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Abstract

Abstract

This thesis focuses on matching under ordinal preferences, i.e. problems where agents
may be required to list other agents that they find acceptable in order of preference. In
particular, we focus on two main cases: the popular matching and the kidney exchange
problem. These problems are important in practice and in this thesis we develop novel
algorithms and techniques to solve them as combinatorial optimisation problems. The
first part of the thesis focuses on one-sided matching on a bipartite graph, specifically
the popular matching. When the participants express their preferences in a cardinal or-
der, the most common desire is to maximise a utility function, for example finding the
maximum weight or minimum cost matching. If preferences are ordinal in nature, one
might want to guarantee that no two applicants are inclined to form a coalition in order
to maximise their welfare, thus finding a stable matching is needed. Therefore, negoti-
ating the size and the optimality of the matching with respect to agents’ preferences is
a problem that occurs naturally. Popularity is a concept that offers an attractive trade-
off between these two notions. In short, a popular matching is a matching in which the
mayjority of the participants will decide on a matching M. In particular, we examine the
popular matching in the context of constraint programming using global constraints.
We discuss the possibility to find a popular matching even for the instances that does

not admit one.

The second part of the thesis focuses on non-bipartite graphs, i.e. the kidney exchange
problem, a recent innovation that matches patients in need of a kidney to willing liv-
ing donors. Kidney transplant is the most effective treatment to cure end-stage renal
disease, affecting one in every thousand European citizens. Chronic kidney disease
is a life threatening health issue that affects millions of people worldwide. Motivated
by the observation that the kidney exchange is inherently a stochastic online problem,
first, we give a stochastic online method. This methos is more general and provides
an expected value estimation that is correct within the limit of sampling errors. Sec-
ond, we show that by taking into consideration a probabilistic model of future arrivals
and drop-offs, we can get reduce sampling scenarios, and we can even construct a
sampling-free probabilistic model, called the Abstract Exchange Graph (AEG). A fi-
nal contribution of this thesis is related to finding robust solutions when uncertainty
occurs. Uncertainty is inherent to most real world problems. For instance in the case
of Kidney Exchange Problem (KEP), if a pair pools out from the solution we need to
find a repair solution quickly to limit the impact to other pairs. We propose a method
that exploits a Logic-Based Benders Decomposition to find super solutions to an opti-

misation problem.
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Sommario

Sommario

L obiettivo di questa tesi ¢ quello di studiare problemi di matching (accoppiamento)
con preferenze ordinali, i.e. problemi dove ¢ necessario che gli agenti esprimono le

loro preferenze in una lista ordinata.

La prima parte della tesi si concentra su problemi di matching unilaterale in un grafo
bipartito: il popular matching. Se i partecipanti esprimono le loro preferenze in ordine
cardinale, 1l modo pil comune ¢ di massimizzare una funzione di utilita, per esempio
trovare il peso massimo oppure il costo minimo del matching. Se le preferenze sono
fornite in modo ordinale, si dovrebbe garantire che nessuno dei due partecipanti creasse
una coalizione in modo da massimizzare il proprio welfare, quindi trovare un matching
stabile ¢ necessario. Quindi negoziare il matching tra la dimensione e ottimalita con
rispetto alle preferenze degli agenti & un problema che si verifica in modo naturale.
Il concetto di popolarita (popularity) offre un compromesso di queste due nozioni.
Brevemente, un matching popolare ¢ un matching in cui la maggioranza degli agenti
scelgono il matching M. In particolare, esaminiamo il matching popolare nel contesto
di constraint programming (programmazione a vincoli) facendo uso dei vincoli globali.
Discutiamo la possibilitd di trovare un matching popolare anche per le istanze che non

ne ammettono una.

La seconda parte della tesi si concentra su un grafo non-bipartito, i.e. lo scambio dei
reni - kidney exchange problem (KEP), un’innovazione recente che accoppia i pazienti
bisognosi di un rene a donatori viventi disponibili. Il trapianto dei reni ¢ il trattamento
piu efficace per chi soffre di un’insufficienza renale all’ultimo stadio, che colpisce una
persone su mille nei paesi europei. Molto spesso un paziente bisognoso di un trapianto
ha un amico o familiare che sono disposti a donare il loro rene. Tuttavia, a causa delle
differenze del tipo di sangue e la presenza di certe proteine nel sangue, il donatore
potenziale potrebbe risultare incompatibile con il paziente. Quindi un trapianto non
puo essere effettuato, oppure se si decide di procedere comunque il paziente sareb-
be ad alto rischio di respingere il rene del donatore. La malattia renale cronica ¢ un
gravissima problema per la salute che colpisce milioni di persone al mondo. Motivati
dall’osservazione che lo scambio dei reni ¢ un problema online intrinsicamente sto-
castica, Per primo, diamo un metodo stocastico online che & pili generale e forniamo
una stima del valore atteso che ¢ corretta entro i limiti degli errori di campionamento.
Secondo, facciamo vedere che prendendo in considerazione un modello probabilisti-
co di nuovi arrivi e uscite, ci liberiamo degli scenari e possiamo costruire un modello

probabilistico senza campionamento, chiamato Abstract Kidney Exchange (AEG). Un
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Sommario

contributo finale di questa tesi e’ relativo a trovare soluzioni robuste considerando delle
incertezze. Proponiamo un metodo sfruttando la Logic Based Benders Decomposition
per trovare le super soluzioni di un problema di ottimizzazione. Il master si occupa
del problema originale, mentre i sottoproblemi cercano di trovare soluzioni da riparare

ogni perturbanza.
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Chapter 1

Introduction

"In God we trust, all others must bring data." W. Edwards Deming

1.1 Motivation

Matching problems involving preferences are motivated in practice in widespread
applications, such as the assignment of children to schools, junior doctors to
hospitals, kidney transplant patients to donors and so on [Manlove et al., 2007,
Kavitha and Nasre, 2009, Irving, 2007a, Gardenfors, 1975, Bir6, 2008]. Given the
applications of matching problems, and the implications of a participant’s alloca-
tion in a matching for their quality of life, it is of paramount importance that the
matching algorithms that drive such applications should optimise in some sense
the satisfaction of the participants according to their preferences [Manlove, 2013,
Gale and Shapley, 1962]. Since execution time is a very important requirement in prac-
tice, a lot of the research effort has gone into developing efficient algorithms for solv-
ing these matching problems [Hebrard et al., 2004b, Holland and O’Sullivan, 2005a,
Hebrard and Walsh, 2005]. These factors have led to a lot of research activity in the

area.

This thesis investigates two important variants of matching theory, and shows how
Constraint Programming and Operational Research can be applied to combinatorial
optimisation problems. These problems are growing in importance and we address the

design, analysis and real-world applications of matching problems of indivisible goods,



Introduction 1.2 Matching Under Ordinal Preferences

such as the popular matching problem and the kidney exchange problem. We focus
on the creation of new mathematical models for these problems that more accurately
reflects the reality, and the development of optimal models that can be deployed in

practice.

1.2 Matching Under Ordinal Preferences

Matching problems involve the assignment of a set (or sets) of agents to one another,
subject to some criteria. In many cases the agents form two disjoint sets, and we seek

to assign the agents in one set to those in the other.

We focus on the case where agents have ordinal preferences over a subset of the others,
meaning that there is a notion of first choice, second choice, and so on. For example a
student who is applying for admission to university might rank in order of preference
a small list of available universities, i.e. four universities. Similarly, the universities

might form a ranking of their applicants according to some academic criteria.
Matching problems with preferences can be classified into three major groups:

A. bipartite matching problems with two-sided preferences, where the agents can
be partitioned into two disjoint sets, and each member of one set ranks a sub-
set of the members of the other set in order of preference. Example appli-
cations include assigning junior doctors to hospitals [NRMP, 2019, car, 2019],
pupils to schools [Abdulkadiroglu et al., 2005] and school- leavers to universi-
ties [Bird, 2008].

B. bipartite matching problems with one-sided preferences consist of partitioning
the agents into two disjoint sets, but each member of only one set ranks a subset
of the members of the other set in order of preference. Example applications in-
clude campus housing allocation problem [Chen and Snmez, 2002] , DVD rental
markets [Abraham et al., 2006] and assigning reviewers to conference papers
[Garg et al., 2010].

C. non-bipartite matching problems with preferences, where the agents form a sin-
gle homogeneous set, and each agent ranks a subset of the others in order of
preference. Example applications include stable roommates problem, form-
ing pairs of agents for chess tournaments [Kujansuu et al., 1999], finding kid-
ney exchanges involving incompatible patient—-donor pairs [Roth et al., 2004,
Wallis et al., 2011, Dickerson et al., 2012b].
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For bipartite matching problems with preferences, an extensively studied problem is
the classical Stable Marriage Problem (SM)[Gale and Shapley, 1962], in which the
participants consist of two disjoint sets of agents, say n men and n women, each of
whom ranks all members of the opposite sex in order of preference and a matching is
just a one-one mapping between the two sets. Note that we henceforth use the term
agents to refer to those participants in matching problems who have preference lists.

Hence, the agents in a SM instance are the men and women.

In [Gale and Shapley, 1962] the authors showed that, given an SM instance of size n,
a stable matching can always be found in polynomial-time, and moreover they also
provided an O(n?) algorithm to find such a matching. The algorithm involves a se-
quence of marriage proposals made by the members of one sex to the members of the
other. Each proposal is followed by either an acceptance or a rejection. Proposals are
accepted if the person being proposed to is either unmatched or prefers the proposer
to his/her current partner, in which case his/her current partner is rejected in favour of
the new proposal. Proposals are rejected if the person being proposed to already has
a partner he/she prefers to the proposer. The algorithm can be executed with the men
doing the proposing (man-oriented) or with the women doing the proposing (woman-
oriented). Agents of the proposing set start with the most preferred agents on their
preference lists and make proposals until they are accepted. If they ever get rejected
due to their partner getting a better proposal from someone else, they continue by mak-
ing a proposal to the next agent on their preference list. The algorithm terminates when

all parties involved are matched.

Men’s preferences: Women’s preferences:
miy Wi, Wy, Ws, Wy Wi My, M3, Mo, 1M
my : Wo, W1, W4, W3 W M3, M4, 1,12
ms : W3, Wyq, W1, W2 ws Mo, M1, 14,13
my @ Wy, W3, W2, W1 Wy - M1, M2, M3, T4

Figure 1.1: An instance of SM

For example in Figure 1.1, we have a set of 4 men and a set of 4 women, seeking for a
match, and there are 10 stable matchings [Knuth, 1976]:
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My = {(m1,w1), (M2, w2), (M3, w3), (M4, wa) },
My = {(m, w2), (M2, wi), (M3, w3), (M4, wa)},
Mz = {(ma, w1), (M2, w2), (M3, ws), (M4, ws)},
My = {(ma, ws), (M2, wr), (M3, wa), (M4, ws)},
Ms = {(m1, ws), (M2, wa), (M3, wr), (M4, ws)},
Mg = {(m1,ws3), (M2, w1), (M3, ws), (M4, w2)},
Mz = {(m1,ws3), (M2, ws), (M3, w1), (M4, w2)},
Mg = {(m1,ws3), (M2, wa), (M3, w2), (M4, w1)},
My = {(m, ws), (M2, ws), (ms, wr), (M4, wa)},
My = {(mh w4), (mz, w3), (m37 wz), (m4, wl)}

Alternatively to SM, preference lists for bipartite matching problems can be one-
sided. An example of this type of problem is the House Allocation problem (HA)
[Abraham et al., 2004], where an attempt is made to allocate a set H of objects (e.g.,
houses, posts etc) using a one-one mapping among a set A of agents, each of whom

ranks a subset of H in order of preference.

In addition to bipartite matching problems, non-bipartite matching problems
are also widely studied. In the classical Stable Roommates problem (SR)
[Gale and Shapley, 1962, Irving, 1985], the participants consist of a single set of agents
each of whom ranks the others in order of preference, and a matching is a partition of

the set into disjoint pairs of roommates.

1.3 The Popular Matching Problem

In the one sided bipartite graph, each applicant has an ordinal preference list, ranking
the subset of items in order of his preference (first choice, second choice, and so on).
We seek to match applicants to items in which no applicant is matched with more than
one item, and no item is matched with more than one applicant. We will consider that
the preference lists are not strictly ordered, for example an applicant might have two

items as first choice in his preference list (a tie).

Consider the example below with three applicants and three items, and the respective

preference list:
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ap:pr P2 pPs3
az.p1 P2 pP3
az:pir P2 P3

Figure 1.2: An instance of popular matching

Let M and M’ be two arbitrary matchings in a given instance I and let P(M,M’) denote
the set of agents who prefer M to M’. We say that M is more popular than M’ if
IPIM,M")I > [P(M’,M)|, i.e. the number of agents who prefer M to M’ is greater than the
number of agents who prefer M’ to M. A matching M in I is popular if there is no other
matching M’ in I that is more popular than M [Abraham et al., 2007a]. In Figure 1.2,

consider the three symmetrical matchings:

M, = {(a1,p1), (azapz), (CL37]93>}
M, = {(a1,ps), (az,p1), (as,p2)}
Ms = {(a1,p2), (az,p3), (az, p1)}

It is easy to verify that none of these matchings is popular, since M; < My, My < Ms,
and M3 < M;. In fact, this instance admits no popular matching, the problem being
that the more popular than relation is not acyclic. The popular matching problem is to
determine if a given instance admits a popular matching and to find such a matching,

if one exists.

Gardenfors [Gardenfors, 1975] first introduced the notion of a popular matching,
the author referres to this concept as a majority assignment in the context of vot-
ing theory. We remark that the more popular concept can be traced back even fur-
ther to the Condorcet voting protocol. Popular matchings were then considered by
[Sng and Manlove, 2010] in the context of the House Allocation (HA) problem. They
showed that popular matchings need not exist, given an instance of HA, and also noted
that popular matchings can have different cardinalities. In [Abraham et al., 2007a] au-
thors described an O(n + m) algorithm for finding a maximum cardinality popular
matching (henceforth a maximum popular matching) if one exists, given an instance
of HA. They also described an O(y/nm) counterpart for the House Allocation with
ties (HAT) problem.

There exist in the literature a number of efficient algorithms for solving popular match-
ing problems, e.g. [Abraham et al., 2007b]. In [Huang and Kavitha, 2013, Bir6, 2008]
the authors design the popular matching for the stable marriage problem and the room-

mates problem. In [Acharyya et al., 2014] they count the number of popular matchings
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in the House Allocation Problem. In [Mestre, 2006] the author studied the weighted
version of popular matching problem. However, in real world situations, additional
constraints are often needed. In many cases, the new problem is intractable and the

original algorithms become useless.

1.4 Kidney Exchange Problem

The Kidney exchange is a recent innovation that matches patients in need of a kidney
to willing donors. In a non-bipartite graph, we can model the kidney exchange problem
by constructing a pair (patient, donor) for each patient, and an directed edge between
any two pairs where the incompatible donor for one patient is compatible with the
other patient, and viceversa. An edge (p;.p;) in a matching corresponds to a pairwise
kidney exchange, in which p; receives a kidney from p;’s donor in exchange for p;
receiving a kidney from p;’s donor. Preference lists can be constructed on the basis of

compatibility profiles between donors and patients.

For example, (Mary and Carlos) and (Amir and Shauna) are two incompatible pairs,
where Mary wants to donate a kidney to Carlos, but they do not match; Amir wants
to donate to Shauna, but they do not match. Mary is a match for Shauna, and Amir
matches Carlos. Swapping donors and patients in this case allows both transplants to
happen. An exchange cycle (or simply “cycle”) involves a sequence of matches where
the donor of one pair donates to the candidate in the next pair along the cycle. The
cycle is completed when the donor in the last pair gives a kidney to the candidate in
the first pair [Roth et al., 2005]. An "altruistic" donor can initiate chains of transplants
in the pool that end by transplanting a candidate on the deceased donor waiting list,
called domino-paired donation (DPD) [Roth, 2008].

Traditionally, a KEP pool is managed through a sequence of match runs, whereby at
regular intervals, the pool is assessed and a solution consisting of cycles and chains
is determined such that no pair is simultaneously involved in more than one cycle
or chain. In larger pools, there are many cycles and/or chains and consequently
many possible solutions. The preferred selection would ideally be determined by
some objective function, such as maximising the total number of potential transplants
[Roth et al., 2004]. In cycles there is a practical limitation that all transplants should
be performed simultaneously in order to avoid the possibility of a scheduled donor
opting to leave the pool prior to donation. Without this restriction, the possibility ex-

ists that a donor will donate a kidney without the associated candidate obtaining a

Investigation of Matching Problems using 6 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Introduction 1.5 Contribution and Thesis Structure

transplant. For this reason, if any one of the transplants in a proposed cycle cannot
be completed, none of the selected transplants in the cycle can proceed. On the other
hand, if one of the transplants in a proposed chain segment cannot be completed, trans-
plants prior to the point of failure can still proceed since the issue of an untransplanted
candidate with no donor does not arise [Ashlagi et al., 2011, Anderson et al., 2015].
Failure to proceed with a proposed solution can occur for a number of reasons, includ-
ing a positive laboratory crossmatch, a candidate or physician declining an assigned
donor, or donors or candidates having to leave the pool due to illness or other reasons
[Dickerson et al., 2013].

Recent studies suggest that optimisation methods which take into account the prob-
ability that selected transplants fail to proceed to actual transplantation can improve
upon schemes that ignore this uncertainty [Dickerson et al., 2013, Alvelos et al., 2015,
Pedroso, 2014]. However, these programs run offline, at prefixed intervals, we ar-
gue that the problem is intrinsically a dynamic problem which evolves in time. In
[Unver, 2010] he provides initial analysis on dynamic kidney exchange, but does not
include chains in the program. In [Pedroso, 2014] they develop a dynamic scheme,
considering even the case of compatible pairs, however the program still runs at fixed
terms. In [Dickerson and Sandholm, 2015] the authors build a future match frame-

work, learning the potentials of pairs in an offline graph.

1.5 Contribution and Thesis Structure

In this section, we discuss the structure of this thesis, along with the contributions of

each chapter and the overall contributions of the methods presented in the thesis.
Background

Chapter 2 begins by presenting an introduction to the field of optimisation in combina-
torial problems. We give a brief overview of several important results from matching
theory; some of these will subsequently be used by the algorithms that we will de-
scribe in this thesis. Instances of constraint programming, integer programming and

Logical-based Benders Decomposition are shown as high level encoding.
Popular Matching Problem

In Chapter 3 we address the popular matching problem. First we show how to encode

the problem in a constraint programming context. Second, we show how to optimally
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solve the popular matching with ties in the preference list. Third, we design solutions
for the instances that does not admit a popular matching, which we call this problem the
popular matching problem with copies. All the popular matching problems mentioned
will be solved using global constraints, and this material has appeared in the following

publications:

* Danuta Sorina Chisca, Mohamed Siala, Gilles Simonin, and Barry O’Sullivan.
"A CP-based approach for popular matching". Published in the Thirtieth AAAI
Conference on Artificial Intelligence, Phoenix, Arizona, USA, pages 4202—4203,
2016. [Chisca et al., 2016]

* Danuta Sorina Chisca, Mohamed Siala, Gilles Simonin and Barry O’Sullivan.
"New Models for Two Variants of Popular Matching". Published in: 2017
IEEE 29th International Conference on Tools with Artificial Intelligence (IC-
TAI), Boston, USA. [Chisca et al., 2017]

Kidney Exchange Problem

In most matching schemes of the kidney exchange problem, the main goal is to max-

imise the number of transplants, running the program at fixed intervals.

However, in Chapter 4 we consider a dynamic setting of kidney exchange matching
problem, where patients come and leave over time. Online decision making can be
framed as a form of multi-stage stochastic optimisation. This approach typically es-
timates future developments by sampling scenarios and optimise the expected value
of current decisions. In Chapter 4 we build an online anticipatory algorithm and we
provide an expected value estimation that is correct within the limit of sampling error.
Secondly, we propose a new anticipatory algorithm which is sampling-free based and
develop an abstract exchange graph for a probabilistic method. These contributions

have appeared in the following publications:

* Danuta Sorina Chisca, Michele Lombardi, Michela Milano and Barry
O’Sullivan. From Offline to Online Kidney Exchange Optimization. Published
in: 2018 IEEE 30th International Conference on Tools with Artificial Intelli-
gence, ICTAI 2018, Volos, Greece. [Chisca et al., 2018]

* Danuta Sorina Chisca, Michele Lombardi, Michela Milano and Barry
O’Sullivan. A Sampling-free Anticipatory Algorithm for the Kidney Exchange
Problem. In Proceedings of the 16th International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Operations Research,
CPAIOR 2019, Thessaloniki, Greece. [Chisca et al., 2019b]
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We will also consider uncertainty when matching, i.e. a pair worsening once a So-
lutions is found. Many researchers focused on pair/edge failure, though we seek to
develop a method that finds a solution which is robust to these type of failures. If an
incompatibility involving one of the donors and her recipient occurs in an identified

solution, the swap is cancelled and the remaining pair must wait for the next run.

In Chapter 5, we investigate the use of Logic Based Benders Decomposition to find a
super solution for general disruptions, with application to the KEP. The master deals
with the original problem, while subproblems try to find repair solutions for each possi-
ble disruption. The results are presented in the following publication and are elaborated

in In Chapter 5:

* Danuta Sorina Chisca, Michele Lombardi, Michela Milano and Barry
O’Sullivan. Logic-Based Benders Decomposition for Super Solutions: an Ap-
plication to the Kidney Exchange Problem. In Proceedings of 25th International
Conference on Principles and Practice of Constraint Programming, CP 2019,
Stamford, USA. [Chisca et al., 2019a]

Conclusions Finally, in Chapter 6 we present some general concluding remarks and

outlook of future extensions of the work presented in this dissertation.
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Chapter 2

Background

“I have been impressed with the urgency of doing. Knowing is not enough; we
must apply. Being willing is not enough; we must do.” Leonardo da Vinci

In this chapter we provide the necessary background to understand the matching prob-
lems. Moreover, we will focus on optimisation problems, popular matchings, and

kidney exchanges. For each of them we introduce the necessary background.

2.1 Optimisation

Numerous industrial applications of combinatorial optimisation require going beyond
a single satisfiable solution. Frequently the interest is in finding good, or the absolute
best, quality solution. For example, we might wish to define the objective function
to maximise profit, produce customer satisfaction, or to minimise cost, loss function.
Due to the potential size of the applications in practice, it is usually infeasible to com-
pute optimal allocations by hand. Centralised matching schemes automate this task by
employing algorithms to compute optimal matchings based on the input data supplied

by the participants.

A combinatorial optimisation model of a problem consists of a declarative specifi-
cation, separating the problem in the formulation and the search strategy. However,
modelling a problem is difficult as a solvable model is needed to quickly finds optimal
solutions or determines that none exist. Naturally, there are many alternative models

for a single problem; often it is not clear which one is best. In an optimisation setting,

10
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an objective function needs to be specified and optimised, i.e. maximise or minimise
an utility function. Once the model is defined it can be passed off to a solver which
will search for an optimal solution. Often, we may need to specify some heuristics
about how the solver should perform the search, such as the variable or value ordering

before the solver can effectively solve the problem.

Two common issues arise in the development of a solution: the model either does not
accurately represent the problem, or a solution is not found by the solver in reasonable
time. The former is more of a real-world problem requiring the assistance of a domain

expert, while latter may require the input of an expert in combinatorial optimisation.

2.1.1 Constraint Programming

The field of constraint programming (CP) is rapidly progressing. Constraint pro-
gramming [Rossi et al., 2006] is a powerful paradigm for solving combinatorial search
problems using a wide range of techniques from artificial intelligence, computer sci-
ence, and operations research. Constraint programming is currently applied with suc-
cess to many domains, such as scheduling, planning, vehicle routing, etc. The basic
idea in constraint programming is that the user states the constraints and a general
purpose constraint solver is used to solve them. Constraints are just relations, and a
constraint satisfaction problem (CSP) states which relations should hold among the
given decision variables. For example, in scheduling activities in a company, the de-
cision variables might be the starting times and the duration of the activities and the
resources needed to perform them, and the constraints might be on the availability of
the resources and on their use for a limited number of activities at a time. Constraint
solvers take a real-world problem like this, represented in terms of decision variables

and constraints, and find an assignment to all the variables that satisfies the constraints.

The constraint satisfaction problem (CSP) [Rossi et al., 2006] is defined by a tuple
(X, D, (), defining the variables, domains, and constraints respectively. A solution to
a CSP consists of a mapping from each variable in X to one of the values in its domain,
such that all constraints in C' are satisfied. A CP solver works by systematically trying
all possible assignments of values to the variables in a problem, to find the feasible

solutions.

Example: the 4-Queens Problem! consists in placing four queens on a 4 x 4 chess-

board, see Figure 2.1 such that no two queens are attacking each other.

'https://developers.google.com/optimization/cp/queens
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There are two key elements to a constraint programming search:

* Propagation — Each time the solver assigns a value to a variable, the constraints
add restrictions on the possible values of the unassigned variables. For example,
in the 4-queens problem, each time the solver places a queen, it can’t place any
other queens on the row and diagonals the current queen is on. Propagation can
speed up the search significantly by reducing the set of variable values the solver

must explore.

» Backtracking occurs when either the solver can’t assign a value to the next vari-
able, due to the constraints, or it finds a solution, therefore the solver backtracks
to a previous stage and changes the value of the variable at that stage to a value
that hasn’t already been tried. In the 4-queens example, this means moving a

queen to a new square on the current column.

For instance, to model the 4-Queens Problem, we can create four variables queens,
each of them with domain D = {1,2,3,4}. For any solution, queens[i] = j means

there is a queen in column 7 and row j.

W

Wy

W

Figure 2.1: 4-Queens problem

These constraints guarantee the three conditions for the 4-queens problem:
* no two queens on the same row
* no two queens on the same column
* no two queens on the same diagonal

These constraints can be added efficiently to the CP model. The 4-Queens problem can
be extended to N-queens, but the number of solutions goes up roughly exponentially
with the size of the board.
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2.1.1.1 Global Constraints

Global constraints define constraints over an arbitrarily sized set of variables, present-
ing many benefits for constraint programming [van Hoeve and Katriel, 2006]. Notably,
they can convey complex relationships between variables, allowing for a concise spec-
ification of a problem. More importantly, from a pragmatic perspective, this enables
higher levels of reasoning to be performed by dedicated inference algorithms, reducing
the search space significantly. For example, propagation for global constraints such as
AllDifferent and cardinality constraints can be achieved in low polynomial time using
flow-based algorithms [Régin, 1994].

The Global Constraint Catalogue [Beldiceanu et al., 2007] collects definitions for all
global constraints defined in the CP literature. Such a vast catalogue provided many
opportunities for the application of constraint programming, however one practical

issue faced by users is in identifying which one is appropriate for their problem.
All-Different

One of the most widely known, intuitive, and well studied global constraints is the
AllDifferent constraint [Régin, 1994] which simply specifies that a set of variables
must be assigned distinct values. Such a relation arises in many practical applications
such as resource allocation, e.g. to state that a resource may not be used more than

once at a single time point.

The model for the example in Figure 2.1 can can use a global constraint such as AllD-
ifferent to efficiently solve the problem. One solution of 4-Queens is shown in Fig-

ure 2.1.
Global Cardinality

The global cardinality constraint [Régin, 1996] places lower and upper bounds on
the number of occurrences of certain values amongst a set of variables. The global
cardinality constraint gcc(xy, ..., Ty, Cypy - -, cvn,) is a generalization of AllDifferent.
While AllDifferent requires that every value is assigned to at most one variable, the gcc
is specified on n assignment variables w1, ..., x, and n’ count variables c,,, ..., ¢, ,
and specifies that each value v; is assigned to exactly c,, assignment variables. AllD-
ifferent, then, is the special case of gcc in which the domain of each count variable
is {0,1}. For any tuple ¢t € D" and value v € D, let occ(v,t) be the number of

occurrences of vin t.
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The global cardinality constraint models restrictions in applications such as timetabling
when there may be a limit on the number of consecutive activity types. An exam-
ple of a problem that can be modeled with a gcc is the shift assignment problem
[Régin, 1994, van Hoeve and Katriel, 2006] in which we are given a set of workers
W = {W,,..., W} and a set of shifts S = {S1,...,S5;} and the problem is to assign
each worker to one of the shifts while fulfilling the constraints posed by the workers
and the boss: Each worker IV; specifies in which of the shifts she/he is willing to work
and for each shift S; the boss specifies a lower and upper bound on the number of
workers that should be assigned to this shift. In the gcc, the workers would be repre-
sented by the assignment variables and the shifts by the count variables. The domain
of an assignment variable would contain the set of shifts that the respective worker is
willing to work in and the interval corresponding to each count variable would match
the lower and upper bounds specified by the boss for this shift.

