed. Although superficially similar to classical dataflow [104] in

that computations are represented by directed acyclic graphs, the Condensed Graphs model

is unique in that it allows three different evaluation strategies (availability driven, coercion-

driven and control-driven) to be incorporated within the same computation. As a result,

various sections of a computation may execute in strict sequential order (control-driven), ea-

gerly attempt to evaluate all available execution paths in a speculative fashion (availability-

driven), or lazily perform work only when absolutely necessary (coercion-driven).

The ability of the model to incorporate these different evaluation strategies stems from

the central notion of a triple. A triple is formed when a complete set of operands, an

operator and one or more destinations are present at a node (see Figure 2.3). Once a

triple has been formed, the node can fire, i.e., the operands are passed to the operator

function and the resulting datum is passed to the destinations in order to progress the

computation. Restricting the availability of the different triple elements (operands, operator

and destinations) of a node results in the three different possible evaluation strategies.

For example, a node that has an associated operator and a destination but lacks a full

complement of operands cannot fire until the missing operands become available, resulting in

an availability-driven execution strategy. Similarly, restricting the availability of operators

and destinations results in a control-driven or data-driven strategy, respectively.

The various triple elements attach to a node at a predetermined number of ports. Each

node contains a single operator port and destination port3, with the number of operand

ports present determined by the arity of the operator function. Each operand port has

a strictness property that specifies whether or not simple data values are required for the

evaluation of the operator function. A strict operator port therefore requires that an operand

consisting of an unevaluated subgraph must be reduced to a simple data value before the

node can fire. On the other hand, nonstrict operand ports allow unevaluated subgraphs to

be operated on or passed through by operators.

3Enter nodes (see below) are the sole exception to this rule.
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In order to allow subgraphs to be evaluated lazily, a mechanism is required that allows

subgraphs to be associated with an operand port but prevented from executing in a specu-

lative manner. This mechanism is known as stemming. Rather than the typical speculative

arrangement where one node lists the operand port of another as a destination, a stemmed

node is created by removing this destination and specifying the node itself as an operand

to the destination node. The desired association between the two nodes is therefore spec-

ified, but the first node cannot fire because it lacks a destination. Once the second node

becomes fireable, any operands that are stemmed nodes are grafted by removing them from

the destination node’s operand port and recreating the destination from the first node to

the second. The first node is now fireable, and once the subcomputation it is associated

with has been evaluated, the resulting datum will be placed onto the operand port to which

it was attached.

Figure 2.4 illustrates the concepts of strictness and stemming by showing how the Ifel

branching operator, when used in conjunction with nonstrict operand ports, can be used

to select between a pair of (unevaluated) subcomputations. The Ifel operator takes three

operands; a boolean value that determines which branch should be selected and two branch

values, which may be of any type. The simplest use of the Ifel operator is to select between

two simple data values. In this case, all the Ifel node’s operand ports will be strict,

with the value on the branch indicated by the boolean operator placed on the destination

arc(s) upon firing. However, when selecting between two subcomputations the branches

must be stemmed in order to prevent evaluation before the Ifel node fires. Although the

subcomputations in Figure 2.4 are represented by single nodes, large unevaluated subgraphs

can be built up by “daisychaining” collections of nodes using stemming. Once the last node

in the chain becomes fireable, it will coerce its operand nodes to fire by grafting (assuming

that the operand port is strict), which in turn coerces others and so on. This rippling effect

supplies all the destinations required to make the whole subgraph executable. In some cases,

it may be desirable to pass subgraphs unevaluated through Ifel nodes in order to create a

Figure 2.3: A triple is formed when a node has a full complement of operands (o0..on), an
operator (f) and one or more destinations (d0..dm).
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larger subgraph for later potential execution. This behaviour is achieved by specifying the

branch operand ports of the node as nonstrict, and thus preventing the evaluation of the

chosen subgraph. Note that the Boolean operator port must always be specified as strict

because a simple Boolean data value is required in order to make the branching decision.

Rather than representing computations as a single large graph, the CG model incorpo-

rates (and, indeed, is named for) the notion of condensation. CG computations are expressed

as collections of graph definitions, each of which can be represented by a condensed node

which upon firing expands (or evaporates), incorporating an instance of the associated graph

definition into the computation. Memory management is simplified by the fact that sub-

graphs can be allocated as needed and deallocated when no longer required, allowing the

computation graph to grow and shrink as necessary. The problems of seeding new graph

instances with operand values and returning results are solved by requiring that each graph

definition contains both a single Enter node and a single Exit node, denoted by E and X

respectively. Enter nodes have a number of operand ports corresponding to the arity of the

function implemented by the graph definition and a corresponding number of destination

ports (each of which can have multiple destinations). Upon firing, the operand values are

simply copied to the corresponding destination ports where the destination arcs distribute

them throughout the graph as needed. Exit nodes have a single operand port and a sin-

gle destination port. Upon firing, the single operand value is copied to the destinations

associated with the condensed node that produced the graph instance, and the graph is

deallocated.

In order to implement an application using the CG model, developers must specify a

collection of operators. Operators are divided into three categories: condensed graphs,

primitive operators and TM operators. Condensed graph operators represent graph defini-

tions and are used to create condensed nodes as described above. Primitive operators are

used to create atomic value-transforming instructions. TM (Triple Manager) operators are

Figure 2.4: A node with an associated Ifel operator used to select between two unevaluated
nodes (n1 and n2) depending on the value of the boolean operand b. Stemming (denoted by
unconnected arcs) is used to prevent evaluation of the nodes before the Ifel node fires. The
use of strict or nonstrict operand ports determines whether the chosen node is evaluated on
selection or passed to the destination (d) unchanged.
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similar to primitive operators but operate on nodes rather than tuples of operands. As such

they are used for node manipulation operations, such as the implementation of the Enter,

Exit and Ifel operators. For the vast majority of applications there is no need to create

custom TM operators; the predefined TM operators described above should suffice.

Any graph-based model of computation should ideally provide some means of handling

side-effects. Although the CG model incorporates the notion of state through its control-

driven semantics, other means of expressing side effects are also possible. One approach,

from functional programming, is the use of monads to enforce sequencing constraints. How-

ever, although the use of monads in purely functional languages is desirable due to the

inability of these languages to guarantee execution order, the CG model does allow sequenc-

ing constraints to be enforced through data dependency and stemming. It is therefore

possible to incorporate state-changing operators into CG computations provided that care

is taken to sequence the execution of nodes making use of these operators appropriately.

Figure 2.5: A recursive condensed graph implementation of the Euclidean greatest common
divisor algorithm. The graph definition accepts two parameters (a quotient and a remainder)
and recursion continues until the remainder is zero. Note how the multiple destination ports
of the Enter node (E) are used to seed the graph with operand values and the single operand
port of the Exit (X) node is used to specify the return value.

2.4 XML Definition Files

Given the central role of the Condensed Graphs model within the ARC system as the “glue”

that binds together lower-level application components (e.g., native and FPGA operators),

the development of a file format for specifying graph definitions was a necessary part of

the development of the system as a whole. The tool chosen for this task was the Exten-

sible Markup Language (XML) [105], a restricted form of SGML developed by the World

Wide Web Consortium (W3C). XML allows structured data to be simply represented as

marked-up text documents, a format easily created, edited and parsed both by humans

and computers. Although superficially similar to HTML by structuring documents using

elements and attributes, XML is more restrictive in terms of syntax (i.e., elements must

always occur in pairs) but much more general in terms of expressiveness in that all elements
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and attributes are user-defined.

Humans can work with XML documents using either a simple text editor or dedicated

XML editors that present the user with a tree-like view of documents. Similarly, a wide

variety of tools and techniques are available to developers who wish to work with XML

programmatically, from simple event-driven parsers such as SAX [106] to tree-based rep-

resentations that allow documents to be created and manipulated in memory, such as the

Document Object Model (DOM) [107]. The availability of generalized XML APIs such as

these eliminate the need to develop the custom parsers and in-memory representations as-

sociated with dedicated languages, whilst offering much more flexibility and expressiveness

than simpler data representation schemes such as comma separated values (CSV).

Another notable feature of XML is that documents can be validated, i.e., automatically

verified to conform to a user-defined set of constraints. For example, restrictions can be

placed on the number of each type of element, the attributes they may contain and how

they may be nested within one another. Two principle methods of validation are available:

Document Type Definitions (DTDs) and XML Schema. DTDs allow simple rules, such as

those described above, but are limited in terms of the complexity of the rules that may

be expressed. For example, it is not possible to allow a type of element to have different

behaviour depending on its parent element. XML Schema was designed to address issues

such as these, and allows practically any type of restriction to be expressed. Unfortunately,

many XML APIs do not yet support validation using XML Schema, with the result that

for now DTD is still the de facto standard. The benefits of validation are manifold; from

the developer’s point of view validation acts as a “sanity check” on incoming data, reducing

the amount of error-checking code required when parsing. Applications that generate XML

can ensure that their output is structured correctly. End users also benefit through the use

of XML editors that automatically validate documents as they are typed, preventing the

accidental creation of erroneous documents.

The platform-agnostic nature of XML confers many advantages over custom binary file

formats. Tools for working with XML are available for a wide variety of operating systems

and programming languages, facilitating the movement of data across platforms. Apart

from the editors and APIs mentioned above, users can leverage many other XML-specific

tools for data-processing tasks. Dedicated XML compressors such as XMill achieve com-

pression rates far in excess of those attainable using standard compression algorithms [108].

Documents can be easily translated to other XML formats such as XHTML using the XSL

Transformations (XSLT) framework [109]. Tools have been developed that automatically

generate code for converting XML to and from data objects, for example Sun’s Java-to-

XML Binding (JAXB). These examples represent a small sample of the myriad of tools

available, most of which are released under liberal licenses.
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The widespread adoption of XML for data representation has led to criticism from

a number of quarters. Much of this criticism, particularly relating to security concerns,

relates specifically to the use of XML for implementing Web Services, a topic not relevant

here. Criticism directed towards XML for data representation purposes often focuses on

the relatively large size of XML documents compared to equivalent binary representations,

and the performance overhead introduced by the need to parse large text files. Proponents

of XML argue that if size is a consideration, XML compresses very well due to its strict

syntax rules, and that the parsing overhead is a necessary tradeoff for the convenience of

human-readability. Others have noted that the functionality of XML is already attainable

through the much older technology of LISP S-expressions; XML advocates respond that

XML has become a widely-adopted standard, a position that S-expressions never achieved.

The XML file format devised for ARC is similar to that used in the WebCom system

[110][111], but with modifications where necessary to facilitate ARC-specific features. As

specified by the XML standard, each document contains a single root element (<definitions>

in this case) within which all other elements are nested. Three types of elements may be

children of the root: graph definitions, operators and user-defined types.

Graph definitions are specified as collections of named nodes. Each graph definition

(<graphdef>) element has a name attribute that uniquely identifies the graph definition

within the application. Similarly, each <node> element contains a name attribute that

uniquely identifies each node within the graph definition. Node names provide a means for

nodes within a graph definition to reference one another. Each node element also contains

one <operandport> element for each operand required by the node’s operator, optional

<definitions>

<graphdef>
...

</graphdef>

<operator>
...

</operator>

<type>
...

</type>

</definitions>

Figure 2.6: High level-structure of ARC XML definition document. The document root
element (<definitions>) may contain three types of child element: graph definitions,
operators and user-defined types.
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<operand> elements for hardcoded operand values, one <operator> element specifying the

node’s operator, and at least one <destinationport> element.

<operandport> elements contain a strictness attribute that specifies whether the

operand port in question is strict or nonstrict. <operand> elements contain three attributes:

operandport, type and value. The operandport attribute specifies the number of the

operand port with which the operand value is to be associated. type specifies the type of

the operand. value specifies the actual operand value. The type attribute may be the name

of one of the ANSI C primitive types, or graph, a special value denoting a graph operand

(i.e., a stemmed node). If the operand type is graph, then the value attribute specifies the

name of the node to be used as the operand value. <operator> elements contain a single

attribute specifying the name of the operator to be associated with the node’s operator

port, and as such may be either the name of a graph definition or an atomic operator

declared elsewhere. Recursive graph definitions can be constructed simply by using the

name of the graph as the operator value. Although the <operator> element is mandatory,

nodes can be created without operators by omitting the name attribute, allowing for control-

driven semantics. With the exception of Enter nodes, each node element contains only one

<destinationport> element, which in turn contain zero or more <destination> elements.

<destination> elements have two attributes; the name of the node that the destination

points to (nodename) and the number of the target operand port of the destination node

(operandport).

<type> elements are used to declare ARC types. At compile-time types enable the

structure of graphs to be verified by preventing mismatches between the types of the re-

turn values of operators and the operand ports to which they are connected. At runtime,

type information is used both for debugging purposes by allowing any value present within

the system to be converted to an equivalent text representation, and for serializing and

deserializing data values for transmission either over the network (to peers) or over a local

<node name="equals1">

<operandport strictness="strict"/>

<operandport strictness="strict"/>

<operand operandport="1" type="float" value="1"/>

<operator name="float equals"/>

<destinationport>

<destination nodename="ifel" operandport="0"/>

</destinationport>

</node>

Figure 2.7: An example node element that uses the float equals operator to test whether
the first operand value is equal to 1. The resulting data value is sent to the first operand
port of the node named ifel.
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bus (to FPGAs). A type declaration is therefore composed of a name, a string conver-

sion function, a serialization function and a deserialization function. Each <type> element

contains a mandatory name attribute, specifying the name of the type. A default naming

convention is in place for each of the other functions: the name of the type, followed by an

underscore which is in turn followed by tostring, serialize or deserialize, depending

on the function category. Additional child elements may be used to specify the names of

these functions explicitly if the naming convention is not followed.

<!-- List type declaration -->

<type name="List">

<tostring>List tostring</tostring>

<serializer>List serialize</serializer>

<deserializer>List deserialize</deserializer>

</type>

Figure 2.8: An example type declaration for the List type. Although the tostring,
serializer and deserializer function names are shown for clarity, they could be omitted
because they follow the default naming convention.

<operator> elements are used to declare the atomic operators referenced by graph

definitions. Two mandatory attributes are used to specify the name of the operator and its

category. Allowed values for the category attribute are primitive and TM for primitive and

Triple Manager operators, respectively. Condensed graph operators are defined implicitly

through their graph definitions. Elements declaring primitive operators may also contain

a <typesig> child element, and may also contain an optional <fpgaimpl> element. Both

categories of operator may contain a <nativeimpl> child element. <typesig> elements

enclose lists of comma separated type names. In a scheme similar to that used by the

Haskell programming language, one type name is required for each operand that the operator

requires, along with one more representing the type of the return value. TM operators do

not require type signatures because they operate on nodes rather than on tuples of operand

values; they have an implicit type signature of one node mapping to another. <nativeimpl>

elements specify the name of the ANSI C function that implements the operator natively

using a mandatory name attribute. If the <nativeimpl> is omitted, a native implementation

of the same name as the operator is assumed unless an FPGA implementation is also

provided, in which case the <nativeimpl> element may be required for disambiguation

purposes (see below). <fpgaimpl> elements are used to indicate that a primitive operator

has an implementation in hardware. Two mandatory attributes, name and clockspeed, are

required to indicate the name of the file containing the FPGA bitstream and the speed (in

MHz) at which it should be clocked. If a primitive operator has implementations both in

hardware and software then both must be explicitly declared even if the naming convention is
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followed; this is to allow primitive operators to be declared with hardware implementations

only. Note that this scheme allows only stream-based communications with the FPGA, as

the operands are serialized and the result is deserialized. In some situations, finer control

over the FPGA may be required for performance purposes. For example, it may be necessary

to manage on-board resources such as memory banks, or have finer control over what is

communicated to the FPGA and whether or not DMA is required. An extension to ARC

to accommodate schemes such as this is left as future work.

<!-- mandelbrot draw operator declaration -->

<operator name="mandelbrot draw" category="primitive">

<typesig>int, int, int, int, float, Image</typesig>

<nativeimpl name="mandelbrot draw"/>

<fpgaimpl name="mandelbrot.bit" clockspeed="40"/>

</operator>

Figure 2.9: Declaration of a primitive operator that has both a native and an FPGA
implementation.

2.5 The Condensed Graphs Compiler

The Condensed Graphs Compiler (CGC) provides the means through which applications

expressed as XML documents according to the schema described above are converted to a

format capable of execution by the ARC runtime environment. The operation of the com-

piler proceeds in two distinct steps. First, an ANSI C file is created that contains, amongst

other things, implementations of the graph definitions described in the XML document.

Next, the resulting file is compiled to object code format and linked with the implementa-

tions of the native operators referenced by the graph definitions to produce a shared object

that can be distributed and executed at runtime (see Figure 2.10).

Unlike the runtime environment, where high performance is a necessity, correctness and

maintainability were deemed to be the overriding design goals during development of the

compiler. For this reason, the compiler was implemented using the Python Programming

Language [112]. The performance overhead incurred through the use of an interpreted

scripting language was more than compensated for by the clarity and conciseness of the

resulting code. In particular, the advanced string handling capabilities of the Python lan-

guage compared to traditional languages greatly simplified the development of the code

responsible for translating the XML documents to ANSI C.

The compiler is invoked from the command line using the cgc command. The only

mandatory parameter is the XML definition file to be compiled. In practice, an additional
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parameter specifying the names of the object code files containing the native implementa-

tions of the operators referenced by the graph definitions is also supplied (it is possible, but

of limited usefulness, to create graph definitions using only the standard operators auto-

matically loaded at runtime). Additional parameters allow the name of the output file to

be specified, the verbosity of the compiler to be adjusted and parameters to be passed to

the linker upon invocation. An example invocation of the compiler is as follows:

# cgc -i factorialops.o factorial.xml

This command specifies that the definition file factorial.xml should be compiled and that

the resulting object code file should be linked with factorialops.o to produce the default

output file factorial.so.

Upon execution, the compiler begins by parsing the input XML files to an in-memory

representation using a SAX parser. The in-memory representation is used to facilitate graph

verification and rewriting operations, which would be difficult to implement using a tree-

based representation such as DOM. The in-memory representations of the graph definitions

are then checked to ensure that the graphs are well-formed, i.e., that instances of the graphs

terminate correctly due to the presence of a full complement of valid operands, operators

and destinations at each node, and that no unstemmed circular references between graph

definitions are present. Once these checks are complete, ANSI C functions are generated

implementing each graph definition. Each function generated shares the name of the XML

Figure 2.10: An overview of the operation of the Condensed Graphs Compiler. The transla-
tion step converts the definition file to a temporary ANSI C file via an in-memory represen-
tation. This file is then compiled and linked with the required native operators to produce
a shared object capable of execution by the runtime environment.
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definition from which it was created, and uses an API available at runtime to build and

return an instance of the specified graph. These functions are written to a temporary

ANSI C file along with four registration functions (one for each operator category, and one

for types). The purpose of the registration functions is to allow the runtime environment

to determine the operators and types provided by a shared object file once it has been

loaded. The registration functions follow a strict naming convention, and when invoked by

the runtime environment use a series of API calls to add entries to the operator and type

information tables of the computation process.

Once the temporary ANSI C file has been created, the GCC compiler is invoked to

produce a corresponding object code file. The GCC compiler is then invoked again, but in

linking mode, to link the newly-created object code file with the object code files containing

the native implementations of the operators declared in the XML file. Any linking options

specified when the CGC was invoked are passed directly to the linker, allowing the user to

include libraries if necessary. The result is a shared object file that can be distributed at

runtime and dynamically loaded and executed by the runtime environment.

The Square graph definition shown in Figure 2.11, although very simplistic and im-

practical, serves as a suitably concise example application to demonstrate the operation

of the compiler. The graph definition uses the primitive int mul operator to square its

single integer operand. The single destination port of the Enter node has two destinations,

replicating the operand and placing copies on the operand ports of the int mul node. A

graph definition document describing Square, and the resulting ANSI C file generated by

the condensed graphs compiler are shown in Figures 2.13 and 2.12 respectively.

Figure 2.11: The Square graph definition.

2.6 The ARC User Interface Program

The ARC User Interface Program (UIP) allows ARC applications to be launched and mon-

itored by users. Applications may be launched from the command line using the UIP in

non-interactive mode, or by issuing a series of interactive commands at the UIP command

prompt. Applications may also be launched without the use of the UIP via an API. Any

executing application may be monitored by the UIP, regardless of how it is launched. Ap-

plications are monitored by watching log messages arriving in real-time from the cluster

nodes participating in the computation.
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<definitions>

<graphdef name="Square">

<node name="E">

<operandport strictness="strict"/>

<operator name="Enter"/>

<destinationport>

<destination nodename="mul" operandport="0"/>

<destination nodename="mul" operandport="1"/>

</destinationport>

</node>

<node name="mul">

<operandport strictness="strict"/>

<operandport strictness="strict"/>

<operator name="int mul/">

<destinationport>

<destination nodename="X" operandport="0"/>

</destinationport>

</node>

<node name="X">

<operandport strictness="strict"/>

<operator name="Exit"/>

<destinationport/>

</node>

</graphdef>

</definitions>

Figure 2.12: A definition file implementing the Square graph definition.

