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Abstract—Evolved Multimedia Broadcast Multicast Service
(eMBMS) is a 3GPP standard that improves the utilization of
scarce wireless resources and the quality of the received content.
eMBMS uses a Single Frequency Network (SFN) to transmit
real-time videos over synchronized resources across neighboring
base stations (eNBs) and allows users to share wireless spectrum
across multiple cell sites. However the user with the worst channel
condition and the eNB with the least available resources limit
the throughput of a session. To overcome such limitations, the
SFN can be divided into non-overlapping clusters of eNBs and
in each cluster users can be split into groups. We formulate
an optimization problem that maximizes an operator-defined
utility for multiple eMBMS sessions served at multiple bitrates
by choosing the optimal set of SFN clusters and user groups
for each session. We propose an algorithm, RTOP, that finds
the optimal or a near-optimal solution in real-time regardless of
the number of eMBMS users. Our extensive simulations indicate
that, in comparison to state-of-the-art schemes, RTOP improves
the system utility and average user bitrate by up to 14% and
90% respectively. Additionally, we show that the utility of RTOP
always stays within a 1% gap from the optimal solution.

I. INTRODUCTION

Mobile data traffic is increasing rapidly at a 47% annual
growth rate and video accounts for more than 60% of this
traffic1. Live streaming services like Periscope, Facebook
Live and Twitch2 are becoming more popular, which further
elevates the demand for high definition (HD) video streaming
over cellular networks. The delivery of highly popular content
using traditional unicast method leads to inefficient resource
utilization and poor user experience.

For users subscribed to the same content, Content delivery
networks (CDN) or network layer multicast can reduce re-
source consumption in the backbone, core and wired access
network [1], but the wireless last hop, where the resources
are scarce, still suffers from redundant unicast transmissions.
Recent experiments and trials [2] illustrate that these draw-
backs can be alleviated using Evolved Multimedia Broadcast
Multicast Service (eMBMS).

eMBMS [3] is a 3GPP standard that enables multicast
over the wireless spectrum by grouping users watching the
same content and transmitting the content to a group just
once. This results in effective spectrum utilization, particularly
when the number of active users is high. Furthermore, to

1https://goo.gl/ySYurJ
2https://www.twitch.tv/year/2017
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Fig. 1: eMBMS Architecture. Using SFN can improve the MCS
(shown as Modulation-Coding) of users.

improve the channel condition of users, eMBMS allows base
stations (eNBs) in a spatially local area to transmit the same
content at a common frequency and time, hence creating a
Single Frequency Network (SFN). Interested users combine
the signal received from each eNB in the SFN, improving
their Signal to Interference-Noise Ratio (SINR). A Multicast
Coordination Entity (MCE) manages the eMBMS users and
resource allocation for all eNBs in an SFN (Figure 1).

To ensure that all the users can decode the transmitted
signal, the modulation and coding scheme (MCS) of a group
is restricted to the user with the worst channel condition.
Similarly, synchronizing eNBs in an SFN brings forth two
limitations: the eNB with the least available resources limits
the amount of resource blocks (RBs) available for an eM-
BMS session and users of one eNB with low MCS values
can adversely affect users of other eNBs when creating
user groups. To overcome these limitations, state-of-the-art
solutions propose partitioning eNBs in the eMBMS service
area into multiple SFN clusters [4] depending on the user
distribution and available RBs at each eNB. Alternatively,
users are split into groups based on their channel conditions [5]
with each group receiving an appropriate video bitrate.

To maximize the benefits and potential of eMBMS, network
operators need a solution that can run in real-time and solve
the user grouping and SFN clustering problems. The existing
models [6][7][8] ignore the inter-dependence of these two
problems hence yielding sub-optimal results. Also most of
these models are either too complex to solve in real-time
for a large number of users [5]; do not consider multiple
videos served by eMBMS at the same time [6][8]; aim to
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Fig. 2: Possible eMBMS Configurations. Grouping users and creating SFN clusters can help improve the system utility and
must be jointly optimized to maximize the utility as in case (e).

maximize the network throughput instead of the application-
level video bitrates [7][8] or; ignore the impact of eMBMS
resource allocation on unicast users [9].

In this paper, we propose RTOP, a novel scalable resource
management framework for eMBMS that jointly optimizes
resource allocation, SFN clustering and user grouping to
maximize an operator-defined utility. We evaluated RTOP and
results show that the joint optimization can achieve up to a
14% improvement in the system utility and a 90% increase
in the average bitrate received by users in comparison to
state-of-the-art techniques [7][8]. Additionally, our framework
guarantees a minimum video bitrate for all eMBMS users with
most users receiving higher bitrates. Our contributions towards
RTOP are multi-fold:
• We formulate the joint optimization problem for SFN

clustering and user grouping for multiple video sessions.
The solution of this problem determines the performance
bound on a rate-based utility and presents a practical
mechanism to handle the impact of eMBMS decisions
on unicast users.