2.1.2 Integer Programming

An integer programming problem is a mathematical optimisation or feasibility prob-
lem, in which some or all the variables are restricted to be integers. Example of an

optimisation problem:

n

max Z CjT; (2.1)
j=1
subject to:
Zaijxj = bz Viem (22)
j=1
x; >0 Vien (2.3)
x; integer for some orall j € n 2.4)

This problem is called the linear integer-programming problem. It is said to be a mixed
integer program when some, but not all, variables are restricted to be integer, and is
called a pure integer programming when all decision variables must be integers. The
case where the integer variables are restricted to be 0 or 1 comes up surprising often.
Such problems are called pure (mixed) 0-1 programming problems or pure (mixed)

binary integer programming problems.

Integer-programming models arise in practically every area of application of mathe-

matical programming. One particularly simple integer problem is the Knapsack prob-
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lem [Martello and Toth, 1990]. The traditional story is that there is a knapsack, (with
capacity wy), there are a number of items, each with a weight (w) and a value (c). The
objective is to maximise the total value of the items in the knapsack. These can be

written as:

n

max »  ¢;; (2.5)
j=1

S.t. Z W;T < wq (26)
j=1

z; € {0,1}Vj en (2.7)

Assume for example we have a knapsack (with capacity 14), and 4 items, i.e. e item 2

has weight 7 and value 11: A practical example is

max8xy + 11xs + 63 + 4x4 (2.8)
S.t.5l’1 + 71‘2 + 41’3 + 31’4 < 14 (29)
;€ 10,1} (2.10)

The solution z; = 1, x5 = 1, 3 = 0.5, x4 = 0, with value 22 is the optimal solution
to the linear program, even though is not integral. An integer solution is a 1 = 0,

ro = 1,23 = 1,24 = 1 with a value of 21.

2.1.3 Super Solutions

When dealing with real world problems, efficiency and optimality may not be the only
concerns. For instance, in the kidney exchange problem further tests are performed just
hours before the surgery, and this may affect the solution found, i.e. the patient/donor
worsening. The problem is to find a matching for the kidney exchange problem re-
silient to small perturbation. The notion of fault tolerance has been introduced in the
propositional satisfiability framework by [Ginsberg et al., 1998]. A solution is fault
tolerant if a small change in the model is guaranteed not to result in a large perturba-

tion of the solution.

However, one might want the new solution to be as close as possible to the old solu-

tion. Indeed it might not be practical to change too many surgeries on short notice. A
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solution where a small perturbation, such as a pair pooling out from the solution, can
be repaired with small changes. The notion of super-models [Ginsberg et al., 1998] or
o-models [Roy, 2001] has first been defined for Boolean satisfiability problems:

"To model this concept of fault tolerance we introduce the notion of o-
models: these are satisfying assignments of Boolean formula for which
any small alteration, such as a single bit flip, can be repaired by another

small alteration, yielding a nearby satisfying assignment."

An (a, b) super model « is a model of a Boolean formula such that for any set of atoms
A, if |A] < a, then there exists a disjoint set B such that |B| < b and if we negate
a(A U B) we obtain another model. Below is the definition of (1, 1) super models
from [Roy, 2001, Roy, 2006]:

Definition 2.1. A super-model of a Boolean formula F is a satisfying assignment « of
F, F(«) = 1, such that for every i, if we negate the i-th bit of «, there is another bit

J # 1 of a which we can negate to get another satisfying assignment.

Flipping a bit of a o-model is called a break, corresponding to a “bad” event. The bit

that is flipped to get another satisfying assignment is a repair.

In [Roy, 2006] the author extended the notion of single repairability to repairability of

a sequence of breaks to a model.

Definition 2.2. A o(r, s)-model of a Boolean formula © is a model of © such that for
every choice of at most r bit flips (the “break” set) of the model, there is a disjoint set
of at most s bits (the “repair” set) that can be flipped to obtain another model of ©.

[Hebrard et al., 2004b] generalise this definition to constraint satisfaction on non-

Boolean domains.

Definition 2.3. A solution to a CSP is (a, b)-super solution iff the loss of the values of
at most a variables can be repaired by assigning other values to these variables, and

modifying the assignment of at most b other variables.

Investigation of Matching Problems using 16 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Background 2.1 Optimisation

Let us consider the following CSP example from [Hebrard et al., 2004b]: XY, Z €
{1,2,3}, X <Y AY < Z. The solutions to this CSP are:

<1, 1, 1>,<1, 1, 2>, <1, 1, 3>, <1, 2, 2>, <1, 2, 3>, <1, 3, 3>, <2,2,2>,<2,2, 3>,
<2,3,3>,<3, 3, 3>.

The subsets of the solutions that are (1, 1)-super solutions are:
<1,1,2>,<1,1,3>, <1,2,2>, <1,2,3>, <1,3,3>, <2,2,2>, <2,2,3>, <2,3,3>
and (1, 0)-super solutions are:

<1,2,3>,<1,2,2>,<2,2, 3>

The solution <1,1,1> is not a (1,0)-super solution. If X loses the value 1, there is no
repair value for X that is consistent with Y and Z since neither <2, 1, 1> nor <3, 1,
1> are solutions. Also, solution <1, 1, 1> is not a (1, 1)- super solution since when
X loses the value 1, there is no repair by changing the value assigned to at most one
other variable, i.e., there exists no repair solution when X breaks since none of <2,1,1>,
<3,1,1>, <22, 1>, <2,3,1>, <2,1,2>,<2, 1, 3> is a solution. On the other hand, <1, 2,
3> is a (1, 0)-super solution given that when X breaks the repair solution is <2, 2, 3>,
when Y breaks the repair solution is <1, 1, 3>, and when Z breaks the repair solution

is<l1, 2, 2>.

A number of properties follow immediately from the definition. For example, a (c, d)-
super solution is a (a, b)-super solution if (¢ < cord < b) and c+d < a+b. Deciding
if a SAT problem has an (a,b)-supermodel is NP-complete [Ginsberg et al., 1998]. In
[Hebrard et al., 2004b] the authors shows that deciding if a CSP has an (a,b)-super

solution is also NP-complete, even when restricted to binary constraints:

Theorem 2.1. Deciding if a CSP has an (a, b)-super solution is NP-complete for any
fixed a.

Furthermore they proposed a method to find (1, 0)-Super Solutions via Search. There-
fore, by choosing a (1,0)-super-solution over other solutions, we deal with one pertur-

bation without changing other assignments, which is often a valuable property.

In [Holland and O’Sullivan, 2004] the authors proposed a novel application of super
solutions to combinatorial auctions in which a bid may be disqualified or withdrawn
after the winners are announced. In [Holland and O’Sullivan, 2005b] they proposed
a Weighted Super Solutions to find a repair solution whose revenue exceeds some

threshold while limiting the cost associated with forming such a repair.
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A more recent paper on fault tolerant solutions [Bofill et al., 2013] using SAT encod-
ing, improves the work of [Ginsberg et al., 1998] using weighted Partial MaxSAT for-
mulation. Their approach strengthens the complexity to O(n®) for each handled vari-
able change, where n is the number of variables, and a is the number of breaks, instead
of O(n*?) of [Ginsberg et al., 1998], where b is the number of repairs.

2.1.4 Logic-based Benders Decomposition

The Logic-based Benders Decomposition (LBBD) approach has been used so solve
allocation and scheduling problems [Hooker and Ottosson, 2003, Hooker, 2007] and
resource allocation [Benini et al., 2011]. LBBD is a classic operational research tech-
nique, which assigns some of the variables trial values and finds the best solution con-
sistent with these values. In the process it learns informations to reduce the number
of solutions. This strategy is known as “learning from one’s mistakes”, as exclude su-
perfluous solutions. The central element of Benders decomposition is the derivation of
Benders cuts that exclude superfluous solutions. Classical Benders cuts are formulated
by solving the dual of the subproblem that remains when the trial values are fixed.
The subproblem must therefore be one for which dual multiplers are defined, such as

a linear or nonlinear programming problem.

Fixing some primary variables to these values, solves a subproblem for each set of
values. The solution of the subproblem is used to generate a cut, i.e. Bender’s cut, that

the primary variables must satisfy in all solutions enumerated.

Village

— — Byair
—— By bus

Figure 2.2: Example: remote village
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Assume the following example [Hooker, 2016]: Find the cheapest route to a remote
village with the values shown in Figure 2.2, the village can be reached by bus or air.
Let be z flight destination and y the bus route, we seek to find cheapest route (x,y).
The master problem solve the cheapest flight x, subject to Benders cuts generated so
far, while the subproblem search to find the cheapest bus route from the airport to the

village. The master problem and the subproblem interactions as in Figure 2.3.

Master . Subproblem
problem Fix flight x
Solve for cheapest F]'cnd ch_eap?ts: bu.ﬁ route
flight x rom airport to village.
, ) Add Use proof of optimality
B
subject to Benders Benders cut to bound cost of other

cuts generated so far
us g flights x.

Figure 2.3: Decomposition of master - subproblem

We start with « = City 1 and pose the subproblem: find the cheapest route given that
= City 1. Optimal cost is $100 + 80 + 150 = $330.

The dual problem of finding the optimal route is to prove optimality. The proof is that
the route from City 1 to the village must go through High Pass. So cost > airfare +
bus from city to High Pass + $150. But this same argument applies to City 1, 2 or 3.
Specifically the Benders cut is:

$100 + 80 + 150 if x =City 1
cost > By (x) = $200 + 150 if x = City 2,3
$100 if x =City 4

Now we need to solve the master problem, thus we need to pick the city x to minimize

cost.

Clearly the solution is x = City 4, with cost $100. Now let x = City 4 and pose the
subproblem: Find the cheapest route given that x = City 4. Optimal cost is $100 + 250
= $350.

Again solve the master problem: Pick the city x to minimize cost subject to:
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$350 ifx =City 1
cost > Bejpya(x) = { x=My }

$0 otherwise

The solution is x = City 1, with cost $330. Because this is equal to the value of a

previous subproblem, we are done.

Classical Benders cuts are formulated by solving the dual of the subproblem, when

some values are fixed. Formally a general optimization problem can be written as:

min f(x) OP (2.11)
s.t. (2.12)
relS (2.13)
reD (2.14)

where f(z) is a generic function, each variable with domain D and a set of constraints
SCD.

Assume P and Q to be two propositions whose truth or false is a function of x. Then P
implies Q with respect to D if Q is true for any x € D for which P is true, and can be

written as P 2 Q.

The inference dual of O P, can be written as:

max f3 ID (2.15)
s.t. (2.16)
zeSE fx)>4 (2.17)

The dual problem finds the tightest possible bound on the objective function value.

The optimal value of the inference dual is the same as the original problem, given the

strong duality property.
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LBBD Structure

Benders decomposition views elements of the feasible set as pairs (z, y) of objects that

belong respectively to domains D, , D, .

Therefore the optimisation problem O F, becomes:

min f(x,y) OP (2.18)
s.t. (2.19)
(x,y) € S (2.20)
x € D,y €D, (2.21)

A general LBBD algorithm begins by fixing the variables y to some values y € D,
in the master problem (MP), see Figure 2.4. This leads to the following subproblem,
(SP):

min f(z,y) SP (2.22)
s.t. (2.23)
(z,y) €5 (2.24)
reD, (2.25)

Rather than solving the subproblem directly, we can solve the corresponding inference

dual, known to have the same optimal value.

max (3 DP (2.26)
s.t. (2.27)
(#,9) € S = f(x,5) > B (2.28)
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The dual problem is to find the best possible lower bound 5* on the optimal cost that
can be inferred from the constraints, assuming y is fixed to y. The optimal solution of
subproblem is the same as the tightest bound on f(x,y) for any fixed value of y, due

to strong duality, which can be inferred from the constraint.

Just how this is done varies from one context to another, but essentially the idea is
this. Let 5* be the value obtained for DP, which means that 5* is a lower bound on
the optimal value of OP, given that y = y. The solution of OP is a proof of this fact.
This bound is expressed as a function 3y, of y, producing a Benders cut z > (3;,. The

subscript y of the bounding function denotes the y values used for its construction.

The algorithm proceeds as follows. At each iteration the Benders cuts so far generated

comprise the constraints of a master problem,

min z MP (2.29)
s.t. (2.30)
z > Bk vk =0,1.. (2.31)
ye D, (2.32)

where ¥, 7, ... are the trial values till now obtained. The next trial value (z,y) of (z,
y) is obtain by solving the master problem. If the optimal value S* of the resulting
subproblem DP is equal to z. Otherwise a new Benders cut z > [3;, is added to the
master problem. At this point the algorithm repeats. The algorithm terminates when

the master problem and subproblem value converge, that is z = 3*.

\SP |
Figure 2.4: Master problem and sub-problem
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In Figure 2.4 we show how the MP and SP communicates. First, the problem at hand is
first decomposed into a master problem (MP) and a subproblem (SP). After the method
works by iteratively solving MP and feeding SP with the partial solution from MP. If
such solution cannot be extended to a complete one, a cut (Benders’ cut) is generated
forcing MP to yield a different solution. In case the extension is successful we have a
feasible solution. The efficiency of the technique greatly depends on the possibility to

generate strong cuts.

Theorem 2.2. Suppose that in each iteration of the generic Benders algorithm, the

bounding function (3 satisfies the following:

The Benders cut = > (35 is valid; i.e., any feasible solution (x,y) of OP satisfies

f(x7y> Z ﬁﬂ'

If the algorithm terminates with a finite optimal solution (z,y) = (Z, %) in the master
problem, OP has an optimal solution (z,y) = Z,y) with value f(z,y) = z. If the
algorithm terminates with an infeasible master problem, then OP is infeasible. If the
algorithm terminates with an infeasible subproblem dual, then OP is unbounded. In
general, the cuts can be refined to a specific problem and needs to be valid. Because
all Benders cuts are valid, infeasibility of the master problem implies that the original
problem is infeasible. Finally, if the subproblem dual is infeasible, then the subproblem

is unbounded, which means the original problem is unbounded.

2.2 Matching Under Ordinal Preferences

Stable matching problems, introduced by [Gale and Shapley, 1962], have been exhaus-
tively studied over recent decades. Different formulations are proposed, distinguishing
between one-sided matching [Garg et al., 2010] and two-sided matching, e.g. the sta-
ble marriage (SM) problem [Gale and Shapley, 1962].

An instance of the classical Stable Marriage problem (SM) comprises a set of men and
women, and each person ranks each member of the opposite sex in strict order of pref-

erence, and we seek to match one to another taking in consideration their preferences.

A generalisation of SM is the Hospitals / Residents problem (HR) [Gale and Shapley, 1962],
where each man corresponds to a resident and each woman corresponds to a hospital

which can potentially be assigned multiple residents up to some fixed capacity.
The Stable Roommates problem (SR) is the non-bipartite generalisation of SM in
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which each agent ranks all of the others in strict order of preference. Stability is once
again relevant in this context, and the definition of a stable matching is a straightfor-
ward extension of the definition in the SM case.

2.2.1 Stable Matching for Hospitals / Residents problem

The Hospitals / Residents problem (HR) [Gale and Shapley, 1962, Gusfield and Irving,
Manlove, 2008] (or known as the College (or University or Stable) Admissions
problem, or the Stable Assignment problem) was first defined by Gale and Shap-
ley in their seminal paper “College Admissions and the Stability of Marriage”
[Gale and Shapley, 1962].

An instance of HR involves a set R = {ry,...,7,1} of residents and a set H =
{h1, ..., hn2} of hospitals. Each hospital ; € H has a capacity c;, which indicates
the number of posts that /; has. Also there is a set ' C R x H of acceptable res-
ident—hospital pairs. Each resident ; € R has an acceptable set of hospitals A(r;),
where A(r;) = {h; € H : (r;,h;) € E}.

In the same way, each hospital »; € H has an acceptable set of residents A(h;), where
A(hj) = {7“1‘ €ER: (’l"i, h]) S E}

Residents’ preferences Hospitals’ preferences
r1:hy Ry hi:(2):ry r3 ro 15 T
ro:th1  ha ho:(2):ry 16 11 T4 T3
rg3:hy hs hs:(2):ry 13

re: he hs

rs:ho Ay

re : h1  ho

Figure 2.5: An instance of the Hospitals/Residents problem

An example with six residents and three hospitals, and their respective preferences, is

shown in Figure 2.5.

A matching M is an assignment such that | M/ (r;)| < 1 foreachr; € R and |M (h;)| <
c; for each h; € H, that is no resident is assigned to an unacceptable hospital, each

resident is assigned to at most one hospital, and no hospital is oversubscribed).
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Definition 2.4. Let [ be an instance of HR and let M be a matching in I
[Manlove, 2013]. A pair (r;,h;) € E\ M blocks M, or is a blocking pair for M,

if the following conditions are satisfied:
A. r; is unassigned or prefers h; to M (r;);
B. h; is undersubscribed or prefers r; to at least one member of M (h;) (or both).

M is said to be stable if it admits no blocking pair. In Figure 2.5 the instance admits a
stable matching M = {(Tl, hg), (7’2, hl), (7"3, hl), (7"47 hg), (7“6, hg)}

The algorithm in [Gale and Shapley, 1962], known as the resident-oriented
Gale—Shapley algorithm (RGS), showed that every instance [ of H R admits at least
one stable matching.

Theorem 2.3. Given any instance of HR, the RGS algorithm constructs, in O(m) time,

the unique resident-optimal stable matching, where m is the number of acceptable
resident—hospital pairs [Gusfield and Irving, 1989, Manlove, 2013].

The RGS algorithm returns the unique resident-optimal stable matching, in which
each assigned resident has the best hospital that she could achieve in any stable
matching, whilst each unassigned resident is unassigned in every stable matching
[Gale and Shapley, 1962].

Equivalently to the RGS algorithm, also the hospital-oriented Gale—Shapley algorithm
(HGS), involves hospitals offering posts to residents. The HGS algorithm returns with
the unique hospital-optimal stable matching. In this matching, every hospital h; € H
is assigned its c; best stable partners, whilst every undersubscribed hospital is assigned

the same set of residents in every stable matching [Gusfield and Irving, 1989].

2.2.2 Stable Matching for Hospitals/Residents Problem with Indif-

ference

In large-scale matching schemes, participants may not be able to provide a genuine
strict preference order over what may be a very large number of hospitals, and may
prefer to express indifference in their preference lists, (ties). The concept of indiffer-

ence can be applied to instances of HR [Manlove, 2013].

A matching in the context of Hospitals/Residents problem with indifference (HRI),
is a set of (resident, hospital) pairs such that no resident is assigned to more than

one hospital and no hospital is over-subscribed. A matching is stable if it admits no
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blocking pairs. We can define a blocking pair for an instance of HRI with respect
to three different levels of stability, since the presence of ties forces us to extend the
definition. In fact an hospital h can prefer r; over r;, r; over r; or to be indifferent

between them, as we can see in the example below:

A pair (r;, h;) € R x H is said to block a matching M for an instance of HRI, and is
called a blocking pairs when:

A. weak stability:
(a) r; is unassigned or prefers h; to his/her assigned hospital in M, and

(b) h; is undersubscribed or prefers r; to its worst assigned resident in M;

B. strong stability: either
(a) r; is unassigned or prefers ; to his/her assigned hospital in M, and

(b) h; is undersubscribed or prefers r; to its worst assigned resident in M or is

indifferent between them;
or

(a) r; is unassigned or prefers /; to his/her assigned hospital in M or is indif-

ferent between them, and

(b) h; is undersubscribed or prefers r; to its worst assigned resident in M ;

C. super-stability:

(a) r; is unassigned or prefers /; to his/her assigned hospital in M or is indif-

ferent between them, and

(b) h; is undersubscribed or prefers r; to its worst assigned resident in M or is

indifferent between them.

M 1is said to be be weakly stable, strongly stable or super-stable if it admits no blocking

pair with respect to the relevant definition above.

[Gale and Shapley, 1962] showed that an instance of Stable roommates (SR) needs not
admit a stable matching. The following result, due to Irving in [Irving, 1985], indicates
that it is possible to determine in polynomial time whether a given instance admits a

stable matching, and if so, to find such a matching.

Similarly, other stable matching problems arise naturally in practical applications,

where preference lists need not include indifference. These include the Student /
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Project Allocation problem (SPA), a generalisation of HR, where students are to be
assigned to projects offered by lecturers, subject to capacity constraints involving both

projects and lecturers, and preference lists supplied by both students and lecturers.

2.2.3 Stable Matching for Stable Roommates Problem

The Stable Roommates problem (SR) [Gale and Shapley, 1962, Irving, 1985,
Gusfield and Irving, 1989] is a non - bipartite generalisation of Stable Matching.

An instance of SR is a single set A = {ay,...,a,} of agents, and n denotes the size
of the instance. Also there is a set £/ of un-ordered pairs of agents, called acceptable
pairs. Each agent a; € A has an acceptable set of agents A(a;), where A(a;) = {a; €
E :{ai,a;} € E}. An assignment M is a subset of E. If {a;,a;} € M, a; is said to
be assigned to a;. With respect to M, if a; is not assigned to any agent then a; is said
to be unassigned, otherwise a; is assigned. An instance of six roommates and their

preferences is shown in Figure 2.6.

ai . asz a4 A aAg as
as: Qg A a4 a1 a3
as . as a4 a5 dAg Asg
a4 . as das dasg dg am
as . as a1 a2 a4 Qs
g . G5 Q1 Qa3 Qa4 Qa9

Figure 2.6: An instance of the Stable Roommates problem

A matching M is an assignment such that no agent belongs to more than one pair of
M. If{a;,a;} € M then we let M (a;) denote a;. Let Ay, denote the set of agents who

are assigned in M.
A pair {a;,a;} € E\ M blocks a matching M, or is a blocking pair for M, if the
following conditions:
* a; is unassigned or prefers a; to M (a;);
* a; is unassigned or prefers a; to M (a;).
A matching M is said to be stable if it admits no blocking pair. An instance / of SR

is said to be solvable if [ admits a stable matching; [ is unsolvable otherwise. The

solution of Figure 2.6 is the matching {(a1, ag), (a2, as), (as, as)}, which is stable.
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Recently, an application of an extension of SR, called the Stable Roommates problem
with Incomplete lists (SRI).

2.3 One-sided Case: Popular Matching

The notion of popularity was introduced by Gardenfors [Gardenfors, 1975] in the full
stable marriage problem, where it is a desirable property in finding a weakly stable
matching, but it has its origins from as far back as 1785 with the notion of Condorcet
winner. Popular matching and its extensions have been an exciting area of research
studied seriously over the last decade [Abraham et al., 2007b].

In the popular matching problem, a set of applicants .4 have to be matched to a set
of posts P where each applicant has an ordinal list of preference over posts, ranking
a subset of posts in order of preference. An example with three applicants and three

posts and their preferences is shown in Figure 2.7.

ai; - pP1P2pP3
as : P1P2P3
az . P1PapPs3

Figure 2.7: An instance of preference list

Notice that only the applicants have preferences over posts. Therefore, the popular
matching problem considers only one-sided preferences. If applicants can be indiffer-

ent between posts, we say that preference lists contain ties.

We say that an applicant a prefers a matching M’ to M if (i) a is matched in M’ and
unmatched in M, or (ii) a prefers M'(a) to M(a). M’ is said more popular than M,
denoted by M’ » M, if the number of applicants that prefer M’ to M exceeds the
number of applicants that prefer M to M’. A matching M is popular if there exists no

matching more popular than M.

Informally, a matching M can be seen as a set containing pairs (a,p) where a is an
applicant and p is a post and each applicant/post appears at most once in M. Given
two matchings M and M’, we use the notation M < M’ if (strictly) more applicants
prefer M’ to M. A matching M is popular if and only if there is no matching M’ such
that M < M.

We can easily check that the instance in Figure 2.7 does not admit a popular matching

since for any matching M, there exists a matching M’ such that M < M’. For instance,
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consider the three (symmetrical) matchings M; = {(ay, p1), (a2, p2), (as,p3)}, My =
{(a1,p3), (az,p1), (a3, p2)}, and Mz = {(a1,p2), (az,p3), (as,p1)}. We have M; <
My, My < M3, and M3 < M;. In fact, it turns out that this instance admits no popular

matching, the problem being that the more popular than relation is not transitive.

Popular matchings have been studied in house allocation problem (HA), house allo-
cation with ties (HAT), capacitated house allocation (CHA), stable roommates with
indifference (SRI). The house allocation problem (HA) is the variant of SM in which
the women do not have preferences over the men. The men are referred to applicants
and women are referred to as houses. A many-one extension of HA is the capacitated
house allocation (CHA), where each house can accommodate multiple applicants up
to some fixed capacity. CHA can also be seen as the variant of the HR where hospitals

do not have preferences over residents.

2.3.1 Popular Matching for the House Allocation Problem

Many economists and game theorists have studied the problem of allocating a set of
indivisible goods among a set of applicants [Manlove, 2013]. Each applicant a; € A
may have ordinal preferences over a subset of H (houses), i.e. the acceptable goods

for a;. Many models have considered the case where there is no monetary transfer.

Formally, an instance I of HA comprises a set A = {a4, aa, ..., a,, } of applicants and
aset H = {hy, ho,...,h,,} of houses. There is a set £ C A x H of acceptable
applicant-house pairs. Let m = |E|. Each applicant a; € A has an acceptable set of
houses A(a;), where A(a;) = {h; € H : (a;,h;) € E}, as in Figure 2.8. Similarly
each house has an acceptable set of applicants.

a - hl,h4

ao . h27h5

as . h3ah’4:h’6
a4 - hl

ar . hg

Qg - h3

Figure 2.8: An istance of HA

Each applicant a; € A has a preference list in which he/she ranks A(a;) in strict order.
Given any applicant a; € A, and given any houses h;, h; € H , a; is said to prefer
h; to hy if {h;, hx} C A(a;), and h; precedes hy on a;’s preference list. Notice that

houses do not have preference lists over applicants.
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An assignment )M is a subset of E. If (a;, h;) € M, a; and h; are said to be assigned to
one another. For each k € A U H, the set of assignees of k in M is denoted by M (k).
If M (k) = 0, k is said to be unassigned, otherwise & is assigned. A matching M is an
assignment such that |M (k)| < 1 foreach k € AU H.

For each applicant a; € A we create a new unique last resort house /; and append ; to
a;’s preference list. This ensures that every applicant is assigned in a given matching
in I. However in reality, (a;,[;) € M means that a; is unassigned. For each applicant
a; € A, we define f(a;) to be the first house in a;’s preference list. Given any house
h; € H, we define f(h;) to be the set of applicants a; such that f(a;) = h;. Then h;
is called an f-house if f(h;) # 0. For a given applicant a; € A, we define s(a;) to
be the first non f-house in a;’s preference list. A house h; € H is called an s-house
if h; = s(a;) for some a; € A. By definition, the sets of f-houses and s-houses are
disjoint.

Abraham et al. in [Abraham et al., 2007b] proved that f(a;) and s(a;) are the only
candidate houses to which an applicant a; can be assigned in a popular matching M.
They also showed that every f-house must be assigned in M. Furthermore these two

necessary conditions are sufficient for a matching to be popular.
Lemma 2.1. [Abraham et al., 2007b] Let I be an instance of ha and let M be a match-
ing in I. Then M is popular if and only if:

* every f-house is assigned in M;

e for each applicant a; € A, M(a;) € {f(a;), s(a;)}

Let the reduced graph G’ be a subgraph of the underlying graph G of an istance [
containing the vertices in A U H and the edges {a;, f(a;)} and {a;, s(a;)} for each
a; € A, meaning the edges of f-house and s-house. From this graph the theorem below

follows:

Theorem 2.4. [Abraham et al., 2007b] Let I be an instance of HA and let M be a
matching in 1. Then M is popular if and only if:

* every f-house is assigned in M;

* M is an applicant-complete matching in the reduced graph G'.

Corollary 2.1. [Abraham et al., 2007b] Let I be an instance of HA and let M be a
matching in I. There is an O(m) algorithm to check if M is popular in I, where m is the

number of acceptable applicant—house pairs in I.
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The example in Figure 2.8 have the following popular matchings:

My = {(a1, h), (az, ha), (a3, h3)}
My = {(a1, h1), (az, ha), (as, ha), (as, h3)}
Mz = {(a1, h1), (az, hs), (as, ha), (a5, h2), (as, h3) }

Popular matchings can have different sizes as we can see. However it may also be
verified that the unique perfect matching in Figure 2.8 is not popular (as M, is more
popular), and hence a maximum popular matching can be smaller than a maximum

cardinality matching in the underlying graph.

2.3.2 Popular Matching for House Allocation Problem with Ties

The definition of f(a;) for an applicant a; € A is straightforward, i.e. it is the set of
a;’s most-preferred houses, first rank position. For each applicant a; € A, define s(a;)
to be the most-preferred set of houses in a;’s preference list that are even in G, with
(31 being the reduced graph with only f(a;) edges. Also, in contrast to the HA case, it
is possible that s(a;) C f(a;).

Any popular matching must be a maximum matching in G;. These two necessary

conditions for a matching to be popular are also sufficient.