2.6.1 Executing Applications

Once the UIP is launched in interactive mode (the default), the user is presented with a

prompt at which commands may be entered. The first task when launching an application

interactively is typically to inform the UI program of the number and identity of the cluster

nodes that will be participating in the computation. This is achieved via node files – simple

text files with one machine name or IP address per line. Assuming that a text file called

allnodes containing the names of all the nodes in the cluster to be used is present, the

following command will inform the UI program that the specified nodes are to be used:

-> setnodes allnodes

The availability of each of the nodes specified can be determined using the nodes com-

mand. Each address is checked to ensure that it resolves and that each machine can be

reached using ping:

-> nodes
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Nodes Square() {

Nodes nodes;

Node node array[3];

int i;

/* Instantiate nodes */

for(i=0; i<3; i++) {

node array[i] = NodeMake();

}

/* Add operand ports */

NodeSetPort(node array[0], PortSet(PortMake(), operand port, 0, strict));

NodeSetPort(node array[1], PortSet(PortMake(), operand port, 0, strict));

NodeSetPort(node array[1], PortSet(PortMake(), operand port, 1, strict));

NodeSetPort(node array[2], PortSet(PortMake(), operand port, 0, strict));

/* Add operator ports */

NodeSetPort(node array[0], PortSet(PortMake(), operator port, 1, strict));

NodeSetPort(node array[1], PortSet(PortMake(), operator port, 2, strict));

NodeSetPort(node array[2], PortSet(PortMake(), operator port, 1, strict));

/* Add destination ports */

NodeSetPort(node array[0], PortSet(PortMake(), destination port, 2, strict));

NodeSetPort(node array[1], PortSet(PortMake(), destination port, 3, strict));

NodeSetPort(node array[2], PortSet(PortMake(), destination port, 2, strict));

/* Add operands */

/* Add operators */

NodeSetOp(node array[0], OperatorSet(OperatorMake(), TMInstr, "enter"));

NodeSetOp(node array[1], OperatorSet(OperatorMake(), Primitive, "int mul"));

NodeSetOp(node array[2], OperatorSet(OperatorMake(), Primitive, "Exit"));

/* Add destinations */

NodeSetDest(node array[0], NodeDest(node array[1], 0));

NodeSetDest(node array[0], NodeDest(node array[1], 1));

NodeSetDest(node array[1], NodeDest(node array[2], 0));

/* Insert nodes into the node list */

nodes = NodesMake();

for(i=0; i<3; i++) {

nodes = NodesInsert(nodes, node array[i]);

}

/* Return node list */

return nodes;

}

Figure 2.13: The ANSI C implementation of the Square graph definition produced by the
Condensed Graphs Compiler.
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node01.cuc.ucc.ie 143.239.211.107 OK

node02.cuc.ucc.ie 143.239.211.108 OK

node03.cuc.ucc.ie 143.239.211.109 OK

node04.cuc.ucc.ie 143.239.211.110 OK

node05.cuc.ucc.ie 143.239.211.111 OK

node06.cuc.ucc.ie 143.239.211.112 OK

node07.cuc.ucc.ie 143.239.211.113 OK

node08.cuc.ucc.ie 143.239.211.114 OK

Next, the cluster nodes must be prepared for application execution by first ensuring that

each is running an ARC daemon and then ordering each daemon to spawn a computation

process:

-> startall

If any of the nodes in question do not have an ARC daemon running, then the user will

be prompted for a password and one will be started using ssh. The cluster is now ready

to commence executing an application. First, the shared object containing the application

implementation must be loaded by all the participating nodes. It is assumed that the

application is available in some shared network location. Any other shared objects required

by the application are loaded automatically by the runtime environment:

-> load /usr/share/arc/examples/gcd/gcd.so

Finally, execution is commenced by specifying the name of a graph definition and any

arguments it requires. As the metacomputer operates in a peer-to-peer fashion, the cluster

node on which execution commences is irrelevant. The UI program chooses one node at

random and informs the computation process on that node to create and execute an instance

of the specified graph. Any text printed to standard output by the application on any cluster

node is redirected and printed after the prompt. The return value of the computation is

also printed automatically on program termination.

-> execute GCD int:24 int:32

Result: 8

Applications may be terminated prematurely using the stopall command, which shuts

down the computation processes executing on all participating cluster nodes. This feature is

particularly useful during testing when errors in applications can lead to the system hanging

or crashing.



2.7 The ARC Daemon 50

Although the ability to interactively manage computations using a prompt is useful in

many respects, the constant re-typing of commands each time an application is launched

quickly becomes tedious. For this reason, features are in place to allow applications to

be started non-interactively. The simplest method of doing this is to use command-line

arguments when starting the UIP. Alternatively, commands may be grouped into batch

files which are executed sequentially by the UIP. For example, the following shell command

has the same effect as all the UIP commands above combined:

# uip -n allnodes -l /usr/share/arc/examples/gcd/gcd.so -e "GCD int:24 int:32"

Result: 8

2.6.2 Monitoring Applications

Upon startup, the UI program automatically starts another process that listens for logging

messages on a specified port. When the UI program starts a computation process on

a remote machine, it informs the computation process that all log messages should be

redirected to the specified port on the machine executing the UIP. In this way, all logging

messages generated throughout the computation may be stored and viewed in aggregate

on the user’s machine. These messages may be viewed as they arrive either by using the

tail command on the resulting aggregate log file, or by using the log viewing GUI (see

Figure 2.14). When using the GUI, the messages may be viewed either in aggregate or

organized by the cluster nodes from which they originated. The ability to view distributed

log messages in real-time is an invaluable aid to debugging applications, as the user can

observe which instructions executed on each machine as well as the order of their execution.

A compile-time option is available that includes the creation time in log messages, allowing

the order of execution to be determined across machines. However, this feature is of limited

usefulness unless the Network Time Protocol daemon or similar is used to synchronize the

clocks of the cluster machines.

2.7 The ARC Daemon

The ARC daemon is a lightweight process that executes on each cluster node. The role of

the daemon is to spawn more heavyweight computation processes when requested to do so.

Separate processes are used for computation in order to isolate failures; an unrecoverable

error within a computation (e.g., a segmentation fault caused by a poorly-written native

operator) should not lead to the failure of the entire system. When an error does occur, the

daemon is still running, allowing the existence and nature of the error to be communicated

to the UI program and another process started if requested. The modular nature of compu-

tation processes also allows for multiple computations to proceed simultaneously, although
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Figure 2.14: A screenshot of the ARC log viewer displaying the aggregate output of the
four participating cluster nodes.

they would have to contend with one another for the computational resources available.

The daemon is written in ANSI C and follows the standard UNIX daemon paradigm

described in [113]. The daemon responds to two types of message from the UI program

executing on the user’s machine. The first is to redirect logging messages to the log listener

on the user’s machine, allowing important information such as computation process failures

to be relayed back to the user in real-time. The second type of message is to spawn a

computation process. Messages are sent and received using a Messenger object identical to

that used by communications module of the computation process (see Section 2.8.4). Once

a computation process commences executing, the UI program communicates directly with it

and its log messages are routed back to the user’s machine without passing through the dae-

mon. The daemon and the computation process also intercommunicate via the same socket

mechanism used by the UI program. For example, the computation process informs the

daemon once all initialization has completed successfully. Limited intercommunication also

occurs via the UNIX signaling mechanism; this is how the daemon detects the occurrence

of a computation process failure and determines the cause.

2.8 Computation Process Architecture

Computation processes are responsible for executing ARC applications across clusters in a

manner that makes efficient use of the computational resources available. As performance

was a design priority, ANSI C was used for implementation, in conjunction with a number
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Figure 2.15: The UI program communicates directly with daemons and computation pro-
cesses using sockets. The daemon and the control process intercommunicate using both
sockets and UNIX signals.

of external libraries such as the Condensed Graphs API, POSIX Threads and FPGA device

drivers. Computation processes are spawned by ARC daemons on the user’s request, and

terminate either when the computation is complete, an unrecoverable error has occurred, or

the user halts the computation. One computation process is spawned on each participating

cluster node for every computation.

Individual computation processes are composed of a number of independent modules,

each of which runs in a separate thread (see Figure 2.16). The Condensed Graphs Engine

is responsible for maintaining the computation graph by generating instructions and incor-

porating results. The Native and FPGA Instruction Execution Threads, as their names

suggest, execute native and FPGA instructions, respectively. The Communications Module

handles the exchange of instructions and results with computation processes on other cluster

nodes, as well as messages to and from the UI program and daemon. Finally, the Scheduler

is responsible for deciding where instructions are executed (i.e., locally or remotely, natively

or on an FPGA) as well as the order in which they are executed. Each of these modules

will be examined in detail in subsequent sections.

The fundamental data objects used by computation processes are instructions and re-

sults. Instructions represent unevaluated portions of the computation. Note that the term

“instruction” is used here to refer to operations of arbitrary granularity rather than individ-

ual microprocessor instructions. Since the Condensed Graphs Model is used as the underly-

ing computation model, instructions are composed of triples, i.e., an array of operand data

values, an operator function and a destination to which the result should be sent. Additional

information, for distribution purposes, includes the address of the machine on which the

instruction was created, and, if the instruction originated on another machine, a reference

to the original instruction on the remote machine (see Figure 2.17). Results are composed

of a data value, the address of the machine on which the associated instruction was created,
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and a reference to the original instruction object on that machine. Both instruction and

result objects contain references that may be invalid on the machine on which the object

currently resides. Access to the fields of these structures is restricted by ensuring that the

fields of the structures are kept private and are accessed only through functions that contain

appropriate assertion checks. An instruction is said to be local if it exists on the machine

on which it was originally created, or remote if it originated on another machine.

The various components communicate with each other by passing instructions and re-

sults through thread-safe queues. This arrangement enforces component modularity and

reduces the possibility of race conditions arising through design or coding errors. Since

all the components execute in the same memory space, there is no performance penalty

incurred by copying instructions, results, or their associated data values between modules.

Instruction and result objects and associated data are serialized for transmission to other

cluster nodes, and operands may also be transmitted to FPGAs via some system bus (typ-

ically PCI). Similarly, incoming instructions and results from other cluster nodes, as well

as result values from FPGA operators, are deserialized and added to the memory space of

the computation process.

Data values are stored as a generic Operand datatype, which can be a placeholder for

any of the ANSI C primitive types, including pointers. The type information structure asso-

ciated with each type is used to perform serialization, deserialization and string conversions

on type instances. Type information structures are stored in the type information table (see

below) and are keyed on integer values, stored in instances of the OperandType datatype.

An (Operand, OperandType) pair is therefore required when any type-specific behaviour is

invoked on a data value.

Once a collection of computation processes has been initialized across a cluster, an

application must be loaded before execution can commence. The processes receive a signal

.so
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Figure 2.16: An overview of the various components comprising a ARC computation process,
along with the resources managed by each. Arrows indicate the flow of instructions (I) and
results (R).
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typedef struct Instruction tag {

InstructionLocality locality;

Instruction remoteReference; /* Valid only when remote */

GraphInstance instance; /* Valid only when local */

char *creator;

/* Operand information */

int numOperands;

OperandType *operandTypes;

Operand *operands;

/* Operator information */

char *operatorName;

OperatorType category;

/* Destination information */

DestinationsGroup dests; /* Valid only when local */

} InstructionStruct;

typedef struct Instruction tag* Instruction;

Figure 2.17: The Instruction structure and datatype declarations. Individual fields are
invisible to the rest of the program, allowing access to potentially invalid references to be
controlled.

from the UI program informing them to load a shared object at a specified location. The

UNIX libdl (dynamic linking) library is then used to load the library and dynamically

link a collection of specially-named registration functions. These functions, when called,

add entries to the information tables maintained by the computation process for types and

operators. One of the functions also informs the computation process of any other shared

objects that may be required, which are subsequently loaded in turn.

2.8.1 Condensed Graphs Engine

The Condensed Graphs Engine is responsible for creating and managing the Condensed

Graphs component of an executing ARC application. This is achieved by executing instances

of graph definitions by generating instructions and incorporating the corresponding results

back into the graph instances that created them. The entire graph representing the state

of the computation (or V-Graph in Condensed Graphs terminology) is not stored in its

entirety on any of the cluster nodes; instead, it exists as a collection of individual graph

instances scattered across the cluster.

Whenever a graph instance is created or modified, the engine checks for fireable nodes,

and fires them by creating instruction objects. Once a node has been fired, it has its
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destinations removed according to the deconstruction semantics described in Section 2.3.

The destinations of a node are preserved in the corresponding instruction object so that the

result value (when generated) can be forwarded to the correct destinations. Instructions

with TM operators are always processed locally because they operate directly on local node

instances. Instructions with operators of either of the other two types (condensed graphs

or primitive) are passed to the load balancing component of the Scheduler for processing.

Irrespective of where a primitive instruction is executed, the result will eventually reach

the Condensed Graphs Engine in which the instruction originated. Instructions with prim-

itive operators return a result object containing a single data value. Instructions with

condensed graph operators generate two result objects. The first contains a reference to

a new instance of the specified definition that is added to the graph collection managed

by the Condensed Graphs Engine on the machine on which the instruction was executed.

Once the resulting graph has finished executing (i.e., the Exit node fires), another result

object containing a single data value is returned to the machine that generated the original

instruction.

Execution of an application commences with a message from the UI program to one of the

computation process instances, specifying a graph definition and the operand values required

to populate it. In response, the messaging component of the Communications Module (see

below) creates an instance of the Toplevel graph, comprised of a condensed instance of the

specified graph definition combined with another node (allDone) that halts the computation

when executed. This condensed node is fireable immediately, and evaporates to produce

an instance of the requested graph definition. As the operand values flow into this graph

instance, more nodes become fireable, uncovering more work. Eventually, the computation

results in a value being returned to the UI program.

2.8.2 Scheduler

The Scheduler is responsible for routing instructions between modules, both local and re-

mote. Local instructions arrive at the Scheduler from the local Condensed Graphs Engine,

and from remote engines via the Communications Module. The Scheduler in turn targets

instructions to the local execution threads or to the remote Condensed Graphs Engines,

again via the Communications Module. Instructions are sent either to one of the execu-

tion threads or to the Communications Module for distribution. Results arrive from the

instruction execution threads and from the Communications Module, and are directed to

the Condensed Graphs Engine from which the corresponding instruction originated.

Instructions may be executed on any machine partaking in the computation, and those

with primitive operators may be executed either by the native or the FPGA execution
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threads (if the appropriate implementations are available). The Scheduler uses appropriate

load balancing algorithms when assigning an instruction to an execution thread. The al-

gorithms used by the Scheduler that decide where incoming instructions should be sent for

execution play a crucial role in the efficiency of the ARC system as a whole. Ideally, the

algorithms should ensure that the work available is distributed as evenly as possible over the

available computational resources. These algorithms must respect the constraints imposed

by the communications overhead incurred when transporting instructions and results. In

the case of instructions designated for execution on FPGAs, instruction sequencing should

be managed in a fashion that minimizes time lost due to reconfiguration. If the algorithms

fail to take advantage of the computational resources available, then one of the primary

motivations for using the system in the first place is lost. Chapter 5 will examine the devel-

opment and evaluation of load balancing algorithms that attempt to maintain an optimal

ARC execution.

2.8.3 Native and FPGA Instruction Execution Threads

An ARC implementation has an instruction thread for every available computational re-

source. Each thread has an associated priority queue into which instructions are placed by

the Scheduler for execution. An execution thread is put to sleep when its associated queue

is empty and automatically woken up to process an instruction immediately upon its ar-

rival. An arriving instructions takes up a position in the queue in a manner dictated by the

Scheduler. In general, instructions will join the queue in first in, first out (FIFO) manner

but occasionally FPGA instructions will need to take a priority position to minimize the

occurrence of hardware reconfigurations (see Section 5.3.1).

In the case of native execution, an instruction is processed by looking up the function

implementing the operator from the primitive or condensed graph operator information

table, depending on the operator category. The operator function is then invoked with the

supplied operand values to produce a result value (in the case of primitive instructions) or a

new graph definition instance (in the case of condensed graph instructions). In either case

the result value is used to create a result object.

All instructions are executed in-process. This arrangement can cause the failure of the

entire computation process if an error (such as a segmentation fault or infinite loop) is

encountered while executing a badly-behaved operator. However, the cost of spawning a

new process for every instruction execution, and the associated interprocess communication

overhead, was deemed to be too high a price to pay for isolating errors. The log files gen-

erated by computations allow users to immediately identify the operator that has caused a

computation to fail. If error isolation through out-of-process execution is required, operator
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implementations are free to spawn their own processes.

The FPGA Execution Thread operates identically to its native counterpart except that

it executes instructions using an FPGA rather than the host CPU. Once an instruction is

ready for execution, the FPGA must first be configured with the appropriate operator im-

plementation. If the FPGA is already configured with the correct operator then no further

action is necessary. Otherwise, the filename and clock speed of the bitstream implementing

the operator are retrieved from the primitive operator information table and the FPGA is

reconfigured. The FPGA is now ready to receive the operand values it requires for exe-

cution. This is achieved on the host side by invoking the serialization function associated

with the type of each operand value and sending the resulting data to the FPGA using the

FPGA’s device driver. The FPGA operator implementation is responsible for decoding this

information correctly as it is received. Once the FPGA has completed execution of the in-

struction, it sends the resulting data value back to the execution thread. The deserialization

function of the operator’s return type is invoked to decode the incoming data and convert

it to an operand value. The code that interfaces with the FPGA driver is written in a

modular fashion that allows drivers for different FPGA models to be used by implementing

a well-defined set of functions, avoiding dependencies on any particular driver.

Once an instruction has been executed by either execution thread, a corresponding result

object is produced. In the case of instructions with primitive operators, the result object

contains a reference to a data value. Instructions with condensed graph operators produce

result objects with references to new graph definition instances. In either case, result objects

pass from the execution thread to the Scheduler. What happens next depends on the type

and locality of the instruction that generated the result. The results of primitive operators

are forwarded either to the Condensed Graphs Engine or to the Communication Module,

depending on whether the instruction is local or remote. Graph instances are always sent to

the Condensed Graphs Engine on the local machine. If the instruction that created a graph

instance is remote, then the result of the newly-created graph is returned to the original

machine once it has finished executing. This is achieved by mutating the graph’s Exit node

to use a RemoteExit operator, causing the graph to produce an appropriate result object.

2.8.4 Communications Module

The Communications Module is responsible for handling all communications between the

collection of computation processes and the outside world. Computation processes com-

municate with three types of entities: their peers on other cluster nodes partaking in the

computation, the ARC daemon executing on the same machine and the UI program execut-

ing on the user’s machine. Communications with peers is performed using the LinuxNOW
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library, while a custom TCP/IP messaging scheme is used to communicate with the daemon

and UI program. The Communications Module is implemented as a number of concurrent

threads, all of which are either listening on sockets, waiting for instructions or results to

arrive on queues or blocking on calls to the LinuxNOW library.

LinuxNOW [114] is a general-purpose library for creating computations that are dis-

tributed across a network of workstations (NOW). The library can handle many networking

issues (such as peer discovery, information gathering, load balancing and fault tolerance)

that would otherwise have to be implemented by the application developer. Ethernet broad-

casts are used by each library instance to maintain a table of connected peers. Developers

may implement custom information gathering functionality via callback functions, with

Ethernet broadcasting again used by each peer to advertise this information at predefined

intervals. Custom load balancing schemes may be implemented, again through callback

functions that implement a chosen load balancing algorithm. Fault tolerance is achieved by

reassigning work in the event of a node failure. Work is distributed using instruction and

result objects that act as envelopes for user-defined data structures.

LinuxNOW was chosen as the delivery mechanism for ARC instructions and results

because of the close fit between its functionality and that required by ARC computation

processes. When the Communications Module is initialized, it in turn initializes the Lin-

uxNOW library, using API calls to initiate peer discovery and information gathering (the

information required by the ARC system is the number of unevaluated instructions in each

execution thread queue). Since the computation process handles its own load-balancing

using the Scheduler, the LinuxNOW load-balancing functionality is disabled. Threads are

created to listen for incoming instruction and result objects from the Scheduler, and in-

coming LinuxNOW instructions and results via blocking API calls. Computation process

instruction and result objects are serialized and prepended with LinuxNOW instruction

headers before being handed over to the LinuxNOW library for transportation. Incoming

LinuxNOW instructions and results are stripped of their headers and deserialized before

being passed back to the Scheduler.

At startup, a Messenger object is also started in its own thread. This thread listens

for incoming messages using the ARC custom messaging scheme. The thread accepts con-

nections both from the UI program and the ARC daemon running on the same machine

as the computation process. Several types of messages, such as requests to start or stop

computations and redirect logging messages, can be received. Each message type has an as-

sociated handler function that decodes the message and performs any actions subsequently

required. Once a message arrives, its header is decoded to determine the message type and

the message body is then passed to the associated message handler. Functions are also

present that allow messages to be safely sent to the daemon or UI program from anywhere
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in the computation process.

2.9 Application Development

In order to illustrate the ARC application development process, a simple divide-and-conquer

application is presented. For simplicity and without loss of generality, only a single, prim-

itive, operator is used apart from the standard Enter and Exit operators, and a binary

reduction tree is formed. It must be stressed that this implementation is terribly inefficient,

given the very small grain sizes involved and the latency issues inherent in both commodity

networking equipment (used for inter-node communication) and PCI buses (typically used

for communicating with the FPGAs). Nevertheless, the application’s concise nature serves

as a simple proof of concept.

The single graph definition of the application uses a series of addition operators to sum

its eight integer inputs using a simple binary reduction tree. This is easily expressed as

the condensed graph illustrated in Figure 2.18. The XML document describing the graph

is relatively straightforward and repetitive (see Section 2.5 for an example of a ARC XML

definition file). The same graph could be defined more concisely by creating a special TM

operator for constructing graphs consisting of binary reduction trees.

E

+

+

+

+

+

+

+ X

Figure 2.18: An example binary reduction application graph.

Although a native operator that performs integer addition already exists in the ARC

standard library (int add), another implementation is presented here for illustration pur-

poses. The operator, as with all native operators, is implemented in ANSI C with all

parameters and the return type being of the generic Operand type (defined in arc.h).

Macros are available to cast instances of the Operand type to any of the ANSI C primitive

types and vice versa. The add operator shown below simply casts both arguments to integer

values, and returns a new Operand value created from their sum.

A Handel-C implementation of the same operator is shown below. FPGA operators

are implemented as an infinite loop that processes one invocation at a time. A Handel-C

header file is available to simplify the task of reading and writing instances of the ANSI
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#include "arc.h"

Operand add(Operand o1, Operand o2)

{

int a = OperandToInt(o1);

int b = OperandToInt(o2);

return OperandFromInt(a + b);

}

Figure 2.19: ANSI C implementation of the native addition operator.

