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Abstract 

Since the introduction of the ribosome profiling technique in 2009 its popularity has greatly increased. It is 
widely used for the comprehensive assessment of gene expression and for studying the mechanisms of 
regulation at the translational level. As the number of ribosome profiling datasets being produced continues to 
grow, so too does the need for reliable software that can provide answers to the biological questions it can 
address. This review describes the computational methods and tools that have been developed to analyse 
ribosome profiling data at the different stages of the process. It starts with initial routine processing of raw 
data and follows with more specific tasks such as the identification of translated open reading frames, 
differential gene expression analysis, or evaluation of local or global codon decoding rates. The review 
pinpoints challenges associated with each step and explains the ways in which they are currently addressed. In 
addition it provides a comprehensive, albeit incomplete, list of publicly available software applicable to each 
step, which may be a beneficial starting point to those unexposed to ribosome profiling analysis. The outline of 
current challenges in ribosome profiling data analysis may inspire computational biologists to search for novel, 
potentially superior, solutions that will improve and expand the bioinformaticians’ toolbox for ribosome 
profiling data analysis.  

Graphical/Visual Abstract and Caption 

 

Introduction 

Ribosome profiling or Ribo-Seq, involves the arrest of translating ribosomes (using translation inhibitors or other 
methods) as they traverse mRNA (Ingolia, Ghaemmaghami, Newman, & Weissman, 2009). A nuclease is then 
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used to break down any section of mRNA not being protected by a ribosome (Figure 1a). The remaining 
protected fragments of mRNA (footprints) can then be isolated, sequenced, and mapped to a reference 
transcriptome or genome. These footprints are approximately 30 nucleotides in length and when mapped can 
provide both quantitative as well as qualitative information on translation, see (Andreev et al., 2017; Brar & 
Weissman, 2015; Ingolia et al., 2014; Ingolia, Hussmann, & Weissman, 2018; Michel & Baranov, 2013) for 
reviews. Common applications of Ribo-Seq data analysis include translated Open Reading Frame (ORF) 
detection, ribosome stalling/pause site detection, and differential gene expression analysis (Figure 1b).  
 
The detection of translated regions of a genome is a task for which ribosome profiling is particularly well suited. 
Translation can be identified even at ORFs  consisting of only a start and a stop codon (Tanaka et al., 2016). 
Depending on the dataset this can be achieved at sub-codon resolution, meaning that even overlapping 
translated open reading frames (ORFs) can be detected (Michel et al., 2012). Even though the human genome 
has been sequenced a while ago, novel protein coding ORFs continue to be discovered, e.g. an upstream ORF 
(uORF) in the human MIEF1 gene was predicted to code for a protein (Andreev, O'Connor, Fahey, et al., 2015) 
and was later found to be an assembly factor of mitochondrial ribosomes (Brown et al., 2017) and more 
recently characterized as the main product of MIEF1 mRNA (Rathore et al., 2018). 
 
Ribosome stalling/pause sites can also be characterized. A ribosome moving along an mRNA can pause or stall, 
blocking the path of other ribosomes, and thus regulate protein synthesis (Ivanov et al., 2018; Kurian, 
Palanimurugan, Godderz, & Dohmen, 2011; Yordanova et al., 2018) or trigger No-Go decay or Ribosome Quality 
Control pathways, see (Brandman & Hegde, 2016; Buskirk & Green, 2017; Inada, 2013) for reviews. Since 
ribosomes are more likely to occupy pause sites, more footprints are produced from these locations. Thus, the 
pause sites appear as local peaks of ribosome footprint density and can be detected computationally.  
 
Another popular (though not unique) application of ribosome profiling is the quantitative characterization of 
differential gene expression, as it discriminates changes in mRNA translation from changes in mRNA levels. 
Translation regulation can also be assessed with polysome profiling where the levels of mRNA found in heavy 
polysome fractions are compared with total mRNA levels. The Ribo-Seq advantage over polysome profiling is 
that it provides information on the translation of a specific ORF (or ORFs) within an mRNA, however it has its 
own limitations, see (Gandin et al., 2016) for a comparison of the two approaches. Since ribosome profiling 
generates millions of sequencing reads the processing and analysis of the data requires intensive computation. 
The signal produced with ribosome profiling is far more complex and richer in potential applications than 
standard RNA-seq. Numerous computational approaches have been developed, see (Calviello & Ohler, 2017) for 
review. We structured this review by detailing the steps carried out for ribosome profiling data analysis and 
specific goals and overview software that has been developed for these tasks. The accession information for the 
software tools and/or its sources are provided in tables that are separated into categories. Many tools are 
multifunctional and could be placed in more than one category while some tools are unique. The selection of 
software for this review is based on published literature rather than on usability, since testing and 
benchmarking all published software is an onerous task that should be carried out separately.  
 
Technical considerations when processing raw sequencing reads 
 
Raw ribosome profiling data are usually single-end unprocessed sequencing reads in FASTQ format that need to 
be processed and mapped to a reference genome or transcriptome. Processing of the reads typically involves 
removal of adapter/linker sequences as well as removal of any reads aligning to ribosomal RNA (rRNA) and/or 
transfer RNA (tRNA). There are many freely available tools for both removing adapters and aligning short reads. 
For example, cutadapt (Martin, 2011) is commonly used to remove adapters, while bowtie (Langmead, Trapnell, 
Pop, & Salzberg, 2009) and STAR (Dobin et al., 2013) are commonly used for alignment. As these are not specific 
to ribosome profiling, they will not be discussed in detail here. However, there are several variable parameters 
involved in both processing and mapping which may significantly affect downstream analysis. Therefore, the 
initial read processing and alignment should be guided by how the data will be utilised downstream. 
 
To reduce the mapping of non ribosome protected fragments, footprints whose lengths are below a certain 
threshold are usually discarded. This is done under the assumption that such shorter reads consist of RNA 
fragments other than those protected by the ribosome or of over-digested footprints. However, such length 
filtering needs to be applied with caution, because the length of footprints may depend on their sequence and 



location, e.g. in bacteria, footprints derived from ribosomes bound to Shine Dalgarno sequences are longer 
(O'Connor, Li, Weissman, Atkins, & Baranov, 2013). Indeed, Allen Buskirk and colleagues have provided strong 
evidence suggesting that the earlier claim that Shine-Dalgarno sequences cause ribosome pauses in bacteria (G. 
W. Li, Oh, & Weissman, 2012) may be an artefact of the footprint length selection (Mohammad, 
Woolstenhulme, Green, & Buskirk, 2016). It is also important to note that the length of footprints varies 
considerably across datasets. Most ribosome footprints in eukaryotes are approximately 28-30 nucleotides and 
this corresponds to the length of mRNA fragments protected by the ribosome in a specific conformation when 
its A-site is occupied with a tRNA. Such a conformation is stabilized by certain translation inhibitors that bind to 
the E-site which is empty in the pretranslocational ribosome conformation. This includes cycloheximide which is 
by far the most widely used inhibitor in ribosome profiling studies. However, in a posttranslocational 
conformation, when the A-site is unoccupied, eukaryotic ribosomes protect shorter (20-22 nucleotides) 
fragments and such fragments could become predominant if different inhibitors are used, such as anisomycin 
which inhibits the peptidyl transferase reaction (Lareau, Hite, Hogan, & Brown, 2014; C. C. Wu, Zinshteyn, 
Wehner, & Green, 2019). Scanning ribosomes also leave footprints of varying length depending on their specific 
conformations (Archer, Shirokikh, Beilharz, & Preiss, 2016). The heterogeneity of ribosome footprint lengths is 
further exacerbated by suboptimal nuclease digestion which may lead to over or under-digestion of footprints.  
 
