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Abstract 
  

The Munster Blackwater catchment, in the South West of Ireland, was regularly subject to flooding, 

prior to flood allevation works. The towns of Mallow and Fermoy within the catchment suffered 

many disturbances for their inhabitants with sometimes severe economic losses. A good knowledge 

of rainfall-runoff processes is important in order to understand the causes of flooding to be able to 

develop new infrastructure to manage flooding. 

The first part of this project focuses on the rainfall and river flow data collection from different 

sources: the 15-minute time step precipitation data from the OPW, the 15-minute river level/river 

flow from the OPW and the EPA and the precipitation data from MÉRA (Met Éireann ReAnalysis- 

Climate ReAnalysis). MÉRA is a very high resolution climate reanalysis dataset which was used to 

calculate the monthly and annual rainfall in a specific year, for example for 2010 for selected 

locations (the nearest point to each rain gauge). Initial analysis of the measured OPW data shows 

significant numbers of missing values and outliers for the precipitation data. A method was 

developed to cluster the rain gauges with similar precipitation patterns based on the amount of 

precipitation of the nearest points to these rain gauges from MÉRA. Then a gap filling method was 

applied in each cluster to fill the missing values of each rain gauge with its cluster members.  Other 

methods were also examined to obtain quality controlled data.  

The second part of this project applies a conceptual hydrological model, PDM (Probability Distributed 

Model) developed by Moore (Moore, 2007) to the Munster Blackwater catchment. The model 

considers each point of a catchment as a single storage unit with a specific storage capacity (depth) 

that can be described by a Pareto distribution. PDM is suitable for a variety of catchments, and has 

minimal data and computational requirements. The input is 15-minute precipitation data from 

different rain gauges and 15-minute river level/river flow data from river stations along the river. The 

calibration was applied on three subcatchments of the Munster Blackwater catchment. The 

validation was applied for years between 2010 to 2017. The calibrations and validations indicate that 

the PDM model can explain  most of the variability of observed flows in the different subcatchments 

over a period of years, especially when a high standard of data quality is available, for example in 

2015. Then validation of the model for flood events was examined. Validation was applied for the 

highest flood event in each year during 2010 to 2017. The accuracy of the model runs are different 

for each subcatchment with the best accuracy of 93%  in the Dromcummer  subcatchment and the 

accuracies in Mallow Rail BR and Killavullen being 80 % and 78% respectively. The model estimates 
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the peak and low flow very well in Dromcummer. The computed flow is underestimated in Mallow 

and overestimated in Killavullen. 

The third part of the project is to use the PDM model in a precipitation and river flow sensitivity 

analysis. This was achieved by increasing the precipitation amounts in the datasets by 10, 15, 20, 25 

and 30% to examine how the peak flows and low flows respond. It was found that the peak flows 

increase by amounts similar to the precipitation increases. The low flows increase at a much lower 

rate than the precipitation increases. It is known that in a scenario of climate change for a warming 

world that the precipitation increases by a maximum of 7% per degree C increase in accordance with 

the Clausius-Clapeyron equation. However as a warming world also increases evaporation and will 

likely impact the soil moisture status, it is considered that flood flows might increase at a rate less 

than the precipitation increases. This can be examined by increasing the value of potential 

evaporation by 10, 15, 20, 25 and 30% .These conditions were not included in this and it is 

ecommended that further research be done in this area for Ireland. 
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1.1 Climate Change Attribution 
 

It is now well established that we live in a warming world. Global temperature has increased by 

approximately 1°C since the mid 1800s. With each 1°C warming, an additional 7% increase in 

precipitation occurs in accordance with the Clausius-Clapeyron equation (Li, Harrison, Bartlein, Izumi, 

& Prentice, 2013). So hydrologically we now have more precipitation, more evaporation and changes 

to river flow relative to the 1800s.  In recent decades, there is more evidence of extreme climate 

phenomenon happening all over the world such as heat waves, floods, droughts, heavy rainfall and 

hurricanes.  For example: Annual precipitation in Honghu region (located in Jianghan plain in the 

middle reaches of the Yangtze River in China) has the increase tendency in recent 50 years (1960 – 

2011). The main reason is the increase of heavy precipitation event. The rainfall in from April to July 

count for 54% of total precipitation, and more than 90% of the heavy precipitation processes 

concentrated in this period, which leads to the increase of flood. The uneven distribution of 

precipitation time and decreased tendency of annual precipitation days lead to the increase of 

drought process in the region, especially the light drought (Liu, Liang, Zhou, & Liu, 2013). Using ocean 

and atmosphere observations demonstrate the link between increased upper ocean heat content 

due to global warming with the extreme rainfalls from hurricane Harvey in summer 2017 (Trenberth, 

Cheng, Jacobs, Zhang, & Fasullo, 2018). And the impact of The weather conditions (extremely high 

temperature conditions and low humidity, known  as “heat wave”) of the city of Turin (Italy) on 

distribution system in 10 years from 2008 to 2017 was studied (Zhang, Mazza, & Bompard, 2019). 

The term “extreme event” can be explained as an intense or very severe rare phenomenon 

compared to what normally occurs over a period of time in a specific location. An event might be 

considered as an extreme event in a location but it might be a normal event somewhere else. 

Seasonality  is another issue, as an unexpected event for a season might be considered as an 

extreme event while a similar event might be common in another season (Kiely et al., 2007).  

Climate is a description of atmospheric behaviour over long periods, typically years, decades, or 

longer (SciLine, 2017). For example, Ireland has a humid temperate climate. Climate change means a 

significant change in some features of climate (e.g. temperature, rainfall, wind, …). Climate change 

has happened several times over the long period of human history due to natural weather patterns 

or random climate variability and is now happening again. Most scientists believe in today’s world 

another important factor - an increase in 𝐶𝑂2 due to fossil burning - has a huge influence in climate 

change (Chen, Gao, Han, & Chen, 2009). They have found more evidence of impacts of human 

activities on climate change. Collecting different types of data from different sources with advanced 

technologies such as satellites and radar and using advanced computer processing power enable 
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scientists to analyse “big” climate data to study the many factors contributing to weather and which 

factors contribute to extreme weather events (Dabrowska et al., 2017; Fiore et al., 2016). Certain 

extreme weather events are unlikely to be happening without climate change. This is the science of 

extreme event attribution (SciLine, 2017). Two main factors, which can accelerate the process of 

climate change are: 

 natural processes such as changes in the sun’s intensity, volcanic eruptions, and slow changes 

in the earth’s orbit around the sun 

 Increases in greenhouse gases such as 𝐶𝑂2, 𝑁2𝑂 and 𝐶𝐻4. 

 human activity such as burning fossil fuel including coal, oil and gas producing carbon dioxide 

emissions, agriculture producing methane and nitrous oxide, land use change including 

deforestation, reforestation, urbanization and desertification (EPA, 2007). 

The result of these human activities is increasing emissions of 𝐶𝑂2, which directly increases the 

greenhouse effect. The greenhouse effect is a mechanism that makes life possible on the earth. 

Roughly, 30% of the incoming energy to the earth by solar radiation is reflected back to space by 

the atmosphere and the earth, 50% is absorbed by the earth’s surface (the land and oceans) and 

20% is absorbed by the atmosphere and clouds. The sun’s energy absorbed by the earth makes the 

earth warm (Figure 1.1). 

             

 Figure 1.1 An idealised model of the natural greenhouse effect (Treut et al., 2007). 
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As Greenhouse gases (𝐶𝑂2, 𝐶𝐻4, 𝑁2𝑂) have grown due to human activity over the past century, the 

absorbed energy by the earth and atmosphere has increased and the lost or reflected energy by the 

earth’s surface is reduced, causing global warming (Treut et al., 2007). According to global 

temperature, analysis conducted by scientists at NASA’s Goddard Institute for Space Studies (GISS), 

the average global temperature has increased by about 0.8°Celsius over the past century. Figure 

1.2 shows the effect of a small increase on average of a variable with normal distribution, for 

example temperature. A small change on some climate attributions can produce big extreme events 

either in frequency or in value (Kiely et al., 2007).    

                  

The detection and attribution of climate change studies use statistical methods such as:   

 Optimal fingerprinting: a generalized multivariate regression  

 Standard frequency approach 

 Bayesian approach: Interest in a Bayesian approach is motivated by several factors. These 

include the ability to integrate information from multiple lines of evidence, and the ability 

to incorporate independent prior information into the analysis. There is increasing interest 

in the use of Bayesian methods of statistical inference in hydrology (Zwiers, 2004). 

 

1.2 Flooding 
 

Flooding is defined as water overflowing onto land that normally is dry. Flooding occurs mostly when 

rivers or streams overflow their banks and spread throughout relatively flat adjacent land, called a 

Figure 1.2  Schematic showing the effect on extreme temperatures when the mean temperature 
increases, for a normal distribution (Box TS.5, Intergovernmental Panel on Climate Change, 
Assessment Report 4: 53, 2007). 
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floodplain (Corcoran, 2004). Floods can be the result of short duration intense rainfall or long periods 

of heavy precipitation, melting snow or dam breaks. Storm surge, hurricanes, waves and tides 

generate coastal flooding. Physical processes and the geographical locations (e.g low-lying) of the 

area where the flood occurs combine to generate floods. The geographic location is an important 

factor in determining the characteristics of a flood. For instance, heavy rains can generate floods in 

river valleys, but they do not generate floods on seacoasts. Storms may generate surges on low-lying 

shores of seas and lakes, but do not generate surges on shores with elevated and steep coasts. Floods 

can be classified according to the factors and conditions of their generation such as river floods, flash 

floods, urban floods and coastal floods. Floods depend on precipitation intensity, volume, timing, 

antecedent soil moisture conditions of their drainage basins (e.g., presence of snow and ice, soil 

characteristics, soil wetness, urbanisation, and existence of dikes, dams, or reservoirs) (Mandych, 

2009). 

Floods could be a natural disaster due to the power of moving water. As the energy is a product of 

mass by the square of speed, so the energy of moving water grows very fast. The increase in the 

amount of water causes an increase of pressure gradient and eventually increases the destructive 

effect of moving water.  Floods can produce damage through the deposition of gravel and debris, 

suspended silt and potentially toxic microorganisms and dissolved chemicals. Although flooding has 

negative impact, it is part of natural processes and may have long-term positive impacts. Floods 

deposit nutrient-rich sediments, which support the animal and plant life and improves the land’s 

fertility for agricultural use. Flood waters recharge the ground water. Soil deposited by floods 

prevents erosion and helps maintain the elevation of land masses above sea level (Doswell, 2003). 

The consequences of floods, both negative and positive, depends on their location, duration, depth 

and speed, as well as the vulnerability and value of the affected natural and constructed 

environments.  

 

1.2.1 Effects of Human Activities on Flooding 
 

 

Although floods can have disastrous consequences in both terms of life and economies, human 

activities in an area, including the construction of roads and buildings or even agriculture, may 

destroy the native vegetation and change the characteristic of the land and so, increase the flooding 

risk. Vegetation and soil store rainfall until saturated and then runoff is generated. In the absence of 

vegetation and changes in land use which reduce the interception and Infiltration to the soil, rainfall 

may start to runoff immediately and increase the flood risk (OPW, 2004). 
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1.3  Extreme Events in Ireland  
 

Evidence of the effects of climate change on global temperatures and weather patterns has been 

clearly proven (Treut et al., 2007). On a regional scale, these effects have been detected in 

temperature and rainfall patterns in the UK and Ireland  (Hoppe & Kiely, 1999) ;(Leahy & Kiely, 2010). 

Since 1975 in the western half of Ireland there has been an increase in the annual precipitation, 

which has an impact on flood frequency and flood magnitudes (Hoppe & Kiely, 1999). 