C primitive types when communicating with the host processor. Each loop iteration reads

the two integer operands from the host before writing back their sum.

#include "arc.hch"

int main(void)

{

while(1) {

int a = ArcReadInt();

int b = ArcReadInt();

ArcWriteInt(a + b);

}

}

Figure 2.20: Handel-C implementation of the FPGA addition operator.

Since the application uses only integer values, no new types need to be declared in the

XML definition file. However, an operator declaration similar to that in Figure 2.9 must

be added to the definition file along with the graph definition. Once the definition file has

been compiled and linked with the native implementation of the add operator, the result

is an application that can execute transparently in a distributed fashion across a cluster

augmented with reconfigurable hardware.

The process of developing more sophisticated applications follows exactly the same pat-

tern as described above: the specification of the high-level parallelism in the application as

a collection of graph definitions, and the implementation of the primitive operators refer-

enced by the graph definitions in software and hardware as appropriate. The application

development process will be examined in more detail in Chapter 3.



Chapter 3

An Example ARC Application

This chapter describes the development of an example application in order to demonstrate

the ARC application development process, as described in the previous chapter, in practical

terms. The application chosen, a brute-force cryptographic key search [115], represents per-

haps the easiest class of application to accelerate using distributed reconfigurable computing;

the computation required is CPU-intensive rather than memory-intensive, the amount of

data to be transferred is small, and the subtasks produced can be of arbitrary granularity.

The remainder of this chapter is organized as follows: 3.1 introduces cryptographic key

search in general, while Section 3.2 describes the particular cryptographic algorithm being

considered here. Section 3.3 describes the development of an FPGA configuration that

accelerates the key searching process. Section 3.4 describes how an ARC application was

created that allows key searches to be performed using distributed resources and considers

the performance benefits attained by the application through the use of clusters augmented

with FPGAs.

3.1 Cryptographic Key Search

The aim of cryptographic key search (“key crack”) applications is to determine the value

of a secret key by repeatedly encrypting a piece of known plaintext with varying candidate

key values. The output at each iteration is compared with a piece of known ciphertext, with

a match indicating that that the key used in that iteration was the one used to create the

known ciphertext, and hence the value of the secret key has been found (see Figure 3.1). A

brute force attack works by examining every possible key value, while others operate more

selectively by choosing key values based on information specific to the algorithm being

considered. For longer key lengths (112 bits or greater), brute force attacks are impractical,

requiring millions of years to yield the secret key [116].

Key search applications are good examples of embarrassingly parallel computations [117],
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Figure 3.1: Operation of a cryptographic key search application. Successive key values are
used to encrypt a piece of known plaintext until output matching the corresponding known
ciphertext is found.

i.e., they can be divided into completely independent parallel tasks that require no inter-

communication. As a result, they are often executed on clusters of commodity machines, or

even large scale distributed computing projects1. Cryptographic applications in general are

also ideal candidates for acceleration using reconfigurable hardware because of their high

degree of intrinsic parallelism and data locality. Furthermore, cryptographic algorithms

typically employ bitwise rather than floating point operations, so the poor floating-point

performance of FPGAs is not an issue. Reconfigurable computing has been used previously

to implement DES [118] and RC4 [119] key search applications.

As both Cluster Computing and Reconfigurable Computing can be used individually

to accelerate key search applications, significant speedups should therefore be attainable

through the use of a combination of both techniques by partitioning the keyspace across

the cluster and accelerating the search on individual cluster nodes using the attached FP-

GAs. Furthermore, these applications play to the strengths of both techniques as the

amount of data communicated during execution is small and individual tasks are com-

pletely independent. These characteristics allow the capabilities of both types of hardware

to be fully exploited for the duration of the computation, since the bottlenecks tradition-

ally associated with each (Ethernet latency/bandwidth in the case of clusters and PCI

1See http://www.distributed.net.
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bus latency/bandwidth in the case of reconfigurable hardware) are not limiting factors to

performance. The speedups attained should therefore scale up with faster processors and

faster/denser FPGAs without requiring a corresponding improvement in the network or

system bus.

3.2 The RC5 Encryption Algorithm

RC5 is a simple and fast symmetric block cipher first published in 1994 [120]. The algorithm

requires only three operations (addition, XOR and rotation), allowing for easy implementa-

tion in hardware and software. Data-dependent rotations are used to make differential and

linear cryptanalysis difficult, and hence provide cryptographic strength (see Figure 3.2(b)).

The number of rounds and the key length may be varied, allowing the user to determine

the most appropriate tradeoff between speed and security [121].

RC5 forms the basis of a family of algorithms determined by three parameters: the word

size (w) in bits, the number of rounds (r) and the number of bytes (b) in the secret key.

A particular (parameterized) RC5 algorithm is denoted RC5-w/r/b, with RC5-32/12/16

being the most common. Plaintext is processed in blocks of size 2w bytes, producing 2w

bytes of ciphertext. As 64 bit chip architectures become the norm, it is likely that 64 bit

word sizes will increase in popularity. In that case it is suggested that the number of rounds

be increased to 16.

Variable length keys are accommodated by expanding the secret key to fill an expanded

key table of t subkeys of one word each, where t = 2(r + 1). The subkeys are created by

initializing an array S0..t−1 with pseudorandom numbers determined by the values of w and

r. Next, the b byte key is copied to array L, padding if necessary so that the length of L, c,

is evenly divisible by the word size. Finally, a mixing operation, requiring three passes over

S, is performed that combines that values in L with the initial values in S to produce the

final value of S (see Figure 3.2(a)). This relatively expensive key expansion process makes

the brute-forcing of keys difficult, but allows encryption to take place relatively quickly once

the table has been created.

RC5 is extremely resistant to linear cryptanalysis, and is widely accepted as being secure

(notwithstanding certain pathological examples that could yield to differential cryptanalysis

and timing attacks) [122]. A brute force attack is only feasible in this case because a

deliberately short key length – 40 bits – was chosen. As noted above, for longer key lengths

(128 bits or greater), the brute-force approach is unlikely to succeed within any practical

timeframe. Despite this, brute-force RC5 key searching is an application worthy of interest

because it provides a simple, easily parallelizable real-world application that is amenable to

acceleration with reconfigurable hardware.
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Figure 3.2: The RC5 (a) key expansion and (b) encryption processes. The key expansion
process is performed three times before the expanded key table, S, is fully initialized.
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3.3 Development of the Hardware Implementation

The development of the RC5 key search application2 began with the creation of an FPGA

configuration that accelerates the key searching process. By performing this step first, the

amount of application logic capable of fitting on the FPGA model used could be determined,

and hence those parts of the application requiring software implementation later could

be identified. Handel-C was chosen as the most suitable language to work with when

creating the FPGA configuration, as its conciseness and behavioural nature allows different

implementation strategies to be evaluated quickly.

The precise details of the operation of the encryption algorithm were determined through

analysis of the reference ANSI C implementation of the RC5 algorithm in IETF RFC 2040

[123]. The algorithm parameters (RC5-32/12/5), known plaintext and known ciphertext

were the same as those used by the distributed.net project’s 40-bit key search effort. De-

velopment commenced with the implementation of the encryption algorithm in Handel-C,

using the parallelization features of the language where appropriate in order to improve

performance. The correctness of the hardware implementation was verified by comparing

its output with that of the reference software implementation. The presence of a simulation

mode in the Handel-C IDE that allows individual parts of a hardware design to be tested

in isolation using inlined ANSI C code assisted in this process.

Once it was confirmed that the parallelized form of the encryption algorithm would fit

on the target model of FPGA (a Xilinx Virtex XCV2000E [124] mounted on a Celoxica

RC1000 [125] PCI board), the next step was determine whether the known plaintext and

ciphertext could be incorporated into the hardware logic. This optimization would pre-

vent the same values from being passed into the FPGA upon every invocation, significantly

reducing the application’s communications overhead, and would also increase the configu-

ration’s clock speed by reducing the number of registers in the design. A drawback of this

approach is that it necessitates the recompilation of the configuration for distinct target key

values. However, it was felt that the improved clock speed and reduction in communications

overhead compensated for this inconvenience. Upon investigation, it was found that the

known plaintext and ciphertext would fit on the FPGA along with the logic implementing

the encryption algorithm. This reduced the number of parameters to the algorithm to one:

the candidate key.

Next, the possibility of including a number of copies of the encryption algorithm in

parallel on the same configuration was examined. It was found that twelve copies of the

algorithm could be run in parallel, with each searching a portion of the specified key range.

2The development of the hardware implementation was performed by Padraig O’Dowd.
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The key range was fixed at 10 million keys in order to minimize the communications over-

head, with the sole parameter being the first key in the key range. Upon completion, the

configuration returned the secret key, if found, or a zero value indicating failure (assuming,

of course, that the secret key is not a zero value). This configuration that could run at 50

MHz on the target FPGA model, allowing approximately 240,000 keys to be checked per

second.

Analysis of the operation of the algorithm revealed that further performance improve-

ments could be made by pipelining the design, i.e., breaking the design up into stages, where

each stage can operate independently of the others. Although this approach may lead to

an overall reduction in clock speed, once the pipeline has been filled then processing is per-

formed on multiple keys per clock cycle, improving overall throughput. As the performance

of a pipeline is limited by the performance of the slowest stage, care had to be taken when

breaking the design up into individual stages. It soon became apparent that the encryption

of the plaintext was a relatively simple operation, warranting only a single stage, with the

Key Expansion
Iteration 1
Stage 1

Key Expansion
Iteration 1
Stage 2

Key Expansion
Iteration 2
Stage 1

Key Expansion
Iteration 2
Stage 2

Key Expansion
Iteration 3
Stage 1

Key Expansion
Iteration 3
Stage 2

Encryption

Key Expansion
Iteration 1
Stage 1

Key Expansion
Iteration 1
Stage 2

Key Expansion
Iteration 2
Stage 1

Key Expansion
Iteration 2
Stage 2

Key Expansion
Iteration 3
Stage 1

Key Expansion
Iteration 3
Stage 2

Encryption

Key Expansion
Iteration 1
Stage 1

Key Expansion
Iteration 1
Stage 2

Key Expansion
Iteration 2
Stage 1

Key Expansion
Iteration 2
Stage 2

Key Expansion
Iteration 3
Stage 1

Key Expansion
Iteration 3
Stage 2

Encryption

K[1..N/3] K[N/3..2N/3 ] K[2N/3..N ]

Figure 3.3: Overview of the final version of the RC5 key search FPGA configuration. Each
of the three iterations over S in the key expansion process is divided into two stages, with the
encryption of the plaintext comprising the last stage. Three pipelines, searching different
regions of the key space (K), composed of N keys, operate in parallel.



3.4 Development of the ARC Application 67

remainder devoted to the key expansion process. Initially, key expansion was broken up

into three stages (one for each iteration over S), resulting in four stages overall. As each

half of a key expansion iteration depends on the previous value of S rather that any newly-

computed values, it was determined that each of these stages could be broken down further

into two semi-independent operations. Even these smaller key expansion stages were slower

than the encryption stage, so no further divisions were possible. The overall result was a

configuration composed of three pipelines running in parallel, with each pipeline composed

of seven stages (see Figure 3.3).

The resulting configuration ran at 41 MHz and was capable of checking over 1.7 million

keys per second; a remarkable achievement for a model of FPGA that is over a decade old.

This represented a 42-fold speed increase over the CPUs used in the cluster (350 MHz Intel

Pentium IIs) when these were executing the optimized distributed.net RC5 implementation.

Although these CPUs were not the most modern available at the time, a greater than order-

of-magnitude speedup was also recorded when comparing against the best performing CPU

then available for comparison (a 2.4 GHz Intel Pentium 4). As the design is not I/O-bound,

the performance achieved should scale up when adapted to more modern FPGAs that

contain more logic gates (allowing the design to accommodate more parallel pipelines) and

run at higher clock speeds (allowing individual pipelines to process more keys per second).

3.4 Development of the ARC Application

Although the creation of the hardware implementation of the search algorithm demonstrated

that significant performance benefits could be attained through the use of individual FP-

GAs, realising these benefits on a cluster-wide basis required the creation of a suitable

ARC application. This application would partition the key space and search the resulting

partitions using FPGAs distributed throughout a cluster. As noted above, the hardware

implementation searches over a fixed number of keys, precluding the exact partitioning of

the key space based on the number of nodes in the cluster. The ARC application would

therefore have to operate by dividing the key space into partitions of the size hardcoded

in the hardware implementation and use the load balancing capabilities of the runtime en-

vironment to ensure that these partitions were distributed as evenly as possible across the

participating cluster nodes. This approach leads to a slight inefficiency when the number

of partitions is not divisible by the number of cluster nodes, resulting in some nodes po-

tentially being idle at the end of the computation. However, the increased key throughput

achieved through the use of a hardcoded key count in the hardware implementation leads

to greater overall performance for searches over larger key ranges. In any case, if the secret

key is within the specified overall key range then the problem of load imbalance at the end
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of the computation will only arise if the secret key is within the last few partitions to be

searched.

The development of the ARC application commenced with the design of the top-level

graph definition, titled Main. This graph is responsible for creating the list of partitions

to be searched and exposing these partitions as a collection of nodes that can be executed

in parallel. Main therefore requires two parameters: the initial key, serving as a starting

point for the search, and the number of fixed-size partitions that comprise the key range

(see Figure 3.4(a)). These parameters are passed directly from the enter node to a primitive

node, createPartitions, responsible for converting this information into a list of parti-

tions. The result of this operation is a value of type List, containing elements of type Key

representing the initial key values in the partitions. Instances of List are parameterized

with the common data type of the elements that they contain; the data type is required dur-

ing transmission of List instances in order to invoke the correct serialization/deserialization

functions on the elements in the list. Although the List type is part of the ARC standard

library, the Key type is specific to the application at hand. Instances of Key are references

to a five-byte block of memory containing a 40 bit RC5 key.

The list resulting from the evaluation of createPartitions is passed to a forAll node.

forAll is a TM operator that accepts two parameters: an instance of List and the name

of an operator that accepts a sole parameter of the same type as that of the list. The

operation of forAll is similar to the concept of mapping in functional languages, except

that the outputs of the operator invocations are discarded instead of merged into a new list.

This is achieved by creating a new node with the specified operator for every element in the

E createPartitions

forAll X

startKey

numPartitions

"SearchPartition"

(a) Main

E checkKeys keyFound

writeKey allDone

Ifel X

(b) SearchPartition

Figure 3.4: The graph definitions used in the RC5 key search ARC application.
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Figure 3.5: A forAll node (a) before and (b) after evaluation.

list, with the corresponding list element used as the operand to each new node (see Figure

3.5). A single node with a sync operator is also created, and acts as the sole destination

of all the other newly-created nodes. sync is a TM operator that simply returns a zero

value; its purpose is to prevent the computation from proceeding until all its operands

have arrived, i.e., the operator parameter has been applied to all elements of the list. In

this instance, the forAll node is used to apply the SearchPartition condensed graph

operator to the elements of the list. The sync node will only fire if the key has not been

found, causing a zero value to be passed from the sync node to the exit node and hence

ending the computation.

The SearchPartition graph definition (see Figure 3.4(b)), applied by the forAll node

to every key partition, is responsible for determining whether or not the secret key lies within

the partition specified by its sole operand. If the secret key is found, then the key is written

to a file and the computation is terminated. Otherwise, a zero value is returned. The Key

argument is passed to a primitive node, checkKeys, that uses the hardware implementation

of the search algorithm to evaluate the key partition starting at the specified key value. The

result is an instance of type Key, with the bytes of the referenced memory buffer containing

the secret key, if found, or zero bytes otherwise. This key value passes in turn to another

primitive operator, keyFound, that returns a boolean value used to activate the appropriate

branch of an Ifel node that is its sole destination. If the secret key was not found, then the

exit node is fired, returning the zero key value back to the parent graph. In the event that

the secret key was present within the specified partition, a “daisychaining” arrangement

of stemmed nodes (see Section 2.3) is used to fire a node that writes the secret key to a

file (as noted earlier, it is assumed that a common networked file system is available to

all participating nodes) before terminating the computation through an invocation of the
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allDone operator.

The correct operation of the application was verified through execution on a cluster

composed of eight nodes, where each node contained a single 350 MHz Pentium II, 256 MB

of RAM and a single Celoxica RC1000 reconfigurable computing board. The nodes were

connected by a 100 Mb Ethernet switch. This resulted in a throughput of over 13 million

keys per second, almost 350 times faster than the throughput of one host CPU and enough

processing power to search the entire 40-bit RC5 key space in under 22 hours.



Chapter 4

Performance Model of the ARC

Runtime Environment

Before work could commence on the development of the load balancing algorithms presented

in Chapter 5, an objective method of evaluating their effectiveness was required. Ideally,

every decision made by a load balancing algorithm based on the limited information available

to it should be compared to the best decision possible based on all the relevant information.

To this end, a performance model of the ARC runtime environment was developed that

allows the execution time of instructions with known characteristics to be approximated

with reasonable accuracy on any of the available computational resources. The execution

time of an instruction resulting from the assignments made by load balancing algorithms

could then be compared with the least possible execution times as predicted by the model.

4.1 Application Generation

Extensive information about the application being executed is required ahead of time if

the behaviour of the runtime environment is to be predicted accurately. This information

includes, for every instruction created, the cost of the associated operation, the amount of

input and output data and, if the instruction’s operator has a hardware implementation,

the speedup attained through hardware acceleration. Unfortunately, this information is

difficult or impossible to determine ahead of time for most real-world applications.

In order to work around this problem it was decided to create a method of generat-

ing applications where all the information described above is known ahead of time. As

the operation of the runtime environment, rather than the function of the applications

themselves was of interest, it was decided to randomly generate the form of the graph def-

initions, and to use primitive operators that simply wait for a specified amount of time.
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This scheme was chosen for its flexibility, since new applications with desirable properties

could be easily created in order to test various aspects of the performance model or load

balancing algorithms. It was also decided that the randomness present in the applications

should be introduced statically rather than at runtime in order to facilitate reproducibility

when conducting experiments. The availability of randomly-generated but fixed-form ap-

plications allows alterations to the runtime environment, such as modified load balancing

algorithms, to be evaluated under a single set of conditions and hence objective performance

comparisons can be made.

As described in Section 2.2.1, ARC applications are composed of a collection of graph

definitions and a collection of operators, with the operators having implementations either

as machine code, FPGA configurations, or both. Typical real-world graph definitions also

contain a number of operations that are trivial to execute and hence wasteful to delegate.

In order to mimic this behaviour as closely as possible, it was decided that the generated

applications should be composed of multiple graph definitions and should utilize a number of

different operators. Some of the operators should have only native implementations, others

should have only FPGA implementations, with the remainder having implementations of

both type but with varying degrees of native:FPGA speedup.

With these requirements in mind, a Python program (appgen.py) was created that

generates applications with user-defined characteristics. Upon invocation, the program

begins by reading a parameter file passed as its sole argument. Parameter files are composed

of a collection of attribute/value pairs that specify the behaviour of various aspects of the

application generation process. An example parameter file is shown in Figure 4.1, and a

description of the attributes provided in Table 4.1. Next, the program generates the number

of applications specified by the numApps parameter. The application generation process

is composed of three distinct steps: generation of the primitive operators, generation of

the graph definitions and application output. These stages are discussed individually in

subsequent subsections.

4.1.1 Generation of Primitive Operators

The program begins by generating the set of primitive operators that will be referenced

by the graph definitions. The number of primitive operators in an application is chosen

randomly using a normal distribution, depending on the mean and standard deviation val-

ues specified in the parameter file (numPrimOperatorsMean and numPrimOperatorsSigma).

Primitive operators are created with some or all of the following attributes:

1. Name. Primitive operators are named as they are generated by suffixing op with the

number of the operator. The numbering of operators start from 0.
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Attribute Name Allowed Values Description

numApps 1 . . . 100 The number of applications to generate.

numPrimOperatorsMean 1 . . . 100 The mean number of primitive operators per

application.

numPrimOperatorsSigma 1 . . . 10 The standard deviation of the number of prim-

itive operators per application.

trivialityProbability [0, 1] ⊂ R The probability that a newly created primitive

operator is trivial.

nativeOnlyProbability [0, 1] ⊂ R The probability that a newly created nontriv-

ial primitive operator has a native implemen-

tation only.

fpgaOnlyProbability [0, 1] ⊂ R The probability that a newly created nontriv-

ial primitive operator has an FPGA imple-

mentations only.

operationCostMean 1 . . . 107 The mean cost of nontrivial primitive opera-

tions.

operationCostSigma 1 . . . 106 The standard deviation of the cost of nontriv-

ial primitive operations.

dataSizeMean 0 . . . 27 The mean number of bytes of data returned

from primitive operations.

dataSizeSigma 0 . . . 26 The standard deviation of the number of bytes

of data returned from primitive operations.

fpgaSpeedupMean 1 . . . 100 The mean speedup of FPGA v. native opera-

tor implementations.

fpgaSpeedupSigma 1 . . . 10 The standard deviation of the speedup of

FPGA v. native operator implementations.

numGraphsMean 1 . . . 100 The mean number of graph definitions per ap-

plication.

numGraphsSigma 1 . . . 10 The standard deviation of the number of

graph definitions per application.

nodesPerGraphMean 1 . . . 100 The mean number of non-TM nodes per graph

definition.

nodesPerGraphSigma 1 . . . 10 The standard deviation of the number of non-

TM nodes per graph definition.

nodeCondensedProbability [0, 1] ⊂ R The probability that a newly created non-TM

node is assigned a graph, rather than a prim-

itive, operator.

nodeParallelProbability [0, 1] ⊂ R The probability that a newly created non-TM

node is placed in parallel, rather than in se-

quence, with another node.