• We propose a scalable heuristics-based algorithm that
produces optimal or near-optimal results in real-time
independent of the number of users in typical eMBMS
settings.

• We perform extensive evaluation with various network
configurations, user distributions and number of videos
served by eMBMS with different bitrates. Our results in-
dicate the benefit of the joint optimization in comparison
to state-of-the-art techniques [7][8]. We also show that
the utility achievable by RTOP is always within a 1%
gap from the globally optimal solution.

The rest of the paper is organized as follows. In Section 2,
we present the system model and formulate the optimization
problem. In Section 3, we present RTOP and the proposed
heuristics. In Section 4, we present performance results of our
extensive evaluation and comparison. In Section 5, we share
related work and finally, in Section 6, we conclude our work.

II. OPTIMAL EMBMS CLUSTERING AND USER GROUPING

A. System Model

We consider a cellular system consisting of a set of eNBs B
in the eMBMS service area, serving some unicast users and a
set of videos V to multicast users in set M using eMBMS. For
each video v, eNBs B can be grouped to form one or more
non-overlapping clusters of SFN. Each video v is encoded to
a set of bitrates Rv and the MCE may transmit v at one or

TABLE I: Notations For Optimization Model
Symbol Description
INPUTS
B Set of one or more eNBs in the eMBMS service area
C Set of possible clusters of eNBs (non-empty subsets of B)
P Set of all possible eNB configurations i.e. ways to configure

eNBs B into non-overlapping SFN clusters
bpc Binary variable to inform if b is in cluster c for p∈P
E Total number of available CQI levels (15 for LTE)
Se Achievable spectral efficiency from a CQI level e
T Total number of resource blocks available at any eNB
α Maximum fraction of resources allowed for eMBMS
f(r) Operator-defined utility function that takes rate r as input
Yb Number of RBs requested by eNB b for its unicast users
V Set of videos served by eMBMS in the service area
Rv Set of bitrates available for video v
M , Mv Set of multicast users (M ) subscribed to video v (Mv)
Mvpce Number of users of video v in cluster c with MCS e when

eNB configuration p is used
VARIABLES
Pvp Binary variable to determine if eNB configuration p has been

chosen for video v
Xvpcr Number of RBs allocated by eNBs in cluster c of eNB

configuration p to video v for bitrate r
Mvpcer Binary variable to determine if users of video v with MCS e

in cluster c of eNB configuration p are assigned bitrate r

more distinct bitrates in each cluster at a chosen modulation
and coding scheme (MCS). Note that the real-time variations
in bitrates are handled by network buffers and we consider an
average value over time. Based on its channel quality indicator
(CQI) level, a user may select a bitrate, and consequently an
MCS, that is best suitable for its channel condition.

As each MCS produces a certain spectral efficiency, the
MCS chosen by MCE for a bitrate of a video determines the
number of frequency-time resource blocks (RBs) needed to
achieve that bitrate. Each eNB has T RBs which are used to
serve both unicast and multicast users. The maximum fraction
of RBs allowed for eMBMS is α [10] and each eNB b, needs
Yb RBs to serve its unicast users. Hence, the available RBs for
eMBMS users at any eNB b equals min (αT, T−Yb). Table I
summarizes the notations used in this paper. In such a system,
different configurations of eMBMS are envisioned, leading to
different achievable bitrates for users.

To illustrate this, we look at an example scenario (Figure 1)
for two videos (J and K) served at two different bitrates
(200kbps and 400kbps) by two eNBs (B1 and B2) and four
users interested in each video. In Figure 1, the MCS values
on top are what users can achieve from eNB configuration
{{B1}, {B2}}, i.e. eNBs split into two clusters and the bottom
MCS values are the achievable MCS from {{B1, B2}}, i.e.
both eNBs in one SFN cluster. Both eNBs have 20 total RBs
(T = 20) and 10 RBs reserved for unicast users (Yb = 10)



leaving 10 RBs for users of Video J and K. We explore five
possible configurations (Figure 2) and look at the average user
bitrate and sum-log utility of user bitrates.

No eMBMS (Case a): All users are scheduled separately as
unicast users and due to the limited resources only three users
could be served with higher bitrate (400kbps). The sum-log
utility is 44.46 and the average user bitrate is 275kbps.

Standard eMBMS (Case b): All eNBs are in one cluster
and all users of a session in one group. As RBs are shared,
each user gets more RBs than in unicast. However, the user
with the lowest MCS value (j1 for Video J) restraint the rate
for all users, therefore even though j2 and j3 have high spectral
efficiency, they receive lower bitrate, limiting the total users
served with 400kbps to four. The system utility is 45.12 and
the average bitrate increases by 10% in comparison to unicast.

eMBMS with SFN Clustering (Case c): For Video J,
splitting eNBs into two clusters places j4 and the low-end
user j1 in separate clusters. This allows j4 to receive a higher
MCS and hence the higher bitrate. With five users receiving
400kbps, the system utility increases to 45.84 and the average
bitrate by 8% in comparison to standard eMBMS.