Studies of the Irish Meteorological Service (Met Éireann) indicate the mean annual temperature 

increased by 1 − 1.6∘ 𝐶 by mid-century (1981-2000) over Ireland (Nolan, 2015), the largest 

increase seen in the east of Ireland. The highest temperature recorded is 32.5∘ 𝐶 at Boora 

Co.Offaly on 29𝑡ℎ June 1976 and the lowest temperature is −18.8∘ 𝐶 at Lullymore Co.Kildare on 

2𝑛𝑑 January 1979. 

Ireland has engaged in global modelling by contributing to the scientific development of the EC-Earth 

global climate model. The EC-Earth and other global models are downscaled to provide information 

at a regional level for Ireland (Met Éireann, 2018a). Downscaling is a process by which global models, 

which have a typical resolution of 50km or more, are dynamically or statistically modelled onto a 

finer scale with a resolution as low as 4km, which allows a better resolution of coastlines and 

topography (Nolan, 2015). The downscaled simulations show, the mean annual precipitation 

decreases in Ireland over the full year, more during spring and summer and the rate of reduction is 

between 0 % to 20% (Nolan, 2015).  

The impact of simulated global climate change on rainfall in Ireland was examined using the method 

of regional climate modelling for period (1981–2000) indicated there are significant increases of 

heavy rainfall events of about 20% during the winter and autumn (Nolan, 2015). The highest annual 

precipitation recorded is 3964.9 mm at Ballaghbeama Gap Co.Kerry in 1960, The highest monthly 

precipitation is 943.5mm at Gernapeka Co.Cork on December 2015 and the highest hourly 

precipitation is 52.2 mm at Clonroche Co.Wexford on 27𝑡ℎ June 1986.  While the lowest annual 

rainfall is 356.6mm at Glasnevin, Co.Dublin in 1887 (Met Éireann, 2018c).  

A study of impacts of climate changes in nine Irish catchments has been carried out (Steele-Dunne et 

al., 2008). Multiple catchments were selected to ensure varying topography, geology and 

climatology. Data from the European Centre Hamburg Model version 5 (ECHAM 5) GCM was used to 

force the Rossby Centre Atmosphere Model (RCA3) regional climate model to produce dynamically 

downscaled precipitation and temperature data. This data was used to force the HBV-Light 

conceptual rainfall-runoff model to simulate stream flow in the reference period (1961–2000) and in 
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the future (2021–2060). According to this study, temperature is expected to increase in all months in 

all catchments. The greatest increase is expected in August and the smallest increase occurs in June. 

All catchments showed an expected decrease in summer precipitation (greatest decrease in August) 

and an expected increase in winter precipitation (greatest increase in January). Comparison of the 

simulated flows for the period 2021-2060 with flows for the reference period 1961-1990 suggested 

that winter flows will increase and summer flows will decrease while river flows from October to 

April are expected to increase by up to 20% by 2060. Due to the combination of reduced summer 

precipitation, increased temperature and as a consequence increased evaporation, stream flow is 

expected to decrease by up to 60% from May to September. The study also points to an increase in 

the annual maximum daily mean flow indicating that the severity of large flood events will increase. 

A Similar study (Charlton, Moore, Sweeney, & Fealy, 2001) also produced the same prediction, 

reduction in flows for autumn months and higher flows in winter and spring, dry periods in the 

summer and autumn months in the majority of catchments are expected. 

The difference between the study presented here and the above-mentioned studies is the long 

periods (yearly) and short period flood events were examined instead of changes in seasonal flows.  

 Absolute drought is defined by the world Meteorological organisation (WMO) as a period of 15 or 

more consecutive days, on none of which 0.2 mm or more of rain fell (Mac Carthaigh, 1996). 

Several absolute droughts were reported in Ireland as follows: 

 The longest absolute drought from 3𝑟𝑑 April to 10𝑡ℎ (37 days) May 1938 in Limerick (Met 

Éireann, 2018c). 

 The second largest absolute drought  From 8𝑡ℎ Aug 1976 to 7𝑡ℎ Sep 1976 (31 days) in 

Claremorris Co.Mayo (Mac Carthaigh, 1996).  

 The recent absolute drought from 22𝑡ℎ May 2018 to 12𝑡ℎ June 2018(22 days) in Belmullet 

(Met Éireann, 2018b). 

Several extreme events happened in Ireland recently: for instance floods in November 2009 and the 

cold in January 2010, the Cork floods in 2009, the cold spell in Ireland in December 2009 and January 

2010 and the drought of summer 2018. 

 

 

1.4  Data Conditioning  
 

Data is one of the most important factors in any research. Data might be collected from 

different sources with different formats. To make this data useful and applicable to feed the 
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application and transfer the data to information, first we need to be sure about the quality of 

the data. Data cleaning and conditioning are the process of detecting and correcting or 

removing of any incorrect and generally any bad values in the datasets. Analysis and 

visualization of the raw data is the first step to detect the problems in the datasets and then 

using statistical methods, machine learning and some knowledge of the research area can help 

to improve data quality.  

The characteristic of data quality can be summarised as follow (Sattler, 2016): 

 Accuracy: data were recorded correctly 

 Completeness: All relevant data were recorded 

 Uniqueness: no duplicate data exist 

 Consistency: collect and store data by stable and steady mechanism 

 Timeliness: keeping data up to date 

 

 

1.5 Objectives 
 

The objective of the project is to analyse the available data (rainfall and the Munster Blackwater river 

flows) and develop a procedure to obtain clean data. Then to simulate storm events (rather than long-

term flows) with catchment data and sufficient meteorological rainfall data, using the PDM model (The 

Probability Distributed Model, Moore 2009) for hydrological simulation. These objectives were carried 

out as follows:   

 The collection of the necessary input data (rainfall and river flows) to run the hydrological 

model. These data include observations of rainfall data from rain gauges and observed data of 

river level/river flow from river stations. These data also include the MÉRA data from Met 

Éireann ReAnalysis. 

 Analyse all available data and develop the procedures for quality control of data 

 The calibration of the parameters of the PDM model and their validation. 

 The assessment of the potential use of the model for simulating river flow on the  

Munster Blackwater River and its subcatchments. 
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1.6 Layout of the thesis 
 

Chapter 2 presents a comparison of several hydrological models in different categories and their 

characteristics, advantages and disadvantages to enable the choice of the most appropriate model 

for this study. Chapter 3 presents the description of the Munster Blackwater catchment and all data 

(rainfall and river flow) for analysis. Chapter 4 presents analysis of the data in more detail describes 

the method to classify the available rain gauges over the catchment and describes several gap filling 

methods to obtain clean and useful data, which includes using the MÉRA rainfall data. Chapter 5 

describes the PDM hydrological model used in this research. Chapter 6 includes the calibration and 

validation of the PDM hydrological model. The model is calibrated by optimization of parameters for 

2014 and validated for the years between 2010 and 2017. Chapter 7 includes results under modified 

climatic conditions for a rainfall-river flows sensitivity study. Two different patterns on growth of 

computed flows was distinguished by applying the PDM model on periods containing the largest 

events (high flows) and periods containing the smallest event (low flows). Chapter 8 includes a 

discussion of the events, conclusion and recommendation for future research. 

References.      

All analysis was done using R, Python and ArcGIS. 
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Chapter 2     Literature Review and A 

Comparison of Hydrological Models        
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2.1     Review of Hydrological Models  
 

Over the past 50 years many different hydrological rainfall-runoff models, also called catchment 

hydrological models have been developed (Devia et al., 2015; Sitterson et al., 2017). One objective of 

catchment modelling is to gain an understanding of the hydrological processes operating in a 

catchment and how changes (e.g. climate or land use) in a catchment may affect the catchment 

hydrological response and thus the riverflow outputs.  

Rainfall-runoff models are classified based on the extent or paucity of the models input data and 

parameters and the extent of physical principles applied in the model. Models can be fully distributed, 

semi-distributed or lumped. 

 In distributed models the parameters are expressed as a function of space and time and can contain 

extensive detail of the catchment topography, soils, land cover etc. The simulations of these models 

are distributed in space by dividing the entire catchment into small units, usually square cells or a 

Triangulated Irregular Network (TIN), so that the parameters, inputs and outputs can vary spatially. 

Distributed models are physically based models and demand a lot of parameters to solve the complex 

water and energy budgets or hydrological process and eventually to estimate the runoff in each cell 

or TIN. 

Semi-distributed models divide the catchment into subcatchments units, each with unique uniform 

characteristics and a unique discharge point that can be either a node or another subcatchment. These 

models are not as complex as the fully distributed models and  so require less input data and less 

parameterisations and are not as simple as the lumped models which require the least data (Pina et 

al., 2016).  

In lumped models, the entire river catchment is considered as a single unit where spatial variability 

is not included in inputs and hence the outputs are generated without considering the spatial 

processes (Sitterson et al., 2017). 

Rainfall-runoff models are classified into three categories according to (Wheater, Jakeman, & Beven, 

1993): 

 Physically based or mechanistic models (white-box models) based on the mathematical 

equations of the underlying physical processes and discretised physical equations of 

motions.  
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 Metric or empirical models (black-box models) which derive information from observational 

data (e.g. rainfall, river flow, river height) without considering the physical and hydrological 

processes of the catchment but using the statistical properties of the long time series of 

rainfall and flow.  

 Conceptual or parametric models (grey-box models). These models can be considered as a 

combination of a physically-based model (white box model), and an empirical models (black 

box model), relying on a simplified representation of the physical system, which can be 

calibrated using historical data (Leahy, Kiely, & Corcoran, 2008). 

The two most important inputs required for all models are rainfall and catchment data. Along with 

these inputs, catchment characteristics such as soil properties, vegetation cover, catchment 

topography, soil moisture content and, characteristics of ground water aquifers may also be 

considered. The best model is the one which is parsimonious, that generates results as close as 

possible to the reality using the least number of parameters and the least model complexity.  

In this chapter, we describe some key characteristic of some hydrological models and compare 

distributed models, semi distributed models, lumped models and neural network type models or 

statistical models.  

 

2.2    Physically Based Models (White-Box 

Models) 
 2.2.1    GEOtop Model 
 

GEOtop is a physically based, fully distributed hydrological model that analyses the complete water 

and energy budgets in a catchment. GEOtop is an open source software available for Linux, Mac and 

Windows platforms (Endrizzi, Dall’Amico, Gruber, & Rigon, 2017). 

GEOtop uses two different inputs: topographical and meteorological data. The model can incorporate 

complex topography. It considers the catchment as a Digital Elevation Model (DEM) which allows 

modelling the incident radiation on the topographical surface, both shortwave (including shadowing) 

and longwave (sky view factor), (Endrizzi et al. 2017). 

GEOtop is a spatially distributed model so it divides the catchment into cells or pixels. Figure 2.1 

illustrates how the Dripsey catchment (a 15 𝑘𝑚2 agricultural catchment in County Cork, Ireland) is 

split up into cells. The size of each cell coincides with the pixel size of the DEM (dX,dY). The model 
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also provides each cell in catchments with the topographical characteristics of the basin (elevation, 

slope, aspect, shadow, sky view factor), (Endrizzi et al. 2017; Lewis, 2011) 

In GEOtop it is possible to have the soil profile with different layers, each layer may have a different 

depth.  In other words, the depths of layers can be regular or irregular but uniform for all the 

catchment. The centre of each cell (on the X-Y axis) and the centre of the layer (on the X-Z axis) 

represents the cell information (see Figure 2.2, Figure 2.3). 

                                   

 

                                                 

Figure 2.1:  Dripsey catchment DEM and cell outline with D8 topology indicating surface flow 

direction (Lewis, 2011). In this 15 𝑘𝑚2catchment each cell had a size of 0.328 𝑘𝑚 * 0.328 𝑘𝑚. 