Notes

1. The probability that a newly created nontrivial operator has implementations in both software
and hardware is defined implicitly as 1 - (nativeOnlyProbability + fpgaOnlyProbability).

2. The values of all parameters for which a mean and standard deviation are specified are generated
using a normal distribution.

Table 4.1: The tunable parameters accepted by the ARC application generation program.
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2. Triviality. Real world applications typically contain a number of primitive operators

that perform O(1) operations such as arithmetic and comparison. Operators such as

these whose cost is trivial are known as trivial operators. The presence of these op-

erators can be imitated in generated applications using the trivialityProbability

parameter that specifies the probability that a newly created primitive operator will be

trivial. Trivial costs are given the value of 1, and operators of this kind are prevented

from having an FPGA implementation.

3. Native and FPGA Implementations. The assignment of implementations to nontrivial

operators is performed in a single step to ensure that every operator has at least one

implementation. The probability that a newly created nontrivial operator has an

implementation of only one type is specified by the nativeOnlyProbability (nop)

and fpgaOnlyProbability (fop) parameters. The probability that a newly created

operator has implementations of both type is therefore defined implicitly as 1 - (nop

+ fop).

# Example appgen.py settings file

numApps=1

# Operator related options

numPrimOperatorsMean=10

numPrimOperatorsSigma=0

condensedProbability=0.2

trivialityProbability=0.3

nativeOnlyProbability=0.3

fpgaOnlyProbability=0.3

operationCostMean=1000

operationCostSigma=100

dataSizeMean=1024

dataSizeSigma=100

fpgaSpeedupMean=10

fpgaSpeedupSigma=2

# Graph related options

numGraphsMean=4

numGraphsSigma=1

nodesPerGraphMean=10

nodesPerGraphSigma=1

nodeCondensedProbability=0.2

nodeParallelProbability=0.5

Figure 4.1: An example application generation parameter file.
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4. Cost. All nontrivial operators are assigned a nontrivial cost value depending on the

operator cost mean and standard deviation parameters. The assigned cost represents

the cost of execution relative to the cost of execution of a trivial operation.

5. FPGA Speedup. Operators with FPGA implementations are assigned a speedup value

controlled by the speedup mean and standard deviation parameters. The speedup

value specifies the performance increase attainable through hardware acceleration,

and includes data transfer times.

6. Output Data Size. The amount of output data (in bytes) created by the invocation of

an operator is specified by the dataSizeMean and dataSizeSigma parameters. The

amount of input data received by any particular operator invocation is dependent on

the topology of the graph instance that created the associated instruction.

4.1.2 Generation of Graph Definitions

Once the primitive operator table has been created, the next step in the application gen-

eration process is to create the set of graph definitions. The number of graph definitions

created for each application depends on the numGraphs mean and standard deviation pa-

rameters. The generation of each graph definition then proceeds in two stages: the creation

of the graph topology and the assignment of operators to nodes.

The application generation program creates graph definitions that utilize only a small

subset of the features of the full Condensed Graphs model: all primitive operators and

graph definitions were restricted to arity 1, only a single operand type representing blocks

of memory is used, and neither lazy evaluation nor the mobility of subgraphs, operators and

destinations was considered. Nevertheless, these graphs form a proper subset of Condensed

Graphs. These restrictions do not imply any loss of generality for performance modelling

and load balancing purposes (see below). The generation of applications that utilize the

features of the model more fully is left as future work.

The applications created by the application generation program are similar to classical

dataflow graphs and do not exhibit the more complex behaviour found in general Condensed

Graphs applications. Although ignoring the characteristic features of the model results

in simplistic application behaviour, this simplification can be justified if the sole purpose

of the applications is to observe the behaviour of the runtime environment and evaluate

load balancing algorithms. From this perspective, all that is required is the creation of

instructions across the cluster of varying cost and data size; introducing the more complex

features of the model into generated applications would alter the number and execution

order of the instructions created, but not the behaviour of the modules of interest.
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The restriction of non-TM operators to arity 1 was put in place because only TM

operators may operate on a variable number of operands, and the task of matching the

number of incoming connections to each node to the arity of the associated operator adds

significant complexity to the process of generating graph topologies. When generating

graphs using the simplified dataflow scheme, the presence of non-TM nodes with more than

one operand port is emulated through the use of merge nodes. merge is a TM operator

that accepts a variable number of operands representing memory blocks and coalesces the

contents of the multiple memory block arguments into a single block. When the new, larger,

block is associated with a non-TM node, the resulting instruction has the same amount of

associated data as it would if the merge had not been performed and the operands had been

passed to it directly. The limitation on non-TM operator arity therefore results in identical

behaviour from a performance modelling or load balancing perspective.

Graph definition topologies are generated randomly, with variable numbers of nodes and

variable degrees of parallelism. An example of the topology generation process in action

is provided in Figure 4.1.2. The generation of a graph commences with the creation of an

Enter and an Exit node. The next node is then added in between these two (see Figure

4.2(a)). Additional nodes are then added to randomly chosen non-TM nodes until the

predefined quota for that particular graph definition is reached. The node quota applies to

non-TM nodes and is determined using the nodesPerGraph mean and standard deviation

parameters.
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Figure 4.2: Steps in the generation of a graph definition containing six non-TM nodes.
Newly added nodes are shaded in grey. Although operators are not assigned to non-TM
nodes until topology generation is complete, the subsequent operator assignments are shown
at each step for clarity.
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A probability value, nodeParallelProbability, is used to decide whether new nodes

are added in sequence or in parallel to existing nodes. New nodes are added sequentially by

copying the destinations of the existing node to the new node before setting the new node

as the existing node’s sole destination (see Figures 4.2(e) and 4.2(f)).

Nodes are added in parallel by adding a destination to the new node from the origin

of the existing node’s incident arc. As noted above, the original implementation of the

application generation program restricted all non-TM operators to arity 1. The outputs of

the new node and existing node must therefore be merged into a single value. If the existing

node already has a merge node as its destination, then the available merge node is reused

(see Figures 4.2(c) and 4.2(d)); otherwise a new merge node is created (see Figure 4.2(b)).

Once the structure of a graph definition has been defined, each non-TM node in the

graph must be assigned an operator. In order to ensure that each graph definition is used

at least once, the operator assignment process begins by choosing a non-TM node at random

and assigning the next graph definition as its operator. The sole exception to this rule is

the case where the current graph definition is the last to be generated. For subsequent

nodes, a probability value (specified by nodeCondensedProbability) is used to determine

whether the node in question should be assigned a condensed graph operator or a primitive

operator. Primitive operators are assigned simply by choosing an operator uniformly at

random from the set of primitive operators created earlier. However, care must be taken

when assigning condensed graph operators that circular dependencies are not introduced

into the graph definitions, as these would result in infinite recursion at runtime. Condensed

graph operators are therefore always chosen uniformly at random from the set of graph

definitions generated after the current one. In keeping with this scheme, no condensed

graph operators are assigned to the last graph definition to be generated.

At this point, all the characteristics of the application have been specified. The result

is a table of primitive operators and a collection of graph definitions. An example of a

completed application composed of ten primitive operators and five graph definitions is

provided in Figure 4.3.

4.1.3 Application Output

The next stage in the generation process is the conversion of the in-memory representation

of the primitive operator table and graph definitions to a set of files that implement the

application as described. First, a directory is created to contain the application files. The

application directory is named by suffixing app with the application number.

The sole datatype used by generated applications is Block, instances of which are refer-

ences to blocks of memory, with the size of a block stored as an integer at the first address.
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Primitive Operator Table
Op# Trivial? Native? FPGA? Cost Speedup Data Size

0 X X � 1 N/A 928

1 � X � 10095 N/A 1096

2 � X � 9980 N/A 927

3 � X X 9894 10 1138

4 � X X 9845 9 1179

5 � � X 10023 8 963

6 � X � 9914 N/A 947

7 � X � 9965 N/A 986

8 X X � 1 N/A 974

9 � X � 9973 N/A 949

Figure 4.3: The graph definition set and primitive operator table of an example application
generated by the application generation program. Primitive operator names are prefixed
with op, while condensed graph operator names are prefixed with g.
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Application output commences with the creation of an ANSI C file (ops.c) containing the

serialization, deserialization and string conversion function for the Block datatype, as well

as the implementation of the merge TM operator. Next, the primitive operator implemen-

tations are added to the file using a template ANSI C function parameterized with the name

of the operator and the values of local variables specifying the amount of time to wait upon

invocation and the amount of data to return. This template is filled in for every primitive

operator with a native implementation and the resulting function is added to the file. All

of the operator functions created accept a single Block operand and also return a Block

result.

As the compilation of FPGA configurations takes a considerable amount of time, it was

decided to avoid, if possible, the generation of a unique hardware implementation for every

relevant operator. The use of homogeneous configurations for operators of varying simulated

complexity does not affect the realism of the resulting applications because reconfiguration

time was found to be a constant value rather than a variable dependent on the complexity

of the function implemented (see Section 4.3.2 below). A consequence of assuming a fixed

execution cost is that the data transfer rates are not modelled explicitly and hence cannot

be reasoned about in this framework. Dynamic determination of data transfer costs may

result in different load balancing decisions when considering specific individual instructions.

However, the basis of these decisions is not altered if one assumes a fixed cost model.

To avoid generating different hardware implementations, and hence the associated cost,

copies of a canonical implementation are made to files in the application directory with

filenames matching the operators that they implement. However, the use of homogeneous

configurations means that information not part of the operator’s type signature (i.e., the

amount of time to wait upon invocation) must be passed to the FPGA configuration at

runtime. Furthermore, invocation of serialization and deserialization functions for the Block

datatype must be circumvented if the cost of data transfer is to be incorporated. As a

result, a modification was made to the implementation of the FPGA execution thread

in the runtime environment that traps calls to generated operators, preventing the data

transfer specified by the operator’s type signature and transmitting instead the operator’s

adjusted cost (calculated by dividing the native cost by the speedup factor) to the FPGA.

Once the FPGA operator implementations have been created, application output pro-

ceeds with the creation of the XML file containing the high-level description of the appli-

cation using the definition format described in Section 2.4. The set of graph definitions is

added by converting individual graphs from the in-memory representation to XML using a

simple scheme that assigns names to nodes based on their position in the graph definition’s

node list. Next, an operator element, with corresponding attributes and sub-elements, is

added for each primitive operator. Finally, an operator element is added for the merge
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operator along with a type element for the Block datatype.

At this stage, all the files required to compile and execute the application have been

created. However, the application generation program also outputs a number of files for

convenience. The first is a compilation script, allowing applications to be generated on one

platform but compiled on another. Scripts are also created for running the application across

1-8 cluster nodes. Finally, visualizations are created of the application’s graph definition set

and primitive operator table via intermediate formats. The application’s graph definitions

are converted to the format used by the DOT graph visualization application [126], with

the primitive operator table being converted to LATEX [127] format. The resulting DOT and

LATEX files are then converted to PostScript, producing images such as those shown in Figure

4.3. This output is useful for examining the form of generated applications, particularly

when experimenting with different parameter values.

4.2 Modifications to ARC to Support Performance Model

Development

The process of developing the performance model required that the accuracy of the model

be verified experimentally at each stage of development. These experiments were typically

performed by recording the time taken by the runtime environment to perform particular

tasks and then comparing the recorded values with the predictions produced by the model.

Modifications to both the ARC compile-time and runtime environment were necessary in

order to facilitate the recording of the required values.

Many of the experiments conducted relied on the availability of information about the

executing application that could not normally be determined: instruction costs, output data

sizes and FPGA speedups. This information cannot be determined in general for real-world

applications, but is available for applications created using the application generation pro-

gram. Modifications were therefore necessary to the compile-time environment to allow this

additional information to be imparted by generated applications to the runtime environ-

ment. The XML application definition format was modified to allow operator elements and

their child elements to support the additional attributes provided by the application gener-

ation program (see Figure 4.2 below). Corresponding changes were made to the Condensed

Graphs Compiler to allow these attributes to be parsed and added to compiled applications.

The runtime environment was modified to support the new attributes described above

by including them in the operator information table. Corresponding extra parameters were

added to the callback functions used by applications to register operators. All the addi-

tional application information required for experimentation was then available at runtime.

Other modifications to facilitate experimentation included the addition of a general-purpose
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logging module, allowing tuples of recorded data to be stored as comma separated values

in files. Additional temporary modifications to the runtime environment were made as nec-

essary to record the values required for individual experiments and save them using the

logging module.

<operator category="primitive" name="op4" cost="836" datasize="1067">

<typesig>Block,Block</typesig>

<nativeimpl name="op4"/>

<fpgaimpl bitfile="test/app0/op4.bit" clockspeed="10" speedup="9.0"/>

</operator>

Figure 4.4: An example <operator> element created by the application generation program
containing cost and datasize attributes, with its <fpgaimpl> child element containing a
speedup attribute.

4.3 Development of the Performance Model

Performance modelling is loosely defined as “the capture and analysis of the dynamic be-

haviour of computer and communication systems” [128]. In effect, this involves the devel-

opment of a model that predicts the behaviour of the aspect(s) of a system’s performance

that are of interest. In this case, the aspect of system performance of interest is the amount

of time required to execute a newly created ARC instruction on any of the available compu-

tational resources. Probabilistic techniques commonly used for performance modelling such

as stochastic modelling [129] were found to be unsuited to this task because they are used to

reason about aggregate system characteristics, such as throughput, rather than individual

system states as is required in this instance.

In light of this observation, it was decided that an analytical model of the relevant aspects

of the ARC runtime environment was required. As described in Section 1.3, an analytical

model of some aspects of clusters augmented with reconfigurable hardware is presented in

[90]. However, this model is specific to the analysis of “synchronous iterative algorithms”,

and does not capture the more general nature of the ARC runtime environment. It was

therefore decided that an ARC-specific model should be developed that captured only those

aspects of system behaviour required for the evaluation of load balancing algorithms, and

that the accuracy of the model would be tested during development where appropriate using

the application generation program.
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4.3.1 Approximating Native Instruction Completion Cost

The first step in the development of the performance model was to derive a formula that

would approximate the completion cost (C) of an instruction executed by the CPU. Comple-

tion cost is derived from the elapsed time from when the result of an instruction is required

to when the result is usable. This contrasts with the execution cost (E) of an instruction

which is derived from the time spent by the CPU executing the instruction. This can

be estimated by adding the cost required to complete the currently executing instruction,

the sum of the execution costs of the other instructions in the instruction queue and the

execution cost of the instruction in question:

CC(n) = (EC(c) − tc) +

|Q|
∑

i=1

EC(Qi) + EC(n)

where n is the instruction being considered, Q is the native instruction queue, c is the

currently executing instruction and tc is the amount of time elapsed since execution of

c commenced. E returns the cost value for the operator associated with its instruction

argument (as specified by the application generation program) if the operator is primitive.

Zero is returned in the case of a TM or condensed graphs operator. The reasoning behind

this definition was as follows:

1. TM instructions represent simple node-manipulation operations, and the execution of

a condensed graph instruction represents the evaporation of a graph definition rather

than the evaluation of the nodes contained therein.

2. The application generation program cannot specify costs for these operations because

their execution time is entirely dependent on the machine on which execution takes

place.

3. The costs of both of these operations (node manipulation and graph evaporation) was

assumed to be relatively small.

Before development of the performance model could continue it was deemed necessary

to determine the accuracy of the part of the model presented above. This required the

design and execution of a suitable experiment. This was achieved by using the application

generation program to create applications with varying instruction costs and comparing the

actual execution times of instructions with the times predicted by the CC function. Variety

in instruction costs was achieved by generating applications with mean instruction costs of

every power of 10 from 1 to 4. Five applications were generated for each power value. The

standard deviation of the costs was set to 10% of the mean cost used in each case.
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After execution of all the applications was complete, the results were collated using a

script that processed the output files for each mean cost value in turn. First, the data

sets contained in the five files relating to the cost value currently being processed were

appended in memory to form a single data set. Next, the predicted execution time of each

instruction in the data set was subtracted from the corresponding actual execution time,

resulting in a set of execution time differences. The minimum value, first quartile, median,

third quartile and maximum value was then computed for the set of differences. A box plot

of the resulting data is shown in Figure 4.5.
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Figure 4.5: A box plot showing the differences observed between instruction execution times
predicted by CC and actual instruction execution times.

Reflecting on the results obtained, a number of conclusions were reached. Despite the

presence of large outlying values, the majority of differences are clustered between 20 and 120

ms. This observation, coupled with the lack of significant variation of the median difference

values across mean cost values, suggests that the model is approximating completion cost

to some extent. On the negative side, the model underestimated the actual completion cost

by a significant margin in every recorded case. The cause of this underestimation could not

be determined simply by examining the data presented above. Further investigation was

therefore required if the accuracy of the model was to be improved.

Based on the conclusions drawn above, the potential causes of completion cost mis-

matches were examined with a view to potentially refining the model. The following factors

were identified as possible contributors to execution time underestimation:
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1. As the measurements were made using wall-clock time, some underestimation is ex-

pected due to overheads present in the underlying environment. These delays could

take the form of contention with other processes for CPU time or OS-related events

such as page faults. Although care was taken while the experimental applications were

executing to ensure that the cluster machines were as lightly-loaded as possible, these

factors could not be ruled out as a potential source of significant delays in instruction

execution. Unfortunately, these factors would be impossible to model accurately as

they are machine-specific and essentially random events. The only way to account for

such overheads within the model would be to introduce a system-dependent efficiency

factor that would compensate for their presence in general but does not account for

the variation of their effects on individual instructions.

2. Underestimation of instruction completion cost can also be expected due to overheads

within the runtime environment. Possible causes of such overheads are the allocation

of result objects, contention for locks, and activity in concurrent threads such as the

uncovering of instructions in the Condensed Graphs Engine and the processing of load

balancing information from other cluster nodes. If these overheads were identified

as the source of significant delays, then further investigation would be required to

determine if they take the form of a relatively fixed cost per instruction (and hence

are linearly related to instruction queue length) or essentially random, as in the case

of the underlying system overheads described above.

3. The usleep system call used in the implementation of the primitive operators created

by the application generation program is not accurate to the millisecond. To quote

the relevant entry from the Linux Programmer’s Manual: “The sleep may be length-

ened slightly by any system activity or by the time spent processing the call or by the

granularity of system timers”. If “oversleeping” was found to be the primary cause

of underestimation then alterations would be required to the application generation

program rather than the performance model.

4. As stated above, the time spent executing TM instructions and evaporating condensed

instances of graph definitions was not considered when estimating the total cost of

the instructions awaiting execution. The assumption that these activities do not

contribute significantly to overall execution time could be faulty, even more so if

the processing of each instruction introduces an additional overhead, as considered

above. Although the execution time of these instructions is system dependent, this

could be accounted for through the introduction of additional parameters into the cost

estimation function, provided that the cost of individual instances of these activities
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does not vary significantly.

The next step in refining the model was to determine the roles of each of the factors

described above in contributing to execution time underestimation. To this end, the ap-

plications used in the previous experiment were rerun, but with different characteristics

being measured. Instead of the difference between predicted and actual instruction exe-

cution times, measurements were taken that would allow the significance of the overheads

described in Points 1 and 2 above to be compared to the role of TM and condensed graphs

instructions as described in Point 3. These were: delays observed between the completion

of one instruction (including the creation of the corresponding result) and the commence-

ment of the next in cases where another instruction is available on the queue, differences

observed between the specified and actual execution times of operator implementations, the

amount of time spent executing TM instructions and the amount of time spent executing

Oversleep 992ms

Other 25ms

Mean Cost 101 ms

Oversleep 1559ms

Other 34ms

Mean Cost 102 ms

Oversleep 1359ms

Other 30ms

Mean Cost 103 ms

Oversleep 1053ms

Other 27ms

Mean Cost 104 ms

Figure 4.6: Pie charts showing the overall cost of activities not accounted for in the per-
formance model. Due to the dominance of oversleeping, the other factors (executing TM
instructions, evaporating graph definitions and instruction/result processing) are grouped
into a single slice. The values shown represent the average observed over five applications.
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CG instructions. The results are shown as a collection of pie charts in Figure 4.6.
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Figure 4.7: A box plot showing the values recorded for activities not accounted for by CC

As the pie charts make clear, the inaccuracy of the usleep system call is by far the

dominant factor causing execution time underestimation. This conclusion is underlined in

Figure 4.7, showing that the overheads associated with factors not covered by the perfor-

mance model are typically under 1 ms, justifying their omission during development of the

model. Further research into this issue revealed that similar issues with usleep have arisen

in the field of network simulation. The cause of the problem (timer interrupt frequency) is

described in detail in [130]. Quoting verbatim:

“The standard Linux kernel sets the frequency of the timer interrupt to 100 Hz at boot

time that corresponds to 10ms interrupts... The interval length between timer interrupts is

called a jiffy. Since the kernel checks for expired timers only when a timer interrupt occurs,

the smallest meaningful sleep request time is one jiffy. The POSIX standard for select

system calls states that the process must sleep for at least the time requested. To guarantee

this, the kernel adds one jiffy to the requested sleep time in jiffies.”

From this analysis it would appear that the current implementation of the usleep system

call is subject to considerably more inaccuracy than its manual page suggests. In effect, an

inaccuracy of up to 20 ms can be associated with each invocation. Various workarounds

are proposed for the lack of resolution in usleep, most of which require modifications to

the kernel. The most suitable workaround not requiring kernel modification was found to

be the use of busy waiting, i.e., a loop that continuously checks the system time (using the

gettimeofday system call) until the target time is reached. Of course, the accuracy of this
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Figure 4.8: Box plots showing the differences observed between instruction execution times
predicted by CC and actual instruction execution times where the implementations of the
primitive operators used busy waiting rather than calls to usleep. The scale used in Figure
4.5 is preserved in Subfigure (a) for comparison.

method depends on the granularity of system time updates; if the system time is updated

using timer interrupts, then gettimeofday could also suffer from inaccuracy. Fortunately,

this is not the case. Again referring to [130]:
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“The modern Linux kernel gettimeofday provides nearly microsecond accuracy by em-

ploying a time stamp register (TSR) available on Pentium processors that is incremented

on each clock cycle. Earlier kernel versions returned the time-of-day value updated only at

a timer interrupt”.

