
Title Reliable chip design from low powered unreliable components

Authors Grandhi, Satish Kumar

Publication date 2019

Original Citation Grandhi, S. K. 2019. Reliable chip design from low powered
unreliable components. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2019, Satish Kumar Grandhi. - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2024-04-28 08:31:44

Item downloaded
from

https://hdl.handle.net/10468/8610

https://hdl.handle.net/10468/8610

Reliable Chip Design from Low
Powered Unreliable Components

Author: Satish Kumar Grandhi

Supervisor: Dr. Emanuel M. Popovici

Department of Electrical and Electronic Engineering, School of Engineering
Head of School: Prof. William Marnane

A Thesis Submitted to the National University of Ireland, Cork, in
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2019

I would like to dedicate this thesis to my spiritual master his divine grace Bhakti Vedanta
Swami Srila Prabhupada Founder of ISKCON . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and acknowledgements.

Declaration1: Part of the CPEP based reconvergent fanout analysis was done by my
colleague Bo Yang [1] [2]. This is covered in Section 3.3.6.

Declaration2: Mathematical analysis of the CPE methodology was done with Dr. Savin
Valentin, CEA LETI [3] [4]. This is covered in section 5.4.

Author: Satish Kumar Grandhi
September 2019

Abstract

The pace of technological improvement of the semiconductor market is driven by Moore’s
Law, enabling chip transistor density to double every two years. The transistors would
continue to decline in cost and size but increase in power. The continuous transistor scaling
and extremely lower power constraints in modern Very Large Scale Integrated(VLSI) chips
can potentially supersede the benefits of the technology shrinking due to reliability issues. As
VLSI technology scales into nanoscale regime, fundamental physical limits are approached,
and higher levels of variability, performance degradation, and higher rates of manufacturing
defects are experienced. Soft errors, which traditionally affected only the memories, are now
also resulting in logic circuit reliability degradation. A solution to these limitations is to
integrate reliability assessment techniques into the Integrated Circuit(IC) design flow. This
thesis investigates four aspects of reliability driven circuit design: a)Reliability estimation; b)
Reliability optimization; c) Fault-tolerant techniques, and d) Delay degradation analysis.

To guide the reliability driven synthesis and optimization of combinational circuits, highly
accurate probability based reliability estimation methodology christened Conditional Prob-
abilistic Error Propagation(CPEP) algorithm is developed to compute the impact of gate
failures on the circuit output. CPEP guides the proposed rewriting based logic optimization
algorithm employing local transformations. The main idea behind this methodology is to
replace parts of the circuit with functionally equivalent but more reliable counterparts chosen
from a precomputed subset of Negation-Permutation-Negation(NPN) classes of 4-variable
functions. Cut enumeration and Boolean matching driven by reliability-aware optimization
algorithm are used to identify the best possible replacement candidates. Experiments on a
set of MCNC benchmark circuits and 8051 functional microcontroller units indicate that
the proposed framework can achieve up to 75% reduction of output error probability. On
average, about 14% SER reduction is obtained at the expense of very low area overhead of
6.57% that results in 13.52% higher power consumption.

The next contribution of the research describes a novel methodology to design fault
tolerant circuitry by employing the error correction codes known as Codeword Prediction
Encoder(CPE). Traditional fault tolerant techniques analyze the circuit reliability issue from
a static point of view neglecting the dynamic errors. In the context of communication and

v

storage, the study of novel methods for reliable data transmission under unreliable hardware
is an increasing priority. The idea of CPE is adapted from the field of forward error correction
for telecommunications focusing on both encoding aspects and error correction capabilities.
The proposed Augmented Encoding solution consists of computing an augmented codeword
that contains both the codeword to be transmitted on the channel and extra parity bits.
A Computer Aided Development(CAD) framework known as CPE simulator is developed
providing a unified platform that comprises a novel encoder and fault tolerant LDPC decoders.
Experiments on a set of encoders with different coding rates and different decoders indicate
that the proposed framework can correct all errors under specific scenarios. On average,
about 1000 times improvement in Soft Error Rate(SER) reduction is achieved.

Last part of the research is the Inverse Gaussian Distribution(IGD) based delay model
applicable to both combinational and sequential elements for sub-powered circuits. The
Probability Density Function(PDF) based delay model accurately captures the delay behavior
of all the basic gates in the library database. The IGD model employs these necessary
parameters, and the delay estimation accuracy is demonstrated by evaluating multiple cir-
cuits. Experiments results indicate that the IGD based approach provides a high matching
against HSPICE Monte Carlo simulation results, with an average error less than 1.9% and
1.2% for the 8-bit Ripple Carry Adder(RCA), and 8-bit De-Multiplexer(DEMUX) and
Multiplexer(MUX) respectively.

Acknowledgements

Doing a Ph.D. is a journey of self-discovery which can be very rewarding and enlightening.
It’s a time to take charge of one’s learning and to develop a broad set of valuable new skills.
Like any long journey, though, it’s not without hardship. My Ph.D. research started when
I left Cypress Semiconductors, Bengaluru India back in 2013 and moved to Cork. In the
intervening three years, my life has changed dramatically. I believe that every person one
meets leaves signs on our road to improvement. I was lucky to meet many such beautiful
people during my research. This work was supported by the Seventh Framework Programme
of the European Union, under Grant Agreement number 309129 (i-RISC project).

First, I would like to thank my supervisor Dr. Emanuel Popovici for giving me the
opportunity to pursue my doctoral studies on an intriguing subject such as VLSI EDA.
Thanks for giving me the chance to travel around the world and visit many interesting places
over the years and finally thanks for all the help, support and encouragement that he gave me
during my Ph.D. studies.

To my i-RISC research group members: Prof Sorin Cotofona, TU Delft has been my
second supervisor. His amazing command over the subject and the amazing sense of humor
dazzles me. I was fortunate to have worked directly with Dr. Savin Valentin, CEA LETI and
learn a bit about LDPC coding techniques from his decades of working experience. I was
also very fortunate to have three post-docs supervising me at different time periods. Dr. Chen
made me feel comfortable with the new place when I started my Ph.D. journey. Then, Dr.
Christian Spagnol builds the foundation of my research and helped me in publishing quite a
few papers. Last, but not the least, Dr. Elsa Dupraz came at the end of my Ph.D. and helped
me to solve on some of the pending problems. I am very thankful for many discussions
we had, about our research work and beyond. It takes a considerable amount of effort and
perseverance, to come to the point where only acknowledgments are left to be included in
the dissertation. They have helped me reach this point

My labmates need special mention for bearing me for three years. Bruno, Fiona, BO,
Nasim, Alan, and David: Thank you, folks, for all the fun chats. Thanks to all the staff of the
Electric and Electronic Engineering Department for all the help, assistance and kindness. I
was also fortunate to make some good friends from my Indian community. Prasanna, Charles,

vii

Umanath, and Preethi I must have bugged you a lot. It is not over, get ready for more for the
rest of life. Time spent with my local Telugu batch was the best moment of this three years.
Thanks, guys for the fun games and the spicy Indian food. To my family, I am grateful for the
most important signs in my life that made it more comfortable when deciding which turns to
take. Last but not the least, my beautiful wife Susheela who has been most supportive during
the whole editing of the thesis.

viii

Publications
The thesis is based in part on the following publications:

• J2: Grandhi, S., Yang, B., Spagnol, C., Gupta, S. and Popovici, E., 2016. An EDA
Framework for Reliability Estimation and Optimization of Combinational Circuits.
Journal of Low Power Electronics, 12(3), pp.242-258.

• J1: Chen, J., Cotofana, S., Grandhi, S., Spagnol, C. and Popovici, E., 2015. In-
verse Gaussian distribution based timing analysis of Sub-threshold CMOS circuits.
Microelectronics Reliability, 55(12), pp.2754-2761.

• C7: Yang, B., Grandhi, S., Spagnol, C., Popovici, E. and Cotofana, S., 2016, June.
An approach for digital Circuit Error/Reliability Propagation Analysis based on Condi-
tional Probability. In 2016 27th Irish Signals and Systems Conference, pp.1-6.

• C6: Dupraz, E., Savin, V., Grandhi, S., Popovici, E. and Declercq, D., 2016, May.
Practical LDPC encoders robust to hardware errors. In 2016 IEEE International
Conference on Communications, pp.1-6.

• C5: Grandhi, S., Dupraz, E., Spagnol, C., Savin, V. and Popovici, E., 2016, May.
CPE: Codeword Prediction Encoder. In 2016 21th IEEE European Test Symposium,
pp.1-2.

• C4: Grandhi, S., McCarthy, D., Spagnol, C., Popovici, E. and Cotofana, S., 2015,
October. Rost-c: Reliability driven optimisation and synthesis techniques for combi-
national circuits. In 2015 33rd IEEE International Conference on Computer Design,
pp.431-434.

• C3: Grandhi, S., Spagnol, C., Chen, J., Popovici, E. and Cotafona, S., 2014, Septem-
ber. Reliability aware logic synthesis through rewriting. In 2014 27th IEEE Interna-
tional System-on-Chip Conference, pp.274-279.

• C2: Grandhi, S., Spagnol, C. and Popovici, E., 2014, June. Reliability analysis
of logic circuits using probabilistic techniques. In 2014 10th Conference on Ph. D.
Research in Microelectronics and Electronics, pp.1-4.

• C1: Chen, J., Spagnol, C., Grandhi, S., Popovici, E., Cotofana, S. and Amaricai, A.,
2014, July. Linear compositional delay model for the timing analysis of sub-powered
combinational circuits. In 2014 IEEE Computer Society Annual Symposium on VLSI,
pp.380-385.

Table of contents

List of figures xiii

List of tables xvi

Nomenclature xvii

1 Introduction 1
1.1 VLSI Design, Automation and Reliability 1
1.2 Objectives and Thesis Contributions . 3

1.2.1 Research Objectives . 3
1.2.2 Thesis Statement . 3
1.2.3 Circuit Representation and Modification 4
1.2.4 Reliability Estimation and Analysis 5
1.2.5 Reliability Driven Logic Optimization 6
1.2.6 Fault Tolerant Graph Augmentation 7
1.2.7 PDF based Delay Degradation Analysis 8

1.3 The Research Framework . 9
1.4 Conclusions . 11

2 Reliability in Logic Circuit Design 13
2.1 Introduction . 13

2.1.1 Understanding Reliability . 14
2.1.2 Transient faults in logic circuits 16

2.2 Reliability Estimation . 17
2.3 Reliability Aware Logic Synthesis . 19
2.4 Fault Tolerant Techniques . 20
2.5 Static Timing Analysis . 21
2.6 Conclusions . 22

Table of contents x

3 Reliability Estimation 24
3.1 Introduction . 24

3.1.1 Main Contributions and Outline 24
3.2 Simulation Based Reliability Computation 25

3.2.1 Mersenne Twister and Random Number Generation 25
3.2.2 Gate Error Model . 26
3.2.3 The Methodology . 26
3.2.4 Limitations . 28

3.3 CPEP: Conditional Probabilistic Error Propagation 29
3.3.1 The Data Structure . 29
3.3.2 Gate Error Models . 30
3.3.3 2-Input Ideal AND Gate . 31
3.3.4 Intrinsic Gate Error Effects . 32
3.3.5 Ideal inverter . 33
3.3.6 Re-convergent Fanout . 34
3.3.7 Bounding Node Error Probability 35
3.3.8 CPEP based Analysis . 35
3.3.9 CPEP extension to other Gates . 37
3.3.10 Limitations . 38

3.4 CAD Tool: Reliability Evaluator . 38
3.4.1 Computation Algorithm . 39
3.4.2 Simulation Results . 40

3.5 Conclusions . 43

4 Reliability Aware Logic Synthesis 44
4.1 Introduction . 44

4.1.1 Main Contributions and Outline 45
4.2 ABC : Open Source EDA tool . 46

4.2.1 AND Invert Graphs . 46
4.2.2 ABC Tool . 48

4.3 Rule based Rewriting . 49
4.3.1 Local Transformation Rules . 50
4.3.2 Exhaustive Analysis of Rules . 53
4.3.3 The CAD algorithm . 54

4.4 Experimental Results . 59
4.4.1 Case study . 59
4.4.2 Evaluation of MCNC Benchmark Circuits 60

Table of contents xi

4.5 Cut Based AIG Rewriting . 61
4.5.1 The CAD Algorithm . 63

4.6 Experimental Results . 65
4.6.1 CM162a – A Case Study . 65
4.6.2 Evaluation of Benchmark Circuits 70

4.7 Conclusions . 72

5 CPE : Codeword Prediction Encoder 73
5.1 Introduction . 73

5.1.1 Main Contributions and Outline 74
5.2 LDPC Codes and Error Models . 76

5.2.1 LDPC codes . 77
5.2.2 LDPC Encoding and Decoding . 78
5.2.3 Gate Error Model . 79

5.3 Codeword Prediction Encoder (CPE) . 79
5.4 CPE Mathematical Analysis . 81

5.4.1 CPE Cost Analysis . 81
5.4.2 Notation and Conventions . 82
5.4.3 Cost analysis for Area/Power . 83
5.4.4 Error Correction Capacity . 85
5.4.5 CPE and Modular Redundancy . 86

5.5 CPE Simulator and CAD Automation . 90
5.5.1 CPE Core Architecture . 90
5.5.2 Criticality Threshold . 90
5.5.3 Pre-Processing . 91
5.5.4 Netlist Format . 92
5.5.5 CPE Simulator . 93

5.6 Experimental Results . 94
5.6.1 Critical Nodes . 95
5.6.2 Impact of Decoder Configuration 96

5.7 CPE for Fault Prone Boolean Functions 97
5.7.1 Encoding Mechanism . 97

5.8 Experimental Results . 98
5.8.1 Critical Nodes . 99
5.8.2 Area Overhead . 100
5.8.3 NMR Vs. CPE . 101
5.8.4 Impact of LDPC code sizes on Area 101

Table of contents xii

5.8.5 Case Study . 102
5.9 Conclusions . 104

6 Delay Degradation Analysis 105
6.1 Introduction . 105

6.1.1 Main Contributions and Outline 106
6.2 Library Cells Simulation Methodology . 106

6.2.1 Library Characterization . 107
6.2.2 Timing Verification . 107
6.2.3 Simulation Methodology . 108

6.3 Linear Compositional Delay Model . 108
6.3.1 Flexibility (universality) of IGD model 109

6.4 IGD Based Delay Model for Combinational and Sequential circuits 112
6.4.1 Typical timing path in synchronous CMOS circuits 112
6.4.2 Combinational Gates - INV, NAND, NOR & XOR 113
6.4.3 Sequential Circuits- Master Slave DFF 114
6.4.4 Sequential Circuits- Sub-Threshold DFF 115

6.5 Fan-out Aware IGD Model . 116
6.5.1 Fan-out effect estimation methodology 117
6.5.2 Transition time effect estimation methodology 118
6.5.3 The FOC and FOP effects . 120
6.5.4 Model Validation for Synchronous Circuits 120

6.6 Conclusions . 123

7 Summary and Future work 125
7.1 Contributions . 125

7.1.1 Data Structure . 126
7.1.2 Inverse Gaussian Distribution Based Timing Analysis 126
7.1.3 ROST-C: Reliability driven Optimization and Synthesis 127
7.1.4 Error Coding Driven Graph Augmentation 128
7.1.5 Boole-Shannon Limit of noisy combinational logic 128

7.2 Future Work . 129

References 131

List of figures

1.1 Four significant areas of current research 4
1.2 Different Data-structures . 5
1.3 Reliability Estimation Flow . 6
1.4 Reliability Driven Circuit Optimization Example 7
1.5 The Codeword Prediction Encoder(CPE) flow 8
1.6 PDF propagation and Methodology . 9
1.7 The IRISC Project Details . 10
1.8 The Complete Flow . 12

2.1 Classification of Reliability . 14

3.1 Gate Error Model for GLS based technique. 26
3.2 Unreliable Data transmission through on Inverter and AND Gates. 27
3.3 And Inverter representation of Combinational Circuit 29
3.4 Unreliable AND Gate Model . 30
3.5 Unreliable Inverter Model . 33
3.6 Re-convergent Fanout Structures . 34
3.7 Bounding Error . 35
3.8 B9 Benchmark Circuit Error Bounds . 36
3.9 Design Flow for Reliability Computation 41

4.1 And Inverter representation of Combinational Circuit 47
4.2 Cut Example . 47
4.3 Boolean Equivalent . 48
4.4 Logic Transformation Rule1 . 50
4.5 Logic Transformation Rule2 . 51
4.6 Logic Transformation Rule3 . 51
4.7 Logic Transformation Rule4 . 52
4.8 Logic Transformation Rule5 . 52

List of figures xiv

4.9 All simulation results for Rule1 . 55
4.10 All simulation results for Rule2 . 55
4.11 All simulation results for Rule3 . 56
4.12 All simulation results for Rule4 . 56
4.13 Reliability Aware Logic Synthesis Flow 58
4.14 Application of logic transformation rule-set on the original Circuit 60
4.15 Comparison of results . 61
4.16 MCNC Benchmark CM162A – A Case Study 66
4.17 Comparison of results : Node count reduction 70
4.18 Comparison of results: Power reduction 71
4.19 Comparison of results : Reliability improvement 71

5.1 Methodology of Codeword Prediction Encoder 75
5.2 Data transmission scheme . 76
5.3 LDPC Codes . 77
5.4 LDPC message computation . 78
5.5 Gate Error Model. 79
5.6 Encoding error probability Pe with respect to gate error probability pg. In

the legend, the (3,x)-code represents the code with dv = 3 and dc = x. . . . 80
5.7 First encoding solution . 80
5.8 The CPE approach . 81
5.9 Delay vs. normalized area for MR and CPE schemes with various unrolling

factors. 88
5.10 The CPE Tool Architecture . 91
5.11 The CPE CAD flow . 94
5.12 Critical Threshold impact on Output BER 95
5.13 Decoder Configuration impact on Output BER 96
5.14 CPE error free scenario employing faulty decoder 97
5.15 CPE error free scenario employing perfect decoder 97
5.16 CDF of the number of erroneous outputs generated by one single error injection 98
5.17 CDF plot of criticality degree . 99
5.18 Critical node count for different Linear and Non-Linear circuits. 100
5.19 Area overhead due to parity augmentation. 100
5.20 Performance of NMR Vs CPE . 101
5.21 Area and timing Analysis on IP cores using CPE methodology. 102
5.22 Output BER for various Criticality thresholds 103
5.23 Detailed plots for output error on F, P and decoder output nodes. 103

List of figures xv

6.1 Library Characterization Flow . 108
6.2 IGD and GD fittings for 2 Input AND gate 110
6.3 Seven AND gate chain . 111
6.4 IGD vs GD fitting for 2-input AND gate with only supply variation. 112
6.5 IGD and GD fittings for basic gates charging and discharging events 114
6.6 IGD and GD fittings for DFF charging and discharging events 115
6.7 IGD and GD fittings for Sub-threshold based DFF architecture. 116
6.8 A sample circuit with FOC= 3 and FOP= 2. 119
6.9 DFFs +8-bit RCA CDFs. 121
6.10 Schematic of 8-bit DEMUX and MUX. 122
6.11 DFFs +8-bit DEMUX and MUX CDFs. 123

List of tables

3.1 Ideal AND Gate with Unreliable Inputs 32
3.2 Faulty AND Gate with Unreliable Inputs 33
3.3 MCNC Benchmark Circuits Based Accuracy and Performance Evaluation

for different gate errors (ε) . 42

4.1 Scenarios used for rules analysis . 54
4.2 MCNC Benchmark Circuits Performance Evaluation (gate error: ε = 0.05.) 62
4.3 RWREL Performance Evaluation on different Benchmark Circuits (Gate

error ε = 0.001) . 68
4.4 Area, Delay and Power Analysis – A comparative Study 69

5.1 CPE Netlist Representation . 92
5.2 Critical Gate count for different encoding schemes 95

6.1 µ and λ for NAND, INV and DFF . 115
6.2 INV & NAND FOC key parameter values. 117
6.3 FOP effect on output transition time (all values in ps). 118
6.4 FOP effect on key parameters for INV. 119
6.5 FOP effect on key parameters for NAND. 120
6.6 DFFS +8-BIT RCA CDF deviations. 122
6.7 DFFS +8-BIT DEMUX and MUX CDF deviations. 123

Nomenclature

Acronyms / Abbreviations

AIG And Invert Graphs

AT PG Automatic Test Pattern Generation

BER Bit Error Rate

BLIF Berkeley Logic Interchange Format

BN Bayesian Networks

BSC Binary Symmetric Channel

CCS Composite Current Source

CDF Cumulative Distribution Functions

CNFET Carbon Nanotube Field-Effect Transistors

CPEP Conditional Probabilistic Error Propagation

CT Criticality Threshold

DRM Dynamic Reliability Management

DTA Dynamic Timing Analysis

DWAA Dynamic Weighted Average Algorithm

ECC Error Correcting Codes

EMI Electro-Magnetic Interference

FA Full Adder

Nomenclature xviii

FER Frame Error Rate

FO Fan-Out

GALB Gallager B

GD Gaussian Distribution

GLS Gate Level Simulation

HCI Hot Carrier Injection

IC Integrated Circuits

IEEE Institute of Electrical and Electronics Engineers

LDGM Low Density Generator Matrix

LDPC Low-Density Parity-Check

LDPC Low-Density Parity-Check

LER Line Edge Roughness

LUT Look Up Table

MC Monte-Carlo

MCNC Microelectronics Centre of North Carolina

MCSTA Monte Carlo Static Timing Analysis

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MP Modular Redundancy

MRF Markov Random Fields

MS Min-Sum

MT Mersenne Twister

NBT I Negative Bias Temperature Instability

NLDM Non Linear Delay Model

PDD Probabilistic Decision Diagrams

Nomenclature xix

PGM Probabilistic Gate Model

PI Primary Inputs

PO Primary Outputs

PRNG Pseudo-Random Number Generator

PT M Predictive Transistor Models

PT M Probabilistic Transfer Matrices

PV T Process, Voltage, and Temperature

R2R Register to Register

RAR Redundancy Addition and Removal

RDF Random Dopant Fluctuations

RMR R-fold Modular Redundancy

RT L Register Transfer Language

SAIF Switching Activity Interchange Format

SCMS Self-Corrected Min-Sum

SER Soft Error Rate

SEU Single Event Upsets

SPRA Signal Probability Reliability Analysis

SSTA Statistical Static Timing Analysis

STA Static Timing Analysis

T GMS Transmission-Gate Master-Slave

T MR Triple Modular Redundancy

V HDL VHSIC Hardware Description Language

Chapter 1

Introduction

1.1 VLSI Design, Automation and Reliability

Computing technology is the cornerstone of modern day human progress. Digital systems
permeate all areas of our lives, from personal computers, through automotive applications
and medical systems, to common house appliances. Although these digital systems provide
greater productivity and flexibility, they cannot be fault-free. In this regard, the semiconductor
industry has driven more than five decades of improvements in its products mainly thanks
to scaling trends. Technology scaling is leading to a decrease in device geometry and
the increase in clock frequencies, resulting in a significant increase in the incidence of
transient errors [5]. Thus, although technology trends allowed for easily obtained low-cost,
high-performance microprocessors, the critical issue for these processors is to satisfy the
requirements of dependable computing.

Traditional Very-Large-Scale Integration(VLSI) design methodologies and Electronic
Design Automation(EDA) tools are centered around fulfilling timing, power, and area
constraints or on achieving acceptable trade-offs among those [6] [7]. However, as the
Complementary Metal-Oxide-Semiconductor(CMOS) technology entered the nanometer era,
such an approach can no longer cover all the relevant design aspects. Technology scaling has
precipitated higher operating speeds, lower operating voltages, and lower operating noise
margins; all of which contribute to reduced switching energies, allowing legitimate logic
signals to be readily overwhelmed by single-event-induced charge-collection transients [8].
Nanotechnology specific issues, e.g., power supply voltage reduction, the higher impact of
the process parameter and temperature variations, resulting in increased device failure rates,
making CMOS Integrated Circuits(IC) less reliable [9] [10].

As power usage is proportional to the square of voltage, operating at very low voltages
offers a potential for significant power savings [11] [12]. However, this would mean the sup-

1.1 VLSI Design, Automation and Reliability 2

ply voltage is significantly below the transistor threshold voltage, and it is well known that in
this weak inversion regime, Metal-Oxide-Semiconductor Field-Effect Transistor(MOSFET)
transistors exhibit high voltage gain but very low currents [12]. There are many possible ways
in which a sub-threshold circuit may become unreliable. The simplest is due to noise, made
worse by leakage induced noise. Stuck-at or similar persistent faults can occur due to process
variations [9] [10], either statically or dynamically (dependent on temperature and voltage).
This behavior is inherent as silicon doping is a stochastic process, and in small process
geometries, a tiny number of dopant atoms can be present in a MOSFET transistor channel.
Thus, the stochastic process does not necessarily average out, leading to nearby MOSFET’s
having very different electrical properties and by implication switching behaviour [11].

The scaling of device feature sizes, operating voltages, and design margins raises a great
concern about the susceptibility of circuits to transient faults [13] [14] [15] [16] [17] [18],
which can be caused by different physical phenomena (e.g., energetic particle hits originating
from cosmic rays, capacitive coupling, electromagnetic interference, power transients) [17].
As technology scales further, variations become prominent as well. The technology nodes
below 90nm also referred to as deep sub-micron, experience higher levels of device parameter
variations, which are changing the design problem from deterministic to probabilistic [19].
Reliable operation of digital systems is severely challenged, thus pointing to the use of fault
tolerance driven design methodologies, not only for the mission or life-critical applications
but also, for regular, mass-market applications. To allow for the efficient design of a system
that can tolerate faults, a first natural step includes understanding the source of induced errors,
but most importantly, their modeling and analysis for guiding the design processes.

When considering transient faults, it is important to note the following: (i)Not all transient
faults lead to errors and (ii)Not all errors lead to system failures [5]. In this thesis, the focus
is on the first claim estimating the likelihood that a transient fault at the output of an internal
gate will lead to an error at primary outputs. The primary goal of this thesis is to allow for
accurate modeling and efficient estimation of the susceptibility of combinational circuits to
transient faults, including the impact of process parameter variation. Intensive research has
been done so far around analysis of transient faults in combinational and sequential circuits
[9] [10] [13] [14] [15] [16] [17] [18]. One obvious approach is to inject the fault into the
given node of the circuit and simulate the circuit for different input vectors to find whether
the fault propagates [20] [8] [21] [22]. However, this approach becomes intractable for
larger circuits with a larger number of inputs and thus gives way to approximate approaches
that use analytical methods to evaluate circuit susceptibility to transient faults. The proposed
framework can be used to reduce the cost of applying various techniques for error detection
and correction.

1.2 Objectives and Thesis Contributions 3

Another unreliability mechanism is unpredictable timing. In [23], it was indicated that
sub-powered gate arrival times follow inverse Gaussian distributions, with a long calculation
completion time tail. In a practical system, a gate chain has a certain allowed slack, and
if individual gate completion times change this may be exceeded, and errors may occur.
Even a small error probability at the level of individual gates might result in a significant
error probability at the circuit final outputs [24]. It is noted that this tendency is not CMOS
specific, as even the most promising post-silicon devices, e.g., Carbon Nanotube Field-
Effect Transistors (CNFETs) that are considered to replace CMOS eventually suffer from
various amounts of statistical variation in device behavior, potentially leading to a lack of
reliability [10]. As a result, reliability is turning out into an important design metric sharing
equal importance with the other existing design metrics. Consequently, design time reliability
assessment and optimization is becoming a mandatory IC design flow step which targets the
reliability improvement for circuits/systems built with unreliable components.

1.2 Objectives and Thesis Contributions

This section lists the research objectives and several important contributions of this work in
modeling and analysis of transient faults.

1.2.1 Research Objectives

The first objective of this research is the achievement of systematic synthesis and optimisation
of reliable circuits, culminating with a multi-objective circuit design optimization, with
respect to its size, energy consumption, latency, and all driven by reliability. This includes
various tasks like reliability estimation model, reliability optimisation algorithms and delay
degradation timing analysis.

The second objective of this research is a fundamental study on the effectiveness of
integrating error correcting codes into the structural (Boolean network) implementation of
the circuit logical functionality.

1.2.2 Thesis Statement

This research presents a systematic Electronic Design Automation(EDA) methodology to
model the propagation of errors through combinational circuits, optimization, and fault toler-
ant techniques to improve circuit reliability, and delay degradation analysis. The propagation
of transient faults in combinational circuits can be efficiently and accurately modeled using
probabilistic symbolic forms the foundation of a computational framework. This framework

1.2 Objectives and Thesis Contributions 4

can include (i) modeling of transient fault propagation, irrespective of the transient fault
origin, (ii) the impact of variability sources on fault propagation and (iii) reliability driven
logic optimization and fault tolerant techniques. The main research work presented as part
of this thesis is divided into four significant areas as illustrated in Fig. 1.1. More details are
provided in the next sub-section.

Fig. 1.1 Four significant areas of current research

1.2.3 Circuit Representation and Modification

Over the years, several academic EDA tools [25] [26] [27] have been proposed that
provide a programming environment and a stable platform for research in logic synthesis,
and power optimization as well as to implement new algorithms. In all these academic tools,
data structures and algorithms largely determine the tool efficiency in providing support
for implementing new features. AIG is employed as the data structure and ABC as the
platform to develop and implement all the reliability related algorithms. ABC [28], which
is a logic synthesis and verification tool that performs scalable logic optimization based on
And-Invert-Graph(AIG) [29].

1.2 Objectives and Thesis Contributions 5

Fig. 1.2 Different Data-structures

As part of the research, A tool has been developed that converts the input Verilog file into
multiple internal formats as described in Fig. 1.2.The tool accepts high-level description (e.g.,
Berkeley Logic Interchange Format(BLIF), VHSIC Hardware Description Language(VHDL),
Verilog) of a generic function as an input. It then translates it into the ".eqn" intermediate
format and then generates the corresponding AIG representation. During the process of
modifying the circuit representation, the logical equivalence of the original and new circuit is
guaranteed by adopting various formal verification techniques.

1.2.4 Reliability Estimation and Analysis

Reliability analysis of logic circuits deals with the computation of the impact that gate
errors might have on the circuit Primary Outputs(PO). The reliability measures and models
(error/energy/power/etc.) are central to designing tools and methodologies. Plain reliability
analysis based on HSPICE Monte Carlo simulation is not feasible on real-time circuits due
to its prohibitive computation time and computing resource requirements. Several analytical
approaches were previously proposed [30]. In this research, the circuits are represented in
the AIG format creating the need for novel reliability computation algorithm, with the prime
focus being AND and INVERTER gates. Two different methodologies are devised based on
simulation-based approach and the probabilistic error gate model-based approach. Fig. 1.3
depicts the complete flow of the reliability analysis tool.

1.2 Objectives and Thesis Contributions 6

Fig. 1.3 Reliability Estimation Flow

Both the probabilistic and simulation-based reliability computation algorithms are applied
on the circuit under test. The probabilistic based methodology emulated all the gates with the
probabilistic error models and based on input switching activity, static probability, and gate
error values, it computes the expected reliability of the output node. The simulation-based
algorithm appends all the gates with an XOR gate to randomly toggle the output value to
insert an error randomly. To overcome the default random generator function limitations, the
Mersenne twister is used to generate highly random test patterns, which highly facilitates in
computing the final output reliability [31]. The final output reports from both these models
are compared to define the accuracy of the probabilistic gate error model. Though very
accurate, the simulation methodology is very expensive regarding execution time, which
might preclude its utilization on large circuits. Eventually, it is a trade-off between accuracy
and speed when choosing one of these two algorithms.

1.2.5 Reliability Driven Logic Optimization

Logic optimization and synthesis is the process of taking in a higher-level circuit representa-
tion and translating it into real logic gates. The main focus is to develop reliability driven
systematic synthesis and optimization methodologies, ideally culminating in multi-objective
circuit design optimization. The introduction of reliability as circuit figure of merit leads to a
4-dimensional (area, delay, power, reliability) solution space and has a tremendous influence

1.2 Objectives and Thesis Contributions 7

on the complexity of the synthesis process. As part of the research, two optimisation tech-
niques employing primitive rewriting techniques [32] are developed with improving circuit
reliability as the end goal. A rewriting algorithm is a methodology where small sections of
the circuit are identified and are replaced with logical functional equivalent’s that improves
given constraint(reliability in this case).

Fig. 1.4 Reliability Driven Circuit Optimization Example

Fig. 1.4 depicts the optimised circuit derived from the original circuit after employing a
set of logic transformations. The reliability estimation algorithm is used to pick the logic
transformation that provides the highest reliability improvement. This process continued
until no more rules can be applied on a given node. The logic network describing the function
is updated during each iteration of the optimization algorithm. The similar set of operations
are employed on all the nodes in the circuit thereby obtaining the most optimised circuit.

1.2.6 Fault Tolerant Graph Augmentation

Fault tolerant technique is a fundamental study of integrating error-correcting codes into the
structural (Boolean network) implementation of the circuit logical functionality that improves
circuit reliability. The focus of this approach is not on changing the combinational logic but on
augmenting it to enable the retrieval of the correct output even if errors have occurred inside
the circuit. This work introduces new reliability driven fault tolerant methodology known as
Codeword Prediction Encoder (CPE). Redundant logic is added by using Error Correcting
Codes(ECC) based architectures thus enabling to retrieve the correct output and thereby

1.2 Objectives and Thesis Contributions 8

improving the circuit reliability. Some potential links between the logical representation of
a digital circuit and error correcting codes to generate fault tolerant implementation of the
logical functionality of the circuit are studied.

Fig. 1.5 The Codeword Prediction Encoder(CPE) flow

CPE methodology takes the input function netlist and translates it into an AND Invert
set of equations for further manipulation and analysis of the number of gates and longest
path modifications as shown in Fig. 1.5. An ECC scheme informs the logic network anno-
tation. The two classes of logic functions identified in the research are linear or non-linear
functions where linear functions can be described similarly as a linear code(vector-matrix
multiplication). The resulting annotated logic network is then decoded using an additional
logic network associated with the chosen ECC.