Lemma 2.2. [Abraham et al., 2007a] Let I be an instance of the house allocation
problem with ties (HAT) and let M be a matching in I . Then M is popular if and

only if:
* M is a maximum matching in G1;

e for each applicant a; € A, M(a;) € f(a;) U s(a;).

Theorem 2.5. Let I be an instance of HAT and let M be a matching in I. Then M is
popular if and only if:
* M is a maximum matching in G;

* M is an applicant-complete matching in the reduced graph G'.

Theorem 2.6. There is an O(\/nym) algorithm to find a popular matching in an in-
stance of HAT, or report that there is none, n is the number of applicants and m is the

number of acceptable applicant-house pairs.
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2.3.3 Maximum Popular Matchings

We would like to remark that popular matchings can have different sizes, and the au-
thors of [Abraham et al., 2007a] showed how to extend their algorithm in order to find

a maximum popular matching without altering the time complexity.

Theorem 2.7. [Abraham et al., 2007a] Let I be an instance of HA. There is an
O(n 4+ m) algorithm to find a maximum popular matching or report that no popu-
lar matching exists, where n is the number of applicants and houses, and m is the

number of acceptable applicant—house pairs.

They also defined a more complex algorithm, with O(y/nm) complexity, which can be
used to find a maximum popular matching or report that no popular matching exists,

in the case that preference lists include ties.

2.3.4 Popular Matching for Capacitated House Allocation Prob-

lem with Ties

Popular matchings can be defined in instances of capacited house allocation (CHA)
and capacited house allocation with ties (CHAT), where each house h; has a capacity
cj > 0.

An instance I of CHA comprises a bipartite graph G = (A, H, F), defined similary
as HA in Section 2.3.1. Each house h; € H has a capacity ¢c; > 1 which indicates
the maximum number of agents that may be matched to it. We assume that m >
max{ny,ny}, i.e. no agent has an empty preference list and each house is acceptable
to at least one agent. We also assume that ¢; < n; for each h; € H. A matching M in
I is a subset of £ such that

* each agent is matched to at most one house in M,
* each house h; € H is matched to at most c¢; agents in M.

Manlove and Sng [Manlove and Sng, 2006] established the following characterisation
of popular matchings in CHA.

Theorem 2.8. Let I be an instance of CHA and let M be a matching in I. Then M is
popular if and only if:

e for every f-house h; € H,
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— if fj < cj then f(h;) C M(hy);
= if f; > ¢; then [M(h;)| = ¢; and M (h;) € f(h;);

* M is an applicant-complete matching in the reduced graph G'.

The same authors gave an efficient algorithm for computing a maximum popular

matching (or reporting that none exists).

Theorem 2.9. [Manlove and Sng, 2006] Given an instance of CHA, we can find a
maximum popular matching, or determine that none exists, in O(\/anl + m) time,
where C' is the sum of the capacities of the houses, n, is the number of agents and m is

the total length of the agents’ preference lists.

ap - hl h2 h3
as hl h2 h3
as . hl hQ h3

Figure 2.9: An istance of HA with no popular matching

2.3.4.1 Popular Matching with Copies

Many instances of the popular matching problem admit no solution. Suppose that we
are allowed to add extra copies or duplicate some items and that these duplicates are
indistinguishable from the original item. If there were no bounds on the number of
copies that we could add for an item, a straightforward solution would be to have as
many copies of an item as the number of people that demand the item as their top

choice.

For example, in the above Figure 2.7 that does not admit a popular matching,
say we have 2 additional copies of h; (call them A} and hY). Thus, we have 3
copies of h; in our instance now and it is easy to see that the matching M =
{(a1, h1), (ag, h}), (a3, hY)} is a popular matching for the new instance. Fortunately,
popular matchings do not require each applicant to be matched to her top choice item.
In this sense, we expect to improve the situation in terms of popularity by having ad-

ditional copies of some items within the specified bounds.

This problem is called the Popular Matching with Post Copies. An example for the
popular matching problem is the training program. A training program can be run

for a single person, but some training programs may be able to accommodate more
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than one person. We wish to fix the capacity of each training program so as to enable
the resulting instance to admit a popular matching. An other relevant scenario is to
organise bus tours at a conference. People can express their preference over the tours

and it is possible to increase the size of a bus at a cost.

However Kavitha and Nasre [Kavitha and Nasre, 2011] gave an example to show that
giving each house its maximum possible capacity does not always help to ensure that a
popular matching exists. Specifically, they gave a solvable CHA instance where each
house has capacity 1, but if we raise the capacity of every house to 2 then the instance

is no longer solvable.

Consider the following graph, G = (AU P, E') where A = {a4, as, as,as, a5} and P =
{f1, f2, 51, S2, S3, S4} and the preference lists of people are described in Figure 2.10(a).
In Figure 2.10(b) we have the same set of applicants and preference lists except that
every item has 2 copies. That is, P’ = { f1, f1, f3, f2, 51, S}, S2, Sh, S3, S5, S4, S } Where
we have explicitly included an identical copy b of b, for every b € B. We refer to this
instance with duplicates as the instance H = (A U P’, E’). The first column in the
figure denotes the set of people and the row adjoining it denotes the preference list of
the particular person. For example, a; treats f; as its rank-1 item, f, as its rank-2 item
and s; as its rank-3 item according to Figure 2.10(a). When there are multiple items
in the same cell as in case of Figure 2.10(b), the items are tied at that rank. That is, a;

treats both f; and f] as its rank-1 item according to Figure 2.10(b).

1 2 3 1 2 3
a1:fi f2 s1 a1 :fifi fofs 518
az :f1 fo s2 az :f1f) fafy 8285
az :fi f2 s3 as iflf{ fzfé 3335,
as :f1 fo sS4 as f1f1 fofs  saSy

as Ifz as i.l'rzlezr

() (b)

Figure 2.10: An instance with copies which does not admit a popular matching.

Consider the subgraph G; = (AUB, E}) of G where every person has edges only to her
top-choice item. It is easy to see that every maximum matching of G; has to match the
following vertices: the items { f1, f>} and the person as. Thus, the items f; and f, are
first choice and sy, ..., s4 are second choice in ;. Hence s; is the most preferred second
choice vertex in (G, for person a;, for ¢ = 1, ..., 4. The instance in Figure 2.10 admits a

popular matching: for example M = {(a1, f1), (as, f2), (a2, 52), (a3, 53), (a4,54)} is a

Investigation of Matching Problems using 34 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Background 2.3 One-sided Case: Popular Matching

popular matching.

Let us now consider the subgraph H; of H where every person has edges to her rank-1
items. The first choice vertices in H; = (AU P, E') are f; and f] while f; and f} are
now second choice in Hy. Thus f; and f} become the most preferred second choice
vertices for ay, ..., a4 - hence any popular matching has to match each of a4, ..., a4 to
one of { f1, f1, fa, f5}. Also, a5 has to be matched to f» or f;. Since there are 5 people
and only 4 items that they can be matched to in any popular matching, there exists no
popular matching now. Thus the instance shown in Figure 2.10(b) where each item has
2 copies does not admit a popular matching while the instance in Figure 2.10(a) where

each item has a single copy does.

Kavitha and Nasre in [Kavitha and Nasre, 2011] proved the following algorithmic re-
sults for the Popular Matching with Post Copies (1,2).

Theorem 2.10. [Kavitha and Nasre, 2011] The FIXINGCOPIES (1,2) is NP-complete.

The result holds even in the following separate cases:

 each applicant a; € A has a unique first choice, at most two (tied) second

choices, and no house of rank > 2;

* each applicant a; € A has a strictly-ordered preference list L; of length at most

3 (excluding l;), where L; is derived from a master list L of all houses in H.

In [Kavitha and Nasre, 2011] the authors show that this problem remains N P-
complete when the preference lists are derived from a master list or have length 2
with ties only in the first position. The same authors consider the variant where we
only have to maintain an upper bound % on the total number of extra copies of all

items, rather than an upper bound on the number of copies of each item.

The problem consists of a graph G = (A U P, E') and an integer k£ > 0. The task is to
decide whether there exist Ay, ..., Ajp| where each A; > 1 and }°; A; < k, such that
by having A; + 1 copies of the i-th item, for all 1 < i < |P], the resulting instance

admits a popular matching. This problem can be solved in polynomial time.

2.3.5 Alternative Optimal Criteria

Various definitions of optimality for one-side matching problem have also been stud-
ied. The most prevalent concept is Pareto-optimality. Informally, a matching is Pareto-
optimal if there is no other matching in which at least one applicant is better off, whilst
no applicant is worse off.

Investigation of Matching Problems using 35 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Background 2.3 One-sided Case: Popular Matching

Other optimality concepts were also studied. =~ A matching is rank-maximal
[Irving et al., 2006] if it matches the maximum number of applicants to their first
choice and then, subject to this, the maximum number to their second choice, and
so on. Similarly to Pareto-optimal matchings, rank-maximal matchings always exist

and can be found in polynomial time [Irving et al., 2006].

The notion of a popular matching [Manlove and Sng, 2006] is also well-known. A
matching M is Pareto optimal if there is no other matching M’ such that | P(M, M')| =
Oand |[P(M', M)| > 1. Hence a popular matching is Pareto optimal. In contrast of the

Pareto matching, a popular matching does not always exists.

To see this, consider the example in Figure 2.9. It is clear that a matching cannot be
popular unless all applicants are assigned. The unique matching up to symmetry in
which all applicants are assigned is M = {(a;,h;) : 1 < i < 3}, however, M’ =
{(az, h1), (as, ha)} is preferred by two applicants, which is a majority. The potential
absence of a popular matching in a given HA instance can be related all the way back
to the observation of Condorcet (1785) that, given k voters who each rank n candidates
in strict order of preference, there may not exist a “winner,” namely, a candidate who

beats all others in a pairwise majority vote.

Manlove et al. describe the popular matching in the capacitated house allocation prob-
lem in [Manlove et al., 2006] and its variant with weights in [Sng and Manlove, 2010].
McCutchen [McCutchen, 2008] defined two versions of “near-popular” matchings, a
least unpopularity factor matching and a least unpopularity margin matching. Also
[Kavitha et al., 2011] studied a popular mixed matching, which is a probability distri-
bution over matchings that is popular in a precise sense. A mixed matching is simply
a probability distribution over matchings in the input graph. The function ¢ that com-
pares two matchings generalized in a natural manner to mixed matchings by taking
expectation. A mixed matching P is popular if ®(P,Q) > ®(Q, P) for all mixed
matchings ().

The author of [Mestre, 2006] draw an efficient algorithm for the weighted popular
matching problem, where each applicant is assigned a priority or weight, and the def-
inition of popularity takes into account the priorities of the applicants. In this case the
algorithm for the no-ties case has O(n+m) complexity, and for the version that allows
ties, the complexity is O(min(k+/n,n)m), where k is the number of distinct weights
assigned to applicants. The optimal popular matching [Kavitha and Nasre, 2009]

where it is possible to return the most fair matching.

Kavitha et al. [Kavitha and Nasre, 2011, Kavitha et al., 2014] solved the problem of
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finding a popular matching in a setting where additional copies of items could be
introduced at a cost. Some attention from the constraint programming community
has focused on encoding many variants of the stable matching problem and its vari-
ants [Gent et al., 2001, Manlove, 2005, Prosser, 2014].

[McCutchen, 2008] proposed two quantities to measure the unpopularity of a match-
ing and showed polynomial time algorithms to compute these measures for any fixed
matching. He also showed that the problem of computing a matching that minimizes
either of these measures is NP-hard. Huang et al. [Huang et al., 2011] gave algorithms
to compute matchings with bounded values of these unpopularity measures in certain
graphs.

2.4 Kidney Exchange Problem

Damage from kidney disease can cause irreparable loss of organ function and, even-
tually, kidney failure. Such failure requires either continual dialysis or an organ trans-
plant to sustain life. Kidney transplant is the only effective treatment to cure end stage
renal disease, affecting one in every thousand European citizens. Waiting for a com-
patible deceased donor can involve impractically long waiting times, so living donor
transplant is a good alternative: a close relative can give one of its kidneys to a patient.
As approximately 40% of living donors [Roth et al., 2004] are incompatible with their
specified recipient, several countries have independently developed kidney exchange
programs to overcome this issue. However, even when a patient finds a willing living
donor, sometimes they are not always compatible, do to blood type compatibility or
other specific tests. A kidney exchange arise when a pair (patient, donor) is incompat-
ible with each other and they seek to find a compatible match with other incompatible
pairs. In such a program, a patient with an incompatible donor can "swap" its donor

with another patient in a similar condition.

Centralised matching programs exists in USA, in the Netherlands, Canada, the United
Kingdom, Portugal, Australia, and Israel to organise kidney exchanges between in-

compatible patient-donor pairs.

South Korea performed the first kidney exchange in 1991 [Park et al., 1999,
Kwon et al., 1999], followed by the Switzerland in 2001 [Thiel et al., 2001]; these

swaps were organised on a small scale and by hand.

The first kidney exchange in USA was in 2000, involving two blood type incompatible

pairs [Wallis et al., 2011]. Altruistic donors can also join the program, i.e. donors that
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do not have an associated patient and do not expect anything in return. A report in

2009 counted 13-way exchange involving altruistic donor chains 2.

A 4-way domino kidney transplant involving three cities across Canada was performed
soon after the registry was activated in 2009. Since then, multiple domino and paired
exchanges have been successfully undertaken and most parts of the country are now

participating.

In 2016 a cost action has been established to support an European Network for Collab-
oration on Kidney Exchange Programmes *. The project brought together 28 European
countries and policy makers, clinicians, economists, social scientists and optimisation
experts in order to establish and channel the various themes that have to be addressed

for the implementation of a collaborative KEP for the EU.

24.1 Compatibility Graph

The pairs (donor, patient) must be compatible when undergoing organ transplanta-
tions [Ashlagi and Roth, 2012, Roth et al., 2004, Roth et al., 2005]. One donor must
be blood type compatible with their recipient, the second compatibility is related to the

tissue type and the third one is the crossmatching. Below we will explain both of them.
Blood type

In living donation, the following blood types are compatible:
* donors with blood type A can donate to patient with blood types A and AB
* donors with blood type B can donate to recipients with blood types B and AB
* donors with blood type AB can donate to recipients with blood type AB only

* donors with blood type O can donate to recipients with blood types A, B, AB
and O

Therefore, O is the universal donor: donors with O blood are compatible with any other
blood type, and AB is the universal patient: patients with AB blood are compatible with
any other blood type.

Tissue type

https://www.washingtontimes.com/news/2009/dec/14/13-way-kidney-transplant-sets-record/
3http://www.enckep-cost.eu/
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The final test is tissue type, also known as HLA type, between a kidney donor and pa-
tient, which is used to identify the presence of preformed antibodies that would damage
the kidney, i.e. cause rejection from that specific donor. Tissue matching is a very com-
plex area involving testing the similarity of certain proteins, called antigens, between
the donor and patient, which are defined through blood tests. Once compatible blood
type is established, a HLA (Human Leukocyte Antigen) crossmatch # is completed.
For kidney transplantation, we are looking for 6 antigens, called histo-compatibility
complex or HLA antigens. By analysing which of these specific antigens both indi-
viduals have, we are able to determine the closeness of tissue matching. A six-antigen
match, both people have the same set of six antigens, is the best compatibility between
a (donor, patient) pair who are not identical twins. This match occurs 25 percent of
the time between siblings having the same mother and father and also occurs from

time-to-time in the general population.

If the crossmatch is positive, the patient has responded to the donor, antibodies were
present and killed the cells, and transplantation should not be carried out. A negative
crossmatch means the patient has not responded, and transplantation may proceed.
Therefore, the crossmatch is the final and very important test which is done just before

the surgery and indicates a go or no go with a transplant operation.

2.4.2 Graph Model
Formally, the KEP is a non-bipartite matching problem on a directed graph, where

nodes correspond to patient/donor pairs or simply to willing (“altruistic””) donors
[Dickerson et al., 2012b, Roth et al., 2005].

d1 p1/\ d2 p2

tr_ ¢

Figure 2.11: A pairwise exchange

An arc from node ¢ to j means that donor ¢ is compatible with patient j, after a blood

type compatible test was performed, and a cycle corresponds a viable set of exchanges.

“https://www.lifespan.org/centers-services/transplant-center/donor-guide
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In Figure 2.11, the pairs are incompatible between them, but donor d; can give to

patient p, and donor ds can give to patient p;, forming a pairwise exchange.

An altruistic donor can initiate a cycle by donating his organ to a patient, whose
paired donor donates her organ to another patient, and so on, with no kidney in re-
turn. These type of cycles are called chains. In Figure 2.12, we have a 3-way cy-
cle {(di,p1), (d3, p3), (d2,p2)}, a 2-way cycle {(ds, ps), (da, p2)} and a 3-way chain
{(a), (d1,p1), (ds, p3), (d2, p2)}-

Figure 2.12: A 3-way chain example

An altruistic donor initiates a chain by donating his organ to a patient, whose paired
donor donates her organ to another patient, and so on. With altruistic donors, the KEP
graph becomes very complex. Sometimes, an exchanges that begins from an altruistic

donor can terminates with the last pair giving the donor kidney to the “waitlist”.

Consider the chain (a1, ps, p2, b2, P1, P, ps) in Figure 2.13 as an example: the incom-
patible (patient,donor) pair represented by b, is called a bridge donor. What it means
is that the transplants from altruistic donor a, to patient p3, from donor p3 to patient
P2, and from donor ps to patient b, are all performed simultaneously. Donor by will not
donate his/her kidney at the same time patient b, receives his/hers, but will wait until
the transplants involving p1, pg, and patient pg are ready. These transplants will then be
performed simultaneously. The kidney of donor pg will then go to the deceased donor
waiting-list. Altruistic donors and bridge donors are collectively called non-directed

donors (NDDs) in some studies.
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|
vl
' Waiting List '

Figure 2.13: An example of KEP pool [Mak-Hau, 2015]

A matching is a collection of disjoint cycles/chains, where no vertex can give out
more than one item (e.g., more than one kidney). Finding cycles of these possible
donations in large groups of people is a computationally difficult problem. The goal
of the programmes are typically to save as many patients as possible, so the optimal

solution has maximum size under some constraints and priority criteria.

Even though short cycles/chains are preferred to the long chains/cycles, as the surgeries

must take place simultaneous, a 9-way cycle swap has been performed °.

2.4.3 C(lassic KEP Formulations

The two fundamental IP models for kidney exchange are the cycle formulation
[Roth et al., 2004, Roth et al., 2005, Abraham et al., 2007a, Manlove and O’Malley, 2014],
which includes one binary decision variable for each feasible cycle or chain,
and the the edge formulation [Dickerson etal.,2016, Constantino et al., 2013,

>https://www.sfgate.com/health/article/9-way-kidney-swap-involving- 18-surgeries-at-2-
6307975.php
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Anderson et al., 2015, Mak-Hau, 2015], which includes one decision variable for each

compatible pair of agent.

In the cycle formulation, the number of constraints is sublinear in the input size, but
the number of variables is exponential. In the basic edge formulation, the number of
variables is linear but the number of constraints is exponential. Optimally solving these

models has been an ongoing challenge for the past decade.
The cycle formulation

Given a set of vertices V = (P U A), where P is the number of incompatible pairs
and A the number of altruistic donors, the number of cycles of length at most [ is
O(|P|"), the number of uncapped chains is exponential in | P| if A # 0, and the num-
ber of capped chains of length at most k is O(|A||P|*). Let C(I,k) be the set of
cycles of length at most [ and chains of length at most k. The KEP can be modeled as
an IP formulation [Roth et al., 2005, Dickerson and Sandholm, 2013, Mak-Hau, 2015,

Manlove and O’Malley, 2014] with one decision variable per each cycle/chain.

The objective function is to maximise some utility function, i.e. the weight of the
cycles, or the number of transplants. Equation (2.34) prevents a pair to be selected in

more than one cycle.

max z = ijxj (2.33)
ceC
st Y a; <1 Vie {PUA} (2.34)
ceC:i€c
z. € {0,1} VeeC (2.35)

Figure 2.14 illustrates an example of five incompatible pairs. In Figure 2.14, we have
four cycles, three 2-way cycles, ¢y, ¢2, c3, and one five-way cycle, ¢4, therefore there
are four binary variables, z1, xo, r3, z4 With weight ={2, 2, 2, 5}. An optimal solution

is to perform cycle ¢, with five transplants.

Unfortunately, the cycle formulation has the number of variables increasing exponen-
tially. Branch and price with column generation approaches [Barnhart et al., 1998]
can be used to reduce the model in memory. This approach has been used in
[Abraham et al., 2007a, Glorie et al., 2014, Dickerson et al., 2013]. Indeed, the num-

ber of cycles can grow exponentially with k.
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Figure 2.14: Example of KEP graph [Abraham et al., 2007a].

The edge formulation

The model is defined over a directed graph G = (V, A(V')), where V is the set of
nodes (pairs and altruistic donors) and A(V/) is the set of arcs. In the edge formulation
[Roth et al., 2007, Mak-Hau, 2015, Anderson et al., 2015], a variable z;; is associated

each edge (7,j) € A. The model is defined as:

max Z Wij L4 (236)
(i,5)€A
subject to:
Z Ty = Z Lij, VieV (237)
j:(gi)eA j:(i,j)€A
Z i < 1, VieV (2.38)
j:(ji)eA
Z xipjp+1 S k — 1, Vpaths(il, ig, Zk, ik+1) (239)
1<p<k
z;; € {0,1}, V(i,j) € A (2.40)
Investigation of Matching Problems using 43 Danuta Sorina Chisca

Constraint Programming and Optimisation
Methods



Background 2.4 Kidney Exchange Problem

The objective function 2.36 maximises the weighted sum of the exchange, i.e. in the
case of unitary weights. This corresponds to maximising the total number of trans-
plants. Constraints 2.37 assure that patient ¢ receives a kidney iff donor ¢ donates a
kidney. Constraints 2.38 guarantee that a donor can only donate one kidney and con-
straints 2.39 enforce the cycle-length: to exclude cycles larger than &, we need to make
sure that every path of length £ arcs does not have more than & — 1 arcs in a feasible

exchange.

In Figure 2.14, there are eight edges, eq, €2, €3, €4, €5, €g, €7, g, thus eight binary vari-

ables. In this case the optimal solution is ey, e3, €5, e7, eg for a total of five transplants.

In general the number of such paths can grow exponentially with k£ and computa-
tionally the size of the problem may become a bottleneck for solving large problem

instances [Constantino et al., 2013].
Other formulations

Other compact formulations are presented in [Constantino et al., 2013, Alvelos et al., 2015,
Manlove and O’Malley, 2014, Klimentova et al., 2014]. Their extended edge formula-
tion has shown to be effective in finding the optimal solution where the cycle cap is
greater than 3. However, each of the compact formulations introduced in their work
has a weaker linear program (LP) relaxation than the cycle formulation, even when
altruistic donors are not included. Dickerson et al [Dickerson et al., 2016] introduced
a variant of the edge formulation, position-indexed edge formulations for kidney ex-

change, considering even the variant with altruistic donors.

Real-world exchanges suffer to some degree from last minute failures. This can hap-
pen for many reasons, including more extensive medical testing before the surgery, a
patient or donor becoming too sick to participate, or a patient receiving an organ from
the deceased donor waiting list. In [Dickerson et al., 2013] the authors considered the

failure aware for the edge formulation setting.

We can model the kidney exchange as a market by constructing an agent for each
patient, and an undirected edge between any two agents where the incompatible donor
for one patient is compatible with the other patient, and vice versa. An edge {p;,p;} in
a matching corresponds to a pairwise kidney exchange, in which p; receives a kidney
from p;’s donor in exchange for p; receiving a kidney from p;’s donor. Preference lists
can be constructed on the basis of varying degrees of compatibility between patients

and potential donors.
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Exchanges involving an arbitrary number of nodes (i.e. k-way exchanges) have been
considered in the literature. Dealing with more than three/four pairs is hard in practice,
since all the operations often take place simultaneously to avoid withdrawal of donors

after their pair received the organ.

Most kidney exchange clearing houses try to maximise the (weighted) number of trans-
plants without attention to whether some incompatible pairs can be matched internally
by the hospitals that entered them into the database. Thus, it may not be individu-
ally rational for a hospital to contribute those pairs it can match internally (see, e.g.,
[Roth, 2008]). Some weighted matching algorithms put some weight on internal ex-

changes, but this does not solve the problem.

In some cases sharing the information of all the pairs may lead to find a longer chain

of compatibilities. Some work regarding this is presented in [Ashlagi and Roth, 2012].

In [Manlove and O’Malley, 2014], the authors introduces some optimal criteria to the
kidney exchanges for the NLDKSS, as determined by the Kidney Advisory Group of
NHSBT.

Definition 2.5. A set of exchanges w is optimal if:
A. the number of effective 2-cycles in m is maximised;
B. subject to (1), m has maximum size;
C. subject to (1)-(2), the number of 3-cycles in 7 is minimised;
D. subject to (1)-(3), the number of back-arcs in the 3-cycles in 7 is maximised;
E. subject to (1)-(4), the overall weight of the cycles in 7 is maximised.

In barter-exchange markets, agents seek to swap their items with one another in or-
der to improve their social welfare [Abraham et al., 2007a, Ashlagi and Roth, 2012],
meaning they try to maximise the exchange in an weighted directed graph. Some pro-
posed models for kidney exchange programs have exponential numbers of constraints
or variables, which makes them fairly difficult to solve when the problem size is large.
[Constantino et al., 2013] propose two compact formulations for the problem, explain
how these formulations can be adapted to address some problem variants, and provide

results on the dominance of some models over others.

The author of [Mak-Hau, 2015] reviews existing Integer Programming (IP) and mixed
integer linear programming (MILP) approaches to different variations of the KEP and
propose a polynomial-sized and an exponential-sized MILP. The author also distin-
guish between Cardinality Constrained Multi-cycle Problem (CCMcP) and the Cardi-
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nality Con- strained Cycles and Chains Problem (CCCCP). The cardinality for cycles
is restricted in both CCMcP and CCCCP. The CCMCcP can be viewed as an Asymmet-
ric Travelling Salesman Problem that does allow subtours, however these subtours are

constrained by cardinality, and it is not necessary to visit all vertices.
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Chapter 3

Popular Matchings

We choose to go to the Moon in this decade and do the other things, not because
they are easy, but because they are hard. J.E. Kennedy

In this chapter we study several variants of the popular matching problem. We study
the problem of matching a set of applicants to an other set, i.e. items/posts, where each
applicant has an ordinal preference list, which may contain ties, ranking a subset of
the members of the other set. Several notions of optimality are studied in the literature
for the case of strictly ordered preference lists [Manlove, 2013, Manlove et al., 2006,
Irving et al., 2006]. A matching M is popular [Abraham et al., 2007a] if there exists

no matching M’ where more applicants prefer M’ to M.

We propose a constraint programming approach to the popular matching problem. We
show that one can use the Global Cardinality Constraint to encode the problem even
in cases that involve ties in the ordinal preferences of the applicants. We propose
novel algorithmic and complexity results for this variant. Next, we focus on the NP-
hard case where additional copies of posts can be added in the preference lists, called
Popular Matching with Copies. We define new dominance rules for this problem and
present several novel graph properties characterising the posts that should be copied

with priority.

In the literature there exist different optimal popular matching models, but only for
the case where no ties are considered [Kavitha and Nasre, 2011]. We show that the
optimal popular matching with ties can be solved in O(n(m + nlog(n))) time, where

n is the set of applicants and m is the sum of the length of the preference lists.
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Popular matchings 3.1 Background

In Section 3.1 we gave the necessary background in graph theory, constraint program-
ming. In Section 3.2 we show how the popular matching problem can be modelled
using a constraint programming (CP) approach ! . Using CP is extremely beneficial to

tackle the problem with side constraints.

In Section 3.3, we propose an integer linear programming (ILP) model and a flow

model for the optimal popular matching, where ties are allowed in the preference list.

Section 3.4 focuses on instances that does not admit a popular matching. In particular,
we consider the case where we can add copies of posts in order to find a popular
matching 2. This problem is known to be NP-Hard [Kavitha and Nasre, 2011] and
it remains NP-complete even when preferences are derived from the same master
preference list [Irving et al., 2008]. Kavitha et al. in [Kavitha and Nasre, 2011] show
that this problem remains A/P-complete when the preference lists have length 2 and
ties are allowed only in first position. However, their results are not applicable to
the general case. To the best of our knowledge, our contribution is the first work
that considers more than 2 copies for each post. We develop a number of new graph
properties, which are used to define new dominance rules for the popular matching with
copies problem. These dominance rules have a significant impact for the efficiency of
the branching strategy. Last, Section 3.5 experimentally shows the key aspects of a
good branching strategy and show the efficiency of our dominance rules for the variant

of the popular matching problem where copies are possible.

3.1 Background

Abraham et al. in [Abraham et al., 2007b] showed that the standard popular matching
problem is polynomial to solve even if the preference lists contain ties. In particular,

they describe a number of efficient algorithms for finding popular matchings.