eMBMS with User Grouping (Case d): Instead of SFN
clustering, user grouping is applied to standard eMBMS case.
Users j2 and j3 form a separate group than j1 and j4 and
receive the higher bitrate. Now six out of eight users are served
with the higher bitrate and the average bitrate increases by
17% in comparison to standard eMBMS. The sum-log utility
of the system increases to 46.54.

eMBMS with User Grouping and SFN Clustering (Case
e): The users of Video J are distributed in such a way that they
achieve little (j2, j3 and j4) or no (j1) benefit by synchronizing
B1 and B2. Splitting the eNBs in two clusters for Video J
places j1, j2 and j3 in B1 and j4 in B2 which now has less
users and hence more RBs available for j4. This enables j4
to receive the higher bitrate as well, giving us the optimal
solution with seven out of eight users receiving the higher
bitrate. The system utility increases to 47.24 and the average
bitrate by 25% in comparison to standard eMBMS.

This example shows that the total utility of the system
depends on the eNB configuration chosen for each video,
the number of user groups created in each SFN cluster, the
number of users placed in a group and the number of RBs and
bitrate assigned to each user group. We define an optimization
model with a goal to maximize an operator-defined utility by
considering all of these factors.

B. Problem Formulation

The typical use cases of eMBMS service, such as sporting
events, involve a large number of users. Hence, there is
a need for scalable optimization framework to identify the
performance bounds of resource allocation schemes. Existing
work in literature, e.g. [8][9], employ optimization variables
that increase with the number of users. Hence, the solution
time grows exponentially as the number of users increases.

In our optimization framework, we eliminate the depen-
dence on the number of users by relying on the fact that there

are a limited number of distinct CQI values, e.g., 15 CQI levels
in LTE networks. We leverage this fact and define CQI groups
per video per cluster. Instead of handling users individually,
we formulate our optimization problem to find the optimal
bitrate for each CQI group. For each eNB configuration p
and video v, we denote the number of users that belong to
cluster c and report a CQI e as Mvpce and pass it as an
input to the optimization model. This simple modeling trick
reduces the time-complexity and enables us to find the optimal
solution of our problem in a reasonable time when evaluating
the effectiveness of our proposed heuristics.

In addition to eMBMS users, eNBs may also serve unicast
users. In practice, an MCE has no control over how many RBs
are allocated to a unicast user which is instead handled by the
scheduler of the associated eNB. For each eNB b, we take
Yb as an input from the operator. An operator can choose the
mechanism to calculate Yb based on the priority of eMBMS
over unicast [7] or the number of unicast and multicast users
in a cell, e.g. with a multicast weight function [8].

We formulate our optimization problem with the objective
(Equation 1a) to maximize an operator-defined utility of all
multicast users in all the CQI groups. This is illustrated in
Problem 1 as follows:

max
∑
v∈V

∑
p∈P

Pvp ·
∑
c∈p

∑
r∈Rv

(
f(r) ·

E∑
e=1

Mvpcer ·Mvpce

)
(1a)

subject to∑
p∈P

Pvp = 1, ∀v∈V (1b)∑
r∈Rv

Mvpcer ≤ 1,∀e∈{1, 2, .., E}, v∈V, c∈p∈P (1c)

∑
p∈P

∑
c∈p

∑
r∈Rv

E∑
e=1

Mvpcer ·Mvpce =Mv, ∀v∈V (1d)

Xvpcr ≥ max
e

(
Mvpcer · r

Se

)
,∀r∈Rv, c∈C (1e)∑

v∈V

∑
p∈P

∑
c∈p

∑
r∈Rv

bpc·Xvpcr ≤ min (αT, T−Yb) ,∀b∈B (1f)

where Pvp is a binary variable to determine if eNB configura-
tion p has been chosen for video v, Mvpcer is a binary variable
to determine if users of CQI group Mvpce are assigned bitrate
r and Xvpcr is the number of RBs assigned to r for v in cluster
c of eNB configuration p.

Constraint 1b ensures that each video chooses only one eNB
configuration. Constraint 1c and 1d guarantee that each CQI
group (and hence user) is assigned one and only one bitrate.
Constraint 1e ensures that the number of RBs used to transmit
a video bitrate in a cluster are enough to decode it properly
for users of any CQI group assigned that bitrate. Constraint 1f
limits the total RBs used by eMBMS at any eNB to what’s left
after satisfying unicast resource request by each eNB. It also
limits the percentage of RBs allowed for eMBMS to α, which
is usually set to 60% [10] in LTE networks. This constraint
can be tuned or relaxed in extremely congested networks to
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Fig. 3: Heuristic Example. A candidate eNB configuration is
chosen in each class. eNB4 is more congested than other eNBs,
so configurations with 4 in a separate cluster perform better.

adjust the amount of resources that an operator wants to allow
for unicast users and leave for eMBMS users.