 

Figure 2.2: Three dimensional illustration of cells with different depth of layers. (Endrizzi et al. 2017) 
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For every cell, the model solves both the energy and the water budget equations, divided into lateral 

and vertical flows. The flow of water in the unsaturated zone (below the surface but above the water 

table) is estimated by numerically solving Richard’s equation, while the flow through the saturated 

zone (below the water table) is estimated from Darcy’s law.  

The general version of Richard’s equation for three dimensional flow is:  

           
𝜕𝜃

𝜕𝑡
=  

𝜕

𝜕𝑥
[𝐾(ℎ)

𝜕ℎ

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝐾(ℎ)

𝜕ℎ

𝜕𝑦
] +  

𝜕

𝜕𝑧
[𝐾(ℎ)(

𝜕ℎ

𝜕𝑧
+ 1)] −  𝑆𝑤                                     Eq 2.1 

where θ (𝑚3𝑚−3 is the volumetric water content, t (sec) is the time, h (m) is the soil water matric 

head, x, y, and z are the spatial coordinates, 𝑆𝑤 is a sink term which represents the volume of water 

removed per unit time from a unit volume of soil and 𝐾(ℎ)  (𝑚. 𝑠−1) is the unsaturated hydraulic 

conductivity  (Botros, Onsoy, Ginn, & Harter, 2012). 

The Darcy’s law equation is:  

             
𝑄

𝐴
= 𝐾 

Δℎ

Δ𝑙
                                                                                                                               Eq 2.2  

Figure 2.3: Land cover and Soil type map with multiple layers. (Endrizzi et al. 2017)   
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where 𝑄 is the discharge in units of length cubed per unit time (𝑚3. 𝑠−1) , 𝐾 is hydraulic conductivity 

in units of length per unit time (𝑚. 𝑠−1) , 
Δℎ

Δ𝑙
  = hydraulic gradient  and 𝐴 is the cross sectional area in 

units of length squared (𝑚2) (Brikowski, 2012) .   

Surface flow might be generated when the rainfall intensity (𝑚𝑚. ℎ𝑟−1) exceeds the infiltration 

capacity of the soil surface or when the top layer of soil becomes saturated (either from above or 

from below) and so any further precipitation on these soils results in surface flow. The surface flow is 

routed to the river channel using the D8 flow direction (see Figure 2.1). Imagine a cell with its 8 

immediate neighbours, the flow direction from each cell to one of its adjacent or diagonal 

neighbours is calculated using the direction of steepest descent (Endrizzi et al. 2017; Lewis, 2011).           

 The distributed model GEOtop uses both topographical and meteorological data (Endrizzi et al 

.2017). 

Topographical data includes:  

• The land use i.e. vegetation, pasture, snow, glacier, forest, etc. This map is called land 

cover. 

• The type of soil in terms of texture (gravel, sand, loam, clay: % of each) and bedrock 

depth, these data are used to estimate the hydraulic and thermal parameters of the soil. 

This map is usually called soil type.       

Meteorological data may come from several stations. For each meteorological station, the following 

information is required: 

• The meteorological station’s unique number   

• The coordinates (X, Y, Lat, Long)  

• The elevation 

• The Sky View Factor (SVF)* 

• The standard time difference (of the time records with respect to Greenwich Meridian 

Time) 

• The height of the wind speed and air temperature sensors.  

*Sky View Factor (SVF) is defined as the ratio between radiation received by a planar surface and 

that from the entire hemispheric radiating environment (Svensson, 2004). In other words, the SVF is 

a measure of the openness of the sky to radiative transport in relation to a specific location. A value 

of  0 indicates complete obstruction and a value of 1 indicates complete open and unobstructed 

space, so SVF of locations with obstruction such as mountains, buildings and trees decrease 

proportionally, see Figure 2.4 (Zakšek et al, Oštir and Kokalj, 2011).  
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Table 2.1 shows the necessary, recommended and useful meteorological data for the model 

validation.  To run GEOtop we need at least one weather station with hourly data, although more 

stations would be required as the catchment area increases.  

Table 2.2 shows this same classification for distributed data. 

We can summarise the main advantages and disadvantages of using GEOtop model as follows: 

Advantages: 

• Open source 

• Provides a variety of outputs (time series and maps) based on user-defined 

requirements.  

• Suitable for different types of catchments including  mountainous catchments  

 Disadvantages: 

• Complex installation  

• Preparing the necessary required data is difficult and time consuming, as it needs a wide 

range of meteorological and topographical data. This may not always be available.  

• Sensitive to some initial parameters. As GEOtop solves Richard’s equation numerically, 

the model might show errors when the water balance does not converge. 

• Requires another software or programming language for visualising the output e.g. 

ARCGIS or R or Matlab. 

• The new model version is not compatible with the older version. The configuration files 

and input files in both versions are different, even the parameter names.  

 

 

 

Figure 2.4 Two dimensional representation of SVF (a) Three dimensional 

representation of SVF (b)  (Zakšek, Oštir, & Kokalj, 2011) 
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Necessary Recommended useful for validation 

Air temperature (Ta)    ℃ Longwave radiation (R ↓LW ) net radiation (Rn) 

Relative humidity Rh or air water content 
or air vapor pressure or dew point.  % 

Net radiation (Rn)  soil heat flux (G) 

Wind speed  (v)   𝑚. 𝑠−1 Diffuse shortwave radiation 
(R ↓SW ) 

sensible heat flux (H) 

Shortwave radiation ( R ↓SW ) Snow precipitation. latent heat flux (ET) 

Pressure (Pa)  pa Sky fraction covered by 
clouds. 

 

Precipitation (P)  mm   
 

 

Necessary recommended useful for validation 

Digital Elevation Model (DEM) Soil depth, how deep is the 
bedrock.  

 

Brightness 
temperature. 

Land use map of the basin. At least a 
classification with urban, forest, bare 
soil, agriculture, pasture. 
 

Soil texture: fraction of rock, 
gravel, sand, loam, clay, organic 
matter, bulk density. 

Surface Soil moisture. 

 Surface roughness, including the 
height of obstacles on the 
surface (buildings, vegetation *) 

 

 

 Soil hydraulic conductivity 𝑚. 𝑠−1  

 

* Information regarding vegetation is essentially of three types: vegetation density (fraction 

of vegetation cover and Leaf Area Index (LAI)- the ratio of total projected leaf area per unit 

ground area, and is widely used to characterize canopy light condition); seasonal variation of 

vegetation (Normalized Vegetation Deviation Index (NVDI)- a simple graphical indicator that 

can be used to analyse remote sensing measurements, typically, but not necessarily, from 

a space platform, and assess whether the target being observed contains live green 

vegetation or not); and vegetation height. These indices are often available with coarse 

resolution in global data sets from satellite products such as MODIS.  

There are many standard MODIS data products such as:  

 Level 1: raw radiance, calibrated radiances and geolocation fields  

 Atmosphere products : cloud product, total precipitable water, atmospheric profile 

 Land products : land surface temperature, land cover products, evapotranspiration  

 Cryosphere products : snow cover, sea ice and ice surface temperature 

 Ocean products: sea surface temperature, remote sensing reflectance, particulate organic 

carbon, etc. 

Table 2.1: Meteorological data classified as a function of their level 

of requirement for GEOtop model. (Endrizzi et al. 2017) 

Table 2.2: Distributed data classified as a function of their level of 

requirement for GEOtop model. (Endrizzi et al. 2017) 

 

https://en.wikipedia.org/wiki/Artificial_satellite
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2.2.2     tRIBS Model 
 
The TIN based Real-time Integrated Basin Simulator (tRIBS) is a physically based distributed model 

developed for real time, continuous hydrological forecasting at the Ralph M. Parsons Laboratory, 

Massachusetts Institute of Technology, (Vivoni & Ivanov, 2002). tRIBS is a model suitable for small to 

mid-size catchments (Wolock, 1995). tRIBS was applied in the Munster Blackwater catchment with 

total size of 1200 𝑘𝑚2 (Steinmann, 2005). The object-oriented programing language C++ was used to 

design and develop the model. Several modules were used to solve the different hydrological process 

equations. Table 2.3 lists these model processes. Figure 2.5 indicates the interaction between those 

different processes. 

 

 

 

Model Process Description 

Rainfall Interception Canopy water balance model 

Surface Energy Balance Combination equation (lE), Gradient method (H) and 
Force restore equation (G) 

Surface radiation Model Short-wave and long-wave components accounting for 
terrain variability 

Evapotranspiration Bare soil evaporation, transpiration and evaporation from 
wet canopy 

Infiltration Kinematic approximation with capillarity effects; 
unsaturated, saturated and perched conditions; top and 
wetting infiltration fronts 

Lateral Vadose Flow Topography-driven lateral unsaturated and saturated 
vadose flow 

Runoff Production Infiltration-excess, saturation excess, perched return flow 
and groundwater exfiltration 

Groundwater Flow Two dimensional flow in multiple directions, dynamic 
water table 

Overland Flow Non-linear routing 

Channel Flow Kinematic wave hydraulic routing 

Table 2.3 Components of the tRIBS distribution hydrologic model (Vivoni & Ivanov, 2002) 
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tRIBS uses different types of Geographical Information System (GIS) based input data such as the 

topography, soils and land use data to characterize the catchment, water table depth to initialise soil 

moisture, radar rainfall as precipitation input, and meteorological station data for modelling inter-

storm periods. These inputs may have various types of data structures:  grid data, TIN data, point data 

and text data. These data structures are described briefly below: 

 Grid input: could include soil and land use, ground water table depth, depth to bedrock and 

radar rainfall grid.  

 TIN input: topographical data are input to the model via different methods. One way is to 

generate a TIN mesh from ArcGIS Info and export it into a format that tRIBS can convert to a 

point file.  

 Point data: useful to provide meteorological data from sets of weather stations or rain gauges 

data.  

 Text data: various types of text files are used in the tRIBS model to specify its options, 

hydrologic parameters or control commands. 

 

tRIBS creates different types of output. The main output is the outlet hydrograph, which is a riverflow 

time series at the outlet of the catchment at the time step defined in the main input file (Steinmann, 

2005). According to (Steinmann, 2005) validation of the tRIBS model using calibrated parameters at 

Figure 2.5 Schematic representation of the coupled hydrological processes 

in the tRIBS model. (Vivoni & Ivanov, 2002)  

 

 



27 
 

the Munster Blackwater for 2002 to 2005 has shown the timing and magnitude of the flood events 

were not accurate enough. The model could accurately predict the flood event only one out of five 

cases, the magnitude of the peak flows were underestimated between 17 % to 33 % for four cases. 

Inaccuracies of the model could be the results of unreliable calibration parameters and model inputs. 

We can summarise the main advantages and disadvantages of using tRIBS model as follows: 

Advantages: 

• Is created by a object-oriented C++ programming, take advantages and use various 

object oriented methods including inheritance, polymorphism and virtual functions. 

• Provides a variety of outputs (time series and spatial outputs).   

• Suitable for small to mid-size catchments.  

• Provide source code to autorized developer to modify and update the code. 

• Ability to use remote sensing data such as radar rainfall data. 

 

 Disadvantages: 

• A research-based code does not provide as much error checking as could be possible, so 

the responsibility is placed on the user to provide the model with the appropriate inputs 

in the correct format. 

• Preparing the necessary required data is difficult and time consuming, as it needs a wide 

range of meteorological and topographical data. This may not always be available.  

• Requires another software or programming languages for visualising and analysing the 

output e.g. ARCGIS or Matlab. 

 

2.3  Conceptual Models (Grey-Box Models) 
 

 

2.3.1    Probability Distributed Model (PDM) 
 

The Probability  Distributed Model (PDM) is a conceptual rainfall-runoff model (Moore, 2007) 

suitable for a variety of catchments, and has minimal data and computational requirements – much 

less than the GEOtop model. PDM has a large number of model options; the “standard” model is 

suitable for most practical purposes. Rainfall and potential evaporation data are used as inputs to 

produce runoff at any point of the catchment, which is controlled by the absorption capacity (of the 
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canopy, surface and soil).  PDM considers each point of a catchment as a single storage unit with a 

specific storage capacity (depth) that can be described by a Pareto distribution. The “standard” PDM 

consists of two linear surface storages and a non-linear groundwater storage (Figure 2.8). 