Several variants of the popular matching problem exist in the literature. For
example, let r be the largest preference list size. =~ A popular matching is
fair [Kavitha and Nasre, 2009] if it matches the least number of applicants to
their r-th choice and then, subject to this, the least number to their (r — 1)-
th choice, and so on. A matching is rank-maximal [Irving et al., 2006] if it

matches the maximum number of applicants to their first choice and then, sub-

'Danuta Sorina Chisca, Mohamed Siala, Gilles Simonin, and Barry O’Sullivan. A CP-based ap-
proach for popular matching". Published in the Thirtieth AAAI Conference on Acrtificial Intelligence,
Phoenix, Arizona, USA, pages 4202-4203, 2016. ISBN 978-1-57735-760-5

’Danuta Sorina Chisca, Mohamed Siala, Gilles Simonin and Barry O’Sullivan. New Models for
Two Variants of Popular Matching. Published in: 2017 IEEE 29th International Conference on Tools
with Artificial Intelligence (ICTAI), Boston, USA. DOI: 10.1109/ICTAI.2017.00119
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Popular matchings 3.2 Modelling Popular Matching in CP

ject to this, the maximum number to their second choice, and so on. The authors
of [Kavitha and Nasre, 2011, Kavitha et al., 2014] studied the problem of finding a
popular matching in a setting where additional copies of posts can be introduced at
a cost. A variant called popular matching in the capacitated house allocation prob-
lem is described in [Manlove et al., 2006] and its variant with weights is introduced
in [Sng and Manlove, 2010].

3.1.1 Graph Theory

We denote by G = (A U P, E) an undirected bipartite graph with two disjoint sets of
vertices A and P, and a set of edges £. A set M C F is a matching in G if no two
edges in M are adjacent in GG. Let M denote the set of matchings in G.

A maximum cardinality matching (for short a maximum matching) is a matching M €
M that maximises |M|. A matching M is perfect if every vertex of GG is incident to
an edge of M. N(v) denotes the neighbourhood of any v € A. For any maximum
matching M in a graph G, let P = vy, vy, ..., v; be a M-alternating path as defined by
Berge [Berge, 1957]. An alternating path P with respect to M is a simple path in G
that contains edges in M and not in M alternately. If the end-vertices of P are exposed
then M is an augmenting path. We will use the notion of an augmenting ) -alternating
path, and the following well-known theorem from [Berge, 1957].

Theorem 3.1. Let M be a matching in a graph G. M admits a maximum cardinality

if and only if G does not contain an augmenting M -alternating path.

We will use the Gallai-Edmonds decomposition [Lovasz and Plummer, 1986,
Abraham et al., 2007b] for bipartite graphs, which involves labelling vertices with re-

spect to a maximum matching M.

3.2 Modelling Popular Matching in CP

Constraint programming (CP) is a rich declarative paradigm to tackle these situations.
Using a CP-based approach, the problem is formulated as a set constraints (or sub-
problems) defined over a set of variables. CP solvers rely on propagating these con-

straints to reduce the search space as efficiently as possible.

An instance of the popular matching problem involves an undirected bipartite graph
G = (AUP, E), where A is called the set of applicants and P is called the set of posts,
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and each applicant a; ranks all posts in {p;|(a;, p;) € E'}. We assume in the rest of this
chapter that every applicant a; € A has in its preference list an extra unique post /;,
called last resort. Every last resort /; is assumed to be worse than any post in P. Note
that the use of /; as an abbreviation of /(a;). In this way, we can assume that every
applicant is matched, since any unmatched applicant can be assigned to her unique last

resort. Therefore, we can focus on matchings that are applicant-complete.

For each matched node u in a matching M, we denote by M (u) the node linked to
u by an edge in M. An applicant a; prefers a matching M to a matching M’ if a; is
matched in M and unmatched in M’, or if a; is matched in both M and M’, but prefers
M (a;) to M'(a;). A matching M is more popular than a matching M’ if there are more
applicants preferring M to M’. A matching M is popular if there exists no matching
more popular than M. The popular matching problem is the question of deciding if a
popular matching exists, and to find one if it is the case.

We show that this problem can be formulated as a single Global Cardinality Con-
straint [Régin, 1996]. We begin with a CP model for the classic popular matching
problem. Let Z be a popular matching instance and G = (A U P, E) the associated
undirected bipartite graph. We use one integer variable x; per applicant a; € A. The
domain of each x; represents all the potential matches for a;, thus its domain represents
all posts that are neighbours of a; plus the unique last post /;. We decide to represent
the assignment of a; by the index of the post (each /; is indexed by a unique value
| P| + 7). Therefore, the domain is initialised by D(z;) = {j|p; € N(a;)} U{|P| +i}.
Assigning a value j to x; is interpreted as a; is matched to post p; if 7 < |PJ, and to [;

otherwise.

3.2.1 Strict Preference Lists

We consider here the case where preferences are given without ties. For each applicant
a;, we denote by f(a;) the first-ranked post in its preference list. We denote by f(p;)
the set of applicants a; where f(a;) = p;. A post p; € P is called f-post if Ja; € A
such that f(a;) = p;. We denote by s(a;) the best (most preferred) post for a; that
is not an f-post. Such post is called s-post. The least preferred post /; guarantees the

existence of s(a;).

Figure 3.1 shows an example with 6 applicants and 6 posts. The f-posts for this instance
are py,ps,ps and ps, and f(p2) = {ai}, f(ps) = {as}, f(ps) = {as}, f(ps) =
{as, a4, as}. The bold entries in the preference lists are the f-posts and the underlined

entries are the s-posts.
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Popular matchings 3.2 Modelling Popular Matching in CP

Let G’ = (AU P, E') be a the reduced graph of G where £’ = {(a;,p)| p € f(a;) U
s(a;),a; € A}, as you can see in Figure 3.1(b).

110

ar: P2 ps ps lr o
az: Ps p1 p3 b Is
az: Pa Ps P2 B3
aj: Ps p1 p2 Uy
as: Ps p1 p2 s \

ag: Ps P2 Ps ‘-r[i lg o a6, p6

(a) (b)

Figure 3.1: An example without ties in the preference lists (a) and the reduced graph

G’ (b).
Our CP model is based on the following lemma:

Lemma 3.1. [Abraham et al., 2007b] A matching M is popular iff the following con-
ditions hold:

(a) Every f-post is matched in M,
(b) For each applicant a;, M (a;) € {f(a;), s(a;)}.

Using Lemma 3.1, we show that one can model the popular matching problem using
one global cardinality constraint (GCC) constraint. We define the mapping (b as fol-
lows: 1b(j) = 11if p; is an f-post and {b(j) = O otherwise. This means that the lower
bound on the f-posts must be 1, from Lemma 3.1, and the lower bound on the s-posts
can be 0, since not all the s-posts can be in the matching. We define the mapping ub as
follows:

A. ub(j) =0ifVa, € A, f(a;) # p; and s(a;) # pj,

B. ub(j) = 1 otherwise.
Given a complete assignment of the variables [z1, ..., z|4|], we define a set of edges
M = {(ai, pj)|D(w:) = {7} AJ < |P[}.
Theorem 3.2. GCC(Ib, ub, [x1, ..., xa)))is satisfiable iff M is a popular matching.

Proof. Observe first that if GCC(Ib, ub, [1, ..., x|4|]) is satisfiable then all variables
will have pairwise different values. Therefore M is a matching. The rest of the proof

is a direct application of Lemma 3.1. U
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Popular matchings 3.2 Modelling Popular Matching in CP

3.2.2 Preference List with Ties

We consider the case where preferences can contain ties (see Figure 3.2(a)
[Abraham et al., 2007b]). The notion of f-post and s-post are defined in the case with

ties similar to the preferences list without ties. The definition of f(a;) becomes the set

ap (P1 P2) pa L
o P1 (;02 P_v) l2 ,
s p2 (p4 p_{)) 33 ay . P4
a4 P2 71 P3 la (1;/1)3
as Pa P3 P2 ls /
ag (ps Ps) P11 s “ L6
(a) (b)
& = {a1,az, a3, ay, p3, ps, pe, 11, b2, I3, 1y, 15, 6 }
O = {ag, p1,p2}
U = {as, ps}

(©)

Figure 3.2: An example with ties in the preference lists and the graph G; with a
maximum matching in bold and the £, O, U labelling sets associated.

of top choices for applicant a;. However the definition of s(a;) is no longer the same

and in this case it may contain a number of surplus f-posts.

Let M be a popular matching of some instance graph G = (A U P, E)). We define the
first-rank graph of G as G; = (AU P, E), where Fj is the set of all rank-one edges.

Let M; be a maximum matching in GG;. We recall the Gallai-Edmonds decomposi-
tion [Lovasz and Plummer, 1986] in Lemma 3.2 using the following notation. Using
M, we can partition AU P into three disjoint sets: £, O, and U. These sets are defined
as following: & (respectively O) is the set of nodes having an even (respectively odd)
alternating path with respect to M/; from an unmatched node; and U/ is the set of nodes
that are notin £ U O.

Lemma 3.2 (Gallai-Edmonds decomposition). Let £, O and U be the vertices sets
defined by G| and M, above. Then:

A. & O, and U are a partition of AU P, and any maximum matching in G leads
to exactly the same sets €, O, and U.
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B. Every node in O (resp. U) is matched to a node in € (resp. U), and |M| =
O] +|u|/2.

C. No maximum matching of G, contains an edge between two nodes in O, a node

in O and a node in U, or between a node in £ and a node in U.

In [Abraham et al., 2007b], s(a;) is defined as the top choice(s) for a; that is
in £ (see Figures 3.2(a) where bold entries represent the f-posts and under-

lined entries represent the s-posts). In this example the nodes label are: & =
{ay, az, a3, a4, p3, 05,6, 11, 12,13, 4, 15, 6 }, O = {ag, p1, p2}, and U = {as, pa}.
We use the following theorem from [Abraham et al., 2007b] to model the popular

matching with ties.

Theorem 3.3. [Abraham et al., 2007b] A matching M is popular iff:
A. M N Ey is a maximum matching of G,
B. For each applicant a;, M (a;) € f(a;) U s(a;).

Using the reduced graph model, we have the following lemma:

Lemma 3.3. From an instance G° = (A U P°, E°) that does not admit a popular
matching, adding a copy of a post p;, that has already a number of copies equal to the

degree of the vertex p; in G°, leads to an instance without popular matching.

Proof. In the graph G°, the number of applicants connected to any post p; defines the
maximum number of copies we should allow for that post. Indeed in other case there

will not be enough applicants to match with the new copy. U
From this Lemma, we apply this new pre-pruning rule on our model:

* Vi, D(x;) < D(x;) \ {d(pi)+1,...,c}, where d(p;) is the degree of the item p;
in the subgraph G°.

We show how to model the popular matching problem with ties using one GCC con-
straint. The domain of every variable z; is pruned to contain only values corresponding

to posts in f(a;) U s(a;).

Next, by using the properties of £, O, U from Lemma 3.2 we can apply several pre-
processing steps to our model (note that a last resort can be only a member of &):

A. By definition, every vertex in U/ is matched to another vertex in /. Let ¥ =
{jlp; € U} and Q = {ila; € U} be the two indexes of vertices in I/. This

property leads to the following preprocessing steps:

Investigation of Matching Problems using 53 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Popular matchings 3.3 Optimal Popular Matching

(@) Vi€ O, D(w) « D(z)N W,
(b) Vj € W, Vi€ [1,[A[]]\ Q, D(x;) < D(z:) \ {j}-

B. By definition, every vertex in O is matched to a vertex in £. Let © = {j|p; €
E Vlij_pp € E}and T = {i]a; € £} be the two indexes of vertices in £.

Let ® = {k|ar, € O} and A = {l|p, € O} be the two indexes of vertices in O.
This property leads to the following preprocessing steps:

(a) Vk € &, D(z) < D(xy) N O,
(b) Vi € A, Vi e [1,|A||\ T, D(z;) < D(z;) \ {I}.
The mappings (b and ub are defined as follows:
A. 1b(j) =1, Vj such that p; € O U U, otherwise [b(j) = 0;

B. ub(j) = 1 for all j such that p; is an f-post, p; is an s-post, or j > |P|and [;_|p
is an s-post. Otherwise ub(j) = 0.

For every complete assignment of [x1, . .., z|4|], we define a unique set of edges M =
{(ai, p)|D(:) = {7} N j <[P}}.

Theorem 3.4. GcC(lb,ub, [x1,...,x4]]) is satisfiable iff M is a popular matching

with ties.

Proof. = First, if GCC is satisfiable, then Va; € A, M(a;) € f(a;) U s(a;). Second,
the preprocessing steps enforce the properties (b) and (c) from Lemma 3.2. Therefore

M N Ej is a maximum matching of G;.

< If M is popular, then by construction, the correspondent GCC constraint is satisfi-
able. U

3.3 Optimal Popular Matching

Several notions of optimality are studied in the literature for the case of preferences
without ties [Kavitha and Nasre, 2009, McDermid and Irving, 2009]. The most com-
mon way is to associate each edge to a weight and then find a minimum/maximum

weight popular matching.

The authors of [McDermid and Irving, 2009] improve the algorithms of Kavitha
[Kavitha and Nasre, 2009] for finding a mincost popular matching in O(n + m) time
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and rank-maximal/fair popular matchings in O(nlogn + m) time, where n = | A| and

m is the sum of preference lists.

We consider the more general case where preferences can contain ties. We assume
that the weight function is monotonically increasing with respect to the rank. To the
best of our knowledge, the complexity of finding an optimal popular matching where
ties are allowed in the preference lists, is unknown. However, recently we found a
technical report in ArXiv [Matsui and Hamaguchi, 2016] showing the result with the

same worst-case time complexity. Our approach is, however, much simpler.

The solution of the popular matching problem is a matching between the set of appli-

cants A and the set of posts A” corresponding to the values in A = U, D(x;).

Let n; be the number of applicants, and ns < n; be the number of posts in AP,
We denote by Ag the set of posts in O, U U, where (3 is the size of this set. Let
G' = (AUAT | E’) be the bipartite graph modelling our problem, where the weight on

each edge (a;,p;) € £’ represents the rank of p; in the preference lists of a;.

We use the well-known Minimum Weight Perfect Matching in Bipartite Graph prob-
lem. This problem is equivalent to the classic assignment problem with cost, which

has the following ILP model to solve it:

min Z wfxf 3.1)
(ai,p‘j)EE’
Sal=1 VWi (3.2)
J
Sal=1 Vj (3.3)

; { 1 if the edge (a;, p;) is selected

0 otherwise

We transform the graph G’ ito an instance of the Minimum Weight Perfect Matching
in a Bipartite Graph problem. In order to obtain a perfect matching, we need to add
K = ny — ny; dummy-applicant vertices in A, each of which is linked to all posts in
AP\ Aj with a weight equal to a large constant C, e.g. C' = |P|?. Note that the
weight on the edges between a; € A and p; € Agis equal to 1 (first rank). This linear
transformation is illustrated in Figure 3.3.

If we compute a Minimum Weight Perfect Matching with the ILP and find a solution,
we will obtain a weight equal to K'C' + €, where € represents the weights sum from

the n; normal applicants. Since KC' is constant, ¢ is the minimum weight that we
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are looking for. Thus, the matching obtained, without the dummy-applicant vertices,

corresponds to a solution of optimal popular matching problem.

P
A A Aj

TN gpe—
ay | pl ’/(6 — |Op U Uplj
Ao Y ~
I~ pﬁ
—/
Ap,
al N
Dummy __—] : .
applicants :ﬁ
e | Dny

~— ~—

Figure 3.3: A perfect matching instance.

Kuhn and Yaw [Kuhn and Yaw, 1955] gave the first polynomial algorithm, called
the Hungarian method, to solve the Minimum Weight Perfect Matching in Bi-
partite Graph problem. The algorithm had a running time of O(n3). Then, in
[Edmonds and Karp, 1972] the authors gave a reduction of this problem to the Flow
Circulation problem. As we did with our linear transformation to obtain a perfect
matching instance, we can create a flow circulation instance in a special network, and

from this new model, we can use better existing complexity results.

Let G = (V, E) be a network, the Flow Circulation problem is define as follow:

[b(v,w) lower bound on flow on the edge (v,
ub(v,w) upper bound on flow on the edge (v,

(v, w)
(v, w)
c(v,w) cost of one flow unit on the edge (v, w)
(v, w)
(v, w)

Ib(v,w) < f(v, w) < ub(v, (3.4)
min Z w). f(v, 3.5
(v,w)eE
We also need to keep track of the flow of the individual commodities:
fi(v,w) the flow of commodity ¢ from v to w. (3.6)
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f(v,w) =" fi(v,w) the total flow. (3.7)

The conservation constraint must be upheld individually for the commodities:

> filv,w) = 0. (3.8)

weV

3.3.1 Linear Transformation

In order to force the assignment of the 3 posts in Ag, we fix by [1, 1] the lower and
upper bounds of the arcs going out from these posts. We also force the flow passing by
the other posts to not exceed n; — 3, otherwise all the flow could pass by these arcs and
not by the posts in Ag. An illustration of the construction is presented in Figure 3.4.
In [Fredman and Tarjan, 1987], the authors proposed an algorithm to solve the flow
problem in O(n(m + nlogn)) time. Therefore, an optimal popular matching with ties

can be computed in O(n(m + nlogn)) time.

AP Aﬁ
f,:\j/[ff: 0,U0,] )

L] N [1,1]

8, ]

|

G000

0, 1]
\ [ — B,m1 — B8]

ECETILIE

!
CECLE:

Figure 3.4: Illustration of the Flow Circulation problem.

3.4 Popular Matchings with Post Copies

Many instances of the popular matching problem admit no solution. In the literature,
authors have studied such situations where extra copies of posts are allowed in order
to find a solution [Kavitha and Nasre, 2011]. The 1-or-2 copies problem can be seen

as a generalisation of the popular matching problem.
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The problem is related to many real-world applications such as DVD rental stores,
training programs, and bus tours. According to client demand, additional copies of an
item can be purchased in order to satisfy their preferences. A training program can
be run for a single person, but some training programs may be able to accommodate
more than one person. To organise bus tours for a given conference, people express
their preference over the tours and it is possible to increase the size of a bus at a cost,

or with additional buses.
This problem is called the FIXINGCOPIES problem:

Instance: Given a graph G = (AU P, E) and a list (cy, ..., ¢/p|) of upper bounds on

the number of copies possible for each post.

Question: Does there exist an (xi,...,x|p|) such that for each i € {1,...,|P

b
having y; copies of the i-th post, where 1 < y; < ¢;, enables the resulting graph to
admit a popular matching?

The FIXINGCOPIES problem is known to be N"P-complete [Kavitha and Nasre, 2011],
and it remains A'P-complete even when preferences are derived from the same master

preference list [Irving et al., 2008].

3.4.1 Properties of the FIXINGCOPIES Problem

It is assumed that the FIXINGCOPIES problem does not admit a popular matching for

the basic instance Z° where the number of copies of each post is equal to 1.

The bipartite graph associated with Z° is denoted by G° = (A U P°, E°). Thus, our

problem can be divided into two parts:

(a) The decision of the number of copies for each post that defines an instance Z* of

the popular matching problem with ties (containing a graph G* = (AU P, EY));
(b) Solving the popular matching problem given by Z°.

We propose to study the consequences of creating post copies for the instances that do

not admit popular matching according to the labels.

First we will show that the properties from [Kavitha and Nasre, 2011] for the 1-or-2
copies problem can not be applied to our case. We will describe several new rules for

the general copies problem.

In [Kavitha and Nasre, 2011], the authors define two notions: the critical items that are

the items in &/ U O, and the non-critical that are the items in £. Then they gave details
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about which items from the £, O, U labels can or must not be copied. Assume that
G = (AU P, E) is a graph and K is a set of items that can be duplicated. Assume
also that GG does not admit a popular matching, and there exist a way of duplicating
items in K such that the augmented instance G admits a popular matching, and then

the following lemma:

Lemma 3.4. [Kavitha and Nasre, 2011] There exists an augmented instance G such
that every item that is critical in Gy is also critical in Gy and G admits a popular

matching.

This lemma could be useful for our pruning rules for the general case, but unfortunately

this lemma is not true for the general copies problem.

Proof. Indeed, we can use the existing proof and try to do the same, we will see that
cannot work in this case. Suppose that we have a popular matching due to a copy of an
item b; such that b; is critical in G; but becomes non critical (as its copy) in G after
the copy (G is the instance with the copy). As in the proof of the lemma, the maximum
matching in G, is the same without the copy pi. Now for the second condition to
have the popularity, is that we obtain it with this copy, it is because an applicant is
assigned to p}. Due to the non-criticality of p., it is an assignment out of G, so out of
E\. Thus there exists an applicant a not assigned (and non-critical) such that b; is the
best choice from £. If we remove p;, the graph obtained makes p; critical but a is still
non-critical. a has no non-critical items in £ otherwise the maximum matching will
be not maximum. In fact the best choice in £ will be after p; (now critical), it can be
a tie or from a lower rank, but this item can be assigned to another applicant already.
Thus the solution might not be popular and the lemma is not applicable for the general
problem. U

Now, we introduce several properties of the new instances obtained by copying a post
according to the £, O, U labelling. In the following, a post will be said to be in £, O
or U if it is labelled by the corresponding set.

Lemma 3.5. In any instance obtained from the copy of a post p; in O, the post and its
copies will remain in O or be in U. From this copy, any other post in O will be also in

U or will remain in O, and all posts in £ or U will remain the same.

Proof. Let M be the maximum matching used to obtain the sets £, O and . By
definition, if p; is in O then it is linked to an M -alternating path and matched to an
applicant a; in £ (see Figure 3.5). We recall that all posts in these paths are in O by

definition. Therefore there are two cases: 1) there are only non-disjoint )M -alternating
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Figure 3.5: Illustrations of the copy of a post in O in (.

paths linked to p; (see Figure 3.5(a)), and 2) at least two disjoint M -alternating paths

are connected to p; (see Figure 3.5(b)).

In both cases, the copy p; is also connected to a; and to at least one )M -alternating
path. There exists one augmenting ) -alternating path called C from p. By changing
the membership in M of all edges of ('}, we can increase the matching. After this
modification, there is no other augmenting )/-alternating path and the matching is
maximum by Berge’s Theorem [Berge, 1957]. Since all posts of C'; are in O, no post
in £ or U changes from this copy. From this new matching M, we can recompute the
labels.

In the first case, let p; be the closest vertex to p; on C; which creates a joint with other
M -alternating paths. To simplify the proof we split C'y in two parts: the one at the left
of p; (containing p;) and the right one. The right part of C; remains unchanged, but
on the left part of C'y, every vertex changes into I/ (see Figure 3.5(a)). Thus from this
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copy, all posts in O will remain in O or will change into .

In the second case, there exists at least one distinct M -alternating path C5 connected to
p; and p). The concatenation of C'; and the modified C; creates a unique M -alternating
path. Therefore, the labels from the modified C'; remain the same. Thus in both cases,
after the copy of a post in O, all posts in O will remain the same or will be in I/, and

all posts in £ or ¢/ will remain the same. 0J

In a similar way, we have the following proprieties for the applicants’ labels.

Lemma 3.6. In any new instance obtained from the copy of a post p; in O, any appli-
cant in € will remain in £ or will be in U. And all applicants in U or O will remain

the same.

Proof. This proof is complementary of the previous one. First, one can remark that
from a; there can exist M -alternating paths starting by O (at the left of a; on the Figure
3.5). After the modification of (', if a; is in U then these paths may change also in U.
We remark that only applicants in £ can change like this. The other applicants with a

different label will remain the same. O

Corollary 3.1. In any instance obtained from a copy of a post in O, the size of the

maximum matching will be increased by 1.

u u Reach no
~ Q@O - { unmatched ) —»

Reach no
unmatched

o & o0 & 0 ¢
-Q—Q& - 0—0--Q—0

Reach no
unmatched

vertex i\ . D _\_ vertex vertex i\ Pinyg, \
< NENO & NE
/ \
p; 7Y o—oO O

Figure 3.6: Illustration of the copy of a post in ¢/ in GG;.

Lemma 3.7. In any instance obtained from the copy of a post p; in U, the post and its
copies will be in E. From this copy, any other post in U will be in € or will remain in

U. And all posts in £ or O will remain the same.

Proof. Let M be the maximum matching used to obtain the sets £, O and . By
definition, if p; is in U then it cannot be linked to an M -alternating path, and it is
matched to an applicant a; who is also in U (see Figure 3.6). Since the copy p) has
the same properties as p;, no augmenting M -alternating path is created from it, and p/
remains unmatched and in £. Thus the maximum matching remains the same, so all

vertices that are not a member of any ) -alternating path from p; will keep their label.

All the vertices in U that are a member of an M -alternating path from this p; will be

in O or £. It is obvious that the applicant vertices will be in O and the post ones in £.
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All vertices not in U/ that are also a member of this path will remain the same. Thus
after the copy of a post in ¢/, all posts in ¢ will remain the same or will be in £, and

all posts in £ or O will remain the same. 0J

Lemma 3.8. In any new instance obtained from the copy of a post p; in U, any ap-
plicant in U will remain in U or will be in O. And all the applicants in € or O will

remain the same.

Proof. This proof is complementary to the previous one. First, after the changing of
labels on the new M -alternating paths (see Figure 3.6), the only applicants changing
will be the one associated with this path, and more precisely the U/ ones. Note that
from a;, the neighbourhood in U/ will stay the same. The only vertices changing label
are on these new M -alternating paths. Thus, the other applicants with a different label

will remain the same. ]

Corollary 3.2. In any instance obtained from the copy of a post in U, the maximum

matching will remain the same.

Corollary 3.3. From any instance I with a popular matching, every instance * ob-

tained from L by copying just posts in £, remains popular

Proof. From Lemma 3.9, adding more copies from £ will not change the labels. In

best case we will obtain more s-posts. Thus Z is a sub-solution of any Z*. U
Alt O E Reach no
Path - —O——0- - - A unmatched
ai >~ Pio XN vertex
~ g -
\O/l
D;

Figure 3.7: Illustration of the copy of a postin £ in G;.

Lemma 3.9. In any instance obtained from the copy of a post p; in &, the maximum

matching and the label of any vertex will remain the same.

Proof. Let M be the maximum matching used to obtain the sets £, O, and U. First,
if p; is unmatched then any copy of this post will be in £. Second, if p; is matched,
then by definition, it cannot be linked to an M -alternating path, and it is matched to an
applicant a; who is in O (see Figure 3.7). Obviously, p; will be only connected to an
applicant vertex that is in O. Thus, we will have only new M -alternating paths from
P/, but none of them will be an augmenting path. Thus after the copy of a post in &, all

vertices will remain the same as the cardinality of the maximum matching. U
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3.4.2 Two Automatons

From the lemmas established above, we can deduce important results about the be-

haviour of the label of any post after a copy.

Theorem 3.5. From any copy of a post in £, O or U, every post uses the following

automaton to determine its label:
O — U — €&

Figure 3.8: Illustration of the posts automaton.

Proof. By merging the Lemmas 3.5, 3.7 and 3.9, one can see that after any copy of a

post with any label we always obtain the following rules:

(a) The label of any post in O will stay the same or will change into /.
(b) The label of any post in I/ will stay the same or will change into &.
(c) The label of any post in £ will never change.

The automaton obtained is immediate from these rules. [l

Theorem 3.6. From any copy of a post in £, O or U, every applicant follows the

following automaton to determine its label:

Figure 3.9: Illustration of the applicants automaton.

Proof. By merging the Lemmas 3.6, 3.8 and 3.9, one can see that after any copy of an
applicant with any label we always obtain the following rules:

(a) The label of any applicant in £ will remain the same or will change into /.
(b) The label of any applicant in I/ remain stay the same or will change into O.
(c) The label of any applicant in O will never change.

The automaton obtained is immediate from these rules. O

Corollary 3.4. Any applicant matched and labelled by O or U will always remain

matched in the children instances.
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3.4.3 Properties of G’

Now we can give properties for the reduced graph G’. In the reduced graph, first, we
search for a maximum matching, and secondly, we define the £, O, U labels. On the
reduced graph, we still need to have a maximum matching M in (G; and an assignment-
complete in G’. If the instance is not popular, from the maximum matching M and
the labels, we can just study the set V' A of non-assigned applicants. If we want to
increase the assignment, we need to find an augmenting path with new copies. Thus
the only alternating path studied are the ones starting from the unmatched applicants,

i.e. a € N A. Therefore, we have the following lemmas:

Lemma 3.10. We will never do a copy of posts in € or U in order to obtain a popular

matching.

Proof. On these alternating paths A A, the posts are only in O.

Lemma 3.11. A copy of a post in O from N' A can not assign two more applicants.