The mapping of ribosome footprints to genomic sequences poses yet another problem, namely the mapping 
across exon-exon junctions. While this is an issue for most techniques involving the sequencing of RNA, it is 
particularly acute for ribosome profiling due to the short length of Ribo-Seq reads. This results in a systematic 
bias manifested in reduced unambiguous mappings at exon-exon junctions. This can be clearly seen in the 
GWIPS-viz browser multiregion view (Kiniry, Michel, & Baranov, 2018; Michel, Fox, et al., 2014). There are 
splice-aware aligners that are capable of mapping across exon-exon junctions, but the short length of ribosome 
footprints increases the chance of spurious mappings. One solution to this is to simply map ribosome footprints 
to transcriptome sequences, but this may not be desired when the accuracy of the transcriptome is in doubt or 
when its completeness is critical for downstream analysis, e.g. during the identification of novel translated 
regions.  
 
PCR amplification of footprints during cDNA library generation is also a potential problem. While this bias is 
pertinent to many techniques requiring PCR amplification, it could be particularly acute for certain Ribo-Seq 
applications which rely on the accuracy of local footprint density measurements such as detection of ribosome 
pauses or estimation of codon decoding rates. Recent studies have started to solve this issue with the use of 
random barcodes introduced to cDNA during the first round of RT PCR reaction. Such barcodes are termed 
Unique Molecular Identifiers (UMI) and have been used in many applications (Islam et al., 2014; Kivioja et al., 
2011). To our knowledge UMIs were first introduced to ribosome profiling by Miettinen and Björklund 
(Miettinen & Bjorklund, 2015) and now are part of standard ribosome profiling protocol (McGlincy & Ingolia, 
2017). During data processing, reads with the same sequence that also share the same UMI are considered to 
be PCR duplicates and counted as one. This can be done with specific software such as UMI tools (Smith, Heger, 
& Sudbery, 2017). As the use of UMIs in Ribo-Seq studies is still relatively recent, it is difficult to assess how 
much of a problem is PCR duplication, though some studies suggest that with sufficient input material and low 
number of PCR cycles, PCR duplicates constitute only a small fraction of sequencing reads in Ribo-Seq data 
(Lecanda et al., 2016; McGlincy & Ingolia, 2017).  
 
Accession information for software pipelines that can be used for data processing can be found in Table 1, 
however, certain software packages described later also contain pipelines for raw data processing and quality 
assessment. 
 
Global assessment of the data quality 
 
Assessing the quality of the data should be viewed as an obligatory requirement after initial pre-processing and 
mapping, as it saves wasted time trying to draw conclusions from poor quality data. Four relatively simple 
approaches are commonly utilised to achieve this; analysis of read length distributions, metagene profiles, a 
breakdown of regions to which Ribo-Seq reads align, and the triplet periodicity signal. Other more general 
approaches include assessing the correlation among replicates and the number of useful mapped reads. The 
implementation of these features have become “de facto” best practice and while they are indicative of quality 
they should not be viewed as definitive. 



 
A typical ribosome profiling dataset obtained from eukaryotic cells is characterized by a sharp distribution of 
lengths with a predominant length around 28-30 nucleotides. The variation depends on the nuclease digestion 
conditions and the inhibitors used (see above). The distribution is wider for ribosome profiling datasets obtained 
from bacterial cells due to the read length distribution associated with Shine-Dalgarno interactions (O'Connor et 
al., 2013). The read length distribution can be analysed with a number of tools, for example, FastQC (Andrews, 
2010), a general tool for assessing the sequence quality of reads obtained with high throughput sequencing. 
FastQC also can be used to evaluate the accuracy of base calls and to quantify positional nucleotide frequencies, 
GC content and over-represented sequences. These analyses can often uncover problematic features such as 
the frequent addition of untemplated nucleotides during reverse transcription, untrimmed adapter sequences, 
etc.  
 
Another important way to assess the quality of the datasets is with a metagene profile. The metagene profile 
provides the frequency of footprints relative to all annotated start and stop codons. There are several ways to 
generate metagene profiles. One is to simply count the frequency of all footprints (using a single footprint 
position, i.e. the 5’ or 3’ end) at a specific coordinate relative to the annotated start codons (or stops) of all 
transcripts. The procedure for building a metagene profile relative to start codons could be represented as 
D(i)=ΣK(dk(i+sk)), where D is a metagene footprint density, i is the coordinate of metagene profile, dk is a footprint 
density at a transcript k from transcriptome K with sk being the coordinate of the annotated start. A potential 
issue with such a representation is that highly expressed mRNAs could dramatically skew the metagene profile. 
To mitigate this issue, the frequency of footprints could be normalized across individual mRNAs, so that they 
have equal influence on the overall picture. It is also possible to normalize the CDS length and analyse the 
frequency of footprints of different lengths, producing a very informative translatome representation as has 
been done by Thomas Preiss and colleagues (Archer et al., 2016). A metagene profile of a high-quality ribosome 
profiling dataset is expected to have a sharp difference in footprint density at the start and stop codons, so that 
the density is higher downstream of starts and upstream of stops (Figure 2). For the generation of metagene 
profiles in bacteria it is important to exclude overlapping CDS regions as well as closely located CDS regions to 
avoid signal interference. In a similar vein, the generation of metagene profiles in higher eukaryotes 
necessitates selecting a single transcript isoform where multiple isoforms exist to avoid an artificial 
amplification of footprints counts by the number of splice isoforms. Ideally the translated transcript isoform(s) 
at a gene locus should be used. However, metagene profile generation is typically carried out early in the Ribo-
Seq data analysis process and isoform delineation, if required, performed further downstream. Hence heuristic 
approaches are often used such as selecting “principal isoforms” from the APPRIS database (Rodriguez et al., 
2018). Other heuristic approaches of a single representative transcript selection and their limitations are 
discussed later in relation to differential expression analysis. 
 
Triplet periodicity refers to the unequal distribution of read mappings relative to subcodon positions due to the 
triplet nature of the genetic code: elongating ribosomes move along mRNA in discrete steps of three 
nucleotides. The strength of the triplet periodicity can be assessed using the frequency with which a single 
footprint coordinate (e.g. 5’ or 3’ end) aligns to one of the three subcodon positions. See (Figure 3 (a,c)) for an 
example of a dataset with strong periodicity derived from (Calviello et al., 2016) and (Figure 3 (b,d)) for an 
example of a dataset with poor periodicity (Kirchner et al., 2017). Strong periodicity is a good indicator that the 
data is genuinely Ribo-Seq data and it can be used for the detection of translated reading frames (Michel et al., 
2012), although it is not definitive as even RNA-seq data may indicate some periodicity due to crossover of 
sequencing biases and GC3 skew. However, the periodicity is dependent on the uniformity of the digestion 
position relative to the ribosome’s decoding centre and thus varies depending on digestion conditions 
(Gerashchenko & Gladyshev, 2017) and specifics of the translation apparatus (see above). Thus, the absence of 
strong periodicity does not necessarily mean that the other useful features of the data are also poor. One way 
to express the periodicity quantitatively is to calculate the proportion of reads at the predominant subcodon 
position. Another is to assess the divergence from an equiprobable distribution using Shannon Entropy (-
Σpilog2(pi) where pi is the relative frequency of footprints at the i subcodon position). The periodicity can also be 
detected with Fourier (Calviello et al., 2016; Chun, Rodriguez, Todd, & Mills, 2016) and wavelets transformations 
(Xu et al., 2018a). Both metagene profiles and triplet periodicity visualization plots can be produced by many 
different tools such as RibostreamR (Perkins, Mazzoni-Putman, Stepanova, Alonso, & Heber, 2019), Ribo-SeQC 
(Calviello, Sydow, Harnett, & Ohler, 2019), RiboGalaxy (Michel et al., 2016), Plastid (Dunn & Weissman, 2016), 
riboseqR (Chung et al., 2015) and mQC (Verbruggen & Menschaert, 2018).   
 