 

2.3.1.1   Probability Density Function and Cumulative Distribution Function 
 

In statistics, the distribution of a random variable can be discrete or continuous. For a discrete 

probability distribution, the probability that a random value x can take a specific value p(x) is              

0 ≤ p(x) ≤ 1   and    ∑ 𝑝(𝑥𝑖𝑖 ) = 1. 

For a continuous probability distribution, the probability is defined for an interval, not for single 

points so the probability of p(X = x) = 0 and we can define a Probability Density Function (PDF) f(x) 

and the Cumulative Distribution Function(CDF)  F(x) as follows: 

                𝑓(𝑥) =  lim
𝛥→0

𝑝(𝑥<𝑋≤𝑥+ Δ)

Δ
                                                                                                      Eq. 2.3                                 

                𝑝(𝑥 < 𝑋 ≤ 𝑥 +  Δ) = 𝐹(𝑥 +  𝛥) − 𝐹(𝑥)                                                                         Eq. 2.4  

By using Eq. 2.3 and Eq. 2.4 we have: 

                𝑓(𝑥) =  lim
𝛥→0

𝐹(𝑥+ 𝛥)−𝐹(𝑥)

Δ
                  by using definition of derivative           

                          = 
𝑑𝐹(𝑥)

𝑑𝑥
 = 𝐹′(𝑥)                          if F(x) is differentiable at x     

So the probability that x is in the interval (a,b) is:               𝐹(𝑏) − 𝐹(𝑎) =  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
                               

Figure 2.6 Illustrates the PDF and CDF for the interval (a,b). 
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2.3.1.2   PDM and Pareto Distribution 
 

A Pareto distribution is a type of exponential distribution, usually skewed and heavy tailed which is 

used for social, scientific, geophysical, actuarial, and many other types of phenomena.  

In PDM the Pareto distribution is used to describe the distribution of storage depth across the 

catchment which ranges from a minimum depth 𝐶𝑚𝑖𝑛 to a maximum depth 𝐶𝑚𝑎𝑥 with their CDF and 

PDF distribution of depth defined as: 

           𝐹(𝐶)= 1 – (1 −
𝑐

𝐶𝑚𝑎𝑥
)𝑏                      𝐶𝑚𝑖𝑛 ≤ C ≤ 𝐶𝑚𝑎𝑥                                                      Eq. 2.5 

           𝑓(𝑐) =  
𝑏

 𝐶𝑚𝑎𝑥
(1 −

𝑐

 𝐶𝑚𝑎𝑥
)𝑏−1            𝐶𝑚𝑖𝑛 ≤ C ≤ 𝐶𝑚𝑎𝑥                                                      Eq. 2.6 

The parameter b controls the degree of spatial variability of storage depth over the catchment. Figure 

2.7 illustrates the PDF for the Pareto distribution. When 0 < b < 1 there are more deep storage units 

(in the saturated zone), while with b > 1 it is more likely there is more shallow storage (in the 

unsaturated zone) and when b = 1 indicates a constant storage capacity.  

Figure 2.6 PDF & CDF for interval (a,b) (Probability density function, 2015) 
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PDM transfers rainfall to two parallel flows: direct runoff or fast flow (also known as surface runoff) 

and recharge or slow flow by recursive solution of the nonlinear storage equation known as the 

Horton-Izzard equation (Figure 2.8). 

                         

 

 

 

Figure 2.8 Structure of the PDM with a cascade of two linear storages for 

fast-runoff routing. (CEH, 2012) 

 

Figure 2.7  PDF for the Pareto distribution of different values of “b” (CEH, 2012). 
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The nonlinear storage model is specified by the Horton-Izzard equation:  

            
𝑑𝑞

𝑑𝑡
= 𝑎(𝑢 − 𝑞)𝑞𝑏                                     q> 0 , -∞ <b < 1                                                         Eq. 2.7 

 where q ≡ q(t) is the rate of outflow and u ≡ u(t) is the rate of inflow to the store per unit area 

(𝑚. 𝑠−1),  𝑎 = 𝑚𝑘
1

𝑚   and  𝑏 =
𝑚−1

𝑚
 , are two parameters related to those of the nonlinear storage 

equation  𝑞 = 𝑘 𝑆𝑚. S ≡ S(t)  is the volume of water held in the storage per unit area at time t. This 

ordinary differential equation can be solved exactly for any rational value of m.  When m = 1 (linear 

equation), m = 2 (quadratic), exponential b=1 and m=3 (cubic) for a constant input u over the time 

interval (t, t+T), (Moore & Bell, 2002).  

The “standard” PDM surface storage consists of two linear storages with time constants 𝑘1 and 𝑘2 

(in a linear storage, flow from the storage is equal to a constant multiplied by the water content of 

the storage). The moisture storage drains vertically to form the groundwater recharge as a nonlinear 

function of the storage content with time constant 𝑘𝑔. This recharge forms the input to the 

subsurface storage, which is usually taken to be a cubic storage with time constant  𝑘𝑏. Finally, the 

output from the subsurface storage (baseflow) is added to the surface runoff to form the total flow 

at the catchment outlet (Figure 2.8). 

For the calibration, PDM generally uses a 15-minute time step over several years of historical record 

(using rainfall and potential evaporation as inputs and riverflow as output). However if these data 

are not available and we just have storm events in 15-minute time steps and a long period record of 

a daily time step, then it is good to start to run the model first with daily time steps to find the 

seasonal trends in the data and, then run the PDM with a combination of a continuous long period of 

daily time step and several 15-minute time step storm events (Moore, 2007). 

After an initial manual model calibration, automatic optimization can be applied to minimise the 

objective function, which provides a quantitative measure of the difference between observed flows 

and computed or modelled flow. There are a number of objective functions in PDM to measure the 

model accuracy.  The 𝑅2efficiently and Root Mean Square Error (RMSE) are the most common 

objective functions used. 

RMSE = √(𝑛−1 ∑ 𝑒𝑖
2)                               where 𝑒𝑖 =    𝑄𝑖 − 𝑞𝑖                                             Eq. 2.8 

  𝑄𝑖  is the observed flow at time i,  and 𝑞𝑖 is  the computed flow at time i. 

𝑅2 = 1 - 
∑ 𝑒𝑖

2

∑(𝑄𝑖−𝑄)2                                        where 𝑄  is the mean of the observed flow       Eq.2.9 

𝑅2 indicates what percentage of variability of observed flow can be accounted for the model. 
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The advantages and disadvantages of the PDM model can be summarize as below. 

     Advantages: 

  Suitable for different types of catchment  

  Large number of model options 

  Minimal data and computational requirements 

 Easy to install and run  

 Automatically creates plots 

Disadvantages: 

 Initialization of some of the parameters based on trial and error  

 Less outputs than GEOtop 

 
 

2.3.2     TopModel 
 

TopModel is a semi distributed conceptual rainfall runoff model which uses the topographic 

information of the catchment area as a DEM and soil transmissivity to generate the runoff at the 

catchment outlet based on the theory of hydrological similarity between points in a catchment based 

on a measure called the “topographic index” – TI (Eq 2.11). The simplicity of the model comes from 

the use of this index introduced by Beven (1986), which is used as an index of hydrological similarity 

(Tarboton, 2003).  TI is the ratio of drained area per unit contour length to the local slope angle of 

the location, and represents the relation between the tendency of water to accumulate at any point 

in the catchment, and the tendency for gravitational forces to move that water downslope.  

 The model predicts the saturation excess and infiltration excess runoff (surface runoff and subsurface 

stormflow) (Lin, Zhang, & Chen, 2010). TopModel can be considered as a physically based model as its 

parameters can be physically or theoretically measured (e.g. hydraulic conductivity, porosity, soil 

depth, depth of water table). It can be used in single or multiple subcatchments. It can be applied to 

different types of catchment. For instance, it has been successfully used in humid temperate (Beven, 

1993), drier Mediterranean regimes (Durand, Robson, & Neal, 1992), small humid tropical (1.36 𝑘𝑚2 

in Ivory Coast (Quinn, Beven, & Chevallier, 1991)) and forested headwater catchment (Moličova, 

Grimaldi, Bonell, & Hubert, 1997).  

TopModel uses four main assumptions: 

1- Dynamics of the saturated zone can be approximated by a successive steady state 

representation. 

2- The recharge rate (r [m/hr] ) entering the water table is spatially homogeneous. 

3- The effective hydraulic gradient of the saturated zone can be approximated by the local 

surface slope. 
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4- The effective down slope transmissivity T of a soil profile at a point is a function of the soil 

moisture deficit at that point. The saturated hydraulic conductivity decreases exponentially 

with depth. 

By considering assumption (1) and (2), the down slope subsurface flow rate per unit contour width 

‘𝑞‘  is: (Figure 2.9) 

                  𝑞 = 𝑟 𝑎                                                                                                                            Eq. 2.10 

where ‘r ’ is the recharge rate (𝑚. ℎ𝑟−1)  and ′𝑎 ′  is the drained area per unit contour length. 

 

                                          

The topographic wetness index λ is defined as:  

                  𝜆 = ln (
𝑎

𝑡𝑎𝑛 𝛽
)                                                                                                                 Eq. 2.11 

Where ′𝑎′  is drained area per unit contour length and ′𝑡𝑎𝑛 𝛽 ′ is the slope of the ground surface at 

the location. Equation 2.11 indicates that areas with a high value of the topographic wetness index λ 

have large contributing area and low slopes, and are more likely to be saturated. These locations can 

be found along side streams. Areas with low values of λ have small contributing areas and high slopes, 

and so they are unlikely to be saturated. These latter areas are typically found at the top of hillslopes. 

Sometimes λ is referred to as a “similarity index” since it is used to group hydrologically similar areas 

in the catchment (Figure 2.10).  

Figure 2.9 Definition of the upslope area draining through a point within a catchment (Tarboton, 2003). 
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TopModel computes the storage deficit or water table depth at any location. The storage deficit value 

‘D’ is a function of the topographic index as: 

                   𝐷 =  −𝑚𝑙𝑛(𝑟) + 𝑚𝑙𝑛(𝑇0) − 𝑚𝜆                                                                                  Eq. 2.12                       

where 𝑇0 =  
𝑘0

𝑓
    ,  𝑚 =  

𝜃

𝑓
   and 𝑟 =  

𝑞

𝑎
   

′𝑇0′ is transmissivity of the soil, ’𝑘0′ is hydraulic conductivity at surface, ‘θ’  is an effective porosity and 

‘𝑓 ’  is a parameter that describes how hydraulic conductivity decreases with depth (Tarboton, 2003). 

The model uses two different flow direction algorithms, D8 and Dinf. Dinf is a  slower algorithm that 

generates more accurate results, The output is in the form of area maps or simulated hydrographs 

(Nourani, Roughani, & Gebremichael, 2011).   

Previous studies have shown that DEM resolution has an impact on the topographic index.  The mean 

of the ln (
𝑎

𝑡𝑎𝑛 𝛽
) distribution increases as DEM resolution become coarser (Lin et al., 2010). 

TopModel was applied in the study of the Dripsey River catchment located near the village of 

Donoughmore in rural Co.Cork, Ireland receiving an average of approximately 1400mm of rainfall per 

year (Scanlon, Kiely, & Xie, 2004). DEM data at a 10m resolution was used to calculate the 

distributed value of TI to find the effect of catchment topography on the phosphorus transport for 

three nested catchments. The results shows the mean, variance and skewness of TI distribution 

increase with increasing catchment size. Furthermore according to (Wolock, 1995), catchments with 

higher mean and variance of TI have higher percentage of surface runoff in the total streamflow. 