In light of this information, the application generation program was modified to use

busy waiting rather than sleeping in the implementations of primitive operators. A new set

of applications was generated according to the same criteria used in the earlier experiments.

The differences between predicted and observed execution times were then measured for the

newly-created application set. The results are shown in Figure 4.8. The scale employed in

Figure 4.5 is maintained for comparison in Subfigure (a).

Examination of the data reveals a significant improvement in prediction times, with

the vast majority of execution time differences tightly clustered about the 4 ms mark (see

Figure 4.8(b)). The larger outlying values can be explained by preemption of the execution

thread by other processes. Prediction accuracy could presumably be improved further by

incorporating the other overheads examined into the performance model. However, it was

decided that the CPU part of the model was accurate enough at this point to facilitate

the load balancing experiments to follow, and so the focus turned instead to modelling the

behaviour of the FPGA execution thread.

4.3.2 Approximating FPGA Instruction Completion Cost

The total cost of executing an instruction using the local FPGA execution thread was

modelled by adapting the existing model for the native execution thread to account for

differences in behaviour resulting from the use of FPGAs. The most important factor

is the reduction in execution time attained through the use of the hardware rather than

the software implementation of the operator associated with the instruction. The FPGA

execution cost of an instruction is given by

EF(n) =
EC(n)

S(n)

where S is the speedup factor of the associated operator. The other factor modelled was

time lost due to reconfigurations (R), which can potentially occur before the execution of

every pending instruction:

R(n) =

{

0 if m is defined and op(m) = op(n)

rn otherwise

where m is the instruction executed immediately ahead of n (m is undefined if n is the first
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instruction to be enqueued), op returns the operator associated with an instruction and

rn is the reconfiguration time associated with the hardware implementation of op(n). The

resulting completion cost formula is as follows:

CF(n) = (EF(c) − tc) +

|Q|
∑

i=1

(R(Qi) + EF(Qi)) + R(n) + EF(n)

where c is the currently executing instruction and tc is the amount of time elapsed since

execution of c commenced.

Before evaluation of the FPGA model could begin, a suitable means of calculating the

reconfiguration time of each operator had to be found. To this end, a collection of five

FPGA configurations was assembled to determine if a linear relationship existed between

configuration size and reconfiguration time. The configurations used were drawn from both

the set of example applications provided with the RC1000 boards used for evaluation and

applications developed for ARC. These configuration files implemented functions ranging

in complexity from simple integer addition to complex image manipulation operations.

Surprisingly, the configurations were found to be all approximately the same size (1.2 MB

± 30 bytes). The size of the FPGA configurations was therefore found to be unrelated to

the complexity of the function that they implement. As a result, it was concluded that

the configuration files store the uncompressed state of all gates in the FPGA, not just

those that are actively used by the configuration. The reason for the presence of the small

variations in file sizes was not determined. The time taken to reconfigure an FPGA with

each configuration was recorded and averaged over five runs. The mean reconfiguration time

was found to be 173 ms with a standard deviation of 16 ms, with the variations occurring

across multiple reconfigurations with homogeneous as well as heterogeneous configurations.

Reconfiguration time was therefore found to be a constant value unrelated to the complexity

of the configuration itself. The R function was then simplified as follows:

R(n) =

{

0 if m is defined and op(m) = op(n)

r otherwise

where r is the constant reconfiguration time.

An experiment was conducted to verify the accuracy of the predictions produced for the

execution times of instructions assigned to FPGAs. The application generation program

was used to create application sets with mean instruction costs ranging from 102 to 105, with

each set containing five applications. All the nontrivial operators were specified as having

FPGA implementations only, with mean speedup specified as 10, with a standard deviation

of 1, in each case. This resulted in FPGA instructions with mean adjusted costs ranging
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from 10 to 104. The differences observed between predicted and actual FPGA instruction

execution times are shown in the form of a box plot in Figure 4.9 below.
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Figure 4.9: A box plot showing the differences observed between instruction execution times
predicted by CF and actual instruction execution times.

Examination of the results obtained reveals that although the predictions are reason-

ably accurate for the most part across varying mean cost values, large outlying values are

present. These inaccuracies represent both over- and underestimation, are present in similar

magnitude across all mean cost values, and are significant – up to ±200 ms. The variation

in reconfiguration times observed above were identified as the most likely cause. In order to

test this hypothesis, the experiment was repeated with the amount of primitive operators

confined to one per application, preventing the occurrence of reconfigurations. The results

are shown in Figure 4.10 below.

The lack of similar outliers in this case confirms that variation in reconfiguration time is

the primary cause of the prediction inaccuracies observed above. As noted earlier, variations

in reconfiguration times are random, and hence unpredictable. The accumulation of sig-

nificant numbers of instructions requiring reconfigurations in the FPGA instruction queue

can create cumulative over- or underestimation in some cases, resulting in the occasional

large inaccuracy as observed above. Possible explanations for the variation in reconfigu-

ration times include PCI bus contention and the fact that reconfigurations are performed

indirectly using the DMA controller, rather than direct communications over the PCI bus

when reading or writing operand values in generated applications. Although this seems

to be a credible hypothesis, the same variations were not observed during the networking
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Figure 4.10: A box plot showing the differences observed between instruction execution
times predicted by CF and actual instruction execution times when the number of primitive
operators was restricted to one in order to prevent reconfiguration.

experiments performed below, thus casting doubt on the cause of the observed jitter.

4.3.3 Approximating Instruction Delegation Overhead

Once the behaviour of the local instruction execution threads had been accurately modelled,

the next step in the development of the performance model was to develop a method of

approximating the overhead incurred when an instruction is delegated to another machine.

The delegation process is composed of three distinct parts:

1. The transmission of the instruction and its associated operand data from the local

machine to the remote machine.

2. The execution of the instruction on the remote machine.

3. The transmission of the corresponding result object and its associated data from the

remote machine back to the local machine.

In order to approximate the delegation overhead of an instruction, it was necessary to

model the behaviour of the runtime environment when performing Steps 1 and 3. The

transmission of an instruction commences with the opening a connection to the remote

machine. The cost of this activity was assumed to be a system-dependent constant. Next,

the instruction object is serialized and transmitted. Although the exact size of a serialized
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instruction is dependent on a number of factors (such as the length of the name of the

operator), it was decided that the extent of these differences was insignificant. As a result,

instruction object serialization was also treated as a constant value. The only factor that

varied across instructions was therefore transmission of operand data, a function of the size

of the operand values and the bandwidth of the networking equipment used. Expressed as

a formula:

TI(n) = conn +
sI +

∑|On|
i=1

size(Oni)

b

where conn is the system-dependent connection overhead, sI is the instruction object size

constant, On is the set of operand values associated with n, size returns the size of an

operand value and b is the network bandwidth. Before proceeding with a model of result

transmission, it was decided to verify the accuracy of TI. The first step in this process

was to determine the values of c and b on the cluster used for experimentation as well as a

suitable value for sI.

The connection overhead was determined by generating a single application and exe-

cuting it across two cluster nodes. In order to ensure that a large number of connections

were opened between both machines, the application was created with ten graph defini-

tions, each definition in turn containing ten nodes. During execution, the system time was

recorded whenever a machine opened a connection to transmit an instruction. Once the

remote machine had opened a corresponding connection and was ready to receive data, the

system time on the remote machine was also recorded. The system clocks on participating

machines were synchronized using the Network Time Protocol (NTP). The results were

processed by calculating, for each connection, the time elapsed between the first and second

time recordings. The values observed are shown in Figure 4.11.

Examination of the results reveals that the connection times for each machine are tightly

clustered about median values. However, a significant divergence is present between the

median values observed. Furthermore, the values observed for the second node were less

than zero. This phenomenon could be explained by a difference of a few milliseconds

in the system times of the two machines. Although the NTP daemon was executing on

both machines, it was concluded that the resulting system times were not accurate to the

millisecond on the cluster used. The value of conn was determined by calculating the

distance between the two medians, resulting in a value of 4 ms.

The size of instruction objects was determined by executing the application used in the

previous experiment but recording instead the size (in bytes) of every newly-created dele-

gable instruction (i.e., condensed graphs and primitive operations). All the values in the

resulting data set were found to be either 44 or 45. This lack of variation of instruction size
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Figure 4.11: A box plot showing the time differences observed between the initiation of a
connection on one cluster node and opening of the corresponding connection on another.
Both the difference in median values between the two machines and the presence of negative
values for node 2 are caused by system time differences.

can be explained by the fact that the application generation program generates delegable

instructions with a single operand port and similar operator names. Although significant

variation can exist in the number of destinations contained by these instructions, this in-

formation is not transmitted during the delegation process. Based on these observations,

44 was used as the value of sI in subsequent experiments.

The value of the bandwidth parameter b depends on the networking equipment con-

necting the cluster used for application execution. In this instance, a 100 Mb/s switched

Ethernet LAN was used. Converting this bandwidth to bytes per millisecond resulted in a

value of 12,500 for b.

The next step in modelling the delegation overhead was to develop a method of approx-

imating the transmission time of results. The resulting formula is similar to TI, but less

complex because only a single data value must be considered:

TR(r) = conn +
sR + size(or)

b

where conn is the connection overhead, sR is the result object size constant, or is the data

value associated with r and b is the network bandwidth. The values of conn and b are the

same as those used for TI. The only other parameter value that must be known ahead of

time is sR. Observations similar to those taken to determine the value of sI revealed that
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all result objects are 8 bytes in size.

Once the models of instruction and result transmission were complete, the completion

cost of an instruction on the CPU of a remote machine p could then be expressed as follows:

CRC(n, p) = TI(n) + CC(n, p) + TR(rn)

where rn is the result created by the execution of n, and CC is parameterized with p.

Similarly, the completion cost of an instruction on the FPGA of a remote machine was

given by:

CRF(n, p) = TI(n) + CF(n, p) + TR(rn)

At this point it was decided that an experiment was required to determine the accuracy

of the instruction delegation aspect of the performance model. As the communication

overhead was of sole interest for this experiment, the application set used was generated

accordingly. The applications were generated with parameter values that resulted in a single

graph definition per application, with the graph definitions composed of nodes arranged in

a linear fashion. This arrangement was chosen in order to prevent the formation of queues

of instructions, ensuring that the execution times of instructions on remote machines could

be predicted using information local to the delegating machine. The cost of all primitive

instructions was held constant at 1,000 ms, with mean data sizes ranging in powers of 2

from 1 to 12. The primitive operators used were generated with implementations in software

only, again in order to simplify cost calculations. Hence, only CRC was evaluated, with 1,000

used as the predicted value of CC in every case. The resulting differences between predicted

and actual execution times were recorded, with the results shown as a box plot in Figure

4.12 below.

Reflecting on the results obtained, two conclusions were reached:

1. The observed execution time differences are tightly clustered about median values,

and the accuracy of the predictions is not affected by increasing data size. This

suggests that the model of delegation cost is accurate and that the value chosen for

the bandwidth parameter b is correct.

2. The model consistently underestimates the actual execution time by approximately 6

ms across all mean data sizes. This indicates that the value determined above for the

connection overhead constant conn was incorrect.

Based on these conclusions, it was decided to adjust the value used for conn in order

to improve prediction accuracy. As the connection overhead constant appears twice in CRC
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Figure 4.12: A box plot showing the time differences observed between the execution times
of instructions as predicted by CRC and actual execution times.

(once in TI and once in TR), the value of conn was adjusted by halving the mean of the

medians observed for low data sizes and adding this to the existing value, resulting in a new

value of 7 ms. The experiment was repeated using the new value of conn, with the results

obtained shown in Figure 4.13 below.

Examination of the new results reveals that the adjusted value of conn increases pre-

diction accuracy to within 1 ms in the majority of cases. At this point, all the aspects of

runtime environment behaviour required for the conduct of load balancing experimentation

had been modelled.

4.4 Estimating Minimum Instruction Completion Cost

The various aspects of ARC runtime environment behaviour modelled above allow the

completion costs of instructions to be predicted with reasonable accuracy both locally and

remotely. By combining the formulas presented above, the least possible completion cost of

an instruction across the whole cluster can be estimated by comparing the lowest possible

local and remote completion costs:

Cmin(n) = min CminL(n),CminR(n)

The lowest possible local completion cost is calculated by comparing the completion
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Figure 4.13: A box plot showing the results obtained when the experiment shown in Figure
4.12 was repeated with an adjusted value for conn.

costs of the instruction on the local CPU and FPGA, provided that both hardware and

software implementations of the operator are available:

CminL(n) =















CC(n) if opFPGA(n) is undefined

CF(n) if opCPU(n) is undefined

min CC(n),CF(n) otherwise.

Similarly, the lowest possible remote completion cost is calculated by taking the least

possible completion cost available on the CPUs and FPGAs of the set of peers P :

CminR(n) =















minp∈P CRC(n, p) if opFPGA(n) is undefined

minp∈P CRF(n, p) if opCPU(n) is undefined

minp∈P CRC(n, p),CRF(n, p) otherwise.

4.5 Benefits and Limitations of the Performance Model

The performance model presented above is a useful tool for examining various aspects

of ARC behaviour, and has a number of potential applications. Apart from its primary

intended purpose as a benchmark for load balancing effectiveness, the model (with minor

modifications) could also be used to examine how the runtime environment would behave

under conditions that cannot be created with the equipment at hand. Potential scenarios
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include:

1. Observing execution behaviour on clusters comprised of nodes of SMP machines

and/or the presence of multiple FPGAs per cluster node.

2. Observing execution behaviour on clusters where heterogeneity is present across the

set of CPUs and/or FPGAs.

3. Evaluation of the performance gains achieved through the use of alternative FPGA

connection topologies or networking equipment.

4. Determining the optimal cluster configuration for an application before purchase.

Despite its usefulness, some caveats should be observed regarding the accuracy of the

predictions produced by the model.

1. The prediction formulas are not accurate to the millisecond. As most of the formulas

are accurate only to within 10 ms, the model cannot be meaningfully applied to very

fine-grained computations.

2. Examination of the graphs comparing predicted and actual instruction execution times

reveals the presence of significant outlying values (up to tens of milliseconds). These

inaccuracies result from unpredictable events occurring in the underlying execution

environment, such as CPU contention and networking delays. The model should not

therefore be expected to be accurate in every case.

3. Consideration should be taken of system time differences between cluster nodes when

comparing measurements taken on different machines.

In light of these observations, the values produced by the model should only ever be

regarded as estimates rather than firm predictions. On the positive side, in the vast majority

of cases the predictions produced by the model are accurate to within 10 milliseconds. It

can therefore be concluded that the model provides reasonably accurate predictions of the

behaviour of applications created by the application generation program, provided that the

granularity of the application under observation is suitably coarse.



Chapter 5

Development of the ARC Load

Balancing Framework

Load balancing can be defined as “the distribution of computations fairly across processors

in order to obtain the highest possible execution speed” [131]. Load balancing techniques can

improve performance in situations where an application to be executed does not decompose

neatly into a collection of identical parallel subtasks, there are more subtasks to be executed

than processors available, the processors used are heterogeneous, or a combination of these

conditions is present. Any ARC application potentially meets all of these conditions: it may

be composed of non-identical subtasks, may generate more tasks than there are processors

available, and is always executed on a heterogeneous collection of processors. Heterogeneity

of processors arises due to the presence of FPGAs, irrespective of whether or not all the

host processors are identical. Given that the conditions above are met, it follows that the

implementation of an effective load-balancing scheme is a highly desirable feature if the

ARC system is to execute applications efficiently.

In general, load balancing is a variant of the bin packing problem [132], i.e., the placement

of objects in boxes with the aim minimizing the number of boxes required. In the case of

load balancing, the boxes represent task queues, the packing occurs in one dimension only,

the number of boxes is fixed and the aim is to minimize the size of the largest box (see

Figure 5.1). The bin packing problem has been shown to be NP-complete [133] as a decision

problem and is therefore NP-hard as an optimization problem [134]. As such, attempting to

find optimal solutions is computationally prohibitive. Algorithms designed for the problem

typically rely on heuristics to find near-optimal solutions in the search space.

The highest-level division of load balancing techniques is between those that operate

98



5.1 Identification of ARC Load Balancing Requirements 99

������������������
������������������
������������������

������������������
������������������
������������������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

�������
�������
�������

�������
�������
�������

���������
���������
���������

���������
���������
���������

Execution Time

Node 1

Node 2

Node 3

Node 4
������������������
������������������
������������������

������������������
������������������
������������������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

����������
����������
����������

����������
����������
����������

������
������
������

������
������
������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

Execution Time

Node 1

Node 2

Node 3

Node 4

Figure 5.1: The application of load balancing techniques can significantly increase compu-
tational efficiency and hence reduce overall execution time. The shaded boxes represent
discrete tasks.

statically and those that operate dynamically. Static load balancing algorithms [135] at-

tempt to find a solution before execution commences, resulting in a map of tasks to re-

sources, or work plan, that is followed at runtime. The min-min heuristic, where the tasks

are ordered by increasing cost before being assigned in turn to the resource where they will

complete soonest, has been shown to be highly effective, performing almost as well as work

plans evolved using genetic algorithms. Crucially, the information required to produce a

near-optimal work plan includes the cost of executing each task as well as the amount of

data generated at each step. Determining this information ahead of time can be difficult,

if not impossible. Dynamic load balancing algorithms, on the other hand, improvise the

work plan as the computation progresses and new tasks arrive. As such, they may be able

to leverage information that only becomes available after execution has commenced. How-

ever, in general they are not as effective as static load balancers given the same amount of

information, and have the added drawback of imposing a performance overhead at runtime.

The following section describes how the load balancing requirements for ARC were de-

termined within the context of an existing taxonomy of dynamic load balancing algorithms.

The resulting load balancing framework and results from the evaluation of candidate algo-

rithms is presented in Section 5.2. The algorithms described are not specific to the ARC

system; they are generally applicable to any situation where load balancing over distributed

reconfigurable hardware is required. Section 5.3 describes how the effectiveness of the basic

framework was improved through the application of various optimizations.

5.1 Identification of ARC Load Balancing Requirements

During the initial design stages of the load balancing scheme for ARC it was immediately

apparent that the static approach would be unsuitable because the necessary information,
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such as the execution cost of tasks and even the number and type of the tasks themselves, is

not available ahead of time. The focus was therefore on dynamic techniques from the outset.

However, the field of Dynamic Load Balancing encompasses a wide variety of methodologies,

many of which were developed for multiprocessors or are otherwise unsuited to the task at

hand.

A taxonomy, described in Section 5.1.1 below, is available that allows dynamic load

balancing algorithms to be classified based on their behaviour. It was decided that this

taxonomy would serve as a useful starting point for determining ARC load balancing re-

quirements. By examining the various behaviours available in each category in the taxon-

omy, the applicability of each behaviour to the context of the ARC runtime environment

could be considered, and hence the most suitable behaviour in each category could be deter-

mined. Once this activity was completed, i.e., the entire taxonomy tree was traversed, then

a significant portion of the required behaviour of the ARC load balancing scheme could be

finalized. Experimentation could then be used to determine the most suitable behaviour

for the remaining undefined behavioural aspects.

5.1.1 Taxonomy of Dynamic Load Balancing Algorithms

A taxonomy of dynamic load balancing strategies was proposed in [136] that allows all

dynamic load balancing algorithms to be classified according to four main characteristics:

initiation, location, information exchange and load selection.

Initiation describes the mechanism through which the load balancing algorithm is in-

voked, and may be periodic or event-driven. Periodic strategies invoke the load balancing

algorithm at predetermined time intervals. When an event-driven strategy is employed,

the algorithm is invoked based on the load state of individual processors. Sender-initiated

event-driven strategies trigger load balancing behaviour when an “overloaded” threshold

value is exceeded on a processor, causing work to be offloaded to another, more lightly

loaded, processor. Receiver-initiated event-driven strategies take the opposite approach,

using an “underloaded” threshold value to cause work to be migrated to processors that

have become underloaded. A combination of sender and receiver-initiated strategies may

also be used, where each processor has both an overloaded and an underloaded threshold

value.

Location describes where the algorithm is executed upon invocation. The broadest dis-

tinction is between centralized and decentralized algorithms. Centralized algorithms execute

on a single master processor that is responsible for assigning tasks to the other (slave) pro-

cessors based on their load information. Distributed algorithms execute on every processor
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participating in the computation, with each individual processor responsible for determin-

ing when and where to delegate work. Distributed algorithms can be further classified as

synchronous or asynchronous. Synchronous algorithms execute simultaneously on all pro-

cessors, with task execution suspended until load balancing is complete. Asynchronous

algorithms, on the other hand, can execute at any time on individual processors regardless

of the state of the others.

Information exchange specifies how load information is transmitted between processors,

and how load information is acted upon. Decision making describes whether load balanc-

ing decisions are made locally, i.e., based on information from individual or neighbouring

processors, or globally, i.e., based on information from all processors. Communication de-

scribes both the topology used for information exchange and the locality of task exchange.

The communications topology may be uniform, where each processor communicates with

a fixed set of neighbours, or randomized, where processors are assigned neighbours at ran-

dom. Task exchange describes whether work is exchanged locally, i.e., between neighbouring

processors, or globally between all processors.

Load selection describes how processors are matched in order to exchange work (proces-

sor matching) and how work is subsequently divided between processors (load matching).

Although many policies exist for both subcategories, processor matching typically involves

determining overloaded and underloaded processors according to a load average and ex-

changing work accordingly, while load matching is typically carried out by moving work

packets from overloaded processors until their load drops below a specific threshold such as

the load average.