1.2.7 PDF based Delay Degradation Analysis

In semi-custom VLSI design flow, predefined standard logic cells are characterized to
generate timing models that are extensively used in Static Timing Analysis(STA) [33]. STA
computes timing delays on the critical paths that determines the maximum clock frequency
at which the chip can safely operate. A comprehensive delay approximation methodology
based on Inverse Gaussian Distribution(IGD) is proposed.

The main idea behind the proposal is first to gather the necessary gate key parameters
utilizing Monte Carlo simulations and then linearly extrapolate (propagate) them through the

1.3 The Research Framework 9

Fig. 1.6 PDF propagation and Methodology

logic network at the circuit level as shown in Fig. 1.6. A Look Up Table(LUT) for all the
gates in the library is maintained to capture these critical parameters. The effect of fan-out
value and input transition time on the gate delay is also taken into consideration and applies
to the following components as well. The proposed analytical PDF delay model is highly
accurate for both nominal and sub-threshold supply voltages. Experimental results indicate
that the proposed method provides a very close match with Monte-Carlo(MC) simulations
reporting the worst case average error of less than 3% while saving run-time by up-to 50
times order of magnitude.

1.3 The Research Framework

This research work is part of a bigger project called i-RISC(www.i-risc.eu). The i-RISC
project targets a foundational breakthrough towards reliable, fault-tolerant chip design from
unreliable components, which is a crucial issue for the long-term development of computing
technology. The research novelty emerges from the synergistic utilization of (1) informa-
tion theory and coding techniques, traditionally utilized to improve the communication
systems reliability and (2) circuit and system theory and design techniques to create reliable/
predictable hardware. The aim is to enable the development of innovative fault-tolerant
solutions at both circuit and system level that are fundamentally rooted in mathematical
models, algorithms, and techniques from information and coding theory. Fig. 1.7 describes

1.3 The Research Framework 10

the five major components involved in this project. This research strictly confines to reliable
Boolean function synthesis.

Fig. 1.7 The IRISC Project Details

The design flow that aims to connect different problems addressed through this research
consists of several academic tools developed in-house, within the scope of the current
research, that are integrated alongside several industrial tools. The complete design flow is
presented in Fig. 1.8 connecting the four major contributions described earlier. The design
flow outlines the path of a digital circuit from the Register Transfer Level(RTL) to the final
error resilient technology mapped gate-level netlist followed by reliability, power, delay and
area reports. Some of the important steps in this flow are as follows:

• Step 1: Converting the accepted form (BLIF, Verilog, VHDL) of input file format into
AIG.

• Step 2: Run the Reliability driven logic optimization tools to synthesize gate level
netlist.

• Step 3: Reliability analysis is performed to compute the improvement achieved regard-
ing error resilience. Reliability details of every node in the network are dumped into
an output file.

1.4 Conclusions 11

• Step 4: Gate level simulations are performed to dump the switching activity details.
These are saved in the standard Switching Activity Interchange Format(SAIF) format.

• Step 5: Using netlist from steps 1 and 2 and the switching reports from step 4,
Synopsys design compiler tool is invoked to perform the power, area and timing
analysis. Comparative studies are performed to report the savings or overhead because
of the new netlist.

• Step 6: The LDPC encoding scheme is implemented on the resulting reliability op-
timised netlist. Its functionality drives the parity circuit augmented onto the circuit
under test.

• Step 7: Convert all the netlist combinational circuit, parity, and the LDPC decoder into
the internal proprietary format understood by the Codeword Prediction Encoder(CPE)
simulator.

• Step 8: The CPE simulator is invoked to perform the encoding decoding simulations.
All the reports comprising of the Frame Error Rate(FER)/Bit Error Rate(BER) analysis,
critical node count, etc. are reported at this stage.

• Step 9: Perform delay degradation analysis on both the original netlist and the opti-
mised netlist. This works as another yardstick to validate the synthesis tool.

1.4 Conclusions

In this chapter, the bigger picture of the challenges posed by miniaturization and reliability is
presented. Some introductory topics which provide a backdrop for the research presented
in subsequent chapters were covered. Reliability was introduced, followed by a discussion
of different types of errors which helped in identifying several challenges associated with
CMOS scaling. Also, the larger framework, namely iRISC FET-Open project, in which the
current research is part of, is also presented.

Chapter 2 provides a literature survey covering aspects of the current research. Chapter 3
describes the reliability estimation techniques and the theoretical background involved in this
thesis. Chapter 4 describes the reliability driven optimization techniques for combinational
circuits. Chapter 5 describes the Low-Density Parity Check(LDPC) codes based fault tolerant
technique called Codeword Prediction Encoder. Chapter 6 describes the Probability Density
Function(PDF) based delay degradation analysis and the corresponding methodology. Finally,
chapter 7 concludes this thesis by providing directions for future research.

1.4 Conclusions 12

Fig. 1.8 The Complete Flow

Chapter 2

Reliability in Logic Circuit Design

The ongoing miniaturization of data processing and storage devices and the imperative of
low-energy consumption can only be sustained through low-powered components. Lower
supply voltages and variations in the technological process of emerging nanoelectronics
devices make them inherently unreliable. Consequently, the nanoscale integration of chips
built out of unreliable components has emerged as one of the most critical challenges for the
next-generation electronic circuit design. To make such nanoscale integration economically
viable, new solutions for efficient and fault-tolerant data processing and storage must now be
invented.

The current research targets a foundational breakthrough towards reliable, fault-tolerant
chip design from unreliable components, which is a crucial issue for the computing technol-
ogy long-term development. The research novelty emerges from the synergistic utilization of
(1) information theory and coding techniques, traditionally utilized to improve the communi-
cation systems reliability and (2) circuit and system theory and design techniques, in order to
create reliable/ predictable hardware. The aim is to enable the development of innovative
fault-tolerant solutions at both circuit- and system-level that are fundamentally rooted in
mathematical models, algorithms, and techniques from information and coding theory.

2.1 Introduction

Device reliability was first studied in the early sixties when increasingly complex integrated
systems were developed and fabricated. Conferences such as the first international reliability
physics symposium (IRPS 1962, Chicago) was the first attempts to bring engineers and
scientists together from all over the World to study the physics behind various failure effects.
To overcome scaling limitations of devices fabricated in ultra-scaled CMOS processes,
changes in device structures, processing materials, and processing conditions have been

2.1 Introduction 14

introduced. These changes have drastically increased the complexity of nanometer CMOS
technologies.

Fig. 2.1 Classification of Reliability

Fig. 2.1 illustrates how nanometer CMOS reliability issues can be categorized into spatial
and temporal unreliability effects. Spatial unreliability effects are immediately visible right
after production and are fixed in time. Spatial unreliability effects can be random (e.g.,
Random Dopant Fluctuations (RDF), Line Edge Roughness (LER), etc.) or systematic (e.g.,
gradient effects, etc.). The results depend on the circuit layout, the neighboring environment,
process conditions, and the impact the geometry and structure of the circuit and can lead to
yield loss. This yield loss can be functional or parametric, i.e., resulting in malfunctioning
circuits or circuits with degraded performance respectively. Temporal unreliability effects,
on the other hand, are time-varying and change depending on operating conditions such as
the operating voltage, temperature, switching activity, presence and activity of neighboring
circuits. A difference is made between wear out or aging effects (e.g., Hot Carrier Injection
(HCI), Negative Bias Temperature Instability(NBTI), etc.) and transient effects (e.g., Electro-
Magnetic Interference (EMI), Single Event Upsets (SEU), etc.) [9] [34].

2.1.1 Understanding Reliability

A clear understanding of several concepts and terminology related to reliability is needed to
proceed with the understanding of the methodologies which are applied to guarantee optimal
operation of VLSI systems, fault tolerance, and circuit architectures implementing them.
Basic terms such as reliability, fault tolerance, faults, and fault modeling are introduced and
explained in detail. For more in-depth details, refer to [35].

2.1 Introduction 15

Reliability is defined according to IEEE [36] as the ability of a system or component to
perform its required functions under stated conditions and for a specified period. The process
yield of a manufacturing process is defined as the fraction, or percentage, of acceptable parts
among all parts that are fabricated [35]. A system failure occurs or is present when the
service provided by the system differs from the specified service or the service that should
have been offered. The following three terms are crucial and related to system failure and
thus need to be clearly defined, which are named defect, error, and fault.

A defect in an electronic system is the unintended difference between the implemented
hardware and its intended design. Some typical defects of VLSI chips may be related to
process, material, aging effects. The existence or emergence of defects reduces yield [35].
A wrong output signal produced by a defective system is called an error. An error is an
effect whose cause is some defect. Errors can be classified into three main groups, namely
permanent, intermittent, and transient errors, according to their stability and concurrence
[35]. A fault is a representation of a defect at the abstracted functional level. A fault is
present in the system when a physical difference is observed between the “good” or “correct”
system and the actual system. The most common faults in a chip are spots and bridging faults
caused by silicon impurities, lithography, and process variations [35].

Faults, errors, and failures operate according to a specific mechanism often known as the
Fault-Error-Failure chain [37]. In other words, the failure occurs when the delivered service
deviates from the specified function, because the system was erroneous, and the cause of
an error is a fault. An error is a manifestation in the system of a fault, and a failure is a
manifestation on the service of an error [38]. More specifically, one can classify hardware
faults that occur during the system operation by their duration into [39]:

- Permanent faults, caused by irreversible device failures within a component due to
damage, fatigue, or improper manufacturing. Once a permanent fault occurs, the faulty
component can be restored only by replacement, or if possible, by repair.

- Transient faults, triggered by environmental conditions (e.g., voltage fluctuations,
electromagnetic interference, radiation, etc.). These events typically have a short duration,
and rarely do any lasting damage to the component affected, although they can induce an
erroneous state in the system for an abbreviated period. Studies have shown that transient
faults occur far more often than permanent ones and are also much harder to detect [5].

- Intermittent faults, caused by unstable hardware or different hardware states, tend to
oscillate between periods of erroneous activity and dormancy. Replacement or redesign can
repair them.

2.1 Introduction 16

Since the focus of this research is on transient faults modeling, and the analysis of their
impact on circuit reliability, the following sections describe in more details the sources of
transient faults, their implications for logic circuit reliability.

2.1.2 Transient faults in logic circuits

Internal or external events can cause transient faults, and generally, manifest themselves as a
transient pulse at the output of a logic cell. Externally induced transient faults, stemming
from cosmic rays, reaction with Earth’s atmosphere or radioactive decay of device packaging,
have received most of the attention in recent years, and are claimed to be one of the major
concerns for future technology nodes [14] [15].

If a transient fault is generated in a memory cell, or in a memory element (flip-flop,
latch), an error resulting from this fault can immediately occur. Otherwise, the created pulse
propagates through the circuit and causes an error once the memory cell or memory element
latches it. An error caused by a transient fault is often called "soft", because if a failure
results in the end effect of this fault, only the data is destroyed. In contrast to this, "hard"
errors stem from permanent or intermittent faults that result from the damage in the internal
structure of semiconductor material [5].

Once a transient fault occurs at the output of a gate within the circuit, it may propagate
through the circuit on more than one path, resulting in re-convergent glitches at different
inputs of the same gate in the fanout cone of original gate, or causing more than one soft
error at the outputs of the circuit. A significant aspect of transient fault propagation through
logic circuits is the set of masking factors that can prevent the fault from propagating to
the outputs of the circuit. These masking factors, logical, electrical and latching-window
masking [40], are described below.

Logical masking: Logical masking refers to the ability of a logic gate to tolerate faults
occurring on its inputs on account of its inherent nature/functionality [40]. Consider a
two-input AND gate. When the transient fault propagates to the input port of this gate, on its
path through the circuit, if the other input port is tied low controlling value, it would mask
the fault from propagating through the gate and, consequently, prevent it from propagating
further on that path. It is important to note that different gate types have different logical
masking strength. In other words, an inverter will always logically propagate a glitch, since
there is only one input carrying the glitch. But, the probability of propagating the glitch
through AND, OR, NAND and NOR gate is the same and depends on the number of inputs,
while again, a glitch will always propagate through gates XOR and XNOR due to their logic
function.

2.2 Reliability Estimation 17

Electrical masking: Electrical masking happens when subsequent logic gates attenuate
the voltage transient resulting from a particle strike because of the electrical property of the
logic gate [40]. Due to the relation between electrical properties of gates and the size of the
pulse representing the transient fault, the fault would be attenuated by the gates it propagates
through. This may result in the disappearance of the fault before it reaches any or some of
the outputs of the circuits, or it may decrease the duration and amplitude of the fault such
that it is not large enough to cause a bit flip in a memory cell or memory element, once it
arrives at their inputs. Gates that have more substantial delays, such as XOR and XNOR
gates, will attenuate glitches more, while an inverter usually attenuates glitches much less.
If the glitch is tiny, compared to the delays of gates it propagates through, it will always be
attenuated. On the other hand, if the glitch is very large, compared to gate delays, it will still
propagate to outputs.

Latching-window masking: When the transient fault arrives at the input of a memory
cell or a memory element, it will be latched only if it arrives on time to satisfy setup and hold
time conditions [40]. This depends on the time when the fault occurred inside the circuit,
on the location where it occurred (that is, how far that location is from the memory cell or
memory element), on the size of the pulse at the occurrence site, the clock cycle and the
setup and hold time values.

2.2 Reliability Estimation

Logic circuit reliability analysis attempts to evaluate the impact that the gate errors could
have on the circuit Primary Outputs (PO) correctness. Von Neumann pioneered the art of
probabilistic error analysis and defined any system to be reliable only if the probability of its
correct output is greater than a certain threshold [41]. The traditional approach to reliability
analysis begins with simple SPICE simulations to estimate the circuit error probability.
However, for most of the practically relevant circuits, simple reliability analysis based on
SPICE Monte Carlo simulations is not feasible due to prohibitive computation time and
excessive resource requirements. The impact of faults can be investigated through simulation.
While faults can be simulated accurately only at the circuit level of abstraction, there are
existing proposals that inject the fault at a high level of abstraction for early performance
exploration [42] [43].

Complementing the simulation methods, various probabilistic analytical approaches
to evaluate the circuit reliability have been proposed. The Probability Element (ProxEl)
method was introduced in [44] to alleviate the typical problems encountered by Monte
Carlo simulation and partial differential equations. In [45], the authors introduced the

2.2 Reliability Estimation 18

Probabilistic Transfer Matrices (PTM) formalism, which relies on an exhaustive listing
of the gate inputs/outputs, allowing simultaneous and exact reliability evaluation over all
possible input combinations. Another analytical reliability estimation approach relies on
the Probabilistic Gate Model (PGM) [46] [47] [48]. While it is applicable to potentially
any gate and failure, the method assumes that the gate input/output signals are statistically
independent, which leads to approximate reliability results. In [48], the correlations in the
input signals or caused by re-convergent fan-outs are addressed by sequentially decomposing
and recursively treating each fan-out, at the expense of increasing the computational time
exponentially with the number of re-convergent fan-outs. In [30], the authors propose three
scalable algorithms for reliability assessment. Notably, the single-pass reliability analysis
algorithm can: (i) accurately evaluate the reliability of circuits without convergent fan-out
and (ii) to assess approximately the reliability of circuits exhibiting spatial correlations, by
computing pairwise correlation coefficients of dependent signals. The algorithm is based on
expressing the error at a gate output as the cumulative effect of the intrinsic, local gate error
component and an error component attributed to the failures of the gates in its fan-in cone.
The single pass method is extended in [49] to multiple passes for reliability evaluation of
sequential circuits. The Signal Probability Reliability Analysis (SPRA) method was proposed
in [50] [51] embeds the cumulative effect of multiple, simultaneous errors in a circuit, in the
form of a bit-flip error at the output of a faulty gate.

Also, Bayesian Networks (BNs) have been applied in the context of circuit reliability
evaluation [52] [53]. BNs, whose underlying semantics are based on directed graphs, allows
one to capture both the temporal and spatial circuit dependencies comprehensively, providing
an exact and minimal probabilistic model for reasoning and inference in causal logic networks.
The Markov Random Fields (MRFs) based reliability evaluation approach presented in [54],
employs the Gibbs distribution to characterize the reliability in terms of entropy and the noise
in terms of thermal energy. While being suitable for reliability assessment of small circuits
or of conventional redundant architectures, such as NAND multiplexing and triple modular
redundancy [55], for arbitrary multilevel logic circuits, the MRF-based approach becomes
computationally intensive because the minimization technique in the Gibbs distribution
function has a substantial number of variables.

In general, the reliability estimation techniques are based on either simulation method
or probabilistic methodology. The complexity and accuracy of simulation-based techniques
strongly depend on the scale of circuit and test vector selection [52]. As discussed, several
analytical methods such as those using Probabilistic Transfer Matrices(PTMs) [56], Proba-
bilistic Gate Models(PGMs) [48] and Probabilistic Decision Diagrams(PDDs) [57] have
already been proposed to investigate behavior of circuits under faults. PTM suffers from

2.3 Reliability Aware Logic Synthesis 19

massive matrix storage and manipulation overhead that results in its inapplicability to large
circuits. Another approach based on Bayesian networks was proposed in [53]. Though they
apply to medium scale circuits, manipulating Bayesian networks for large circuits has been
seen to be intractable. One of the best approaches to date was described in [30], with minor
limitations. For example, the observability based algorithm efficiency is directly linked to
the ability to observe internal nodes. From VLSI testing principles, it is understood that
as the circuits grow larger and larger, the complexity of observing a node turns out to be
more time-consuming. In the same work, the single pass reliability analysis algorithm is
proposed which provides excellent results for circuits without re-convergent fan-out. But, the
computational complexity increases as the number of correlation coefficients increases.

2.3 Reliability Aware Logic Synthesis

Traditional logic synthesis methodologies and EDA tools are centered on fulfilling timing,
power, and area constraints or on achieving acceptable trade-offs among those [Pedram96]
[Mehrotra11]. However, as the Complementary Metal-Oxide-Semiconductor (CMOS) tech-
nology entered the nanometer era, such an approach cannot cover any longer all the relevant
design aspects. Technology scaling has precipitated higher operating speeds, lower operating
voltages, and lower operating noise margins; all of which contribute to reduced switching
energies, allowing legitimate logic signals to be readily overwhelmed by single-event-induced
charge-collection transients [Dodd03]. Nanotechnology specific issues, e.g., power supply
voltage (Vdd) reduction, the higher impact of the process parameter and temperature varia-
tions, resulting in increased device failure rates, making CMOS Integrated Circuits (ICs) less
reliable [Borkar05] [Constantinescu03].

In the era of deep sub-micron CMOS technology, spatial and temporal variability is
resulting in less predictable device behavior [9]. Stochastic logic delay variation on par
with the nominal delay can occur due to the local (or intra-die or within-die) variations
in transistor Vth [58]. Further, circuits operated in the near or sub-threshold region to
achieve substantial power savings results in an increased amount of output Soft Error Rate
(SER). Given the combined effect of variability and aging mechanisms, it is evident that
the state of the art CMOS gates is highly unreliable. A variety of system/circuit level
techniques like Dynamic Reliability Management (DRM), and inexact computing [59],
[60], [61] have already been proposed to overcome reliability related concerns. These
techniques are at a higher abstract level and do not leverage the significant gains that are
achieved by employing graph modification/altering techniques. Reliability driven logic
synthesis is one area that has not received much attention but is gaining a lot of importance

2.4 Fault Tolerant Techniques 20

in the last few years. In [62], the circuit output Soft Error Rate (SER) is reduced through
localized circuit restructuring by taking advantage of don’t care based re-synthesis and local
rewriting. In [63], a technique to improve the circuit robustness to soft errors based on
Redundancy Addition and Removal (RAR) by eliminating gates with a large contribution to
the overall SER is proposed. Efficient algorithms for synthesizing approximate circuits for
simultaneous masking of logical and timing errors were proposed in [64]. Automatic Test
Pattern Generation(ATPG) based rewiring method, yet structurally-different implementations
to reduce the SER was implemented in [65].

2.4 Fault Tolerant Techniques

Fault tolerant techniques for improving the reliability of digital circuitry have been of interest
for a long time. Von Neumann [41] first introduced a classification of the error type and
proposed solutions based on multiplexing techniques as early as 1956. From a hardware
implementation point of view, many schemes have been presented to deal with faulty gates.
One of the most fundamental and useful fault-tolerant mechanisms introduced in that work
was the well-known R-fold Modular Redundancy (RMR) [66], where R replicas (R = 3, 5,
7, . . .) of a computing subsystem present their outputs to a voter block that generates a
reliable output based on a majority criterion. The RMR in its R = 3 version, Triple Modular
Redundancy(TMR), has been widely used in the design of systems where reliability is
considered a vital issue. This approach came directly from Von Neumann work and had been
used in many scenarios [67], [68], [69]. The flip side of this technique is that it can lead to
large hardware consumption due to the need for implementing the logic unit three times and
then majority voting on the result.

Despite the full spectrum of research works based on the RMR technique, almost all of
them analyze the reliability issue from a static point of view. In other words, given a set of
error-prone data replicas generated by R independent subsystem replicas, the majority of
studies seek to determine the reliability characteristics of the RMR structure without any
temporal consideration. Other approaches focus on detection of the error, and some examples
consist of Berger Codes [70] for unidirectional errors, m-out-of-n codes [71], 2-rail checker
[72], where input and logic are modified to force two outputs to have complementary values
if no fault encored. Attempt to introduce error control coding techniques in the IC design
flow in an automated fashion have started and some relative information can be found in
[73] [74]. Another approach to detecting an error and that is general enough is the concept
of Check Symbols Generation or Parity Prediction Functions [75], [76] where circuitry is
added to generate extra bit to ensure parity.

2.5 Static Timing Analysis 21

A different approach to improve fault tolerance is based on the use of methods derived
from Error Control Coding (ECC) theory to protect the combinational logic that implements
a Boolean Function. The focus of this approach is not on changing the combinational
logic but on augmenting it to enable the retrieval of the correct output even if errors have
occurred. Taylor [77] has done important work to cross the field of the circuit design with
the knowledge of error correction theory, [78] that used LDPC codes to build fault-tolerant
storage and computation architectures on unreliable systems. Taylor’s approach has been
the base for numerous other works [79], [80], [81]. Following Taylor’s approach, LDPC
decoders on unreliable hardware have been widely investigated [81], [82]. As the main
result, it was shown that when some of the decoder parameters (number of quantization
levels, channel value, etc.) are carefully chosen, LDPC decoders are naturally robust to faulty
hardware, with no need for additional circuitry. Unfortunately, it was also shown that LDPC
encoders fail entirely when they are built from unreliable gates [83]. The focus of the current
work is thus on constructing reliable LDPC encoders constructed from unreliable gates.

2.5 Static Timing Analysis

The traditional approach is to perform highly accurate SPICE simulations with the downside
being the inevitable long runtime. To overcome this, corner analysis has been widely adopted
and deals with multiple Process, Voltage, and Temperature(PVT) corners. However, the high
sensitivity and unpredictability of deep sub-micron CMOS devices turns this approach to
being either overly pessimistic or optimistic [84]. Several improved methodologies have
been proposed to achieve better accuracy within acceptable computing time. Statistical Static
Timing Analysis(SSTA) [85] was proposed to determine the distribution of propagation
delays and signal timing violation on digital CMOS circuit critical paths. Nonetheless,
SSTA requires burdensome efforts to automate the approach while disregarding the input
pattern delay dependence. To overcome these obstacles, Monte Carlo Static Timing Analy-
sis(MCSTA) [85] and Dynamic Timing Analysis(DTA) [86] were proposed. The MCSTA
is the one-off generation of a Variation Cell Library for standard cells, which is used to carry
out static timing analysis to create thousands of randomized gate-level netlist. MCSTA can be
considered as a trade-off between the time-consuming Monte Carlo(MC) SPICE simulation
and the relatively inaccurate SSTA. A statistical DTA approach that employs the normal
Gaussian approximation to model the propagation delay based on distinct input patterns [87].
While reasonably accurate, the approach can be costly concerning processing time, as its
accuracy directly depends on the number of considered input vectors.

2.6 Conclusions 22

A propagation delay estimation algorithm [87] based on GD was employed to compute
delay, where a close match was found between the measured propagation delay profile and
the Gaussian Probability Density Function(PDF). However, the choice for approximating the
delay PDF with a normal distribution was based on fitting only two Monte Carlo simulations
with no scientific explanation to support the model. Although the GD delay model efficiently
estimates the delay under nominal voltage supply, several GD characteristics hint its inability
to capture delay data distributions in the general case. By definition, GD is characterized
by a function with the field that stretches from −∞ to +∞, which indicates that it assumes
non-zero value also for negative time values. This is a clear mismatch with the circuit
physical reality since no signal propagation delay can be negative. Furthermore, the normal
(Gaussian) distribution is symmetric around its mean value, which may not always be the
case when considering gate delay data. The simulation results described in the next section
demonstrate that the GD symmetric property does not hold true for the cases of interest.

In this line of thought, several other improved methodologies have been proposed to
achieve better accuracy within acceptable computing time. The practice of using Probability
Distribution Function(PDF) to model propagation delays known as Statistical Static Timing
Analysis(SSTA) is most popular [88]. One typical example of SSTA application is the use
of the Gaussian distribution function [87]. This is appropriate when the CMOS component
is in the strong inversion regime. However, for low supply voltages, the propagation delay
profile is highly non-Gaussian [58]. Various distributions have been successfully used to
model the propagation delay profile of a CMOS component for these regimes which include
the weak and moderate inversion regimes [89], and the Log-Normal Distribution [90].
Nonetheless, SSTA requires burdensome efforts to automate the approach while disregarding
the input pattern delay dependence. To overcome these obstacles, Monte Carlo Static Timing
Analysis(MCSTA) [85] and Dynamic Timing Analysis(DTA) [86], linear composition
methodology [23] were also proposed.

2.6 Conclusions

The initial sections of this Chapter present the reliability and its theoretical understanding.
Different types of faults are discussed with special emphasis on transient faults. Based on
this, approaches for reliability estimation and optimization employing multiple techniques
were considered. In the second half of the Chapter, a review of reliability estimation and
optimization techniques was presented.

The reliability estimation review covered traditional probability based as well as simulation-
based techniques such as PTM, PGM, Bayesian Networks based techniques. Further, the

2.6 Conclusions 23

efficiency of these techniques with reconvergent fanout as the constraint was also discussed.
Reliability aware logic synthesis section lists different logic optimization techniques that
employ localized circuit restructuring to reduce the soft error rate of the circuits.

The fault tolerant techniques literature survey identified a range of different techniques
with special emphasis on LDPC based applications. The main conclusion of these papers
was while the LDPC based decoders are robust to handling errors, the encoders are not.
The final topic of interest is static timing analysis. Techniques like Statistical Static Timing
Analysis(SSTA), Monte Carlo Static Timing Analysis(MCSTA), Dynamic Timing Analy-
sis(DTA) were briefly discussed. Further, the inverse Gaussian-based Probability Density
Function(PDF) captures the timing data better compared to Gaussian is also discussed.

In the next chapter, some novel reliability estimation techniques using probability and
simulation-based techniques.

Chapter 3

Reliability Estimation

3.1 Introduction

The main factors driving the design of digital systems for a long time were cost, performance,
and, more recently, power consumption. However, with continuous technology scaling, the
diminishing value of reliability of deep sub-micron technologies is a fact thereby the reliable
operation of digital systems is severely challenged. Moreover, it is widely accepted that
nanoelectronic based systems will rely on a significantly lower reliability rate than what
was known so far. Thus, fault-tolerant reliability driven design methodologies are the need
of the hour. To allow for the efficient design of a system that can tolerate faults, a first
natural step includes understanding the source of induced errors, but most importantly, their
modeling and analysis for guiding the overall design process. Hence, the first step in building
a reliability-aware design is to develop an efficient algorithm that computes circuit reliability.

3.1.1 Main Contributions and Outline

In this research, the problem of computing circuit reliability for combinational circuits is
investigated employing two different approaches. The first approach consists of simulating
the combinatorial circuit under test by injecting faults with specific characteristics to gather
statistical information on how these errors propagate through the circuit. The novelty lies
in the fact that Mersenne twister is used over the traditional ’RAND’ function to generate
random vectors [31]. The second method called Conditional Probabilistic Error Propagation
(CPEP) [1] [91] [2] builds a probabilistic error model of the combinatorial circuit and
calculates the reliability of the circuit based on mathematical analysis of the model. This
is quite generic and can be applied to any error scenario and for any logic gate. But, in the
synthesis algorithms presented in the subsequent chapter, the circuits are represented in the

3.2 Simulation Based Reliability Computation 25

AIG format, hence the prime focus is placed on AND and Inverter gates. The algorithm uses
the Dynamic Weighted Average Algorithm (DWAA) [92] approach to account for the impact
of re-convergent fanout on the overall results.

Both these techniques have trade-offs WRT each other, and one supersedes the other
based on specific application. Though the probabilistic-based method is high-speed, it can
be slightly less accurate. The simulation-based methodology is very accurate but can be
time-consuming especially for large circuits. As this tool would be a part of a new logic
synthesis framework, the analytical methodology is used in intermediate steps where it is
required to compare two configurations to make a fast decision of choosing which is better.
Exact reliability numbers are not required at this stage which enables the algorithm to do
with less accuracy. The simulation-based methodology is used during sign-off stages when
accurate reliability numbers are needed.

3.2 Simulation Based Reliability Computation

The most accurate and straightforward approach to reliability estimation is by circuit sim-
ulation using a set of input vectors. The transitions that occur can be easily observed for
a gate and can be averaged out for the set of input vectors to give an estimate of circuit
reliability. Simulation-based reliability estimation technique can be employed at various
levels of abstraction, namely: switch-level, gate level, and block-level. Only gate-level
simulation is of interest since it provides very accurate activity estimates and is signifi-
cantly faster than switch-level simulation, which simulates transitions at the transistor level.
Block-level simulation, which considers larger blocks such as registers, adders, multipliers,
memories, and state machines, is also not considered. Commonly known as Gate Level
Simulation(GLS) technique employed in power estimation involves the use of logic com-
ponents like AND/INVERTER gates, latches, flip-flops and interconnection nets. The most
common analysis method involves an event-driven simulation [93]. When a transition or
event occurs at an input of a gate, it may trigger an output event after a certain time delay.
Power consumption is estimated by calculating the switching capacitance at the node of the
gate, and by the number of events that occur at that node.

3.2.1 Mersenne Twister and Random Number Generation

One of the most important constraints related to the gate level simulation technique is the
availability of significantly random input vectors. The traditional random function rand from
the ’C’ library provides random numbers with a small period of length 232 - 1. Since the

3.2 Simulation Based Reliability Computation 26

number of required simulation steps runs into millions, there is a high possibility that patterns
are repeated and highly correlated with each other. To overcome this issue, a pseudo-random
number generator called Mersenne twister is employed. The Mersenne Twister(MT) is a
Pseudo-Random Number Generator (PRNG) developed by Makoto Matsumoto and Takuji
Nishimura in the 90’s [31]. The most commonly used version of the Mersenne Twister
algorithm is based on the Mersenne prime 219937 - 1. The standard implementation of that,
MT19937, uses a 32-bit word length. There is another implementation that uses a 64-bit
word length, MT19937-64; it generates a different sequence. Its name derives from the fact
that its period length is chosen to be a Mersenne prime. In mathematics, a Mersenne prime is
a prime number of the form Mn = 2n - 1 and has a very long period of 219937 - 1. Thus, it
helps in overcoming all the simulation limitations.

3.2.2 Gate Error Model

Fig. 3.1 graphically presents the unreliable gate model employed to inject errors onto the
gate outputs with a pre-defined gate error probability. An unreliable AND gate is modeled as
an ideal (error-free) AND gate followed by a faulty XOR that determines the stochastic error
behavior by toggling the gate output with a pre-defined probability. While the input nodes A
& B in Fig. 3.1 can be faulty based on a level of traversal of the signal, the input node ’E’
toggles between ’0’ & ’1’ based on the pre-fixed gate error probability value. To explain, if
the gate error probability of an AND gate is 0.005, then for every thousand iterations, the
input node ’E’ of the XOR gate would be set to ’1’ five times.

AND

XOR

P UA

B

E

Z*

Z

Fig. 3.1 Gate Error Model for GLS based technique.

3.2.3 The Methodology

Gate-level simulation-based reliability estimation involves simulating a Boolean network
consisting of logic gates while keeping track of transitions, both error-free and error-prone
conditions, to determine error probability for each node in the network. During a simulation,

3.2 Simulation Based Reliability Computation 27

the value at the output of a gate is determined from the values at the input of the gate each
time an input changes. Fig. 3.2 depicts the unreliable data transmission. While the AND
gate output is correctly transmitted as ’1’, the inverter output is toggled to ’0’ based on gate
unreliability. Two specific commands are used to manipulate the default random number
generator.

• mtseed(void): Choose a seed from random input;

• mtlrand(void): Generates 32-bit random value.

Fig. 3.2 Unreliable Data transmission through on Inverter and AND Gates.

The tool generates random vectors and applies them on the Primary Inputs(PI) of the AIG
based circuit representation. The tool can process multiple simulations runs simultaneously,
analyzing how reliability varies with input vectors. Extra XOR gates are employed to model
the error on each gate to compute the numbers under the ideal and faulty scenario. First, the
following four important variables are defined:

• pNtk: It is a pointer to the network (circuit) under consideration;

• pNode: It is a pointer to the node under consideration in the circuit (all the Primary
inputs, Internal Nodes and primary outputs will be treated as Node);

• pLeftChild: It is a pointer to the Left Child of the node under consideration;

• pRightChild: It is a pointer to the Right Child of the node under consideration.

The generated random patterns are applied unto the primary inputs of the circuits, and
the output value at each internal node is calculated by considering the circuit to be ideal. The
computation is carried out as follows: traverse through the node in sequential order and for
every node derive the right and left child using the built-in function.