Proof. Let a; and a5 be the two applicants assigned with the copy. If we are changing
the belonging from the augmenting alternating path {a1, ..., p.}, from ay we have only
an alternating path where p, € O. This leads having a; € £ and p; still in O. So there
is no other unmatched vertex to have an augmenting alternating path. U

From this lemma we obtain a Lower Bound:

Theorem 3.7 (Lower Bound). If there are k non-assigned applicants in G', then we
need at least k copies to reach a popular matching. This is the lower bound for the

number of copies required to make the instance popular.

An instance can be popular only if the maximum matching in G’ is applicant-complete,
thus only if we do useful copies to find augmenting alternating paths from the non-
assigned applicants. These copies can only be done from these alternating paths N A,

and only from O posts.

From this remark we can define the maximum number of copies to the problem (Upper
Bound):

Theorem 3.8 (Upper Bound). If there are k non-assigned applicants in G', and from
them there are several alternating paths P, with exactly p posts in O, in order to find

a popular matching, we can create a limited number of copies equal to:
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UB= Y ldp)—1]= Y d(p)—p (3.9)

pi€EP pi€EP

where d(p;) — 1 is the degree of the node p; minus the original copy already assigned

to an applicant.

3.4.4 Dominance Rules

We introduce new dominance rules. For any instance Z, we denote by F7 the set of

posts that are not f-posts or s-posts.

Lemma 3.12. Let 7 and T* be two instances where L* is built from I by copying some
posts. Any post in FT is in FT.

Proof. Let p; be such a post. Clearly p; is in £. Now since p; € FZ, then for all the
applicants, their best choice in £ is never p; but other posts in £. From Theorem 3.5
any post in £ will always remain in £ after any kind of copy. Thus, the other posts will

remain in £ and p; will never become an s-post. U

Theorem 3.9. Let T be an instance without a popular matching, and let p; € F*. Ev-
ery instance with a popular matching, obtained from I by copying some posts, remains

popular even with the original number of copies of p; from L.

Proof. 1f p; € FZ, it cannot be assigned to an applicant in a popular matching. By

Lemma 3.12, the proof is immediate. U

The first dominance rule is working for any copy of any post. Using the Corollary 3.3

another dominance rule can be described for the posts in €.

Theorem 3.10. Let 7 be an instance who admits or not a popular matching. Every
instance obtained from I by copying any post p; in £, remains the same or can admit

a popular matching.

Proof. By using Lemma 3.9 and Corollary 3.3, one can conclude easily that any copy
of a post in £ will not change the labels, and may add more s-posts in the instance.
This can lead to find a popular matching. U
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Remark 3.1. These theoretical results lead us to consider only instances with a maxi-
mum number of copies for the s-posts and to avoid the posts in F*. These properties
highlight the difficulty in identifying posts that do not need to be copied to find a pop-
ular matching. Indeed, the s-posts can change only after a copy of U posts.

3.4.5 Modelling the FIXINGCOPIES Problem

We show how we can use the popular matching CSP model and the results from Sec-
tion 3.4.1 in order to solve the problem of fixing copies and to introduce an effective
pruning rule. Let x*(p;) be defined as the number of copies fixed for the post p; in the

instance Z*.

We saw that the FIXINGCOPIES problem can be split in two steps: first, fixing the
number of copies for each post that creates an instance of the popular matching prob-
lem with ties, and second, by checking the popularity of this instance. For the second

step, it is sufficient to use the GCC constraint as shown in Theorem 3.4.

We propose to explore a search tree where the root node represents Z° and any other
node is associated with an instance obtained from its parent by increasing the number
of copies of one post. In this tree structure, any descendant Z' of a node Z* has the

following property:

Vpi € P, X' (pi) > X" (i) (3.10)

Thus from each node, we can apply all the results obtained in Section 3.4.1, and in
particular the Theorem 3.9. From this theorem, we can fix the number of copies of
some posts for an instance node and its children. Therefore we apply the following
pruning rule at each instance node in the tree for our model. Let Z' be a child of Z%,
then:

Vi,if p; € FZ°, then VI!, ¥\ (pi) = X" (p2). (3.11)

As we explained in Remark 3.1, the identification of useful/useless posts in the fixing
copies problem is complex. We obtained only one pruning rule for exploring the in-
stance tree. However with the intention of improving the exploration of the tree and to
reduce the number of instances visited with the pruning rule, we discuss the impact of

the branching strategies based on the O, £, U labelling.

In particular, we highlight the impact of the copy of a post in a specific label. From
Lemma 3.9 and Theorem 3.10 the copy from a post in £ does not change the labels
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and cannot remove popularity from other instances with copies from different labels.
This result shows that branching on posts in £ does not avoid some potential solutions

in another branches of the search tree.

From Corollary 3.2 the copy from a post in &/ does not change the maximum matching,
but changes at least two posts in £. We can conclude that only the posts in ¢/ have a
significant impact on the branching decision, indeed exploring the nodes, where labels

U are considered last, should reduce the backtracking.

3.5 Experiments

In this section we will present the experimental results, first, for the popular matching

and, second, the FixingCopies problem.

We have successfully implemented the CP models presented in this chapter using the
Numberjack platform [Hebrard et al., 2010] using the constraint programming solver
Mistral as a backend. Numberjack is a modelling package written in Python providing
a flexible interface for problem specification and the ability to solve such a problem us-
ing mixed integer programming, satisfiability, or constraint programming techniques.

All the tests run on Intel Xeon E5-2640 processors.

For our experiments we created, in Python, a parameterised instance generator for the
popular matching and fixing copies problems. This generator allows us to analyse
and compare the different methods proposed for our CP model. For this purpose, we
have varied the following parameters: the number of the applicants and the number
of posts; the lengths and completeness of the preference lists; and the probability of
ties in the lists. To keep the empirical generation of the instances manageable, we
restricted our attention to cases where the number of posts are equal to the number
of applicants, represented by n, and all the preference lists have the same length. We
characterised the ties by a single parameter ¢ that an entry in a preference lists is tied

with its predecessor.

In order to obtain a ‘controlled’ scale graph we generated a bipartite graph using a pref-
erential attachment mechanism [Guillaume and Latapy, 2004]. The graph is initialised
with an input set of | A| vertices (i.e. the number of applicants for our model), then at
each step according to a probability r an edge is added between the applicant selected
and an existing post, or a new bottom post p; is created. Secondly, from this generated
graph, we create the preference lists for each applicant and each post is ranked follow-

ing a probability computed from the generated graph. For the instances with ties, we
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gave a probability denoted by ¢r to decide if an entry in a preference lists is tied with

its predecessor.

3.5.1 Results for the Popular Matching

We implemented the standard popular matching algorithms (with and without
ties) [Abraham et al., 2007b] in C++. The CP models are implemented in Mistral-
2.0 [Hebrard, 2008], also written in C++. We generated large random instances where
the number of applicants is equal to the number of posts. Four sets of instances are
generated with 8500, 9000, 9500, and 10000 applicants. We generated 10 instances
without ties for each set with different seeds. For the case with ties, we generated 15
instances per set with 5 different seeds and 3 different probabilities for distributing the

ties.

The results are summarised in Table 3.1. Each column shows the average CPU runtime
in seconds for one set of instances averaged over successful runs. The first part of the
table concerns the case without ties and the second part shows the results for the case
with ties. Note that every instance is solved by both configurations. The results of the
standard algorithm are shown in the row ‘Standard’. The CP model is presented with

the row ‘Mistral’. Best results are shown in bold face fonts.

Table 3.1: Popular matching: Summary of the results

Instances 8.5k 9k 9.5k 10k
Without ties
Standard 144 160 177 195
Mistral 152 168 191 215
With ties

Standard 153 170 162 211
Mistral 144 162 181 204

Table 3.1 shows that the CP models are very competitive. Indeed, the performance of
the CP model is slightly worse but very close to the standard algorithm for the case
without ties. Best results for the case with ties are, however, always obtained with

Mistral, which is around 10 seconds faster than the standard algorithm..
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3.5.2 Results for the FixingCopies Problem

We study the FixingCopies problem to evaluate the different branching strategies as
well as the dominance rules. The exploration strategies are the six permutations to
rank in priority the three labels £, O, U. The search tree is implemented in Python
using Numberjack [Hebrard et al., 2010].

The timeout is fixed to 20 minutes. We first run all the configurations on purely ran-
dom instances (general preference list), but observed that these instances are easy to
solve. Therefore, we studied another family of instances based on a notion of a master

preference list, as described below.

3.5.2.1 General Preference List

In Section 3.4.5, regarding the difficulty to prune the domains of variables and to iden-
tify the the posts that do not need to be copied, we split the fixing copies problem into
two steps. The first one involves exploring the enumeration of each instance obtained
by increasing the number of copies of the posts. In the second step, we use our CP
model for solving the instance at hand using the GCC constraint. The experiments
deal with the different methods of exploration presented previously. In order to use
the properties introduced in Section 3.4.1, the exploration of the enumerated instances
must be done such that each node explored respects the property (3.10). The principle
is to explore the instances, in regard to the property (3.10), by putting priorities on the
post labels that must be copied in first. The different exploration strategies come from
the six permutations to rank the three labels £, O, 4. We show empirically that the

automaton obtained theoretically is the best ranking strategy to explore the instances.

The experimental results are presented in Table 3.2 and Table 3.3. With respect of
our description, we generated instances with n € {35, 40, 45, 50, 140, 160, 180} appli-
cants. For each set, we create 60 instances as follows: for each set, we have four prob-
abilities r € {50%, 60%, 70%,80%} for the preferential attachment bipartite graph,
five seeds, and three probabilities for having ties: ¢tr € {10%, 15%,20%}. Then we
present the six ranking strategies based on the permutation of the labels. For instance
eou means that we copy the nodes in £ before O, and then the nodes in O before
U. There is a Boolean 0, 1 at the end of each configuration to say whether we use the
pruning rule that we proposed (O=no pruning, 1 = pruning). For each configuration, we
have reported the percentage of finding successful solutions, the number of decisions
(or subproblems tested with the CP model) (D) and the runtime (T) in seconds for the
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Table 3.3: Summary of the results for large instances

140 160 180
Labels %sol D T 90s0l1 D T 90s0l1 D T
euo-0 36 11.00 51 13 13.00 1026 13 20.12 162
euo-1 36 11.00 51 11 13.00 1025 13 18.62 166
eou-0 36 11.00 51 11 13.00 1029 13 20.12 162
eou-1 36 11.00 51 11 13.00 1024 13 18.62 166
ueo-0 5 7.66 4 1 10.00 6 1 10.00 781
ueo-1 5 7.66 4 1 10.00 6 1 10.00 775
uoe-0 5 7.66 4 1 10.00 6 1 10.00 780
uoe-1 5 7.66 4 1 10.00 6 1 10.00 771
oeu-0 81 8.00 15 50 14.00 4 48 16.13 81
oeu-1 81 8.00 15 50 14.00 4 48 16.13 81
oue-0 81 8.00 15 50 14.00 4 48 16.13 81
oue-1 81 8.00 15 50 14.00 4 48 16.13 81

successful instances.

The first clear observation from Tables 3.2 and 3.3 is that all enumeration strategies
starting from posts in O outperform the other strategies. For instance, with 140 appli-
cants, any strategy starting by copying posts in O solves 81% of the instances, whereas
the best strategy for the rest solves no more than 36%. This confirms that the automaton
obtained theoretically is indeed the best ranking strategy for guiding the exploration of

the search space.

It should be noted also that the strategies starting from posts in I/ behaves poorly in
all sets, and in fact is the worst strategy overall. This is not surprising since we know
by Corollary 3.2 that in any new instance obtained from the copy of a post in U,
the maximum matching will remain the same. So the chances of having a popular

matching are low.

Last, we observe that the pruning rule that we introduced does not help in the general
preference list. Therefore we construct preference lists derived from a master prefer-

ence list, as described in [Irving et al., 2008].

3.5.2.2 Master Preference List

A master list models real-world matching problems in which posts are ranked accord-
ing to some global objective criterion. The master list may be allowed to contain ties
or may be strict. Irving et al. [Irving et al., 2008] considered the stable marriage prob-

lem in the presence of master preference lists and proved that many interesting variants
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remain hard under this master list model. In the same vein, we consider the popular

matching problem in the presence of a master list.

We generated the instances as follows: the number of applicants a € {100, 150,200};

the number of posts p € {3, a}; the upper bound ub € { } for each post copies;

207 10
and each post has a probability h € {50%, 70%, 90%} to be in the applicant preference
list (following the order given by the master preference list). For each configuration we
use 40 different randomised seeds. For instance in Table 3.4, 100a_50p_ub10 is asso-
ciated with the set of 100 applicants with 50 posts with 10 upper bounds of copies for
each post. Each row summarises the results of each branching strategy. For example,
for eou any post in £ has the priority to be copied first, followed by the posts in O and
the posts in Y. The ending in —0 means we did not use the dominance rule and —1
otherwise. A run is said to be successful when a solution is found or unsatisfiability
is proven within the time limit. For each configuration, we report the percentage of
successful runs %sol; the number of decisions (D); and the runtime (7") in seconds of
the successful instances. The results shows the average over successful runs, which

means the instances that have returned a solution, either SAT or UNSAT.

Our dominance rules are extremely beneficial as we can see in the results. Any config-
uration is better when using the dominance rule (e.g. eou — 0 and eou — 1 in Table 3.4,
Table 3.5, Table 3.6, Table 3.7). Second observation, in all the tables is that if we in-
crease the upper bound of the copies we notice an increase in the number of successful

runs.

Observations we made previously are also true for the experiments that are not reported

here.
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Popular matchings 3.5 Experiments

If we consider the Table 3.5, and Table 3.7 increasing the similarity between the pref-
erence lists will not make the instances easier in general (i.e., when h € {70%,90%}).
Therefore, increasing the number of applicants, Table 3.4 and Table 3.6, the dominance

rule is more obvious.

Having a closer look at the branching strategies we see in Table 3.4 that the rows
eou — 0, eou — 1, oeu — 0, oeu — 1, the percentage of successful runs is higher than
the others strategies. Moreover, if we have a closer look at the decision number and
running time we can notice a huge difference between using the dominance rule eou—1
and not eou — 0. Second, if the dominance is turned on, then the best strategies are the
ones prioritising the branching of posts in £ (e.g. eou — 1 and euo — 1,). Also, when
the posts in £ are not given the top priority, it is always better to branch on them in
the second place (e.g. oeu — 1 is better than oue — 1). As explained in Section 3.4.5,
branching on £ posts first reduces the search effort, notice the number of decisions.
However, if the post is either an f-post or s-post (as enforced by the first dominance
rule), the new copy will be included in some domains and will increase the likelihood

of finding a solution.

An important observation is about the branching on posts in ¢/. Indeed as we deduce
in Section 3.4.5, any copy of these posts has an important impact. Branching on I/ for

the last will decrease the number of decisions and increase the number of solutions.
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Popular matchings 3.6 Chapter Summary

3.6 Chapter Summary

In this chapter we proposed a CP formulation for the popular matching problem that
can handle cases in which there are ties in the applicants’ preference lists. We reported
the first polynomial time algorithm to find optimal popular matching in the presence of
ties in the preference lists. Next, we showed novel graph properties and new dominance
rules for the popular matching with copies. Our experiments on hard instances of the
popular matching problem with copies showed essentially the key aspects of a good
branching strategy as well as the effectiveness of our dominance rules in improving

efficiency of search.
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Chapter 4

Collective Scenario-Based Algorithm

for the Kidney Exchange Problem

“And suddenly, just like that, hope became knowledge. I was going to win. It was
just a matter of when.” Khaled Hosseini, The Kite Runner

4.1 Introduction

In this chapter we present a method to build an online anticipatory algorithm from an
offline Kidney Exchange Problem (KEP) model, with the objective to maximize the
number of transplants. We call this method the Collective Scenario-Based Algorithm
(CSBA). We compare our method against: a baseline that reflects the current practice,
for example, solving the offline model; an oracle operating under perfect information;

and against the best performing algorithms from [Awasthi and Sandholm, 2009].

The KEP is a stochastic online problem, and can greatly benefit from the use of antic-
ipatory algorithms. Unfortunately, most such algorithms suffer from scalability issues
due to the reliance on scenario sampling, limiting their practical applicability. Instead,
we recognize that the KEP allows for a sampling-free probabilistic model of future
arrivals and drop-offs, which we capture via a so-called Abstract Exchange Graph
(AEG). We show how an AEG-based approach can outperform sampling-based algo-
rithms in terms of quality, while being comparable to a myopic algorithm in terms of

scalability.
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4.2 An Overview of Kidney Exchange
Collective Scenario-Based Algorithm Programmes

4.2 An Overview of Kidney Exchange Programmes

Organ transplantation is an effective solution for people suffering of kidney failure
[Dickerson and Sandholm, 2013], but finding a viable organ can be very difficult be-
cause of the scarcity of donors. Waiting for the organ of a deceased person can take
more than a couple of years, and buying and selling of organs is illegal in most coun-
tries. However, people have two kidneys and a person can live fine with just one. This
has encouraged voluntary donors (e.g. family members), which however are often in-
compatible with the patient due to, for example, blood or tissue type. A solution to this
involves having the incompatible pairs join a system that allows for the swapping of

donors donors, for example, a kidney exchange program.

Centralised kidney exchange programs exist in many countries, including the US, the
Netherlands and the UK [Manlove and O’Malley, 2014]. The program requires to
solve at regular intervals an optimization problem (the Kidney Exchange Problem —
KEP) to find a matching for the enrolled pairs that saves the largest possible number of
lives. This variant of the KEP has been addressed via a number of effective approaches.
In reality however, new pairs arrive (and unfortunately drop off) over time, making the
problem inherently on-line and stochastic. In this setting, it is known that exploiting
information about future outcomes, by means of an anticipatory on-line algorithm can
lead to substantially better results. The availability of extensive medical data makes

the estimation of future outcomes viable in practice.

On-line decision making can be framed as a form of multi-stage stochas-
tic optimization. This class of problem is extremely hard to solve exactly,
but high-quality solutions can be found via scalable sub-optimal methods (see
[Van Hentenryck and Bent, 2009] and references therein). These approaches typi-
cally estimate future developments by sampling scenarios and optimize the (esti-
mated) expected value of current decisions. A few of the main anticipatory algorithms
from [Van Hentenryck and Bent, 2009] have been adapted and extended to the KEP
in [Awasthi and Sandholm, 2009], but the task was not straightforward and forced the

authors to introduce heuristic approximations.

In this chapter we present a simple method to build a on-line anticipatory algorithm
starting from an off-line model for the KEP, with the objective to maximize the number
of transplants. Compared with the algorithms from [Awasthi and Sandholm, 2009],
our method is more general and provides an expected value estimation that is correct

within the limit of sampling errors.

We compare our method against a baseline that reflects the current practice (for ex-
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4.3 Formulations for the Kidney Exchange
Collective Scenario-Based Algorithm Problem

ample, solving the off-line model with the current pairs), against an oracle oper-
ating under perfect information, and against the best performing algorithms from
[Awasthi and Sandholm, 2009]. On instances obtained via a realistic donor pool gener-
ation method, our approach improves over the state-of-the-art in terms of both number

of transplants and scalability.

4.3 Formulations for the Kidney Exchange Problem

Most works in the literature have focused on finding the best matching for a given
graph, for example, on the off-line version of the KEP. In the Operations Re-
search community the problem has been considered in [Constantino et al., 2013,
Anderson et al., 2015, Mak-Hau, 2015, Manlove and O’Malley, 2014], and more re-
cently in [Alvelos et al., 2015, Dickerson et al., 2016]. The (off-line) KEP can also
be seen as a generalization of the Stable Roommates Problem (SR) that is shown
to be NP-complete in [Irving, 2007b] as long as at least 3-way exchanges are con-
sidered. The problem is also related to barter-exchange markets (in which agents
seek to swap their items with one another in order to improve their social welfare)
[Abraham et al., 2007a, Ashlagi and Roth, 2012].

4.3.1 The Cycle Formulation

One popular Mathematical Programming model for the KEP is the so-called cycle
formulation [Roth et al., 2005]. The model is defined over a directed graph (V, A(V)),
where V' is the set of nodes (pairs and altruistic donors) and A(V') is the set of arcs.
We assume that A(-) is a function that maps a set of nodes to a set of arcs, based on

their compatibilities.

Figure 4.1 shows an example of such a graph, with four patient/donor pairs and one
altruistic donor (i.e. (—,d4)). A two-way exchange is given by: (dy — pa,da — po);
(dy — p1,d1 — po); (di — ps,ds — p1), a three way exchange by (dy — po, dy —
p1,d1 — Po), a chain starting from an altruistic donor by dy give rise to the following
chains: (dy — p3,ds — p1); (ds — p3,d3 — p1,di — po); (ds — p3,d3z — p1,dy —
Do, do — p2), with the last donor giving his kidney to the system. We remark that most
countries prefer to have a limit on the length of the chains as all the surgeries must take
place simultaneously as no donor can pull out from the program once their patient pair

has their kidney. Hence, in this example there are three two-way cycles, one three-way
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< —,d4 >

Figure 4.1: Example graph of a cycle formulation

cycle, and one two-way chain, one three-way chain, and one four-way chain.

The model requires enumerating the set C of all cycles that respect the constraints of
the problem. Paths starting from altruistic donors are regarded as cycles. Note that
in this formulation variables represent exchanges. Each cycle C; corresponds to a
set of nodes and is associated with a weight w(C)), equal to its cardinality when the
goal is to maximize the number of transplants. The cycle formulation requires the
introduction of a binary decision variable x; for each cycle ¢; € C such that x; = 1 iff

the corresponding exchange has been chosen.

The model is then given by:

maxz = »_w(Cj)x; 4.1)
jec
st Yz <1, VieV 4.2)
jec,ieC;
x; € {0,1}. VjecC (4.3)

The objective is to maximize the sum of weights, i.e. the total number of trans-

plants. Constraint (4.2) prevents the model from using two cycles that share a com-
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mon patient-donor pair, or altruistic donor. In the example of Figure 4.1, the enu-
maration of all cycles is: C = {(dy — p2,d2 — po),(do — p1,di — po), (d1 —
p3,ds — p1),(do — pa,da — pi,di — po), (ds — p3,ds — p1),(ds — p3,ds —
p1,dv — po), (dy — p3,ds — p1,di — po,do — p2)}, and the weights of the
cycles are: w(C;) = {2,2,2,3,2,3,4}, and thus, the variables are the following
xj = {21, 29, T3, 4, T5, Tg, X7 }. A solution for this example is z; = 1 and x5 = 1 with

weight 5, meaning the cycle (dy — p2, dy — po) and the chain (dy — p3,ds — p1).

The model is simple and capable of easily capturing complex constraints on cy-
cle formation, e.g. cardinality restrictions. The main drawback is limited scala-
bility, since the number of cycles is worst-case exponential in the maximum graph
size. This issue has been addressed via column generation in [Abraham et al., 2007a,
Dickerson et al., 2013, Glorie et al., 2014, Klimentova et al., 2014, Plaut et al., 2016].
Recently, alternative compact models have been proposed in [Alvelos et al., 2015,

Dickerson et al., 2016] to improve scalability without resorting to column generation.

4.3.2 The Online Kidney Exchange Problem

In the online setting pairs appear and expire at each time step. A number of stud-
ies [Pedroso, 2014, Alvelos et al., 2015] have taken into account the effect of potential
failures, but not of entering pairs. A simulator for the online KEP is presented in
[Santos et al., 2017], but the authors still rely on periodic execution of an offline ap-
proach. To the best of our knowledge, the online version of the KEP has been targeted

using anticipatory algorithms only in [Awasthi and Sandholm, 2009].

Formally, the on-line KEP is a multi-stage stochastic problem whose exact solution
is a policy tree, which specifies recursively the best matching for each step and pos-
sible uncertain outcome. This approach has clear scalability issues, which are over-
come in [Awasthi and Sandholm, 2009] via scenario sampling, based on the ideas from

[Van Hentenryck and Bent, 2009] and references therein.

A scenario refers here to a set of nodes that may enter in the next h steps, where h is
called the look-ahead horizon. A number n; of scenarios can be obtained by sampling
the probability distribution for pair entries (estimated from medical data). All scenarios
are considered equally likely after sampling. We refer as V|, to the nodes currently in
the program and as V; (with s € {1,...,n4}) to the those entering under scenario s.

An example of two simple scenarios is shown in Figure 4.2.

The two best performing algorithms from [Awasthi and Sandholm, 2009] are based
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Collective Scenario-Based Algorithm Problem
A B
(Po,do) |<- (p1,dy) (o, do) So
3 A
<p2, d2> <p3, d3> (p2, d2> ) - '\;‘*7 """""""
S1
<_’ d4>

Figure 4.2: A: Example graph for an off-line KEP. B: Example graph for a scenario-
based anticipatory approach

on: 1) sampling a subset of scenarios; 2) using the scenarios to compute scores for the
cycles in the current time step; 3) solving a cycle-based off-line KEP for the current
time step, with the computed scores. Both algorithms attempt to estimate the expected
impact of choosing a cycle in the current time step, but they differ in how the estimate

is computed.

The first algorithm in [Awasthi and Sandholm, 2009] (an adaptation of the REGRETS
method from [Van Hentenryck and Bent, 2009]) computes cycle scores by solving an
off-line KEP for each scenario. Cycles (in the current graph) that are chosen in the
solution are rewarded with the value of the solution, cycles that are not chosen receive
a fixed penalty 0. We refer to this methods as APST1 (from the initials of the authors):

the pseudo-code is reported in Algorithm 1.

Algorithm 1: APST1 (adaptation of REGRETS)
Set score; = 0 for each cycle C; in (Vy, A(Vp))
for all scenario s € {1...n,} do
Solve KEP on graph (V, U V,, A(Vp U V)
for all cycle C; in graph (1, A(V4)) do
if C; is in the solution then
score; = score; + sol. value
else
wy; = Wy — 1)
Solve KEP on (Vj, A(V})) with the computed scores

The second algorithm in [Awasthi and Sandholm, 2009] (which shares ideas with the
EXPECTATION method from [Van Hentenryck and Bent, 2009]) computes scores by
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solving an off-line KEP for each cycle and scenario. The cycle scores are obtained
by summing the solution values. We refer to this method as APST2 and its pseudo-

code is in Algorithm 2.

Algorithm 2: APST?2 (loosely based on EXPECTATION)
Set score; = 0 for each cycle C; in (Vy, A(Vp))
for all cycle C; in graph (V5, A(1))) do
for all scenario s € {1...n,} do
Solve KEP on (Vo U Vi \ Cj, A(Vo U Vi \ Cj))
scorej = wj + sol. value
Solve KEP on (Vp, A(V})) with the modified weights

4.4 The Collective Scenario-Based Algorithm

In the experiments from [Awasthi and Sandholm, 2009], both APST1 and APST2 per-
formed considerably better than a non-anticipatory algorithm solving an off-line KEP

at each time step. However, both algorithms have a few significant weak points.

First, since there is no closed-form formula for the computed scores, they require the
use of a cycle formulation for the final KEP. This prevents the use of the compact mod-
els from [Dickerson et al., 2013, Pedroso, 2014, Alvelos et al., 2015] and may lead to
scalability issues. This is particularly true for APST2, which also needs to solve a set
of optimization problems for each cycle. Second, none of the two methods provides
an estimation of the expected number of transplants that is accurate up to the sam-
pling error. The scores computed by APST?2 are proportional to the expected value of
choosing a single cycle, but the approach disregards non-linear effects that arise when

multiple cycles are chosen.

Third, both APSTI and APST2 sometimes cannot delay exchanges, even if it may have
a beneficial effect on the long run. This is illustrated in Figure 4.3, which shows so-
lutions for the example from Figure 4.2 (node descriptions have been replaced with
numbers). We assume that the scenarios represent the only possible future outcomes;
dark-shaded nodes are included in the matching for the current time step #y; light-
shaded nodes will be included in a matching at ¢; for at least one scenario, while
non-shaded nodes have no chance to be included in a matching. A non-anticipatory
algorithm would include at ¢, as many nodes as possible, leading to the solution in
Figure 4.3A. APST?2 always computes positive scores, and therefore its final KEP will
necessarily choose to include the chain 4 — 3. This yields the solution from Fig-

ure 4.3B, which is sub-optimal in terms of expected value. In this simple example
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APST1 would assign a negative score to the chain 4 — 3 and to the cycle 1 <> 3, lead-
ing to Figure 4.3C and the optimal expected value. However, this depends in general

on the (heuristic) penalty value 9, and may fail to happen in a more complex example.

to ot
@ (1} G
A S0
Sl
! S1
#transp. at to: b #transp. at to: 4 F#transp. at tg: 2
exp. Ftransp.: b exp. Ftransp.: 6 exp. Ftransp.: 7

Figure 4.3: A: A non-anticipatory solution. B: The solution returned by APSTI; C:
the solution with the best expected value (returned by APST?2 in this case)

We propose to address all these issues by solving a single KEP on a graph constructed
using all scenarios, but with modified constraints. The final matching is given by all
exchanges in the solution that are defined solely over nodes from the current time step.
Indeed, we simply propose to employ the classical Sample Average Approximation
scheme for two-stage stochastic programs (see e.g. [Shapiro et al., 2014]), which to

the best of our knowledge has never been applied in this context.