 
Determining the position of the decoding center 
 
An offset is typically applied to the sequence of ribosome footprints to infer the position of the A- or P-site of 
the ribosome that produced it. This is an integer which is added to the coordinate of the 5' end of a mapped 
read or, alternatively subtracted from the coordinate of its 3' end. The metagene profiles are often used to 
determine the offset, assuming that the first sharp increase in footprint density corresponds to the footprints of 
the ribosomes at the start codons. Since the start codons are recognised at the P-site, the distance between this 
increase and the first nucleotide of the start codon is used as the offset for determining positions of the P-sites, 
see (Figure 2(a)) for a metagene profile made using data from (Calviello et al., 2016). To determine the positions 
of the A-sites, 3 nucleotides are added if the metagene profile is based on the 5’ ends or subtracted if it is based 
on the 3’ ends. Typically, when reads are not stratified by read lengths, 5’ end mappings produce a greater 
triplet periodicity in eukaryotic organisms, while 3’ ends produce greater periodicity in bacteria 
(Woolstenhulme, Guydosh, Green, & Buskirk, 2015). This is most likely due to the asymmetric variability of read 
lengths relative to the decoding centre which in case of bacteria could be attributed to Shine-Dalgarno 
interactions with anti-Shine-Dalgarno (O'Connor et al., 2013). Applying a 'static' offset regardless of read length 
is often sufficient to determine positions of A- or P-sites with an accuracy that is satisfactory for numerous Ribo-
Seq applications. However, the accurate determination of A or P-site positions is critical for certain applications 
such as the measurement of ribosome dwell times at specific codons (e.g. estimating codon decoding rates). 
The accuracy can be further improved with setting specific offsets for each read length, i.e. using separate 
metagene profiles made for each read length, see (Figure 2(c)) for a heatmap made using data from (Albert, 
Muzzey, Weissman, & Kruglyak, 2014). 
 
This approach can provide more accurate inferred A- or P-site locations than a static offset and thus improve 
the periodicity signal. However, in any given dataset there may be read lengths that are not abundant compared 
to the predominant read length. These low-abundance read lengths are difficult to correctly assign an offset to. 
 RiboWaltz (Lauria et al., 2018) aims to correct this by using offset values from abundant read lengths to infer 
the optimal offsets for less abundant read lengths. More sophisticated methods of offset determination have 
also been developed, (O'Connor, Andreev, & Baranov, 2016) proposed the determination of the offset that 
maximises the difference of the estimated dwell time between codons. This assumes that the A-site has a 
predominant role in influencing the decoding rate. Ribodeblur (Wang, McManus, & Kingsford, 2017), uses an 
expectation maximization-like procedure to obtain a more accurate estimate of A-sites. RiboproP (Zhao, Baez, 
Fredrick, & Bundschuh, 2018) is specifically designed to mitigate the sequence bias introduced from Ribo-Seq 
data generated with MNase , thus improving offsetting. See Table 1 for accession information to these tools. 
 
Translated ORF detection 
 
The detection of translated ORFs is an application for which ribosome profiling is uniquely well suited, 
particularly of short ORFs, whose products cannot be easily detected with proteomics techniques. Detecting 
translation using Ribo-Seq data is not straight forward as the presence of a footprint in a given genomic region 
does not necessarily mean that that region is being translated. In addition to the artefacts of mapping 
mentioned previously, not all sequences found in a ribosome profiling cDNA library derive from genuine 
ribosome protected fragments within the ribosome mRNA channel. In fact, most of the cDNA reads in any 
ribosome profiling library come from the ribosome itself as its rRNA gets digested during the procedure. 
Similarly fragments of other RNAs bound to the ribosome could contaminate the sample (fragments of tRNAs 
are also very abundant). Additional sources of contamination are fragments of RNAs from nucleoprotein 
complexes that could be co-isolated with ribosomal complexes. Thus, the difficult aspect of translated ORF 
detection is the discrimination of the signal obtained with genuine ribosome footprints from other RNA 
fragments. 
 
Nonetheless potentially translated regions can often be easily recognized upon manual visual inspection of the 
corresponding sequence region. Several existing resources provide such functionality such as Svist4get (Egorov 
et al., 2019) SmProt (Hao et al., 2018), GWIPS-Viz (Michel, Kiniry, O'Connor, Mullan, & Baranov, 2018), Trips-Viz 
(Kiniry, O'Connor, Michel, & Baranov, 2018)  HRPDViewer (W. S. Wu et al., 2018) and RiboViz (Carja, Xing, 
Wallace, Plotkin, & Shah, 2017). Many allow for viewing Ribo-Seq datasets from multiple studies simultaneously 
which can significantly boost the signal to noise ratio making translated regions easier to detect. Manual visual 



detection is a simple and straightforward method of translated ORF detection, particularly when the translated 
ORF is highly translated and does not overlap with others. However, when several ORFs overlap or are nested 
within each other, their detection based purely on the density of footprints is difficult due to the heterogeneity 
of the signal within an ORF. Manual visual detection in these cases can be improved when footprints are 
discriminated based on the phase of their triplet periodicity. This could be done either by generating separate 
subcodon profiles or using differential colors for the reads depending on their phase relative to subcodon 
positions as in RiboSeqR (Chung et al., 2015), RiboGalaxy (Michel et al., 2016) or Trips-Viz (Kiniry, O'Connor, et 
al., 2018), see Table 2. The main disadvantage of manual identification of translated ORFs is the low throughput. 
Manual inspection of even a bacterial genome is impractical. Thus, numerous tools have been developed to 
enable automatic high throughput detection of translated ORFs using Ribo-Seq data.  
 
They utilize different computational concepts including statistical tests as in Ribo-TISH (P. Zhang et al., 2017), 
linear regression as in ORF-RATER (Fields et al., 2015), robustness of triplet periodicity as in RiboTaper (Calviello 
et al., 2016) and RiboWave (Xu et al., 2018a), Hidden Markov models as in RiboHMM (Raj et al., 2016) as well as 
machine learning techniques, e. g. in REPARATION for bacterial genome reannotations (Ndah et al., 2017). An 
in-depth analysis of these approaches requires a separate dedicated review. Further we will summarize the 
most common features of translated ORFs that are often used by these tools to predict their translation.  
 
The similarity between the patterns of footprints in mRNA 5’ leaders and lincRNAs observed in early mammalian 
datasets provoked a suggestion that translation takes place in RNA transcripts (and their parts) that were 
normally considered non-coding (Chew et al., 2013; Ingolia, Lareau, & Weissman, 2011). In response to this 
claim Gutman et al (Guttman, Russell, Ingolia, Weissman, & Lander, 2013) developed Ribosome Release Score 
(RRS) which measures the drop of ribosome footprint density downstream of ORF stop codons and have shown 
that a high RRS score is a signature of annotated protein coding ORFs, but not of ORFs found in 5’ leaders and 
lincRNAs. While RRS provides a useful metric for estimating the accuracy of translation termination, its use as a 
sole signature of translation is peculiar since it assumes that no re-initiation or leaky scanning takes place, while 
both phenomena are well documented in eukaryotic cells, see (Hinnebusch, 2014; Hinnebusch, Ivanov, & 
Sonenberg, 2016; Shirokikh & Preiss, 2018) for reviews. Re-initiation often takes place after termination at short 
ORFs and a large fraction of ribosome scanning complexes bypass start codons in a poor initiation context. This 
leads to a complex organization of short overlapping translated ORFs in the beginning of RNA transcripts where 
high ribosome density is observed both upstream and downstream of stop codons leading to low RRS scores. 
While RRS can indeed be used as a signature of ORF translation, since isolated ORFs are expected to exhibit high 
RRS scores, it is important to be aware of RRS limitations in detecting overlapping or closely located translated 
ORFs. 
 