After the calculation of the left and right child, the next check is to figure out if there is an
inverter at the child or not. A particular item within the data structure pNodeUC → fCompl0
is used to denote this feature. If this value is equal to zero, then it indicates that there is no

3.2 Simulation Based Reliability Computation 28

inverter at the left child and if the value is 1, then it suggests the presence of an inverter at
the left child. Similarly, pNodeUC → fCompl1 if this value is equal to zero then it indicates
there is no inverter at the right child, and if the value is one then it suggests the presence of
an inverter at the right child.

Until now, all the AND gates, as well as inverters, has been fault free but to compute
the circuit reliability faulty gate error models must be employed. This is achieved by using
XOR gates at each ideal gate output. An XOR gate is applied just after each gate with one
input from the gate and other from a randomly generated vector which defines the gate error
probability. Now, the output of the XOR gate will be random in accordance with the inputs
and hence the gates can be regarded as faulty. Once, both ideal and flawed values on all the
nodes are captured, the error probability and in turn the reliability is efficiently computed. To
compute the error probability, traverse through each node and check whether the Ideal value
is equal to faulty value. If yes, then increase the error probability count for that node.

The procedure is repeated till all the node have been traversed, and respective error
probability count values are updated after each iteration. After the completion of all the
iterations, for each node divides its error probability count by the number of iterations to
calculate the error probability.

3.2.4 Limitations

Gate-level simulation is a well-studied problem, and much effort has been placed on improv-
ing its speed [94] [95] [96]. The advantage of this technique is its accuracy compared
to probabilistic methodologies and the fact that it can be used irrespective of circuit, tech-
nology or design style. However, it is highly pattern dependent and hence suffers from
two major drawbacks. First, it requires extensive use of computing time, especially for
large circuits. Moreover, simulation requires input vectors, which are often not available
when designing a new system. Thus, the results may be erroneous as some of the input
patterns used for estimation may never occur during normal operation. Keeping this criterion
in mind, this methodology is used only for final estimation limiting ourselves to use the
probabilistic methodology most of the time during the intermediate computations. In this
line of thought, a novel analytical model called Conditional Probabilistic Error Propagation
(CPEP) is presented next. The biggest advantage of the probabilistic model when compared
to simulation-based methodology is the computation time with little compromise in accuracy.

3.3 CPEP: Conditional Probabilistic Error Propagation 29

I1

I2

I3

I4
I5

I6

(a) Reference Circuit
I1 I2 I3 I4 I5 I6

n1 n2 n3

n4

n5

n6

n7

O1

(b) AND Invert representation

Fig. 3.3 And Inverter representation of Combinational Circuit

3.3 CPEP: Conditional Probabilistic Error Propagation

Probabilistic methods involve modeling transitions occurring at a gate as probability func-
tions. The probabilities of the nodes to change their logic state are propagated through the
circuit. Since probabilities are used, no input vectors are required, resulting in a reduc-
tion in computational effort. Thus, these techniques are considered as pattern independent
[97]. Issues like signal independence, spatial and temporal signal correlations determine the
accuracy and complexity of the technique [98].

3.3.1 The Data Structure

In this thesis, And-Inverter Graphs (AIGs) is used as the underlying data structure to model
logic circuits. It becomes a natural choice mainly due to the following three reasons. Firstly,
using AIG makes it simple to demonstrate the implementation of this algorithm due to
traversing an AIG can be directly modeled as traversing interleaved binary trees. Secondly,
it is well known that all logic circuits can be constructed using AND and Inverter gates.
Thirdly, it will be much easier to integrate this algorithm to some open source EDA tools
such as (ABC) [28] which use AIG as the data structure to model logic circuits as well. As
stated in graph theory, each graph is composed of two basic types of elements, i.e., vertices
(or nodes) and edges [99].

3.3 CPEP: Conditional Probabilistic Error Propagation 30

Therefore, it is institutional to use nodes and edges representing logic gates and intercon-
nections between gates respectively. A simple AIG in Fig.3.3 illustrates essential elements
in the AIG model. As shown in the figure, AND gates are denoted by egg-shaped nodes
and INVERTERS are denoted by the dashed line respectively; the trapezium-shaped leaves
denote the primary inputs with the label character, primary inputs share the same label
indicates a fanout and the root node represents the primary output.

3.3.2 Gate Error Models

In this approach, a Von Neumann erroneous gate is modeled as an ideal logic gate cascaded
with a faulty buffer as shown in Fig.3.4. The two nodes Z* and Z are named as internal and
the external output node. As AIG’s are used to represent combinational circuits, the analysis
is limited to probabilistic gate error models for AND and Inverter logic gates only.

A
B Z∗ Zε

Fig. 3.4 Unreliable AND Gate Model

Some of the common conventions used throughout this section are listed below:

• P(x0) - Probability of node ’x’ to be 0;

• P(x1) - Probability of node ’x’ to be 1;

• P(xε) - Probability of error on node ’x’;

• P(xc) - Probability that an error is masked;

• EPy - Error probability of Logic Gate ’y’;

• Ry - Reliability of Logic Gate ’y’.

Consider an unreliable AND gate, such a gate can be modeled as an ideal (error-free)
AND gate followed by a faulty buffer that accounts for the stochastic behavior of the errors.
This model moves the entire error statistic on the output, and so it implicitly assumes a
symmetrical error behavior concerning the inputs. This assumption holds true for many
physical gate implementations and simplifies analysis. This is an assumption made by this
algorithm so that an error injection gate can be equated to a normal logic gate when traversing
the graph which dramatically simplifies the algorithm. For the unreliable AND gate shown

3.3 CPEP: Conditional Probabilistic Error Propagation 31

in Fig.3.4, the static probability as defined in Eq.3.1 is the union probability of SPA and SPB

assuming input A and B are independent.

SPZ∗ = SPA ×SPB (3.1)

To analyze this model behavior, let’s consider that errors on the output of a combinatorial
gate can be due to two reasons: (i) Errors on the gate input nodes and (i) intrinsic errors
within the gate. In this work, the primary inputs of the complete circuit are assumed to be
error-free and statistically independent.

3.3.3 2-Input Ideal AND Gate

As AIG’s comprises only 2-input AND gates, the analysis is restricted to 2 input AND gates
and note that its extension to multi-input AND gates is straightforward. The static probability
values of the internal output node Z* can be expressed as:

P∗
z (1) = P[A = 1,B = 1]

P∗
z (0) = 1−P∗

z (1)
(3.2)

First, the error on the internal node (Z*) due to the errors on the input nodes of an ideal
AND gate is computed. It must be noted that error on the inputs need not necessarily result
in wrong output value. Consider error free ’0’ on one of the input pin. This would mask the
error on the other input node from being propagated onto the output. Similarly, consider the
scenario where the input pins are set to ’0’ & ’1’ and both are in error. This event of double
error mutually negates each other and will still result in a correct output state. Hence, due
to the masking and double error events, there are no simple rules to predict the state of the
output. Tab. 3.1 presents an exhaustive enumeration on all the possible cases. To explain
the table, consider the case of input A=0 and B=0. Then, the internal output Z* is ideally 0.
Now, each of the inputs can assume an error (ε) or a correct (c) state. The state of the inputs
determines if Z*=0 is correct or not. For these inputs values, the internal output node is in
error if and only if both the inputs are in error. It is evident from Tab. 3.1 that error on one or
both inputs need not necessarily translate into output error. Only 6 of the possible 16 cases
result in an error on the internal output. The probabilities for each of these events to occur
are presented in the last column.

To arrive at a closed form representation of AND gate output node error probability, it
is assumed that the inputs of the gates are independent (i.e., there is no re-convergence) to

3.3 CPEP: Conditional Probabilistic Error Propagation 32

Reliable
Condtions

Unreliable
Condtions

Error Probability

A B Z* A B Z*

0 0 0

c/0 c/0 c/0
c/0 ε/1 c/0
ε/1 c/0 c/0
εεε/1 εεε/1 εεε/1 P[A=0,B=0,Aε ,Bε]

0 1 0

c/0 ε/0 c/0
c/0 c/1 c/0
ε/1 ε/0 c/0
εεε/1 c/1 εεε/1 P[A=0,B=1,Aε ,Bc]

1 0 0

ε/0 c/0 c/0
ε/0 ε/1 c/0
c/1 c/0 c/0
c/1 εεε/1 εεε/1 P[A=1,B=0,Ac,Bε]

1 1 1

εεε/0 εεε/0 εεε/0 P[A=1,B=1,Aε ,Bε]
εεε/0 c/1 εεε/0 P[A=1,B=1,Aε ,Bc]
c/1 εεε/0 εεε/0 P[A=1,B=1,Ac,Bε]
c/1 c/1 c/1

Table 3.1 Ideal AND Gate with Unreliable Inputs

simplify analysis. This allows for the utilization of simple formulas to compute reliability
and reduce the overall algorithm running time. Under such assumption, the static probability
of the AND gate is

P∗
z (1) = PA(1)PB(1) (3.3)

The internal node error probability can be expressed as the sum of all the six terms
in Tab. 3.1 that result in an erroneous output and evaluates to:

Pε(Z∗) =Pε(A)Pε(B)PA(0)PB(0)+

Pε(A)(1−Pε(B))PA(0)PB(1)+

(1−Pε(A))Pε(B)PA(1)PB(0)+

[Pε(A)+Pε(B)−Pε(A)Pε(B)]PA(1)PB(1)

(3.4)

3.3.4 Intrinsic Gate Error Effects

The effect of the intrinsic gate error is analyzed now. Tab. 3.2 presents the AND gate output
behavior in the presence of both input and internal errors. Binary Symmetric Channel (BSC)
[100] technique is employed to model the wrong buffer behavior. The gate output static and
the error probability can be defined as:

3.3 CPEP: Conditional Probabilistic Error Propagation 33

Pz(1) = P∗
z (1)(1−PF)+P∗

Z (0)PF

Pz(0) = P∗
z (0)(1−PF)+P∗

Z (1)PF

Pε(Z) = PF +Pε(Z∗)−2∗PF ∗Pε(Z∗)

(3.5)

Z* Gate
Fault

Z
Error Probability

Ideal State Value State

0

c c 0 c
c f 1 εεε P[Z∗=0,Zc,P f]
εεε c 0 εεε P[Z∗=0,Zε ,Pc]
ε f 1 c

1

c c 1 c
c f 1 εεε P[Z∗=1,Zc,P f]
εεε c 1 εεε P[Z∗=1,Zε ,Pc]
ε f 0 c

Table 3.2 Faulty AND Gate with Unreliable Inputs

3.3.5 Ideal inverter

Following similar lines, the unreliable inverter is modeled as an ideal inverter followed by a
faulty buffer as depicted in Fig. 3.5.

A
Z∗ Zε

Fig. 3.5 Unreliable Inverter Model

An exhaustive analysis results in Eq. 3.6 to represent the output node error probability of
an unreliable inverter.

P∗
z (1) = 1−PA(1)

Pε(Z∗) = Pε(A)

P∗
z (1) = P∗

z (1)(1−PF)+P∗
Z (0)PF

Pz(0) = P∗
z (0)(1−PF)+P∗

Z (1)PF

Pε(Z) = PF +Pε(Z∗)−2∗PF ∗Pε(Z∗)

(3.6)

3.3 CPEP: Conditional Probabilistic Error Propagation 34

1

2 3

A B C

(a) Simple Re-convergent
Fanout

1

2

5

BA

6

C

(b) Nested Re-convergent
Fanout

2

3 4

A

6

B

8

(c) Interwoven Inputs

Fig. 3.6 Re-convergent Fanout Structures

3.3.6 Re-convergent Fanout

The methodology developed in the previous section does not take into consideration the
impact of the re-convergent fanout gate error on the ultimate reliability of the output node.
The statistical dependence among signals in a combinational circuit is possible due to re-
convergent fanout if the primary inputs are independent. When re-convergent fanout gates
are present in a circuit, the signals at the inputs of re-convergent gates are correlated ignoring
which can result in erroneous results. Computing the node error probability in the presence of
re-convergent fanout is complex because Eq. 3.4 does not hold true. This is because each of
the terms in Eq. 3.4 cannot be factorized due to dependencies between the four probabilities.
There is no closed form solution to solve the terms in Eq. 3.4. Iterative approaches do exist,
but their complexity grows exponentially for each of the six terms and their running time is
not acceptable for application in synthesis tools.

Fanout source represents the gate output nodes that drive more than one inputs of other
gates, and re-convergent fanout nodes are the set of gates which has more than one path
to its inputs from any fanout source [101]. A simplest re-convergent fanout is shown in
Fig. 3.6(a). As stated in [48], there are two types of re-convergent fanouts which are disjoint
re-convergent fanouts as Fig. 3.6(b) and dependent re-convergent fanouts, which can be
further divided into nested re-convergent fanout and interwoven branches of inputs. The
dependent re-convergent fanouts are depicted in Fig. 3.6(c).

3.3 CPEP: Conditional Probabilistic Error Propagation 35

Y ∗A(′1′)
B(Error) Z

Y ∗A(Error)
B(′1′) Z

Fig. 3.7 Bounding Error

3.3.7 Bounding Node Error Probability

The methodology of Bound and Propagate is now introduced. It accounts for the re-
convergent fanout gate error while not increasing the overall simulation time. The algorithm
computes the upper and lower bounds for the error probability on all the gates with the
re-convergent fanout. Eq. 3.4 accounts for the six possible scenarios that would result in an
output error. Bounding each of these terms singularly results in loose bounds that would
quickly converge to the upper/lower bound of 1/0, respectively. To avoid this scenario, only
the total gate output error probability is bounded. As depicted in Fig. 3.7, an error on any
of the input nodes can be propagated onto the output if the other input node is set to ’1’. If
the other node is at ’0’, the error would be masked. Now to obtain the bounds, two cases
are presented; a pessimistic and an optimistic scenario. The plot in Fig. 3.8 illustrates the
accuracy of the error bounds when applied to MCNC benchmark circuit ’B9’.

Pessimistic Rule: The maximum error bound on the output node of the ’AND’ gate is
defined as the summation of the error probabilities on each of the input nodes when the
other node is set to ’1’. Eq. 3.7 represents this. From Tab. 3.1, it is proven that this rule is
pessimistic since many cases exist where a single error gets "masked".

Pε(Z)≤ PMax
ε (A)P1(B)+PMax

ε (B)P1(A)≜ PMax
ε (Z) (3.7)

Optimistic Rule: The minimum error bound on the output node of the ’AND’ gate is
defined as the maximum of the product of the error on the input nodes when the probability
of other node set to ’1’. Eq. 3.8 represents this.

Pε(Z)≥ Max{Pε(A)P1(B),Pε(B)P1(A)} (3.8)

3.3.8 CPEP based Analysis

This section extends the probabilistic based methodology to deal with the impact of re-
convergent fanout gate error on the overall circuit error probability [1]. All re-convergent
fanouts originated from the PI’s are considered regardless of the type of re-convergent fanout.
In other words, when applying the total probability law for a re-convergent fanout point node,

3.3 CPEP: Conditional Probabilistic Error Propagation 36

Fig. 3.8 B9 Benchmark Circuit Error Bounds

only the total probability conditioning corresponding to its fanout PIs is considered instead
of deriving closed form propagation expressions for every single re-convergent point node.

Specifically, two lists are used to identify whether a node is re-convergent fanout point
and the corresponding fanout PIs, they are All PI (API) list and Common PI (CPI) list. For
an AND gate node Z, node LX and node RX are denoted as its left-hand side sub-node and
right-hand side sub-node respectively, obtaining API and CPI of node Z using Eq. 3.9 and
Eq.3.10.

API(Z) = API(LX)∪API(RX) (3.9)

CPI(Z) = API(LX)∩API(RX) (3.10)

For an inverter node Z, the right hand side sub-node is treated as NULL, and obtain Eq.3.11
and Eq.3.12.

API(Z) = API(LX)∪NULL (3.11)

CPI(Z) = API(RX)∩NULL (3.12)

where “∪” is the union operator, for which particularly X ∪NULL = X and “∩” is the
intersection operator, for which particularly X ∩NULL = NULL. In addition, the API and
CPI of a primary input are defined as itself and NULL respectively. For example, considering

3.3 CPEP: Conditional Probabilistic Error Propagation 37

the circuit in Fig. 3.6(a) as example, it can be easily derived that API(Node1) = {A,B,C},
CPI(Node1) = {B}. For the circuit in Fig.3.6(b), an extra PI “A” have to be taken into
conditioning as well due to the fanout introduced by node 2, thus resulting in API(Node1) =
{A,B,C}, CPI(Node1) = {A,B}. The CPI list of particular node represents it’s all fanout
source primary inputs, thus Eq.3.13, can be used to represent the probability of this node.

P(Z) = ∑ j=0,1 P(X j)P(Z|X j) (3.13)

When CPI is not NULL, we set each primary input to “1” and “0” respectively to obtain
new circuits under each condition, until there are no more re-convergent fanout in the new
circuits (called simplest circuits).After calculating the probability for the conditioned circuits,
we obtain the conditional probabilities which can be substituted in the Eq.3.13 and obtain the
total probability. It is obvious that the efficiency of this conditioning algorithm depends on
the conditioning order of primary inputs in the CPI list.

If we condition the common PIs in both LX’s CPI and RX’s CPI at first, the circuit
will be conditioned to the simplest circuit more rapidly. For instance, the logic circuit in
Fig.3.6(b) becomes simpler if we condition PI “B” first than conditioning “A” . To achieve
this improvement, we introduce another list to order the PIs to be conditioned, say the Order
PI (OPI) list.

OPI(Z) =CPI(LX)∩CPI(RX)

+ [CPI(Z)−CPI(LX)∩CPI(RX)] (3.14)

Where “+” is the appending operator, for which X +NULL = X and “−” are defined as
the excluding operator, for which particularly we define X −NULL = X and NULL−X =

NULL. For example, the OPI of node 1 of the logic circuit in Fig.3.6(c) is {B,A}.

3.3.9 CPEP extension to other Gates

CPEP algorithm has been developed only considering And & Inverter gates as the current
research deals with only AIG based circuit representations. But, the CPEP model can be
easily extended to any other generic as well. For example, let us consider the 2 input XOR
gate.

The static probability as defined in Eq.3.15 is the union probability of SPA and SPB′ plus
the union probability of SPA′ and SPB assuming input A and B are independent.

SPZ∗ = SPA ×SP′
B +SP′

A ×SPB (3.15)

3.4 CAD Tool: Reliability Evaluator 38

Employing a table similar to that of Tab. 3.1, the error on the internal node (Z*) due to
the errors on the input nodes of an ideal XOR gate is computed into a closed form equation
as shown in Eq. 3.16.

Pε(Z∗) =[Pε(A)(1−Pε(B))+(1−Pε(A))Pε(B)][PA(0)PB(0)+

PA(0)PB(1)+PA(1)PB(0)+PA(1)PB(1)]
(3.16)

3.3.10 Limitations

Probabilistic based methods are well-studied from power perspective and similar methodolo-
gies are being replicated for reliability estimation as well. The advantage of this technique is
its quick computation time compared to simulation based methodologies. CPEP methodology
developed as part of this research also falls in this category. Two of the major limitations of
the proposed CPEP technique are:

• CPEP methodology has been developed with the sole purpose of catering to AIG’s.
But with other gates with more than two inputs, the mathematics involved becomes
more complicated which will result in increased computation time.

• As with most probabilistic based techniques, CPEP too will run into accuracy issues
with increased re-convergent fanout nodes.

3.4 CAD Tool: Reliability Evaluator

In this section, the core algorithm and the experimental setup used to demonstrate the
accuracy of the proposed approach against Monte-Carlo simulations are presented. Further,
the accuracy and simulation time savings compared to Monte-Carlo are reported.

Algorithm 1 Algorithm of Computation Core
Require: netlist file

1: generate data structure according to netlist file
2: while first!=NULL do ▷ the first element in output_list
3: UPDATE_LISTS(f irst)
4: COMPUTE_EP(f irst)
5: first=first→next ▷ move to next output
6: end while

3.4 CAD Tool: Reliability Evaluator 39

3.4.1 Computation Algorithm

The algorithm is implemented by introducing deep-left-first binary tree traversal method,
due to the recursive definition of binary tree.Recursion is suitable for the complete algorithm
design. The algorithm of the error probability computation core is shown in Alg. 1. The
input of this algorithm is a netlist file containing the hardware description and parameters
(error rate of gates and the static probability of PIs) of the logic circuit to be estimated. The
first step is to generate the data structure according to the netlist file and save all output nodes
to a list called “output_list”. Then for each element in the output_list, the calculation will
be performed until all outputs have been computed, therefore a “while” loop is used. The
implementation details of the computing procedure are shown in Alg. 2.

Algorithm 2 Compute_EP Methodology
Require: OPI list

1: procedure COMPUTE_EP(Z) ▷ Z is the root node
2: if Z is PI then
3: Read default values of SP, EP, CP of PI
4: return
5: end if
6: if Z is INV then
7: COMPUTE_EP(LX)
8: Calculate SP, EP, CP with independent model
9: return

10: end if
11: if OPI is NULL then ▷ Independent
12: COMPUTE_EP(LX)
13: COMPUTE_EP(RX)
14: Calculate SP, EP, CP with independent model
15: else ▷ Reconvergent Fanout
16: New0=CONDITION(Z,cond_PI,0)
17: COMPUTE_EP(new0)
18: New1=CONDITION(Z,cond_PI,1)
19: COMPUTE_EP(new1)
20: Calculate total probability employing Eq. 3.13
21: end if
22: end procedure

The algorithm conditions the type of the current node, it is quite simple as the case of
the current node is a PI, an Inverter or an AND gate without re-convergent fanout. However,
the handling of re-convergent fanouts is much complicated. It starts when the OPI is not
NULL, after conditioning the first element in OPI list to“0” in line 16, a new circuit “new0” is

3.4 CAD Tool: Reliability Evaluator 40

obtained (the OPI of new0 has been updated in condition procedure), then call “compute_EP”
procedure recursively to compute the conditional probability P[Zε |X0] as line 17. Similarly,
P[Zε |X1] is computed in line 18, 19. Finally, the total probability is calculated using Eq. 3.13.
Fig. 3.9 presents the methodology employed within the tool to compute circuit reliability.
The algorithm is implemented by introducing deep-left-first binary tree traversal method,
due to the recursive definition of the binary tree. It accounts for the error introduced by both
Inverter & AND gates. Using Eq. 3.4 and 3.5, the error due to the AND gate is computed
both on the internal and external output nodes. This flow has been integrated into the open
source tool ’ABC’ [102] which automates the error probability computation. As shown in
the flowchart, the handling of re-convergent fanouts starts if the OPI is not NULL in decision
(5), after conditioning the first element in OPI list to “0”, we obtain a new circuit “new0” (the
OPI of new0 has been updated in condition procedure), then call “compute_EP” procedure
recursively to compute the conditional probability P[Zε |X0]. Similarly, P[Zε |X1] is computed
in procedure (10), (11). Typically, a tree ought to not have any cycles (except for PI fanouts)
such as the circuit in Fig.3.6(a). However, when traversing a “tree” with cycles (a graph) such
as the one in Fig.3.6(b), a very straightforward method is used to keep the implementation
simple, although it is not runtime optimal method at this moment. To be more specific, we
treat a cycle is formed by one particular node X and its multiple parent nodes Y0, . . . ,Yn,
therefore, each time we visit node X from different parent nodes, we traverse the sub-tree
whose “root” node is X once again. For example, the visiting order of the latter circuit is
1 → 2 → A → B → 5 → 2 → A → B → 6 → B →C.

3.4.2 Simulation Results

Fig. 3.9 depicts the complete experimental setup developed to compare the algorithm results
with fault inserted gate level simulations. The sample size used for reliability analysis is
105, 5×104, and 104 for 0.001, 0.01 and 0.05 error scenario’s respectively. All the primary
inputs are assumed to be independent and set the switching activity on all the pins to 0.5.
The switching activity numbers are flexible and can be set to any other value. In Tab. 3.3,
columns 1 and 2 give the name and number of gates in the benchmark circuit. Column 3
captures the accuracy of the method when compared with Monte-Carlo Simulations while
Column 4 highlights the significant time savings the proposed algorithms achieved when
compared with Monte-Carlo simulations. From the table, the proposed algorithm maintains
accuracy within 10% while significantly speeding up on the computation time.

3.4 CAD Tool: Reliability Evaluator 41

Fi
g.

3.
9

D
es

ig
n

Fl
ow

fo
rR

el
ia

bi
lit

y
C

om
pu

ta
tio

n

3.4 CAD Tool: Reliability Evaluator 42

Ta
bl

e
3.

3
M

C
N

C
B

en
ch

m
ar

k
C

ir
cu

its
B

as
ed

A
cc

ur
ac

y
an

d
Pe

rf
or

m
an

ce
E

va
lu

at
io

n
fo

rd
iff

er
en

tg
at

e
er

ro
rs

(ε
)

B
en

ch
m

ar
k

PI
C

ou
nt

G
at

e
C

ou
nt

A
vg

E
rr

or
D

ev
ia

tio
n

on
al

lo
ut

pu
ts

%
R

un
tim

e{
s}

A
N

D
In

ve
rt

er
ε

=
0.

00
1

ε
=

0.
01

ε
=

0.
05

G
L

S
C

PE
P

ap
ex

6
13

5
65

9
54

4
0.

38
4

1.
07

9
0.

24
3

28
89

.9
6

0.
01

20
13

b9
41

10
1

77
0.

24
7

0.
69

6
0.

13
8

52
0

2.
51

56
99

ch
t

47
18

7
18

9
0.

23
7

0.
70

2
0.

30
8

78
9.

97
0.

00
38

80
cm

13
8a

6
16

13
0.

13
0

0.
38

9
0.

12
9

12
0.

03
0.

00
01

54
cm

42
a

4
18

14
0.

13
3

0.
26

7
0.

51
8

14
0.

07
0.

00
01

01
cm

82
a

5
20

25
0.

51
4

1.
13

2
2.

54
9

12
9.

98
0.

01
52

72
cm

85
a

11
36

30
0.

41
2

1.
20

0
0.

90
8

20
9.

94
12

.9
91

88
6

cm
b

16
47

29
0.

15
3

0.
71

0
0.

85
3

22
0.

08
0.

00
05

97
co

un
t

35
12

7
13

0
0.

28
2

0.
41

6
1.

00
4

53
0.

07
0.

01
55

86
cu

14
55

29
0.

12
0

0.
29

0
0.

15
0

26
0.

08
0.

09
63

05
de

co
d

5
30

4
0.

08
0

0.
25

0
0.

09
0

15
9.

94
0.

00
01

38
de

s
25

6
40

92
26

50
0.

73
8

2.
14

8
1.

70
3

16
07

0.
07

3.
03

83
16

fr
g2

14
3

11
20

61
1

0.
34

7
0.

99
8

1.
10

4
48

89
.9

6
0.

03
93

63
pa

ir
17

3
14

74
11

98
0.

38
5

0.
74

3
1.

06
5

64
49

.9
9

0.
38

73
60

x3
13

5
81

1
51

2
0.

25
8

0.
66

6
0.

30
6

37
39

.9
6

0.
00

98
39

3.5 Conclusions 43

3.5 Conclusions

Reliability evaluation is the most fundamental and crucial step towards developing a reliability-
aware logic synthesizer and also fault tolerant circuit design. The increasing demand for
reliability analysis calls for automated tools that could analyze the circuit reliability in quick
time without compromising on the accuracy. A new gate error model has been described
that enables the algorithm to study the impact of the logical error on individual gates on the
overall circuit. A complete mathematical analysis was presented in a close formed equation
that describes the gate error probability. The proposed gate error model is employed to
propagate the gate error probability on generic circuits.

The problem of computing reliability information for combinational circuits has been
addressed by investigating two different methodologies. Both the methods described are
accurate, scalable, and efficient techniques for reliability analysis of logic circuits. The first
approach employs simulation techniques by injecting faults with specific characteristics to
gather statistical information on how these errors propagate through the circuit. The main
novelty lies in the fact that Mersenne twister is used over the traditional ŔANDf́unction to
generate random vectors. The second method called Conditional Probabilistic Error Propaga-
tion(CPEP) builds a probabilistic error model of the combinatorial circuit and calculates the
reliability of the circuit based on a mathematical analysis of the model. This is quite generic
and can be applied to any error scenario and for any logic gate.

Further, two different approaches to study the impact of re-convergent fanout on reliability
estimation was discussed. First, the bounding approach where the idea was to estimate the
minimum and maximum possible error probability instead of an exact number. While this is
a fast technique, further investigation in greater detail is required to develop tighter bounds
and eventually integrate it into the synthesis tool. Second, CPEP based algorithm has been
extended to address re-convergence issues wherein separate data structures are created to
maintain the re-convergent fan-outs. An analysis in line with the dynamic weighted average
algorithm is employed to estimate the reliability considering these re-convergent fanout
nodes. Experimental results obtained with the proposed CPEP framework is within 2%
average error and up to 1000 times faster when compared to Monte Carlo simulations. This
error is within acceptable limits as the focus of this approach is to quickly compare hundreds
of logically equivalent realizations and select higher reliability circuit configuration.

In this chapter, probabilistic and simulation based error model of the combinational circuit
to study the impact of logical error on individual gates on the overall circuit is presented. In
the next chapter, reliability driven 4-cut enumeration and Boolean matching technique that
improves circuit reliability will be presented.

Chapter 4

Reliability Aware Logic Synthesis

4.1 Introduction

Logic synthesis is the process of translating a higher level description of a circuit into
gate level netlist [103], which generally involves three steps: a) compiling the high-level
representation into an intermediate representation b) optimizing the intermediate represen-
tation c) technology mapping. Traditional logic synthesis methodologies and tools were
centered on fulfilling timing, power, and area constraints or on achieving acceptable trade-offs
among those [6] [7]. However, as the CMOS technology entered the nanometer era, these
specifications alone can no longer cover all the relevant aspects and reliability comes into
consideration.

Logic synthesis traditionally is classified into two broad categories, local rule-based trans-
formations (or rewriting) and technology independent/dependent algorithms [32]. Rewriting
is based on employing a set of local transformation techniques on a small sub-section of
the graph to improve area, power or timing. Algorithmic-based approaches work on the
observation that there exists a certain set of operations, which are inherently good irrespective
of technology. This work explores the possibility of reducing output error probability by
employing local transformation techniques [104] [105]. Though reliability driven logic opti-
mization is in its infancy when compared to power and delay driven optimization, the method
presented here is still based on the popular and successful concept of local transformations
[106] [107]. Rewriting of 4-input cuts by employing Negation-Permutation-Negation (NPN)
equivalent logic configurations are employed to improve circuit reliability. Key differences
in the cut enumeration and Boolean matching techniques when constraint optimization is
circuit reliability, instead of area, are discussed in detail.

4.1 Introduction 45

4.1.1 Main Contributions and Outline

This work introduces a new reliability driven circuit optimization and synthesis flow based on
the standard rewriting technique to improve the reliability of circuits built out of unreliable
gates [108] [109] [2]. ABC [28], a logic synthesis and verification tool which performs
scalable logic optimization based has been used to accommodate all the algorithms. Two
different methodologies are proposed both based on the rewriting technique. The first is
rule-based re-synthesis and the second one has adopted from cut based rewriting. Rule-based
re-synthesis approaches rely on searching the graph for specific substructures and replacing
these with alternatives. The search and replacement of substructures are hand derived
and hard-coded. A selected subset of NPN-equivalent (Negation-Permutation-Negation
equivalent) local transformation rules for logic optimisation is employed to improve circuit
reliability. The biggest advantage is that there is no extra area overhead as node count does
not increase. These set of rules along with an algorithm to compute the impact of gate errors
on the circuit output(s) are integrated unto a reliability-aware logic synthesis tool that applies
the transformation rules in a guided fashion on complex combinational circuits. Evaluation
of the tool on a set of MCNC benchmark circuits and results show a reliability improvement
up to 7.5%.

The second approach is based on cut rewriting. A cut is a self-contained subgraph of the
main graph having a set number of inputs and a single output. In cut based rewriting, the
cuts that are rooted at a particular node are identified, and alternative cuts that compute the
same function are evaluated as replacements for that node. A precomputed forest of possible
alternatives is provided from which possible options are selected. This methodology is
superior concerning its performance compared to the original methods proposed. To improve
circuit reliability, other redundant nodes can help in masking gate errors thereby reducing
output error. Throughout this work, the exact nature of the unreliability is ignored, and it is
assumed that each gate has a constant, independent probability of flipping its output from the
correct value to the opposite. For this work, a probability of error of 1e−4 is chosen.

Evaluation of the tool on a set of standard MCNC benchmark circuits and the conventional
arithmetic circuits is performed. Results show an average reduction in output error of up
to 14% while a peak improvement of up to 75.5% is observed. Performance analysis using
Synopsys Design Compiler shows that very low area overhead of 6.57% that results in
13.52% higher power consumption is the extra cost incurred.

4.2 ABC : Open Source EDA tool 46

4.2 ABC : Open Source EDA tool

Several academic open-source tools are available that provide a programming environment
and a solid platform for research in logic synthesis, technology mapping, power and delay
estimation and optimization. These academic tools represent the Boolean functionality of
any digital circuit using a data structure. Manipulation for logic synthesis, optimization, and
technology mapping is done on these data structures. In this section, first the data structure
AIG is discussed, and the details of the ABC tool are described.

4.2.1 AND Invert Graphs

And Invert Graphs (AIGs) are common circuit representation where each graph node cor-
responds to a two-input AND gate and the edges, representing the node interconnections,
optionally having an inverter. An example circuit in both schematic and AIG form is pre-
sented in Fig. 4.1(a) and Fig. 4.1(b) respectively. Circles represent AND nodes, solid lines
represent direct gate connections and dashed lines represent connections through an in-
verter. The following properties of AIGs facilitate the development of robust applications in
synthesis, mapping, and formal verification:

• AIGs unify the synthesis/mapping/verification by representing logic compactly and
uniformly. During technology mapping, the AIG is used as a subject graph annotated
with cuts that are matched with LUTs or gates. At any time, verification can be
performed by constructing a miter of the two synthesis snapshots represented as one
AIG, handled by a complex AIG-based verification flow.

• Although AIG transformations are local, they are performed with a global view afforded
by the structural hashing table. Because these computations are memory/runtime effi-
cient, they can be iterated leading to superior results unmatched by a single application
of a more global transform.