5.1.2 Classification of Required Load Balancing Behaviour

Each aspect of the taxonomy was examined in turn in order to identify firm requirements

for the desired behaviour of the ARC load balancing scheme. The first requirement iden-

tified was that the load balancing initiation mechanism used should be event-driven rather

than periodic. Periodic load-balancing may cause the load balancing algorithm to be in-

voked unnecessarily when the load is evenly distributed. Furthermore, when load imbalance

does occur there may be a delay before the algorithm is invoked, leaving some processors

overloaded and others starved of work. It was decided that in order to avoid this scenario,

individual computation processes should invoke the load balancing algorithm as soon as

they detect that they have become overloaded, requiring a sender-initiated event-driven

algorithm.

Due to the relatively poor latency and bandwidth of commodity networking hardware,

the delay incurred in centrally gathering all the required information, such as the number
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and type of tasks present at each cluster node, could become a performance bottleneck.

One potential solution to this problem would be to use a master-slave approach by exposing

parallelism (i.e., evaluating condensed nodes) only on one machine. However, this approach

would make disproportionate use of the memory of the master machine while underutilizing

the memory present at the slaves. The second requirement identified therefore was that the

location of the chosen algorithm should be decentralized.

The peer-to-peer nature of the ARC computation process design naturally results in

a flat communications topology. Furthermore, since the proximity of cluster nodes in a

switched Ethernet network has no bearing on communication times, assigning nodes to

groups would be creating an artificial distinction. Furthermore, the LinuxNOW library used

for communications allows cluster nodes to easily broadcast their load to, and exchange work

with, all their peers. As a result, it was determined that in terms of information exchange,

decision making should be global, the communications topology should be uniform and

and that task exchange should be global. Although the use of a flat topology potentially

raises scalability issues if very large clusters are used, it was decided that global information

sharing would result in better efficiency for the vast majority of cluster configurations.

In summary, the requirements identified were that initiation should be sender-initiated

and event-driven, the location should be decentralized, the communications topology should

be uniform and that task exchange should be global. These characteristics served as the

starting point from the which the development of the ARC load balancing framework, as

described in the following section, began.

5.2 Development of Basic Load Balancing Framework

An ARC load balancing framework was created in order to satisfy the requirements identified

above while still allowing the ability to experiment with different approaches to initiation

and processor selection. The high-level strategy is based on the observation in [137] that in

general the best dynamic load balancing results are obtained when new tasks are mapped to

the machines that can complete their execution soonest (i.e., the min-min heuristic applied

to individual instructions). In order to approximate this behaviour, participating nodes

must be able to decide whether a newly created instruction can be executed soonest by

assigning it to a local resource or delegating it to another machine. If the instruction is to

be delegated, then the machine with the lowest completion cost must be determined. In

order to facilitate these decisions, some method of approximating the workload associated

with a resource had to be found. Furthermore, the decentralized nature of the runtime

environment necessitates the distribution of this load information across the cluster and

the transmission of instructions from one machine to another upon delegation. The main
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components of the framework are therefore the load metric, load advertisement, initiation

of load balancing behaviour, processor selection and task exchange.

In order to determine which machines are overloaded and underloaded, a load metric

was required. The ideal metric would be the true execution costs of all the tasks awaiting

execution on a particular machine. As noted above, this would be difficult, if not impossible,

to determine automatically. Alternatively, requiring the programmer to provide a means of

specifying the execution costs of tasks would result in significant extra human effort and

would be impractical even if it were possible. In the absence of cost information, the length

of the instruction queue associated with a resource was chosen as the most suitable load

metric. If the resource in question is executing an instruction when the instruction queue

length is being calculated, then the resulting value is incremented by one. A load value is

made available for every processing resource present at each cluster node. Typically, there

are two, representing a single host processor and FPGA.

Load advertisement is performed through callback functions passed to the LinuxNOW

library that specify what information should be sent in outgoing load information messages

and the actions that should be performed when a new load information message arrives.

Load information messages contain the length of the native instruction queue, the length

of the FPGA instruction queue and the current FPGA configuration. Each computation

process instance maintains a table containing load information about its peers. A peer’s

entry in the load information table is updated whenever a new load information message

from the peer arrives. The load information table is also updated whenever a task is

delegated to a peer by incrementing the load value associated with the appropriate resource.

The LinuxNOW library is responsible for periodically broadcasting the load information for

each machine at user-configurable time intervals. Longer broadcast intervals can be used

when executing coarse-grained applications in order to conserve bandwidth, while shorter

intervals minimize load information staleness when executing fine-grained applications.

The scheduling component of a computation process invokes the load balancing algo-

rithm whenever a new instruction arrives, either from the Condensed Graphs Engine or the

Communications Module. If the operator associated with the instruction is a TM opera-

tor, then the instruction is immediately enqueued on the native instruction queue. If the

instruction originated remotely or the current machine is underloaded relative to its peers,

then the operator information table is consulted to determine whether the instruction’s

operator is implemented in software or hardware, and the instruction is enqueued on the

appropriate queue. If the machine is found to be overloaded, then the remote processor

selection algorithm is invoked to determine which peer will be used for task delegation.

The instruction is then enqueued on the outgoing instruction queue, and is subsequently

serialized and communicated by the LinuxNOW library. These decisions are represented
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graphically in Figure 5.2 below.
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Figure 5.2: A flow chart showing the decisions taken and actions performed by the basic
ARC load balancing framework when a new instruction arrives.

Task migration is performed by the LinuxNOW library in conjunction with the ARC

type serialization system. When an instruction is ready for transmission, LinuxNOW opens

a socket to the remote machine. A callback function is then invoked with the socket’s

file handle as an argument. The callback function invokes ARC’s instruction serialization

functionality to serialize the instruction and its associated operands. Similarly, the Lin-

uxNOW instance on the remote machine invokes another callback function to deserialize

the instruction before sending it to the Scheduler.

The framework presented above encapsulates the basic functionality required for the

implementation of ARC load balancing schemes. However, some aspects of its operation

are simplistic and could be improved upon. For example, the default queuing scheme does

not attempt to avoid reconfigurations by ordering FPGA instructions and instructions with
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dual operator implementations are always assigned to FPGAs. The reasoning behind these

design decisions was that extensions to the basic behaviour should be added based on

demonstrable benefit only. A number of optimizations to the basic framework that address

these issues are examined in Section 5.3.

The current framework does not consider the states of the application graph instances

when making load balancing decisions, and neither does the Scheduler consider the states

of the available processing resources when choosing the next fireable node to be evaluated.

The modular nature of the ARC runtime environment as it is implemented at present

precludes this; communications between the Scheduler, Condensed Graphs Engine and Load

Balancing Component are solely in the form of instructions and results. A more advanced

framework could involve the creation of a work plan in the Scheduler and the creation

of a feedback loop between the various modules. Information about upcoming instructions

would be obtained from the Condensed Graphs Engine through analysis of the computation

graphs. Branch prediction could be used to account for the presence of Ifel nodes and

nondeterministic behaviour. The ordering of instructions in the work plan would be modified

on the fly based on the arrival of load balancing information from other nodes. The feedback

element would arise from the fact that the work plan is altered based on the state of

the remote nodes as reflected by the load balancing module, and the state of nodes is

in turn altered by the work plan, with the resulting changes being fed back to the load

balancing module via load information messages. Similar work has been performed in the

field of optimizing compilers [138], and would serve as a useful starting point. However,

this arrangement would necessitate significant alterations to the runtime environment and

is left as a topic of future research.

Although the framework specifies the high level operation of the ARC load balancing

scheme, load balancing behaviour can be altered significantly through the use of different

subalgorithms, i.e., the load categorization algorithm and the remote processor selection al-

gorithm. Candidate algorithms for each of these subalgorithms are presented and evaluated

in subsequent sections.

5.2.1 Candidate Load Categorization Algorithms

The load categorization algorithm is consulted to determine whether the machine is over-

loaded or underloaded relative to its peers, and hence whether the current instruction under

consideration should be enqueued locally or sent to the communications module for remote

execution. The following candidate algorithms were considered:

• Always Delegate. When invoked by the scheduler, the current machine is always

considered overloaded, resulting in the delegation of all suitable instructions. The
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most obvious drawback of this approach is that the locally available resources that

can be exploited without incurring a communications overhead are ignored.

• Not Least Loaded. When invoked on a machine m with a set of peers P , the machine

is found to be overloaded if ∃p ∈ P : load(p) < load(m). This will cause the instruc-

tion to be delegated if any less loaded peer is available, resulting in aggressive task

delegation.

• Threshold. When invoked on a machine m, the machine is found to be overloaded if

load(m) > t, where t is the specified threshold value. Threshold values of 0, 1 and 2

were considered.

• Above Average. When invoked on a machine m, the machine is found to be overloaded

if load(m) > a where, for a fully connected network,

a =
load(m) +

∑

p∈P load(p)

|P | + 1

is the average workload.

5.2.2 Candidate Remote Processor Selection Algorithms

The remote processor selection algorithm is invoked when an instruction has been des-

ignated for remote execution, and is responsible for selecting the most appropriate peer

for task delegation. Since it is being assumed that the processing resources within each

category (CPU or FPGA) are homogeneous, they can be distinguished based for load bal-

ancing purposes based on their current load alone. The following remote processor selection

algorithms were considered:

• Random. A peer is chosen uniformly at random from the set of peers. No account

is taken of the load information available, and therefore no attempt is made to de-

liberately match overloaded and underloaded machines when delegating work. As a

result, this scheme was expected to perform poorly but was chosen as a benchmark

for performance in the absence of deliberate load balancing.

• Random Less Loaded. When invoked on a machine m, a peer is chosen uniformly at

random from the subset of peers Q = {p ∈ P : load(p) < load(m)}. If Q is empty then

the set of peers sharing the lowest load value is used instead. This operates in a similar

fashion to the random algorithm, except that only less loaded peers are considered for

task delegation. Although this approach guarantees that tasks are always delegated

to less-loaded machines when possible, the degree to which machines are underloaded

is not considered.
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• Least Loaded. A peer is chosen uniformly at random from the subset of peers Q =

{q ∈ P : load(q) = minp∈P load(p)}. Only those peers sharing the lowest load value

are selected, ensuring that work is only sent to the most underloaded machines. One

potential drawback of this approach is that load information staleness can result in

the creation of “hotspots”, i.e., processors that become suddenly overloaded due to

excessive task delegation by their peers.

• Localized Round Robin. A peer is chosen by using the current value of the variable

c ≥ 0 to index term c mod |P | of the sequence {sn}
|P |−1

n=0
composed of the elements

of P sorted by host name. The initial value of c is zero and it is incremented after

every invocation. Although this algorithm ensures that work is distributed fairly

from a local point of view, it does not take the actions of the peers into account by

examining the available load information.

• Mirror. When invoked on a machine m, the sequence {sn}
|P |
n=0

is created by ordering

the elements of P ∪{m} partially by load then totally by host name. The jth element

of s is then chosen as the delegation target, where j is calculated in terms of i (the

position of m in s) as follows:

j =















|P | − i if i 6= |P | − i

|P | − i − 1 if i = |P | − i and i 6= |P |

|P | − i + 1 otherwise.

The aim of this approach is to match overloaded machines with comparatively un-

derloaded peers, so that most overloaded machine is matched with the least loaded,

the next most overloaded is matched with the next most underloaded, and so on.

This method of processor matching was adapted from a synchronous load balancing

algorithm, titled rendezvous, described in [139].

5.2.3 ARC Modifications to Support Load Balancing Experimentation

In order to determine the best combination of load categorization and remote processor

selection algorithms for use with the ARC load balancing framework, some method of

objectively ranking the candidate algorithms in each category was required. To this end,

experiments were conducted in order to gather empirical data on the effectiveness of each

algorithm. It was decided that the estimates of lowest possible execution time produced by

the performance model presented in previous chapter was the most suitable benchmark for

evaluating the correctness of load balancing decisions. By executing applications created

using the application generation program, the computing resource or resources with the
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lowest completion cost could to be estimated for any newly created instruction. Assignment

to one of these resources would result in behaviour equivalent to the min-min heuristic

applied to individual instructions. These “ideal” assignments of instructions to resources

could then be compared with the actual assignments made by the load balancing algorithm

in question.

In order to estimate the least possible execution time for an instruction across a cluster

using the performance model, detailed information about the state of each cluster node (such

as the number and costs of the instructions in queues) must be known. This information

relating to all the nodes participating in the cluster is not available to individual cluster

nodes at runtime; the distributed nature of the ARC runtime environment precludes the

instantaneous determination of non-local information. Although the load advertisement

mechanism could be extended to include the required information from each node in load

information broadcasts, the information provided would suffer from staleness and hence

reduce prediction accuracy. It was therefore decided that the most accurate estimates

could be obtained by recording the required information in real-time at each cluster node

during runtime, with analysis being performed post-execution.

Estimating instruction execution times post-execution required that a detailed log be

maintained of the state of the instruction queues on each cluster node during execution.

This was achieved by modifying the instruction queue and execution thread implementations

so that the following information was recorded whenever an instruction was enqueued or

dequeued:

1. A timestamp composed of the two long values (representing the second and microsec-

ond components of the current system time) obtained from a call to gettimeofday.

2. The operator name and execution time remaining of the currently executing instruc-

tion. If no instruction was executing when the entry was recorded, then NULL and 0

are used for these values respectively. When writing log entries for FPGA queues, the

adjusted cost value taking FPGA speedup into account is used.

3. A list containing the operator names and costs of the instructions in the queue.

An excerpt from an example queue state log file is provided in Figure 5.3(a) below.

The total cost of the instructions in a queue at any moment in time can be determined by

calculating the total cost at the time of the latest entry in the log file with a timestamp

lower than the time of interest, and then subtracting the difference between the time of

interest and the timestamp. If the result of this subtraction is less than or equal to zero,

then it can be concluded that the queue was empty at the time of interest.
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1132586822, 274638, g6, 0.000000 [op9, 1003.000000]

1132586822, 276804, op9, 1002.998000 []

1132586822, 293219, op9, 986.583000 [op10, 977.000000]

1132586822, 313180, op9, 966.622000 [op10, 977.000000: op9, 1003.000000]

1132586822, 552942, op9, 726.860000 [op10, 977.000000: op9, 1003.000000:

op0, 950.000000]

1132586823, 280470, op10, 976.999000 [op9, 1003.000000: op0, 950.000000]

1132586823, 598897, op10, 658.572000 [op9, 1003.000000: op0, 950.000000:

op2, 1.000000]

1132586824, 258246, op9, 1002.998000 [op0, 950.000000: op2, 1.000000]

1132586825, 262007, op0, 949.998000 [op2, 1.000000]

1132586825, 992898, op0, 219.107000 [op2, 1.000000: op1, 1.000000]

1132586826, 212685, op2, 0.998000 [op1, 1.000000]

1132586826, 216915, op1, 0.997000 []

(a) Queue States

1132586822,213691,op5,1.000000,-1.000000,201.000000,CPU,OVERLOADED

1132586822,215849,op8,962.000000,4.000000,191.000000,FPGA,UNDERLOADED

1132586822,216318,op9,1003.000000,-1.000000,202.000000,CPU,UNDERLOADED

1132586822,272331,op5,1.000000,-1.000000,190.000000,CPU,OVERLOADED

1132586822,292833,op10,977.000000,-1.000000,190.000000,CPU,UNDERLOADED

1132586822,312802,op9,1003.000000,-1.000000,98.000000,CPU,UNDERLOADED

1132586822,313299,op3,1214.000000,-1.000000,102.000000,CPU,OVERLOADED

1132586822,315296,op6,956.000000,5.000000,95.000000,FPGA,UNDERLOADED

1132586822,492310,op8,962.000000,4.000000,174.000000,FPGA,UNDERLOADED

1132586822,532802,op2,1.000000,-1.000000,201.000000,CPU,OVERLOADED

1132586822,534925,op5,1.000000,-1.000000,186.000000,CPU,OVERLOADED

1132586822,552561,op0,950.000000,-1.000000,206.000000,CPU,UNDERLOADED

1132586823,293809,op3,1214.000000,-1.000000,200.000000,CPU,OVERLOADED

(b) Load Categorization Decisions

1134572960,854655,g9,0.000000,-1.000000,93.000000,node04.cuc.ucc.ie,CPU

1134572968,076178,op6,1.000000,-1.000000,193.000000,node02.cuc.ucc.ie,CPU

1134572968,095054,op1,1.000000,-1.000000,182.000000,node02.cuc.ucc.ie,CPU

1134572968,196591,op7,1155.000000,5.000000,196.000000,node04.cuc.ucc.ie,FPGA

1134572968,198476,op3,1103.000000,4.000000,178.000000,node04.cuc.ucc.ie,FPGA

1134572968,200447,op3,1103.000000,4.000000,178.000000,node04.cuc.ucc.ie,FPGA

1134572968,395800,op6,1.000000,-1.000000,297.000000,node03.cuc.ucc.ie,CPU

1134572969,014369,g9,0.000000,-1.000000,198.000000,node03.cuc.ucc.ie,CPU

1134572970,236341,op9,1046.000000,6.000000,199.000000,node03.cuc.ucc.ie,FPGA

1134572970,256498,g8,0.000000,-1.000000,190.000000,node04.cuc.ucc.ie,CPU

1134572970,514762,op8,938.000000,-1.000000,198.000000,node02.cuc.ucc.ie,CPU

1134572972,335502,op6,1.000000,-1.000000,405.000000,node02.cuc.ucc.ie,CPU

1134572972,337546,op8,938.000000,-1.000000,404.000000,node04.cuc.ucc.ie,CPU

(c) Remote Processor Selection Decisions

Figure 5.3: Excerpts from the log files used for load balancing algorithm evaluation. The
first two columns in each log file format represent the second and microsecond components
of the timestamp value. Some entries in Subfigure (a) have been indented for clarity.
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Given the ability to reconstruct the state of instruction queues post-execution, the next

modification required was the recording of load balancing decisions and details of the in-

structions in question. In light of this, the load balancing framework was modified to record

the relevant information whenever a load balancing algorithm is invoked:

1. A timestamp value following the same format as that used in instruction queue state

logs.

2. A value representing the decision made by the load balancing algorithm in question.

The type of value recorded depends on the category of the algorithm. Load catego-

rization algorithm invocations result in a value indicating whether or not the resource

in question was found to be overloaded (see Figure 5.3(b)). Remote processor selec-

tion algorithms result in an assignment to a remote processing resource (see Figure

5.3(c)).

3. The operator name, cost, speedup and data size (including the size of the operands)

of the instruction in question. A speedup value of -1 indicates that the operator

associated with the instruction does not have an implementation in hardware.

The information relating to the different subalgorithms is logged to separate files. Entries

to the relevant files are only made when the subalgorithm in question is invoked; as Figure

5.2 illustrates, the arrival of a new instruction does not necessarily result in the invocation

of any of the subalgorithms.

Following the implementation of the modifications described above, all the information

necessary for load balancing decision evaluation was now available post-execution. Pro-

cessing of decisions could be performed by iterating through the entries in the log for the

subalgorithm of interest. For each entry, the timestamp value was used to reconstruct the

state of the instruction queues across the cluster at the time that the algorithm was in-

voked. The performance model, invoked with the relevant parameter values, was then used

to determine the correctness of the load balancing decision in question.

5.2.4 Evaluation of Load Categorization Algorithms

In order to determine the most effective load categorization algorithm amongst those de-

scribed in Section 5.2.1, a suitable metric that allows objective comparison had to be found.

Since each invocation of a load categorization algorithm results in a decision that can be

shown to be correct or incorrect, decision accuracy, defined as the ratio of the number of

correct decisions to the total number of decisions, was chosen as the most objective means

of comparison.
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The application generation program was used to create a common set of applications for

evaluating the correctness of the candidate load categorization algorithms. In order to gain

an understanding of the upper bound to load categorization decision accuracy in practice,

the initial experiment was designed to be as favourable as possible to the load balancing

process; operation costs were fixed at 1,000 ms, and only CPUs were used. An application set

consisting of ten applications with these properties were generated and executed repeatedly

using the various load categorization algorithms.

Unfortunately, anomalies were soon observed in the results obtained. For example, ex-

amination of the decision accuracy of invocations of Threshold (t = 0) where the result was

an underloaded categorization revealed that these categorizations were only correct approx-

imately 80% of the time. However, Threshold (t = 0) will only produce an underloaded

categorization if the CPU in question is idle, i.e., no instruction is currently being executed

and the instruction queue is empty. In this situation, an underloaded classification for a

CPU should always be correct due to the transmission overhead incurred when delegating

instructions. It was clear that the application of the performance model post-execution was

not working as well as had been hoped, and that further investigation would be required to

ascertain the cause of the anomalous behaviour.

Close examination of the load categorization logs together with the relevant queue state

log files revealed two distinct but related issues: clock skew and clock granularity. Clock

skew had been an issue during the evaluation of the performance model when the use of

the Network Time Protocol (NTP) [140] daemon had been found to produce unsatisfactory

results. This was resolved by running the NTP daemon on a single cluster node, with the

others synchronizing their clocks with this node before application runs with calls to the

ntpdate command. These calls included an argument specifying that the time should be set

immediately rather than gradually adjusted, which is the default behaviour. Although this

arrangement had proven sufficient for the experiments in Chapter 4, even small differences

in system clock times lead to significant inaccuracies when performing post-execution queue

state analysis. For example, an overloaded categorization may cause an instruction to be

delegated to a machine with a slower clock. When analyzing this decision later, differences

in clock times may cause the instruction that was delegated to appear in the queue of the

receiving node, causing the queue to appear to be longer than it was in reality. Although

the differences between the clocks may be insignificant compared to the mean instruction

cost (in the order of a few milliseconds), even small differences may have a significant

impact on the reliability of queue state reconstruction due to the short periods of time

involved in task delegation. Furthermore, task delegations often happen in close succession

as the processing of a result uncovers further instructions, compounding the inaccuracies

created. The problem of clock granularity arises from the fact that the analysis program
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uses timestamps with a granularity of one millisecond to order events. However, several

changes to a queue may take place in a single millisecond; attempting to match the correct

queue state to a decision logged at the same millisecond value is a futile exercise.