Time Scale of Optimization: Our problem is a Linearly-
Constrained Quadratic Program (QP) with all integer (mostly
binary) variables and a global maximum bound (at highest
bitrate for all users), hence it is NP-complete [11]. How-
ever, even with the notion of CQI groups, when practically
computing the optimal solution, the numerous possible eNB
configurations and the dependence of each video’s choice
on other videos makes the problem complicated and time
consuming to solve. Based on our experiments (Figure 6c), it
can take up to 100s to compute the global maximum, which is
not sufficiently fast to operate in real-time. Hence, we propose
an efficient heuristic-based algorithm that achieves optimal or
near-optimal solution in real-time.

III. RTOP: SOLUTION DESIGN

The optimization problem involves four inter-dependent
decisions to make:

1) Identifying an eNB configuration for each video and
assigning users to the best cluster of that configuration

2) Creating user groups based on channel conditions
3) Assigning an appropriate video bitrate to each group
4) Allocating RBs to various videos and underlying groups
In this section, we first present how these decisions are taken

when one video is served by eMBMS. We then present the
additional steps needed to handle the multiple video scenario.

A. Handling A Single Video
In a single video scenario, all the eMBMS resources in the

service area are accessible to this video. Hence, the total utility
mainly depends on the eNB configuration and underlying user
grouping for that video.

eNB Configurations: Each eNB configuration is completely
defined by identifying groups of eNBs acting as SFN clusters
and assigning users to these clusters. The number of possible
eNB configurations is equal to the Bell number4 of the eNBs

4http://mathworld.wolfram.com/BellNumber.html
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in the service area. Figure 3 shows an example scenario for a
video with four eNBs (1,2,3,4), where eNB4 has higher unicast
load (85%) than other eNBs (55%). A 100 users are interested
in the video and the eNBs produce different spectral efficiency
values when clustered differently. There are 15 possible eNB
configurations (fourth Bell number) ranging from one cluster
(all eNBs synchronized as a single SFN) to four clusters (each
eNB in a separate cluster). The configurations are divided
into |B| classes defined by the number of clusters in each
configuration. These classes are more relevant to the multiple
video scenario and will be discussed in the next section. In
each configuration, to maximize the system utility, users are
assigned to the cluster that provides them with higher MCS
values. In the single video case, we explore user grouping
for all the possible eNB configurations. Note that in general,
eMBMS is used in a limited number of neighboring eNBs [10]
serving a highly populated area.

User Grouping: For an eNB configuration, users in each
SFN cluster can have disparate channel conditions. User
grouping would enable improving the total utility by splitting
users into groups based on their channel conditions and
assigning an appropriate video bitrate to each group. On doing
so, the achievable utility depends on the number of users in
each group, the minimum user MCS value per group, and the
RBs available to each group. Exhaustively searching through
all possible groups of Mv users takes O(|Rv| · |Mv||Mv|) to
solve. Hence, there is a scalability issue, especially for large
number of users. We solve this issue by creating CQI groups
as explained in Section II-B and deciding which CQI groups
should aggregate to form a user group.

Theoretically, the maximum number of user groups equals
the number of distinct video bitrates available. However split-
ting users in too many groups reduces the share of RBs per
group, and may reduce the achievable bitrate by a group
and hence the total utility. We conducted simulations by
distributing 10, 100 or 1000 users in the service area and
varied the number of available RBs. We ran each setup for
1000 runs. Results (Figure 4) show that in 90% of the cases,
the optimal utility was achieved by one or two user groups.
Therefore, we design our grouping algorithm that aggregates
CQI groups and either places all users in one group or creates
two user groups.

Algorithm 1 presents the user grouping algorithm and
involves three main steps. First, we identify the number of
RBs needed to assign a bitrate to the first (lowest) CQI group



Algorithm 1 User Grouping Algorithm
Input: RBs, Rv , CQI Groups in cluster (in ascending order)

with CQI values Q and number of users N
Output: Best Utility Umax (initialized with 0), User Groups

G with number of users and RBs for each bitrate
1: for i← 0 to |Rv| do
2: r1← Rv[i]
3: r1RBs← r1 / Q[0] . Lowest CQI
4: if r1RBs > RBs then break . Can’t increase rate
5: U ← f(r1)× sum(N) . f * No. of users
6: if U > Umax then Umax ← U
7: G[r1, users]←sum(N); G[r1, rbs]←r1RBs
8: r2RBs← RBs− r1RBs . Remaining RBs
9: thr ← [r2RBs× cqi for cqi in Q[1 :]]

10: for j ← i + 1 to |Rv| do . bitrates higher than r1
11: r2← Rv[j]
12: k ← index of first CQI group with thr ≥ r2
13: if no k then break . Can’t increase 2nd G’s rate
14: G1← sum(N [0 : k]); G2← sum(N [k + 1 :])
15: U ← f(r1)×G1 + f(r2)×G2
16: if U > Umax then Umax ← U
17: G[r1, users]←G1; G[r1, rbs]←r1RBs
18: G[r2, users]←G2; G[r2, rbs]←r2RBs

and calculate the utility achievable by placing all users in one
group (Line 1-7). Then we measure the throughput that can be
achieved by higher CQI groups with the remaining RBs (Line
8-9). If some CQI groups have enough throughput to support
the next bitrate then we calculate the utility for splitting users
in two groups and assigning the higher bitrate to those CQI
groups (Line 10-19). We repeat the process for all bitrates and
choose the user grouping option with the maximum utility.
This approach takes only O(|Rv|2) to solve.