• An AIG can be efficiently duplicated, stored, and passed between calling applications
as a memory buffer or compactly stored on disk in the AIGER format [99].

Next, some of the standard terminology used throughout the rest of the chapter is defined.
– Cut: A cut of a node N in a network is a set C of nodes such that any path from Primary

Inputs (PI) to N passes through one of the nodes from the set [110]. Node N itself forms
a trivial cut. The size of a cut refers to the number of leaves, rather than to the number of
interior nodes. Cuts of up to a specific size k are called k-cuts or k- feasible cuts. In Fig. 4.2,
the node set {I6, n1, n2, n3} defines a 4-cut C on the node n7. C is a 4-cut since it has four

4.2 ABC : Open Source EDA tool 47

I1

I2

I3

I4
I5

I6

(a) Reference Circuit
I1 I2 I3 I4 I5 I6

n1 n2 n3

n4

n5

n6

n7

O1

(b) AND Invert representation

Fig. 4.1 And Inverter representation of Combinational Circuit

leaves: n1, n2, n3, and I6. Every path from a PI to n7 passes through at least one of them.
Nodes n4, n5, and n6 are the internal nodes of the cut.

I1 I2 I3 I4 I5 I6

n1 n2
n3

n4

n5 n6

n7

O1

Fig. 4.2 Cut Example

– NPN equivalence: Two Boolean functions, F and G, are NPN-equivalent, i.e., belong
to the same NPN equivalence class, if F can be transformed into G through the negation of
inputs (N), permutation of inputs (P), and negation of the output (N) [111]. For example,
the subcircuit comprising nodes {n1, n2, n4} in Fig. 4.1(b) and Fig. 4.2, evaluating the
function G and F, are NPN-equivalent. G can be transformed to F by employing the following

4.2 ABC : Open Source EDA tool 48

procedure: (1) negate I3 and I1, (2) swap the position of I3 and I2, and (3) negate the output
node.

– Boolean matching: It is a technique widely used in technology mapping [112]. It is
the process of replacing a subgraph with another functionally equivalent sub-graph. It is
typically done by calculating the canonical form representation of functions by employing
simple methods like negation and swapping of the nodes.

I1 I2I3 I4 I5 I6

n1

n2 n3

n4 n5

n6

O1

Fig. 4.3 Boolean Equivalent

4.2.2 ABC Tool

ABC is a growing software system for synthesis and verification of binary sequential logic
circuits appearing in synchronous hardware designs developed at University of California
Berkeley. In this research, the algorithms developed are build as a wrapper on top of the
existing ABC tool. ABC combines scalable logic optimization based on And-Inverter Graphs
(AIGs), optimal-delay DAG-based technology mapping for look-up tables and standard
cells, and innovative algorithms for sequential synthesis and verification. ABC provides
an experimental implementation of these algorithms and a programming environment for
building similar applications. The goal of the ABC project is to provide a public-domain
implementation of the state-of-the-art combinational and sequential synthesis algorithms
and, at the same time, create an open-source environment, in which such applications can be
developed and compared. The current version of ABC can optimise/map/retime industrial
gate-level designs with 105 gates and 104 sequential elements for an optimal delay and
heuristically minimized area in about one minute of CPU time on a modern computer. The
runtime of the combinational synthesis, mapping, and verification is typically faster. Future
development will focus on improving the algorithms and making most of the packages

4.3 Rule based Rewriting 49

stand-alone. This will allow the user to customize ABC for their needs as if it were a tool-box
rather than a complete tool. Most of the research work is based on AND-Inverter graphs,
manipulated in ABC.

ABC is derived from a tool called SIS [26]. Regarding logic representation, the main
difference between SIS and ABC is that SIS works on a logic network whose nodes are
represented using SOPs, while ABC works on an AIG whose nodes are two-input AND
gates. SIS works on one copy of a logic network, defined by the current boundaries of its
logic nodes, while ABC works on an AIG. A cut computed for an AND node in the AIG can
be seen as a logic node. Since there are many cuts per logic node, the AIG can be seen as an
implicit representation of many logic networks. When AIG rewriting is performed in ABC,
a minimal description is found among all decompositions of all structural cuts in the AIG,
while global logic sharing is captured using a structural hashing table. Thus, ABC is more
likely to find a smaller representation concerning AIG nodes than SIS.

4.3 Rule based Rewriting

A set of local transformation rules for logic optimization from a reliability perspective.
The proposed transformation rules (i) maintain the logical equivalence of the new circuit
with the original one and (ii) provide a set of standard rules that when applied in a guided
fashion would result in improved circuit reliability. The impact of the gate error probability
on equivalent logic configurations to determine the best realization is then studied. The
transformation rules are built upon the application of Boolean algebra logical equivalence
laws such as swapping and reduction of variables. Evaluation of the logic transformation
rule set on a test circuit shows a reliability improvement in the order of 10%. Given a
combinatorial circuit implementing the Boolean function f lets call SI the first AIG network
before rule application and SF the final AIG network after rule application. The reliability-
aware synthesis aims to find a sequence of transformations leading to an AIG network SF

= Sopt that minimise the cost function Err(f). It is evident that logic synthesis based on
local transformation is an NP-hard problem [113]. A heuristic approach is employed to
find an acceptable solution, i.e., an AIG providing reliability higher than a certain threshold.
The strategy chosen is to apply local optimization based on a transformation rule set. The
challenge is in deciding whether to transform a sub-graph to the new state S0 based on the
impact of the transformation on the PO reliability.

A fast and accurate algorithm is presented in the previous section to compute the impact
of input and gate error probabilities on the reliability of the circuit output. In this section,
logically equivalent configurations of a given circuit are compared concerning error probabil-

4.3 Rule based Rewriting 50

ities operating under similar conditions. Though reliability driven logic optimisation is in its
infancy when compared to power and delay driven optimization, the method presented here is
still based on the popular and successful concept of local transformations [106], [107]. A set
of AIG based local transformation rules that can be applied on any combinational circuit are
defined. The impact of the gate error probability on equivalent logic configurations is studied
to determine the best realization. The transformation rules are built upon the application of
Boolean algebra logical equivalence laws such as swapping and reduction of variables. In
this way, each transformation rule alters the structure of the AIG network but maintains the
logical functionality intact.

Given a combinatorial circuit implementing the Boolean function f , SI the first AIG
network before rule application and SF the final AIG network after rule application. The
reliability-aware synthesis aims to find a sequence of transformations leading to an AIG
network SF=Sopt that minimise the cost function Err(f). It is well known that logic synthesis
based on local transformation is an NP-hard problem. Thus, the algorithm relies on a heuristic
approach to find an acceptable solution, i.e., an AIG providing a sign of reliability higher
than a certain threshold. The strategy chosen is to apply local optimisation based on the
transformation ruleset. The constraint is in deciding whether to transform a sub-graph to the
new state S0 based on the impact of the transformation on the PO reliability.

4.3.1 Local Transformation Rules

In this section, the set of transformation rules utilized in the quest for the reliability optimised
implementation of Boolean functions are presented.

–Rule1: The first transformation as shown in Fig. 4.4 is modeled based on the law of
distributivity. Consider re-convergent fanout node n3 with two fan-in nodes n1 and n2. If both
n1 and n2 have no other fanout except n3, then I1 and I3 can be swapped with determinate
negations. The new configuration shall have higher reliability as well as node count decreases
by one.

I1 I2 I3

n1 n2

n3

O1

O1= I1I2 I2I3
= (I1I2)+(I2I3)
= I2 (I1 + I3)

= I2 I1I3
I1 I3 I2

n1

n2

O1

Fig. 4.4 Logic Transformation Rule1

4.3 Rule based Rewriting 51

I1 I2 I3 I4

n1

n2

n3

O1

O1= (((I1I2)I3)I4)
= (I1I3)(I2I4)

I1 I2 I3 I4

n1 n2

n3

O1

Fig. 4.5 Logic Transformation Rule2

–Rule2: This transformation as shown in Fig. 4.5 is based on the law of associativity.
The underlying assumption is that reducing the length of the longest path will improve the
reliability of the circuit.

–Rule3: This rule as shown in Fig. 4.6 is also based on the law of associativity. It
suggests equally distributed inverters on both the legs of the graph will improve the reliability
of the circuit. This rule specifically targets the configuration for a two-input XOR gate. Its
application can be seen predominantly in circuits like priority encoders, CORDIC processors,
etc.

I1 I2

n1 n2

n3

O1

O1= ((I1 I2)(I1I2))

= ((I1 + I2)(I1 + I2))

= (I1I2)+(I1I2)

= (I1I2) (I1I2)

I1 I2

n1 n2

n3

O1

Fig. 4.6 Logic Transformation Rule3

–Rule4: This rule is derived based on principles of associativity and insertion and
defines the best representation for 3-bit majority voter. Fig. 4.7 depicts the three possible
configurations of the majority voter. This rule in principle applies rule1 to reduce node count
and then applies rule3 to place the inverters equally on both the legs of the output. (Eq. 4.1)
proves the logical equivalence of all the three configurations.

4.3 Rule based Rewriting 52

O1 = (I1I2) (I2I3) (I3I1)

= I1I2 + I2I3 + I3I1

= I3I1 + I1I2 + I2I3 + I2I3

= I3I1 + I2I3I3 + I1I2 + I2I2I3

= I3(I1 + I2I3)+ I2(I1 + I2I3)

= (I3 + I2)(I1 + I2I3)

= (I3 I2)(I1(I2I3))

(4.1)

I1 I3 I2

n1 n2n3

n4

n5

O1

I3 I2 I1

n1

n2 n3

n4

O1

Fig. 4.7 Logic Transformation Rule4

–Rule5: The fifth transformation rule is based on the commutative law. The rule states
that the signals with the lowest static probability of ’1’ in an AIG tree should be closer to
the output, or closer to the root node of a subgraph. Intuitively, this rule is maximizing the
masking effect of the AND gate to minimize the impact of any error coming from the left
side of the graph. The reliability improvement is strongly dependent on the static probability
of the input pins.

I1 I2 I3

n1

n2

O1

O1= ((I1I2)I3)
= ((I1I3)I2)

I1 I3 I2

n1

n2

O1

Fig. 4.8 Logic Transformation Rule5

4.3 Rule based Rewriting 53

4.3.2 Exhaustive Analysis of Rules

Each of the rewriting rules presented earlier is a transformation between two logical equiv-
alent circuits. A mathematical equation that describes the primary output reliability as a
function of the input error probabilities input static probabilities and the gate error probability
can be associated with each of this logical equivalent circuit by recursively applying Eq. 3.4
and Eq. 3.5 for each node of the circuits. The problem now turns into choosing one among
the original and the modified circuit.

ROrg = f1{PEI,SPI,GE}
RMod = f2{PEI,SPI,GE}

(4.2)

where,

• ROrg - Reliability of the original circuit

• RMod - Reliability of the modified circuit

• PEI - Error Probability of the Primary Inputs

• SPI - Static Probability of the Primary Inputs

• GE - Individual gate error

Unfortunately, even for a small circuit, the direct mathematical analysis is not feasible to
give a complete mathematical characterization to determine the reliability performance of
the circuit configurations from these equations as the number of variables in the equations
used to compute the output error probability is too high. Consider a three input graph.
Eq. 4.2 has seven variables: three input error probabilities, three static input probabilities,
and the gate error probability. As an example of the complexity, apply Eq. 4.2 to Rule4. It
results in an equation of the output error probability that is a polynomial in seven variable
of degree 20. Hence, it is clear that direct mathematical analysis is not feasible to formally
compare the reliability performance of the circuit configurations from these equations. As an
approximate solution, a framework has been developed in Matlab to investigate the behavior
of the equivalent circuits. The most commonly used signal patterns Gaussian, Inverse
Gaussian, monotonically increasing and monotonically decreasing distributions across the
input nodes for error probability and static probability are applied and then evaluate Eq. 4.2
varying the gate error probability. These four are randomly picked patterns as they are the
most commonly seen patterns. An exhaustive analysis of these rules has been performed for
different input static probability values and gate errors.

4.3 Rule based Rewriting 54

Scenario Pattern
Error

Probability
Static

Probability
Error

Probability
Static

Probability
Gaussian Constant 0.01..0.05..0.01 0.5

Rev_Gaussian Constant 0.05..0.01..0.05 0.5
Monotonically

Increasing
Constant 0.01..0.03..0.05 0.5

Monotonically
Decreasing

Constant 0.05..0.03..0.01 0.5

Constant Gaussian 0.5 0.01..0.05..0.01
Constant Rev_Gaussian 0.5 0.05..0.01..0.05

Constant
Monotonically

Increasing
0.5 0.01..0.03..0.05

Constant
Monotonically

Decreasing
0.5 0.05..0.03..0.01

Table 4.1 Scenarios used for rules analysis

These four patterns are then applied to the input pins error probabilities as well as static
probability independently assuming the other parameter to be constant. In Tab. 4.1, the eight
different scenarios analyzed are listed. The set of simulation results covering all the patterns
listed in Tab. 4.1 are plotted in Fig. 4.9 - Fig. 4.12. From the Rule1 plots, it is clear that
considerable reliability improvement is achieved by reducing the node count. While valid for
this specific rule, the statement cannot be generalized for any circuit. During the analysis, it
has been observed that insertion of extra nodes can result in reliability improvement.

Rule3 is pre-dominantly applicable on most of the primary communication blocks. It can
have a higher impact factor as xor is the most commonly used configurations in circuits like
cordic, parity encoder, etc. Rule4 scales up the reliability numbers by almost 10% in all the
cases. Reducing the number of re-convergent nodes helps in computing the reliability and
static probability numbers in much more accurate fashion. The simulation results presented
show how for Rule1 to Rule4 the proposed transformation is beneficial for all input scenario.
While performing a different set of simulations, it is observed that insertion of extra nodes
can result in reliability improvement. The question of how to insert such additional nodes
systematically is explained in the cut based synthesis methodology later on.

4.3.3 The CAD algorithm

To validate the proposed approach and rules, a local optimization search algorithm is pre-
sented to quantify the reliability improvement. The aim is to find a sequence of transforma-
tions leading to an AIG network that minimise the cost function. The algorithm relies on a

4.3 Rule based Rewriting 55

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(a) PE_Gaussian_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(b) PE_Rev_Gaussian_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(c) PE_Rising_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(d) PE_Falling_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(e) PE_Static_SP_Gaussian

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(f) PE_Static_SP_Rev_Gaussian

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(g) PE_Static_SP_Rising

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(h) PE_Static_SP_Falling

Fig. 4.9 All simulation results for Rule1

0 0.01 0.02 0.03 0.04 0.05
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(a) PE_Gaussian_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(b) PE_Rev_Gaussian_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(c) PE_Rising_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(d) PE_Falling_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(e) PE_Static_SP_Gaussian

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(f) PE_Static_SP_Rev_Gaussian

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(g) PE_Static_SP_Rising

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(h) PE_Static_SP_Falling

Fig. 4.10 All simulation results for Rule2

4.3 Rule based Rewriting 56

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(a) PE_Rising_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(b) PE_Falling_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(c) PE_Static_SP_Rising

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(d) PE_Static_SP_Falling

Fig. 4.11 All simulation results for Rule3

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(a) PE_Gaussian_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0.05

0.1

0.15

0.2

0.25

0.3

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(b) PE_Rev_Gaussian_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(c) PE_Rising_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0.05

0.1

0.15

0.2

0.25

0.3

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(d) PE_Falling_SP_Static

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(e) PE_Static_SP_Gaussian

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(f) PE_Static_SP_Rev_Gaussian

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(g) PE_Static_SP_Rising

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t
E

rr
o
r

Original
Modified

(h) PE_Static_SP_Falling

Fig. 4.12 All simulation results for Rule4

Algorithm 3 Local transformation based reliability aware optimization
Require: N, total number of nodes in the AIG network
Require: RN , total number of transformation rules

1: for i = 1 to N do do
2: for j = 1 to RN do do
3: if Rule R j is applicable on Nodei then
4: Implement the transformation and calculate new reliability Wi j
5: end if
6: Switch Back to normal configuration
7: end for
8: select RJ s.t. WJ = min(Wi j)
9: Implement RJ

10: end for

heuristic approach to find an acceptable solution, i.e., an AIG providing reliability higher
than the original circuit. The strategy chosen is to apply local optimization based on the
transformation ruleset. Given a combinational circuit implementing the Boolean function f
and its AIG network, the graph is wholly traversed to see if any of the rules are applicable
on the given node. For every possible transformation, the new reliability of the circuit is

4.3 Rule based Rewriting 57

computed. The configuration that yields the highest improvement in circuit reliability is
chosen, and the new topology is generated. This process continues on every node on the
graph until the primary outputs are reached where no more transformations are applicable.

Fig. 4.13 describes the complete flow of the tool. The output error probability of two
netlists is computed; (i)the default circuit (the original MCNC netlist) without any optimiza-
tion and (ii)the circuit optimised by the best ’ABC’ synthesis algorithm. Since the synthesis
algorithm on the ABC tool focuses on area and delay optimisation, it may deteriorate the
reliability of the circuit. After selecting the better circuit configuration between the two, the
internal tool developed is employed to improve the circuit reliability further. The synthesis
tool traverses through every single node in the circuit performing Boolean matching to see if
any matching rewriting rules can be applied. If there is more than one applicable rule, the
one which provides the highest reliability improvement is selected. This process continues
until no more rules can be applied to this node that can improve the circuit reliability. A
similar set of operations are performed on all the nodes in the circuit. This methodology will
continue to benefit with further expansion of the local transformation ruleset.

The rules presented have been tested in various conditions, and the simulation results
show reliability improvement in every scenario. However, due to the large variable count,
it is impossible to derive a rigorous proof and to test for all input scenario. Hence, one
cannot generalize the improvement in all circumstances. As a result, a local optimization
search algorithm is used to confirm the reliability improvement before its application on the
circuit. Alg. 3 details the process adopted for performing local transformations. Starting
from the initial circuit configuration, the graph is traversed throughout to see if any of the
rules are applicable on the given node. For every possible transformation, the new reliability
of the circuit is computed. The configuration that yields the highest improvement in circuit
reliability is fixed, and the new topology is generated. This process is continued on every
node on the graph until the primary outputs are reached where no more transformations are
applicable.

4.3 Rule based Rewriting 58
St

ar
t

G
et

G
at

e
E

r-
ro

r
an

d
In

pu
t

Sw
itc

hi
ng

Pr
ob

ab
ili

tie
s

;
Se

t
N

od
e-

C
ou

nt
to

ze
ro

M
C

N
C

B
en

ch
-

m
ar

k
C

ir
cu

it

C
om

pu
te

ci
rc

ui
t

re
lia

bi
lit

y

R
un

be
st

’a
bc

’
sy

nt
he

si
s

al
go

ri
th

m

C
om

pu
te

ci
rc

ui
t

re
lia

bi
lit

y

Se
le

ct
ci

rc
ui

t
w

ith
hi

gh
er

re
lia

bi
lit

y

In
cr

em
en

t
N

od
eC

ou
nt

C
he

ck
if

m
or

e
no

de
s

ar
e

av
ai

la
bl

e

St
op

Pe
rf

or
m

B
oo

le
an

m
at

ch
in

g

Se
le

ct
th

e
B

es
t

ru
le

fr
om

m
at

ch
in

g
lo

ca
l

tr
an

sf
or

m
a-

tio
n

ru
le

s

C
he

ck
if

R
el

ia
bi

lit
y

is
im

pr
ov

ed

Sa
ve

th
e

ne
w

re
fe

re
nc

e
co

nfi
gu

ra
tio

n

A
ny

ot
he

r
ru

le
ap

pl
ic

ab
le

X

X
ye

s

no

no

ye
s

no

ye
s

Fi
g.

4.
13

R
el

ia
bi

lit
y

A
w

ar
e

L
og

ic
Sy

nt
he

si
s

Fl
ow

4.4 Experimental Results 59

4.4 Experimental Results

In this section, the potential practical implications of the proposed reliability-aware synthesis
tool using local transformations are evaluated. In this view, Alg. 3 was implemented and
integrated into ABC synthesis tool as a command ′rwrel′. The total savings achieved
concerning circuit reliability is studied by performing a set of experiments using MCNC
benchmark circuits [114] with more than 3000 node AIGs after structural hashing. A unit
gate error probability of 0.01 is assumed in all the simulations. The networks were loaded
in Berkeley Logic Interchange Format (BLIF) format and strashed to AIGs. Functional
equivalence was extensively verified during development using the ABC equivalence check
command ′cec′. In this section, a case study highlighting the important differences in the way
the Boolean matcher finds alternative matching local transformation rule when reliability is
the constraint is first presented. Then, the results obtained for various MCNC benchmark
circuits and 8051 functional units are discussed in detail.

4.4.1 Case study

As a case study, the proposed reliability-aware synthesis algorithm is applied on the AIG
depicted in Fig. 4.14(a). As the circuit is simple, only two local transformations are applicable.
Rule2 is applicable on node n1. The new error probability of the circuit after applying this
rule is presented in Fig. 4.15. It is clear that applying Rule2 on node n1 results in higher
reliability. No other rule is applicable on node n1. So, this would be the new reference
topology of the circuit. Also, Rule2 can be applied on node n2 of Fig. 4.14(a). After this
transformation, the reliability of the circuit reduces, and hence this transformation is not
applicable. Further, rule2 can also be applied on node n3 of Fig. 4.14(b). Simulation results
presented in Fig. 4.15 show that such transformation also results in improvement in the
reliability of the circuit. No further rules can be applied on any of the nodes, and this would
remain as the most optimised version of the reference circuit. Fig. 4.15 shows even for such
a small circuit, the application of the reliability-aware synthesis algorithm can achieve a
marked improvement of 25% over the initial configuration and about 10% over the netlist
synthesized by the ABC tool. Another point of interest is the fact that in spite of higher node
count in the configuration shown in Fig. 4.14(b), the reliability of the circuit is higher when
compared to Fig. 4.14(c). This leads the research to further investigate on developing novel
techniques that could result in improving reliability by inserting extra nodes.

4.4 Experimental Results 60

I1 I2 I3 I4 I5 I6

n1 n2 n3

n4

n5

n6

n7

O1

(a) Original circuit

I1 I3 I2 I4 I5 I6

n1 n2

n3

n4 n5

n6

O1

(b) First transformation

I1 I3 I2 I4 I5 I6

n1

n2

n3 n4 n5

n6 n7

n8

O1

(c) Second transformation

I1 I3 I2 I4 I5 I6

n1

n2

n3 n4

n5

O1

(d) Final Circuit

Fig. 4.14 Application of logic transformation rule-set on the original Circuit

4.4.2 Evaluation of MCNC Benchmark Circuits

To prove that the whole methodology is scalable, the tool is tested on a set of MCNC
benchmark circuits. Simulation results comparing the circuit reliability of default and the
optimised configuration obtained from the tool are reported in Tab. 4.2. In the table, columns
1 and 2 give the name and number of gates in the benchmark circuit. The reliability of
both the original configuration and the optimised one are computed and tabulated in the
third column. The fourth column reports the percentage improvement achieved through the
synthesis algorithm. Column 5 lists the total number of output nodes, and those reliability
improvements are greater than 0.5%. The reliability improvement is computed using Eq.
4.4.

4.5 Cut Based AIG Rewriting 61

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gate Error

O
u
tp

u
t

E
rr

o
r

Original
Config1
Config3

Fig. 4.15 Comparison of results

RMetric =
n

∑
i=1

ROrg −RMod

ROrg
(4.3)

where ’n’ is the number of nodes. The maximum improvement in reliability is 7.5% for the
benchmark circuit, x2. Complex circuits with higher output node count include many paths
with gate count less than 10 and generally there are no local transformation rules that are
found suitable for application. Hence, vda and pair circuits with higher gate count report
lower improvement in reliability.

4.5 Cut Based AIG Rewriting

This section presents an AIG 4-input cut based rewriting algorithm which targets the opti-
mization of circuit reliability rather than area, delay or power. Rewriting is a conventional
logic optimization approach which relies on local transformations. Most commercially
available logic synthesis tools include a rewriting engine that may operate multiple times on
the same netlist during the optimization process. For traditional constraints like area/or delay,

4.5 Cut Based AIG Rewriting 62

Benchmark GateCount
Output Error Probability

RMetric%
Output Node Details

Original Optimised Total RMetric ≥ 0.5%
b9 99 0.16023 0.15036 6.15808 20 7

cm162a 33 0.22993 0.21427 6.81026 5 4
cm85a 35 0.20816 0.19640 5.65277 3 2

cu 45 0.13332 0.12700 4.73912 5 5
dalu 1371 0.32429 0.31516 2.81394 16 15
frg1 125 0.17372 0.17089 1.62925 3 1
pair 1500 0.20542 0.20429 0.54835 131 28

unreg 112 0.09779 0.09365 4.23406 16 16
vda 924 0.15885 0.15724 1.01155 39 18
x2 60 0.16726 0.15468 7.51923 7 6

Table 4.2 MCNC Benchmark Circuits Performance Evaluation (gate error: ε = 0.05.)

the goal is to reduce the number of nodes and the circuit, respectively. But, when circuit
reliability is the optimization constraint, the entire optimization algorithm, and its output
change drastically.

In cut based rewriting, the first step is to pre-compute the best circuits for a subset of NPN
classes of 4-cuts from all possible such functions. Forest (list of all useful cuts) construction
is done once and saved to a file, and when rewriting a circuit, the forest is loaded from a file
rather than being computed each time. The primary forest constructed in this work consists
of 2004 nodes implementing 106 NPN function classes. Comparatively, ABC’s original
area based rewriting uses a forest of 1785 nodes implementing 139 function classes. This
is because, in the ABC’s default rewriting algorithm targeting area optimization, unit XOR
nodes are also used in the forest, but these are excluded from the reliability-aware rewriting
algorithm since XOR node can result in significant output error.

The second step is cut-enumeration and Boolean matching. Cuts that are rooted at a
particular node are identified, and functionally equivalent alternative cuts from the precom-
puted forest are evaluated as replacements for that node. For each cut, the nodes that are
computing this function and no others can be removed. New nodes that are not duplicates
of existing nodes must be added. The cut implementation is then scored by the number of
nodes it removes less the amount it must add. Each node in the forest exists as a function
itself and also as a fan-in for further nodes. Auxiliary tables and linked lists are maintained
by grouping each node in the forest into NPN function classes. The conditions for a node
being tried to be added to the forest is that it is either less than two levels deep or implements
a more complex NPN function class deemed practical and that it is better than each existing
function executing that class in its output error probability.

4.5 Cut Based AIG Rewriting 63

The decomposition module within ABC encompasses all the coding details that handle
network modifications during rewriting. A decomposition includes the new nodes that must
be added or reused (found in the network by strashing). Nodes in the original cut are marked
for removal if they are not needed elsewhere. In area-based rewriting, a decomposition
must be formed for every implementation of every cut as building the decomposition is how
area change is calculated. All these decompositions are constructed still when rewriting for
reliability to retain the same, known correct, code structure, even though the decomposition
could be delayed and one calculated per cut since the reliability information is available in
the forest. For each alternative implementation, a decomposition (possible alteration) of the
network based on substituting that implementation is formed.

4.5.1 The CAD Algorithm

The main algorithm implemented in this work is called "Rewrite for Reliability" or ′rwrel′

for its command in ABC. This algorithm is based on the standard cut-rewriting algorithm
from ABC, adapted so that the goal is reliability instead of area. Modified versions of the
data structures were created to include node error probability values. The critical functions
of the rewriting process were then rewritten to use reliability as a goal. All utility functions
from the rewriting module were duplicated, just changing them to work with the expanded
structures instead of the originals. The cut enumeration and decomposition modules are
self-contained and are used directly. Eq. 4.4 quantifies the ’percent decrease in error’ goal
function that is used in guiding the optimization algorithm to select the better cut.

RMetric =
Pε(Old_Cut)−Pε(New_Cut)

Pε(Old_Cut)
(4.4)

A pseudo-code of this algorithm is presented in Alg. 4. The aim is to find a sequence
of transformations leading to an AIG network that minimize the cost function. A heuristic
approach is employed to find an acceptable solution, i.e., an AIG providing higher reliability
than the original circuit. The strategy chosen is to figure out all the functionality equivalent
cuts for a given node and determine the best among them. Given a combinational circuit
implementing the Boolean function f and its AIG network, the algorithm, starting from PI’s,
traverses through the graph to see if any of the transformations are applicable on the given
node. For every possible transformation, the new circuit reliability value is computed. The
configuration that yields the highest circuit reliability improvement is chosen, and the new
topology is generated. This process is continued on every graph node until the primary
outputs are reached where no more transformations are applicable.

4.5 Cut Based AIG Rewriting 64

Algorithm 4 Cut based Reliability Optimization
1: INPUT : Pntk, NODEcount , PIsp , Gerr
2: OUTPUT: POerr
3: for all nodes I= 1 to NODEcount do
4: for Node N in AIG do
5: Get cuts based at N
6: for 4-input cut C based at N do
7: Get truth-table F of N concerning C
8: for Possible graph S of function F do
9: Make decomposition D corresponding to cut C

10: Remove original nodes from D
11: Add nodes of S to D
12: if Level > MaxLevel then
13: Go to Next S
14: end if
15: Compute savings as nodes that can be dropped from network with D
16: Compute cost of adding new nodes.
17: Error = Error(S)
18: if Error < BestError then
19: BestS = S
20: BestD = D
21: end if
22: end for
23: end for
24: Apply decomposition BestD to the AIG
25: end for
26: end for

Two versions of the algorithm were developed in this work. In both of them, the rewrite
for a given cut is selected for the least error, based on the reliability information available
in the forest. Choosing which cut to use for node rewriting is the difference between the
two algorithm versions. The first version selects the least error for each cut and then decides
the least error cut for the node. The second version instead selects the most improved cut
concerning percentage improvement in reliability, for each node. Initially, the first version of
the algorithm was implemented, but while the obtained results were good, better performance
was expected. One possibility considered was that the absolute error goal function favored
situations in which the optimization process ended up in a local minimum. Choosing the
cut with the best reliability naturally favors already optimised cuts where little progress can
be made, where it might be more favorable to select a slightly unreliable cut and improve
it to have better reliability. Thus, the second algorithm version makes use of reliability

4.6 Experimental Results 65

improvement as a metric instead of the absolute error. This metric change resulted in about
three times better improvement and given this, all the results presented in the next section are
based on the second algorithm.

4.6 Experimental Results

In this section, the potential practical implications of the proposed reliability-aware synthesis
tool are evaluated. In this view, Alg. 4 was implemented and integrated in ABC synthesis
tool as a command ′rwrel′. Another command ′printrel′ is developed to display the node
reliability statistics in the network. The total savings achieved concerning circuit reliability
is studied by performing a set of experiments using MCNC benchmark circuits [114] with
more than 3000 node AIGs after structural hashing. A unit gate error probability of 10−2 is
assumed in all the simulations. The networks were loaded in Berkeley Logic Interchange
Format (BLIF) format and strashed to AIGs. Functional equivalence was extensively verified
during development using the ABC equivalence check command ′cec′. We use internal
technology mapping algorithms to map the AIG network to a gate level Verilog netlist using
the TSMC 65 GP CMOS standard cell library. Synopsys Design Compiler is employed for
power, timing and area estimation on the two netlists. Also, the two netlists are verified for
equivalence via Synopsys Formality. After the algorithm correctness and performance is well
established, its effect on the implementation of 8051 micro-controller basic blocks like an
adder, multiplier, and divider was also tested. In this section, a case study is initially presented
highlighting the crucial differences in the way the Boolean matcher finds alternative cuts
when reliability is the constraint. Then, the results obtained for various MCNC benchmark
circuits and 8051 functional units are discussed.

4.6.1 CM162a – A Case Study

The proposed reliability-aware synthesis algorithm is applied on the MCNC benchmark
circuit ′cm162a′, which implements a 14-input 5-output logic function. The current case
study considers the cone is comprising of all the gates driving the output pin ’P’. Fig. 4.16(a)
represents the default AIG configuration. The total number of nodes in the default AIG
representation of the circuit is 14. With a unit gate error probability of 10−2, the output node
’P’ has an error probability Errorg = 0.0717. Three specific functionally equivalent logic
configurations generated by the tool are now explained in detail. The idea is to emphasize
on how the Boolean matcher works when the constraint is set to output error optimization
instead of area.

4.6 Experimental Results 66

K I E C D J N F

n0n1

n2

n3 n4

n5

n6

n7n8

n9

n10

n11

n12

n13

P

(a) Default Configuration

K I E C D F J N

n0n1

n2

n3n4

n5

n6

n7n8

n9

n10

n11

n12

n13

P

(b) RWREL Config1(Move PI closer to PO)

K I E C D F J N

n0n1

n2

n3n4

n5

n6

n7

n8 n9

n10

n11

n12

n13

n14

P

(c) RWREL Config2(Insert Redundant Node

K I E C D F J N

n0

n1

n2

n3

n4

n5

n6

n7

n8

n9 n10

n11

n12

n13

n14

n15

n16

P

(d) RWREL Config3 (Optimised)

Fig. 4.16 MCNC Benchmark CM162A – A Case Study

Fig. 4.16(b) depicts the first sub-case: Moving the PI’s closer to the PO’s wherever
possible. It is clear that the PI node ’F’ has been pushed closer to the PO. This helped
in reducing the overall output error on the output node to Errrwrel1 = 0.068. Fig. 4.16(c)
depicts the second sub-case: insert redundant nodes. Extra nodes if added pragmatically can
result in significant error masking effect that reduces the overall error on the output nodes

4.6 Experimental Results 67

considerably. A redundant node ′n6′ has been appended onto the logic, thus total node count
is increased to 15 and reduces the overall output error to Errrwrel1 = 0.0676.