The difficulties described above are manifestations of the more general problem of cor-

rectly ordering events in distributed systems. Fortunately, consultation with the literature

revealed that this problem is not new and has been studied extensively over the years. Al-

though techniques are available that can synchronize distributed clocks to within very small

margins of error, it was clear that any inaccuracy would adversely affect the reliability of

queue state reconstruction. Furthermore, even if the clocks of the cluster nodes could be

synchronized perfectly, this would not address the issue of timing granularity.

One technique that could address both issues was the creation of a logical clock that is

independent of the physical clocks in the participating machines. Originally proposed in

[141], the idea has since been extended by others [142], although further developments have

been incremental with the fundamentals remaining unchanged. A synopsis of the technique

is as follows: a distributed system is modelled as a collection of processes that communicate

using messages. Each process is composed of a sequence of events, with the sending or

receiving of messages considered to be events in their own right. The “happened before”

relation → can be used to provide an irreflexive partial ordering of all the events in such a

system. If a and b are events in the same process and a appears before b in the process’s

sequence of events, then a → b. If a represents the sending of a message by a process and

b represents the receipt of that message by another process, then a → b. If a → b and

b → c, then a → c. These simple rules suffice to create a partial ordering of the events in

the system. Two events a and b are considered to be concurrent (a || b), and hence not

ordered, if a 9 b and b 9 a. As no causality relationship exists between concurrent events,

an arbitrary method of ordering them (such as by host name) can be used to convert the

partial ordering of events to a total ordering.

The notion of a logical clock follows naturally from the observations above. Here, the

word clock simply means a method of assigning a number to an event rather than the more

familiar meaning of a timing mechanism. Every process Pi maintains a nonnegative clock

variable Ci that is incremented between successive events. Whenever a process sends a

message, the current value of the process’s clock is used as a “timestamp” and included

in the message. Upon receipt of a message, the receiving process sets its clock to a value

greater than or equal to the current value and greater than the timestamp contained in

the message. It has been shown that if this system is followed, then for any two events a

(executed by Pi) and b (executed by Pj) in the system, if a → b then Ci(a) < Cj(b). Note

that some method of breaking ties must still be used to order concurrent events.

Given the availability of such a simple and elegant method to totally order the events in
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a distributed system, all that remained was the question of how to apply the method to the

ARC runtime environment. This issue was complicated somewhat by the fact that an ARC

computation process is not composed of a neat, sequential series of events as is assumed by

the model described above. Instead, a computation process is itself composed of number

of intercommunicating threads. This observation raises a number of further questions; for

example, as CPU and FPGA instructions execute concurrently, should each resource have

its own clock? If so, which messages should be used to increment which clock? On reflection,

it was decided that each computation process should maintain a single clock variable, and

that this clock should be incremented upon the completion of an instruction of either type.

A computation process’s clock should be moved forward on the receipt of a message of any

type. The clock should also be incremented whenever a load balancing decision is made,

so that decisions and queue states could be ordered correctly, eliminating the granularity

issue. The runtime environment was modified to incorporate these changes, and the load

balancing decision and queue state log formats were changed to incorporate the “time”

according to the logical clock as well the physical clock. The physical time stamps were

still required in order to calculate the total cost of the instructions in a queue at any given

time during a computation.

Although the extent to which anomalies were present in the experimental results was

drastically reduced using the new logical ordering scheme, some anomalous behaviour was

still observed, albeit on a much smaller scale. The cause of this behaviour was traced to

a concurrency issue within the runtime environment. The load associated with a resource

was calculated by taking the length of the associated instruction queue and incrementing

the resulting value if the resource was currently executing an instruction. The status of

the resource was determined by checking a flag that was set upon commencement of the

execution of an instruction, and unset afterwards. Occasionally, the state of the flag would

be queried when an instruction had been dequeued but had not commenced execution. In

this case, the existence of the pending instruction cannot be determined using the method

described above, and an erroneous load value results. This problem was solved by associat-

ing a counter rather than a flag with each resource. The counter is incremented whenever a

new instruction is enqueued, and decremented whenever the execution of an instruction is

completed by the execution thread. The implementation of this scheme eliminated all the

observed anomalous behaviour.

The results obtained with varying execution parameters are presented in the following

pages. In order to aid analysis of the performance of the individual load categorization

algorithms, individual results are visualized as a pair of charts representing various exe-

cution characteristics. Load balance and decision accuracy are represented by a pie chart

containing both dividing lines and a shaded area. The dividing lines represent the ratio of
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the number of underloaded states to overloaded states. These were determined as follows:

for every load categorization decision, the states of the instruction queues of the cluster

nodes were reconstructed, post-execution, for the time at which the decision took place.

These states were then categorized as either underloaded or overloaded based on whether

or not the instruction in question could be completed soonest on the local machine or a

remote machine, respectively. The position of the dividing lines within a chart therefore

indicates how effectively the system has been load balanced; when execution across two

machines is considered, then a 1:1 ratio of overloaded states to underloaded states would

indicate that the load had been well balanced, i.e., in half the instances of a new instruc-

tion being considered for delegation the local machine was underloaded and in the other

half the local machine was overloaded. The shaded area represents how successfully the

load categorization algorithm under consideration correctly identified these overloaded and

underloaded states; the white and grey areas within the underloaded pie slice represent

the ratio of correct load categorizations to incorrect load categorizations when the machine

was underloaded, as determined by the performance model. Similarly, the white and grey

areas within the overloaded pie slice represent the ratio of correct load categorizations to

incorrect load categorizations when the machine was underloaded. As stated above, a de-

cision is classified as correct if its behaviour matches that of the min-min heuristic, i.e.,

the instruction is assigned to the machine where it will complete execution soonest. The

shaded areas within the slices are arranged so that they are contiguous; the overall decision

accuracy of the algorithm can be determined by examining the proportion of the pie chart

as a whole that is unshaded.

The speedup observed compared to execution on a single machine is represented as a bar

underneath each pie chart. The NP-complete nature of the problem at hand precludes the

determination of the best possible speedup, which is dependent upon the characteristics

of the applications and the machines used to execute them. Instead, the scale of the

bar is determined by the number of nodes over which the applications were executed; the

possibility of superlinear speedup is not considered. The speedup bar is useful in that

it provides a hard metric of the performance of the algorithm being considered, and also

provides a means of examining the extent to which decision accuracy and load balance

impact actual execution performance.

The results observed when applications with CPU implementations only and a fixed

operation cost of 1 second were executed across two cluster nodes are shown in Figure

5.4. Execution across two cluster nodes, although a relatively small number compared

to the amount commonly used in practice, is particularly revealing when considering load

categorization algorithms as instructions can only be delegated to one machine. The choice

of processor selection algorithm is therefore irrelevant, and the load categorization algorithm
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can be considered in isolation. Examination of the results reveals that Always Delegate and

Not Least Loaded performed poorest, exhibiting low decision accuracy, load balancing and

speedup compared to the other candidate algorithms. Both algorithms misclassify the load

as being overloaded a significant proportion of the time. This would suggest that these

algorithms are overly aggressive when delegating work, resulting in poor load balancing

and hence poor speedup.

The Threshold algorithms performed surprisingly well when the fact that they do not

take advantage of remote load information is considered. Significantly higher decision ac-

curacies, load balancing and speedups were observed compared to the worse-performing

algorithms described above. Although the three threshold values performed similarly in

terms of decision accuracy, each exhibited different characteristics. When the threshold

value, t, is zero the algorithm misclassifies over 50% of underloaded states while correctly

classifying practically all overloaded states, suggesting that delegation is being performed

too aggressively. When t = 1, the proportion of incorrectly classified underloaded states

falls significantly, while a small proportion of overloaded states are misclassified. When

t = 2, the proportion of misclassified underloaded states falls further, while the propor-

tion of misclassified overloaded states increases. Progressively better load balancing and

speedups were observed with increasing threshold values.

The results obtained for Not Least Loaded were similar to those for Threshold where t = 2

in that both exhibit similar decision accuracies and speedups. However, Not Least Loaded

appears to balance the workload more effectively and examination of the distribution of

misclassified load states would indicate that Not Least Loaded tends to be more conservative

in task delegation. Despite the similarity of the results obtained, it was hoped that Not Least

Loaded would prove to be a more effective general-purpose algorithm as it takes advantage

of remote load information and hence should be able to adapt to differing application and

hardware characteristics. It was decided that further experimentation was required in order

to test this hypothesis (see below).

The results indicate that decision accuracy alone does not, as was hoped, provide an

accurate measure of the performance of a load balancing algorithm as the differing threshold

values produced different speedup values but with almost identical decision accuracies.

Neither does load balance provide an accurate metric; comparing Threshold (t = 0) and

Above Average reveals that although their load balance appears to be similar, the two

algorithms differ significantly in terms of speedup obtained. On closer examination, it would

appear that a combination of factors is at work, and that a high decision accuracy coupled

with effective load balancing appears to be the best combination. Furthermore, it would

appear that the system as a whole can function well despite the presence of a significant

proportion of individually poor categorization decisions. It is difficult to see how the 1.9
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(a) Always Delegate (b) Not Least Loaded (c) Threshold (t = 0)

(d) Threshold (t = 1) (e) Threshold (t = 2) (f) Above Average

Figure 5.4: The decision accuracies and speedups observed during experimental evaluation
of the candidate load categorization algorithms across two cluster nodes.

(a) Always Delegate (b) Not Least Loaded (c) Threshold (t = 0)

(d) Threshold (t = 1) (e) Threshold (t = 2) (f) Above Average

Figure 5.5: The decision accuracies and speedups observed during experimental evaluation
of the candidate load categorization algorithms across four cluster nodes.
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speedups obtained by Not Least Loaded and Threshold (t = 2) could be improved upon

despite the fact that approximately one third of the decisions made by each were classified

as incorrect. One explanation for this could be the definition of a “correct” decision, i.e., one

that matches the behaviour of the min-min heuristic when applied to individual tasks. Many

decisions that are classified as being incorrect according to the heuristic may be neutral or

even more correct in terms of achieving the highest possible speedup, although the NP-

complete nature of the problem precludes verification of this. Another explanation stems

from the observation that the highest speedups were obtained using algorithms that divided

their erroneous classifications between both categories of system state; it is possible that

the incorrect classifications in one category have the effect of compensating for incorrect

classifications in the other. Irrespective of the cause of the deviation between between

decision accuracy and speedup, it can be concluded that while the examination of decision

accuracy can provide insight into the behaviour of an algorithm, only raw speedup provides

a reliable measure of its effectiveness.

A further experiment was conducted in order to test the hypothesis advanced above

that the Threshold algorithm, despite its good performance in the experiment above, does

not represent an effective general-purpose approach. To this end, the experiment above was

repeated, but with execution taking place across four cluster nodes instead of two. Least

Loaded was used as the remote processor selection algorithm. The results obtained are shown

in Figure 5.5. Always Overloaded and Above Average again performed poorly, exhibiting

poor decision accuracies, load balancing and speedups in comparison to their peers. It

would appear that, as in the previous experiment, the use of these algorithms results in

over-aggressive task delegation. The Threshold algorithms again displayed an increasing

tendency to delegate instructions as the threshold value was incremented. In this instance,

the best-performing value for t was 1 rather than 2. This indicates that although good

performance can be obtained using Threshold, the value of t must be tuned to the application

and hardware characteristics at hand, confirming the hypothesis presented above. The

best results in terms of speedup were obtained using Not Least Loaded, demonstrating its

effectiveness as a general-purpose load categorization algorithm. The divergence between

decision accuracy and speedup was more pronounced in these results; although Threshold

(t = 1) exhibited by far the best decision accuracy, it was outperformed by Not Least Loaded

which had the third lowest.

An additional experiment was conducted in order to investigate the importance of the

choice of load information broadcast interval. For both experiments above, the value used

was 500 ms, i.e., half the mean instruction cost. In order to investigate the effects of

lengthening the broadcast interval, the experiments above were repeated using a broadcast

interval ten times greater. The results are shown in Figures 5.6 and 5.7 below. When
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(a) Always Delegate (b) Not Least Loaded (c) Threshold (t = 0)

(d) Threshold (t = 1) (e) Threshold (t = 2) (f) Above Average

Figure 5.6: The decision accuracies and speedups observed during experimental evaluation
of the candidate load categorization algorithms across two cluster nodes when the load
information broadcast interval was increased to 5 s.

(a) Always Delegate (b) Not Least Loaded (c) Threshold (t = 0)

(d) Threshold (t = 1) (e) Threshold (t = 2) (f) Above Average

Figure 5.7: The decision accuracies and speedups observed during experimental evaluation
of the candidate load categorization algorithms across four cluster nodes when the load
information broadcast interval was increased to 5 s.
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executing across two nodes, very little difference in execution characteristics was observed:

the characteristics of Above Average were unchanged and only a slight drop was observed

in the speedup associated with Not Least Loaded. This lack of variation can be explained

by the updates performed by the Scheduler to the local load information table whenever an

instruction is delegated. As new instructions tend to be created in groups as multiple nodes

receive inputs from a newly-fired node, it would appear that the updates to the load in-

formation table whenever delegations occur results in reasonably accurate load information

across two nodes, even when updates to the load information table are rare. The impact of

lengthening the broadcast interval when executing across four nodes was more pronounced;

although Above Average was again unchanged, Not Least Loaded recorded a drop of more

than 15% in speedup.

5.2.5 Evaluation of Remote Processor Selection Algorithms

The evaluation of the candidate remote processor selection algorithms was performed in a

similar fashion to the evaluation of the candidate load categorization algorithms. Initially,

the same application set used to evaluate the load categorization algorithms were executed

across four cluster nodes using the various remote processor selection algorithms. Not Least

Loaded was used as the load categorization algorithm during all evaluations as it was found

to be the best performing candidate in the previous section. Examination of the speedup

values obtained revealed that there was little to choose between the effectiveness of the

various algorithms. It was therefore decided that the experiment should be repeated across

eight cluster nodes in order to allow the algorithms to differentiate to a greater extent.

Due to the extra processing resources available when eight nodes are used, the application

generation program was re-run to create a new application set with similar characteristics

to the previous set but with additional graph definitions and more nodes per graph.

The new application set was re-run using each candidate remote processor selection

algorithm, and the resulting speedup values were recorded. The decision made by the

currently configured algorithm was also recorded upon every invocation. The load state

logs were analyzed post-execution to arrive at a decision accuracy in a similar fashion to

the method used to evaluate the load categorization algorithms. In this case, the decisions

produced by the algorithm being evaluated were found to be correct if the completion cost of

the instruction in question on the selected peer was equal to the lowest possible completion

cost across all peers. The results obtained are shown as a pair of bar charts (one depicting

the speedup values and the other the decision accuracy values) in Figure 5.8 below.

Examination of the speedup values in Figure 5.8(a) reveals that Random Less Loaded

was the best performer, and the only algorithm to display a mean speedup greater than four.
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Figure 5.8: The speedup values and decision accuracies obtained when the various remote
processor selection algorithms were evaluated across eight cluster nodes.
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Least Loaded performed particularly poorly with a mean speedup of only 3.2, possibly due

to the “hotspot” problem described above. The remaining algorithms performed similarly,

with speedups of approximately 3.8. The appearance of Random in this group was somewhat

surprising given that it does not take advantage of load information. The failure of any

of the algorithms to achieve significantly greater than 50% of the theoretical maxmimum

speedup (eight) was investigated through examination of the queue state logs. It was

determined that the generated applications’ execution profiles alternated between “quiet”

periods, where not enough work existed to occupy all resources, and “busy” periods, where

increases in parallelism resulted in more than enough work to keep all eight nodes busy.

Full utilization of all the processing resources for the duration of a computation, and hence

speedup values approaching the maximum, was therefore impossible.

Two conclusions can be drawn from examination of the decision accuracy values in Fig-

ure 5.8(b). The first is that the accuracy values obtained were significantly better than

expected – even unsophisticated algorithms such as Random and Localized Round Robin

exhibited decision accuracies of greater than 50%. These relatively high figures can also

be explained by the observation above that for significant periods during the execution of

the applications, not enough instructions were present in the system to occupy all of the

resources available. Under these circumstances, any of the idle nodes represents an equally

good choice of destination, skewing the resulting decision accuracies to values that are higher

than might be expected if the appearance of new instructions occurred more uniformly. The

second conclusion is that a greater correlation was present between speedup and decision

accuracy than had been the case when evaluating the load categorization algorithms. Al-

though the difference in speedups between Random Less Loaded and Least Loaded was borne

out by the decision accuracy values, Mirror, despite being the best performer in terms of

decision accuracy, was outperformed in terms of speedup by Random Less Loaded. This

observation reinforces the conclusion drawn above that decision accuracy, despite being a

useful indicator, cannot be relied upon to rank the relative performance of load balancing

algorithms in terms of speedup.

5.3 Framework Optimizations

Once the basic ARC load balancing framework was in place, the focus turned to the eval-

uation of the effectiveness of a number of potential optimizations. These were: ordering

instructions in the FPGA instruction execution queue by operator to reduce execution

time lost to reconfigurations, the incorporation of operator triviality information into the

load metric and load categorization process and the reassignment of instructions with dual
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implementations to available CPUs if the available FPGAs are overloaded. The work in-

volved in the implementation and evaluation each optimization is considered in subsequent

subsections.

5.3.1 FPGA Instruction Queue Ordering

The first optimization to be considered was the ordering of instructions in the FPGA in-

struction execution queue. As described in Section 2.8.3, the default queuing behaviour is

a simple first in, first out (FIFO) scheme. The rationale behind this optimization is that

the FIFO scheme can result in unnecessary reconfigurations if the same operator appears

multiple times in the queue in non-consecutive instructions. As noted in Section 4.3.2,

the cost of FPGA reconfigurations is significant – approximately 170 ms on the equipment

to hand. By grouping together instructions with the same operator, the number of these

unnecessary reconfigurations would be reduced (see Figure 5.9).

One potential drawback of this mechanism is that it could in theory lead to certain

instructions being delayed indefinitely and this in turn could adversely affect overall com-

pletion time. For instance, in a highly speculative computation, newly uncovered speculative

instructions could be continually placed ahead of other instructions on the application’s crit-

ical path. In theory, this would not affect the ultimate result but could affect the time to

that result. The simple nature of the graphs created by the application generation program

preclude this behaviour, but developers of applications making heavy use of speculation

should consider whether or not enabling the optimization is in their best interest.

The ARC runtime environment was modified to incorporate instruction grouping in the

FPGA instruction execution queue. The existing FIFO enqueuing scheme was replaced

with the following: when a new instruction arrives, if one or more instructions with the

same operator as the new instruction are present in the queue, then the new instruction is

enqueued immediately behind the last matching instruction. If the queue does not contain

an instruction with an identical operator but the currently executing instruction’s operator

is identical, then the new instruction is placed at the head of the queue. If no matching

instruction is found, then the new instruction is placed at the back of the queue.

An experiment was conducted in order to evaluate the extent, if any, to which FPGA

instruction queue ordering improved execution performance. Ten application sets, each

composed of five applications, were generated using the application generation program.

The parameters passed to the application generation program specified that every primitive

operator should be nontrivial and have implementations in both software and hardware. The

mean operator cost was specified as 104 ms, with a mean FPGA speedup of 10. A standard

deviation of 10% was used in both cases. The only paramater that varied across application
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op1 op2RR R op3 R op1 R op2 R op3

(a) FIFO
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(b) Ordering

Figure 5.9: Graphical representation of an FPGA instruction queue showing how order-
ing by operator can significantly reduce the number of reconfigurations required. Implicit
reconfigurations are denoted by diamonds.

sets was the number of primitive operators, specified explicitly (through the use of zero

standard deviation values) in each case and varying from 1 to 10 across application sets.

The result was a collection of applications that could be used to evaluate the effectiveness

of the optimization across varying degrees of operator heterogeneity.

Before the experiment could commence, a suitable metric for measuring the effective-

ness of the optimization had to be found. The ratio of reconfigurations performed to FPGA

instructions executed (reconfiguration ratio), was chosen as it provides a value that is in-

dependent of the specific characteristics, such as instruction granularity, of the application

sets and hardware used for evaluation. The ARC runtime environment was modified to

record the required information in the form of a text file that is written on application

termination.

The experiment was conducted by executing each of the applications twice on a single

cluster node, once with the standard FIFO queuing scheme and once with the queue ordering

optimization enabled. A single cluster node was used so that the conditions under which

both executions of an application took place varied as little as possible. If multiple nodes

had been used, then the non-deterministic nature of task delegation could have resulted in

differing reconfiguration counts across identical application runs. The results were obtained

by averaging the reconfiguration ratios observed for each application set using both queuing

schemes and are shown in the form of a graph in Figure 5.10.

Examination of the results indicates that the optimization had a beneficial effect on every

application set tested that contained more than one configuration. The reconfiguration

ratio for both queuing schemes was close to zero when the number of configurations per

application is one as these applications require only a single reconfiguration before the

execution of the first instruction. As the need for subsequent reconfigurations does not arise,

the choice of queuing scheme is moot for these applications. The ordering scheme performed
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best compared to the FIFO scheme when the number of configurations per application was

low, as the likelihood of instructions forming groups decreases with increasing operator

heterogeneity. To illustrate this point, the ordering optimization led to reductions of 45%

and 44% in the number of reconfigurations required when the number of configurations per

application was two and three, respectively. In contrast, applications where the number

of configurations per application was nine and ten recorded a drop of only 12% and 16%

respectively. Nevertheless, the optimization was of benefit in every recorded case.

5.3.2 Incorporation of Triviality Information

Although instruction queue length provides an approximation of the workload of a process-

ing resource in the absence of detailed cost information, the resulting estimates do not take

account of the presence of trivial instructions. As noted in Section 4.1, trivial operations

(such as integer additions) account for a significant proportion of the primitive operations

found in real-world applications. Simple operations such as these are cheaper to execute

than to delegate, and as such should always be executed locally if possible.