We find the utility of each eNB configuration by running
Algorithm 1 on each of its cluster. The configuration with
the highest utility is the optimal choice and the eNBs can
be configured to form clusters accordingly. Results obtained
from Algorithm 1 tell us the number of groups to create in
each cluster, number of users to place in each group and also
the bitrate and number of RBs to assign to each group.

B. Handling Multiple Videos

In multiple video scenarios, the resources must be dis-
tributed optimally among all videos and underlying groups.
Such distribution has an impact on the choice of eNB config-
uration and user grouping. Hence, the problem of choosing an
eNB configuration for each video is combinatorial in nature
and can result in exponentially increasing outcomes. To solve
the problem in real-time, we first narrow down the choices
of eNB configurations for each video to a subset of candidate
configurations. Then, we identify the best combination of con-
figurations for the videos. Finally, we determine the optimal
resource allocation and user grouping for each video in their
chosen eNB configurations.

Candidate eNB Configurations: For each video, we use
the process of Section III-A to obtain the maximum utility of
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For any cluster, the lower bound of RBs is the minimum RBs
needed to satisfy all users of a video and the upper bound is
the RBs available for eMBMS in that cluster.

each eNB configuration based on the total available eMBMS
resources. Additionally, we classify each configuration based
on the number of clusters in it and then choose the best
configuration for each class as a candidate configuration.
Continuing with the example in Figure 3, we divide the eNB
configurations into four classes and choose the configuration
with the highest utility in each class. This gives us four
candidate configurations (1a, 2c, 3e, 4a) for the considered
video. This process is repeated for all the videos served by
eMBMS in the service area to obtain a set of candidate eNB
configurations for each video.

Combination of eNB Configurations: In this step, we
select one eNB configuration for each video from the previ-
ously identified candidates by maximizing an approximated
utility function. First, we run the user grouping algorithm
(Algorithm 1) on each cluster of an eNB configuration, to
identify the achievable utility with up to two user groups per
video. This step is repeated for all possible values of RBs,
which can vary from one to the maximum RBs available for
eMBMS in that cluster, i.e., min(αT, T −Yb). Figure 5 shows
the achievable utility as a function of available RBs for one
eNB configuration (3a from Figure 3), which consists of three
clusters ({1}, {2} and {3,4}). We repeat the process for all
candidate eNB configurations of each video in V .

We then proceed to find the best combination of eNB
configurations for different videos using the measured utility
data. To speed this search, we define an optimization problem
with an approximated objective utility based on the quadratic
regression of the utility values, as shown in Figure 5. We
chose quadratic regression as it provided sufficiently accurate
and fast solution in comparison to the less accurate linear
regression and the slower higher-degree polynomials.

Problem 2 illustrates our optimization problem:

max
∑
v∈V

∑
c∈Pv

ivc·X2
vc + jvc·Xvc + kvc (2a)

subject to∑
v∈V

∑
c∈Pv

bpc ·Xvc ≤ min (αT, T − Yb) ,∀ b∈B (2b)

Xvc ≥ Lvc,∀ v∈V, c∈C (2c)

where Xvc represents the RBs allocated to video v in cluster c,
Lvc is the lower bound for Xvc and ivc, jvc, kvc are the quadratic



coefficients of the utility for video v in cluster c.
Constraint 2b is similar to Constraint 1f and limits the

available RBs in a cluster for eMBMS users. Constraint 2c
ensures that RBs allocated to a v in c are enough to attain
the lowest bitrate of v. Solving Problem 2 gives us the
maximum achievable utility from a particular combination of
eNB configurations of all the videos. We repeat this process
for all combinations and choose the one with the highest utility
as our final combination for eNB configurations.

Resource allocation and user grouping: With an eNB
configuration chosen for each video, we backtrack to find the
optimal resource allocation and the user grouping. We solve
the resource allocation problem (Equation 2) one more time
for the chosen combination of eNB configurations, but instead
of using the quadratic regression, we use the actual discrete
utility values. This gives us the optimal RB share for users in
all clusters subscribed to each video. We pass this as an input
to user grouping algorithm (Algorithm 1) to define our user
groups, their allocated RBs and assigned bitrates. MCE can
now configure the eNBs to create video-specific SFN clusters
and transmit different bitrates with the chosen MCS values
on a certain set of RBs. The total complexity of RTOP is
O(|V |·|B|·|T ′|·|Rv|2 + |B||V |).

IV. PERFORMANCE EVALUATION

In this section, we first present our simulation setup fol-
lowed by our performance evaluation results.