Therefore, it was expected for the catchment with the highest mean and variance in TI would have 

Figure 2.10 The topographic wetness index λ as a similarity index is used 

to group hydrologically similar areas. (Ambroise, Beven, & Freer, 1996) 
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the highest levels of phosphorus transport for a larger proportion of the catchment area, but the 

subcatchment, which has the highest mean, and variance in TI doesn’t show the expected result, so 

the study suggested to examine another topographic descriptor length-slope factor called the LS-

factor as an index of erosion to describe the  phosphorus  transport. The LS factor can be useful for 

identifying catchment areas that have the potential for erosion (Scanlon et al., 2004). 

We can summarise the main advantages and disadvantages of TopModel as follows: 

Advantages: 

 Simple structure model and small number of parameters. 

 Fast computational time. 

 Suitable for single or multiple subcatchments and it can be applied to different types of 

catchments. 

Disadvantages: 

 No standard version available. 

 Should met the four main assumptions. 

  

2.4     Metric Models (Black-box models) 
 

Metric models are mathematical and statistical methods that explain relationships between input 

data and output data or find patterns in data without considering the underlying physical process, 

catchment characteristics or physical parameters. Metric models require less input data than 

physical and conceptual models and so, this makes them  generally fast to run and much faster to 

develop and useful for real-time forecasting and climate change attribution but as they are static, i.e. 

they cannot take change into account, e.g. changes in land use, so the model should frequently be 

updated or trained with new available data. Although black-box models do not require any 

understanding of physical and hydrological processes of the underlying system, some physical and 

hydrological knowledge would be useful to choose the most appropriate input data and output data 

to forecast (Ardabili, Mosavi, Dehghani, & Varkonyi-koczy, 2019; Napolitano, 2011).  

Artificial Neural Networks (ANN) and K-Nearest Neighbours (KNN) are strongly nonlinear statistical 

models, which use machine learning techniques for classification. 

 A Classification algorithm is one type of black-box model which analyses and classifies historical and 

current data to predict future data trends. Firstly, the classification model trains the model, which 

means applying a learning algorithm to the training dataset to find the classification rules and then 
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applying these rules to a test data in order to assess the accuracy of the algorithm. The accuracy of 

the model is a percentage of samples or instances that are correctly classified (Gupta & Ghose, 

2015). 

 

2.4.1     K-Nearest Neighbours Model (KNN) 
 
The KNN algorithm classifies the new object based on its similarity to the K nearest objects or its 

neighbours. Similarity between two objects defined by a mathematical function, usually the Euclidean 

Distance is used.  Selecting the appropriate number of neighbours K  is very important.  If K  is too 

small the effect of noise in the training dataset makes the KNN method not accurate. Selecting a large 

value for K reduces the effect of noise in the data but makes the boundaries between classes less 

distinct, and also make the algorithm very slow. There are many techniques for selecting a K value. 

Use the square root of the number of classified instances and N-fold cross validation for various values 

of K (see Figure2.11). 

                                       

 

 

KNN can be applied for hydrological modelling: for example for predicting rainfall or flood flows based 

on a long term rainfall dataset. The prediction of the next rainfall would be the average of the rainfall 

values of the K historical nearest neighbours (Gupta & Ghose, 2015). An improved KNN model with 

perturbation of the historic data has been applied to the Upper Thames River Basin (UTRB) in the 

Canadian province of Ontario to investigate the potential impact of several plausible climate change 

scenarios to extreme events, including both floods and drought (Sharif & Burn, 2006). 

 

 

Figure 2.11 KNN Classification with different neighbours (Burton DeWilde, 2012) 
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2.4.2     Artificial Neural Network (ANN) 
 

ANNs are one of the main machine learning techniques that try to mimic the brain learning process, 

and were introduced by McCulloch and Pitts (1943). The ANN model gains its knowledge by 

detecting patterns and relationships in a dataset and learns through experience, not by 

programming. It also improves its knowledge by means of a backpropagation algorithm, a recursive 

algorithm which minimize the differences of output and computed output in two phases: a forward 

pass which, the processing of information occurs from the input layer to the output layer; and a 

backward pass, when the error from the output layer is propagated back to the input layer and the 

interconnections are modified (Govindaraju, 2000). 

Since the early nineties, ANNs have been successfully used in hydrology-related areas such as 

rainfall-runoff modelling and forecasting, ground water modelling, water quality, water management 

policy and precipitation forecasting (Govindaraju, 2000). 

ANNs have the following characteristics: (Govindaraju, 2000) 

 Information processing occurs at many single elements called nodes, units, cells, or neurons. 

 Signals pass between nodes through connection links.  

 Each connection link has an associated weight that represents its connection strength.  

 Each node typically applies a nonlinear transformation called an activation function to its net 

input in order to determine its output signal. 

Each ANN has input and output layers and might have a number of layers between them called 

hidden layers. The number of hidden layers and the number of nodes in each hidden layer are 

usually obtained by trial-and-error. Inputs are multiplied by weights to increase or decrease 

emphasis on particular input, then the input function sums these weighted inputs, a mathematical 

function called an activation function is then applied to this value to generate the output which 

could be the input for the next layer (if there is more than one hidden layer) (see Figure 2.12 and 

Figure 2.13). 

ANNs can be categorized based on the direction of information flow and processing. In a 

feedforward network, starting from a first input layer and ending at the final output layer. 

Information passes from the input to the output side. In a recurrent ANN, information flows through 

the nodes in both directions, from the input to the output side and vice versa. 
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A study was carried out on the Munster Blackwater catchment in the southwest of Ireland in order to 

predict the river level as part of a project for flood forecasting (Leahy et al., 2008). The optimal ANN 

combined with simulated annealing and tabu search was used to minimise the value of the cost 

function and minimize the complexity of the ANN. To increase the accuracy of the ANN model we 

consider some physical parameters for selecting appropriate input (for example, upstream river 

levels are expected to be a good predictor of future river levels downstream in the same river 

system) (Govindaraju, 2000) to avoid the risk of having local minima. Too many inputs will result in a 

parameter space that is too large to be efficiently optimised during training. The properties of the 

ANN’s structure also must be correctly chosen, the ratio of the number of training pairs to the 

number of neurons to be trained should be greater than 30. This study showed that the current 

value of river levels at the flood locations downstream and two upstream locations are better 

predictors of levels 5 hours ahead among other possible inputs such as mean sea level pressure (SLP) 

and the change in SLP over the previous 24 hours (Leahy et al., 2008). 

 

Figure 2.12: Neural Network nodes & layers (Govindaraju, 2000)   

Figure 2.13: Neural Network process (Castrounis, 2016). 
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The advantages and disadvantages of the Metric models can be summarize as below. 

     Advantages: 

  Require less input data type than physical models. 

  Generally fast to run and much faster to develop so useful for real-time forecasting. 

Disadvantages: 

 Should frequently be updated or trained with new available data. 

 Require long term time series.  

 

2.5      Summary  
 

A large number of hydrological models with different characteristic and properties have been 

developed for different type of catchments, making it difficult to choose the most suitable model.  For 

this reason several hydrological models from four main categories: lumped, semi-distributed, fully 

distributed and artificial neural networks have been reviewed above. 

 Generally lumped model parameters do not vary spatially within the catchment and the runoff is 

calculated just at the outlet. Parameters do not represent physical features of the hydrologic processes 

and the model is simple, easy to use, fast and needs minimal data. The PDM model is one such lumped 

model. 

In a semi-distributed model, parameters are partially distributed over a number of small sub 

catchments. These models are more physically based than lumped models. They require more input 

data than lumped models but less than distributed models. TOPMODEL is one such semi-distributed 

model producing a hydrograph at the catchment and outlet. 

In distributed models, parameters are fully distributed to square cells or to a triangulated irregular 

network (TIN). The model is physically based and requires large amounts of data. If there are accurate 

data available, the model generates results for each cell at any time but with high computational cost. 

GEOtop and tRIBS are fully physically distributed models (Xu, 2002). 

The decision to use one model over the others is based on the answers required and the availability 

of data. If there are large datasets of topographical and meteorological data, the tendency is to use 

fully distributed physically based models. On the other hand, if there is limited or very little catchment 

distributed data, the trend is to use the lumped model approach. If there is a long meteorological 

datasets and limited catchment data, then one approach may be to use statistical or artificial neural 

network models.  
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In this research, the goal is to simulate the outflow hydrograph of storm events (rather than long-term 

flows) with limited catchment data but sufficient meteorological data, so the option is to look at either 

lumped or statistical models.  

From the above review and experience, it was decided to use the PDM model in this research. 
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Chapter 3    Data Sources And 

Descriptions 
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3.1     Site Description 
 

3.1.1    Catchment Location 
 

The study area is the Munster Blackwater catchment, which is located in the south west of Ireland. It 

has a catchment area of approximately 3324𝑘𝑚2, which is 4% of the total area of Ireland (Corcoran, 

2004). The Munster Blackwater catchment is a relatively broad and flat area which is surrounded by 

mountains: the ranges of Knockmealdown, Kilworth, Galtee, Ballyhoura and Mullaghareirk in the 

North and the Boggeragh range in the South (Figure 3.1). The source of Blackwater river is in the 

Mullaghareirk mountain near Ballydesmond in County Cork. The river flows from west to east. It 

flows in a southerly direction through Ballydesmond, then turns eastwards at Rathmore, after 

passing through the urban centre of Mallow and Femoy. It then enters County Waterford where it 

flows through Lismore and eventually turning south at Cappoquin and enters  the sea at Youghal 

(Nicholson, 2012).            

                                       

 

The Blackwater catchment can be considered as four subcatchments. The four subcatchments 

considered are: Duarrigle, Dromcummer, Mallow Rail BR and Killavullen based on the availability and 

the quality of their data (Figure 3.2). Table 3.1 gives the area of each subcatchment calculated by 

ArcGIS. 

 

Figure 3.1 Mainstream of the Munster Blackwater from its source at Ballydesmond on the West to 

Killavullen (downstream of Mallow), (Nicholson, 2012). 
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Station No Subcatchment Area(𝒌𝒎𝟐) Easting Northing 
18050 Duarrigle 247.93 124929.00 94373.00 

18048 Dromcummer 862.50 139796.00 99320.00 

18055 Mallow Rail BR(opw) 1168.65 155078.00 97842.00 

18003 Killavullen 1248.32 164710.00 99738.00 

 

               

 

 

3.1.2    Topography and Digital Elevation Model (DEM) 
 

The Open Topography Facility (Nandigam & Arrowsmith, 2018) provides online access to high-

resolution topography data and related processing tools through cyberinfrastructure developed at 

the San Diego Supercomputer Center at University of California, San Diego (Nandigam & Arrowsmith, 

2018) 

The Digital Elevation Model (DEM) can be represented as a raster (a grid of squares or pixels). The 

DEM of the Munster Blackwater catchment was downloaded from Open Topography (Nandigam & 

Arrowsmith, 2018). It is a 30-m raster resolution DEM, which means that each pixel is approximately 

30 meter wide. Table 3.2 shows the location and estimation of rain gauges elevation by using the 

DEM of the Blackwater catchment from Open Topography in ArcGIS10. Figure 3.3 and Figure 3.4 

Figure 3.2 Munster Blackwater catchment and its four nested subcatchments. 

See Table 3.2 for details of each numbered gauge 

Table 3.1  Area of the Blackwater catchment and its subcatchments  
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indicate the rain gauge 80713 (Duhallow Way – Reservoir)  with an elevation of 293 m is the highest 

rain gauge located in the Duarrigle subcatchment and the rain gauge 80731 (Cappoquin) is the 

lowest rain gauge with 15 m height above sea level in the East of the Munster Blackwater catchment. 