Our approach is not tied to a specific KEP formulation, and hence we start by providing
an abstract description. Let = be the set of problem variables (both for the current time
step and the scenarios). Let F' be the feasible set for such decisions. Finally, let u ;(x)
be a function denoting the number of times node 7 is used (i.e. participates in an

exchange), assuming that scenario s occurs. Then our abstract model is given by:

1 &
maxz = — Z Z Ui () 4.4)
ey,
s.t. ug () <1 Vs=1...n,Vie VUV, 4.5)
x€F (4.6)

which assumes equally likely scenarios. Equation (4.4) is the expected total amount

of transplants, while Equation (4.5) states that, considering each scenario individually,
the same node cannot participate into two exchanges.
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In the case of the cycle formulation, the approach can be instantiated by introducing a
variable for each cycle (including those from the scenarios). Specifically, let Cy be the
set of cycles in graph (Vj, A(V4)) and let C, be the set of cycles in (VoUV;, A(VoUVs)),
excluding the cycles already in Cy. Let z, ; be the variable associated to Cs ;. Then we
have:

Usi(z) = . moj+ D T 4.7)

CO,J'ECCH Cs,jecsa
1€Cp,; 1€Cs 5

A node is used when scenario s occurs if it participates in a cycle in Cy or to a cycle in

C,. By substituting in the abstract formulation we obtain:

1 &
maxz = Y _ w(Coj)zo;+— Y > w(Cs )z (4.8)
: ng =
j€Co s s=1i€Cs
st Y. ;<1 Vi e Vg 4.9)
jECo,iECo,j
Vs=1...n,Vie VUV,
usi(z) = D Tojt+ Y. Ty _ (4.10)
Co.;€Co, Ca,€Cs, a0, €Cs 1€ Oy
iGC()’j Z'GCSJ
zs; € {0,1} Vs=0...n,VjeC, 4.11)

where terms related exclusively to cycles in the current time step have be collected via

factorization. This improves the model performance at the expense of readability. We
stress that the approach does not apply exclusively to the cycle formulation, but the

cycle formulation provides a good instantiation example due to its simplicity.

4.5 A Sampling-free Model

In this chapter we recognize that, with a few reasonable assumptions, the KEP allows
for the construction of a sampling-free probabilistic model of future arrivals and drop-
offs. We capture this information via a so-called Abstract Exchange Graph (AEG),
whose nodes represent “types" of pairs, rather than individual pairs, and are associated
to probability values. An AEG can be easily (and efficiently) obtained from medical

or historical data.

By relying on the AEG, we describe how to enrich a given optimization model for
the myopic KEP with an anticipatory component, often with very limited impact on

its scalability. By doing this, the model becomes capable of taking into account both
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future arrivals and drop-offs. For the sake of simplicity, we show how to apply our

technique to a specific KEP approach, i.e. the cycle formulation.

In an experimentation on instances obtained via a realistic simulator, we show how
sampling-based anticipatory algorithms quickly run into scalability issues, and even
fail to provide high quality solutions in case of insufficient sample numbers. Con-
versely, an AEG-augmented method is consistently able to outperform its myopic
counterpart, while having a comparable run-time. While the current experimentation
is preliminary and limited in scale, these qualities make our technique one of the few

that can hope to address nation-wide programs with thousands of enrolled pairs

4.5.1 Anticipatory Approaches

A few of the main anticipatory algorithms from [Van Hentenryck and Bent, 2009]
have been adapted to the KEP in [Awasthi and Sandholm, 2009], but the task was not
straightforward and forced the authors to introduce heuristic approximations. These
algorithms will be described in our results section, since they are considered in our
experimentation. Here, we simply observe that they all rely on scenario sampling, a
scenario being a set of nodes that may enter in the next few steps. The main two algo-
rithms from [Awasthi and Sandholm, 2009] require the solution of a multiple (smaller)
off-line KEPs, while the method described in Section 4.4 solves a single modified KEP
obtained via the Sample Average Approximation [Pagnoncelli et al., 2009].

The only sampling-free anticipatory methods for the online KEP to-date are those from
[Dickerson et al., 2012a, Dickerson and Sandholm, 2015]. They are both based on the
idea of discounting the value of each cycle with the lost “potential” of the involved
nodes. Formally, the new weight of each cycle is given by w; — > ¢, vi, Where v; is
the estimated potential of 7 € N. A set of exchanges can then be obtained by solving
an off-line KEP with the modified weights. In [Dickerson et al., 2012a] the potentials
are estimated via probability considerations, while [Dickerson and Sandholm, 2015]
employs a parameter tuning algorithm. Even if the technique proposed here does not
rely on sampling, from a mathematical point of view it is more akin to the sampling-
based algorithms than to these sampling-free methods. For this reason, a comparison
with either [Dickerson et al., 2012a] or [Dickerson and Sandholm, 2015] is missing in

this chapter, but we still consider that a priority for future research.

To the best of our knowledge, these are all the methods for the online KEP in the lit-
erature. Works [Dickerson et al., 2013, Pedroso, 2014, Alvelos et al., 2015] have con-

sidered the effect of potential failures, but not of entering pairs. A simulator for the
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online KEP is presented in [Santos et al., 2017], but the authors still rely on periodic

execution of an offline approach.

4.5.2 The Abstract Exchange Graph

Here we present our main data structure, i.e. the Abstract Exchange Graph, and its
potential applications. Our contributions stem from two simple assumptions, which

we state initially in their basic form.

First, all sampling-based anticipatory methods from the literature attempt to account
for the arrival of individual pairs/altruistic donors. However, pairs having the same
connectivity lead to equivalent sets of cycles: in the absence of an external criterion

for favoring certain pairs over others, we have:
Assumption 1. Nodes having the same connectivity are equivalent.

Assumption 2. Arrivals are independent and identically distributed (i.i.d.).

Population changes occur slowly over time, hence, during regular operation we apply

Assumption 2.

Both assumptions are imposed for technical feasibility and can actually be relaxed, and

we will show how this can be done at the end of this section.

Formally, the AEG is an annotated directed graph (N, A(N), p). Rather than to indi-
vidual pairs, the nodes correspond to classes (“types") of equivalent pairs. The arcs
correspond to “types" of transplants, and can be obtained via the same function A used
for the classical KEP. Each node can be associated to a probability value p; € [0, 1].
Overall, the AEG specifies in a compact fashion both the arrival probabilities of future

nodes and the cycles they can form.

4.5.3 Obtaining an AEG

From a mathematical standpoint, the AEG is a simple extension of the compatibility
graph used by most KEP approaches. In particular, a “concrete” compatibility graph
can be seen as an AEG where p; = 1 for all nodes. This observation allows to easily

obtain an AEG from historical data.

Kidney exchange programs usually keep a record of the participating pairs, which

can be used to populate a set /NV. This set can form the basis for a “concrete" graph.
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Starting from this graph, an AEG can be obtained by iteratively merging nodes with
the same connectivity, as described in Algorithm 3. Once the graph can no longer be
contracted in this fashion, all p values are normalized so that they represent frequencies

of occurrence, i.e. estimated probabilities.

Algorithm 3: AEG extraction
Require: A graph (N, A(N),p), withp; =1Vi e N
loop
Search for two nodes ¢, j € N with the same outgoing/ingoing arcs, i.e.:
A) (i,h) € A(N) & (j,h) € A(N) and
B) (h,i) € A(N) < (h,i) € A(N)
if such nodes exist then
N = N\ j (i.e. remove node j)
p; = pi + pj (i.e. compute aggregated count)

else
set p; = pi/ >_; pi (normalize counts)
break loop

return (N, A(N),p)

This process always yields a valid AEG. As an example, assume that we start from the
compatibility graph in Figure 4.4A: nodes are labeled with the corresponding patient
donor pair, and node O corresponds to an altruistic donor. Nodes having the same
connectivity (i.e. (p3, d3) and (p4, d4)) are colored the same shade of gray. Figure 4.4B
shows the AEG produced by Algorithm 3,where {, is associated to the altruistic donor,
t1 to (p1,dy) and ty to (p2,ds), and t3 is an aggregated node merging (ps,ds) and

(p4, dy), and with the estimated probabilities reported next to each node.

Figure 4.4: A) A “concrete" compatibility graph; B) The corresponding AEG; C) The
AEG-base graph used in optimization

An AEG may in principle be quite large, thus undermining scalability. In practice in
all our experiments the AEG size was always fairly limited, even if the design of our
simulator disregards some real world effects that should reduce, rather than increase

the number of types.
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4.5.4 Using the AEG in Optimization

The AEG can be employed to enrich a model for the off-line KEP with an anticipatory

component. We will describe the process using the abstract KEP from Section 4.5.2.

We start by augmenting the problem graph with A instances of all the AEG nodes, so
as to represent h future arrival events. Formally, let N be the original set of nodes,
N* be the k-th instance of the AEG nodes, and N be the set of all nodes (i.e. N =
NOU N'U...N"). We then construct the graph:

(N, AN\ A(NY\ LD AND), P uptu. . ph).

Arcs from A(N?') to A(N*) are removed since multiple nodes from the same N* (with
k > 0) correspond to different possible types for a single arrival event. The p; values
associated to nodes in NV are all equal to 1, while other p; values are those from the
AEG. An example of such a graph for h = 1 is shown in Figure 4.4C, where for the
sake of simplicity we assume that N is given by the graph from Figure 4.4A. Dashed
arcs connect nodes in N with nodes in N'*.

Exchanges defined exclusively over nodes in N° can be interpreted as usual. Ex-
changes involving even a single node from N* with k > 0 represent potential future
exchanges, and are associated with a stochastic strategy, similar to those employed in

Markov Decision Processes.

Formally, all future exchanges (not just the selected ones) are collected in a set xF.
Each of such exchanges is associated to a 0-1 random variable with a Bernoulli dis-
tribution. The probability that the variable is equal to 1 captures the odds that 1) the
involved nodes arrive; and 2) we choose to perform the exchange: what we need to de-
cide are these probabilities. With this approach, we can provide an abstract description
of the AEG-based anticipatory KEP:

maxz = Y _ value(x;) + > E[value(x;)] (KEP,) (4.12)
X;EX XiEXF
s.t. usages(x) + E [usageS(XF)} <I[p VS CN (4.13)
i€s
valid(x;) Vx; € x UxF (4.14)

In the objective function Equation (4.12), we maximize the utility of current exchanges,

plus the expected utility of future exchanges. Constraints (4.13) state that the expected
number uses of each subset of nodes S cannot exceed the expected number of its
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occurrences. For set of nodes in N°, all p; values are 1 and the formula boils down
to the one in the KEP abstract model. For exchanges that involve future nodes, we
take into account the probability that all involved nodes are present. All exchanges
should be valid. In principle there is an exponential number of Constraints (4.13): in
practice, however, the number is usually polynomial due to restrictions on the exchange
size. Moreover, many subset .S lead to redundant constraints that can be eliminated.
Constraints 4.14 make sure to filter the unnecessary cycles, i.e. considers only the
cycles that have at least a node in the respective time window, and filters the cycles

with only future nodes.

The thick arcs in Figure 4.4C show the exchanges that would be selected in a (sub-
optimal) solution of KEP, formulation: the solid ones correspond to (selected) de-
terministic exchanges, while the dashed ones to stochastic exchanges with a non-zero
probability (reported as a label on the arc). The main appeal of the technique is that
the abstract formulation KEP 4 is anticipatory, and yet it does not rely on sampling.
Provided that our assumptions hold, the probabilistic model we employ gives a char-
acterization of future uncertainty that is limited in accuracy only by our estimates of

the p; values.

4.5.5 Grounding Based on the Cycle Formulation

Our technique is general, but particularly easy to ground on the cycle model. Let C be
the set of all cycles of valid length in the (augmented) graph. Let C° be the subset of
cycles that involve only nodes in N, and let C*" = C \ C° be the set of “future" cycles,
i.e. those involving at least one node in N* with & > 0. We can then introduce: 1)
a variable z; € {0,1} for each C; € C°, such that z; = 1 iff the cycle is chosen in
the solution; plus 2) a variable z; € [0,1] for each cycle C; € C*, representing the
probability that the involved nodes arrive and the cycle is chosen. We can than state

the new formulation (C'Y F4) as a Mixed Integer Linear Program :

maxz = »  w;x; (CYFa) (4.15)
CjGC
C]'GC,SQCJ' €S
z; € {0,1} vC; e C? (4.17)
z; € [0,1] vC; ecr (4.18)

In 4.15 we are maximising the weight of the cycles Since for cycles in C*' the value
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of z; naturally represents a probability, summing the variables in Constraints (4.16)
is enough to obtain the Constraint 4.16 Constraint 4.17 states that the variables in the
current time step must be boolean, and Constraint 4.18 states that cycles involving

future nodes can be fractionals.

The family S contains all subsets of nodes such that lead to non-redundant constraints.
Formally, S contains all S C N such that:

* the cardinality is not greater than the allowed cycle length, i.e. |S| < L;

* all nodes S appear together in at least one cycle, i.e. 3C; € Cs.t. S C C}, since

subsets that do not appear in any cycle are irrelevant;

* Finally, if all nodes in S are in NV, then the cardinality of S is exactly 1, since
for subsets entirely in N posting the constraints for each individual node is

sufficient.

There are three key facts to observe: first, the CYF, model has the same structure
of the original cycle formulation, meaning that most techniques employed to increase
its scalability (e.g. column generation) should still be applicable. Second, the lack
of arcs between nodes in the same N* acts as a mitigation factor for the number of
cycles. Third, all the variables related to the anticipatory components are real-valued,
and therefore much easier to handle for the solver. Conversely, all sampling-based
approaches require 0-1 variables to handle the cycles appearing in scenarios. The main
drawback is the increased number of constraints, whose adverse effects will need to be

empirically evaluated.

4.5.6 Handling Drop-offs

Additionally, the AEG-based formulation provides a natural framework for taking into
account drop-offs, which may arise as a consequence of pairs leaving the program. For
the sake of simplicity, we will initially make the assumption that each pair may drop-

off the program between consecutive arrivals with a fixed probability. In other words:

Assumption 3. Drop-offs for each pair i between arrivals follow a Bernoulli process,
with probability r;.

A discussion on how to relax the assumption appears at the end of this section.

We can now show how to extend the CYF s model to take into account the effect of

drop-offs (the same reasoning applies to the abstract KEP 5 formulation). In this case,

Investigation of Matching Problems using 93 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Collective Scenario-Based Algorithm 4.5 A Sampling-free Model

it becomes important to understand when a given exchange can be performed. Let 7;
be the index of the time step when a node enters the program, i.e. 7; = k iff i € N*.
An exchange involving a set of nodes S can be performed only once the last of the
involved nodes arrive. We extend our notation so that, for a set S C N, we have

75 = max{r; | i € S}.

For an exchange to be performed, all involved nodes should arrive and remain in the

program long enough. Formally, Constraints (4.13) should be rewritten as:

Z x; < H riS T, vSeS (4.19)
C;€eC,5CC; €S
where r°" " is the probability that node ¢ remains in the program until 7s.

4.5.7 Transplants versus Survivors

Taking into account drop-off events enables one further extension. In an online setting,
the number of transplants is important, but does not take into account that having a
large pool of participants is also a value: it means more people have survived and
may still receive a transplant. We can take this into account by tracking the expected
number of instances of each node 7 at time step k£ via an additional set of variables

q¥ > 0. Formally we have that:

gk = Vie NVke{n...h+1}  (4.20)
ri(qf_l — yf) ifk>m

where 3 is the expected number of instances of node i that received a transplant at step

k, and there is no need to introduce qf variables for £ < 7;. Equation (4.20) follows

directly from Assumption 3. The value of y¥ is given by:

CjEC,iECj7
ch:k

Incorporating everything in the CYF, formulation leads to the following model

(CYFAD)Z
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max z = Z ri(qlh — M+ Z w;x; (CYFapD) (4.22)
1EN CjeC
s.t. Z x; < H riS T, vSesS (4.23)
C;eC,5CC; €S
4 =Dpi Vie N  (4.24)
a =ri(gF " —yf) Vie Nke{r+1...h} (425
yr= > Vie NNVke{r,...h}  (4.26)
C;€eC,ieCy,
ch:k
z; €{0,1} vC; eC®  (4.27)
z; € [0,1] vC;ect (4.28)
yr gk >0 Vie NNVke{r,...h} (429

The goal is to maximize the number of transplants, plus the expected number of sur-

vivors at the end of the look-ahead horizon /. Performing a transplant is still be more

h+1

beneficial than waiting, since the ¢;

" values are discounted by at least one factor 7;.

Taking into account drop-offs results only in marginal modifications of the original
formulation C'Y F4, while keeping track of survivors requires more extensive changes.
None of the additional variables is subject to integrality constraints, however, which is

good for the scalability of the method.

4.5.8 Limitations and Workarounds

Here we discuss some of the limitations of our approach, together with some means
for addressing them. At the moment, however, none of these solutions has been exper-

imentally evaluated.

Assumption 1 may be violated if there are additional criteria that differentiate the
nodes, e.g. different patient survival probabilities. Violations of this kind are easily
accounted for by including such factors in Algorithm 3, when searching for equivalent
nodes. The price to pay is an increased number of nodes, which in general may be
an issue with AEG-based approaches. A possible mitigation measure would be to use
ideas from clustering algorithms to merge in Algorithm 3 nodes that are sufficiently

similar, even if they are not exactly equivalent.

A violation of Assumption 2 prevents the definition of a vector p of arrival probabil-
ities. However, our methods still work by replacing the product of probabilities in
Constraints (4.13) and (4.23) with a joint arrival probability P(5), i.e:
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CjEC,iGC]' €S CjGC,Z'GCj

Non-stationary drop-off probabilities, i.e. time dependent r; values, require to rewrite

the /5~ expressions in Constraints (4.23):

s
ri T e— ] rf (4.31)

k=m;

where 7 is the drop-off probability of node i at step k. We focused on maximizing the

number of transplants/survivors, but different objective functions may be employed
as long as they can be handled in the problem models. In particular, the objectives
considered in [Dickerson and Sandholm, 2015] based on fairness and expected organ

failures should be manageable without much trouble.

4.6 Minimum Horizon Model

The minimum horizon model approach will purposefully fail to exploit the full accu-
racy of the AEG for sake of simplicity and computational tractability. The model is
not necessarily the most natural one, but it is the easiest to understand. This model
targets the online KEP and makes a distinction between the set P of nodes currently in
the program (a.k.a. present nodes) and the set F' of nodes that may enter the program
according to the AEG (a.k.a. future nodes). The model allows for cycles to include up
to one node from F'. Formally, this means that the model is defined over a graph that

includes all nodes, but excludes arcs between pairs of future nodes:

G = (NUF,ANUPF), A(F)). (4.32)

We will denote as C'p the cycles defined only on present nodes (“present” cycles) and
as C'f cycles that include one node from F' (“future” cycles). We will denote as C' the
collection of all cycles, i.e to Cp U Cr . Each cycle C} is represented as a sequence
of nodes. The model contains one variable z; per cycle in C. The key insight is that
cycles in C'p can be either performed or not performed, and hence are associated to
binary variables. Cycles that involve a node in the future, however, represent uncer-
tain choices and are therefore associated with real-valued variables representing the

expected number of times the cycle will be used.

Note that the expected number of uses for future cycles is a planned decisions, and may
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reflect a strategy (besides an uncontrollable outcome). As a consequence, when two
cycles both require a node, only one of them can be performed. However, when two
cycles both require a future node, we can choose (in probabilistic terms) how we want
them to share it, as long as the number of used does not exceed the expected number
of arrivals for the node. This is analogous to stochastic policies in Markov Decision

Processes, or to stochastic strategies in Game Theoretic approaches.

Then, after a single entry event, each node ¢ from /' will be present with its probability
p;, specified by the AEG. If we wait for each h arrivals, classical probability theory
(Bernoulli processes) implies that the expected number of arrivals for each future node

is given by p;h. These two considerations enable the formulation of a first model:

minz =h (4.33)
S.t.
ooy >1, Vie P (4.34)
C;€CLieC;
CjECF,iECj
x; € {0,1}, Vi e P (4.36)
x; > 0, Vi e F (4.37)

Intuitively, we minimise the number of waiting steps / required to be “reasonably sure”
that all present nodes receive their transplants. These transplants may come either from
present or future cycles. Future cycles cannot exceed the expected number of arrivals
for each future node, but this can be arbitrarily increased by waiting for more time
steps. Intuitively, the number of waiting steps is roughly correlated to the survival
probability of the present node. Much better approximations are of course possible,

but as it will become apparent they require more complex models.

The model described in Section 4.5.2 already shows some of the key features of ap-

proaches based on the AEG. In particular:

* There is a clear distinction between present/future nodes and present/future cy-
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cles;

* Future cycles are associated to real-values (rather than integer) variables, which

represent stochastic strategies.

As a consequence, most AEG based models will contain quite a limited number of

integer variables, which makes them very appealing from a computational perspective.

4.7 Experiments

In this section we present our experimental evaluation. First we present the experimen-
tal setup and the results for the anticipatory algorithms from Section 4.4. Secondly, we

continue with the abstract exchange graph from Section 4.5.

4.7.1 Empirical Setup for CSBA

We generated 2 instances, one small and one big. The small instance simulates the
pairs arrival to be 5 pairs per month, for over 31 months, that means in total we have
158 pairs of which 11 pairs are altruistic, with 4,086 edges. The big instance sim-
ulates the pairs arrival to be 10 pairs per month for over 51 months, which means
we have 510 pairs and 25 altruistic pairs, with 15,400 edges. These characteristics
were taken from [Awasthi and Sandholm, 2009]. Other characteristics needed are the
blood type, the PRA values and the patient and donor age distributions, the percent-
age of pairs expected to drop out of the pool. We used the following configuration:
51% of the patients were ABO-0, 31% were ABO-A, 13% were ABO-B and 4% were
ABO-AB; 47% of the patients had PRA < 15% with no defined HLA antibodies;
18% were moderately sensitized, with PRA between 16 and 79%; 36% were highly
sensitized with either class I or II PRA > 80%. These characteristics are taken from

[Saidman et al., 2006] to mimic the real-world population.

We considered all transplants equally worthy, i.e., the weight of each edge in the ex-
change graph was set to one. In our experiments, the exchange graph changes over
time as follows. Initially the exchange starts with no vertices. At each time step
a fixed number of vertices enter the graph. Each vertex has a dropout time, which
is set according to the reality that 12% of dialysis kidney patients survive 10 years
[Dickerson et al., 2012a].

The model that we presented in Section 4.4 is implemented in Python. We use Num-
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berjack [Numberjack, ] to model the problems using the IBM’s CPLEX v12.8 ! solver.
All the tests run on Intel Xeon E5-2640 processors.

We were unable to reproduce the same instances as the one proposed in
[Awasthi and Sandholm, 2009], but we’ve tried to follow the characterisation de-
scribed as much as possible. One reason to be unable to replicate the results, was,
for our understanding, the generation of the scenarios, which are not described in the
paper. The second reason is that they’ve used real instance, which we couldn’t find

online.

In our experiments, we generated the scenarios as follows: at each time step, for each
scenario, we choose a random 4% vertices from the list within lookahead limit, and
after we check if these vertices were able to create cycles/chains. Notice that it is
possible for some scenarios to not have any cycles/chains. Moreover, as we arrive at
the end of the timespan we will not be able to generate scenarios if the lookahead is

very long. The realisation randomly choose 6% of the vertices entering each time step.

Each vertex has a time out, corresponding to match the fact that 12% of the dialysis
patients survive 10 years, meaning that each month the survival rate is (1 — p)'*° =
0.12, where 120 is 12 months x 10 years . For the small instance, the survival rate will

be (1 — p)3! and for the big instance (1 — p)°L.

4.7.2 Tuning Lookahead and the Number of Scenarios

In the following tables, the instance was run 10 times for each configuration. We are

showing the average values along with the standard deviation.

We ran experiments to choose good values for the lookahead and the sampling. The
sampling refers to the number of scenarios for each time step, and the lookahead is
how many steps into the future the algorithm can see. The size of possible trajectories
can be exponential, depending how large the lookahead, so we cannot cover all of them
for space reasons. For example in Table 4.1, and Table 4.2, increasing the lookahead

too much as well as the sampling does not improve further the number of lives saved.

In Table 4.1 we show the results for the small instance. We notice that our algorithm
outperforms the other scenario-based algorithms. In particular, for the configuration
[7_s5 our algorithm saves 2.22% more lives than the APST2 and 5.82% more lives

than the offline algorithm. We are still 3.48% away from the oracle solution. In Figure

'https://www-01.ibm.com/support/docview.wss2uid=swg27050618
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Table 4.1: 31 months instance

4.7 Experiments

Lookahead/

Sampling Our alg APST2 APST1 Offline Oracle
12_s5 503+584 48.7+624 495+540 447+536 57.1 +7.38
12_s10 485 +4.17 46.5+458 49.0£5.09 428+£5.79 56.0+5.03
12_s15 528 +6.16 494 4+529 516508 445+3.82 60.1+5.10
14_s5 493 +4.10 457 +4.60 48.1 £4.70 43.3£556 54.7 +£6.00
14_s10 52.7+5.02 49.1 £5.00 50.7+479 4274+583 57.5+395
14_s15 555+862 523+824 54.7+861 474+8.33 61.1 +£9.82
17_s5 564 +£544 51.7+456 5294531 472+299 619 +5.90
17_s10 544 +894 49.6+7.72 514+756 452+5.19 59.8 +9.07
17_s15 53.34+7.82 4934+698 50.6+697 437+544 579 +8.01

70 : g ! !
- Our alg : :
coll ~ APST2 |--S-—--——“- - —— - - — - — - — ————— 1
- - Offline i ]
-~ APST1 P
50H _ Oracle —' .:.".)'.'d..._
: =57 L7 -
: : : : A
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Figure 4.5: Trend of the algorithms for 31 months instance

4.5, we show the evolution of the algorithms and how many lives are saved step-by-

step for each algorithm. In particular, we observe for our algorithm, after Month 15

the slope is increasing significantly and surpasses the other algorithms. In Table 4.2

we expose the results of the big instance, 51 months with 510 pairs of which 25 are

altruistic donors, and each month 10 new patients enter the program. We notice in

configuration [20_s20 that our algorithm saves 3.70% more lives than the APST2, and
2.1% more lives than APST1, and 7.50% more lives than the offline algorithm. The
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Oracle saves 3.92% more lives, since it contains the perfect information of the future.

Even if the percentages look quit small, there are not that small considering these are

human lives.

Table 4.2: 51 months instance

Lookahead/

Sampling Our alg APST2 APSTI1 Offline Oracle
15_s10 1422+ 1043 133.8+11.12 140.2+12.89 117.6 £9.00 172.5+12.53
15_s20 151.6 £10.79 144.6 +9.39 1492 £1191 1255+10.36 186.3 +12.87
15_s50 151.1 £12.16 142.8 +£9.48 150.1 £12.61 123.1 +7.67 180.4 £ 12.43
110_s10 1495 £11.79 137.7+848 1463 +848 1221 =853 1775+ 11.30
110_s20 152.8 £10.54 138.24+884 1432+750 11924855 1824 +11.77
110_s50 1584 +11.56 139.8+7.13 148.0+10.26 123.94+9.62 184.6 +11.58
120_s10 1549 £8.63 139.1+£7.87 1469+7.36 1242+7.08 172.6 +8.53
120_s20 160.6 +=9.23  141.7+£9.66 149.7 £10.62 1223 +534 180.6 £11.76
120_s50 - - - - -

In Figure 4.6, we show the evolution of the algorithms for the big instance, step by step.

In this case, we observe, that our algorithm delays some decisions at the beginning, and

after Month 32 the lives saved increase.
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4.7.3 Tuning the Batch Size

In real life, the data that we have to deal with can be very large and the horizon of
events can be very long. We introduce the notion of batch size, as a parameter that
defines how many patients the algorithm can consider as an atomic event. Normally,
the batch size is used to the establish how often the algorithm is executed. In our case
for the small instance, we have five vertices entering per month and the batch size
is five, so the algorithm runs every month. The death rate is adjusted to match the

real-world event that 12% of dialysis patients survive 10 years.

Table 4.3: Batch configuration 31 months instance with fix drops out

| Batch | Ouralg APST2 APST1 Offline Oracle
3 2714470 2524464 26.1+461 19.1+430 29.9+5.02
5 |564+533 51.7+456 5294526 47.2+299 61.9+5.78
10 | 5364585 480+340 5024464 443+3.68 584+598
15 |50.6+4.10 4694555 51.1+£3.70 41.5+405 53.6+3.44
17 | 5294323 49.7+3.57 52.1+434 4394350 56.0+3.40
20 | 4924963 4674759 4884835 427+6.70 51.149.75

We ran experiments to determine the appropriate batch size for both instances. In-
creasing too much the batch size does not help saving more lives, as we can observe in
Table 4.3 and 4.4.