A. Simulation Setup

We consider an eMBMS service area consisting of a
numbers of eNBs arranged in a hexagonal grid. Users are
distributed normally or uniformly in the service area. We apply
the commonly used parameters [10][12] to our simulation
setup as listed in Table II. A normal distribution represents
cases such as sporting events or concerts where most of the
users are located in the center of the service area. A uniform
distribution represents cases such as shopping malls where
users are evenly located across the service area.

Users calculate Reference Signals Received Power (RSRP)
from each eNB, measure the achievable SINR from various
possible clusters and report the best CQI for each cluster based
on AWGN BLER vs SINR curves [13] with 1% error margin.
The target BLER is 1% in eMBMS [10], contrary to 10% in
unicast, as there are no physical layer re-transmissions.

For the system utility, we use Proportional Fairness (PF),
which is defined as the sum-log of rates assigned to all the
users. PF is a widely-used utility [7][8][9] for measuring
system fairness and efficacy. Based on PF-utility, we compare
the performance of the following approaches:

Optimal: Optimal results of our optimization model that
considers both SFN clustering and user grouping. We use
Gurobi Optimizer5 to solve the model.

BoLTE [7]: Creates SFN clusters to maximize PF-utility
but does not consider user grouping. The proposed algorithm

5http://www.gurobi.com/

Algorithm 2 Complete RTOP algorithm
Input: Svpc: CQI Groups in cluster c of eNB configuration p

for video v; See Table I for all other inputs
Output: Groups with no. of users and RBs for each bitrate

1: for v ∈ V do
2: for p ∈ P do
3: U [v, n, p]← 0 . n is # of clusters in p (Figure 3)
4: for c ∈ p do . For each cluster in p
5: rb← min(αT, T-Yb for b ∈ c) . Available RBs
6: utility, ← Algorithm 1(rb,Rv, Svpc)
7: U [v, n, p] += utility

8: if |V | == 1 and U [v, n, p] > Umax then
9: Umax = U [v, n, p]; Optimal Solution = (p)

10: else if U [v, n, p] > maxU [v, n] then
11: maxU [v, n]← U [v, n, p]
12: Candidates[v, n]← p . For class n
13: if |V | == 1 then go to Line 24 . Only one video
14: for p ∈ Candidates[v] do . eNB configurations for v
15: for c ∈ p do . Get Graphs for each cluster in p
16: rb← min(αT, T-Yb for b ∈ c) . Available RBs
17: Graph[v, p, c]← RBGRAPH(Rv, Svpc, rb)

18: Cartesian←(p1, .., pv) | pv∈Candidates[v] for v∈V
19: Umax ← 0
20: for solution ∈ Cartesian do . A combination of p’s
21: Get Utility U with regression from Equation 2
22: if U > Umax then
23: Optimal Solution← solution;Umax ← U

24: Get Optimal RBs for each cluster in Optimal Solution
without regression (Section III-B)

25: for v ∈ V do . Backtrack to find the optimal user groups
26: for c, rb ∈ Optimal RBs[v] do
27: , Groups[v, c]← Algorithm 1(Rv, Svpc, rb)

RBGRAPH(Rv, S,maxRBs) . S → CQI groups
28: for rb← 1 to maxRBs do
29: Utilities[rbs], ← Algorithm 1(rbs,Rv, S)

30: return Utilities

assumes single bitrate per video. For fair comparison, we
use the same heuristics but calculate the utility of an eNB
configuration by assigning the best achievable bitrate in each
of its clusters.

Variable Groups (VG) [8]: Creates user groups to maximize
the PF-utility but does not consider SFN clustering. Also, the
proposed algorithm solves the resource allocation problem for
only a single video.

One Large SFN (LSFN): A scheme that considers only user
grouping (no SFN clustering) based on our optimization model
and constraints. We replace VG with LSFN when analyzing
scenarios with multiple videos.

RTOP: Our proposed heuristics.
We evaluate the performance of these strategies in two

key scenarios: A generic scenario with multiple videos and a
mega event scenario with one video. In both cases, videos are
encoded at five different bitrates, as shown in Table II. For
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Fig. 6: Results for generic scenario with multiple videos.

mega event scenario, we also look at the impact of varying
resources available for eMBMS.

Our key performance metrics include the PF-Utility of
the system, Probability Mass Function (PMF) of the bitrates
assigned to users, Degraded Users (i.e. users with throughput
less than the lowest available bitrate) and the solution time
taken by an algorithm to perform resource allocation. We
analyze the impact of various network parameters and algo-
rithms on these metrics. For each configuration, we repeated
the experiment 25 times by varying the user topology. The
presented metrics are based on the average of these runs.

B. Generic Scenario: Multiple Videos

We present results for 3 videos and 4 eNBs in the service
area, where 1 eNB has higher unicast load (75 RBs) than
other 3 eNBs (50 RBs). We have tested networks with 2, 3 or
5 eNBs as well, and our conclusions are consistent among the
tested scenarios. Since VG cannot handle multiple videos, we
consider LSFN as a reference to analyze the benefits of SFN
clustering in our scheme.