Figure 3.5 illustrates the Blackwater catchment and drainage network delineation based on location 

of four river level stations and the DEM of Blackwater catchment using the Hydrology tools in 

ARCGIS. The subcatchments were then obtained from the derived drainage network (see Figure3.2). 

 

Station No Station Name Easting Northing Elevation(m) 

80701 Bottle Hill - Pump House 161062.50 88465.60 214 

80702 Bweeng - Pump House 149359.90 87868.70 218 

80703 Lyre – Reservoir 140595.70 91935.70 277 

80704 Kilcorney – Reservoir 133710.90 90320.80 216 

80705 Millstreet – Reservoir 126049.30 89392.60 208 

80706 Buttervant - Pump House 153378.70 108472.00 103 

80707 Ballyhoura Way - Water intake works 152888.00 114398.40 87 

80708 Freemount - Waste water treatment plant 139407.80 113998.00 138 

80709 Ballinatona - Water treatment plant 129019.10 111884.80 204 

80710 Newmarket – Reservoir 131637.10 107079.40 178 

80711 Ballydesmond - Pump house 115026.40 103842.70 195 

80712 Knocknagree - Old pump house 118576.60 97862.40 172 

80713 Duhallow Way – Reservoir 117626.30 88508.80 293 

80714 Kanturk - Waste water treatment plant 138451.30 101775.20 79 

80715 Mallow - Pump house 154104.10 95790.90 67 

80716 Kishkeam - Waste water treatment  120785.10 103812.30 199 

80717 Rathcoole - Waste water treatment plant 133406.00 94119.80 94 

80718 Pallas - Old pump house 145572.50 98161.10 108 

80719 Doneraile – Pumphouse 158665.00 107508.00 72 

80720 Kilbrin – Resevoir 142907.00 107149.00 190 

80721 Two Pot House – Resevoir 157150.00 102581.00 122 

80722 Ballygugroe – Landfill 166243.00 114549.00 220 

80723 Kildorrey - Sewage Works 171727.00 110626.00 77 

80724 Mitchelstown - Water Treatment Plant 180920.00 113349.00 78 

80725 Castlecooke – Pumphouse 187734.00 104662.00 105 

80726 Bartlemy – Pumphouse 181733.00 88500.00 133 

80727 Fermoy – Pumphouse 177618.00 98283.00 41 

80728 Coole – Pumphouse 186894.00 95063.00 77 

80729 Tallow - Resovoir/Pumphouse 200822.00 92213.00 81 

80730 Lismore - Resevoir/Pumphouse 206103.00 101402.00        176 

80731 Cappoquin – Cappoquin 213336.00 97704.00 15 

80732 Killavullen - Water Treatment Plant 164898.00 99446.00 43 

Table 3.2 List of 32 OPW operated rain gauges on the Blackwater catchment  
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Maximum Elevation 293 

m 

Maximum rainfall 1126 mm 

Minimum Elevation 15 m 

m 

Minimum rainfall 718 mm  

Min 

Figure 3.3 Location of 32 OPW rain gauges across the Munster 

Blackwater Catchment for 2010 

Figure 3.4  Munster Blackwater catchment topography and rain 

gauges elevation across the full Blackwater catchment. 
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3.2     Data Collection  
 

The first step in this research is to understand the existing data, how it was collected and what is the 

relation between different parts of data and how we can obtain more data from different sources to 

gain maximum information from all data. Precipitation is an important input variable for hydrological 

models. The 15-minute time step precipitation and river flow are the two main data sources needed 

for running the PDM model. In this section, we first look at precipitation data from OPW and MÉRA 

and then river water levels from the EPA and OPW at different stations located in each 

subcatchment of the Munster Blackwater catchment to derive the river flow using rating curves for 

these locations. 

3.2.1     Office of Public Works (OPW) Precipitation Data 
 

The key input data to be used in this project is 15-minute time step precipitation from 32 different 

rain gauges across the Blackwater catchment collected by OPW from 2007 to October 2017. As 

Figure 3.2 shows, the rain gauges are located throughout the catchment.  

Figure 3.5 Munster Blackwater catchment topography and drainage network 

with four river level stations 
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All rain gauges have gaps and outliers in their data (due to equipment failure or operator absence) 

which require to be quality controlled to create the most accurate estimation of rainfall. 

The EPA Ballyguyroe Landfill Site Annual Environmental Report January 2013 – December 2013 (O’ 

Brien, 2014) confirms this and emphasises that ‘The OPW Hydrometric section, do not undertake any 

post processing of rainfall data. The data collected is only archived as it is received. Any rainfall data 

disseminated will be raw unchecked data and it is the responsibility of the end user to ensure its 

suitability.’ According to this report, several issues can cause gauges to both over and under estimate 

rainfall events and the severity of this can change with wind direction and strength. A list of issues, 

which can affect OPW rain gauge sites are as follow: 

 Incorrect distances to obstructions (e.g fencing, tanks and buildings) 

 Incorrect mounting height (too low or too high, on building roofs) 

 Over exposure (sites too exposed to elements, wind shear effects ) 

 Vegetation being closer than the desirable minimum distances 

 Temporary malfunction of rain gauge unit 

 Temporary malfunction of telemetry systems   

This research examines a practical method to fill the data gaps and modify the outliers of each OPW 

rain gauge with its nearest neighbors. For each rain gauge, the nearest neighbor means the rain 

gauges with the most similar amount of precipitation. In chapter four, this method is described in 

more detail. 

 

3.2.2     Method of Analysis of Precipitation Data 
 

In order to prepare suitable data to run the hydrological model PDM, analysis of available data, in 

15-minute time step precipitation from the 32 rain gauges operated by the OPW from 2010 to 2017 

was carried out.  

Four types of problems were encountered with these datasets: 

1) Missing values: there are some periods where the date and times were recorded but, the 

precipitation was not recorded. The data entry is NULL (Table 3.3). 

2) Unrecorded value: there are some periods where a date, time and precipitation were not 

recorded. We can consider this as a step change or jump in dates and times.  

3) Outliers: there are some records where the date and time are correctly recorded but the 

amount of precipitation is not realistic. For example after some missing value, not recorded 

value or some period with zero precipitation there is a record with unrealistic extremely high 

precipitation. In this study, we assumed that precipitation of more than 15 mm in a 15-

minute time step is not realistic (Table 3.4). 
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4) The long sequence of precipitation: there are some records, which were recorded correctly, 

even the values of precipitation are reasonable but there are long sequences of precipitation 

where the cumulation of these precipitation values are not realistic. 

 

Year Month Day Hour Minute second Rainfall 

2012 11 15 22 0 0 0.0 

2012 11 15 22 15 0 0.0 

2012 11 15 22 30 0 NA 

2012 11 15 22 45 0 NA 

2012 11 15 23 0 0 NA 

2012 11 15 23 15 0 NA 

2012 11 15 23 30 0 NA 

2012 11 15 23 45 0 NA 

2012 11 16 0 0 0 NA 

2012 11 16 0 15 0 145.0 

2012 11 16 0 30 0 0.0 

 

    Table 3.4 provides a summary of these 32 rain gauges from 2010 to 2017. The last column 

(percentage) shows the percentage of all bad data values for each rain gauge. As previously noted 

unrecorded values are the most significant problem in each rain gauge. The rain gauges 80707 

(Ballyhoura Way - Water intake works) with 6.8% of bad data has the best data quality and rain 

gauge 80731 (Cappoquin – Cappoquin) with 69.28% of bad data has the worst data quality. The three 

rain gauges (80731, 80730, 80729) have more than 60% bad data, data recorded until 2013. For the 

rest of this study the first 23 rain gauges will be used, which have less than 15% bad data and will try 

to clean these data by gap filling. Figure 3.6 shows the location of the rain gauges with more than 

15% bad data quality and less than 15% bad data quality. 

            

 

Table 3.3   Example of missing values of precipitation (NULL) & outliers in rain gauges data 

 

Figure 3.6 All OPW rain gauges and rain gauges with indication of data quality 
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Number of Missing and Outliers of Each Rain gauges 

Rain gauge No.  Not Recorded missing value Rainfall > 15 mm  % of bad data 

80707     18914     117     59     6.97 

80702     19273     196     0  7.11 

80713     19518     151     345     7.31 

80705     20744     62     9  7.6 

80714     20944     223     87      7.76 

80712     22833     289     25    8.45 

80706     23386     232     0     8.62 

80710     23593     334     0     8.74 

80708     24310     215     8      8.96 

80711     24170     542     251     9.12 

80722     24761     89     172      9.14 

80704     26403     190     3     9.71 

80717     26735     101          145 9.85 

80721     26495     268     213      9.85 

80727     26963     113     3      9.89 

80719     27232     256     17     10.04 

80718     28153     135     1     10.33 

80720     28359     934     2      10.7 

80728     27039     3374     26     11.12 

80701     24619     6389     1      11.32 

80732     28996     2857     2      11.63 

80716     31953     127     4      11.72 

80715     32031     104     45     11.75 

80726     51307     601     0      18.96 

80723     56908     895     1      21.11 

80703     67058     350     16      24.62 

80724     68846     3749     1      26.51 

80709     65408     20543     4     31.39 

80725     88650     2367     16     33.24 

80729     179265     88     2      65.5 

80730     186513     438     8      68.27 

80731 189360     334     3      69.27 

Table 3.4 Summary of missing values and outliers of 32 rain gauges on the Blackwater catchment. 

Less than 15% bad data (Black) accepted, Greater than 15% bad data not accepted (Red) 
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3.2.3   MÉRA (Met Éireann Re-Analysis Climate Re-Analysis)       

 

Climate reanalysis datasets are important sources of information for monitoring climate, validation 

and calibration of Numerical Weather Prediction (NWP) models. They are extensively used in diverse 

research areas such as food and agriculture, renewable energy, ecology, planning, economics and 

hydrology. 

 Reanalysis is a scientific method for developing a comprehensive record of how the weather and 

climate change over time, typically extending over several decades or longer, and covering the entire 

globe from the Earth’s surface to well above the stratosphere. Reanalysis datasets are produced by 

data assimilation. 

Data assimilation is a sequential time-stepping procedure: in each time step, it uses the past 

observational data from a wide variety of sources such as ships, satellites, ground stations, 

Radiosonde Observations (RAOBs) and radar to predict the current state. Then in a new time step, 

the observational data for the previous time step is compared with the predicted state and corrects 

its prediction. After correcting the previous state then all past data is used again to predict the new 

state and so on (Gleeson, Whelan, & Hanley, 2017) (Figure 3.7). 

                     

 Kalman filtering, smoothing, and variational analysis, Bayesian statistic  and Markov chain Monte 

Carlo sampling are used in data assimilation (Wikle & Berliner, 2007). 

Due to computational constraints, global reanalyses cannot be run at the very high resolutions 

required to resolve mesoscale (10 to 1000 km) processes. However, they are generally used to 

provide boundary conditions for regional reanalyses. The advantage of regional reanalyses is that 

Figure 3.7 Correction of the model with the observations introduced by assimilation (Met, 2017). 
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they can be run at high temporal and spatial resolution so that focus can be put on near surface 

variables, extremes and frequency distributions. Several regional reanalyses have already been 

produced. For example the EU European Reanalysis and Observations for Monitoring project 

(EURO4M: Klein Tank,2010) and the Irish reanalysis dataset, called MÉRA (Met Éireann ReAnalysis) . 