Indeed, a follow up study (Ingolia et al., 2014) developed another metric, fragment length organization similarity 
score (FLOSS) that is based on the similarity of length distributions of footprints across different transcripts and 
have shown that they can successfully discriminate RNA fragments mapped to genuine non-coding RNAs from 
those observed at translated ORFs providing further support to the initial claim that ribosomes do translate 
many short ORFs in 5’ leaders and RNA transcripts previously annotated as non-coding. Rfoot (Ji, 2018) uses the 
same principle of analysing read length distributions to identify non-ribosomal RNA footprints.  
In addition to a characteristic distribution of read lengths in translated ORFs another feature that is strongly 
associated with translation is triplet periodicity, however, the detection of triplet periodicity is difficult when the 
ORF length is short due to the high heterogeneity of the signal. To mitigate this issue Calviello et al. (Calviello et 
al., 2016) designed RiboTaper which is based on the multitaper approach (Thomson, 1982) developed for signal 
processing that performs a spectral analysis on a signal that has been transformed in a number of different ways 
(tapers). SPECtre (Chun et al., 2016) is another tool for detecting periodicity based on spectral analysis of 
aligned Ribo-Seq data developed around the same time. More recently RiboWave (Xu et al., 2018a) was 
developed, which makes use of wavelet transformation to denoise ribosome profiling signal, and claims to 
outperform previously developed tools. Changes in ribosome footprint density can also be used as signature of 
translation. In addition to a drop of ribosome density at the ends of ORFs, many datasets exhibit characteristic 
patterns with elevated ribosome density at the beginning and the end of ORFs and this information can be 
taken into account when scoring potentially translated ORFs as in RiboHMM  (Raj et al., 2016). The problem of 
this approach is that such changes in footprint density are often data specific and HMM emission probabilities 
obtained from the analysis of one dataset may not suit another dataset. 
 
There are certain variations of ribosome profiling methods that enrich ribosomes at the starts of translation 



initiation using specific translation inhibitors or their combinations (Gao et al., 2015; Ingolia et al., 2011).This 
information can also be utilized for the detection of translated ORFs as in Ribo-TISH (P. Zhang et al., 2017) and is 
especially useful for localisation of start codons at which ORF translation is initiated, as it is often more difficult 
than detection of translation itself since translation initiation often takes place at non-AUG codons (Ivanov, 
Firth, Michel, Atkins, & Baranov, 2011) especially when close to the 5’ ends  (Michel, Andreev, & Baranov, 2014) 
and sometimes multiple start codons are being used to initiate the same ORF as in PTEN (Tzani et al., 2016). 
Some tools such as Ribo-TISH (P. Zhang et al., 2017) and the recently developed DeepRibo (Clauwaert, 
Menschaert, & Waegeman, 2019) which uses neural networks to annotate bacterial genomes, are capable of 
utilising both elongating and initiating Ribo-Seq data.  
 
While many tools for predicting translated ORFs exist (see Table 3), their predictions differ considerably. 
Moreover, it is difficult to make specific recommendations on what software to use in the absence of 
independent benchmarking studies. Such benchmarking is very difficult to carry out due to a lack of gold 
standard sets of translated ORFs and adequate methodology orthogonal to ribosome profiling. A set of 
annotated protein coding genes cannot be used as a gold standard dataset since it is biased towards long ORFs 
coding for functional proteins. Although mass spectrometry analysis (Van Damme, Gawron, Van Criekinge, & 
Menschaert, 2014; Vanderperre et al., 2013) and phylogenetic analysis  (Andreev, O'Connor, Fahey, et al., 2015; 
Bazzini et al., 2014) are being used as orthogonal methodology, neither is truly adequate. Many of the short 
translated ORFs are unlikely to produce stable peptides that can be detected with mass spectrometry, though 
efforts have been made to combine proteomics and ribosome profiling evidence such as with Proteoformer 
(Crappe et al., 2015), Proteoformer 2 (Verbruggen et al., 2019) and OpenProt (Brunet, Brunelle, et al., 2018). 
Similarly, the signal obtained from phylogenetic conservation depends on the length of the ORF and the depth 
of its conservation. Translation of some ORFs may not affect fitness and would evolve neutrally. Also, a 
functional ORF was recently reported for which no evidence of evolutionary selection was found (C. Xie et al., 
2019). Therefore, in the absence of benchmarking standards and appropriate orthogonal methodology, the 
software described in this section can be used for exploratory analysis only. Despite these limitations ribosome 
profiling has been used to successfully confirm novel translated regions (Castelo-Szekely et al., 2019; Chugunova 
et al., 2019; Hardy et al., 2019) and even to discover a novel mechanism of translation regulation (Yordanova et 
al., 2018).  
 
Differential gene expression 
 
Ribosome profiling analysis is probably most frequently used for the characterization of differential gene 
expression as part of a time series or control/treatment group. It is assumed that slowly and rapidly decoded 
codons are distributed somewhat equally and therefore the relative frequency with which footprints are 
mapped to a specific ORF should be proportional to the levels of RNA bearing this ORF and efficiency of 
translation initiation at this ORF. In other words, the ribosome profiling signal is reflective of the total protein 
synthesis which accounts for the RNA levels (synthesis and degradation) and the rate of RNA translation. 
Ribosome profiling experiments usually are carried out in parallel with RNA-seq experiments that allow 
determination of RNA levels. When RNA levels do not change, but the ribosome profiling signal changes, it is 
reasonable to attribute these changes to changes in translation efficiencies. Note, however, that changes in 
local densities could be also caused by ribosome pausing. In this case, the induction of a ribosome pause at a 
specific location may be misinterpreted as increased translation. For example, Lobanov et al 2017 have noticed 
that Euplotes mRNAs containing sites of ribosomal frameshifting have a higher ratio of Ribo-Seq to RNA-seq 
reads than mRNAs translated without frameshifting. They attributed this difference to ribosome pauses rather 
than higher translation rates. To mitigate the influence of ribosome pauses on the assessment of differential 
translation, coordinates with the highest peaks of density could be excluded from the analysis as has been done 
in Andreev et al 2015. Yet another alternative would be to do a bootstrap sampling of densities from random 
CDS coordinates. Inconsistencies in differential gene expression analysis revealed by such a bootstrapping 
procedure would indicate a potential problem associated with ribosome pausing.  
 
Often attempts are made to measure differential translation even when RNA levels do change simply by dividing 
the number of ribosome footprints aligning to an ORF by the number of RNA-seq reads. Such a procedure has 
several problems. First, it results in ratios that, unlike countable data (footprints and RNA-seq reads), do not 
carry information on the statistical significance, e.g. the ratio of 2/4 equals the ratio 200/400. Second, the best 
fit for the distribution of such ratio values is believed to follow the Cauchy distribution that is hard to model 



since both its mean and variance are undefinable. Finally, Ola Larsson and colleagues pointed out that spurious 
correlation between such ratios and their components (e.g. RNA levels) is necessitated mathematically (Larsson, 
Sonenberg, & Nadon, 2010). 
 