Table 4.4: Batch configuration for 51 months instance

‘ Batch ‘ Our alg APST2 APST1 Offline Oracle ‘
5 1559 £7.35 1449 +8.10 150.6£9.40 125.7£7.10 185.0 % 8.42
10 160.6 £9.23 141.7+9.66 149.7 £10.62 1223 +£5.34 180.6 £11.76
12 1469 £597 130.8 £6.66 1355+£6.29 1126694 165.1 £6.29
18 145.6 £9.18 1274 +14. 130.6 £13.73 1083 £7.12 156.3 £ 10.08

4.7.4 Empiricial Evaluation for the AEG

From a mathematical standpoint the approach described in Section 4.5 is closest to
the algorithms from [Awasthi and Sandholm, 2009] and the model described in Sec-
tion 4.4, which we therefore chose for our comparison, together with a myopic ap-

proach and an oracle (used respectively as baseline and optimistic bound).

Conversely, our method is more distantly related to the ones from [Dickerson et al., 2012a,
Dickerson and Sandholm, 2015], despite being also sampling-free and with the same

practical use cases. Such methods rely on adjusting (e.g. via parameter tuning) the
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weights of an off-line KEP to take into account the impact of current decisions on
the future. The AEG is arguably more accurate from a formal point of view, and
does not require a computationally expensive fitting step. However, the approach from
[Dickerson and Sandholm, 2015] can use an off-line KEP formulation with virtually
no modification, and provides a bit more flexibility in terms of the supported problem
objectives. An empirical comparison of the two approaches is planned as part of future

research.

All the considered algorithms treat a scenario as a set of nodes that may enter in
the next A steps (no drop-offs are considered the scenarios). The two main algo-
rithms from [Awasthi and Sandholm, 2009] estimate the expected impact of choos-
ing a cycle, and then solve a KEP using such impacts as weights. The first is re-
ferred to as APST]1, it can be considered an adaptation of the REGRETS method from
[Van Hentenryck and Bent, 2009], and computes cycle scores by solving an offline
KEP for each scenario. The second is referred to as APST?2, it shares shares ideas
with the EXPECTATION method from [Van Hentenryck and Bent, 2009], and computes
scores by solving an offline KEP for each cycle and scenario. For further details, the
reader may refer to [Awasthi and Sandholm, 2009] or [Chisca et al., 2018].

The CSBA algorithm described in Chapter 4 solves a single modified KEP on a graph
constructed using all scenarios, obtained by using the Sample Average Approximation
[Pagnoncelli et al., 2009]. The final matching is given by all exchanges in the solution
that are defined solely over nodes from the current time step (i.e. that do not include
nodes entering in any scenario). In the objective, exchanges related to the current time

step are summed exactly, whereas future exchanges are considered in expectation.

4.7.5 Methods and Instances

Some anticipatory algorithms for the KEP may occasionally suggest to delay an trans-
plant, if they estimate that such actions is going to be beneficial in the long term. This
may happen even if the delayed exchange could be performed in the current time in-
terval without conflicting with other selected exchanges. For a human decision maker,

this kind of behavior is hard to justify, especially when personal health is at stake.

Luckily, in the cycle formulation such a behavior can be prevented or at least discour-
aged via a simple pre-processing technique. Namely, we can remove from the graph all
cycles that include no node currently in the program: as a result, delaying an exchange
that can be performed immediately becomes far less likely. In our experimentation, we

have applied this technique to all methods that may benefit from that, in particular the
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AEG-based approach and the CSBA algorithm. Neither APST1 nor APST2 have such

need since, they eventually solve a KEP including only the current nodes.

4.7.5.1 Instances

We’ve generated two main instances using real-world probabilities: each instance is
a (concrete) exchange graph which represents a population. At each time step (cor-
responding to one month), arrival events are modeled by sampling from the graph a
number of nodes (referred to as batch size). Unlike in other works reported in the lit-
erature about the online KEP, pairs are sampled with reinsertion: this means that the
graphs represent stable or slowly varying populations, and captures much better what
happens in the real world compared to sampling without reinsertion. Our scenarios are

sampled from the same graphs.

Specifically, we generated a small instance with 160 pairs (plus 11 altruistic donors),
used for experiments running over 31 months with batch size 5, and a larger one with
1029 pairs ( plus 29 altruistic donors), for experiments over 12 months with batch size
15 and 20. For each setup, the generated pairs have blood types, PRA values, and
ages following the distributions from [Saidman et al., 2006]. Tissue compatibility has
been approximated by suppressing a fraction of the arcs, chosen uniformly at random
according to statistics reported in the same paper: this process disregards patterns that
may arise in the real world and may therefore lead to larger number of types. The
AEG graph was generated as described in Section 4.5.2: in our settings, we detected 22
node types for the small instance and 26 for the big instance, i.e. very small numbers
compared to the size of the original graphs. The death rate is adjusted to match the
reality that 12% of kidney patients survive 10 years 2.

We implemented all the algorithms in Python, using Numberjack [Numberjack, ] as a
modeling front-end and CPLEX as a back-end. As we mentioned, we also include in
our comparison an oracle that solves a single offline KEP including all pairs entering
the program (and disregarding drop-off dates), which provides an optimistic bound on

the performance of any online algorithm. We consider all transplants equally worthy.

2United States Renal Data System (USRDS), 2007: http://www.usrds.org/

Investigation of Matching Problems using 104 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Collective Scenario-Based Algorithm 4.7 Experiments

Table 4.5: 31-months setup sample algorithms (batch 5)

Lookahead/ Pairs Altr. CSBA APST2 APST1
Samples Lives WaitLL Lives WaitL Lives WaitL

h2_s5 149 11 61.0+4.08 645 60.6+£4.32 647 62.0£3.52 634
h2_s10 149 11 60.6£4.59 65.1 60.7+4.63 645 61.6+4.29 638
h2_s15 149 11 60.6£4.50 65.0 60.5+£4.70 64.6 6224439 632

h3_s5 149 11 61.2£446 643 60.5+4.45 648 62.1£3.84 63.2
h3_s10 149 11 60.8£4.36 650 60.7£4.73 645 62.843.82 624
h3_s15 149 11 60.3+4.52 654 60.3+4.70 647 61.7£391 63.5

h4_s5 149 11 60.7£4.44 6477 60.5+4.45 648 62.24+3.70 62.8
h4_s10 149 11 61.1+435 645 60.744.73 64.6 62.0£3.52 63.1
h4_s15 149 11 60.8£4.75 64.8 60.6+4.74 64.6 63.2+4.08 62.2

Table 4.6: 31-months setup AEG (batch 5)

Lookahead Pairs Altr. AEG Myopic Oracle
Lives WaitL Lives WaitL Lives

h2 149 11 761 +387 839 535+£275 665 88.3+7.46

h3 149 11 750+343 850 535+£2.75 665 88.3+7.46

h4 149 11 756+343 844 5354275 665 88.3+7.46

4.7.6 Results

We report the results for the sampling-based algorithms (i.e. CSBA, APSTI1, and
APST?2) in one set of tables, while the results for the (sampling-free) AEG, myopic,
and oracle methods are in a second set of tables. Every table row corresponds to a

different algorithm and each row to a different configuration. Morever

In particular, Table 4.5, 4.7, and 4.9 show the results of the scenario sampling algo-
rithms: each row is labeled as {hz,_sxs}, where z; € {2,3,4} is the look-ahead
horizon and x5 € {5, 10, 15} is the number of scenarios. Table 4.6, 4.8, and 4.10 show
instead the results of the sampling-free algorithms. Each row is labeled in this case
as {hx}, where z; = {2, 3,4} is the look-ahead horizon. Each algorithm, except for
the oracle, has two columns: one called “Lives" for the number of transplants, and one
called “WaitL" and for the number of pairs still in the waiting list. Each cell reports
an average over 10 runs, and for the “Lives" column we also report the standard devi-
ation. The solver timelimit is set to 600 seconds for each run, therefore for each time
step each algorithm has 600/Months setup overall. If an algorithm requires to solve

multiple KEPs (say k) in a single time step, then the timelimit for each attempt is set
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to 600/(Months * k) seconds. A “dash" in a cell means that the algorithm was not able

to find a solution for all time steps.

Table 4.7: 12-months setup sample algorithms (batch 15)

Lookahead/ Pairs Altr. CSBA APST2 APST1
Samples Lives WaitL Lives WaitL Lives WaitL
h2_s5 171 9 82.8+6.00 67.8 82.8+7.11 67.8 8244729 67.1
h2_s10 171 9 83.2+6.20 68.0 83.5+7.06 66.9 84.6+7.92 66.0
h2_s15 171 9 83.0+£6.68 67.8 - - 86.0+7.51 65.0
h3_s5 171 9 82.9+£6.59 68.1 82.5£7.06 659 82.7£8.21 67.4
h3_s10 171 9 82.3+£6.20 68.3 - - 83.3£7.07 67.5
h3_s15 171 9 82.6+7.65 67.6 - - 84.0+6.31 67.5
h4_s5 171 9 82.8+6.66 679 - - 79.748.64  70.3
h4_s10 171 9 82.4+6.17 68.3 - - 83.7+4.65 68.5
h4_s15 171 9 82.6£7.75 68.0 - - 81.6+£8.24  69.1
Table 4.8: 12-months setup AEG (batch 15)

Lookahead Pairs Altr. AEG Myopic Oracle
Lives WaitL Lives WaitL Lives

h2 171 9 948 859 852 679+£549 710 113.4+2.67

h3 171 9 945+834 855 679+£549 710 113.4+ 2.67

h4 171 9 948 £878 852 679+£549 710 113.4+ 2.67

Table 4.9: 12-months setup sample algorithms (batch 20)

Lookahead/Samples Pairs  Altr. CSBA APST1

Lives WaitL Lives WaitL
h2_s5 228 12 106.7 £+ 9.68 926 107.2+£8.83 919
h2_s10 228 12 106.8 £+ 9.43 929 108.2+£798 90.6
h2_s15 228 12 107.6 £ 10.16  92.1 108.4 £ 8.80 90.2
h3_s5 228 12 106.8 +9.90 924 103.9+846 94.0
h3_s10 228 12 107.7+£10.77 91.7 106.7+9.21 914
h3_s15 228 12 106.7 £ 10.24  93.0 - -
h4_s5 228 12 106.3 £ 10.04 92.6 103.84+9.27 93.3
h4_s10 228 12 107.4 £ 8.77 92.6 103.83+7.41 95
h4_s15 228 12 106.0 + 8.91 93.1 - -
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Table 4.10: 12-months setup AEG (batch 20)

Lookahead Pairs Altr. AEG Myopic Oracle
Lives WaitL Lives WaitL Lives

h2 228 12 121.6 +£9.29 1184 925+£805 923 1374+£13.12

h3 228 12 1222+985 1178 9254+8.05 923 1374+ 13.12

h4 228 12 121.8+£9.41 1182 925+8.05 923 1374+13.12

4.7.6.1 Effect of the Batch Size

In Tables 4.5 and 4.7, 4.9, we show the results of a long run setup with small batch (5)
size vs a short run setup with larger batch size (15, 20). As it can be seen in Table 4.5,
APST1 outperforms the other scenario-sampling algorithms, but increasing the batch
size to 20 is enough for the method to hit the time limit, due to the large number of
KEPs that the algorithms needs to solve. The APST2 method runs out of time even
with batch size 10, since it needs to loop over all scenarios and also all cycles; the
algorithm did not scale for batch size 20. Both the CSBA and AEG algorithms manage

to complete all experiments within the time limit.

Batch 15 setup
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Figure 4.7: Comparison of #transplants and #waiting list of the algorithms 15 batch
setup.
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Figure 4.8: Comparison of #transplants and #waiting list of the algorithms 20 batch
setup.

4.7.6.2 Effect of Look-ahead and Number of Scenarios

Increasing the look-ahead and the number of scenarios does not have a consistent effect
on the algorithms, which reach the best results for different configurations (in bold
in the tables). We notice that the C'SBA algorithm does not outperform the other
scenario-based algorithms, probably due to the fact that we are sampling pairs with

reinsertion.

4.7.6.3 Trends

The AEG model improves the number of transplants over the myopic algorithm
by a factor 26.9 % in Table 4.7 and by a factor 29.7% in Table 4.9. These re-
sults are in-line with the improvements obtained by the sampling-free method from
[Dickerson and Sandholm, 2015], and interestingly they are reached even if the AEG

method in fact optimise the number of survivors.

In Figure 4.7 and Figure 4.8 we compare the results for the best configuration: our
method consistently (and significantly) outperforms all sampling-based algorithms, in
terms of both the number of transplants and that of survivors (transplants plus waiting
list). Figure 4.9 and Figure 4.10 show the evolution of the cumulative (average) number
of transplants for each algorithm, which is initially very similar for all methods, until
month 3-4 where the AEG models start to outpace the competitors.
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Figure 4.10: Trend of the algorithms batch 20 setup.
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Figure 4.11: Times of the algorithms

4.7.6.4 Solution Times

In Figure 4.11 we show the solution times of the anticipatory algorithms for the best
configuration of 5, 10 and 15 batch size. Each value is measured in seconds and rep-
resents the average of 10 runs. The AP ST'2 algorithm has only 2 points since it does
not scale further than 10 batch size, and the solution time for algorithm APST'1 grows
very fast with the batch size. Meanwhile the AEG model remains very scalable even

increasing the batch size.
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4.8 Chapter Summary

We showed how a correct estimation of the expected value for the online KEP can save
significantly more lives. Moreover, we show how Sample Average Approximation can
improve the solutions. We also notice that by delaying some decisions we obtain good

results.

Informally speaking, our main contribution is an anticipatory model for the KEP based
on probabilistic, rather than statistical, considerations, and therefore to forgo sampling.
Additionally, our AEG-based technique allows us to take into account the effect of
drop-offs. When grounded on the cycle formulation, our method does not require the
introduction of additional infeger variables. Overall, the resulting approach manages
to outperform significantly both sampling-based anticipatory algorithms and a myopic

approach, while having a scalability similar to the latter.

Plans for future research include an experimental comparison with other sampling-free
methods, and tackling large-scale, real world, instances. This will likely require the use
of column generation, which intuitively could prove particularly effective, given that

most of our problem variables are not subject to integrality constraints.
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Chapter 5

Super Solutions Made Easy: Robust
Kidney Exchange Programs

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowl-
edge.” Stephen Hawking

5.1 Introduction

When optimising under uncertainty, it is desirable that solutions are robust to unex-
pected disruptions and changes. A possible formalization of robustness is given by
super solutions. In this chapter we propose a method exploiting Logic Based Benders
Decomposition to find super solutions to an optimization problem, for generic disrup-
tions. The master deals with the original problem, while subproblems try to find repair

solutions for each possible disruption.

Dealing with uncertainty in optimization is increasingly recognized as a key necessity
for tackling real-world problems [Powell, 2016]. Thanks to improved computational
power and to advances in the solution techniques, approaches for stochastic optimiza-
tion are becoming more viable and effective. Most of these methods rely on some
form of probabilistic or statistical model, which requires reliable knowledge from the

domain experts or substantial amounts of data.

Sometimes, however, such probabilistic information is not available or cannot be used

(e.g. due to fairness concerns), or it is desirable to be resilient against any of a given set
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of disruptions. In such cases, super solutions provide a fully combinatorial approach
to robust decision making [Hebrard et al., 2004a, Holland and O’Sullivan, 2005b]. An
assignment = of decision variables is a super solution if any disruption causing
a change in a bounded number of variables can be countered by changing those
and a bounded number of other variables. One such example is given by kidney
exchange programs which provide broader access to transplants, by allowing in-
compatible patient-donor pairs to exchange donors. Centralised kidney exchange
programs exist in many countries, including the US, the Netherlands and the UK
[Manlove and O’Malley, 2014], and require that an optimisation problem is solved at
regular intervals (the Kidney Exchange Problem — KEP) to find the best matching.
Planned transplants may fail for a number of reasons, making robust solutions for the
KEP highly desirable. Ideally, for any transplant lost, one wishes to have some ready

alternative, making super solutions particularly appealing in this context.

Finding super solutions is challenging, and in the literature it is done either via refor-
mulated models [Weigel et al., 1998] or via specialized Constraint Programming al-
gorithms [Hebrard et al., 2004b, Holland and O’Sullivan, 2005b]. Unfortunately, the
former approach often has poor scalability, while the latter requires low-level mod-
ifications to constraint solvers, and is therefore difficult to implement and maintain.

These factors have historically limited the practical applicability of the approach.

In this chapter, we introduce a new method to build super solutions for constraint sat-
isfaction or optimization problems, inspired by Logic-Based Benders Decomposition
(LBBD). The approach broadens the scope of super solutions to include disruptions in
a wide range of forms, it is more scalable than a reformulation, and easier to manage
than specialized algorithms. The method is also an anytime algorithm, meaning that
robust solutions for some disruptions are available in case of an early stop, and it can
run in parallel. We use the KEP as a case study, and compare our methods against
a reformulation-based approach. The chapter is structured as follows: in Section 5.2
we cover the necessary background and briefly survey related work, in Section 5.3 we
describe our method, and in Section 5.4 we ground it on the KEP (and discuss an alter-
native, reformulation-based, model). We provide experimental results in Section 5.6

and concluding remarks in Section 5.7.
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5.2 Background and Related Work

In this section we recall the main definitions and approaches related to super solutions,

and Logic-Based Benders Decomposition (LBBD).

5.2.1 Online Optimisation

Online anticipatory algorithms combines online algorithms (from computer science)
and stochastic programming (from operations research), and assume the availability
of a distribution of future events or an approximation thereof. They take decisions
during operations by solving deterministic optimisation problems that represent possi-
ble realisations of the future. By exploiting insights into the problem structure, online
anticipatory algorithms address the time-critical nature of decisions, which allows for

only a few optimisations at decision time or between decisions.

In the online kidney exchange problem, new pairs can appear and existing ones can ex-
pire at each time step. The objective is to choose a collection of cycles with maximum
weight at each time step. Let D; denote the graph at time ¢, and let P be the distribu-
tion according to which the graph changes over time. Let C(D) be the set of all cycles
in D no longer than L. We introduce a 0/1 variable z. for each cycle ¢ € C(D). Let
C=UL,C(Dy)and V = UL, V;. Let S is the set of scenarios. The online problem is

Cél(}?pXQ)Ep [...cencl(aDXT)chxc] 5.1

S oa <, VieV (5.2)
CjEC:iEC]'

z. € {0,1} VeeC (5.3)

We will show how online anticipatory algorithms can be used in the kidney exchange

problem and to demonstrate their benefits.

Most of the work in kidney exchange has focused on prefixed run optimization on a
static pool. However, this does not reflect the reality, as candidates arrive and depart
from the pool. Gershkov and Moldovanu [Gershkov and Moldovanu, 2009] and Said
[Said, 2012] introduce optimal dynamic mechanisms when agents arrive over time un-

der Poisson processes in different environments under different objectives.
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In [Unver, 2010] the author deducted efficient dynamic methods for barter exchanges
such that the total exchange surplus is maximised. However, the model does not ac-
curately reflect real-world kidney exchange as the results are based on the assumption
that only blood type compatibility is considered, ignoring the importance of the tissue

type compatibility.

In [Dickerson et al., 2012a] the authors presented a method that learns potentials of
elements, i.e., of vertices or edges in a offline graph, and then use these potentials to
guide myopic matching. The potential represents an estimate of how much that ele-
ment can contribute to the objective in the future. In [Dickerson and Sandholm, 2015]
the authors present a "FUTURE MATCH" framework, which takes as input from hu-
man experts an overarching objective, and automatically learns a matching strategy to

achieve its goal. Even in this setting, the authors use the cycle/edge "potentials".

5.2.2 Super Solutions

The concept of super solution was introduced by [Hebrard et al., 2004b] in
Constraint Programming building upon earlier work on super models in SAT
[Ginsberg et al., 1998]. Formally, an assignment of the decision variables x is an (a, b)
super solution if, in case of a loss of value for any set of at most a variables, it is pos-
sible to construct an alternative solution by changing those a variables and at most b
other variables. More flexibility can be added (as shown in [Hebrard et al., 2004b]) by
specifying which variables are subject to breaks (the so called break-set), and which

values and variables can be used for the repair.

The idea was generalised in [Holland and O’Sullivan, 2005b] to (a, b, ¢) super solu-
tions. The ¢ parameter constrains the cost of the robust and repair solutions to be at
most ¢ units (or equivalently a factor c¢) from the cost ¢* of an optimal, non-robust so-
lution. After ¢* is known, finding an (a, b, ¢) super solution is equivalent to finding an
(a,b) super solution for the original problem with the cost bounding constraint. Also
in [Holland and O’ Sullivan, 2005b], they describe the («, 3)-weighted super solutions,
that uses probabilistic failures to determine the sets of variables that require repairs, as

well as the costs of establishing such repairs.

Super solutions are described in [Hebrard et al., 2004b, Hebrard et al., 2004a,
Holland and O’Sullivan, 2005b, Holland and O’Sullivan, 2004] via specialised Con-
straint Programming algorithms. Those employ local consistency as a sufficient con-
dition to check robustness, and to prune a branch of the search tree when such a check

fails. When all variables are assigned, the check turns also into a necessary condition,
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thus ensuring soundness.

In [Roy, 2006] the authors study the complexity of finding o-models looking at the
theoretical complexity of tractable instances of satisfiability (SAT) . There are other
papers on fault tolerant solutions using sat encoding such as [Bofill et al., 2013] im-
proves the work of [Ginsberg et al., 1998] using weighted Partial MaxSAT formula-
tion. Their approach strengthens the complexity to O(n®) for each handled variable
change, where n is the number of variables, and a is the number of breaks, instead
of O(na+b) of [Ginsberg et al., 1998], where b is the number of repairs. However, the
method we will present is more general and can deal with non-binary variables, or
disruptions that may affect multiple variables at the same time. In this chapter we use
based line formulation that has the same asymptotic space complexity, i.e. O(n?) for
handling each variable change. Robust solutions for combinatorial auctions are stud-
ied in [Holland and O’Sullivan, 2005a, Holland and O’Sullivan, 2007]. The work of
[Demirovi¢ et al., 2018] introduces recoverable team formation (RTF) in the coalition

context.

5.2.3 Logic-Based Benders Decomposition (LBBD)

Our method relies on LBBD [Hooker and Ottosson, 2003], an iterative method that
breaks down a decision making task into a master problem (MP) and a subproblem
(SP), in charge of different subsets of variables. At each iteration, the solution pro-
duced by the master is fed to the subproblem, which tries to extend it into a full assign-
ment. If this is not feasible, a procedure generates one or more constraints (cuts) to
be added in the master formulation. These cuts invalidate a set of master solutions, al-
ways including the current one. If the problem cost does not depend on the subproblem
variables, then once all subproblems are feasible, the current master solution is also op-
timal. In the opposite case, cuts should be generated even for feasible subproblems,

until the master becomes infeasible.
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5.3 Super Solutions via Benders Decomposition

In this chapter, we define a method to obtain super solutions for problems in the generic
form, i.e., the target problem (MP):

min z = f(x) (MP) (5.4)
st.ze X (5.5

where x is a vector of n decision variables, f(x) is a cost function, and the X set cor-
responds to the feasible decision space, which can be expressed by any means (con-

straints, equations, logical clauses, etc.).

5.3.1 Generic Disruptions

Our method supports and it is best described in terms of generic disruptions. These
are characterized via a triplet (D, E/, P), where D(Z) denotes the set of all possible
disruptions for a given solution Z, by associating each of them with an index d. For

example, in classical (1, b) super solutions:
D(z)={1,...,n}. (5.6)

In other words, in this case there is one potential disruption per variable. In general,
a disruption is always uniquely identified by a (d, %) pair. P is a set of predicates
P, (), each corresponding to the preconditions of disruption (d, ). For example, in

(1, b) super solutions:
Fas(r) = [xa = d] (5.7)

where [-] denotes the truth value of a predicate. Informally, the precondition represents
a condition that should hold for disruption (d, ) to happen. F is a set of predicates
Eq4:(x), each corresponding to the effects of disruption (d, ). For example, in (1, b)

super solutions:

Ed@(ft) = [[$d 7’é Zﬁd]] . (58)

As another example, often only a particular set of variables in the solution may be
subject to change and these are said to be members of the break-set. For each variable
in the break-set, a repair-set is required that comprises the set of variables whose values

may change to provide another solution. For this case we can write Equations (5.6),
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(5.7), and (5.8) as follows:

D(z) =8B (5.9)
Pyz(z) = [va = 24] (5.10)
i¢Ry

where B is the break-set and R, is the repair set associated to the disruption. The
precondition predicates are as in the previous case. Concerning the effect predicates, a
disruption of the variables of the break-set prevents the variable x; to take the value it
had in the Z solution; moreover, since the disruption can be handled by changing only

the variables in the repair set, all other variables are forced to maintain their values.

The framework can handle more general cases, and in particular disruptions with
domain-specific preconditions and domain-specific effects. In general, we have the

following:

Remark 5.1. If P, ;(x) holds for solution x, then E,;(x) holds in any repair solution

for disruption (d, &), where d denotes a single possible disruption.

The result holds by construction, since as long as the disruption identified by the pair
(d, &) applies, all of its repair solutions should take its effects into account. As in all
super solution approaches, we assume that repairs can change at most b variables. The

¢ parameter from (a, b, ¢) super solutions can be supported as described in Section 5.2.

Intuitively, any variable is subject to change, disruption d prevents the d-th variable
from taking the value it had in the Z solution, and its precondition is that variable x,

actually takes such value.

For (a, -) super solutions, let {1}, be the succession of all subsets of up to a variables

indices. Then:

D(z) = [1..|1]] (5.12)

Eqz(7) = u/\ T # 501]] (5.13)
i€ly

Py(x)=T (5.14)

where || is the total number of elements in {/}.

In general D enumerates the potential disruptions for a solution £, while P explains

why they apply: together, they generalize the break-sets from [Hebrard et al., 2004b].
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The E formulas specify what each disruption actually does.

5.3.2 Decomposition Scheme

We exploit the basic properties of super solutions to obtain an LBBD scheme, and more
importantly cut generation procedures, which can be applied to any target problem.
The method will inherit some classical benefits of LBBD (such as the ability to use

different solvers for the master and the subproblem), and provide some unique benefits.

We task our master problem to find a solution, and the subproblem to identify how to
repair every disruption. This choice provides two advantages: 1) since disruptions in
super solutions are unrelated, we can handle each of them in a separate subproblem. In
turn, 2) having multiple subproblems allows us to determine which disruptions should
be handled: this is precisely what makes our method capable of dealing with generic

disruptions.

Formally, the master is the same as the target problem, i.e. MP. Given a master

solution Z and a disruption index d, the basic form of one subproblem is:

Eaz(y) (SPy) (5.15)
yeX (5.16)

where the y variables correspond 1-1 to the master variables and are used to define the
repair solution. Hence, the subproblem is the same as the original problem, without
the cost function and with the addition of the disruption effects. Since the subproblem
has no impact on the cost of the master solution, if at any point all subproblems are

feasible, the current Z represents an optimal robust solution.

Algorithm 4: BD4SS
Require: Triplet (D, E, P)
repeat

solve master problem to find 2

if master infeasible then break

robust = T

for d € D(z) do

if the subproblem for (2, d) is infeasible then

robust = L
generate cuts for (Z, d)
break

until robust
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Pseudo-code for a basic version of this process is provided in Algorithm 4, whose name
stands for “Bender Decomposition For Super Solutions”. Note that, while stopping
every iteration at the first infeasible subproblem is enough for convergence, processing

all potential disruptions may lead to more cuts and be beneficial in the long run.

5.3.3 Basic Cuts

A trivial cut can be obtained by observing that there are two options for dealing with
a non-repairable disruption: 1) making sure that it cannot occur; 2) changing some
assignments in the current solution. Hence, a valid cut for a disruption (d, ) which

lead to an infesible subproblem is:
—Pyz(z)V [H(z,2) > 1], (5.17)

where H is the Hamming distance, i.e.:
H(z',2") = |} # af|. (5.18)
i=1

Equation (5.17) states that either the precondition for d should be violated, or at least

one change should be made w.r.t. Z.