Although cost information in general is too difficult to incorporate into applications,

the runtime environment can be notified of the presence of trivial operations with little

effort on the part of the application developer – all that is required is the presence of an

additional attribute in the operator elements of XML definition files. This information can
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Figure 5.10: A graph illustrating the differences in reconfiguration ratios observed when the
same application set was executed with both FIFO and Ordering FPGA queuing schemes.



5.3 Framework Optimizations 125

then be included in the operator information table maintained by the runtime environment

and used to improve the accuracy of load balancing decisions.

Two optimizations based on triviality information were considered: preventing the dele-

gation of trivial instructions and the omission of trivial instructions when calculating CPU

load. The reasoning behind keeping trivial instructions local was that although the ARC

load balancing scheme is based upon the premise that instructions should execute where

they can complete soonest, the act of submitting a trivial instruction for remote execution

is more expensive than simply executing the instruction immediately. Furthermore, execut-

ing trivial instructions out of order in this fashion may allow dependent nodes to become

fireable, creating new instructions that can potentially be assigned to idle resources. Trivial

instructions should therefore be executed as soon as they enter the scheduler. The second

optimization follows from the first; as trivial instructions are no longer enqueued on the na-

tive queue, they are not considered when calculating the CPU load. As trivial instructions

by definition represent a very small amount of work, their absence from the instruction

count should result in a more accurate picture of the true workload of CPUs.

Modifications were made to the application generation program, the ARC compile-

time environment and the ARC runtime environment in order to evaluate the impact of

incorporating triviality information. The application generation program was modified so

that trivial operators are labelled as such through the use of a triviality attribute in

operator elements. An example of a resulting operator declaration is presented in Figure

5.11 below. The runtime environment was modified so that the registration functions used

by applications to impart operator information included triviality information. Suitable

functions were added to make this information available to other ARC modules.

<operator category="primitive" name="op2" cost="1" datasize="118"

triviality="trivial">

<typesig>Block,Block</typesig>

<nativeimpl name="op2"/>

</operator>

Figure 5.11: An example of an operator generated by the application generation program
that incorporates triviality information. Although the trivial nature of the operator could be
determined in this case through examination of the cost attribute, the cost and datasize

attributes are only available in generated, rather than real-world, applications.

An experiment was conducted in order to evaluate the effectiveness of incorporating

triviality information into operator declarations. As the aim of identifying trivial instruc-

tions is to avoid unnecessary delegations and improve the accuracy of the load metric, it
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follows that the optimization, if effective, should improve application performance. Deci-

sion accuracy was not considered to be a suitable metric for determining the impact of the

optimization on performance. As noted above, the optimization is not intended to assign

trivial instructions to where their execution will complete soonest, so the optimization could

be expected to have an adverse effect on decision accuracy while improving performance. In

any case, decision accuracy had earlier been found not to be directly related to application

performance (see Section 5.2.4). In light of this, speedup was chosen as the most suitable

performance metric.

Eleven application sets similar to those used to evaluate the load categorization algo-

rithms in Section 5.2.4 were created for experimentation purposes. The distinct sets were

created with differing values for the trivialityProbability parameter, with ten applica-

tions generated at intervals of 0.1 between zero and one inclusive. This allowed the impact

of the optimization to be examined across applications composed of varying proportions of

trivial instructions. Each application was executed three times; on a single machine so that

the speedup could be calculated, across two machines with the optimization enabled and

again across two machines with the optimization enabled. The average speedup attained for

the applications at each interval value was then calculated for the runs across two machines.

The result is shown in the form of a graph in Figure 5.12.

Examination of the graph reveals that the optimization had little impact when the
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Figure 5.12: A graph illustrating the speedup observed when applications composed of
varying proportions of trivial instructions were executed across two nodes both with the
triviality optimization enabled and disabled.
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proportion of trivial instructions was small, i.e., one third or less of the total number of

instructions. However, a beneficial effect was observed with larger values of the triviality-

Probability parameter. The extent to which the lines in the graph diverge increases with

larger probability values. Although the impact on overall execution time was not particu-

larly significant for any recorded value, it should be noted that the amount of operand data

passed to and returned from the operations was deliberately kept small in this instance

(the mean operand data size was 10 Bytes) to mimic the presence of the very simple oper-

ations like integer addition commonly found in real-world applications. Performing trivial

operations on larger (in terms of memory) operand values would result in an increased

transmission overhead and hence the impact of unnecessarily delegating trivial instructions

would be more pronounced. Examples of such operations include determining the width

and height of an image in an image-processing application.

5.3.3 Reassignment of Instructions with Dual Implementations

As noted above, the basic load balancing framework always assigns instructions with dual

operator implementations to FPGAs. The reasoning behind this decision was that the

effort required to create an FPGA implementation would suggest that the programmer

would only do so in order to achieve a significant speedup. It can therefore be concluded

that the assignment of an instruction with dual implementations to an FPGA is the correct

decision in the majority of situations. However, in applications that make extensive use

of FPGA operators, conditions may arise where a significant amount of work accumulates

at the FPGA queues, with the CPU queues being comparatively underused. In situations

such as this, performance benefits may be attained by assigning new instructions with dual

implementations to CPUs rather than FPGAs.

Other scenarios can be envisaged where reassignment could lead to improved instruction

completion times. For example, if the cost of performing a reconfiguration plus the FPGA

execution cost of an instruction is greater than the CPU execution cost, then it may be

worthwhile assigning the instruction in question to a CPU rather than an FPGA. Also, in

an environment where communication times are non-uniform, a lower delegation overhead,

and hence completion time, could be obtained by sending an instruction to a CPU available

via a fast connection to an FPGA available via a slower one. However, these scenarios are

not considered here; the first because of the absence of cost information in ARC, the second

because a homogeneous networking environment is currently assumed by ARC.

In the absence of cost information, creating a suitable decision procedure for assigning

dual-implementation instructions to processing resources represents a difficult undertaking.

Simple threshold schemes would have to be fine-tuned on a per-application basis, and as
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such would not represent a general solution. Instead, a scheme based on average FPGA

speedup was considered.

Although FPGA speedup information is available in applications created by the ap-

plication generation program, the operation of the scheme requires that the programmer

supplies speedup information for every operator with a dual implementation. However, this

requirement was not considered overly demanding as the hardware development process

typically begins with a software implementation that is used for reference and validation

purposes throughout the development process. The developer should therefore have a rea-

sonable approximation of the speedup attained at the end of the development process, or

at worst should be able to determine the speedup with little effort. The main drawback of

this approach is the tacit assumption that FPGA speedups are similar across all possible

inputs, which is unlikely to be the case for every application. If a significant variation in

speedup across inputs is present, it then falls to the application developer to either disable

the optimization (this can be achieved simply by omitting the native implementations of

operators) or choosing the speedup value that is most representative of the expected inputs.

The development of the optimization began by considering the case where only a single

primitive operator is used, this operator has implementations both in software and in hard-

ware, all invocations of the operator share the same execution cost, the speedup attained

through implementing the operator in hardware has been made available to the runtime

environment, and the application is being executed on a single machine. Figure 5.13 illus-

trates the situation where the CPU queue is empty, the number of instructions awaiting

execution on the FPGA queue is equal to the speedup, 5, associated with the lone oper-

ator (op0) and neither the CPU nor the FPGA is currently executing an instruction. At

this point, assigning a newly created instruction (indicated by a dashed box) to the CPU

rather than the FPGA results in a lower completion cost. Furthermore, this remains the

case even if the instruction at the head of the FPGA queue is considered to be partially

op0 op0 op0 op0 op0 op0

op0CPU

FPGA

Figure 5.13: The speedup value associated a dual-implementation operator represents the
threshold value beyond which a newly created instruction (indicated by a dashed box)
should be assigned to the CPU in order to minimize the new instruction’s completion cost.
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executed rather than a member of the queue of unevaluated instructions, provided that no

instruction is currently executing on the CPU. If the FPGA queue were shorter, then the

lowest completion cost would be attained by assigning the new instruction to the FPGA.

Similarly, if the FPGA queue were longer, then assignment to the CPU remains the best

option, again assuming that the CPU is idle. The number of instructions equivalent to

the FPGA speedup therefore represents the threshold value beyond which new instructions

should be assigned to an idle CPU.

In the scenario presented above, an idle CPU can be considered alongside the FPGA

when making load balancing decisions based on instruction queue lengths provided that

the CPU is suitably penalized due to the greater execution cost it incurs by executing

instructions with dual implementations. When the CPU is idle, this penalty is equivalent

to the speedup of the sole operator. This scheme can be extended to consider the situation

where instructions are present in the CPU queue, by adding an additional penalty for every

instruction present. In general, when comparing the CPU queue to that of the FPGA, the

adjusted length of the CPU queue (L′
CPU) is given by

L′
CPU = S(1 + LCPU)

where S is the FPGA speedup of the sole primitive operator and LCPU is the CPU queue

length, calculated by taking the length of the CPU instruction queue and incrementing it

by one if an instruction is currently being executed.

Although this method of adjusting CPU load provides an accurate method of compar-

ing the loads of both types of processing resource within the restricted conditions described

above, several issues arise when attempting to apply the same principle to create a general-

purpose optimization. The most obvious is that primitive instructions with differing opera-

tors may be present in either queue, so the notion of using the speedup of a single operator

for CPU load adjustment is no longer applicable. However, this issue can be worked around

by calculating the average speedup and using the resulting value when adjusting the CPU

load. Unfortunately, this modification results in an unavoidable loss of accuracy, the extent

of which depends on the variance in FPGA speedups. A more serious issue is the presence

of instructions with single implementations in both instruction queues, as the cost of these

instructions is unknown and leads to a greater divergence between the load values being

used for comparison and the true load for each resource. For example, the presence of

an instruction with a condensed graph operator, and hence a comparatively low execution

cost, in the CPU instruction queue would be considered to be of equal importance to a

more expensive primitive operation when calculating the adjusted CPU load, resulting in

an overestimation of the true load of the CPU. This situation is further exacerbated when
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operators with dual implementations but variable execution cost are considered.

The issues described above are unavoidable in the absence of cost information, and

are applicable to load balancing in general as well as the specific optimization considered

here. However, their presence calls in to question the extent to which the optimization can

be successfully applied to real-world applications. To begin with, the optimization only

modifies the existing behaviour when an instruction with dual implementations happens to

arrive when a significant divergence has arisen between the lengths of the CPU and FPGA

instruction queues. Given the relative rarity with which the optimization is invoked, it is

crucial that the optimization is effective in the majority of invocations if it is to have a

significant positive impact on the running times of applications. This was a question that

could only be resolved through experimentation.

The ARC runtime environment was modified to facilitate the experiment by altering the

scheduler to assign instructions with dual implementations to the CPU when the threshold

described above was exceeded. It was decided that the optimization should initially be

evaluated under the most amenable conditions possible. To this end, application sets similar

to the application depicted in Figure 5.13 were generated by restricting the number of

primitive operators per application to one, with the lone primitive operator having dual

implementations. However, the queues created by these applications differ from the original

scenario in that condensed graph instructions may be present in the native queue. Relatively
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Figure 5.14: A graph illustrating the speedup observed when applications containing a
single primitive operator with dual implementations were executed with the reassignment
optimization enabled.
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high values for the nodesPerGraphMean and nodeParallelProbability parameters were

used to allow for the accumulation of significant numbers of instructions in the instruction

queues. Fifteen application sets were generated, with FPGA speedup values varying between

one ten across the sets. Each set was composed of ten applications. These applications were

executed on a single machine, and the speedups observed when the optimization was enabled

compared to when the optimization was disabled were recorded. The results are shown as

a plot in Figure 5.14.

Examination of the results reveals significant speed increases for low FPGA speedup

values, with a mean speedup of over 1.75 observed when the FPGA speedup was one, i.e.,

instructions took equally long to execute on the CPU as on the FPGA. However, the speedup

attained tails off sharply, with very little difference in execution times observed for FPGA

speedup values greater than five. A slight reduction in execution time was observed in some

cases. The sharp dropoff in speedup can be explained by the increasing rarity with which the

optimization is invoked with increasing FPGA speedup, as well as the diminishing amount

of execution time saved per invocation. The slight slowdown observed in some cases can

be explained by the presence of condensed graph instructions in the native queue, which

would distort the true CPU workload. Also, reassigning work to the native queue may

delay the evaluation of condensed graph instructions that subsequently arrive, delaying the

exposition of further parallelism and potentially leaving resources idle.
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Figure 5.15: A graph illustrating the speedup observed when applications containing a
varying numbers of primitive operators with dual implementations were executed with the
reassignment optimization enabled compared to when the optimization was disabled.
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Next, it was decided that the performance of the optimization should be examined under

more adverse circumstances closer to those found in real-world applications. For this ex-

periment, ten application sets with varying numbers of primitive operators were generated.

All primitive operators were created with dual implementations. The operationCostMean

and operationCostSigma parameters were specified as 1,000 and 500, respectively, result-

ing in a broad range of operation costs. Similarly, the values used for fpgaSpeedupMean

and fpgaSpeedupSigma were 10 and 5, respectively, resulting in a broad range of FPGA

speedups. Therefore, as the number of primitive operators per application set increased,

more variety was introduced into the characteristics of the instructions created at runtime.

These applications were executed with the optimization both enabled and disabled, and the

resulting speedups are shown as a plot in Figure 5.15.

Examination of the results reveals that a slight speedup was observed in every instance,

and that the extent of the speedup varies little with increasing numbers of primitive op-

erators. These observations are somewhat surprising in light of the occasional slowdowns

observed in the previous experiment. However, the results speak for themselves, and it can

be concluded that the optimization performs better in real-world situations compared to the

contrived scenario presented originally. It was therefore decided to include the optimization

in ARC and have it enabled by default.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Chapter 1 illustrated that Cluster Computing and Reconfigurable Computing are com-

plementary technologies, as Cluster Computing is most suited to the execution of coarse-

grained tasks, while Reconfigurable Computing is able to take advantage of localized, fine-

grained parallelism. Applications developed for clusters augmented with reconfigurable

hardware can therefore play to the strengths of both techniques by assigning coarse-grained

tasks to cluster nodes where the fine-grained parallelism present within the tasks can then

be exploited using FPGAs.

On the other hand, both techniques also suffer from inherent limitations. The classes

of applications that can be accelerated effectively on clusters is limited by the latency

and bandwidth of commodity networking equipment. Similarly, the performance gains

achievable using FPGAs are constrained by limited throughput and poor floating-point

performance. Furthermore, accelerating applications using either technique represents a

more difficult and complex undertaking than developing the equivalent sequential program,

although the amount of effort required to produce FPGA configurations has declined in

recent years with the advent of higher-level languages such as Handel-C.

Applications developed for clusters augmented with reconfigurable hardware to date

have typically used a combination of the most popular methodologies in each field. Se-

quential languages are used in conjunction with message passing libraries to expose coarse-

grained parallel tasks for execution on cluster nodes. Hardware description languages such

as VHDL are used to accelerate these tasks using reconfigurable hardware, with commu-

nications between the host and FPGA performed using calls to the FPGA driver. This

technique requires that all communications be specified explicitly. Accounting for task or

hardware heterogeneity results in complex applications that are difficult to develop and
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maintain.

The ARC metacomputing system, described in Chapter 2, offers an alternative ap-

proach. When developing applications using ARC, the specification of the high-level par-

allelism present in the application, the implementation of the application logic and the

acceleration of portions of the application using reconfigurable hardware, are performed

separately. Communications are specified implicitly, and performed by the ARC runtime

environment without any intervention on the part of the developer. This arrangement allows

the developer to focus on each aspect of the application in isolation, avoiding the clutter in

application logic that results from the current approach.

Furthermore, the ARC runtime environment implements complex load balancing be-

haviour, as described in Chapter 5. The load balancing functionality can be exploited effec-

tively with little or no effort on the part of the application developer. This eliminates the

need for developers to implement load balancing on a per-application basis, significantly

reducing the effort required to efficiently utilize clusters augmented with reconfigurable

hardware.

The work presented in this thesis represents a concrete contribution to the state of

the art in developing for clusters augmented with reconfigurable hardware. It is hoped

that the availability of ARC and other high-level computing environments will increase the

acceptability, and hence popularity, of the technique. Some potential future trends in the

field are discussed below.

6.1.1 Future Prospects for the Field

Given the ever-increasing popularity of cluster computing the probable continuation of the

factors underpinning its growth (primarily the price/performance ratio), its future as the

primary High Performance Computing technique seems to be assured. The future popularity

of Reconfigurable Computing, and hence the future popularity of clusters augmented with

reconfigurable hardware, is more difficult to predict.

The RC5 application presented in Chapter 3 demonstrates that the results obtained

through the use of reconfigurable hardware when an application contains suitable fine-

grained parallelism can be impressive. The increasing density of new models of FPGAs

means that Reconfigurable Computing will allow more complex applications to be imple-

mented in hardware in the future, while existing applications will be able to incorporate

more parallel branches and pipeline stages into their implementations. The possible incor-

poration of floating point units, wider data paths and more tightly-coupled connections into

future commodity reconfigurable hardware would address many of the shortcomings cur-

rently affecting the technique. The recent appearance of FPGA boards that plug directly
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into unused processor slots on AMD Opteron motherboards (see [48]) demonstrates that

progress is being made on the problem of insufficiently tight coupling.

A significant factor working against the future popularity of Reconfigurable Computing

is the introduction of SIMD vector processing extensions [143], such as SSE (Streaming

SIMD Extensions) and AltiVec, to commodity CPUs. These extensions are designed to

allow very fine-grained parallelism to be exploited, eroding the niche currently occupied

by Reconfigurable Computing. Crucially, these extensions are tightly coupled with the

CPU and can operate effectively on floating point data, exposing some of the weaknesses

currently associated with Reconfigurable Computing. Furthermore, commodity FPGAs are

developed primarily for ASIC prototyping, and the improvements necessary to increase

performance for High Performance Computing purposes into the future might not coincide

with the requirements of this market.

6.2 Future Work

A number of improvements, principally related to usability, could be made to the ARC Sys-

tem. At present, the declaration of every user-defined datatype requires the implementation

of functions to perform serialization, deserialization and string conversion on instances of

the type. The addition of a polymorphic type system [144] would allow all new types to be

specified as aliases or aggregations of existing types. Serialization, deserialization and string

conversion could then be performed automatically using predefined behaviour for each of

the constituent basic types, obviating the need for custom functions to be specified.

A related issue is that of memory management. At present, the programmer is respon-

sible for freeing any memory allocated by operator implementations, adding complexity to

the graph definition process. Modifications to ARC would allow the runtime environment

to take responsibility for deallocating heap memory referenced by operands. This func-

tionality could be implemented either by using reference counting or the integration of a

garbage collector such as BoehmGC [145], and would be simplified by the addition of the

type system described above.

The high-level behaviour of ARC applications is specified using manually created XML

definition documents. A number of alternative methods of producing definition documents

could be examined. For example, a dedicated language would serve as a more concise means

of specifying the required behaviour. Suitable language constructs would also increase the

accessibility of the more advanced, but often underused, aspects of the Condensed Graphs

model such as speculative execution and lazy evaluation. An alternative approach would be

the development of an integrated development environment (IDE), similar to that developed

for WebCom, that would allow ARC applications to be specified in an interactive, graphical
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fashion.

The performance model described in Chapter 4 could be extended to consider more

aspects of the behaviour of the ARC runtime environment. The process of transferring

data to and from FPGAs is not considered at present; modelling this behaviour would

allow the performance of various FPGA connection topologies to be evaluated, as well as

providing a means of determining the potential speedups achievable for applications before

implementation. The model could also be extended to consider the amount of memory used

at each cluster node based on the amount of data associated with the instructions present.

This extension would facilitate the development of load balancing algorithms, described

below, that take account of the memory utilization of cluster nodes.

The load balancing framework and algorithms described in Chapter 5 considered the

movement of instructions with the sole aim of minimizing completion cost. Future work

in this area could examine the possibility of delegating instructions with a view to evenly

distributing memory usage as well as workload. For example, in cases where the remote

processor selection algorithm has a number of peers to choose from, the instruction could

be sent to the machine with the most free memory. This approach would be particularly

effective for instructions with condensed graph operators, as these tend to be memory

intensive rather than CPU intensive.

6.3 Afterword

The chameleon-like ability of FPGAs to alter the form that they present to the outside

world inspires fascination beyond their interest-worthiness as mere functional devices. The

nature of their operation forces us to rethink our mental characterizations of various aspects

of computing. Consider the intuitive notion that most people would associate with the word

“software”: machine code for a von Neumann architecture that is loaded into RAM before

execution. Similarly, most people would have a preconceived notion of what is meant by the

term “hardware design”: a form of blueprint for use in the manufacture of ASICs. However,

the use of hardware designs as FPGA configurations blurs the distinction between the two.

Clearly, the hardware design could be said to “execute”, software-like, when loaded onto an

FPGA. However, the same configuration could serve, without modification, as a physical

design etched into silicon. The only way to resolve the resulting dilemma is to broaden our

perception of what constitutes software and what is represented by a hardware design.

The nature of the operation of FPGAs can therefore lead to a paradigm shift in the

way we think about hardware and software. By blurring the distinction between hardware

and software, and thinking of each as a form of the other, questions worthy of further

investigation can be posed and opportunities worthy of pursuit can be discovered. An
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immediate result is that we gain flexibility and the ability to accelerate software applications

by converting parts of them to hardware designs and executing these designs on FPGAs.

The work presented in this thesis takes this idea one step further by providing a means of

exploiting parallelism at the cluster level as well as the FPGA level. However, it is clear that

there is plenty of scope for further innovation in the field when one considers concepts such as

partial reconfiguration, self-reconfiguration, the evolution of hardware designs and FPGAs

with direct network connections, and ways in which these concepts could be developed or

combined.
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