1) System utility: Figures 6a and 6b plot the system utility
for normal and uniform user distribution, respectively. The
figures illustrate that our proposed heuristics achieved optimal
or near-optimal utility with a gap less than 1%. Additionally,
the figures show that in comparison to LSFN and BoLTE,
RTOP improves the utility by up to 8% which is achieved
by an increase of average bitrate by up to 50%. Note that as
LSFN does not consider SFN clustering, the available RBs for
eMBMS were restricted by the eNB with least resources and
all the users had to be satisfied with these RBs. On the other
hand, BoLTE lacks user grouping and could not assign rates
to users commensurate to their channel conditions.

For small number of users, a slight gap between RTOP and
optimal results can be noticed, especially for uniform user
distribution (Figure 6b). This is because, in such cases, the
difference between the achievable utility from different eNB
configuration can be very low and might not be detected by
RTOP, as it uses heuristics and quadratic regression for faster
approximation. However the difference in utility was marginal
and solutions chosen by RTOP were always within a 1% gap
from the optimal solution.

2) PMF of Assigned bitrates: Figure 6d shows the PMF for
normal and uniform user distributions. RTOP assigned bitrates

TABLE II: Simulation Parameters
Parameter Value
Cellular Layout Hexagonal grid with up to 5 eNBs
Cell radius 500 m
eNB Tx Power 20 Watts
Carrier Frequency 2.1 GHz
System Bandwidth 20 MHz
Number of RBs in 20MHz 100
Path Loss Model Log-Normal Shadowing n=4 (Urban)
White Noise Power Density -174 dBm/Hz
User UE Noise Figure 7 dB
Number of Users per Video 30 to 150
DASH Video bitrates [14] 375, 750, 1750, 3000 and 4300 kbps
Channel Model Multi-path Fading AWGN [13]
Spectral Efficiencies (bits/RB)
from CQIs 1 to 15

[20, 31, 50, 79, 116, 155, 195, 253,
318, 360, 439, 515, 597, 675, 733]

Simulation Laptop Specs. Dual Core Intel i7-5500U, 16GB RAM

in almost the same manner as optimal results, unlike BoLTE or
LSFN that allocated lower bitrates to users. The figure shows
that RTOP assigned bitrates to users proportionate to their
channel conditions and hence almost 75% of users received
a bitrate of 1.75 Mbps or higher. On the contrary, this ratio
dropped to around 50% for both BoLTE and LSFN.

3) Solution Time: Figure 6c plots the time taken to com-
pute the final solution for uniform user distribution. Solving
the problem optimally took around 100 seconds which is
practically infeasible to implement in a real-time network.
RTOP was able to consistently solve the same problem in
500ms, which is well within the limits of expected time
constraints [15]. BoLTE and LSFN solved the problem faster
but at a much lower utility as indicated above.

C. Mega Event Scenarios

A mega event refers to highly popular live events, such as
world cup finals. In this section, we analyze the performance of
RTOP for a mega event that is transmitted to users distributed
normally in a 5-eNB service area where 1 eNB has a higher
unicast load (90 RBs) than the other 4 eNBs (75 RBs).

1) System utility: Figure 7a shows the system utility of var-
ious algorithms. Similar to the generic scenario (Section IV-B),
RTOP outperformed VG and BoLTE by increasing the utility
up to 14% and average user bitrate up to 90%. Moreover,
the solution of RTOP was identical to the optimal case. This
is because the video had access to all the RBs available for
eMBMS and RTOP did not need to perform regression for
faster approximation.
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Fig. 7: Results for Mega Event Scenario.

2) Degraded Users: While VG places each user in a group,
it does not ensure that each group gets enough RBs to achieve
at least the minimum bitrate. Hence, users with very low
throughput are likely to experience frame skipping and video
stalls. Figure 7b plots the number of such degraded users. With
VG, in some cases up to 4% users were degraded. Our opti-
mization model and RTOP define a constraint on the minimum
allocated throughput to ensure a smooth streaming experience.
BoLTE does not explicitly define such a constraint, however
our implementation of BoLTE assigns the best possible bitrate
based on user-throughput in a cluster, and hence users can get
lower bitrates if throughput is low, therefore no users were
degraded.

3) PMF of Assigned bitrates: Figure 7d shows the PMF
of user bitrates. As the users were distributed normally, most
of the users were in the center of the service area where the
channel conditions were good. However, the number of users
that received high bitrates of 3 or 4.3 Mbps was only 6%
with BoLTE and 0% with VG, which was unfair to users with
good channel conditions. With RTOP this ratio increased to
72% leading to the maximum utility.