In principle, differential translation could be defined as a miscorrelation between the RNA-seq and ribosome 
profiling signal and it can be detected with the tools designed for RNA-seq analysis such as DESeq2 (Love, 
Huber, & Anders, 2014) and EdgeR (Robinson, McCarthy, & Smyth, 2010) . Nonetheless, several standalone 
tools designed specifically for the characterization of differential translation efficiency from ribosome profiling 
data have been developed recently. Examples include babel (Olshen et al., 2013) , RiboDiff (Zhong et al., 2017), 
Riborex (W. Li, Wang, Uren, Penalva, & Smith, 2017), Xtail (Xiao, Zou, Liu, & Yang, 2016), RIVET (Ernlund, 
Schneider, & Ruggles, 2018) and Anota2Seq (Oertlin et al., 2019), see Table 4. Online databases such as Trips-Viz 
(Kiniry, O'Connor, et al., 2018) and TranslatomeDB (W. Liu, Xiang, Zheng, Jin, & Zhang, 2018) also provide 
functionalities for differential gene expression characterization with the former applying a simple Z-score 
transformation for this purpose (Andreev, O'Connor, Fahey, et al., 2015; Quackenbush, 2002). As the statistical 
frameworks of these tools differ, not surprisingly, the sets and the number of genes predicted by them as 
differentially regulated differ. The field is seemingly in need of objective and independent benchmarking. It is 
important to note that irrespective of the specific approaches used for the assessment of differential 
translation, the differences are relative and not absolute. Measurements of absolute changes in differential 
translation are not possible without spike-in controls allowing for the normalisation of the number of reads 
relative to the number of cells. Although attempts to introduce spike-in controls in ribosome profiling 
experiments have been made, e.g. Ingolia et al 2014, Andreev et al 2015, Iwasaki et al 2016, Popa et al 2016, 
and Gorochowski et al 2019, their suitability have not yet been rigorously assessed. 
 
Besides difficulties in evaluating differential expression based on two countable signals, the task is exacerbated 
by the existence and translation of multiple RNA isoforms due to alternative splicing and transcription initiation 
in complex eukaryotes, such as mammals (Blencowe, 2006). By mapping ribosome footprints across exon-exon 
junctions of alternatively spliced isoforms it has been shown that alternative isoforms could indeed be 
simultaneously translated (Weatheritt, Sterne-Weiler, & Blencowe, 2016). However, when more than one RNA 
isoform is translated in the same sample, it is extremely difficult to compare their relative translation. Even 
when a certain cell type expresses only one predominant isoform, it is not apparent how to choose the one that 
will be used as a reference. In practice several heuristics are commonly applied to deal with this problem, each 
of which could lead to specific artefacts. One method is to use the longest isoform or the isoform with the 
longest annotated coding region. The rationale is that even if such an isoform differs from what is present in the 
cell, reads derived from the shorter isoform would align to the longer one allowing for measurement of 
expression differences. However, this can be problematic in cases where the shorter isoforms have coding 
exons that are missing in longer isoforms. This problem could be solved with creating a “union” of all transcripts 
by collapsing the genomic co-ordinates of all possible exons. While this is a sensible approach for the analysis of 
differential gene expression at the “gene level”, it may not be appropriate for the analysis of translated features 
within mRNA, e.g. uORFs, because such a union may disrupt such uORFs. When it is necessary to choose only a 
single transcript, so called “principal isoforms” could be used which are curated in the APPRIS database 
(Rodriguez et al., 2018). However, 5’ leaders/3’trailers are not taken into account here, meaning multiple 
isoforms that differ only in their noncoding regions would all be annotated as the principal isoform. In an 
attempt to move away from these heuristic approaches and their shortcomings, software has been developed 
which takes Ribo-Seq data into account to do transcript isoform level quantification, i.e. Ribomap (Wang, 
McManus, & Kingsford, 2016), ORQAS (Reixachs-Solé, Ruiz-Orera, Alba, & Eyras, 2019) and SaTann (Calviello, 
Hirsekorn, & Ohler, 2019), see Table 5. However, these tools assign footprints to different isoforms under the 
premise that their protein synthesis input is directly proportional to their RNA levels, i.e. they are translated 
with the same efficiency. This, however, may not always be the case, especially when different start codons are 
used in different isoforms. The information that can be used within the Ribo-Seq data itself is reads that 
uniquely align to a specific isoform (unique exons and exon-exon junctions), however, because this is often 
within short regions of mRNAs, the number of footprints mapped to them could be sensitive to differences in 
ribosome dwell times at these locations. On top of that Ribo-Seq data could not be used to discriminate 
between alternative isoforms that differ in exons that are not translated. 
 
Pause detection 
 



Elongation rates varies as the ribosome traverses an mRNA and ribosomes could pause or stall at certain 
locations. Ribosome stalling can be caused by factors such as the secondary structure (Pop et al., 2014; 
Somogyi, Jenner, Brierley, & Inglis, 1993; Tholstrup, Oddershede, & Sorensen, 2012), the interaction of the 
nascent peptide with the ribosome peptide channel (Becker, Oh, Weissman, Kramer, & Bukau, 2013; Tenson & 
Ehrenberg, 2002) and certain combinations of codons (Woolstenhulme et al., 2015). Pause sites have been 
shown to play important roles in translation in areas such as protein folding (Fluman, Navon, Bibi, & Pilpel, 2014; 
Tsai et al., 2008), and regulation of protein synthesis (Ivanov et al., 2018; Kurian et al., 2011; Yordanova et al., 
2018). Pause sites are reflected in the Ribo-Seq data by high peaks relative to the surrounding region (Figure 
1b). Like with translated ORF detection, pauses in Ribo-Seq data can be identified with manual visual inspection 
of ribosome footprint density profiles of individual mRNAs, but genome or transcriptome scale detection of 
pauses requires dedicated software.  
 
PausePred (Kumari, Michel, & Baranov, 2018) is one such tool, available in both browser based and standalone 
versions that allows users to upload Ribo-Seq data and an optional annotation file. It then uses a sliding window 
approach to search for regions with high Ribo-Seq peaks relative to the background density. An accompanying 
tool, Rfeet then allows visualisation of the Ribo-Seq and (optionally) corresponding RNA-Seq data. Taking RNA-
Seq into consideration is an important step when detecting pauses in Ribo-Seq data since it controls for the 
peaks caused by alignment artefacts. For example, when ambiguous mapping is allowed, a short region in a 
lowly expressed gene that shares sequence similarity with a highly expressed gene will appear as a peak in Ribo-
Seq data. Similarly, if allowing only unambiguous alignments a short unique sequence surrounded by non-
unique sequence will appear as a peak. Finally, a region with low sequence complexity that has many reads 
mapped just by chance can also appear as a peak in Ribo-Seq data. In all of these cases RNA-Seq data will also 
exhibit a pause at the same location, but not so in the case of a genuine ribosomal pause.  

 
 
Prediction of footprint density 

Ribo-Seq profiles are noticeably non-uniform, arising in part from differences in ribosome decoding rates in 
addition to the presence of sequencing biases occurring due to substrate sequence specificity of the enzymes 
used in generation and sequencing of cDNA libraries. Global assessment of footprint density allows for the 
magnitude of these biases to be estimated. A number of tools (see Table 6) have been developed to assess 
footprint density, including RUST (Ribo-Seq Unit Step Transformation) which allows for the measurement of 
how much various sequence features consistently influence the density of footprints at specific positions 
relative to the decoding center of the ribosome, .i.e. RUST would not detect features that only influence a small 
subset of unique locations (O'Connor et al., 2016). Metafootprint plots generated with RUST, (Figure 4), 
visualize these dependencies, Figure 4a is an example of a dataset with low sequencing bias from (Eichhorn et 
al., 2014) and Figure 4b is an example of a dataset with high sequencing bias from (Reid, Xu, Chen, Yang, & Sun, 
2017). It is expected that the influence of the sequence at the decoding centre (i.e. A- and P-sites) should 
exceed that at the regions corresponding to read ends due to sequencing biases. Using the parameters of 
theses dependencies RUST can be used to predict ribosome profiling densities at the sequences for which no 
data exist with high accuracy. 
 