After multiple iterations, the final version of the optimised circuit configuration in
Fig. 4.16(d) is obtained. The final output error value of the optimised circuit is Erropt =
0.0633 and the total node count is 17. Two redundant nodes ′n9′ and ′n10′ are added into
the configuration. Also, node ′n4′ in Fig. 4.16(c) is modified such that the PI node ’F’ has
been pushed closer to the PO in similar lines with the first sub-case. Some of the important
differences observed in the way Boolean matching is performed by the reliability-aware
rewriting algorithm when compared to the area driven approach in [28] are listed below:

– Cuts with Primary Inputs closer to the Primary Outputs are preferred. Primary Inputs
have lower error probability when compared to the internal nodes. Thus, moving a highly
reliable node closer to the output can result in canceling out some of the errors.

– Cones with more considerable circuit depth can result in higher critical path delay and
are not preferable in case of delay optimization. But, they can result in lowering the output
error values and are often employed by all the algorithm.

– Redundant Node insertion is commonly performed. This increases the total area but
has higher masking effect and thereby reducing the output node error probability.

– One other significant difference that has been observed is the matching of path lengths.
Most of the time the Boolean matcher selected cuts in such a way that the resulting circuit is
more balanced so that the level of both the left and right paths are similar.

4.6 Experimental Results 68

B
en

ch
m

ar
k

N
o.

of
O

ut
pu

ts
N

od
e

C
ou

nt
C

ir
cu

it
D

ep
th

A
ve

ra
ge

d
A

bs
ol

ut
e

E
rr

or
O

ut
pu

tE
rr

or
Im

pr
ov

em
en

t(
%

)

N
C

or
g

N
C

op
t

In
cr

ea
se

(%
)

C
D

or
g

C
D

op
t

E
rr

or
g

E
rr

op
t

A
vg

M
ax

M
in

ap
ex

7
36

22
1

25
2

14
.0

3
14

14
0.

00
58

95
0.

00
52

40
10

.4
4

51
.3

3
1.

74

cm
16

2a
5

36
44

22
.2

2
9

8
0.

00
58

74
0.

00
51

28
13

.8
8

15
.6

6
9.

74

co
m

p
3

10
7

11
9

11
.2

1
18

19
0.

00
95

10
0.

00
72

32
18

.3
1

25
.3

1
5.

98

da
lu

16
13

71
16

02
16

.8
5

35
35

0.
01

91
44

0.
01

64
49

13
.9

8
19

.4
5

7.
98

I6
67

69
2

52
3

-2
4.

42
5

4
0.

00
83

81
0.

00
72

91
12

.8
3

15
.1

9
4.

23

I7
67

90
3

70
2

-2
2.

26
6

5
0.

00
92

35
0.

00
83

03
10

.2
1

75
.5

3.
16

I8
81

33
10

21
87

-3
3.

93
21

20
0.

01
86

26
0.

01
52

19
18

.8
3

32
.0

4
6.

8

k2
45

19
98

21
52

7.
71

23
19

0.
03

18
02

0.
02

85
30

12
.9

4
25

.6
5

4.
52

un
re

g
16

11
2

11
1

-0
.8

9
5

5
0.

00
65

06
0.

00
53

82
18

.4
3

19
.0

3
17

.7
8

vd
a

39
92

4
10

42
12

.7
7

16
18

0.
03

05
77

0.
02

74
91

12
.8

1
65

.6
5.

31

to
o_

la
rg

e
3

82
4

77
3

-6
.1

9
30

27
0.

05
34

92
0.

04
64

68
13

.8
7

17
.4

3
11

.3
3

80
51

_a
dd

19
17

5
22

2
26

.8
6

28
29

0.
01

41
49

0.
01

33
30

16
.9

9
41

.5
6

5.
86

80
51

_m
ul

17
63

0
76

5
21

.4
3

48
47

0.
03

09
46

0.
02

94
75

10
.5

8
32

.6
5

1.
58

80
51

_d
iv

17
10

10
11

81
16

.9
3

19
8

18
1

0.
02

38
31

0.
02

28
88

12
.3

1
31

.7
5

2.
18

Ta
bl

e
4.

3
R

W
R

E
L

Pe
rf

or
m

an
ce

E
va

lu
at

io
n

on
di

ff
er

en
tB

en
ch

m
ar

k
C

ir
cu

its
(G

at
e

er
ro

rε
=

0.
00

1)

4.6 Experimental Results 69

B
en

ch
m

ar
k

A
re

a
D

el
ay

D
yn

am
ic

Po
w

er
L

ea
ka

ge
Po

w
er

A
or

g
A

op
t

In
cr

ea
se

(%
)

T o
rg

T o
pt

In
cr

ea
se

(%
)

P o
rg

P o
pt

In
cr

ea
se

(%
)

P o
rg

P o
pt

In
cr

ea
se

(%
)

ap
ex

7
70

5.
24

77
9.

04
10

.4
6

1.
10

1.
16

5.
45

46
.2

5
53

.3
2

15
.2

8
3.

12
3.

47
11

.2
8

cm
16

2a
12

1.
68

13
7.

88
13

.3
1

0.
69

0.
56

-1
8.

84
7.

91
8.

97
13

.4
7

0.
54

0.
61

13
.2

9

co
m

p
36

0.
36

40
5.

72
12

.5
9

1.
36

1.
38

1.
47

34
.2

2
36

.1
1

5.
54

1.
61

1.
79

11
.4

6

da
lu

42
32

.5
2

48
76

.2
15

.2
1

3.
41

3.
15

-7
.6

2
31

0.
43

40
3.

97
30

.1
3

18
.6

6
21

.9
3

17
.5

2

I6
18

61
.9

2
16

77
.6

-9
.9

1.
37

0.
89

-3
5.

04
13

3.
68

13
7.

11
2.

57
8.

28
7.

62
-7

.9
7

I7
23

86
.8

21
44

.1
6

-1
0.

17
1.

48
1.

38
-6

.7
6

17
4.

82
17

5.
92

0.
63

10
.6

6
9.

65
-9

.4
7

I8
81

47
.5

2
57

80
.1

6
-2

9.
06

4.
59

3.
11

-3
2.

24
72

0.
15

52
2.

14
-2

7.
5

37
.7

26
.6

6
-2

9.
29

k2
46

75
.3

2
53

43
.8

4
14

.3
1.

96
1.

87
-4

.5
9

11
9.

51
17

7.
1

48
.1

9
23

.5
3

26
.0

7
10

.7
9

un
re

g
36

7.
2

37
2.

6
1.

47
0.

48
0.

52
8.

33
29

.3
6

32
.1

6
9.

53
1.

64
1.

71
4.

34

vd
a

21
58

.9
2

26
38

.0
8

22
.1

9
1.

08
1.

31
21

.3
88

.6
1

12
9.

34
45

.9
7

11
.1

8
13

.0
9

17
.0

8

to
o_

la
rg

e
21

76
.2

20
87

.6
4

-4
.0

7
2.

32
2.

20
-5

.1
7

11
8.

6
12

1.
57

2.
5

9.
45

9.
16

-3
.0

8

80
51

_a
dd

59
5.

08
72

3.
6

21
.6

2.
49

2.
60

4.
42

74
.1

9
84

.2
5

13
.5

5
2.

67
3.

24
21

.3
4

80
51

_m
ul

20
38

.3
2

24
32

.1
6

19
.3

2
3.

93
3.

82
-2

.8
30

4.
85

36
3.

33
19

.1
8

9.
17

10
.8

7
18

.5
1

80
51

_d
iv

32
95

.8
37

81
.4

4
14

.7
4

16
.9

6
15

.4
3

-9
.0

2
55

5.
68

61
2.

15
10

.1
6

14
.9

5
17

.1
14

.3
8

Ta
bl

e
4.

4
A

re
a,

D
el

ay
an

d
Po

w
er

A
na

ly
si

s
–

A
co

m
pa

ra
tiv

e
St

ud
y

4.6 Experimental Results 70

4.6.2 Evaluation of Benchmark Circuits

To prove that the proposed methodology is scalable, the tool is tested on a set of MCNC
benchmark circuits. Simulation results comparing the average circuit output errors of the
original and the optimised configuration obtained from the tool are reported in Tab. 4.3.
The name of each circuit is given in the first column while column two provides the output
pin count of each circuit. The following three columns list the node count of the original
circuit, the optimised circuit, and the optimization induced node count change in percentage.
Columns 6 (7) provides the circuit depth of the default (optimised) circuits. Columns 8 (9)
lists the average output error value for the default (optimised) circuits. Columns 10 through
12 lists the average, maximum, and the minimum relative output error improvement. Tab. 4.4
reports the area, timing and power analysis after applying RWREL on MCNC benchmark
circuits. In the table, Porg, Torg and Aorg are the power, timing and area results from the
original MCNC netlist. Popt , Topt and Aopt are the power, timing and area results from the
netlist obtained via RWREL optimization.

Fig. 4.17 Comparison of results : Node count reduction

From the tables, it is clear that significant SER reduction can be achieved very low area
overhead of 6.57% that results in 13.52% higher power consumption by employing the
optimization algorithms. An average improvement of 14% and a peak improvement of up to
75.5% was observed. ′I7′ benchmark is a simple logic circuit consisting of 199 PI’s and 67
PO’s and a total node count of 903. Output pin V 266(6) provides the peak error improvement
of 75.5%. Another important fact worth mentioning is that benchmark circuits ′I6′, ′I7′, ′I8′

and ′too_large′ report reduction in node count. This proves that the algorithm is intelligent

4.6 Experimental Results 71

Fig. 4.18 Comparison of results: Power reduction

Fig. 4.19 Comparison of results : Reliability improvement

to decide when to add redundancy and when to remove unnecessary nodes that can result in
better output reliability. Also benchmark circuit ′too_large′ reports a high output error. This
is because it has 824 nodes and just three output pins. It implies that if a significant number

4.7 Conclusions 72

of gates are placed within the cone to emulate a particular function, higher the probability
of error on the output. Also, the circuit depth of the logic resembles no direct relation to
the output error as circuit depth has reduced in some instances while in others it has been
increased. The tabulated data has been plotted to better project the results. Fig. 4.17 depicts
the node count between the original and optimised netlist. Fig. 4.18 depicts the power change
between the original and optimised netlist. Fig. 4.19 depicts the reliability improvement
between the original and optimised netlist.

4.7 Conclusions

Two different methodologies have been developed to perform reliability driven combinational
circuit synthesis. First, a simple synthesis algorithm was presented that optimises the circuit
reliability based on a small set of local transformation rules. Application of these rules on the
standard MCNC benchmark circuits with node count from 30 to 1500 resulted in improving
overall circuit reliability by up to 7.5%. Another methodology which is more generic was
developed extending the local transformation rule set to encompass more possible scenarios.
A reliability driven 4-cut enumeration and Boolean matching technique that improves circuit
reliability has been proposed. The technique of rewriting for reliability was developed by
extending an existing cut based rewriting tool to make use of local transforms targeting a
reliability metric improvement instead of area. A synthesis algorithm that optimises the
circuit output nodes error probability was also presented. The application of the proposed
reliability-aware synthesis algorithm on various MCNC benchmark circuits with a node
count from 50 to 3000 resulted in up to 75.5% output error probability reduction. On average,
about 14% SER reduction was obtained at the expense of less than 4.5% area overhead.

In this chapter, multiple optimisation algorithms are analysed with the aim of improving
reliability through netlist transformation, without altering the number of inputs or outputs. In
the next chapter, error control coding techniques are employed to improve circuit reliability
by redundancy addition into the circuit hence altering the number of inputs/outputs.

Chapter 5

CPE : Codeword Prediction Encoder

5.1 Introduction

In the previous chapter, logic synthesis techniques aimed at improving reliability through
netlist transformation, without altering the number of inputs or outputs, were explored. In this
chapter, error control coding based redundancy addition techniques are explored to improve
reliability. In traditional models of communication or storage systems with error correction
coding, it is assumed that the operations of an error correction encoder and decoder are
deterministic and that the randomness exists only in the transmission or storage channel
[115]. However, with the advent of nano-electronics, the reliability of the forthcoming
circuits and computation devices is becoming questionable. Due to massive increases in
density integration, lower supply voltages, and variations in the technological process, MOS,
and emerging nano-electronic devices will be inherently unreliable [9], [10]. Besides, a
significant challenge to current CMOS design is to lower the energy consumption by several
factors of magnitude, with the apparent goal of energy preservation. Diminishing the energy
consumption can be addressed by aggressive supply voltage scaling, with the drawback
that bringing the signal level closer to the noise level reduces noise immunity and leads to
unreliable computing [6].

Consequently, in the future systems of communication and storage, errors may not only
come from the transmission channels, but also from the faulty hardware. It is then becoming
crucial to design and analyze error correcting decoders able to provide reliable error correction
even if they are made of unreliable components. Thus, the study of novel techniques for
reliable data transmission using unreliable hardware is an increasing priority. Low-density
parity check (LDPC) codes are known to provide excellent error correction performance that
closely approaches the Shannon capacity of noisy transmission channels [116], [117]. As a
result, they have been adopted in many current and next-generation wireless protocols such

5.1 Introduction 74

as IEEE 802.16E (WiMAX), IEEE 802.11 (Wi-Fi), and DVB-S2/T2/C2 standards, besides
many other applications [118]. A new fault-tolerant technique called CPE using ECC based
methods/architectures to improve circuit reliability is now presented.

5.1.1 Main Contributions and Outline

Work on fault tolerance and reliability can either be focused on protecting combinational
circuits, memories or dynamic systems where combinational logic and small memory (state)
co-exist. This work deals only with the problem of protecting combinatorial logic, and in
particular, the focus is on the encoding process. The interest on the encoding process is born
from the fact that they are often assumed to be fault free (even when the decoder process
is assumed unreliable) [119]. This work introduces novel reliability driven fault tolerant
methodology known as Codeword Prediction Encoder (CPE) for reliable LDPC encoding
by augmenting extra logic to correct the errors introduced during the encoding process [3]
[4]. The approach presented here is an expansion of the Check Symbols Generation [120]
and the Parity Prediction Function [121], [122], where circuitry is added to a combinatorial
network to generate extra bit to ensure parity. These approaches are formalized and extended
to take full advantage of the power of error correction codes to enable correction of the faults
and not just detection.

The CPE approach, as shown in Fig. 5.1 focuses on using ECC based methods/architectures
to improve the reliability of combinatorial circuits. A significant difference when compared
to standard EDA optimization techniques is the fact that there is no attempt to modify or
alter the logic internally but the aim is to augment the circuit in such a way that it adds
"redundancy" that can then be exploited to recover the correct output. A parallel can be drawn
with the communication systems where the redundant symbols are added to the message and
transmitted. This redundant symbol allows the recovery of the message even in the presence
of transmission error. The CPE simulator provides a unified platform which comprises the
novel encoder and fault tolerant LDPC decoders. Encoders using regular LDPC codes with
different column weights(dv) for the parity check matrix, namely dv = 3 and dv = 4, and
different coding rates (r), namely r = 1/2 and r = 3/4 were employed. Also, different state-
of-the-art reliability enhanced LDPC decoding mechanisms like Self-Corrected Min-Sum
(SCMS), and Gallager B with Extended Alphabet(Gal-B) was used. Simulations results prove
that it is possible to retrieve the original information by employing particular configurations
of these encoders and decoders. In general, output BER is reduced by up to 10,000 times by
adopting CPE mechanism as compared to transmitting data directly.

For the mathematical analysis presented, the system where the CPE methodology is
applied can be partitioned based on two characteristics:

5.1 Introduction 75

(a) Encoder

CO

GR

I F
E

(b) Encoding by Concatenation

I C

P

R

T

G

F

(c) Proposed Encoding

Fig. 5.1 Methodology of Codeword Prediction Encoder

5.2 LDPC Codes and Error Models 76

• if the circuit to protect is linear or non-linear. Here, a linear circuit is a circuit consisting
only of XOR gates. Such a system can be described as a linear system of equations
similar to a linear code.

• if the system is symmetric (encoding and decoding process are faulty) or asymmetric
(perfect decoding process)

The analysis presented here focuses on the case of linear circuits, for both the symmetric
and asymmetric scenarios. Non-linear circuits present several difficulties due to the lack
of mathematical methods to work with such circuits. The symmetric-linear case is of great
interest from the analysis point of view because in the symmetric scenario the only suitable
coding scheme is LDPC codes, thanks to their ability to decode the received message even in
the presence of faulty hardware. LDPC codes are of great interest from the ECC augmented
hardware point of view due to their low complexity and the complete understanding of their
asymptotic performance and theoretical limits. The first factor turns them into most favored
scheme to be used in hardware where area and the throughput are the dominating factors.
The second factor allows for an asymptotic analysis of reachable performances to be carried
out.

5.2 LDPC Codes and Error Models

Consider the data transmission scheme depicted in Fig. 5.2. In this scheme, a binary
information sequence u of length k must be transmitted through a noisy channel. To recover
u correctly at the output of the channel, the information sequence can be protected by adding
some redundancy in the transmitted data. As u must be successfully recovered at the output
of the channel, the information sequence must be preserved by adding some redundancy in
the transmitted data. The data protection can be done with an LDPC code that encodes the
information sequence u into a codeword x of length n > k. At the output of the channel, the
received sequence y is passed through an LDPC decoder that aims at reconstructing u.

E channel D

Fig. 5.2 Data transmission scheme

In this section, LDPC codes, as well as the encoding and decoding operations, are first
introduced. Then, the gate error model employed in modeling the unreliable gates that
constitute the encoder and the decoder is explained.

5.2 LDPC Codes and Error Models 77

(a) parity check matrix

(b) Tanner graph

Fig. 5.3 LDPC Codes

5.2.1 LDPC codes

Low-density parity check (LDPC) codes are a class of linear block codes invented by Gallager
[116]. A LDPC code is defined by its binary parity check matrix H of size m×n, see Fig. 5.3
(a). A binary vector x of length n is a codeword of the LDPC code if it satisfies Eq. 5.1.

HxT = 0, (5.1)

where T is the transpose operator. For LDPC codes, the parity check matrix H is sparse, i.e.,
it contains only a few non-zero components. In the following, dv and dc denote the number
of 1’s in each row and in each column of H, respectively. Tanner also introduced a graphical
representation of LDPC codes as shown in Fig. 5.3 (b). Tanner graphs are bipartite, which
means that the nodes of the graph are separated into two distinct sets. The first set contains n
variable nodes and the second set includes m check nodes. Edges are only connecting nodes
of two different types, and there is an edge between variable node v and check node c if and
only if there is a one at the corresponding position in the parity check matrix. In the end, the
matrix representation of the LDPC code is used for encoding, while the graph representation
is used for decoding, as described in the next section.

5.2 LDPC Codes and Error Models 78

(a) Check-to-variable messages (b) Variable-to-check messages

Fig. 5.4 LDPC message computation

5.2.2 LDPC Encoding and Decoding

Once the LDPC parity check matrix H is fixed, it remains to construct the corresponding
encoder that transforms any information sequence u into a codeword x that satisfies Eq. (5.1).
From H, one can construct a generator matrix G of size k×n, where k = n−m, that verifies
HGT = 0. The encoding operation can then be realized from the generator matrix as

x = uG (5.2)

Several solutions have been proposed to construct a generator matrix G from the parity
check matrix H [123]. Most of the usual solutions consider systematic encoding, for which
the codeword x = [u, p] contains both the information sequence u and m parity bits given by
p. In this case, the left hand side of the generator matrix G is the identity matrix of size k× k.

After encoding, the codeword x is transmitted on the channel, which outputs y. If the
channel is a Binary Symmetric Channel (BSC), the received word can be written as y = x+e,
where e is the binary error pattern and the sum above is computed modulo 2. From condi-
tion (5.1), one can compute the syndrome z = HxT +HyT = HeT . The decoding problem
consists of finding the most probable vector e that explains the observation of the syndrome
z. For LDPC codes, decoding can be implemented by message passing algorithms that
exchange messages between variable-nodes and check-nodes, as shown in Fig. 5.4. Several
LDPC decoders (Gallager B, Min-Sum, Belief Propagation, etc.) have been proposed, which
consist of different processing rules and simplifications of the message-passing algorithm.
These decoders have different complexity and different decoding performance.

5.3 Codeword Prediction Encoder (CPE) 79

LDPC codes were initially introduced under the assumption of reliable hardware. To
analyze the performance of LDPC codes under unreliable hardware, an error model to mimic
unpredictable behavior in the logic gates that are used in the encoder and the decoder is
presented.

5.2.3 Gate Error Model

The unreliable gates are modeled in-line with the Von Neumann model [41]. A Von Neumann
erroneous gate is modeled as an ideal logic gate cascaded with an error injecting XOR gate.
The error-injecting XOR gate determines the stochastic error behavior by toggling the gate
output with a pre-defined probability. As an example, Fig. 5.5 graphically represents an
unreliable AND gate.

AND

XOR

P UA

B

E

Z*

Z

Fig. 5.5 Gate Error Model.

The noise variable E takes value 1 with a given probability pg that represents the gate
error probability. Under this model, it was shown that LDPC decoders built from unreliable
gates are naturally robust to errors, with no need for additional circuit protection [124], [82].
Unfortunately, it was also shown that most of the standard LDPC encoders fail entirely when
they are built from unreliable gates [83]. Now, the novel robust LDPC encoding solution
that consists of computing extra parity bits is described.

5.3 Codeword Prediction Encoder (CPE)

Consider the systematic encoding operation described by Eq. (5.2). Fig. 5.6 represents the
encoding error probability Pe with respect to the gate error probability pg for various LDPC
codes, with k = 1000, dv = 3 and r = 1/4,2/5,1/2,5/8, respectively. The encoding error
probability does not depend on the coding rate. Fig. 5.6 also shows that the encoding error
probability is dramatically increased concerning the gate error probability pg. For example, a
gate error probability pg = 10−4 will give an encoding error probability Pe = 10−2, which
represents an increase by a factor of 100. Even small gate error probability values give
high encoding error probabilities. As a result, the high encoding error probability is going

5.3 Codeword Prediction Encoder (CPE) 80

to combine with the channel noise, and at the end, the decoder will not be able to recover
the original information sequence u from y. Hence there is a need to drastically reduce the
encoding error probability before transmission on the channel.

Fig. 5.6 Encoding error probability Pe with respect to gate error probability pg. In the legend,
the (3,x)-code represents the code with dv = 3 and dc = x.

As described in Fig. 5.7, a first solution consists of passing the noisy codeword x̃ through
an LDPC decoder before channel transmission to eliminate the encoding errors. This solution
will be practical only if the gate error probability leads to an encoding error probability lower
than the correction capability of the LDPC code. As the encoding error probability can
be high, the correction capability of the LDPC code alone is not sufficient. The proposed
Codeword Prediction Encoder (CPE) approach depicted in Fig 5.8 which consists of two
methodologies: non-systematic and systematic.

G

Encoder

noisy
D
noisy

Fig. 5.7 First encoding solution

In case of non-systematic encoding as described in Fig 5.8(a), in addition to the parity bits
p contained in x̃, ma extra parity bits p̃a are also computed from u. The vector x̃a = [x̃, p̃a] is
called the augmented codeword. Before channel transmission, x̃a is passed through a different
LDPC decoder, denoted by DCPE to eliminate the encoding errors. The extra parity bits p̃a

serve only to help eliminate the encoding errors, and, after decoding, only x̃ is transmitted
through the channel. Thus, both the LDPC code that produces x̃ and the one that generates
x̃a have to lead to good decoding performance.

The CPE approach for systematic encoding is illustrated in Fig 5.8(b). Gp represents the
G sub-matrix of size n− k× k, corresponding to parity bits. Thus, x= [u, p], and the parity

5.4 CPE Mathematical Analysis 81

(a) Non-systematic Encoding (b) Systematic Encoding

Fig. 5.8 The CPE approach

bits p can be computed by p = u ·Gp. In this case only the parity bits p can be affected by
gate errors, while the data bits u are assumed to be error free. The circuit composed either by
G and Pa (non-systematic case) or by Gp and Pa (systematic case) is denoted as GCPE.

The DCPE decoder used at the encoding side makes use of both the original parity bits
p̃ and of the extra parity bits p̃a to eliminate the encoding errors. If the LDPC codes are
constructed carefully, this strategy will result in increased correction capabilities for the
augmented codeword x̃a compared to the initial codeword x̃. For good code construction, an
important condition is that the extra parity bits p̃a are independent of the original parity bits
p, which means that p̃ and p̃a are computed from different combinations of bits from u. To
guarantee the independence while ensuring good decoding performance for both x̃a and x̃,
split-extended construction introduced in [125] is employed. Precisely, the additional parity
bits p̃a are computed in the same way as the ‘extended bits’ in [125], and the DCPE decoder
utilizes the split-extended parity-check matrix defined therein. In the end, the performance
of the proposed CPE approach will depend on the choice of the code (rate, degrees, etc.) and
of the considered LDPC decoder. In the following section, the CPE mathematical analysis is
presented.

5.4 CPE Mathematical Analysis

The CPE methodology has already been presented in the previous section. In this section,
theoretical analysis of its performance limits is described.

5.4.1 CPE Cost Analysis

To evaluate the performance of any new proposed scheme, it is necessary to consider all the
four constraints(area, timing, power, and reliability) and the inter-relation between them. In
this line of thought, a general notation is introduced to evaluate proposed schemes. The term

5.4 CPE Mathematical Analysis 82

cost function, C(), is employed to reflect the performance of the proposed scheme, either for
any one of the four goals or any linear combination of the four. The cost of an XOR gate is
considered as the reference, and the cost of any circuit can be represented as a multiple of
this cost.

This would suit the analysis for the case of linear circuits while an extension for non-linear
cases would require consideration of the cost of universal gates and how these costs can be
combined to estimate the cost of the complete circuit. A specific corner case scenario has to
be considered to compute the cost incurred due to the CPE approach. These are scenarios
which would be of interest in evaluating the cost of the CPE approach on one of the four
goals without considering the effect on the others. For example

• Is it possible to reduce area ignoring throughput reduction?

• Is it possible to reduce power at the cost of the area?

The analysis gives an idea of what the limits are in the best case scenario. These are
equivalent to the situation when one of the parameters is less critical compared to others. The
first analysis focuses on the cost of the CPE in term of area or power.

5.4.2 Notation and Conventions

A cost is associated with each probabilistic XOR-gate ⊕ε , which is denoted by Cε that
indicates the cost function to implement an XOR-gate with error probability ε . Clearly, the
cost must be a decreasing function of ε , that is Cε1 > Cε2 for ε1 < ε2, or put differently,
more reliable gates are also more expensive. For ε=0, C0 represents the cost of the ideal
(error-free) XOR-gate. Further, the cost associated with the implementation of circuit F with
probabilistic XOR-gate ⊕ε is represented by C(Fε). In particular, C(F0) denotes the cost
of the ideal circuit. Both the implementing circuit and the corresponding linear function
are represented using F. Since F is linear, it can also be represented by a binary matrix of
size l × k (l is the number of binary inputs, and k is the number of binary outputs). It is
assumed that the number of XOR-gates used to implement F is proportional with the number
of non-zero (1’s) entries of the corresponding binary matrix. If Fε is synthesized from θ

XOR-gates ⊕ε , then C(Fε) = θCε .
For asymptotic consideration, increasing the size of F to ∞ means that both l and k go to

∞ while keeping the ratio l/k constant (shape of F). The LDPC decoder, denote by D, is not a
linear function and cannot be implemented with XOR-gates only. However, the complexity
of D depends linearly on the code-length and the number of decoding iterations. Therefore,

5.4 CPE Mathematical Analysis 83

by expressing the cost of each gate composing D as a multiple of the cost of the XOR-gate, it
may be expressed as C(Dε) = nµδCε (ε ≥ 0), where

• n is the code-length

• µ expresses the contribution of the number of decoding iterations to the total cost of
the decoder. More details are as listed below:

• δ is a constant value depending on the implemented decoder

It is important to mention that the optimal number of decoding iterations increases
logarithmically with the code-length. Here, optimal means that increasing the number of
decoding iterations above this value should not provide any further coding gain. However,
if the parameter of interest is the area, µ is equal to the number of decoding iterations
instantiated in hardware. Usually, µ = 1, as only one iteration is instantiated in hardware. To
increase throughput, several decoding iterations may be instantiated in hardware (the decoder
is said to be unrolled). In this case, one may assume that 1 ≤ µ ≤ log(n). If the constraint of
interest is power consumption (cost = power), then µ ∼= log(n).

5.4.3 Cost analysis for Area/Power

The focus is now to find the conditions that guarantee the CPE approach to consuming less
area (or power). Assuming,

• F to be a non-sparse matrix of size l × k - the original linear circuit

• H to be the sparse parity-check matrix of the LDPC code, with dimension m×n, where
m=n-k

• G to be the parity part of a generator matrix of the LDPC code. Hence, writing H=
[Hi|Hp], with Hi of size m× k and Hp of size m×m, G can be computed as G= HT

i .
H(T

p)
−1. Note that G is of size k×m and it is generally not a sparse matrix.

• Let P=F.G be the matrix of size l ×m, corresponding to the parity circuit within the
CPE approach. Indeed, if the vector i ∈ 0,1l denotes the binary inputs of F, and oF

=i.F and oP = i.P denote the binary outputs of F and P, respectively, then [oF | oP] is a
codeword of the LDPC code defined by H, since one has H.[oF |oP]

T =0.

• We further denote by λF and λP the fraction of non-zero (1’s) entries of F and P,
respectively. According to the cost linearity assumption, we may write: C(Fε) =

λF lkCε and C(Pε) = λPlkCε

5.4 CPE Mathematical Analysis 84

Under these assumptions, it can be stated that the conditions to ensure the CPE to be less
costly than the error-free alternative:

• In the asymmetric case, the cost of the CPE approach is less than the cost of the
fault-free circuit if and only if:

C(Fε)+C(Pε)+C(D0)<C(F0) (5.3)

After some manipulations, and denoting r=k/n the coding rate, one gets:

Cε <
λFr− (µ/l)δ

λFr+λP(1− r)
Co (5.4)

• In the symmetric case, the cost of the CPE approach is less than the cost of the fault-free
circuit if and only if:

C(Fε)+C(Pε)+C(Dε)<C(F0) (5.5)

After some manipulations, and denoting r=k/n the coding rate, one gets:

Cε <
λFr

λFr+λP(1− r)+(µ/l)δ
Co (5.6)

• In the asymptotic case, i.e., assuming that l tends to ∞ while keeping the shape of F
(l/k) and the coding rate (k/n) constant, in both symmetric and asymmetric cases, we
get:

Cε <
λFr

λFr+λP(1− r)
Co (5.7)

Since µ increases at most logarithmically with n, and thus with l. Moreover, assuming
F to be a random matrix, the expected value of both λF and λP is λF=λP=1/2, which
gives:

Cε < r.Co (5.8)

The main result of interest is the condition found for the asymptotic case. From the
analysis, a clear connection between the cost of a single gate and the rate of the code needed
to achieve the desired performance is established. This is in line with the Shannon limit for
communication systems, in the sense that the boundary of the achievable regions is fixed,
once the code rate is adjusted. It is also established that a single threshold can decide if
the reduction in the cost of new technology is sufficiently high to justify switching to such
technology. However, the above analysis does not consider whether or not there exists a code

5.4 CPE Mathematical Analysis 85

of rate ’r’ capable of correcting (with high probability) the errors occurring at the output of F
and P. In other words, the above inequality ensures that the CPE approach is cost-effective,
but does not guarantee that it is also reliable (i.e., allows recovering the correct output). This
issue is addressed in the next section.

5.4.4 Error Correction Capacity

Taking into account the error correction capacity of the proposed CPE approach, the above
cost analysis is further elaborated. αε =

cepsilon
co

∈ [0,1] is defined as the cost reduction factor,
when replacing an ideal (fault-free) technology with an error-prone one. Recall that ε is the
error-probability of the faulty XOR-gate, and let σF and σP denote the error probability at
the output of F and P, respectively(clearly, both σF and σP depend on ε). To simplify the
analysis, the following is assumed throughout this section.

σF = σP = σε (5.9)

Hence, within the CPE approach, σε represents the error probability at the decoder input.
According to Eq. (4.8), the CPE approach is cost-effective if and only if:

r > αε (5.10)

Let σε ∈ [0,1
2] be maximum fraction of errors that can be corrected by a code of rate

r>αε . According to Shannon’s theorem [126], we have:

αε = 1−h(σε)↔ σε = h−1(1−αε) (5.11)

where h(x) =−xlog2(x)−1− xlog2(1− x) is the binary entropy function.
Therefore, if σε < σε , then the CPE approach is not only cost-effective but also reliable,

correcting the errors occurring at the output of F and P. Since F and P are linear circuits
with sizes l × k and l ×m, any binary output of F and P can be computed by a chain of
XOR-gates of length at most l. If every XOR-gate is in error with probability ε; the output
error probability can be upper-bounded by (note that this upper-bound is not expected to be
tight):

σε < σ
′
ε =

1− (1−2ε)l

2
(5.12)

5.4 CPE Mathematical Analysis 86

In particular, for σ
′
ε < σ

′
ε , the CPE approach is both cost effective and reliable. We also

have:

σ
′
ε < σ

′
ε ↔ 1−h(

1− (1−2ε)l

2
) (5.13)

For large l values, the above inequality establishes an upper-bound for the cost reduction
factor, which ensures that the CPE approach to be both cost-effective and reliable. For small
ε values, the CPE approach is both cost-effective and reliable for any cost-reduction factor
αε ≤ 1. The intuition behind is quite apparent: for small ε , the σε value - Error probability
at the output of F - is also low, and the CPE approach may use a code with a rate close to 1
(note that coding rate = 1 corresponds to the original circuit only). As the ε value increases,
the cost-reduction factor αε is bounded below 1 and decreases until it gets close to 0 (i.e.,
the cost of the fault-prone technology must be negligible concerning the cost of the fault-free
technology). The "waterfall" region (where αε decreases from 1 to 0) corresponds to an
increase in the value of ε by approximatively 3 to 4 orders of magnitude.