4) Solution Time: Figure 7c plots the time taken to compute
the final solution. As the number of users increased, the com-
putation time for VG increased exponentially, which makes it
unsuitable for mega events with large number of users. Our
optimization model is independent of number of users and
instead depends on number of CQI groups, which is usually
limited to 15 values in LTE. Solving the model optimally still
took more than 10 seconds which is not ideal for dynamic
operating conditions. RTOP solved the same problem within
200ms for any number of users in the network. Hence, RTOP
can be used in a dynamic network to accommodate changes
in the network and solve the resource allocation problem in
real-time.

D. Impact of Available Resources on Various Metrics

In this section, we explore the impact of available re-
sources at eNBs on the performance in case of a mega
event. As the RBs available to eMBMS decrease, subject to
their channel conditions, the number of users receiving high
bitrates decreases. We consider a service area comprising of
5 eNBs with 20 RBs for eMBMS. We analyze the impact of
decreasing available RBs at one eNB when there are 1000
users normally distributed in the service area. Since RTOP
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Fig. 8: Impact of RBs available for eMBMS.

always achieves the same result as the optimization model, we
omit the optimization model results in the interest of space.

When there were 20 RBs available at each eNB, the best
decision was to place all eNBs in one cluster and split
users in two groups. LSFN and RTOP achieved maximum
utility (Figure 8a) by making the right decisions. As VG is
agnostic to video bitrates, it maximizes the system utility
without assigning enough RBs to the user group with bad
channel conditions. Hence, VG resulted in some degraded
users (Figure 8c). BoLTE also achieved lower utility than
RTOP as it is incapable of creating user groups and placed
all users in one group.

As the available RBs on the highly congested eNB de-
creased, the utility started dropping. Until this eNB had 10
RBs available for eMBMS, the best decision was to keep all
eNBs in one cluster and hence LSFN and RTOP achieved the
same utility by creating one cluster and grouping users based
on their channel conditions. Although VG can also create user
groups, most of the times it achieved a lower utility because
the constraint of serving all the users with a bitrate was not
respected. BoLTE is unable to create user groups and hence
achieved lower utility as well.

As the available RBs decreased further, separating the
highly congested eNB in a second SFN cluster was the better
decision. RTOP made this decision and achieved optimal



utility but LSFN being unable to create SFN clusters, kept
all eNBs synchronized and achieved lower utility than RTOP.
RTOP outperformed VG and BoLTE in these cases as well
(Figure 8d).

V. RELATED WORK

A large amount of work focuses on using multicast at the
network [1] or application [16] layers. Approaches such as
mCast [17] reduce resource consumption in the wired network
including backbone, core and wired access network. However,
the last hop for cellular networks is wireless, where the spec-
trum is scarce and higher layer multicast gets converted back
to unicast, resulting in redundant transmissions and wastage
of physical resources. User grouping schemes [9] [18] focused
on wired medium do not consider resource allocation in the
wireless network.

eMBMS enables multicast at the physical and link-layer of
cellular networks by configuring users to receive video content
over shared wireless resources. Research has been conducted
to incorporate forward-error correction in eMBMS [19] at
the application layer to improve reliability in the absence of
detailed user feedback. However, issues such as efficiently
allocating resources at the physical layer are not addressed.

Some researchers have proposed multicast resource alloca-
tion techniques for cellular networks. Authors of [20] propose
using users with good channel conditions as relays for users
with bad channel conditions. Such methods are not realistic
due to the greedy nature of users and low-latency requirements
of live streaming. Muvi [6] uses scalable video coding in
attempt to maximize the utility for multicast users but does not
consider the impact on unicast users. [21] solves user grouping
problem for a single-cell network and assigns an MCS value
to each group with the goal to maximize proportional fairness,
but sometimes places users in groups where the MCS value is
higher than what they can decode.

Authors of [8] propose an optimization model that considers
grouping users based on their channel conditions while con-
sidering the impact on unicast users. Although this approach
ensures that all users are assigned some resources, it does
not guarantee that those resources are enough to achieve at
least the minimum bitrate of the transmitted video. Also, the
model does not consider the presence of multiple videos or
the possibility of SFN clustering.

In [12], the authors evaluate how the number of eNBs in an
SFN cluster affect the eMBMS service, but they do not pro-
pose any solution for determining the best eNB configuration.
BoLTE [7] addresses the SFN clustering problem for multiple
broadcast sessions, however does not explore the possibility
of grouping users based on their channel conditions, which is
unfair to users with good conditions and limits the achievable
utility.

VI. CONCLUSION

In this paper, we considered the joint optimization of
user grouping, SFN clustering and resource allocation in an
eMBMS network. We developed an efficient and scalable

heuristic-based algorithm, RTOP, that finds optimal or near-
optimal results in real-time with no more than a 1% gap
from the optimal solution. Additionally, we compare RTOP
with state-of-the art techniques using extensive simulations. In
situations where other approaches could assign high bitrates to
less than 10% users, RTOP was able to assign high bitrates to
75% of the users. We show that overall our approach improves
the system utility by up to 14% and the average user bitrates
by up to 90% while avoiding service degradation for the users.
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