Riboshape (T. Y. Liu & Song, 2016) is another tool which aims to understand the sequence features responsible 
for Ribo-Seqs non-uniformity. It does this using kernel smoothing to predict sequence features and then 
predicts the “shape” of ribosome profiles. The authors find that footprint density in Saccharomyces cerevisiae 
can be predicted with high accuracy. More recently developed tools utilise the power of deep learning to 
predict footprint density, such as ROSE (RibosOme Stalling Estimator) (S. Zhang et al., 2017) which is trained on 
transcripts with high ribosome profiling density to predict locations of ribosome pauses on transcripts with little 
to no signal. Finally iXnos (Tunney et al., 2018), which also uses neural networks, also aims to predict footprint 
densities. The authors compared the performance of iXnos to RUST and Riboshape and have shown that it 
outperforms them both on a single test dataset. They also demonstrated the utility of iXnos for optimizing the 
coding sequence to increase the translation efficiency.  
 
 
Pipelines, libraries, environments and data resources 
 



In the absence of dedicated software, the early ribosome profiling analysis was carried out with tools developed 
for other high throughput sequencing applications and with ad hoc computer scripts. Over the past decade a 
number of different pipelines, computational environments and data resources have been developed. 
Researchers now have a considerable choice of existing freely available software to suit their needs, platform 
preferences and style. There is a large number of pipelines written in different languages for processing raw 
ribosome profiling data (see Table 1), e. g. the ruby based pipeline RiboPip (Stefan, 2016) and the R package 
systemPipeR (H. Backman TW & Girke, 2016) that provide full workflows for Ribo-Seq and RNA-Seq data analysis 
as well as other techniques such as CHIP-Seq in the latter package. Since raw data processing is not specific to 
ribosome profiling (outside of the above considerations) many packages and pipelines developed specifically for 
ribosome profiling take processed aligned reads in BAM file as input and provide only additional functionality. 
An example is a rich and extensible python library Plastid (Dunn & Weissman, 2016). Likewise R packages 
Riboprofiling (Popa et al., 2016) and RiboseqR (Chung et al., 2015) also take alignment files as input and enable 
multifunctional downstream analysis. 
 
The above software packages are operational through a command line and expect a certain familiarity with the 
Linux operating system. Moreover, setting up such software may require a certain effort and additional 
expertise for installing the software to a specific environment. The required skills and available time are often 
understandably lacking among wet lab researchers. The Galaxy Project (Afgan et al., 2018) offers a solution to 
this problem by providing a graphical web-based interface for data analysis, where workflows can be saved and 
rerun making the analysis reproducible. Software packages that do not have their own graphical interface could 
easily be integrated into Galaxy. Numerous specialized Galaxy servers have been created that provide the tools 
needed for a specific type of data. RiboGalaxy (Michel et al., 2016) is such an instance of Galaxy that provides 
several pipelines for the analysis of ribosome profiling data. RiboGalaxy is a part of the RiboSeq.Org collection 
(Figure 5). 

Like other sequencing data, ribosome profiling data can be found in public databases and many journals make 
deposition of the data to public archives a prerequisite for publication. The availability of the raw data, however, 
does not mean that these data can be easily utilised. Processing the raw data requires software, computational 
power, time and most importantly a certain level of familiarity with ribosome profiling data and technical issues 
described in this review. To democratize the data and to make it available to a large biomedical community that 
could benefit from it, it is important to provide access not only to raw data, but also to processed alignments. 
The first such database was GWIPS-Viz (for Genome Wide Information on Protein Synthesis Visualized) (Michel, 
Fox, et al., 2014). It provides genomic alignments of uniformly processed ribosome footprints and 
corresponding RNA-seq fragments. The alignments can be visualized either individually for specific datasets or 
as aggregates. To date GWIPS-Viz hosts Ribo-Seq data from 23 organisms (Michel et al., 2018). See (Kiniry, 
Michel, et al., 2018; Michel, Ahern, Donohue, & Baranov, 2015) for tutorials on how to use GWIPS-viz. Another 
large database of processed and aligned ribosome profiling data is RPFdb (Wang et al., 2018; S. Q. Xie et al., 
2016). While both GWIPS-viz and RPFdb are databases of genomic alignments of ribosome footprints, their 
functionality is markedly different, and their abilities overlap minimally. For example, RPFdb provides rich 
information on specific datasets such as raw counts and RPKM values for specific loci. Other databases such as 
the newly developed resource, Trips-Viz (for Transcriptome Information on Protein Synthesis Visualized) (Kiniry, 
O'Connor, et al., 2018) align data to a transcriptome as this has the advantage of eliminating the problem of 
mapping across exon-exon junctions. Trips-Viz is a web-based collaborative interactive environment for 
graphical computational analysis of publicly available Ribo-Seq data (although user generated data can also be 
uploaded). Several other databases have been developed that provide information derived from ribosome 
profiling analysis, see Table 2.  
 

Conclusion 

Over the past decade, many software modules, pipelines, visualization tools and data resources have been 
developed for Ribo-Seq analysis. As outlined in this review, more than one solution is now available for many 
tasks, from raw data processing to high-end applications such as the detection of translated ORFs. Subsequently 
researchers can choose tools to fit their specific computational backgrounds and styles. Nonetheless, despite 
the ample availability of resources, the field is far from saturation. We predict that it will continue to develop, 
perhaps, at an accelerated pace due to the following reasons. 



The ribosome profiling protocol itself continues to develop. Specific modifications of experimental procedures 
sometimes require development of new tools. Even more importantly, a number of issues in ribosome profiling 
data analysis remain unsolved, e.g. differential expression analysis of allelic variants. While parallel approaches 
exist for the same tasks (e.g. translated ORF detection, differential gene expression), the results obtained with 
these approaches often poorly converge. This is largely due to the lack of gold standards and reliable criteria for 
evaluating the performance of these tools. Development of benchmarking approaches is expected to lead to 
improvement of these tools by providing the means for their comparison and optimization.  

Recent developments in the characterization of mRNA translation, largely fuelled by ribosome profiling, further 
revealed the complexity of the translational landscapes of individual mRNAs, especially of high eukaryotes and 
specifically human mRNAs. Translation initiation could take place on many codons in the same mRNA (Fritsch et 
al., 2012; Lee et al., 2012) , leading to the production of proteoforms with different N-termini (Ivanov et al., 
2011; Menschaert et al., 2013). At the same time ribosomes reading through the stop codons lead to the 
generation of proteoforms with different C-termini (Jungreis et al., 2011; Loughran et al., 2018; Rajput, Pruitt, & 
Murphy, 2019; Schueren et al., 2014). On top of that a large proportion of mRNAs contain short translated ORFs 
(Andreev, O'Connor, Fahey, et al., 2015; Ji, Song, Regev, & Struhl, 2015; Johnstone, Bazzini, & Giraldez, 2016),  
some of which encoding functional proteins as in the human MIEF1 mRNA (Andreev, O'Connor, Fahey, et al., 
2015; Brown et al., 2017; Delcourt et al., 2018).  The currently used data structures for representation of RNA 
transcripts based on a single reference transcript with a single CDS are not suited for the representation of this 
complexity (Brunet, Levesque, Hunting, Cohen, & Roucou, 2018). Thus, we envision the development of new, 
more adequate, data structures. The computational tools will need to adapt subsequently to these data 
structures. 

Ribosome profiling allows for the quantitative assessment of only a single aspect of cellular activity, translation 
of its mRNAs. Often taking advantage of these data requires integration with other types of data (transcription 
initiation sites mapping, epitranscriptomics, mass spectrometry, etc.), and hence the tools for ribosome profiling 
data analysis need to provide such functionality either directly or through interoperability with the 
computational tools developed for the analysis of the data obtained with other techniques.  