 The Irish Meteorological Services (Met Éireann) has carried out a 35-year very high resolution (2.5 

km horizontal grid) regional climate reanalysis for Ireland using the ALADIN-HIRLAM numerical 

weather prediction system (www.hirlam.org). This reanalysis dataset spans over the period 1981 to 

2015 and includes surface, near surface and atmospheric parameters. Conventional observations 

data (i.e. synoptic stations, ships, buoys, radiosonde ascents and aircraft) were assimilated. These 

observations are the same as those used by the European Centre for Medium Range Weather 

Forecasts, (ECMWF) ERA-Interim reanalysis. Locally available SYNOPs (surface synoptic observations) 

were used to fill gaps in the ERA-Interim SYNOP observation archive to ensure cycle continuity and 

successful data assimilation in each cycle. MÉRA uses a 3 hr forecast cycle with surface and upper-air 

data assimilation. Three-hour forecasts were produced for each cycle except the midnight cycle 

(00:00 UTC) when a 33 h forecast was produced. This provides a precipitation forecast each day that 

can be evaluated using locally available observations of daily accumulations of precipitation. One of 

the main advantages of very high-resolution reanalysis is to improve the precipitation forecasts. 

(Gleeson et al., 2017) 

In this project, we use the MÉRA dataset to calculate the annual rainfall for specific locations on the 

Blackwater catchment using the GRIB format files from MÉRA. 

 

3.2.4    MÉRA Precipitation Data  
 

The Irish Meteorological Service, Met Éireann, has carried out a 35-year very high resolution (2.5 km 

horizontal grid) regional climate reanalysis over the period of 1981 to 2015, for Ireland called MÉRA. 

(Gleeson et al., 2017) 

In this project, we use the precipitation from MÉRA to calculate the monthly and annual rainfall in 

each specific year. For example for 2010 for selected locations (nearest point to OPW rain gauges 

location) on the Blackwater catchment (Figure 3.8). MÉRA data is supplied in GRIB format. For access 

to these kind of files the GRIBapi package of Python in the Linux environment (Santoalla, 2016) is 

used to extract the hourly rainfall for each location and then calculate the monthly and annual 

rainfall. Monthly rainfall is used to classify the rain gauges based on their similarity of amount of 

precipitation. In Chapter 4 we will describe this in more detail. 
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Figure 3.9 and Figure 3.10(a) and (b) illustrate the annual and monthly rainfall in mm for 2010 from 

MÉRA at the nearest locations to the 32 OPW rain gauges. As can be seen the rain gauge 80713 

(Duhallow Way – Reservoir) with 1126.7 mm annual precipitation had the highest amount of annual 

precipitation while rain gauge 80719 (Doneraile - Pumphouse) with 718.5 mm annual precipitation 

had the minimum amount of annual precipitation. August with 23.04 mm mean precipitation is the 

month with minimum precipitation and has less variation of precipitation between rain gauges in the 

range of 13.06 mm to 32.64 mm. While January with 116.68 mm mean precipitation is the month of 

maximum precipitation in some rain gauges with more variation in the range of 71.98 mm to 116.41 

mm across gauges. It is relevant to note that 2010 was a relatively dry year on the Munster 

Blackwater catchment. 

The statistical summary of annual and monthly precipitation of all rain gauges is given in Table 3.5 

and Table 3.6.  

 

 

Figure 3.8 OPW Rain gauges locations and estimated nearest points to them from MÉRA 
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Figure 3.9 Annual rainfall for 2010 from MÉRA for 32 nearest points to 32 OPW rain 

gauges across the Munster Blackwater catchment 
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Figure 3.10 (a) Monthly rainfall for 2010 from MÉRA for 32 nearest points to 32 OPW rain gauges 

across the Blackwater catchment 

Figure 3.10 (b) Box-whisker plot of monthly rainfall for 2010 from MÉRA for 32 nearest 

points to 32 OPW rain gauges across the Blackwater catchment 
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The minimum annual precipitation was at (latitude 52.21236°N and Longitude -8.6138°W) 

corresponding to rain gauge 80719 which was 718.58 mm and the maximum annual precipitation 

was at (latitude 52.0499°N and Longitude -9.19639°W) corresponding to rain gauge 80713 which was 

1126.77 mm. 

 

 

 

 

 

 

MÉRA annual precipitation (mm)  

for 2010 

Min 718.6 

Max 1126.8 

Mean 892.3 

Median 872.9 

First quartile 801.9 

Third quartile 968.5 

 MÉRA Monthly precipitation (mm)  for 2010 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Min 71.97 42.24 72.92 50.73 31.39 32.73 76.33 13.06 59.95 65.35 83.96 18.95 

Max 116.4 87.34 121.6 98.62 56.52 109.9 158.2 32.64 110.5 114.5 161.8 51.90 

Mean 116.6 60.57 93.47 68.61 40.93 55.37 112.2 23.03 89.02 90.38 111.2 30.76 

Median 121.9 59.7 92.36 64.35 39.76 53.65 111.1 23.45 86.75 89.61 103.0 30.02 

First 
quartile 

88.22 50.28 80.87 58.49 36.73 48.19 98.87 18.99 82.03 81.78 93.31 24.58 

Third 
quartile 

138.0 67.56 102.6 75.77 44.40 59.14 124.8 27.08 101.1 97.63 126.8 35.76 

Table 3.6 Statistical summary of monthly precipitation for 2010 from MÉRA for 32 

nearest points to 32 OPW rain gauges across the Blackwater catchment 

 

Table 3.5 Statistical summary of annual precipitation for 2010 from MÉRA for 32 nearest 

points to 32 OPW rain gauges across the Blackwater catchment 
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3.2.5      River Level Data 
 

River level records are collected at a network of water level stations operated by local authorities in 

conjunction with the EPA and OPW throughout Ireland. In addition, the ESB, Teagasc and some 

private agencies collect river level data for a small number of rivers. Telemetric data loggers are used 

to digitally record the water level at 15-minute intervals using pressure transducers. These loggers 

then periodically transmit the recorded data back to the central database (typically every 6-8 hours) 

from where it is uploaded to epaHydroNet (epaHydroNet, 2016).  All data loggers are set to GMT for 

the full year to avoid the time changes in Summer/Spring time (epaHydroNet, 2016).  

15-minute time step river water level data were downloaded for four stations (each one located at 

the outlet of each of the four sub catchments of the Blackwater catchment). River level data for  

Duarrigle and Dromcummer stations are from the epaHydroNet website (epaHydroNet, 2016) and 

river level data for Mallow rail BR station and river flow data for Killavullen are from the OPW HYDRO 

website (OPW HYDRO website, 2013). These datasets need to be quality controlled before use. Table 

3.7 shows the summary of unrecorded and missing values in these datasets. Figure 3.11 (a) and (b) 

shows the time series of river level and flow during 2010 to 2017 for Dromcummer station after data 

cleaning. It is notable that the percentage of bad data for the river level stations are significantly 

lower than those for the OPW precipitation data. 

 

 

 

 

 

 

 

 

Number of Gap  and Missing value of river level or river flow  in  4 stations  

Station Name  Not Recorded missing value Outliers:  level > 3 m 

 or              flow > 450  

 % bad data Duration 

Duarrigle         861 11 103 0.35 2010- 2013 

Dromcummer 6547 19        0 2.34 2010-2017 

Mallow rail BR 8906 1 3289 4.35 2010-2017 

Killavullen (flow) 2381 13 980 1.2 2010-2017 

Table 3.7 Summary of unrecorded and missing value for four river level 

stations on the Blackwater catchment 
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Figure 3.11 (a) Time series of 15-minute river level for Dromcummer during 2010 to 2017 

Figure 3.11 (b) Time series of 15-minute river flow for Dromcummer during 2010 to 2017 
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Chapter 4        Analysis of Data and 

Methodologies Employed 
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4.1     Introduction  
 

Analysis of available data from different sources is one of the most important issues in hydrological 

modelling, the quality of available data can be poor and therefore there is a need for quality control 

and gap filling to obtain useful data as input for hydrological modelling 

The aim of this chapter is to analyse the data, identify any missing values, outliers and any kind of 

error in precipitation data, and then develop a method to cluster the rain gauges based on similarity 

of their precipitation and eventually filling the gaps and correcting the errors in any individual rain 

gauge record by adjacent members of its cluster. 

 

4.2     Kmeans Clustering   
 
Kmeans clustering is an unsupervised Machine Learning technique which is suitable for finding the 

similarity of data when unlabeled data (data without defined category or group) is available. 

Kmeans clustering partitions the dataset into K different groups or clusters of similar objects, where 

each member of each cluster is nearest to the centroid of that particular cluster. Usually the Euclidean 

Distance is used as a mathematical function to define the similarity between two objects in the 

dataset. The algorithms works as follows:  

 Initialise the K value. 

 Select k objects of the dataset randomly as a centroid of each cluster. 

 For each object find the nearest centroid and assign the object to this cluster (Figure 4.1). 

                                                          

 
Figure 4.1 Kmeans clustering with 3 clusters (‘K-means Clustering Tutorial-Machine Learning’, n.d.) 
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Selecting the appropriate number of cluster K is important, but there is no theoretical method to find 

the optimal value of the number of clusters. The aim of finding the best value of K is to obtain the 

minimum variance in each cluster and maximum separation between clusters. There are several 

techniques for selecting a K value. A practical approach is to compare the outcomes of multiple runs 

with different K and choose the best one. The Elbow method (section 4.2.1) can be also applied to find 

the optimal value of K. In general, a large K decreases the error but increases the risk of overfitting  

(Asanka, 2017).  

Another important issue in Kmeans clustering is to determine the features for clustering. This comes 

based on trial and error, also analysis of data to find out if there is any relation between features and 

clusters. Some knowledge about the problem also can help to choose the best feature (Trevino, 2016). 

For example in this case it is assumed that there is a relation between the location of rain gauges and 

amount of precipitation. It is expected that precipitation is greater when the site elevation is higher. 

The Kmeans function in R was applied to cluster the OPW rain gauges. The code was developed in R 

using the output of the Kmeans function such as number of clusters, size, mean and sum of squares of 

each cluster and total sum of squares to summarise and visualize the outputs for further analyse, and 

to find the optimal value of the number of clusters (K) using the Elbow method (see Appendix B.4 for 

more information). 

 

4.2.1   Elbow Method  
 
The Elbow method is a method to find the optimal value of K in Kmeans clustering. The main idea of 

the Elbow method is to run the Kmeans clustering for different values of K and then choose one that 

has the minimum sum of squared error (SSE) differences between each member of the cluster with 

the mean of that cluster which, indicates the variation within the cluster. SSE is given by: 

                       𝑆𝑆𝐸 =  ∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1                                                                                  Eq 4.1 

where n is the number of individual objects in the dataset, 𝑥𝑖 is each individual object and  �̅� is the 

mean of each cluster (Asanka, 2017). 

 

4.3   Clustering of rain gauges 
 
The OPW’s rain gauges need to be clustered across the Blackwater catchment in order to fill the gaps 

of each rain gauge by its cluster members. Here are two approaches for clustering rain gauges. As 

the precipitation data from MÉRA were not available at the beginning of this project, clustering 
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based on rain gauges position was considered. After obtaining MÉRA precipitation data, the 

clustering based on rain gauges monthly and annual precipitation was examined and compared. 

Eventually clustering based on rain gauges monthly precipitation was used to cluster rain gauges. 

 

4.3.1   Clustering based on location 
  
It is assumed that there is a relation between the geographic position and the amount of 

precipitation, thereby suggest using geographical position to cluster the rain gauges. The assumption 

is that more rain falls on the West of the catchment than on the East, as it is known that the West of 

Ireland has more rain than on the East of the country. In other words, the rain gauges with similar 

geographical position and elevations are likely to have similar amounts of precipitation. Figure 4.2 

shows the relationship between a group of three features (Easting, Northing and Elevation) with 

annual rainfall, calculated here from MÉRA data. There is moderate positive correlation between 

elevation and annual rainfall, moderate negative correlation between Northing and annual rainfall 

and weak correlation between Easting and annual rainfall as illustrated in Table 4.1. 