5.4.5 CPE and Modular Redundancy

The Modular Redundancy (MP) is a well-known methodology to improve reliability by mean
of replication of the circuit. This can be seen as the equivalent to a repetition code where
the same symbol is transmitted several times, and then a majority voting is applied. The
scheme is straightforward and well understood, and it is hence interesting to compare the
CPE approach to it. To compare the two architectures, it is important to consider that both
schemes, CPE and MR, there are trade-offs between area and throughput. Ω-MR schemes
can be implemented by instantiating Ω copies of the same circuit F, or by instantiating only
ω copies and reusing each copy Ω/ω times. Similarly, an LDPC decoder can be implemented
by unrolling some of all the iterations into a long pipeline or by reusing the same hardware
to compute all the iterations. Some common notations used are listed below:

• AF ,AP,ADEC the area of the F, P and D blocks

– ADEC= µAI with AI area of single iteration

– µ is the number of unrolled iterations

• Aω
MR the area of the MR when ω instances of F are used

– Aω
MR =ωAF

– The corresponding latency is given by Ω/ω clock cycles

• Aµ

CPE the area of the CPE when LDPC decoder is unrolled

5.4 CPE Mathematical Analysis 87

– Aµ

CPE = AF +AP +µAI

– The corresponding latency is given by I/µ clock cycles, where I is the total
number of decoding iterations of the LDPC decoder.

Area/throughput comparison

The CPE and Ω-MR are compared regarding area and throughput without consideration of
the total performance. Then, Aµ

CPE ≤ Aω
MR if:

If better throughput is not necessary

AI

AF
r ≤ rω −1

rµ

(5.14)

If better throughput is desired

AI

AF
r ≤ ω

I
− 1

µr
(5.15)

The following analysis can prove this:

Aµ

CPE ≤ Aω
MR ⇔ AF +AP +µAI ≤ ωAF (5.16)

Considering that the area of the P circuit can be evaluated as:

AP = (
1
r
−1)AF (5.17)

The condition can be re-written as:

µAI ≤ (ω − 1
r
)AF ⇔ AI

AF
≤ rω −1

rµ
(5.18)

Considering the throughput condition, if better throughput is desired then:

Ω

ω
≥ I

µ
⇒ ω ≤ Ω

µ

I
(5.19)

Using the results for the previous case, we get:

AI

AF
≤ Ω

I
− 1

µr
(5.20)

The analysis helps in computing the limits in the ratio between the area of iteration of the
LDPC decoder and the area of the function being protected that guarantee the cost of using

5.4 CPE Mathematical Analysis 88

the CPE scheme is less than the cost of using Ω-MR. Intuitively, it is understandable that for
the small circuit it may be better to repeat the circuit rather than using an LDPC decoder.

Fig. 5.9 Delay vs. normalized area for MR and CPE schemes with various unrolling factors.

Case Study: Consider an Ω-MR scheme with Ω=12 and unrolling factor (i.e., number of
copies of F instantiated in hardware) ω ∈ 1, 2, 3, 4, 6, 12. The delay (Ω

ω
) vs. normalized area

(AMR
AF

= ωAF) when varying the ω value is plotted in Fig. 5.9 (solid black curve, no markers).
A CPE approach with I=12 decoding iterations and unrolling factor (i.e., number of decoding
iterations instantiated in hardware) µ ∈ 1, 2, 3, 4, 6, 12 is employed. Further, the rate of
the LDPC code is either r=1/2 or r=3/4, and that the area of one decoding iteration is either
AI =

1
4AF or AI =

1
10AF . Considering two different values for AI may reflect:

• The use of different decoders, one more powerful but having an increased area, and a
second one less powerful but having a smaller area,

• An increase in the size of the circuit F under consideration, since AI becomes negligible
with respect to AF when the size of F tends to ∞.

The delay (I
µ

) vs. normalized area (ACPE
AF

= 1
r +µ

AI
AF

when varying the µ value for the
CPE approach is also plotted in Fig. 5.9 (solid/dashed, red/blue curves, corresponding to
different r and AI

AF
values). It can be seen that the CPE approach offers more flexibility, giving

the possibility to obtain a better compromise between area and delay. However, it is clear
that focusing only on the area and delay is of limited value since there are no considerations
of the fact that the CPE approach may also have better error protection performance.

5.4 CPE Mathematical Analysis 89

Area/performance comparison

Next step in the analysis is to consider the performance, in term of error correction capability.
It is assumed that both schemes are implemented so that they achieve the same throughput,
a fully parallel Ω-MR and a fully unrolled LDPC decoder is considered. Moreover few
assumptions are taken to simplify the analysis:

• Output Error Probability σF = σP = σ

• Complexity of F scales quadratically with k (AF = γk2)

An asymptotic relationship between area and performances for the Ω-MR scheme is
computed. The error probability of the modular redundancy scheme, denoted by σMR, is
the probability of having the majority of the replica in error; the binomial combination can
represent this. When the limit for Ω tends to ∞:

σMR ≈ σ
Ω

2 (5.21)

Put differently, in order to reach an output error probability of σMR, it is necessary to
repeat the F function Ω ≈ 2 log(σMR)

log(σ) times. Hence, AMR
AF

= Ω ≈ 2 log(σMR)
log(σ) , which show that

the area of the MR approach tends to ∞ as the target error probability σMR tends to zero.
An asymptotic relationship between area and performances for CPE approach is derived.

Let rσ denote the capacity of a BSC channel with error probability σ (i.e., maximum coding
rate which can asymptotically correct any fraction of errors ≤ σ). It is known that:

rσ = 1−h(σ) (5.22)

where h(σ) =−σ log(σ)− (1−σ)log(1−σ) is the binary entropy function. Assumption
here is that a family of LDPC codes operating close to the channel capacity are available. This
would mean that LDPC codes are of rate ∼= rσ and any output error probability (arbitrarily
close to zero) can be achieved when the code-length tends to ∞. The area of the CPE scheme
using an LDPC code with rate, ∼= rσ and fully unrolled decoder with I decoding iterations is
given by:

ACPE ∼=
1
rσ

AF + IAI (5.23)

Considering now that the number of iterations required scales with the logarithm of the
dimension of the LDPC code I ≈ log(k) and that the area of each iteration of the LDPC
decoder is linearly dependent to the dimension of the LDPC code

5.5 CPE Simulator and CAD Automation 90

AI = δn = δ
1
rσ

k (5.24)

We obtain:
ACPE ∼=

1
rsigma

AF +δklog(k) (5.25)

Normalizing by AF(AF = γK2), we get:

ACPE

AF
=

1
rsigma

+
δ

γ

log(K)

K
(5.26)

Unlike the Ω-MR approach, the CPE approach can achieve an arbitrary small output
error probability, with bounded area penalty. As k tends to ∞, we get ACPE

AF
= 1

rσ
, which also

confirms the findings from the previous section.

5.5 CPE Simulator and CAD Automation

To implement the CPE methodology and evaluate its performance, the CPE simulator has
been developed. The CPE simulator automates the process of simulating the standard data
transmission over noisy channels with circuits build using faulty error prone gates. To
understand the whole process, it is imperative to explain the internal proprietary format and
various other core features that are part of the CPE methodology.

5.5.1 CPE Core Architecture

Fig. 5.10 shows the top level architecture of the CPE tool. The input patterns that are fed
into the system are generated using the "SRC" module as depicted in the Fig. 5.10. The
output of the SRC feeds into a module ’F’ and a second module ’P.’ These modules simulate
the corresponding netlists, including the error injection at the gate level. The outputs of F
and P modules is fed into the decoder module. Finally, the output from the decoder is fed
into the BER/FER estimation module, where it is compared to the original input generated
by the SRC module.

5.5.2 Criticality Threshold

A gate is critical when the output of the gate propagates to a large number of outputs of the
circuit. Such gates result in an unusually high number of errors on the output of the circuit
thereby cause decoding failures with very high probability. To identify the critical gates at the

5.5 CPE Simulator and CAD Automation 91

Fig. 5.10 The CPE Tool Architecture

design time, the graphical description of the netlist introduced above is used. The criticality
degree of a node X , denoted by cdeg(X), is defined as the number of output nodes to which
at least one path connects x. Thus, injecting an error in node X may produce at most cdeg(X)

errors on the output. In all the simulations, the criticality threshold (CT) is fixed: nodes X
with cdeg(X) > CT are considered to be “protected” (e.g., by increasing area), to make then
reliable. Hence, errors are injected only in nodes X with cdeg(X) < CT. For example, fixing
CT = 5 infers that errors are injected only in those nodes that are connected to less than 5
output nodes (cdeg(X) < 5). A particular case is CT =−1, which means that all nodes are
error-prone.

Critical gates have to be safeguarded from external aggressions that would toggle the
output value resulting in errors. Multiple solutions to turn the critical gates into always
reliable were analysed. One possibility would be to use modular redundancy for these gates
which means that each gate is repeated N times (say 3 times) and a majority logic gate
decides the output value. The other alternative is to define a different voltage island for all
these critical gates so that they are powered up by the higher voltage.

5.5.3 Pre-Processing

The CPE simulator accepts all the input files; namely, the two encoders composing the
GCPE encoder, and the LDPC generator matrix. Many scripts were developed to perform
the pre-processing of all the input files before they can be run through the CPE simulator.
In particular, the traditional Verilog netlists that describe the encoding circuits have to be
converted into the internal proprietary format that is easy to parse by the CPE simulation
engine. As a key point to understand the whole process, the internal netlist proprietary format
is first described.

5.5 CPE Simulator and CAD Automation 92

Table 5.1 CPE Netlist Representation

14 14 775,
4 2 4 3 2
4 711 712 713 714,
2 252 253,
.........
.........
0 185

5.5.4 Netlist Format

Any gate level synthesized representation of the digital circuit is represented as a collection
of gates commonly referred to a netlist. Since CPE simulator is a tool completely developed
in C++, it cannot understand the terminology of gates. Hence, an internal proprietary format
is introduced to represent the Verilog netlists. Each gate in the circuit is converted into a node
within the internal format. The following convention is used to represent all possible gates: 0
= NOT, 1 = AND, 2 = OR, 3 = XOR, 4 = NAND, 5 = NOR, 6 = XNOR. A node X is called a
predecessor of Y if the output of X is an input of Y (in graph terminology, there is a directed
edge from X to Y). In this case, Y is said to be a successor of X.The in-degree of a node
is defined as the number of its predecessors input nodes must have indegree equal to zero
The outdegree of a node is represented as the number of its successors; output nodes must
have outdegree equal to zero. In simple circuit design terminology, in degree and outdegree
correspond to fan-in and fan-out of the gates. Nodes of type 0 must be of indegree = 1. Nodes
of type 2-6 must be of indegree ≥ 2. Tab. 5.1 depicts a snapshot of CPE netlist representation
format:

• Line1: NinputsNout putsNinternal

• Line2: Ordered list of indegrees: must contain Ninternal+Nout puts values, corresponding
to the indegrees of internal and output nodes (in order)

• Line3: List of predecessors of the node Ninputs

•

• Line#: List of predecessors of the node Ninputs +Nout puts −1

• Line#: List of predecessors of the node Ninputs +Nout puts

•

5.5 CPE Simulator and CAD Automation 93

• Line#: List of predecessors of the node Ninputs +Nout puts +Ninternal −1

Many consistency checks are performed to ensure that the netlists adhere to the syntax.

• Check that input nodes (numbered from 0toNinputs −1) have indegree zero.

• Check that output nodes (numbered from NinputstoNinputs+Nout puts−1) have outdegree
zero.

• Determine the processing order of internal and output nodes, i.e. which nodes must be
processed in the first stage, which nodes must be processed in the second stage, etc.

– Nodes processed in the first stage are those whose all predecessors are input
nodes.

– Nodes processed in stage l (l=2) are those whose predecessors are either input
nodes or have been processed during stages 1, ..., l-1.

– If a processing order cannot find consistency check error.

5.5.5 CPE Simulator

The CPE simulator is the framework developed to automate the process of simulating the
standard MCNC benchmark circuits as well as linear circuits. Fig. 5.11 describes the
complete CAD flow of the tool. It accepts all the input files: the combinational circuit netlist
called ’F’, the parity circuit netlist called ’P’, and the LDPC generator matrix. The error
is propagated through the netlist to simulate the final the Bit Error Rate(BER) and Frame
Error Rate(FER) values. For simplicity purpose, the same value of probability is used for
all the gates, irrespective of their type or their position within the graph. The methodology
employed to insert faults is called “Gate output probabilistic mutant”- it alters the gate output
with a given probability. Some gates of the circuit may be critical, in the sense that injecting
only one error at the output of such gates may result in a substantial number of errors at the
output of the circuit.

Based on the codeword length and the LDPC rate, the Generator matrices are generated
which are then converted into the internal format which is easily understood by the CPE
simulator. In the CPE simulator, a source module generates the pseudo-random input vectors.
Errors are injected by flipping the output of each gate with a predefined error probability.
The output of the source module feeds into the two encoder modules which propagate the
faults through the circuits. The output of the encoders along with original data bits is used
by the DCPE decoder module to generate the codeword that can be transmitted over the

5.6 Experimental Results 94

Fig. 5.11 The CPE CAD flow

channel. Finally, an output from the decoder drives the BER/FER estimation module where
it is compared to the original input generated by the SRC module.

5.6 Experimental Results

Many encoders have been simulated using the CPE simulator employing different decoding
algorithms. Two scenarios are under investigation

• Both encoder and decoder are assumed to be error-prone.

• Only the encoder block is faulty.

The first scenario is the most generic and considers both encoder and decoder to be fault-prone.
Given such situation, only LDPC codes are usable for the coding schemes, the only known
ECC for which fault-tolerant decoder exists. But, the perfect decoder case that presents an
evident asymmetry between the encoder and the decoder is also considered. This allows one
to use coding schemes other than Low-Density Parity-Check Codes as ECC codes are not
available for a faulty decoder. From the encoder point of view, four different configurations
are employed. Thus, regular LDPC codes are considered with different column weights for
the parity check matrix, namely dv = 3 and dv = 4, and different coding rates, namely r = 1/2
and r = 3/4. From decoder perspective, three state-of-the-art reliability enhanced LDPC
decoders are employed within the CPE CAD flow: Min-Sum (MS), Self-Corrected Min-Sum
(SCMS), and Gallager B with Extended Alphabet(Gal-B). Next, simulation results of the
CPE scheme for different scenarios are presented. The focus is mainly on the symmetric
scenario; namely, both the encoder and the decoder are faulty.

5.6 Experimental Results 95

5.6.1 Critical Nodes

Critical nodes are the ones which generate the maximum number of errors on the output
nodes of the encoder. As defined in the previous section, criticality degree of a gate is defined
as the number of erroneous outputs generated when the gate is in error (assuming that all
the other gates are error-free). Tab. 5.2 lists the count of total and critical nodes within the
four encoding schemes. The encoding scheme parameters are given in the first column while
column two provides the count of total nodes within the GCPE encoder. The following three
columns list the count of critical nodes when critical threshold CT is set to 10, 20, and 50
respectively.

Table 5.2 Critical Gate count for different encoding schemes

Encoder GCPE Node Count CT=10 CT=20 CT=50

dv3-r12 44399 3373 1844 833

dv3-r34 28182 2288 1240 537

dv4-r12 45175 3424 1851 824

dv4-r34 27167 2112 1183 488

As expected, lower the value of the critical threshold, higher the number of critical nodes
within the encoder. As a trade-off, a lower critical threshold is also expected to lead to lower
encoding error probability. To illustrate this, an encoder with r = 3/4 and dv = 4 and DCPE

was set to Min-Sum model [127] is employed. As depicted in Fig. 5.12, the output BER value
reduces the critical threshold values. It infers that more the number of nodes safeguarded
from possible soft errors, higher the possibility of retrieving the original information.

Fig. 5.12 Critical Threshold impact on Output BER

5.6 Experimental Results 96

5.6.2 Impact of Decoder Configuration

The reliability enhanced LDPC decoders are benchmarked based on their performance as
well as their ability to deal with the circuit fault-induced probabilistic behavior effectively.
For faulty decoders, it is assumed that the output of every variable and check node function
computation is flipped with a probability p = 10−3. For non-binary message alphabets,
flipping the output value means that a value different from the correct one is selected
uniformly at random from the alphabet. Fig. 5.13 highlights the output BER values for
different faulty decoders and the default non-CPE approach when the critical threshold is set
to 20. The encoder employed in this particular case has the following parameters r = 3/4
and dv = 3. Self-Correcting Min-Sum(SCMS) and Min-Sum(MS) [127] decoders provide
the best performance by reducing the error rates go up to 10K times better than the default
encoder. Gal-B provides up to 100 times improvement concerning error correction.

It also illustrates the performance of CPE compared to the default encoding mechanism.
For example, for CT = 10 and for a gate error probability Pg = 1e−4, the BER of CPE is
5.83e−8, while the BER of the encoder without protection is 5.54e−3. This represents a
significant improvement, by more than five orders of magnitude. Furthermore, by injecting
errors only on non-critical gates, the performance of CPE fared much better than the default
encoding mechanism.

Fig. 5.13 Decoder Configuration impact on Output BER

For the encoder with dv = 4 and r = 1/2, by setting the CT value to 10, it is possible
to provide fault free information when the gate error rate is less than 10−4. As depicted in
Fig. 5.14, the CPE mechanism provides error-free output for gate errors smaller than Pg =
6e−4. MS decoding scheme is employed and adopted an encoder with r = 1/2 and dv = 4
for achieving this kind of performance. For the sake of completion, Fig. 5.15 illustrates the
similar scenario is assuming a perfect decoder. In such case, the CPE performance improves
marginally as compared to employing faulty decoder.

5.7 CPE for Fault Prone Boolean Functions 97

Fig. 5.14 CPE error free scenario employing faulty decoder

Fig. 5.15 CPE error free scenario employing perfect decoder

5.7 CPE for Fault Prone Boolean Functions

The proposed CPE approach has been extended to nonlinear circuits in this section. The idea
is to improve fault tolerance using methods derived from Error Control Coding (ECC) theory
to protect the combinational logic that implements a particular Boolean Function. The focus
of this approach is still not on modifying the combinational logic but on augmenting extra
combinational logic to enable the retrieval of the correct output even if errors have occurred
just like in the case of linear encoding approach.

5.7.1 Encoding Mechanism

To understand how the new combinatorial logic is derived, A new function computed by E
ε(.) is defined. In case of working with binary codes, then ε:GF(2)k →GF(2)n, where k is
the dimension and n is the length of the code C. The number of outputs of the combinatorial
circuit CC is also assumed to be equal to k. The functionality of CC can be described as a
function F(.) with F: GF(2)l → GF(2)k where I is the number of binary inputs, and k is the
number of binary outputs. The function P(.) that maps the inputs directly to the parity is P:

5.8 Experimental Results 98

GF(2)l → GF(2)m and is the composition E(F.). This can be seen merely by considering how
its result must be equivalent to computing F(.) and then E(.) on the results.

It is evident that even if the operation is equivalent to serially concatenating the two
blocks, it computes the parity on an independent path than the original combinatorial logic,
and hence it does not suffer from the fault propagation scenario discussed above. In a sense,
the function P(.) predicts the parity of the outputs o from the inputs i as if a standards encoder
were implemented with o as inputs. For all linear FEC codes, the encoding process can be
expressed as a matrix multiplication of the input message and the generator matrix G, the
composition E(F.) is equivalent to:

Pj =
k

∑
b=1

Fb(j)G(b, j) j ∈ 0, ...,m (5.27)

The combinatorial logic that computes the parity is a linear combination of the various
functions that calculate the output bits, as such the resulting logic may be costly, both with
regards to the area consumption and regarding the critical path.

Fig. 5.16 CDF of the number of erroneous outputs generated by one single error injection

5.8 Experimental Results

Many benchmark circuits have been simulated using the CPE CAD setup for different
constraints. It should be mentioned here that all the simulation results presented in this
section assume that the decoder is run on reliable hardware (error-free hardware). This is
referred to as asymmetric setting wherein the circuit and the corresponding augmented logic
is error-prone, and the decoder is assumed to be fault free.

5.8 Experimental Results 99

(a) F circuit Criticality (b) P circuit Criticality

Fig. 5.17 CDF plot of criticality degree

5.8.1 Critical Nodes

Only one error is injected into the circuit (at the output of one single gate) and counted the
number of errors generated on the output of the circuit. For a randomly generated logic
circuit, this behavior is illustrated in Fig. 5.16, which plots the CDF data of the number of
errors on F-output generated by one single error injection. It turns out that for about 93%
of gates, injecting an error generates less than ten errors on the output which is acceptable.
However, for some gates, the error injection can generate up to 191 errors in the output.
Hence, it can be concluded that decoder failures are due to a considerable number of errors
on the output of F (or P) even if the gate error probability is quite low.

Further, the criticality degrees of all nodes in F and P are computed. As depicted in
Fig. 5.17(a), only 1.67% of the nodes of F have a criticality degree > 8. However, for P
the situation is entirely different as shown in Fig. 5.17(b). There are many nodes with very
high criticality degree (38.8% of nodes have criticality degree > 50). All these nodes cannot
be protected due to high cost. The trade-off here is increasing the number of nodes of P
may allow decreasing their criticality level (more nodes, but less critical). On the contrary,
decreasing the number of nodes in P could increase their criticality level (fewer nodes, but
more critical).

As an important point, the number of critical nodes is currently more significant problem
within the nonlinear circuits compared to linear circuits. As depicted in Fig. 5.18, the number
of critical nodes is pretty huge in the non-linear circuits. The parity circuit often dominates
the total count of critical nodes. This is because of the current methodology used to generate
the augmented logic circuit (F) circuit. Concatenate the functional unit with the generator
matrix which is not the best possible approach in the case of non-linear circuits.

5.8 Experimental Results 100

Fig. 5.18 Critical node count for different Linear and Non-Linear circuits.

5.8.2 Area Overhead

Any error correction technique comes with the extra overhead of the parity circuit that needs
to augment to the existing logic circuit. As shown in Fig. 5.19, for linear circuits, the size of
the parity circuits is much smaller. This is because two matrices are multiplied to generate
the new circuit. But, in the case of non-linear circuits, the overhead is slightly on the higher
side.

Fig. 5.19 Area overhead due to parity augmentation.

5.8 Experimental Results 101

5.8.3 NMR Vs. CPE

Fig. 5.20 plot portrays the bit error probability of the CPE and TMR methodologies for the
MCNC benchmark circuit ’DES’. In the simulator, all the gates whose failure generates more
than ten errors on the output of F or P are declared as critical. By injecting errors only on
non-critical gates, the performance of CPE fared much better than TMR. For a gate error
probability of 0.001, the bit error probability of CPE = 4e-9, while the bit error probability
of TMR = 6.3e-4. This represents a significant improvement, by more than five orders of
magnitude. Note that to achieve a bit error probability of 4e-9 using N-modular redundancy,
one should take N = 11.

Fig. 5.20 Performance of NMR Vs CPE

5.8.4 Impact of LDPC code sizes on Area

This section presents several applications of this encoding technique to two IP cores. The
use of different ECC codes is investigated. For reference, the results are compared with the
original size/timing and with the Triple Modular Redundancy (TMR) scheme. The size of
the fault-tolerant CPE implementation is the sum of the combinational circuit ’ F’, the parity
circuit ’P’ and the decoder ’D’.

Two IP cores commonly used in telecommunication systems, the Scrambler and the Chien
Search block for Reed Solomon decoding were considered. Several codes are investigated
to span a large variety of possibilities concerning code length, error correction capability,
encoding/decoding complexity, etc. These include Hamming code, BCH codes, Low-Density
Parity Check (LDPC) codes and the Low-Density Generator Matrix (LDGM) codes. Area and
Delay results for the application of the proposed fault protection scheme for the Scrambler

5.8 Experimental Results 102

and Chien Search cores are as shown in Fig. 5.21. It can be seen how the implementation of
the CPE protection can have a significant impact in term of area and delay. It is also evident
how the cost of the scheme is dependent on the combinatorial logic to be secured.

Fig. 5.21 Area and timing Analysis on IP cores using CPE methodology.

5.8.5 Case Study

MCNC benchmark circuit "DES" has been selected as the default test case to perform various
simulations to study the methodology. The reliability of the CPE approach depends on the
CT value. However, even if we consider a CT value as high as CT = 10, the number of
nodes to be protected in P (5524) is still higher than the total number of nodes of F (3249).
Thus, CPE under such circumstances is not the right solution, because a more efficient and
straightforward solution would be to protect all the nodes in F.

Fig. 5.22 depicts the output error probability plot. When CT is set to -1, all nodes are
possibly error-prone, most of the CPE output bit errors are because the decoder converges
to a wrong codeword. But with CT= 2, 5, 8, 10; the decoder never converged to a wrong
codeword. Fig. 5.23 gives a detailed analysis of the output error on all the three output nodes;
the ’F’ circuit, the ’P’ circuit as well as the decoder.

Besides, one other limitation is the extremely gate count of the parity circuit (P). For the
current test case, there are a total of ’3249’ nodes in the circuit and ’41151’ nodes in the
corresponding parity circuit (P). This results in an increased error probability on output nodes
of parity circuit as compared to the logic circuit (F). This also leads in an area significantly

5.8 Experimental Results 103

larger which is not desirable. Size of P must be reduced considerably, for CPE to provide a
practical solution.

Fig. 5.22 Output BER for various Criticality thresholds

Fig. 5.23 Detailed plots for output error on F, P and decoder output nodes.

5.9 Conclusions 104

5.9 Conclusions

A novel fault tolerant methodology known as Codeword Prediction Encoder (CPE) for
reliable data transmission using unreliable hardware is proposed. The principle idea is to
implement error correction codes driven graph augmentation techniques applicable to any
combinatorial logic individually to correct dynamic errors introduced during the encoding
process. The mathematical analysis presented reflects only a preliminary investigation of the
various possible avenues to reach mathematical formulation of what are the limitation and
the potential trade-off of the CPE technique.

The CAD flow for CPE methodology is implemented, and performance evaluation has
been entirely automated. Simulation results show that performance of CPE is much better as
compared to transmitting data by employing traditional encoding methodology. A replication
of up to ’11’ times of the combinational circuit to achieve similar kind of performance as the
CPE. Performance evaluation using various fault tolerant LDPC decoders were discussed.
By employing Min-sum decoding mechanisms and a strong encoder r = 1/2 and dv = 4, it
is possible to correct all errors given that gate errors smaller than Pg = 6e−4. In general, CPE
performance improvement of upto 10K is observed when compared to the normal encoding
mechanism. Apart from this, some other important sets of conclusions are for any LDPC
code rate and for any critical gate threshold:

• With lower code rate, we achieve a significant amount of performance improvement
wherein the CPE can correct all errors for gate error probability of 1e-2.

• Lower the code rate, higher the number of gates in the parity circuit ’P’.

• Number of critical gates is not rising drastically with code rate.

In this chapter, A new technique called CPE based on error control coding techniques
are presented which improve the circuit reliability by redundancy addition into the circuit
hence altering the number of inputs/outputs. One of the issues encountered with CPE was
the difficulty of generating the error probability model for the outputs of the circuit and also
the encoder. This is primarily due to the fact that the output functions are not completely
independent. The coding scheme has to take into consideration these models for more
effective decoding. In the next chapter we propose some new models which are based on
delay degradation analysis.

Chapter 6

Delay Degradation Analysis

6.1 Introduction

In the early days of IC design(the early 1970s), the full custom methodology was adopted
wherein the layout of each transistor, and the interconnections between them were laid out
manually. However, with the development of sophisticated Electronic Design Automation
(EDA) tools, the design of the state-of-the-art complex ICs was made possible by adopting
semi-custom VLSI design flow. In this flow, a set of predefined basic gates have already
been designed and stored in the library as a part of the current design. With semi-custom
flow, there may be a slight degradation in performance compared to an equivalent full custom
VLSI chip. But the minimization of the design cycle time due to re-usability of components
from the library makes it outperform its full custom counterpart. Offlate, full custom designs
are limited to performance-critical applications and in special cases when a new technology
library is adopted for designing a circuit.

The most critical aspect of semi-custom ASIC design flow is Static Timing Analysis(STA).
STA is the process of computing the expected timing of a digital circuit without requiring
a full circuit simulation. With the introduction of sub-threshold logic [128], the CMOS
circuits supply voltage value has been pushed to an extremely low level, which is below
the MOSFET threshold voltage. This dramatically reduces the power consumption but
aggravates the process variations thereby compromising circuit functional performance
[129]. Unpredictable gate delay values induced by local variations [130] along with other
variations like CMOS channel length, threshold voltage, and oxide thickness are some of the
critical factors that complicate timing analysis and estimation [131]. Hence, accurate delay
analysis and estimation are turning out to be even more challenging, and the capabilities of
conventional delay models and timing analysis approaches are proving to be inadequate.

6.2 Library Cells Simulation Methodology 106

6.1.1 Main Contributions and Outline

In this work, delay approximation methodology based on probability density functions(PDF)
based on Inverse Gaussian function is proposed [132] [23]. This approach is significantly
faster than the state-of-the-art since only the essential cells must be fully simulated to obtain
the key model parameters and the delay model for complex circuits. Unlike other techniques
or tools, which demand large look-up tables or complicated calculations [85], [86], the
proposed approach is remarkably more straightforward. For the simulation set-up, process
variations and voltage variations are investigated during this key-parameters estimation step.
The room temperature is chosen for all the simulations, and temperature variation is not
taken into consideration due to its less impact compared with the two parameters on delay
degradation [128].

The primitive version of the IGD based delay model was first presented in [23] applicable
to combinational elements in digital CMOS circuits to compute critical parameters of the
model and was later extended to sequential circuits in [132]. The main idea behind the
proposal is first to calculate the primary gate critical parameters utilizing MC simulations and
then linearly extrapolate (propagate) them through the logic network at the circuit level. In
the refined approach, the effect of fan-out value and input transition time on the gate delay is
also taken into consideration. The proposed IGD model is endorsed by physical phenomena
and provides considerable delay estimation accuracy and efficiency. Furthermore, the model
is highly accurate even for different power supply voltage values ranging from nominal
Vdd to sub-threshold Vdd . To demonstrate the practicability of the IGD based statistical
approach, the estimated delay with the current model and MC SPICE simulations for several
combinational and sequential logic blocks were compared. 32nm technology models were
employed across all the simulations. Experimental results indicate that the proposed method
outperforms GD fitting and provides a very close match with MC simulations, i.e., less
than 1.2% and 1.9% error for the two circuits, 8-bit Ripple Carry Adder(RCA), and 8-bit
De-Multiplexer(DEMUX) and Multiplexer(MUX) respectively.

6.2 Library Cells Simulation Methodology

In semi-custom VLSI design flow, any design is implemented using a set of predefined
basic gates as the fundamental building blocks. This creates a need for accurate abstraction
of each building block (gate or cell) so that other tools that use these blocks can predict
the behavior of the design. Those aspects of the library cell behavior are abstracted that
appear as constraints to the designer. Traditionally, all the cells in the library database are
characterized by metrics like timing, power, and noise. Modeling and predicting propagation

6.2 Library Cells Simulation Methodology 107

delay or switching speed of CMOS logic gates is one of the major obstacles in VLSI design
cycle. Microscopic simulation provides accurate results for propagation delays. However,
simulations take a significantly long time to calculate. The Liberty Format [133], an open
source ASCII library format was first introduced in 1987 for logic synthesis, and it has been
refined continuously since. In 1988 a linear CMOS timing model was introduced, followed
in 1992 by the introduction of the Non Linear Delay Model(NLDM) [134] [135]. The new
Composite Current Source(CCS) model [133] allows for accurate analysis of sub-micron
designs.

6.2.1 Library Characterization

Library characterization is the process of exhaustively analyzing an entity at a low level of
abstraction to extract all relevant and meaningful information about it, and then to faithfully
represent that information in a model at a higher level of abstraction. Cell characterization
is the foundation on which the entire high-level RTL-to-GDSII flow has been built. This
data is used in STA to compute timing delays on the critical timing paths that determine
the maximum clock frequency at which the chip can safely operate thereby guaranteeing
the correct chip functionality post fabrication [136]. Design Closure is a part of the chip
design by which an Integrated Circuit(IC) design is modified from its initial description
to meet a growing list of design constraints and objectives(timing, power, noise, test, and
reliability). Many effects are showing up at 65nm and below that can no longer be ignored or
simply handled by margining. A great deal of work has been performed on perfecting the
timing models for static timing analyses [137] [138], [139], [140], [141] [142], [143].
Composite Current Source(CCS) [144], [145] modeling extends Liberty to include current
waveform data which allows for more accurate analysis and unification of library data. CCS
model formats, as part of the Liberty standard, are an open and unified model for timing,
noise, and power. CCS addresses the analysis of these effects in today smaller technologies,
effects such as high impedance nets, double switching and miller effects.

6.2.2 Timing Verification

Timing verification is a process of validating that a design meets its specifications by operating
at a specific clock frequency without errors caused by a signal arriving too soon or too late.
Transistor-level static timing technology has been available for well over a decade. Dynamic
timing analysis can achieve more accurate estimates of path delays than static timing analysis
because a set of input patterns is simulated to exercise all the paths in the circuit, as described
in [89]. However, the computational complexity of generating such input patterns can be

6.3 Linear Compositional Delay Model 108

very high, and the simulation is time-consuming for large circuits. Unlike the dynamic
simulation approach, STA tools remove the need for simulating the entire block under all
possible scenarios. Instead, they use fast but accurate approaches to estimate the delay
of sub-circuits within the block and use graph analysis techniques to quickly seek out the
slowest and fastest paths in the block. The result is that an STA tool can typically find all
timing violations in a block in a fraction of the time it would take a dynamic circuit simulator.
It is essential to reaching timing closure for digital designs by identifying paths that are
limiting chip performance.

Fig. 6.1 Library Characterization Flow

6.2.3 Simulation Methodology

The basic cells must be fully simulated to obtain the key model parameters and capture the
delay model for complex circuits. The underlying simulation methodology adopted is aligned
with the industry standard library characterization flow as depicted in Fig. 6.1. The only
difference is the fact that SPICE simulator is directly used instead of the licensed library
characterization tool. Also, custom scripts are employed to gather useful data from the report
files dumped by SPICE.