Yet another challenge is posed by the changes occurring in the analysis of big biodata in general. The volume of 
data in the Sequencing Data Archive doubles every 10-20 months (Langmead & Nellore, 2018) which is faster 
than the growth of computational power. While ribosome profiling data currently represents only a microscopic 
fraction of these data, it is unlikely that the volume of ribosome profiling data will be growing at a slower pace. 
Thus, the computational efficiency of the algorithms will become critical. As the data volumes increase their 
physical transfer between servers is becoming increasingly less practical. This necessitates a paradigm shift from 
data-to-tools to the tools-to-data which requires the development of dedicated cloud infrastructure (Langmead 
& Nellore, 2018). In the future tools will need to be adapted for these new environments. 

Figures and Tables. 

Table 1. Software environments for data processing, pipelines for quality assessment, offset 
detection and miscellaneous software. 



Name Notes URL Ref. 

mQc 
Quality assessment, part 
of PROTEOFORMER 
pipeline 

https://github.com/Biobix/
mQC 

Verbruggen & Menschaert, 
2018) 

Plastid Python based library https://plastid.readthedocs.
io/en/latest/ 

(Dunn & Weissman, 2016) 

Rfoot 
Inference of RNA-
binding protein sites  

https://github.com/zhejilab/
Rfoot 

(Ji, 2018) 

Ribodeblur Offset determination 
https://github.com/Kingsfor
d-Group/ribodeblur 

(Wang et al., 2017) 

RiboGalaxy 
Galaxy based 
environment 

https://ribogalaxy.ucc.ie/ (Michel et al., 2016) 

Ribopip 
Ruby based processing 
pipeline 

https://github.com/stepf/Ri
boPip 

(Stefan, 2016) 

Riboprofiling 
R based processing 
pipeline 

http://bioconductor.org/pac
kages/release/bioc/html/Rib
oProfiling.html 

(Popa et al., 2016) 

RiboProp Offset determination 
http://bioserv.mps.ohio-
state.edu/RiboProP/ 

(Zhao et al., 2018) 

RiboseqR 
R based processing 
pipeline 

http://bioconductor.org/pac
kages/release/bioc/html/rib
oSeqR.html 

(Chung et al., 2015) 

RibostreamR  
Web based analysis of 
user generated Ribo-Seq 
data 

https://github.com/pjperki2
/riboStreamR 

(Perkins, Mazzoni-Putman, 
Stepanova, Alonso, & Heber, 
2019), 

RiboWaltz Offset determination 
https://github.com/LabTran
slationalArchitectomics/ribo
Waltz 

(Lauria et al., 2018) 

Ribo-seQC Quality assessment https://github.com/ohlerlab
/RiboseQC 

(Calviello, Sydow, et al., 2019) 

RRS 

measures drop-off of 
ribosome footprint 
density at the end of 
ORFs  

https://rdrr.io/github/Joking
Hero/ORFik/man/ribosome
ReleaseScore.html 

(Guttman et al., 2013) 

SystemPipeR 
R based processing 
pipeline 

https://bioconductor.org/pa
ckages/release/bioc/html/sy
stemPipeR.html 

(H. Backman TW & Girke, 2016) 

Trips-Viz 

Web based analysis of 
public and user 
generated ribosome 
profiling data  

https://trips.ucc.ie (Kiniry, O'Connor, et al., 2018) 

https://github.com/Biobix/mQC
https://github.com/Biobix/mQC
https://github.com/Biobix/mQC
https://github.com/Biobix/mQC
https://github.com/zhejilab/Rfoot
https://github.com/zhejilab/Rfoot
https://github.com/zhejilab/Rfoot
https://github.com/zhejilab/Rfoot
https://github.com/Kingsford-Group/ribodeblur
https://github.com/Kingsford-Group/ribodeblur
https://github.com/Kingsford-Group/ribodeblur
https://github.com/Kingsford-Group/ribodeblur
https://github.com/stepf/RiboPip
https://github.com/stepf/RiboPip
https://github.com/stepf/RiboPip
https://github.com/stepf/RiboPip
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
https://github.com/pjperki2/riboStreamR
https://github.com/pjperki2/riboStreamR
https://github.com/pjperki2/riboStreamR
https://github.com/pjperki2/riboStreamR
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/ohlerlab/RiboseQC
https://github.com/ohlerlab/RiboseQC
https://github.com/ohlerlab/RiboseQC
https://github.com/ohlerlab/RiboseQC
https://trips.ucc.ie/
https://trips.ucc.ie/


Table 2. Data resources and visualization environments. 

 

GWIPS-viz 
Genome browser for 
visualization of Ribo-Seq 
data aligned to genomes 

https://gwips.ucc.ie (Michel et al., 2014; Michel et al, 
2015;  Michel et al., 2018; Kiniry 
et al 2018) 

HRPDViewer A resource for 
visualization of Ribo-Seq 
data aligned to 
transcriptomes 

http://cosbi4.ee.ncku.edu.t
w/HRPDviewer/ 

(W. S. Wu et al., 2018) 

Openprot Database and viewer for 
exploration of Ribo-Seq 
and mass-spec data 
supporting translation of 
non-annotated ORFs 

https://openprot.org/ (Brunet, Brunelle, et al., 2018) 

RiboSeqDB Repository of human 
and mouse ribosome 
profiling data 

https://micro.biouml.org/bi
oumlweb/ 

(W. Liu et al., 2018) 

RiboViz Online tool for 
visualization of publicly 
available Ribo-Seq data 

https://riboviz.org/ 
(Carja et al., 2017) 

RPFdb Database of ribosome 
profiling datasets rich in 
metainformation and 
their genomic 
alignments 

http://sysbio.gzzoc.com/rpf
db/ 

(S. Q. Xie et al., 2016) 

sORFs.org Database of short ORFs 
whose translation is 
supported with Ribo-Seq 
data 

http://sorfs.org 

http://sorfs.org 

svist4get Command-line 
visualization tool  

https://bitbucket.org/artego
rov/svist4get/ 

(Egorov et al., 2019) 

TranslatomeDB On-line resource for 
visualization of public 
and user generated data 

http://translatomedb.net/ 
(W. Liu, Xiang, Zheng, Jin, & 
Zhang, 2018) 



Trips-Viz On-line environment for 
graphical exploration of 
public and user 
generated ribosome 
profiling data aligned to 
transcriptomes. 

https://trips.ucc.ie (Kiniry, O'Connor, et al., 2018) 

 

Table 3. Software tools for automatic detection of translated ORFs. 

Name Notes URL Ref. 