An improved cut can be obtained by modifying the subproblem so that its objective is
to minimize the distance between the repair solution and the current master solution,

1.e.:

min  =H (y, Z) (SP) (5.19)
s.t. Eqz(y) (5.20)
yeXx (5.21)

If the optimal subproblem cost 5* is not greater than b, then a repair solution exists.
This counts as a “feasible” result for the purpose of Algorithm 4. However, if 5* > b,
then we know that any repair solution will need to change at least 5* variables. Based
on this observation, we can derive a tightened version of Equation (5.17), which serves

as our basic cut:
~Pys(z) Vv [H(z,2) > =], (5.22)

i.e. any new master solution should either violate the precondition P, ;(z), or 3* — b

is the minimum number of variables that needs to be changed.
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Proof. In case of violation of the precondition for (d,Z), then the cut is correct.
Otherwise, P, ; () holds and finding a repair solution is necessary. Due to Remark 5.1,
we have that:

Pui() = Eaa(y). (5.23)

Hence, the same FE;;(y) will be part of any possible subproblem for the disruption.
This means that all such subproblems will share the same feasible space. Let such

feasible space be X, ;. We know that:
min{H(y,%) : y € Xaz} > 8" (5.24)
Then, due to triangular inequality in the Hamming distance:
min{H (y,z) + H(z,%) : y € Xags} > 5" (5.25)

We wish for x to be repairable, hence the maximum value for H(y, x) is b. From this,

we obtain:

min{b + H(z,2) 1y € Xy} > 8" (5.26)
And therefore:

min{H (z,2) 1y € Xz} > " —0, (5.27)

which proves correctness.

5.3.4 Strengthened Cuts

Our basic cuts can be strengthened by proving that a subset of assignments in the
master solution is enough to prevent repairability. Generic cut strengthening procedure
for Bender Decomposition exist, but they are computationally very expensive. Here,
we leverage the structure of super solutions to obtain insights into which variables
should be included in the cut. In particular, given a set of indices I, let H; be the

Hamming distance restricted to 7, i.e.:
Hp(a!, 2") = > | # af|. (5.28)
icl

Given an infeasible subproblem, we will try to identify a subset of indices / such that

the minimum H; distance from the master solution Z is still greater than b. We do this
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heuristically and iteratively, by starting from the variables that are different from £ in

the solution of SP, and then by solving the modified subproblem:

1
min Hy(y, &) + ~ Hy(y. &) (SPy) (5.29)
S.t. Ed@(y) (530)

where 1 is the set of variable indices that are not in I. The cost function is a lexico-
graphic composition, whose main goal is to minimize the distance H;(y, #). Let y*
be the optimal solution of this subproblem. If H;(y*,Z) > b, we can generate the

strengthened cut:
~Paz(z) V [Hi(z, %) > 7 — 0], (5.32)

were 7 = Hj(y*,Z). We can then expand the I set by including all variables that
take different values in y* and Z. The term 1/nH7(y, &) exists to reduce the number of

variables that are added to [ in this fashion at each step.

The pseudo-code for the procedure is given in Algorithm 5, and adds two optimiza-
tions: first, it generates cuts only when the value of H;(y*, Z) increases: since the I set
grows monotonically, subsequent iterations with the same f; distance result in redun-
dant cuts. Second, the process is stopped as soon as 37 becomes equal to 3*, which is

guaranteed to happen when all variable indices are included in the I set.

Algorithm 5: STRENGTHEN
Require: A disruption (d, %)
solve SP to find y* and 3*
I'={ie[l.n]:yf #2;}
pi=0
repeat
Solve SPj to find y*
if H;(y*, ) > max(b, 57) then
B; = H; (y*> j)
Generate the cut from Equation (5.32)
until 37 = g*
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5.3.5 Combined Cuts

A third cut generation method can be defined via a linear combination of pairs of

existing cuts. In particular, let us suppose we have:

— Py, o () V [Hpx (2, 2%) > B — 1] (5.33)
=Py, an(2) V [Hpe(z,2") > B — b] . (5.34)

The cuts are built respectively for disruptions (dy, 2*) and (dj,, 2"), and are expressed
in the form of Equation (5.32), which subsumes that of Equation (5.22). First, we
observe that any inequality concerning a H; distance holds true if we expand the set .

Hence, we can write:

Py, () V [Hpen (2, 2%) > B — b] (5.35)
—Py, an(2) V [Hpen (2, 2") > B0 — ] . (5.36)

where both Hamming distances are defined on the same set /¥ = I* U I". Due to

triangular inequality, we have that:
Hpon (2, 2%) + Hpon (2, 2") > Hpen (2%, 27). (5.37)
Therefore, the two cuts can always be merged to yield a valid combined cut:

_'Pdk,i’k ([E) V _‘Pdh@h(l‘) V
[Hpon(z,2%) + Hpon (2, 2") > Hpn (2%, 2")] , (5.38)

which is non-redundant if H (2%, 2") > Bix — Bin — 2b. A simple procedure for
generating all non-redundant combined cuts is provided in Algorithm 6, where n. is

assumed to be the number of basic or strengthened cuts generated so far.

Algorithm 6: COMBINE
Require: C' = {(dy, 2%, 1", B3,) : Vk € [1.n.]}
for k € [1.n. — 1] do
for h € [k +1,n.] do
if Hpon(2%,2") > B3, — B3, -2b then
Generate the cut from Equation (5.38)
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5.3.6 Remarks

The master and the subproblem for our decomposition correspond very closely to the
original target problem in terms of both structure and size. This makes them easy to
implement (in contrast to specialized search methods), and typically not harder to solve

than the target problem (in contrast to reformulated models).

Finding super solutions, however, remains very challenging, as it should be expected
of any method providing strong robustness guarantees. Each iteration of the method
requires to solve multiple, typically NP-hard problems. Moreover, as the number of
iterations grows, the master tends to become more difficult due to the accumulated

cuts.

The use of procedural code for many sections of our methods provides a substantial de-
gree of flexibility: in particular, it allows our method to deal with generic disruptions.
The available flexibility could be further exploited: for example, one could conceive a
hybrid chance-constraint/super solution method to provide robustness against disrup-

tions with a given total probability of occurrence.

Another advantage of the approach is that, in case of early stops, one can still access
a master solution that is robust against some disruptions. This can be achieved via

reformulated models, but not via specialised search algorithms (at least not trivially).

Note however that our process is not designed to provide such intermediate solutions
as a main output, and there is no guarantee that more iterations will correspond to a

larger number of rapairable disruptions.

5.4 A Case Study on the KEP

We now proceed to grounding our method on the Kidney Exchange Problem, using the
cycle formulation from Section 5.2 as a basis. In this case the Master Problem is the
original KEP model, and the sub-problem is the repair. When the subproblem is not
feasible it will generate the respective cut/cuts to be added to the master. Therefore if

the subproblem is feasible it means we found the robust solution.

For sake of simplicity, we will be interested in finding (1, b, ¢) super solutions that are
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repairable w.r.t. the loss of cycles. Hence we have:

D(#)={de[l.n]:2q=1} (5.39)
Pis(z) = [za = 1] (5.40)

where n.. is the number of cycles, and a disruption index d corresponds to a cycle. Each

cut is in the form:

~Fas(x) vV [Hi(z,2) = 57 — ] (5.42)
corresponds to:
lea=0]V || > xi+ > (1—xz)>p8 -0 (5.43)
i€[l..n] i€[l..n]
;=0 #i=1

and can be translated into the mathematical constraint:

oo S (T—a) > (8 —b)(1—z). (5.44)
16[161] 1€[1..n]
T;= ;=1

The right hand side is non trivial (i.e. larger than 0) iff x, is equal to O, i.e. if the
precondition for the disruption is violated. This (little) information is sufficient to
apply all the techniques described in Section 5.3 to the KEP.

Since we are dealing with (1,0, ¢) super solutions, we need to include an additional

cost-bounding constraint both in the master and in the subproblems:

Z w;x; > ¢ —c (5.45)
ieC
where c* is the cost of an optimal non-robust solution. Intuitively, in a robust solution

we do not want to loose too many lives, which makes sense from a medical perspective.

It is not particularly difficult to obtain (D, E, P) triplets and cut expressions for other
disruptions, including the loss of multiple nodes, edges, or cycles.

For sake of example, robustness w.r.t. the loss of a node (rather than a cycle) could be
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formulated as:

D(#) = {d elln]: Y d.= 1} (5.46)

ceC,deC,
| ceC,deCe i
Pus(a)=1|| Y #.=1 (5.48)
| ceC,deCe 1

where 7 is the number of nodes. In this case, a disruption is associated to each node
d that is used by at least one cycle, and its effect is forbidding the selection of all
cycles connected to node d. Similar expression can be obtained for other disruptions,
including the loss of multiple nodes, or edges. All such cases are not covered in our

experimentation.

5.4.1 Model Reformulation

As a term of comparison, we obtained a model reformulation by generalizing the ap-
proach from [Weigel et al., 1998]. In particular, we generate a model with a “main”
vector of n decision variables x, and a vector of n repair variables y; for each z;. Over-
all, the model has n x (n + 1) variables, and corresponds to the problem of finding an

(1, b) super solution and all its repair solutions.

We generate a CSP with n x (n + 1) variables, where every variable in the original
CSP appears twice. Furthermore we need to add a disequality constraint between each
variable and its duplicate. ,ie., X; = d; = X ]' # d; and add the constraint between
X;and X ; if there was a constraint between X; and X; for example. The disadvantage

of this approach is that we represent the whole CSP twice. Therefore the fault tolerant
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formulations (FTF\ye,) adapted to the Kidney Exchange problem is the following:

max z = Z W;T; (FTFkEp) (5.49)
ieC

st. Sz <1 Vk eV (5.50)
ieCkeC;

Z yij <1 VieC,VkeV (5.51)
jeCkeC;

Vi =1—w; Viel (5.52)

z; € {0,1} Viec (5.53)

v € {0,1} Vi,jeC (5.54)

where Equation (5.50) and (5.51) ensure that neither the super solution nor any repair
solution can use a node twice. Equation (5.52) corresponds to the effects of the dis-
ruption. We then need to add constraints to limit the Hamming distance between the

super solution and the repair solutions. In particular, for each ¢ € C we have:

oy (1 —z5) + > (1 —yi)z; <b+C|(1 — ;)

jec jec
which is a quadratic constraint, with a right-hand side term that is non-trival iff z; = 1,
i.e. if cycle 7 is used. Finally, we need one last set of constraints to handle the cost

bound:

ijyij >c —c VieC (5.55)
jec
Overall, the reformulated model is not only considerably larger, but also non-linear

(although a big-M based linearization is of course possible).

5.4.1.1 Space Complexity

Given n the number of variables and ¢ the number of constraints for the original prob-
lem, therefore for the reformulation approach the number of variables is n x (n + 1),
and the number of constraints is(n + 1) x c¢. The domains and constraints relation do
not change. The space complexity therefore is in O(n?). The reformulation approach

works for small instances, but definitely will not scale.
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5.5 Greedy model

Finding a solution of an algorithmic match does not mean that all the exchanges will go
to an actual transplant. Some may fail due to last minute tests, the patient withdraws
from the system, or the conditions get worse for the patient. When a pair pulls out
from a solution, one simple way is to rerun the program again, excluding the failure

that caused the damage.

In [Dickerson et al., 2013, Pedroso, 2014, Klimentova et al., 2016] study the problem
of failure aware of transplants in the kidney exchange problem. [Dickerson et al., 2013]
proposes to move away from the deterministic clearing model used by kidney ex-
changes into a probabilistic model where the input includes failure probabilities on
possible planned transplants, and the output is a transplant plan with maximum
expected value, then they develop a custom (branch-and-price based) integer pro-
gram solver specifically for the probabilistic clearing problem. [Pedroso, 2014] and
[Klimentova et al., 2016] proposes a method for computing the expectation for the
length of a maximum set of vertex-disjoint cycles in a digraph where vertices and/or
arcs are subject to failure with a known probability. Moreover, they are adjusting the
weights of the cycles or including some failure probabilities. Those approaches tend to
favour more reliable exchanges, rather than to define repair actions in case of failures.
In this section, we are showing a greedy model, i.e. we consider to rerun the program

when a pair/edge causes a failure.

Algorithm 7: Kidney node failure
1: Solve KEP on graph (V, A(V))
let S,,; be an optimal solution for a given instance, if exists
Sy, = all pairs in S,
for all p € S,,;,-s do
let ¢, be all cycles that contain p
A
solution_rematch < rematch (1,0, c)
for all Vsol € solution_rematch do
b < max Quts
¢ < max Quts - max Ins
: return (1, b, ¢)

R e A A

—_
—- O

With this in mind, we will explore two possible failures:

* edge failure, when the compatible edge between two pairs is broken, therefore
all the cycles that contain the particular the edge will be removed from the com-
patibility graph;
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* node failure, when a pair pulls out from the system, therefore all the cycles

containing that pair will be removed from the compatibility graph.

For each pair in the optimal solution we identify the variables that belong to. The break
set is the set of variable that may break if the respective pair may break, and the repair
set is the set of variables that can be used as repair. Breaking a pair may require more
than one variable to change. If a pair pulls out from the program, all the cycles that he
is taking part in will break as well. For each pair in the optimal solution, we break the
variables that contain the pair and we resolve the problem, using the cycle formulation.

Below we describe the algorithm for the node failure and the edge failure procedure.

Algorithm 7 describes the pseudo-code of the node failure. In line 1, first it identifies
the optimal solution and in the following lines (2-6) identifies the break set and the
cycles that belongs to, i.e. the nodes that might fail, therefore we will only rerun the
matching program only for those nodes. Specifically, line 6 will remove the all cycles

that the node is part of, and in line 7 call the rematch(1, b, ¢) function.

Algorithm 8 solves a new KEP on the restricted graph and detects the nodes that exit
solution, and the new nodes in the solution. Finally the Algorithm 7 will return the

tuple (1,0, ¢), as the format described in the previous sections.

Algorithm 8: rematch (1,5, c)
1: Solve KEP on graph (V' \ S,, A(V'\ 5,))
2: Srematen, = New optimal solution, if exists
3: if solution then
4: Spew = all pairs in Syematen
5
6
7

Outs = Sp \ Srematch
Ins = S;ematen \ Sp
: return (Syematen, Outs, Ins)

Algorithm 9 describes the pseudo-code of the edge-failure procedure, which is very
similar to Algorithm 7, with the difference that Algorithm 8 will rerun the restricted
graph as (V, A(V \ V,)). Both algorithms describe a greedy way to deal with last
minute rearrangements, as many hospitals prefer to rerun the matching program. We

do encourage to use
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Algorithm 9: Kidney edge repair
1: Solve KEP on graph (V, A(V))

2: let S, be an optimal solution for a given instance, if exists
3: V. =all edges in S,

4: foralll € V, do

5:  let ¢, be all cycles that contain [

Ay

7:  solution_rematch < rematch (1,b, c)

8: for all Vsol € solution_rematch do

9: b+ max Outs
10: ¢ < max Outs - max Ins

—_
p—

: return (1, b, ¢)

5.6 Experiments

In this section we present our empirical experiments, which were designed with two

main goals:

» comparing the effectiveness of our method against one with a similar applicabil-

ity and flexibility, i.e. the reformulation from Section 5.4;
* testing the effectiveness of different cut generation procedures.

Last, we will present the results for the greedy algorithm.

Instances We use the benchmarks from [Mattei and Walsh, 2013], which were
obtained via the state-of-the-art donor pool generation method described in
[Saidman et al., 2006]. We consider all transplants equally worthy, hence the weight
of each cycle corresponds to its number of exchanges. The maximum length of a cycle
is three.

5.6.1 Choosing the (a, b, c) Parameters

As mentioned in Section 5.4, we focus on finding (1, b, ¢) super solutions, where dis-
ruptions correspond to (single) selected cycles becoming non-viable. Therefore, we

have a = 1, and we are left with two main parameters to tune, i.e. b and c.

The b parameter refers to how many variables can be changed in a repair solution, ex-
cluding (in classical super solution approaches) the variables having lost their value.

In our formulation, this requires to exclude such variables in the computation of the
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Hamming distance. For most problems, finding a repair solution by changing just one
variable (i.e. b = 1) is a difficult task, and the KEP is no exception. Interestingly, how-
ever, we found that setting b = 2 was enough for the solution of the cycle formulation
to be robust, for most of the instances in our benchmarks. Therefore, we chose to limit

our experimentation to b = 1.

The use of the cost-bounding parameter c is in this case mandatory. In fact, any KEP
solution remains feasible if a cycle is removed: hence, without some cost bound, the
loss of a cycle could be countered by doing nothing at all. In general, if % is the largest
size of an allowed exchange, then any solution is trivially (a,b) robust, unless we
require not losing more than ak—1 units from the non-robust optimum (i.e. ¢ < ak—1).
In our case, there are therefore only two reasonable values for ¢, i.e. 1 and 2. We chose

to keep ¢ = 2 in our experimentation.

5.6.2 Results

We performed experiments over groups of 10 instances with number of nodes 7,45 €
{16, 32, 64, 128}. We solved them via the reformulation-based model, and via our Ben-
ders Decomposition approach, using different cut generation procedures, and always

stopping the process after 5 X 1,4, master iterations.

We investigated approaches that stop each iteration of Algorithm 4 after the first in-
feasible subproblem (with the _1st suffix), and approaches that process all disruptions
(with the _all suffix). The _all-suffix approaches will generate more cuts: this may
reduce the number of iterations, but require more time and makes the master more
difficult to solve. We considered the following combination of the cuts from Sec-
tion 5.3: only basic cuts, identifiable from the cut1 prefix; basic cuts + combined cuts,
identifiable by cut2; strengthened cuts, identifiable by cut3; and strengthened cuts +
combined cuts, identifiable by cut4. Strengthened cuts are expensive to produce, but
may reduce the number of iterations. Combined cuts are cheap to obtain, but their

large number may make the master more difficult to solve.

The results of the experimentation are reported in Table 5.1, Table 5.2, Figure 5.1, and
Figure 5.2. The table reports, for each approach and each size: 1) the fraction of in-
stances for which a robust solution was found; 2) the fraction of instances for which
robustness was proved infeasible; and 3) the fraction of open instances, for which the
iteration limit was reached. Overall, the reformulation scales very poorly, leading to
consistent memory problems for sizes larger than 32. Using combined cuts does not

have a large impact on the number of open instances but it does have a hug impact
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increasing the size of the instances, whereas strengthened cuts are very effective. Pro-

cessing all disruption at each iteration seems to be slightly detrimental.

In Figure 5.1 we show the average solution time of all approaches in logarithmic scale
(including the non-robust cycle formulation, referred to as optimal). The time for the
reformulation grows very quickly with the number of pairs, and the series has only
two data points. The approaches using strengthened cuts tend to be the most effective,
while the time for methods using combined cuts are consistently higher than those who

do not generate them.

104 L *—* opt
®—&® reform
¢ cut1 1st
A-A cut2_1st
—+ cut3_1st
102 L Py cutd 1st |
< cutl_all
10! L@@ cut2_all
\a 4 cut3_all

- - cutd all

1031

Time (s)

10° F

10t E

102

Pairs

Figure 5.1: Resolution time with b=1 log scale

In Figure 5.2 we plot the average number of master iterations for the Benders De-
composition, again in logarithmic scale. Strengthened cuts are the clear winner. The
_all-suffix approaches do sometimes iterate less than the corresponding _1st-suffix
ones, although this is not always the case. The reason is that adding more cuts may
force the master to produce different sequences of solutions, and therefore have a non-
monotonic effect on the number of iterations. Combined cuts seem to have a more
consistent effect, although not a dramatic one: this suggests that a more difficult mas-
ter is the main reason for their increased solution time, and that controlling the number

of generated cuts per iteration may make them more useful.
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Figure 5.2: Number of master’s iterations with b=1 log scale

5.6.3 Results for the Greedy Model

The instances are taken from [Dickerson et al., 2012b], which uses a state of the art
donor pool generation method, described in [Saidman et al., 2006]. In this section we
present only the node failure as it has a bigger impact on the graph then the edge
failure. For the edge failure we found that it was easier to rerun the program than
the node failure. In Table 5.3 we present the average results over 10 instances per
class, and these results are computed using the classical cycle formulation. The results
presented in Table 5.4 are solved using the model of [Manlove and O’Malley, 2014],
which is currently running in the UK. Again, we show the averages over 10 instances
per class. For the sake of image resolution we only show classes of 16 pairs and 32

pairs, with the respective altruistic number.

Table 5.3: Summary of instances using the cycle formulation model.

Nodes ‘ Objective ‘ Time ‘ Cycles ‘ Chains ‘ Arcs

16p+0 altr 4.3 0.024 1.8 0 50
16p+1 altr 8.3 0.236 2.3 1 89.7
16p+2 altr 9.5 0.439 2 2 106
32p+0 altr 17.1 0.866 6.8 0 267
32p+1 altr 17.2 10.45 54 1 296.2
32p+3 altr 20.9 112.693 5.2 3 384.2
32p+4 altr 22.8 382380 | 5.1 4 435.3

Between the Table 5.3 and Table 5.4, we observe similar results, therefore we choose
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for the Algorithm 7 to use the classical KEP cycle formulation. We notice that increas-
ing the number of edges the number of cycles and chains increase, and the running

time increases as well.

5.6.3.1 Results of the Rematching Model

Table 5.4: Summary of instances using the model used in UK.

Nodes ‘ Objective ‘ Time ‘ Cycles ‘ Chains ‘ Arcs

16p+0 altr 4.3 0.040 1.8 0 50
16p+1 altr 8.3 0234 | 23 1 89.7
16p+2 altr 9.29 0.333 2 2 106
32p+0 altr 17.1 0.269 | 7.1 0 267
32p+1 altr 17.2 1.304 | 5.8 1 296.2
32p+3 altr 20.9 3579 | 5.9 3 384.2
32p+4 altr | 22.88 5.227 | 5.5 4 435.3

Every plot has 10 instances per class. The "optimal" bars represent the value of any
optimal solution, the "max outs" bars shows the maximum number of pairs that are not
in the new solutions. The "lost transplants" bars represent the maximum number of
pairs that will not take part in any other solution. For example, for the second instance
in Figure 5.3, the Algorithm 7 will return the tuple (1, 3,2), which means that if one
pair pulls out from the optimal solution, three other pairs will exit the program, and in

the worst case we will loose two pairs.

We have tried different pairs number, i.e. 16, 32 pairs, with no altruistic, 1,2,3,4 altru-
istic donors. For each pair in the solution, we choose to rerun the algorithm excluding
the cycles the pair is part of. We calculate for each run the maximum number of pairs
that exit the solution, and the average of the transplants that are lost as they can not be
rematched in any other solution. Grey bars represent the number of transplants in the

optimal solution.

The Figures 5.5 and 5.6 show the trend of the greedy rematched algorithm. We con-
clude by saying that the algorithm present in the previous section is by far preferred,
instead of the greedy algorithm. Many hospitals prefer to go ahead with the solution
computed and excluding the cycle which is broken and add the other pairs back in the

waiting list, instead of rerunning the algorithm.

Investigation of Matching Problems using 135 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Super Solutions Made Easy 5.6 Experiments

16 pairs, 0 ndd

10
9
8
7
6
5
4
3
: I
: I 1 i
1 2 3 4 5 6 7 8 9 10
Hoptimal Mmaxouts Mlosttransplants
Figure 5.3: Illustration of a kidney exchange rematch with 16 pairs.
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Figure 5.4: Illustration of a kidney exchange rematch with 16 pairs and 1 altruistic
donor.
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Figure 5.5: Illustration of a kidney exchange rematch with 16 pairs and 2 altruistic
donor.
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Figure 5.6: Illustration of a kidney exchange rematch with 32 pairs and O altruistic
donor.
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5.7 Chapter Summary

We have defined a Benders Decomposition approach to obtain super solutions for a
satisfaction or optimization problem, together with a number of general cut generation
procedures. Our method can deal with generic disruptions, dramatically outperforms
reformulation-based approaches in terms of scalability, and is more flexible and much
easier to apply compared to specialized algorithms from the literature. We believe our
contributions are a significant step towards making super solution widely applicable to

practical problem.

The method is not without drawbacks and, in our current research, many improvement
directions are still open: these include cuts defined using multiple subproblems, prin-
cipled approaches to limit cut generation, improvements to the anytime features of the

approach, and hybridization with probabilistic models.
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Chapter 6

Conclusions and Future work

“My goal is simple. It is a complete understanding of the universe, why it is as it
is and why it exists at all.” Stephen Hawking

6.1 Conclusions

This thesis outlined a number of algorithms for two matching problems under prefer-
ences, i.e. the popular matching problem and the kidney exchange problem, centered

for solving combinatorial and optimisation problems.

In Chapter 3 we described how to encode a popular matching using the constraint
programming approach. We also showed the time complexity of finding an optimal
popular matching where ties are allowed in the preference lists. We showed that the
optimal popular matching with ties in the preference list can be reached in polynomial
time, and gave two models to show this, i.e. the minimum weight perfect matching

and a flow circulation.

Moreover, we considered the case where additional copies can be added for the in-
stances that does not admit a popular matching, i.e. the the popular matching problem
with copies. We introduced new graph properties for this extended case, considering
more than two copies, and the experiments showed essentially the key aspects of a

good branching strategy, as well as the efficiency of our dominance rules.
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The kidney exchange problem is divided in two major parts. The first part described
and solved dynamic kidney exchanges, where pairs arrive and departure over time.
The second part focused on the offline version of the problem which search for a ro-
bust matching managing uncertainty, i.e. multiple cycle/edge/pairs disruptions. In

particular:

A. In Chapter 4, first, we presented an online anticipatory algorithm scenario sam-
pling using a single KEP constructed using all scenarios. We simply proposed
to employ the classical Sample Average Approximation scheme for two-stage
stochastic programs and showed that our approach performs better than other
scenario based algorithms. Second, we proposed a sampling-free probabilistic
model, Abstract Exchange Graph (AEG), overcoming the scalability issues of
the scenario based algorithms.

B. In Chapter 5, we formally defined the notion of super solution to the kidney
exchange problem. Therefore, we used Logic-based Benders Decomposition to
boost the search for a robust solution. We applied this method to the kidney
exchange problem with great results. Using valid cuts, clears a large portion of
the search space. Therefore, investigating other cuts can improve prunning the

search space for large instances.

6.2 Future Work

There is much space for improvements and optimisation around the matching prob-
lems under preferences. We present some future research directions and a list of open

questions that arose from the research performed as part of this thesis.

6.2.1 Extended Popular Matchings

For a given bipartite matching problem there may be many different matchings of a
certain type, e.g. Pareto optimal, rank-maximal etc that can be interesting to encode
them in a constraint programming setting. As a first step, given a bipartite matching
problem and an optimality criterion matching, it would be useful to find efficient al-
gorithms to determine whether the problem instance admits a unique matching, and if

not to find such matching.

Investigation of Matching Problems using 140 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Conclusions and Future work 6.2 Future Work

There is a wide range of possibilities for future study for the popular matchings with
copies. A future work for this problem would be to minimise the cost when an extra
copy is added. From a practical point of view, it would be nice to understand the be-
haviour in real-life situations of the methods described in Chapter 3, i.e. how "good"
are the popular matchings likely to be for a given instance of House allocation or Hos-

pital/residents derived from some practical application.

6.2.2 Extended Kidney Exchanges

In practice, kidney exchanges are subject to a variety of types of uncertainty, like the
uncertainty over the possible exchanges or long-term future layout of the pool. The
super-solution model described in Chapter S can be extended to a dynamic setting,

where we seek to find robust solutions in the pool that evolves over time.

Further comparison with other failure-aware models from [Dickerson et al., 2013,
Klimentova et al., 2016] can also be performed. Nevertheless, machine learn-
ing techniques for learning dynamic matching policies or learning failure rates
[Ashlagi et al., 2013], which can be incorporated in the program and comparison with
work from [Dickerson and Sandholm, 2015] is almost mandatory. Incentivize donor
participation in kidney exchange, would have great impact on the state of organ dona-
tion [Stoler et al., 2017].

Open questions:

* Fairness in health care. Create more general models of fairness in or-
gan exchange, i.e. in [Hooker and Williams, 2012] the authors give a general
method for combining equity and economic efficiency in a single mathemat-
ical programming model. It would be interesting applying this to the kidney
exchange problem. One concrete first step would be to apply the work of
[Hooker and Williams, 2012] to model the equity trade-off in joint kidney-liver
exchange.

* Multiple organ exchanges. A possible evolution of the program could be to
include also the compatible pairs [Santos et al., 2017] in the system. Never-
theless multiple organ exchanges could create more exchanges, i.e. work in

[Dickerson and Sandholm, 2013] considers kidneys and liver exchanges.

 Other anticipatory algorithms. A comparison with other sampling-free meth-
ods from [Dickerson et al., 2012a] or [Dickerson and Sandholm, 2015] can be

considered a priority for future research.

Investigation of Matching Problems using 141 Danuta Sorina Chisca
Constraint Programming and Optimisation
Methods



Conclusions and Future work 6.2 Future Work

* Window time constraints Studying the kidney exchange in a more detailed
setting, i.e., considering the time validity of a deceased donor, or the distance

between the patient and the donor hospital.

* Clearing kidney markets on a nationwide scale. Different methods to
clear these markets has been studied considering either column genera-
tion or constraint generation [Abraham et al., 2007a, Dickerson et al., 2012b,
Plaut et al., 2016]. Further extensions of the techniques presented in Chapter 4

and Chapter 5 can be performed to model more scalable algorithms.
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