6.3 Linear Compositional Delay Model

In probability theory, Inverse Gaussian Distribution(IGD) also known as Wald distribution
is a two-parameter family of continuous probability distributions [146]. The distribution

6.3 Linear Compositional Delay Model 109

support is [0, ∞] and it can be symmetric or asymmetric around µ . Its probability density
function IGD (µ , λ) expressed in Eq. 6.1 where µ is the mean and λ the shape parameter,
can overcome both the shortfalls. As λ tends to ∞, the inverse Gaussian distribution becomes
more like the Gaussian distribution. A comprehensive delay approximation methodology
based on Inverse Gaussian Distribution (IGD) is proposed and compared with other related
work namely, the Gaussian Distribution (GD) delay model [87]. To demonstrate the accuracy
and flexibility of the IGD based approach, both conventional Vdd and near/sub-threshold Vdd

values in conjunction with several types of process variations are considered.

f (x,λ ,µ) =
[

λ

2πx3

] 1
2
exp

(−λ (x−µ)2)

2µ2x

)
;x > 0 (6.1)

There is an intuitive reason why IGD fits better than GD with CMOS delay propagation
data under various PVT variations. Brownian motion can well model the random movements
of the carrier particles in electronic circuits in a steady state also called as Wiener process
[147]. For particles under Brownian motion, GD captures the motion distribution of all
particles at a given moment in time, while IGD reflects the particle motion when drift is
applied. IGD provides the number of particles in random motion with a positive drift that
reaches a fixed level in a given period. In electronic devices, the drift is the voltage difference
between device terminals producing an electric field thus inducing carrier movements. It
is observed that the IGD shape can change significantly depending on the two parameters
and is not restricted like the GD approximation which must always be symmetric. Based on
this argument, it can be concluded that the inverse Gaussian distribution is potentially better
suited than the normal distribution to represent delay distributions in electronic circuits.

6.3.1 Flexibility (universality) of IGD model

SPICE simulations were performed on 2-input AND gate with threshold voltage variation
(employing Gaussian distribution) being the most dominant element of all process variations.
32nm Predictive Transistor Models (PTM) under a nominal supply voltage of 0.9V was
employed for the Monte Carlo simulations. To compare the IGD model with the GD model,
similar experiment, i.e., a 2-input AND gate with inputs switching from 00 to 11, has been
reproduced. The threshold voltage (Vth) variation is generated following the GD, where the
mean value is the nominal Vth, Vthn=0.322V for nFETs and Vthp=-0.302V for pFETs. The
standard deviation is set to 50mV, which is sufficient to reflect the threshold voltage variation
in state of the art circuits. Both GD and IGD are used to fit the propagation delay data profile.
The resulting delay histogram and the corresponding GD and IGD fittings are presented
in Fig. 6.2(a) which indicates that both fit well the delay data. However, the similarity in

6.3 Linear Compositional Delay Model 110

(a) Normal Vdd

(b) Sub-Threshold Vdd

Fig. 6.2 IGD and GD fittings for 2 Input AND gate

6.3 Linear Compositional Delay Model 111

fitting capability no longer holds true, when the gate operates in the near-threshold regime. A
similar experiment is repeated for the same Vth distribution with a Vdd of 0.3V and Fig. 6.2(b)
presents the delay histogram and the GD and IGD fittings. It is clear that IGD almost perfectly
fits the delay histogram which has a non-symmetrical shape with a steep slope towards zero
and a long tail towards ∞. On the other hand, unlike in Fig. 6.2(a), GD does not provide a
proper fitting in this case. It is also worth mentioning that the GD fitting curve does not start
from zero, which is unrealistic because no circuit can operate without propagation delay. The
experiment highlights the shortfall of using GD for fitting delay data.

To further demonstrate the IGD fitting accuracy, a chain of 5 AND gates in which all
AND gates, except for the first one, are fed by the output of the previous gate is considered to
demonstrate the IGD fitting accuracy further. The chain has been simulated with its primary
inputs switching from 11 to 00 but employing similar process variations as in the previous
experiment. A standard deviation of 50mV in the power supply voltage is assumed at 0.9V
Vdd , which reflects real circuit power supply voltage fluctuations. In Fig. 6.3, the histogram
and their corresponding fittings for the 3rd and 5th AND gates are presented (the other stages
are omitted for clarity).

Fig. 6.3 Seven AND gate chain

One specific case of interest is to consider voltage variation alone. The current nanometer
technologies present up to 20% of voltage variation, thereby changing the expected circuit
performance drastically. Fig. 6.4 depicts the simulations results and mapping of both IGD and
GD delay models wrt Monte Carlo simulation results. It proves that IGD is better compared
to GD to model the delay degradation taking the impact of voltage variations alone. Thus,
it is evident that IGD fits better the experimental data than the normal GD. Based on the

6.4 IGD Based Delay Model for Combinational and Sequential circuits 112

simulations, it can be concluded that IGD can accurately capture gate and simple circuit
propagation delays for different process and voltage variations.

Fig. 6.4 IGD vs GD fitting for 2-input AND gate with only supply variation.

6.4 IGD Based Delay Model for Combinational and Se-
quential circuits

In this section, the IGD model is extended for both combinational and sequential circuits.
The critical parameters are obtained that are utilized to estimate larger circuit probability
distributions.

6.4.1 Typical timing path in synchronous CMOS circuits

In synchronous CMOS circuits, D-Latches (DL) and D Flip-Flops (DFFs) are employed
for data synchronization. This is then passed onto the combinational logic blocks which
are regarded as timing segments in static timing analysis. The cumulative sum of each
delay segment caused by all these blocks determines the timing analysis typically known as
Register to Register (R2R) delay as depicted in Eq.6.2.

6.4 IGD Based Delay Model for Combinational and Sequential circuits 113

DR2R = DC2Q +DLOGIC +DSETUP, (6.2)

where,

• DR2R is the total delay of a timing path;

• DC2Q is the delay of D flip-flop from the clock rising/falling edge to the output;

• DLOGIC is the propagation delay through the combinational logic;

• DSETUP is the setup time of the output registers.

Unlike the conventional corner analysis that comprises of exact delay value for each
component, the current approach proposes to estimate the IGD key parameters µ and λ

for each of the terms in Eq.6.2. Major emphasis is placed on the first two terms of the
equation and leaves DSETUP for future consideration given that it is significantly smaller.
The methodology of µ and λ computation for the longest path using a linear combination
of the parameters neglecting DSETUP was well explained in [23]. Eq.6.2 can therefore be
translated into:

µR2R = µC2Q +µLOGIC

λR2R = λC2Q +λLOGIC
(6.3)

6.4.2 Combinational Gates - INV, NAND, NOR & XOR

The basic gates are the building blocks in any digital CMOS circuits. As the simplest gate in
the CMOS family, INV is widely used in signal regulation and for enhancing signal strength.
NAND and NOR gates are universal gates, and it is well known that all Boolean circuits can
be synthesized with either of these universal gates alone. XOR is the most commonly used
gate in all error correcting circuits. The IGD and GD fittings of all these gates based on ten
thousand MC simulations and Fan-Out(FO) value set to one are depicted in Fig. 6.5. Both
charging and discharging events at the output node are considered. The list of parameter
variations employed within the simulation setup is:

• Vdd - mean value 0.3V and deviation 30mV;

• Vth - mean value 0.322V for nFETs and -0.302V for pFETs, and standard deviation
50mV;

6.4 IGD Based Delay Model for Combinational and Sequential circuits 114

(a) INV (b) NAND

(c) NOR (d) XOR

Fig. 6.5 IGD and GD fittings for basic gates charging and discharging events

• Tox - 10% deviation for both nMOS and pMOS transistors.

From the plots, it is clear that IGD correlates well with that of the MC simulation results
as compared to GD. The critical parameters, µ and λ , for INV and NAND which serve as
fundamental values for the proposed delay model.

6.4.3 Sequential Circuits- Master Slave DFF

Sequential elements such as DL and DFF are employed in logic circuits for data synchroniza-
tion and are extremely important from timing analysis perspective. Unlike combinational
circuits, which do not include any feedback loops, cross-coupled circuits are utilized for data
retention in these elements. Therefore, it is important to verify if the IGD model fits well
also for sequential elements as well. A DFF is composed of two adjacent DLs, known as
Master and Slave, controlled by complementary clock signals. A DFF implementation built

6.4 IGD Based Delay Model for Combinational and Sequential circuits 115

(a) DFF Schematic

(b) PDF based Fitting

Fig. 6.6 IGD and GD fittings for DFF charging and discharging events

with eight NAND gates and two INVs is depicted in Fig. 6.6(a). The DFF IGD and GD fitted
PDFs along with MC simulation data for FO=1 is presented in Fig. 6.6(b) where both the
discharging (1 → 0) and charging (0 → 1) events at the DFF input (D) are considered.

Table 6.1 µ and λ for NAND, INV and DFF

Gatetype
Charging Discharging
µ λ µ λ

INV 4.8 9.3 5.8 9.6

NAND 6.2 11.3 7.9 7.7

DFF 28.2 33.4 41.8 47.2

The key parameters, µ and λ under different conditions are also summarized in Tab. 6.1.
It can be observed that the falling transition values are greater than the ones for the rising
transition, which means that the discharging event takes more time than the charging event.
Again one can easily observe that IGD correlates well with MC simulation data as compared
to GD.

6.4.4 Sequential Circuits- Sub-Threshold DFF

For ultra-low-power applications, operating the transistors in their sub-threshold region is
an effective way of reducing the power dissipation of a circuit. An optimal flip-flop has
low power dissipation, imposes no delay and gives a valid output at all time. In a practical
implementation, trade-offs between these parameters must be done. To confirm that the
model works even with any specific flop designs, the analysis is extended unto sub-threshold
specific flop design as depicted in Fig. 6.7(a). PowerPC 603 flip-flop, which was used in the

6.5 Fan-out Aware IGD Model 116

(a) DFF Schematic

(b) PDF based Fitting

Fig. 6.7 IGD and GD fittings for Sub-threshold based DFF architecture.

PowerPC 603 microprocessor data-path [148], is a combination of the Transmission-Gate
Master-Slave (TGMS) and C2MOS flip-flops, using clocked inverters instead of feedback
transmission gates. The DFF IGD and GD fitted PDFs along with MC simulation data for
FO=1 are presented in Fig. 6.7(b) where both the discharging (1 → 0) and charging (0 → 1)
events at the DFF input (D) are considered. It is observed that IGD correlates well with MC
simulation data as compared to GD.

Thus, the practicability of fitting the behavior of both combinational and sequential gates
using the IGD model is demonstrated. The shapes of the data and IGD fitting curves for
both combinational and sequential elements are not symmetric, which once more provides
evidence of the GD model inappropriateness. Besides, it is also demonstrated that discharging
events for all gate types take longer than charging events. This provides a robust platform for
delay estimation in a typical timing path. In the next section, the effect of Fan-Out(FO) and
input transition time on the current methodology is discussed.

6.5 Fan-out Aware IGD Model

In the previous section, a fundamental equation to calculate the IGD key parameters for the
critical path was introduced along with several IGD fittings and the corresponding essential
parameters for sub-powered gates. Moreover, the linear compositionality of the IGD model

6.5 Fan-out Aware IGD Model 117

for combinational circuits have been demonstrated in [23]. To complete the delay model,
fan-out a crucial component must be taken into account to depict more realistic scenarios.
Fan-out, also regarded as the capacitive load at the output of a gate, can significantly affect
output signal transition time and the propagation delay. In fact, there are two types of fan-out
related phenomena that affect the gate delay:

• Fan-Out of the Current gate (FOC);

• Fan-Out of the Previous gate (FOP);

FOC has a direct impact on the gate delay. On the other hand, higher FOP would result in
long signal transition time on the gate inputs which eventually results in higher propagation
delay. The driving ability of sub-powered circuits is relatively weak and limits the maximum
acceptable output load. In other words, a high fan-out is not suitable or requires careful
designs in near/sub-threshold circuits. In this work, the maximum fan-out value is set to 4.
When high fan-out is needed for sequential elements, i.e., DFFs, buffers insertion technique
would be employed for load distribution instead of overloading the DFFs output node. This
practice justifies narrowing the study on the FO value impact on combinatorial elements only.
This section will address three key issues:

• Extend the methodology to capture FOC;

• Establish the relation between FOP and the IGD key parameters;

• Key IGD parameters computation for different FOC and FOP values.

Table 6.2 INV & NAND FOC key parameter values.

Gatetype
Charging Discharging

e−11 e−10 e−11 e−10
Pµ Fµ Pλ Fλ Pµ Fµ Pλ Fλ

INV 3.8 0.9 7.2 1.26 4.6 1.2 8.3 0.4

NAND 5.0 1.2 9.9 0.6 6.0 1.9 6.5 0.8

6.5.1 Fan-out effect estimation methodology

The logical effort, a straightforward technique to estimate delay in CMOS circuits, links the
FOC and propagation delay [149]. The normalized delay D of a logic gate can be expressed

6.5 Fan-out Aware IGD Model 118

as the sum of two factors: the parasitic delay P and the stage effort F which depends on the
gate load [149]:

D = NF +P (6.4)

where N is the path branching effort, which indicates the fan-out number, which can
be represented as the FOP in here. The key final output IGD parameters are calculated by
applying the logical effort methods to them by using the following equations:

µFOC = FOC ∗Fµ +Pµ

λFOC = FOC ∗Fλ +Pλ

(6.5)

To derive Fµ , Pµ , Fλ , and Pλ for INV and NAND, two sets of data (µ and λ), i.e., FOC=1
and 2 for each gate, are collected and thereafter calculated by means of Eq.6.5. Once all
values (Fµ , Pµ and Fλ , Pλ) are calculated, µ and λ with various FOC values can be evaluated.
Those key coefficients are summarized in Tab. 6.2. It should be noted that the input transition
time is 100ps.

Table 6.3 FOP effect on output transition time (all values in ps).

I/P Transition Trise Increment Tf all Increment

FOP=1 85 - 99 -

FOP=2 124 39 153 54

FOP=3 165 41 204 51

FOP=4 206 41 256 52

6.5.2 Transition time effect estimation methodology

In the previous subsection, the FOC effect on the IGD model key parameters has been
investigated and a methodology to calculate these values has been introduced. Now, the FOP
effect on propagation delay in the form of transition time degradation will be discussed. It is
understandable that high FO values cause long output transition time thereby increasing the
propagation delays of the following gates. A look-up table is generated to capture the direct
link between FOP and corresponding output transition time. INV gates with FOP=1, 2, 3,
and 4 are simulated with the same variation set-up utilized previously. The corresponding
output transition time is listed in Tab. 6.3, where it can be observed that with 100ps input
transition time, the INV output transition time increases notably and the increment is quite
steady following the FOP increase for both charging and discharging events. When it comes

6.5 Fan-out Aware IGD Model 119

to FOP=4, the output rise and fall time (input for the following gates) exceed 200ps, which
can greatly increase the propagation delay of the driven gates. Based on the Tab. 6.3 data, it
is of interest to investigate the corresponding change of the µ and λ values for different FOP
when FOC=1 for both INV and NAND gate. The corresponding data are listed in Tab. 6.4,
which provides the key parameter difference between two successive FOP values, namely Tµ

and Tλ .

Fig. 6.8 A sample circuit with FOC= 3 and FOP= 2.

According to Tab. 6.4 and Tab. 6.5, the increment in µ and λ represented by constant Tµ

and Tλ is steady. Therefore, the FOP effect on the IGD model can be simply calculated as
follows:

µFOC = (FOP−1)Tµ

λFOC = (FOP−1)Tλ

(6.6)

Table 6.4 FOP effect on key parameters for INV.

Gatetype
Charging Discharging

e−11 e−10 e−11 e−10
Pµ Fµ Pλ Fλ Pµ Fµ Pλ Fλ

FOP=1 3.8 0.8 7.2 0.9 4.6 - 8.3 -

FOP=2 4.6 0.8 8.1 0.9 5.5 0.9 12.5 4.2

FOP=3 5.4 0.8 9.2 1.1 7.2 0.9 16.9 4.4

FOP=4 6.2 0.8 10.2 1.0 8.0 0.9 21.2 4.3

6.5 Fan-out Aware IGD Model 120

6.5.3 The FOC and FOP effects

After investigating FOC and FOP effects respectively on the propagation delay as well as the
IGD model key parameters, the straightforward combination of these two parts is given in
the following equations.

µLOGIC = FOC ∗Fµ +Pµ +(FOP−1)Tµ

λLOGIC = FOC ∗Fλ +Pλ +(FOP−1)Tλ

(6.7)

An INV based example where INV2 has FOC=3, and FOP=2 is illustrated in Fig. 6.8.
The µ and λ calculation for the INV2 charging is carried out based on the values in Tab. 6.2
and Tab. 6.4. The µ and λ calculation is carried out by utilizing Eq. 6.7.

µINV 2 = 3∗0.9e−11+3.8e−11+(2−1)∗0.8e−11 = 7.3e−11 λINV 2 = 3∗1.26e−
10+7.2e−10+(2−1)∗0.9e−10 = 11.88e−10

Table 6.5 FOP effect on key parameters for NAND.

Gatetype
Charging Discharging

e−11 e−10 e−11 e−10
Pµ Fµ Pλ Fλ Pµ Fµ Pλ Fλ

FOP=1 5.0 0.8 9.9 2.4 6.0 0.9 6.5 -

FOP=2 5.8 0.8 12.3 2.4 6.9 0.9 7.9 1.4

FOP=3 6.6 0.8 14.8 2.5 7.8 0.9 9.3 1.4

FOP=4 7.4 0.8 17.4 2.6 8.6 0.9 10.5 1.2

6.5.4 Model Validation for Synchronous Circuits

To prove that the proposed IGD model and the method to propagate the key parameters is
valid and applicable to generic circuits, SPICE simulation results are compared against the
results obtained with the IGD approach for the following circuits:

• DFFs + 8-bit Ripple Carry Adder(RCA);

• DFFs + 8-bit Demultiplex(DEMUX) and Multiplexer(MUX).

The use of the model on similar circuits has already been presented, and Full Adder (FA)
circuit has been thoroughly analyzed. To complete a synchronous timing path, the previously
submitted data is being re-used along with the sub-threshold DFF values to complete the
analysis. In this circuit, all involved gates have a fan-out of 1; thereby, the expansions of

6.5 Fan-out Aware IGD Model 121

the IGD model explained in the previous section are not required. Regarding the second
circuit, different fan-out values are in place thus the method discussed in before is utilized.
The Cumulative Distribution Functions (CDF), which is the integral of PDF is being used to
more clearly quantify the difference between the proposed model results and MC data. CDF
is used instead of PDF as it provides the average probability of switching event occurrence.
PDF captures the likelihood of the happening of switching activity at that instant. From the
circuit point of view, only switching event happening any time before the clock arrival are
of interest. Consequently, the difference between the measured and the computed CDF is a
better metric to evaluate the accuracy of the model.

Fig. 6.9 DFFs +8-bit RCA CDFs.

DFFs + 8-bit Ripple Carry Adder

Given the FA parameters derived in and the already presented DFF parameters, the corre-
sponding µ , and λ for an 8-bit RCA with DFFs is computed. From static timing analysis
perspective, the worst analysis of the longest propagation delay is of utmost importance.
The critical path within the FA is the one from Carry-In to Sum since its delay is larger
when compared to Carry-In to Carry-Out within an 8-bit RCA, Hence, the longest delay
occurs when the inputs A, B, Carry-In switch from all 0s to A=01111111, B=00000000,
and Carry-In =1, resulting in an 10000000 output. In Fig. 6.9, the CDFs obtained by Monte
Carlo simulation, the one obtained using the IGD model estimation, and GD based fitting are
displayed for a delay range between 0ns to 30ns. The proposed IGD based delay prediction
method closely approximates the MC simulation. An average mismatch of only 1.9% is
recorded. On the other hand, the discrepancy between real simulation data and the GD

6.5 Fan-out Aware IGD Model 122

fitting is obvious. Once more, the GD fitted CDF curve starts from a non-zero value with a
0.2 probability, which is clearly unrealistic. It is important to clarify that the IGD curve is
obtained by plotting the IGD CDF function whose parameters have been computed using
the proposed propagation methodology and starting from the single block key parameters
(no MC simulation necessary). On the contrary, the GD curve is an attempt to fit the MC
data with a Gaussian curve. Even in this situation, where the GD fitting has the advantage of
knowing the MC results, this method provides a much better approximation. CDF deviations
between MC simulation and the IGD estimation for the 5ns to a 30ns range with a 5ns step
are summarized in Tab. 6.6, case in which the highest deviation is 4.5% at 5ns, which is at an
early stage of propagation, while all the others are below 1%.

Table 6.6 DFFS +8-BIT RCA CDF deviations.

Deviation(ns) 5 10 15 20 25 30 Average

IGD Estimation(%) 4.5 0.5 0.6 0.9 0.7 0.7 1.9

Fig. 6.10 Schematic of 8-bit DEMUX and MUX.

DFFs + 8-bit DEMUX and MUX

The corresponding key IGD parameters of the output of an 8-bit DEMUX and MUX with
DFFs can be evaluated by using the data and methodology that was presented previously, i.e.,
fan-out number, and the entailing transition time. The schematic of the 8-bit DEMUX and
MUX are depicted in Fig. 6.10 where only INVs and NANDs are being used. In Fig. 6.11,

6.6 Conclusions 123

Fig. 6.11 DFFs +8-bit DEMUX and MUX CDFs.

the CDFs obtained utilizing Monte Carlo simulation, by IGD based estimation, and by GD
fitting, are depicted for a delay range between 0ns to 6ns. The IGD estimation based curves
closely follow the MC simulation with a slight deviation around 2ns and overall, it is better
than the GD fitting. Tab. 6.7 lists the CDF deviations from MC simulation and the IGD
estimation as well as the GD fitting for a delay range from 1ns to 6ns. The highest mismatch
is 3.4% at 2ns, and the average overall error is 1.2% and 7.3% for the IGD estimation and
the GD fitting, respectively. The fact that GD fitting performs better than IGD in the case of
RCA circuit can be related to the smaller circuit size. It is worth mentioning that, due to the
non-zero-crossing of the GD CDF, the GD deviation fitting will be too large if timing range
starting from 0ns is chosen.

Table 6.7 DFFS +8-BIT DEMUX and MUX CDF deviations.

Deviation(ns) 1 2 3 4 5 6 Average

IGD Estimation(%) 2.6 3.4 2.4 0.6 0.1 0.1 1.2

6.6 Conclusions

A comprehensive fan-out aware Inverse Gaussian Distribution (IGD) based delay model was
introduced. The IGD model was verified for both combinational and sequential gates, and fan-
out effects were considered in two situations namely FOC and FOP. While both the GD and
IGD models work well for normal voltage operation, IGD is much better suited as compared
to GD under the sub-threshold region of operation. The model is not only highly accurate
(close match to SPICE Monte Carlo simulation results), but more importantly, it exhibits

6.6 Conclusions 124

excellent flexibility against process and voltage supply variations. The key IGD model
parameters evaluation is very straightforward, which is beneficial for the delay estimation of
complex circuits. When compared to MC SPICE simulation data, obtained for the following
circuits: (1) DFFs + 8-bit Ripple Carry Adder and (2) DFFs + 8-bit DEMUX and MUX, this
method provides average mismatches of 1.9% and 1.2% respectively, while reducing run-
time by up to 50 times. Moreover, when compared to the GD fitting results, the IGD based
estimation was more accurate in both cases. The average deviation for the IGD estimation
was 85% smaller than the one corresponding to GD fitting, e.g., 1.2% versus 7.3% for the
second circuit.

In this chapter, IGD based delay degradation timing models were presented and the
results are in close match to MC based simulation results. In the next chapter, the summary
of the research work along with possible directions for future research are presented.

Chapter 7

Summary and Future work

Low power design is becoming increasingly important in today’s technology as wireless
communication becomes increasingly desirable. Although power dissipation is significant
in portable systems, reliability is an equally important target for digital designers. With
the advent of deep submicron technologies, transient faults are an increasing concern in
semiconductor products. Most circuit-level mitigation techniques deal with power, area and
timing constraints. But, accurate and early modeling, as well as error rate predictions, are the
need of the hour. Hence the motive of the thesis is to explore the modeling of transient faults
in logic circuits and its practical implementation to allow for the analysis of the impact of
transient faults. The primary focus of the work is to design combinational logic circuits with
reliability as the main driving force.

This research work first provided a basic model for transient fault propagation in combi-
national circuits, including modeling of essential masking factors. The discussion in Chapter
3 provided more details about these aspects of the proposed probabilistic gate error model.
The analysis of delay degradation analysis and PDF propagation was included. After the
modeling of transient faults, incorporating an optimization technique when transient faults are
considered, to show that transient-fault reduction can be achieved by employing traditional
rewriting techniques. Lastly, a novel methodology to design fault tolerant circuitry by using
the error correction codes mechanism that was discussed.

7.1 Contributions

The thesis introduced new methodologies and new synthesis methods for reliability-aware
low power digital design. In our approach, the reliability of digital circuits was estimated
on AND-Inverter graphs. A series of graph reordering rules were applied on these circuits.
These rules were based on common rules of Boolean Algebra and worked on the restructuring

7.1 Contributions 126

of the AIG network keeping the functionality the same. This reordering and restructuring of
the AIG nodes achieved a significant reduction in circuit error probability.

7.1.1 Data Structure

Data structures and algorithms largely determine the efficiency of the tool in implement-
ing new applications. AIG deals with simple and flexible data structures, which promise
improvements in quality and runtime of several applications which include both sequential
as well as combinational logic. Moreover, the BDD is not the best suitable for the aim of
the i-RISC project of computing reliability. The major problem in this regards is the fact
that the BDD represents only the logic functionality of the combinatorial logic losing any
direct link with the physical implementation. Technology mapping task is more difficult
in BDD AIG is better suited to this task since each node on the graph represents an actual
physical port. For these reasons, the AND-Inverter graph has been chosen as the underlying
data structure. The data structure has then been enhanced to store information regarding the
reliability of the circuit it represents. A number of academic EDA synthesis tools proposed in
the literature were studied. These open-source tools provide a programming environment and
a solid platform for research in logic synthesis, technology mapping, reliability estimation
and optimization. Once the AIG graph is chosen as the most suitable data structure the
ABC tool is a natural choice. The ABC tool has several advantages: a) it is open source
b) It is actively maintained and c) it has several routing suitable for synthesis/mapping and
verification. The ABC tool (including the sub-packages) is then incorporated in a design flow
which involves also industry tools, namely from Synopsys.

7.1.2 Inverse Gaussian Distribution Based Timing Analysis

Successful timing analysis is the method of computing the maximum clock frequency at
which the circuit can safely operate thereby guaranteeing the right chip functionality post-
fabrication. With the continuous scaling of the transistors, unpredictable gate delay values
induced by local variations along with other variations like CMOS channel length, threshold
voltage, and oxide thickness are some of the critical factors that complicate timing analysis
and estimation. A comprehensive fan-out aware Inverse Gaussian Distribution (IGD) based
delay model was introduced. The main idea behind the proposal is first to gather the necessary
gate key parameters employing MC simulations, Look Up Table(LUT) for all the gates in the
library is maintained to capture these critical parameters. Then, by applying the principles
of convolution, an algorithm is developed that propagates the PDF’s onto the circuit output
nodes by traversing the critical path. The IGD model was verified for both combinational and

7.1 Contributions 127

sequential gates, and fan-out effects were considered in two situations namely FOC and FOP.
While both the GD and IGD models work well for normal voltage operation, IGD is much
better suited as compared to GD under the sub-threshold region of operation. The model is
highly accurate even for different power supply voltage values ranging from nominal Vdd to
sub-threshold Vdd , When compared to MC SPICE simulation data, obtained for the following
circuits: (1) DFFs + 8-bit Ripple Carry Adder and (2) DFFs + 8-bit DEMUX and MUX, our
methods provide average mismatches of 1.9% and 1.2% respectively, while requiring orders
of magnitude less simulation time. Moreover, when compared to the GD fitting results, the
IGD based estimation was more accurate in both cases. The average deviation for the IGD
estimation was 85% smaller than the one corresponding to GD fitting, e.g., 1.2% versus 7.3%
for the second circuit.

7.1.3 ROST-C: Reliability driven Optimization and Synthesis

The increasing demand for reliability analysis calls for automated tools that could analyze
the circuit reliability in quick time without compromising on the accuracy. new gate error
model called Conditional Probabilistic Error Propagation (CPEP) builds a probabilistic
error model of the combinatorial circuit to study the impact of logical error on individual
gates on the overall circuit. A complete analytical treatment was provided which provides
a close formed equation to describe the gate error probability is also accounting for the
impact of re-convergent fanout. Experimental results obtained with the proposed CPEP
framework is within 2% average error and up to 1000 times faster when compared to Monte
Carlo simulations. Subsequently, reliability driven 4-cut enumeration and Boolean matching
technique that improves circuit reliability have been proposed. The method of rewriting
for reliability was developed by extending an existing cut based rewriting tool to make use
of local transforms targeting a reliability metric improvement instead of area. A synthesis
algorithm that optimizes the circuit output nodes error probability was also presented. A
primary tool incorporating the AIG and some local transformation rules based on Boolean
algebra has been proposed for computing the reliability function, and it was demonstrated that
through the selective application of the proposed rules, the reliability could be significantly
improved. Application of this tool on the standard MCNC benchmarks resulted in an average
improvement of 4.06% and a peak improvement of 7.52%. Another logic optimisation
technique based on cut enumeration and Boolean matching is also presented. Version 1 gave
an average increase of 5.11% on the MCNC benchmarks, with a peak of 27.75%. Version 2
gave an average improvement of 15.33% and peak improvement of 37.62%. For comparison,
standard area-goal rewriting was also tested to see if the error would reduce on a ’fewer gates
is less to go wrong’ basis. An average improvement of 4.50% was obtained for standard

7.1 Contributions 128

rewriting on the MCNC benchmarks which is way less than our new methodologies proposed.
The proposed framework will be used to explore systematic multi-objective optimization
methodology of fault-tolerant circuits.

7.1.4 Error Coding Driven Graph Augmentation

A novel methodology is proposed to implement error correction codes driven graph augmen-
tation techniques to improve the fault tolerance of the circuits that is generic and applies to
any combinatorial logic. CPE methodology of implementation and performance evaluation
has been completely automated. Initial simulation results show that performance of CPE is
much better as compared to that of the NMR approach. Replication of up to ‘11’ times of the
combinational circuit was needed to achieve similar kind of performance as the CPE. Apart
from this, some other important sets of conclusions to make are as follow for any LDPC code
rate and for any critical gate threshold:

• With lower code rate, a significant amount of performance improvement is achieved
wherein the CPE can correct all errors for gate error probability of 1e-2.

• Lower the code rate, higher the number of gates in the parity circuit ‘P’.

• Number of critical gates is not rising drastically with code rate.

7.1.5 Boole-Shannon Limit of noisy combinational logic

The analysis presented in this section reflect only a preliminary investigation on the various
possible avenues to reach mathematical formulation of what are the limitation and the
potential trade-off of the i-RISC approach to the error-prone circuitry. Two research directions
are foreseen to continue this work. The first it is to understand the implication of the corner
scenario cost analysis presented and expand it into a unified approach that could evaluate all
costs (area/power/throughput/performance) in a multidimensional way. In this direction, it
would also be necessary to expand the analysis to non-linear circuits. The second direction
would improve the asymptotic analysis presented to arrive at a formulation of a Boole-
Shannon eventually limit for ECC and error-prone circuitry. The research in this direction
should first only consider linear circuits to obtain fundamental limits in the same way many
conceptual boundaries in telecommunication are presented/valid just for restricted channels.

7.2 Future Work 129

7.2 Future Work

While this work introduced some solutions for the existing problems, it also opened the
door for new questions and methodologies for reliability-aware logic optimization in digital
circuits.

• Delay Degradation Analysis: IGD based PDF propagation technique has been pro-
posed to perform delay degradation analysis in combinational circuits. An improved
variability-aware PDF based delay model that accurately captures the delay behavior
of all the basic gates in the library database is currently in progress. The proposed
methodology is then employed to perform Static Timing Analysis (STA) on complex
circuits. Future work includes investigation on applying this methodology to study
timing errors and developing a synthesis tool for reliability.

• Reliability Analysis: The current research performs probabilistic error propagation to
identify gates that are more likely to propagate an SEU and currently only deals with
logical masking errors. Further, the model can be improved upon to cover the electrical
and latching-window masking factors. Also, the impacts of glitches on overall output
error also can be developed. Overall, the analysis can be extended to sequential circuits
as well.

• Reliability Optimization: A reliability driven 4-cut enumeration and Boolean matching
technique that improves circuit reliability has been proposed. Going forward, the
local transformation rule set can be extended to encompass more possible scenarios.
From a reliability perspective, the AIG data structure is more appropriate to represent
combinational circuits. In particular, the fact that AIG is non-canonical (i.e., there
exist more graphs representing the same logic function) can be exploited to improve
reliability further. It is intended to extend the reliability evaluator to sequential circuits
as well that would enable us to characterize the more recent and complex IWLS 2005
benchmarks. Intelligent addition of nodes within the structure can remarkably reduce
the error on the output node. A formal mathematical procedure that can guide the
optimization algorithms to insert these nodes automatically based on the structure of
the circuit. Further, validation of the flow on real benchmarks synthesized to the final
gate netlist employing technology mapping can be another interesting case study.

• Fault Tolerant Circuit Design: Conventional LDPC coding scheme determines the code-
word size (or the size of parity added) to compensate for the noise in the channel. This
work considers additional parity added to compensate extra noise due to unreliable hard-

7.2 Future Work 130

ware. Two research directions are foreseen to continue this work. The first it is to under-
stand the implication of the corner scenario cost analysis presented and expand it into
a unified approach that could evaluate all costs (area/power/throughput/performance)
in a multidimensional way. In this direction, it would also be necessary to expand the
analysis to non-linear circuits. The second direction would improve the asymptotical
analysis presented to eventually arrive at a formulation of a Boole-Shannon limit
for ECC and error-prone circuitry. The research in this direction should first only
consider linear circuits to obtain fundamental limits in the same way many conceptual
boundaries in telecommunication are presented/valid just for restricted channels.