DeepRibo 
Detection of translated 
ORFs in bacterial 
genomes 

https://github.com/Biobix/D
eepRibo 

(Clauwaert, Menschaert, & 
Waegeman, 2019) 

orfRater 
Detection of translated 
ORFs based on linear 
regression 

https://github.com/alexfield
s/ORF-RATER 

(Fields et al., 2015) 
 

ORFScore 
Scoring translated ORFs 
based on triplet 
periodicity 

https://rdrr.io/bioc/ORFik/
man/orfScore.html 

(Bazzini et al., 2014) 
 

PreTis 
Detection of translation 
initiation starts based on 
linear regression 

http://service.bioinformatik.
uni-saarland.de/pretis/ 

(Reuter, Biehl, Koch, & Helms, 
2016) 

PRICE 
Detection of translated 
ORFs using EM 
algorithm 

https://github.com/erhard-
lab/price 

(Erhard et al., 2018) 
 

Proteoformer 
Detection of translated 
ORFs with support from 
mass-spec data 

https://github.com/Biobix/p
roteoformer 

(Crappe et al., 2015; Verbruggen 
et al., 2019) 

REPARATION 
Detection of translated 
ORFs in bacterial 
genomes 

https://github.com/Biobix/R
EPARATION (Ndah et al., 2017) 

Ribocode 
Detection of translated 
ORFs based on triplet 
periodicity 

https://github.com/xryangla
b/RiboCode 

(Xiao et al., 2018) 

riboHMM 
HMM based detection 
of translated ORFs 

https://github.com/rajanil/ri
boHMM 

(Raj et al., 2016) 

RibORF 
SVM based identification 
of translated ORFs 

https://github.com/zhejilab/
RibORF 

(Ji et al., 2015) 

Ribosome 
profiling analysis 
framework 

Detection of translated 
ORFs based on triplet 
periodicity 

https://github.com/LUMC/ri
bosome-profiling-analysis-
framework 

(de Klerk et al., 2015) 

RiboTaper 

Detection of translated 
ORFs based on spectral 
analysis of Ribo-Seq 
signal using multitaper 

https://ohlerlab.mdc-
berlin.de/software/RiboTap
er_126/ 

(Calviello et al., 2016) 

Ribo-TISH 

Is able to use Ribo-Seq 
data enriched at starts 
of initiation in addition 
to regular Ribo-Seq. 

https://github.com/zhpn102
4/ribotish 

(P. Zhang et al., 2017) 

RiboWave 

Detection of translated 
ORFs based on spectral 
analysis of Ribo-Seq 
signal with Wavelet 

https://github.com/lulab/Ri
bowave 

(Xu et al., 2018b) 



transformation 

Rp-Bp 
Bayesian approach for 
detecting translated 
ORFs. 

https://github.com/dieteric
h-lab/rp-bp (Malone et al., 2017) 

SPECtre 

Detection of translated 
ORFs based on spectral 
analysis of Ribo-Seq 
signal 

https://github.com/mills-
lab/spectre 

(Chun et al., 2016) 

uORF-seqr 
Regression based 
detection of translated 
ORFs. 

https://github.com/pspealm
an/uorfseqr 

(Spealman et al., 2018) 

 

Table 4. Software for the analysis of differential translation. 

Name URL Ref. 
Anota2Seq https://bioconductor.org/packages/release/bioc/ht

ml/anota2seq.html 
(Oertlin et al., 2019) 

Babel https://cran.r-
project.org/web/packages/babel/index.html 

(Olshen et al., 2013) 

Ribodiff https://github.com/ratschlab/RiboDiff (P. Zhang et al., 2017) 
Riborex https://github.com/smithlabcode/riborex (W. Li et al., 2017) 
Rivet https://ruggleslab.github.io/rivet/ (Ernlund et al., 2018) 
Xtail https://github.com/xryanglab/xtail (Xiao et al., 2016) 

 

Table 5. Software for the analysis of specific isoforms. 

Name URL Ref. 
Orqas http://www.cs.cmu.edu/~ckingsf/software/riboma

p/ 
(Reixachs-Solé et al., 2019) 

Ribomap https://github.com/lcalviell/SaTAnn (Wang, McManus, & Kingsford, 
2016) 

SaTann https://github.com/comprna/ORQAS (Calviello, Hirsekorn, et al., 2019) 

 

 

 

Table 6. Software for the analysis of local footprint densities. 

Name Notes URL Ref. 

iXnos 

Neural network based 
model of local densities. 
Can be used to predict 
local densities and for 
sequence optimization 
for increased expression 

https://github.com/lareaula
b/iXnos 

(Tunney et al., 2018) 

Pausepred Detection of local peaks https://pausepred.ucc.ie/ (Kumari et al., 2018) 
Riboshape A kernel-smoothing 

model enabling 
prediction of local 
densities.  

https://sourceforge.net/proj
ects/riboshape/ 

(T. Y. Liu & Song, 2016) 
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Figure Legends: 

 

FIGURE 1| The principle of ribosome profiling. (a) The ribosome protects mRNA from nuclease 
digestion. The sequences of the protected fragments (footprints) constitute ribosome profiling data. 
(b) A schematic example of a ribosome footprints density plot (ribosome profile). It shows positions 
of ribosome decoding centres (brown columns) inferred from sequences of ribosome footprints 
along an RNA transcript (green bar). The height of the columns reflects the number of footprints 
matching the corresponding mRNA position. The density suggests the efficient translation of an 
upstream Open Reading Frame (uORF) overlapping the annotated protein coding region (CDS) and 
the presence of a ribosome pause site in the CDS. 



 

FIGURE 2| Examples of metagene profiles. (a) The profile was created by aggregating Ribo-Seq 
counts from a region surrounding the annotated start codon (zero coordinate) of every gene for a 
single read length. This example shows the positions of footprint 5’ ends, but 3’ ends may also be 
used. Since initiation is slower than elongation, a peak of footprint density is expected at the start 
codon. Thus the location of the 5’ end peak density indicates the distance between footprints 5’ 
ends and ribosome P-site codon where tRNA-Meti is being incorporated (offset). (b) Same as (a) but 
relative to annotated stop codons (zero coordinate). A drop of footprint density is observed 
upstream of the stop. (c) A start codon metagene profile constructed as a heatmap has the 
advantage of displaying multiple read lengths simultaneously. It can be seen that the distance 
between 5’ ends and P-site codons vary depending on read lengths suggesting that different offsets 
should be applied to the reads depending on their length.  



 

 

FIGURE 3| Assessment of ribosome profiling data quality (a, b) Triplet periodicity plots that show the 
number of footprints aligning to one of the three subcodon positions (differentially colored) for each 
subcodon position. (a) An example of good quality data showing strong periodicity and desirable 
read length distribution. (b) An example of data showing no triplet periodicity and an unexpected 
read length distribution. (c, d) Sub-codon ribosome profile of an ENSEMBL transcript expressed from 
the human B2M locus visualized with Trips-Viz. The ORF plot at the bottom shows three reading 
frames (differentially colored) with white dashes for AUG codons and black dashes for stops. The 
annotated CDS is demarked by the vertical black lines in the main plot and corresponds to the 
second reading frame. The footprint density is shown separately depending on the sub-codon phase 
of the aligned reads as curves that are colored to match the color of the supported reading frames. 
The reading frame detection is possible in (c), but not in (d) which correspond to (a) and (b) 
respectively. In addition in (c) the vast majority of reads map entirely within the CDS, while in (d) 
there are reads which map to the 3’ trailer region that are unlikely to be derived from translating 
ribosomes. For the source of the data see text. 



 

FIGURE 4| RUST metafootprint profiles that can be used for the assessment of sequencing biases 
that are manifested by high relative entropy (measured as Kullback-Leibler divergence) at the ends 
of footprints. The decoding center of the ribosome (A-site) is denoted by the vertical red line. The 
blue line represents Kullback-Leibler divergence at an individual codon level. The green line 
represents Kullback-Leibler divergence for adjacent codons. In the absence of sequencing biases the 
Kullback-Leibler divergence is expected to be the highest at the decoding center. (a) A dataset with 
low sequencing bias. (b) A dataset with high sequencing bias at the 5’ ends of footprints. For the 
data sources see the text.  



 

 

FIGURE 5| The RiboSeq.Org web portal serves as an entry point to GWIPS-viz, Trips-Viz and 
RiboGalaxy. GWIPS-viz provides visualizations of publicly available ribosome footprints mapped to 
several genomes. Trips-Viz offers rich functionality for the analysis of public and user generated data 
aligned to transcriptomes. RiboGalaxy provides cross-platform graphical interface for the tools 
initially written as command line software. 