References

[1] Bo Yang, Satish Grandhi, Christian Spagnol, Emanuel Popovici, and Sorin Cotofana.
An approach for digital circuit error/reliability propagation analysis based on condi-
tional probability. In Signals and Systems Conference (ISSC), 2016 27th Irish, pages
1–6, 2016.

[2] Satish Grandhi, Bo Yang, Christian Spagnol, Samarth Gupta, and Emanuel Popovici.
An EDA framework for reliability estimation and optimization of combinational
circuits. Journal of Low Power Electronics, 12(3):242–258, 2016.

[3] Satish Grandhi, Elsa Dupraz, Christian Spagnol, Valentin Savin, and Emanuel
Popovici. CPE: Codeword prediction encoder. In Test Symposium (ETS), 2016
21th IEEE European, pages 1–2, 2016.

[4] Elsa Dupraz, Valentin Savin, Satish Kumar Grandhi, Emanuel Popovici, and David
Declercq. Practical LDPC encoders robust to hardware errors. In Communications
(ICC), 2016 IEEE International Conference on, pages 1–6, 2016.

[5] Alfredo Benso and Paolo Prinetto. Fault injection techniques and tools for embedded
systems reliability evaluation, volume 23. Springer Science & Business Media, 2003.

[6] Sasan Iman and Massoud Pedram. POSE: Power optimization and synthesis environ-
ment. In Logic Synthesis for Low Power VLSI Designs, pages 199–224. 1998.

[7] Rashmi Mehrotra, Tom English, Michel Schellekens, Steve Hollands, and Emanuel
Popovici. Timing-driven power optimisation and power-driven timing optimisation of
combinational circuits. Journal of Low Power Electronics, 7(3):364–380, 2011.

[8] Paul E Dodd and Lloyd W Massengill. Basic mechanisms and modeling of single-
event upset in digital microelectronics. Nuclear Science, IEEE Transactions on,
50(3):583–602, 2003.

[9] Shekhar Borkar. Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation. IEEE Micro, 25(6):10–16, 2005.

[10] Cristian Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE
micro, 23(4):14–19, 2003.

[11] Hubert Kaeslin. Digital integrated circuit design: from VLSI architectures to CMOS
fabrication. Cambridge University Press, 2008.

[12] Eric Vittoz. Weak inversion for ultimate low-power logic. CRC Press, 2005.

References 132

[13] Robert Baumann. Soft errors in advanced computer systems. Design & Test of
Computers, IEEE, 22(3):258–266, 2005.

[14] Shekhar Borkar. Tackling variability and reliability challenges. IEEE Design & Test
of Computers, 6(23):520, 2006.

[15] Shekhar Borkar. Thousand core chips: a technology perspective. In Proceedings of
the 44th annual Design Automation Conference, pages 746–749, 2007.

[16] Subhasish Mitra, Tanay Karnik, Norbert Seifert, and Ming Zhang. Logic soft errors
in sub-65nm technologies design and CAD challenges. In Proceedings of the 42nd
annual Design Automation Conference, pages 2–4, 2005.

[17] Giacinto P Saggese, Nicholas J Wang, Zbigniew T Kalbarczyk, Sanjay J Patel, and
Ravishankar K Iyer. An experimental study of soft errors in microprocessors. IEEE
micro, (6):30–39, 2005.

[18] Narayanan Vijaykrishnan. Soft errors: is the concern for soft-errors overblown? In
Test Conference, 2005. Proceedings. ITC 2005. IEEE International, pages 2–pp, 2005.

[19] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Keshavarzi, and
Vivek De. Parameter variations and impact on circuits and microarchitecture. In
Proceedings of the 40th annual Design Automation Conference, pages 338–342, 2003.

[20] MP Baze and SP Buchner. Attenuation of single event induced pulses in CMOS
combinational logic. Nuclear Science, IEEE Transactions on, 44(6):2217–2223, 1997.

[21] Peter Liden, Peter Dahlgren, Rolf Johansson, and Johan Karlsson. On latching prob-
ability of particle induced transients in combinational networks. In Fault-Tolerant
Computing, 1994. FTCS-24. Digest of Papers., Twenty-Fourth International Sympo-
sium on, pages 340–349, 1994.

[22] James F Ziegler, Huntington W Curtis, Hans P Muhlfeld, Charles J Montrose, B Chin,
Michael Nicewicz, CA Russell, Wen Y Wang, Leo B Freeman, P Hosier, et al. Ibm
experiments in soft fails in computer electronics (1978–1994). IBM journal of research
and development, 40(1):3–18, 1996.

[23] Jiaoyan Chen, Christian Spagnol, Satish Grandhi, Emanuel Popovici, Sorin Cotofana,
and Alexandru Amaricai. Linear compositional delay model for the timing analysis of
sub-powered combinational circuits. In VLSI (ISVLSI), 2014 IEEE Computer Society
Annual Symposium on, pages 380–385, 2014.

[24] Mihir R Choudhury and Kartik Mohanram. Reliability analysis of logic circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28(3):392–405, 2009.

[25] Svetlana N Yanushkevich, D Michael Miller, Vlad P Shmerko, and Radomir S
Stankovic. Decision diagram techniques for micro-and nanoelectronic design hand-
book. CRC Press, 2005.

References 133

[26] Ellen M Sentovich Kanwar Jit Singh, Luciano Lavagno Cho Moon Rajeev Murgai,
and Robert K Brayton Alberto Sangiovanni-Vincentelli. SIS: A system for sequential
circuit synthesis. page 4, 1992.

[27] Dennis Wu and Jianwen Zhu. FBDD: A folded logic synthesis system. In ASIC, 2005.
ASICON 2005. 6th International Conference On, pages 746–751, 2005.

[28] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-strength verifi-
cation tool. In International Conference on Computer Aided Verification, pages 24–40,
2010.

[29] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware AIG rewriting
a fresh look at combinational logic synthesis. In Proceedings of the 43rd annual
Design Automation Conference, pages 532–535, 2006.

[30] Mihir R Choudhury and Kartik Mohanram. Reliability analysis of logic circuits.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
28(3):392–405, 2009.

[31] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 8(1):3–30, 1998.

[32] A. Mishchenko and R. K. Brayton. Scalable logic synthesis using a simple circuit
structure. In Proc. IWLS, pages 15–22, 2006.

[33] Sachin S Sapatnekar and Jordi Cortadella. Static timing analysis. In Electronic Design
Automation for IC Implementation, Circuit Design, and Process Technology, pages
155–176. CRC Press, 2016.

[34] Natasa Miskov-Zivanov. Probabilistic modeling and optimization for circuit reliability.
PhD thesis, Carnegie Mellon University, 2008.

[35] Schmid A. Stanisavljevic M. and Leblebici Y. Reliability of Nanoscale Circuits and
Systems: Methodologies and Circuit Architectures. Springer Science & Business
Media, 2010.

[36] Ieee standard definitions for use in reporting electric generating unit reliability, avail-
ability, and productivity. ANSI/IEEE Std 762-1987, pages 1–24, May 1987.

[37] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental concepts
of dependability. University of Newcastle upon Tyne, Computing Science, 2001.

[38] Jean-Claude Laprie. Dependable computing and fault-tolerance. Digest of Papers
FTCS-15, pages 2–11, 1985.

[39] Jeffrey A Clark and Dhiraj K Pradhan. Fault injection: A method for validating
computer-system dependability. Computer, 28(6):47–56, 1995.

[40] Natasa Miskov-Zivanov and Diana Marculescu. Circuit reliability analysis using
symbolic techniques. IEEE transactions on computer-aided design of integrated
circuits and systems, 25(12):2638–2649, 2006.

References 134

[41] John Von Neumann. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. Automata studies, 34:43–98, 1956.

[42] Richard Burch, Farid N Najm, Ping Yang, and Timothy N Trick. A Monte Carlo
approach for power estimation. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 1(1):63–71, 1993.

[43] Elias Todorovich, M Gilabert, Gustavo Sutter, Sergio López-Buedo, and E Boemo. A
tool for activity estimation in FPGAs. In Field-Programmable Logic and Applications:
Reconfigurable Computing Is Going Mainstream, pages 340–349. 2002.

[44] Graham Horton. A new paradigm for the numerical simulation of stochastic Petri
nets with general firing times. In Proceedings of the European Simulation Symposium,
pages 129–136, 2002.

[45] Ketan N Patel, Igor L Markov, and John P Hayes. Evaluating circuit reliability under
probabilistic gate-level fault models. In Proceedings of the International Workshop on
Logic and Synthesis, pages 59–64, 2003.

[46] Erin Taylor, Jie Han, and José Fortes. Towards accurate and efficient reliability
modeling of nanoelectronic circuits. In Nanotechnology, 2006. IEEE-NANO 2006.
Sixth IEEE Conference on, volume 1, pages 395–398, 2006.

[47] Jie Han, Erin Taylor, Jianbo Gao, and Jose Fortes. Faults, error bounds and reliability
of nanoelectronic circuits. In Application-Specific Systems, Architecture Processors,
2005. ASAP 2005. 16th IEEE International Conference on, pages 247–253, 2005.

[48] Jie Han, Hao Chen, Erin Boykin, and José Fortes. Reliability evaluation of logic
circuits using probabilistic gate models. Microelectronics Reliability, 51(2):468–476,
2011.

[49] SJ Seyyed Mahdavi and Karim Mohammadi. SCRAP: Sequential circuits reliability
analysis program. Microelectronics Reliability, 49(8):924–933, 2009.

[50] Denis Teixeira Franco, Mai Correia Vasconcelos, Lirida Naviner, and Jean-François
Naviner. Reliability analysis of logic circuits based on signal probability. In Electronics,
Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on,
pages 670–673, 2008.

[51] Denis Teixeira Franco, Maí Correia Vasconcelos, Lirida Naviner, and Jean-François
Naviner. Signal probability for reliability evaluation of logic circuits. Microelectronics
Reliability, 48(8):1586–1591, 2008.

[52] Walid Ibrahim and Valeriu Beiu. Using Bayesian networks to accurately calculate
the reliability of complementary metal oxide semiconductor gates. Reliability, IEEE
Transactions on, 60(3):538–549, 2011.

[53] Thara Rejimon and Sanjukta Bhanja. Time and space efficient method for accurate
computation of error detection probabilities in VLSI circuits. In Computers and
Digital Techniques, IEE Proceedings-, volume 152, pages 679–685, 2005.

References 135

[54] R Bahar, Joseph Mundy, and Jie Chen. A probabilistic-based design methodology
for nanoscale computation. In Proceedings of the 2003 IEEE/ACM international
conference on Computer-aided design, page 480, 2003.

[55] Debayan Bhaduri and Sandeep Shukla. NANOLAB-a tool for evaluating reliability of
defect-tolerant nanoarchitectures. Nanotechnology, IEEE Transactions on, 4(4):381–
394, 2005.

[56] Smita Krishnaswamy, George F Viamontes, Igor L Markov, and John P Hayes. Prob-
abilistic transfer matrices in symbolic reliability analysis of logic circuits. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 13(1):8, 2008.

[57] Afshin Abdollahi. Probabilistic decision diagrams for exact probabilistic analysis. In
Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Conference
on, pages 266–272, 2007.

[58] Rahul Rithe, Jie Gu, Alice Wang, Satyendra Datla, Gordon Gammie, Dennis Buss,
and Anantha Chandrakasan. Non-linear operating point statistical analysis for local
variations in logic timing at low voltage. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2010, pages 965–968, 2010.

[59] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. The case for
lifetime reliability-aware microprocessors. In ACM SIGARCH Computer Architecture
News, volume 32, page 276, 2004.

[60] Yao Wang, Marius Enachescu, Sorin Dan Cotofana, and Liang Fang. Variation
tolerant on-chip degradation sensors for dynamic reliability management systems.
Microelectronics Reliability, 52(9-10):1787–1791, 2012.

[61] Krishna Palem and Avinash Lingamneni. What to do about the end of moore’s law,
probably! In Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE,
pages 924–929, 2012.

[62] Smita Krishnaswamy, Stephen M Plaza, Igor L Markov, and John P Hayes. Enhancing
design robustness with reliability-aware resynthesis and logic simulation. In Computer-
Aided Design, 2007. ICCAD 2007. IEEE/ACM International Conference on, pages
149–154, 2007.

[63] Kai-Chiang Wu and Diana Marculescu. A low-cost, systematic methodology for soft
error robustness of logic circuits. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 21(2):367–379, 2013.

[64] Mihir R Choudhury and Kartik Mohanram. Low cost concurrent error masking using
approximate logic circuits. IEEE Transactions on computer-aided design of integrated
circuits and systems, 32(8):1163–1176, 2013.

[65] Sobeeh Almukhaizim, Yiorgos Makris, Yu-Shen Yang, and Andreas Veneris. Seamless
integration of SER in rewiring-based design space exploration. In Test Conference,
2006. ITC’06. IEEE International, pages 1–9, 2006.

References 136

[66] Nivard Aymerich and Antonio Rubio. Reliability and performance tunable architecture:
The partially asynchronous r-fold modular redundancy (pA-RMR). IEEE Transactions
on Nanotechnology, 13(3):617–622, 2014.

[67] K Nikolic, A Sadek, and M Forshaw. Architectures for reliable computing with
unreliable nanodevices. In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of
the 2001 1st IEEE Conference on, pages 254–259, 2001.

[68] Robert E Lyons and Wouter Vanderkulk. The use of triple-modular redundancy to
improve computer reliability. IBM Journal of Research and Development, 6(2):200–
209, 1962.

[69] F Lima Kastensmidt, Luca Sterpone, Luigi Carro, and M Sonza Reorda. On the
optimal design of triple modular redundancy logic for SRAM-based FPGAs. In
Proceedings of the conference on Design, Automation and Test in Europe-Volume 2,
pages 1290–1295, 2005.

[70] Behrooz Parhami. New classes of unidirectional error-detecting codes. In Computer
Design: VLSI in Computers and Processors, 1991. ICCD’91. Proceedings, 1991 IEEE
International Conference on, pages 574–577, 1991.

[71] Tenkasi V Ramabadran. A coding scheme for m-out-of-n codes. IEEE Transactions
on Communications, 38(8):1156–1163, 1990.

[72] F Özgüner. Design of totally self-checking embedded two-rail code checkers. Elec-
tronics letters, 27(4):382–384, 1991.

[73] Haruhiko Kaneko. Error control coding for semiconductor memory systems in the
space radiation environment. In Defect and Fault Tolerance in VLSI Systems, 2005.
DFT 2005. 20th IEEE International Symposium on, pages 93–101, 2005.

[74] Zhongfeng Wang, Hiroshi Suzuki, and Keshab K Parhi. VLSI implementation issues
of turbo decoder design for wireless applications. In Signal Processing Systems, 1999.
SiPS 99. 1999 IEEE Workshop on, pages 503–512, 1999.

[75] Subhasish Mitra and Edward J McCluskey. Which concurrent error detection scheme
to choose? In Test Conference, 2000. Proceedings. International, pages 985–994,
2000.

[76] Kartik Mohanram, Egor S Sogomonyan, M Gossel, and Nur A Touba. Synthesis of
low-cost parity-based partially self-checking circuits. In On-Line Testing Symposium,
2003. IOLTS 2003. 9th IEEE, pages 35–40, 2003.

[77] Michael G Taylor. Reliable information storage in memories designed from unreliable
components. Bell Labs Technical Journal, 47(10):2299–2337, 1968.

[78] Michael G Taylor. Reliable computation in computing systems designed from unreli-
able components. Bell Labs Technical Journal, 47(10):2339–2366, 1968.

[79] Aleksandr Vasil’evich Kuznetsov. Information storage in a memory assembled from
unreliable components. Problemy Peredachi Informatsii, 9(3):100–114, 1973.

References 137

[80] Christoforos N Hadjicostis and George C Verghese. Coding approaches to fault
tolerance in linear dynamic systems. Information Theory, IEEE Transactions on,
51(1):210–228, 2005.

[81] Bane Vasic and Shashi Kiran Chilappagari. An information theoretical framework
for analysis and design of nanoscale fault-tolerant memories based on low-density
parity-check codes. Circuits and Systems I: Regular Papers, IEEE Transactions on,
54(11):2438–2446, 2007.

[82] Christiane Kameni Ngassa, Valentin Savin, Elsa Dupraz, and David Declercq. Density
evolution and functional threshold for the noisy min-sum decoder. IEEE Transactions
on Communications, 63(5):1497–1509, 2015.

[83] Elsa Dupraz and David Declercq. Evaluation of the robustness of LDPC encoders
to hardware noise. In Communications and Networking (BlackSeaCom), 2015 IEEE
International Black Sea Conference on, pages 87–91, 2015.

[84] Myeong-Eun Hwang. Supply-voltage scaling close to the fundamental limit under
process variations in nanometer technologies. Electron Devices, IEEE Transactions
on, 58(8):2808–2813, 2011.

[85] Michael Merrett, Plamen Asenov, Yangang Wang, Mark Zwolinski, Dave Reid, Camp-
bell Millar, Scott Roy, Zhenyu Liu, Steve Furber, and Asen Asenov. Modelling circuit
performance variations due to statistical variability: Monte Carlo static timing analy-
sis. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011,
pages 1–4, 2011.

[86] Lu Wan and Deming Chen. Analysis of circuit dynamic behavior with timed ternary
decision diagram. In Proceedings of the International Conference on Computer-Aided
Design, pages 516–523, 2010.

[87] Samy Zaynoun, Muhammed S Khairy, Ahmed M Eltawil, Fadi J Kurdahi, and Amin
Khajeh. Fast error aware model for arithmetic and logic circuits. In Computer Design
(ICCD), 2012 IEEE 30th International Conference on, pages 322–328, 2012.

[88] David Blaauw, Kaviraj Chopra, Ashish Srivastava, and Lou Scheffer. Statistical
timing analysis: From basic principles to state of the art. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 27(4):589–607, 2008.

[89] David M Binkley. Tradeoffs and optimization in analog CMOS design. In Mixed
Design of Integrated Circuits and Systems, 2007. MIXDES’07. 14th International
Conference on, pages 47–60, 2007.

[90] Sean Keller, David Money Harris, and Alain J Martin. A compact transregional model
for digital CMOS circuits operating near threshold. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 22(10):2041–2053, 2014.

[91] Satish Grandhi, Christian Spagnol, and Emanuel Popovici. Reliability analysis of
logic circuits using probabilistic techniques. In Ph. D. Research in Microelectronics
and Electronics (PRIME), 2014 10th Conference on, pages 1–4, 2014.

References 138

[92] S Ercolani, M Favalli, M Damiani, P Olivo, and B Ricco. Estimate of signal probability
in combinational logic networks. In European Test Conference, 1989., Proceedings of
the 1st, pages 132–138, 1989.

[93] Michael Bushnell and Vishwani Agrawal. Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits, volume 17. Springer Science & Business
Media, 2004.

[94] Richard Burch, Farid N Najm, Ping Yang, and Timothy N Trick. A Monte Carlo
approach for power estimation. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 1(1):63–71, 1993.

[95] Elias Todorovich, M Gilabert, Gustavo Sutter, Sergio López-Buedo, and E Boemo.
A tool for activity estimation in FPGAs. In International Conference on Field Pro-
grammable Logic and Applications, pages 340–349, 2002.

[96] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for
deep-submicron FPGAs. Kluwer Academic Publishers, 1999.

[97] Richard Burch, Farid Najm, Ping Yang, and Dale Hocevar. Pattern-independent current
estimation for reliability analysis of CMOS circuits. In Annual ACM IEEE Design
Automation Conference: Proceedings of the 25 th ACM/IEEE conference on Design
automation, volume 12, pages 294–299, 1988.

[98] Sharad C Seth and Vishwani D Agrawal. A new model for computation of probabilistic
testability in combinational circuits. INTEGRATION, the VLSI journal, 7(1):49–75,
1989.

[99] A Biere. The AIGER and-inverter graph (AIG) format, version 20070427. Available
at fmv. jku. at/aiger, 2007.

[100] David JC MacKay. Information theory, inference and learning algorithms. Cambridge
university press, 2003.

[101] Shiy Xu and E Edirisuriya. A new way of detecting reconvergent fanout branch pairs
in logic circuits. In Test Symposium, 2004. 13th Asian, pages 354–357, 2004.

[102] A Mishchenko et al. ABC: A system for sequential synthesis and verification. URL
http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

[103] Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill
Higher Education, 1994.

[104] Satish Grandhi. Data structures and design flow for fault tolerant circuit synthesis.
Technical report, University College Cork, Ireland, January,2014.

[105] Satish Grandhi. Report on fault tolerant synthesis through error correcting codes driven
graph augmentation. Technical report, University College Cork, Ireland, January,2015.

[106] John A Darringer, William H Joyner, C Leonard Berman, and Louise Trevillyan. Logic
synthesis through local transformations. IBM Journal of Research and Development,
25(4):272–280, 1981.

References 139

[107] Robert K Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Albert R
Wang. MIS: A multiple-level logic optimization system. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 6(6):1062–1081, 1987.

[108] Satish Grandhi, Christian Spagnol, Jiaoyan Chen, Emanuel Popovici, and Sorin
Cotafona. Reliability aware logic synthesis through rewriting. In System-on-Chip
Conference (SOCC), 2014 27th IEEE International, pages 274–279, 2014.

[109] Satish Grandhi, David McCarthy, Christian Spagnol, Emanuel Popovici, and Sorin
Cotofana. ROST-C: Reliability driven optimisation and synthesis techniques for
combinational circuits. In Computer Design (ICCD), 2015 33rd IEEE International
Conference on, pages 431–434, 2015.

[110] Nan Li and Elena Dubrova. AIG rewriting using 5-input cuts. In Computer Design
(ICCD), 2011 IEEE 29th International Conference on, pages 429–430, 2011.

[111] Stanley L. Hurst, Jon C. Muzio, and D. Michael Miller. Spectral Techniques in Digital
Logic. Academic Press, Inc., Orlando, FL, USA, 1985.

[112] Frédéric Mailhot and Giovanni De Micheli. Technology mapping using boolean
matching and don’t care sets. In Design Automation Conference, 1990., EDAC.
Proceedings of the European, pages 212–216, 1990.

[113] Sabih H Gerez. Algorithms for VLSI design automation, volume 8. Wiley New York,
1999.

[114] Saeyang Yang. Logic synthesis and optimization benchmarks user guide: version 3.0.
Microelectronics Center of North Carolina (MCNC), 1991.

[115] Claude Elwood Shannon. Communication in the presence of noise. Proceedings of
the IRE, 37(1):10–21, 1949.

[116] Robert G Gallager. Low-density parity-check codes. Information Theory, IRE Trans-
actions on, 8(1):21–28, 1962.

[117] David JC MacKay and Radford M Neal. Near shannon limit performance of low
density parity check codes. Electronics letters, 32(18):1645–1646, 1996.

[118] Eldad Perahia. IEEE 802.11 n development: History, process, and technology.
46(7):48–55, 2008.

[119] Lav R Varshney. Performance of LDPC codes under faulty iterative decoding. Infor-
mation Theory, IEEE Transactions on, 57(7):4427–4444, 2011.

[120] Mihir R Choudhury and Kartik Mohanram. Low cost concurrent error masking using
approximate logic circuits. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 32(8):1163–1176, 2013.

[121] Egor S. Sogomonjan and Michael Gössel. Design of self-parity combinational circuits
for self-testing and on-line detection. In Defect and Fault Tolerance in VLSI Systems,
1993., The IEEE International Workshop on, pages 239–246, 1993.

References 140

[122] Salvador Manich, Michael Nicolaidis, and Joan Figueras. Enhancing realistic fault
secureness in parity prediction array arithmetic operators by IDDQ monitoring. In
VLSI Test Symposium, 1996., Proceedings of 14th, pages 124–129, 1996.

[123] Thomas J Richardson and Rüdiger L Urbanke. Efficient encoding of low-density
parity-check codes. IEEE transactions on information theory, 47(2):638–656, 2001.

[124] Chu-Hsiang Huang, Yao Li, and L. Dolecek. Gallager B LDPC Decoder with Transient
and Permanent Errors. IEEE Transactions on Communications, 62(1):15–28, 2014.

[125] Valentin Savin. Split-extended LDPC codes for coded cooperation. In Information
Theory and its Applications (ISITA), 2010 International Symposium on, pages 151–156,
2010.

[126] Claude Elwood Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(1):379–423, 1948.

[127] Valentin Savin. Self-corrected min-sum decoding of LDPC codes. In Information
Theory, 2008. ISIT 2008. IEEE International Symposium on, pages 146–150. IEEE,
2008.

[128] Hendrawan Soeleman, Kaushik Roy, and Bipul C Paul. Robust subthreshold logic
for ultra-low power operation. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 9(1):90–99, 2001.

[129] Aseem Agarwal, David Blaauw, Vladimir Zolotov, Savithiri Sundareswaran, Min
Zhao, Kaushik Gala, and Rajendran Panda. Path-based statistical timing analysis
considering inter-and intra-die correlations. In Proc. TAU, pages 16–21, 2002.

[130] Xinghai Tang, Vivek K De, and James D Meindl. Intrinsic MOSFET parameter
fluctuations due to random dopant placement. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 5(4):369–376, 1997.

[131] Balkaran S Gill, Chris Papachristou, and Francis G Wolff. Soft delay error analysis in
logic circuits. In Design, Automation and Test in Europe, 2006. DATE’06. Proceedings,
pages 1–6, 2006.

[132] Jiaoyan Chen, Sorin Cotofana, Satish Grandhi, Christian Spagnol, and Emanuel
Popovici. Inverse gaussian distribution based timing analysis of sub-threshold CMOS
circuits. Microelectronics Reliability, 55(12):2754–2761, 2015.

[133] https://www.opensourceliberty.org//.

[134] John F Croix and DF Wong. A fast and accurate technique to optimize characterization
tables for logic synthesis. In Proceedings of the 34th annual Design Automation
Conference, pages 337–340, 1997.

[135] Sandeep Miryala, Baljit Kaur, Bulusu Anand, and Sanjeev Manhas. Efficient nanoscale
VLSI standard cell library characterization using a novel delay model. In Quality
Electronic Design (ISQED), 2011 12th International Symposium on, pages 1–6, 2011.

https://www.opensourceliberty.org//

References 141

[136] Luciano Lavagno, Louis Scheffer, and Grant Martin. EDA for IC implementation,
circuit design, and process technology. CRC press, 2006.

[137] Florentin Dartu, Noel Menezes, and Lawrence T Pileggi. Performance computation for
precharacterized CMOS gates with RC loads. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15(5):544–553, 1996.

[138] Jessica Qian, Satyamurthy Pullela, and Lawrence Pillage. Modeling the" effective
capacitance" for the rc interconnect of CMOS gates. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(12):1526–1535, 1994.

[139] Ravishankar Arunachalam, Florentin Dartu, and Lawrence T Pileggi. CMOS gate
delay models for general RLC loading. In Computer Design: VLSI in Computers and
Processors, 1997. ICCD’97. Proceedings., 1997 IEEE International Conference on,
pages 224–229, 1997.

[140] Weiyu Chen, Sandeep K Gupta, and Melvin A Breuer. Analytic models for crosstalk
delay and pulse analysis under non-ideal inputs. In Test Conference, 1997. Proceed-
ings., International, pages 809–818, 1997.

[141] John F Croix and DF Wong. Blade and razor: cell and interconnect delay analysis
using current-based models. In Design Automation Conference, 2003. Proceedings,
pages 386–389, 2003.

[142] Florentin Dartu and Lawrence T Pileggi. Calculating worst-case gate delays due to
dominant capacitance coupling. In Proceedings of the 34th annual Design Automation
Conference, pages 46–51, 1997.

[143] Igor Keller, Ken Tseng, and Nisath Verghese. A robust cell-level crosstalk delay
change analysis. In Proceedings of the 2004 IEEE/ACM International conference on
Computer-aided design, pages 147–154, 2004.

[144] Xin Wang, Ali Kasnavi, and Harold Levy. An efficient method for fast delay and SI
calculation using current source models. In Quality Electronic Design, 2008. ISQED
2008. 9th International Symposium on, pages 57–61, 2008.

[145] Ruijing Shen and Xiangqing He. A fast nonlinear timing analysis method for nanome-
ter technologies. In Communications, Circuits and Systems, 2007. ICCCAS 2007.
International Conference on, pages 1150–1153, 2007.

[146] Raj Chhikara. The Inverse Gaussian Distribution: Theory: Methodology, and Appli-
cations, volume 95. CRC Press, 1988.

[147] Peter Morters and Yuval Peres. Brownian motion, volume 30. Cambridge University
Press, 2010.

[148] Gian Gerosa, Sonya Gary, Carl Dietz, Dac Pham, Kathy Hoover, Jose Alvarez, Hector
Sanchez, Pete Ippolito, Tai Ngo, Suzanne Litch, et al. A 2.2 w, 80 mhz superscalar
risc microprocessor. Solid-State Circuits, IEEE Journal of, 29(12):1440–1454, 1994.

[149] Ivan Edward Sutherland, Robert F Sproull, and David F Harris. Logical effort:
designing fast CMOS circuits. Morgan Kaufmann, 1999.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 VLSI Design, Automation and Reliability
	1.2 Objectives and Thesis Contributions
	1.2.1 Research Objectives
	1.2.2 Thesis Statement
	1.2.3 Circuit Representation and Modification
	1.2.4 Reliability Estimation and Analysis
	1.2.5 Reliability Driven Logic Optimization
	1.2.6 Fault Tolerant Graph Augmentation
	1.2.7 PDF based Delay Degradation Analysis

	1.3 The Research Framework
	1.4 Conclusions

	2 Reliability in Logic Circuit Design
	2.1 Introduction
	2.1.1 Understanding Reliability
	2.1.2 Transient faults in logic circuits

	2.2 Reliability Estimation
	2.3 Reliability Aware Logic Synthesis
	2.4 Fault Tolerant Techniques
	2.5 Static Timing Analysis
	2.6 Conclusions

	3 Reliability Estimation
	3.1 Introduction
	3.1.1 Main Contributions and Outline

	3.2 Simulation Based Reliability Computation
	3.2.1 Mersenne Twister and Random Number Generation
	3.2.2 Gate Error Model
	3.2.3 The Methodology
	3.2.4 Limitations

	3.3 CPEP: Conditional Probabilistic Error Propagation
	3.3.1 The Data Structure
	3.3.2 Gate Error Models
	3.3.3 2-Input Ideal AND Gate
	3.3.4 Intrinsic Gate Error Effects
	3.3.5 Ideal inverter
	3.3.6 Re-convergent Fanout
	3.3.7 Bounding Node Error Probability
	3.3.8 CPEP based Analysis
	3.3.9 CPEP extension to other Gates
	3.3.10 Limitations

	3.4 CAD Tool: Reliability Evaluator
	3.4.1 Computation Algorithm
	3.4.2 Simulation Results

	3.5 Conclusions

	4 Reliability Aware Logic Synthesis
	4.1 Introduction
	4.1.1 Main Contributions and Outline

	4.2 ABC : Open Source EDA tool
	4.2.1 AND Invert Graphs
	4.2.2 ABC Tool

	4.3 Rule based Rewriting
	4.3.1 Local Transformation Rules
	4.3.2 Exhaustive Analysis of Rules
	4.3.3 The CAD algorithm

	4.4 Experimental Results
	4.4.1 Case study
	4.4.2 Evaluation of MCNC Benchmark Circuits

	4.5 Cut Based AIG Rewriting
	4.5.1 The CAD Algorithm

	4.6 Experimental Results
	4.6.1 CM162a – A Case Study
	4.6.2 Evaluation of Benchmark Circuits

	4.7 Conclusions

	5 CPE : Codeword Prediction Encoder
	5.1 Introduction
	5.1.1 Main Contributions and Outline

	5.2 LDPC Codes and Error Models
	5.2.1 LDPC codes
	5.2.2 LDPC Encoding and Decoding
	5.2.3 Gate Error Model

	5.3 Codeword Prediction Encoder (CPE)
	5.4 CPE Mathematical Analysis
	5.4.1 CPE Cost Analysis
	5.4.2 Notation and Conventions
	5.4.3 Cost analysis for Area/Power
	5.4.4 Error Correction Capacity
	5.4.5 CPE and Modular Redundancy

	5.5 CPE Simulator and CAD Automation
	5.5.1 CPE Core Architecture
	5.5.2 Criticality Threshold
	5.5.3 Pre-Processing
	5.5.4 Netlist Format
	5.5.5 CPE Simulator

	5.6 Experimental Results
	5.6.1 Critical Nodes
	5.6.2 Impact of Decoder Configuration

	5.7 CPE for Fault Prone Boolean Functions
	5.7.1 Encoding Mechanism

	5.8 Experimental Results
	5.8.1 Critical Nodes
	5.8.2 Area Overhead
	5.8.3 NMR Vs. CPE
	5.8.4 Impact of LDPC code sizes on Area
	5.8.5 Case Study

	5.9 Conclusions

	6 Delay Degradation Analysis
	6.1 Introduction
	6.1.1 Main Contributions and Outline

	6.2 Library Cells Simulation Methodology
	6.2.1 Library Characterization
	6.2.2 Timing Verification
	6.2.3 Simulation Methodology

	6.3 Linear Compositional Delay Model
	6.3.1 Flexibility (universality) of IGD model

	6.4 IGD Based Delay Model for Combinational and Sequential circuits
	6.4.1 Typical timing path in synchronous CMOS circuits
	6.4.2 Combinational Gates - INV, NAND, NOR & XOR
	6.4.3 Sequential Circuits- Master Slave DFF
	6.4.4 Sequential Circuits- Sub-Threshold DFF

	6.5 Fan-out Aware IGD Model
	6.5.1 Fan-out effect estimation methodology
	6.5.2 Transition time effect estimation methodology
	6.5.3 The FOC and FOP effects
	6.5.4 Model Validation for Synchronous Circuits

	6.6 Conclusions

	7 Summary and Future work
	7.1 Contributions
	7.1.1 Data Structure
	7.1.2 Inverse Gaussian Distribution Based Timing Analysis
	7.1.3 ROST-C: Reliability driven Optimization and Synthesis
	7.1.4 Error Coding Driven Graph Augmentation
	7.1.5 Boole-Shannon Limit of noisy combinational logic

	7.2 Future Work

	References