 

 Figure 4.2 Scatterplots indicating correlation between the four features 

Easting, Northing, Elevation and annual rainfall for the MÉRA dataset for 2010 
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 Easting  Northing  Elevation 

Annual rainfall  - 0.18 - 0.61 0.65 

 

The result of the Kmeans clustering with three features Easting, Northing and Elevation of rain 

gauges (see Table 3.2) when the value of k is six is illustrated in Table 4.2 and Figure 4.3 

 

 

 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

80704 80701 80708 80706 80727 80711 

80705 80702 80710 80707 80728 80712 

80717 80715 80714 80719  80713 

 80718 80720 80721  80716 

   80722   

   80732   

 

 

Table 4.1   Correlation between three features Easting, Northing, Elevation 

and annual rainfall of MÉRA dataset for 2010 

 

Figure 4.3 Members of each cluster when K = 6 with three features: Easting, Northing and Elevation 

Table 4.2 Kmeans clustering results for K= 6 with three features: Easting, Northing and Elevation 
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 4.3.2   Clustering based on MÉRA precipitation 
 

The best way to classify the rain gauges is to find similarity of their precipitation during each time step. 

In general, a small time step means a large number of features for clustering which might cause 

overfitting and a large time step means a small number of features which might reduce the accuracy 

of clustering. It is suggested using the monthly rainfall during a specific year as 12 features for applying 

Kmeans clustering. Twelve features is a suitable number of features and represents the variation of 

rainfall during the year. Using annual rainfall is another candidate feature for clustering but just one 

feature cannot explain the characteristics of rain gauge precipitation and the similarity between 

gauges.  

Hourly precipitation from MÉRA for 2010 is available, as MÉRA is high resolution (2.5 km) data so we 

can estimate the hourly precipitation for the nearest point of each rain gauge and then obtain 

monthly precipitation for these points (Figure 3.9 & Figure 3.10). 

The next issue for applying Kmeans clustering is to determine the number of clusters K. The iterative 

code was developed in R to apply the Elbow method which applies the Kmeans clustering for 

different values of K and chooses the one with minimum sum of square error. The resulting plot of 

sum of square error for different K makes it easy to choose the best K. Figure 4.4 shows the plot of 

the Elbow method to obtain the optimal value of K, which is four.  

                    

 

 

Figure 4.4 Elbow method to find the optimal value of K. 
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In this case the optimal value of K is not required, instead the number of clusters is required where 

there are more than two members in each cluster so that gap filling can be applied between 

members of each cluster to minimize the gaps. If the number of clusters is large then the number of 

members in each cluster is small. There might be less than two members in some clusters and 

therefore gap filling would not be possible using these clusters. If the number of clusters is small 

then the number of members of each cluster might be large so gap filling between each member of 

the cluster will reduce the gaps but might reduce the accuracy of data as well. 

Therefore, it can be a trial and error process to find the best value of K. Table 4.3 shows the number 

of members in each cluster for different values of K between four and twelve.  

 

 

 

 

 

 

 

 

 

 

 

In each cluster, at least three members are required to carry out successful gap filling. Evidently K = 6 

is the best value for K. Table 4.4 and Figure 4.5 illustrate the result of Kmeans clustering for K = 6 

based on monthly precipitation (12 features) and Table 4.5 and Figure 4.6 illustrate the result of 

Kmeans clustering for K = 6 based on annual precipitation (one feature).  

Figure 4.7(a), Figure 4.7(b) and Figure 4.8 also show similarity of monthly and annual precipitation 

within each cluster. As described, we have used the Kmeans clustering using monthly features (12 

features) to cluster the rain gauges 

 

 

 Number of members For K  

Clusters  K = 12  K = 11 K = 10 K = 9 K = 8 K = 7 K = 6 K = 5 K = 4 

Cluster 1 2 2 2 3 3 5 5 6 8 

Cluster 2 2 3 2 3 3 2 4 3 4 

Cluster 3 2 2 2 1 3 3 5 3 7 

Cluster 4 2 2 2 4 3 3 3 7 4 

Cluster 5 1 3 1 2 2 5 3 4  

Cluster 6 4 2 3 3 5 2 3   

Cluster 7 2 1 4 2 2 3    

Cluster 8 2 1 3 2 2     

Cluster 9 2 2 2 3      

Cluster 10 1 1 2       

Cluster 11 2 4        

Cluster 12 1         

Table 4.3 Number of clusters & number of members in each cluster for  4 ≤ 𝐾 ≤ 12 
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

80701 80702 80706 80711 80715 80708 

80717 80704 80707 80712 80721 80710 

80718 80705 80714 80716 80732 80720 

80727 80713 80719    

80728  80722    

Table 4.4 Kmeans clustering results for K= 6 based on monthly precipitation 

(12 features). 

Figure 4.5 Members of six clusters based on the monthly precipitation 

(12 features). 
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

80701 80706 80708 80702 80711 80705 

80710 80707 80715 80704  80713 

80712 80714 80718 80716   

80717 80719 80720    

80728 80721 80722    

 80732 80727    

Table 4.5 Kmeans clustering results for K = 6  based on annual 

precipitation (one feature)  

 

Figure 4.6 Members of six clusters based on the annual precipitation 

(one feature) 
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Figure 4.7(a) Similarity of monthly precipitation in each cluster January to June 
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 Figure 4.7(b) Similarity of monthly precipitation in each cluster July to December 



69 
 

                                                                    

 

 

4.4 Gap filling  
 

4.4.1 Rain Gauge Data Gap Filling With Cluster Member Data 
 

After identifying the missing values, outliers and errors in  the 32 rain gauges with 15-minute 

precipitation data from OPW and then clustering 23 of them where they have less than 15 % bad 

data by Kmeans clustering with 12 features (monthly precipitation) and six clusters (K = 6), the 

method for filling the gaps and correction of outliers and errors in each cluster was developed as 

follows: 

1. Filling the gaps (missing values and  unrecorded values) and correct the outliers of the first 

member of the cluster with corresponding non-missing value and non-outliers of the next 

members of the cluster and vice versa   

2. Repeat step 1 for next members of the cluster until the last members of cluster are reached 

3. Repeat step 1 and 2 for the second, third and … until the one before last member of cluster 

is reached 

Figure 4.9 illustrates this process in a cluster with four members. At the end each member of the 

cluster has minimal missing values and outliers, which we fill by another method. 

Figure 4.8 Similarity of annual precipitation in each cluster 
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                                                                                                        step 1       

                                                                                                     step 2 

                                                                                                        step 3    

 

 
Table 4.6 shows the summary of each cluster after applying the gap filling method. As this method is 

an iterative method and fills the gaps of each member of cluster with at least two other members of 

cluster so it minimized the missing values and outliers and reduced bad data to 0.04 % to 0.09% for 

the period 2010 to 2017. The details of the bad data break down by year are shown in Table 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Missing and Outliers of Each Cluster of Rain Gauges after  Gap Filling 

Cluster No. missing value Rainfall > 15 mm  % bad data 

1 167 0 0.06 

2 139 0 0.05 

3 105 0 0.04 

4 105 0 0.04 

5 237 0 0.09 

6 106 0 0.04 

Year Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

2010 0 0 0 0 0 0 

2011 0 0 0 0 0 0 

2012 0 34 0 0 0 0 

2013 70 8 8 8 8 8 

2014 97 97 97 97 229 98 

2015 0 0 0 0 0 0 

2016 0 0 0 0 0 0 

2017 0 0 0 0 0 0 

Total 167 139 105 105 237 106 

Figure 4.9 Gap filling process for a cluster with four members  (F1,F2,F3,F4) 

Table 4.6 Summary of missing values and outliers of each cluster after gap filling 

Table 4.7 Summary of number of missing values and outliers of each cluster for years 2010 to 2017 
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4.4.2 Gap Filling of Rainfall Data Using Temporal Average of Rain 

GaugeNearest Record 
 

When there are no long sequences  of missing values or outliers in the dataset the simple way to fill 

the gap or correct the outliers is to substitute the gap or outliers with the average of the two nearest 

non-missing and non-outlier records (before and after the gap (Table 4.8)). This method can be 

applied after the gap filling with the cluster members in order to minimize the amount of bad data in 

the datasets. A problem might occur when there is a long sequence of missing values or outliers in 

the dataset using this method, as the missing values or outliers practically will be filled with constant 

values. Further consideration might be needed in this case. 

Year Month Day Hour Minute second Rainfall-mm 

2012 5 9 18 15 0 0.0 

2012 5 9 18 30 0 0.2 

2012 5 9 18 45 0 0.2 

2012 5 9 19 0 0 0.2 

2012 5 9 19 15 0 NA 

2012 5 9 19 30 0 0.4 

2012 5 9 19 45 0 0.4 

 

4.4.3 Long Sequences of Precipitation and Outliers 
 

For many records there are periods where the values of precipitation were unrealistic where some 

might be large numbers (for example 145 mm in 15 minutes is considered an outlier) or some might 

be long sequences of reasonable values or long sequences of a constant value. Figure 4.10 shows the 

big jump in cumulative rainfall in a cluster before gap filling, which indicates the existence of outliers 

or a long sequence of precipitation.  

The gap filling with the cluster members method was applied for correcting the outliers. Figure 4.11 

shows the cumulative rainfall in a cluster after gap filling. There is a small jump in cumulative rainfall 

that indicates the gap filling method successfully corrected the outliers. The next step to optimizing 

data quality is to identify the long sequence of reasonable values in 15 minutes time steps. 

Determination of this value (number of sequences of reasonable values in 15 minutes time steps) is 

based on experience and some knowledge of the area.  For example, more than four sequences of 

15 mm of precipitation in consecutive 15 minutes time steps means more than 60 mm precipitation 

in an hour, which is not realistic. 

Table 4.8 Filling the gap with the two nearest record 

(0.2 +0.4)/2 

= 0.3 
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In this study all rain gauge data were examined after gap filling. There are not more than four 

sequences of maximum 15 mm of precipitation in consecutive 15 minutes time steps which is 

realistic. So in this case further data cleaning is not required. If there were more than four sequences 

of 15 mm precipitation in 15 minutes, which indicates some error in the data, then applying the gap 

filling method for these periods is suggested. 

Big jump 

Figure 4.10 Cumulative rainfall for 2010 for individual rain gauges in a cluster 

before gap fillings. Cumulation of large outliers in a rain gauge causes the big jump. 

Big jump 

Figure 4.11   Cumulative rainfall for 2010 for individual rain gauges in a cluster after 

gap filling. Correcting large outliers reduces the cumulation of outliers.  

Small jump 

Small jump 
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 A comparison of annual OPW precipitation data with annual MÉRA precipitation for 2010 is shown 

in Figure 4.12 for all 32 rain gauges to examine data quality of OPW precipitation data after these 

gap filling and outlier correction methods. This figure indicates that these methods were successful 

to obtain a high standard of data quality as the annual OPW data and MÉRA data are very close for 

those rain gauges which these methods were applied, except rain gauge 80711. 

 

 

 

Annual rainfall for rain gauge 80711 is very high so the comparison of monthly OPW precipitation 

and MÉRA precipitation was examined (Figure 4.13). The OPW Precipitation for November and 

December are very high and unrealistic for gauge 80711. Figure 4.14 shows the amount of rainfall 

recorded in November 2010 in OPW’s rain gauge 80711 and Table 4.9 shows a part of these data. 

There are a lot of high amounts of rainfall but all less than 15 mm and not sequential, so our gap 

filling and outlier correction methods were not able to detect and correct them. These kind of 

outliers needs more consideration. 

 

Figure 4.12  Comparison of annual OPW precipitation data after gap filling methods with MÉRA   

precipitation data for 2010. 



74 
 

                               

 

 

           

 

 

Figure 4.13  Comparison of monthly OPW precipitation data rain gauge 80711  after applying 

gap filling methods with MÉRA  precipitation data for 2010. 

Figure 4.14 OPW precipitation data for rain gauge 80711 after applying gap filling  

methods, November 2010 
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Figure 4.15  shows the monthly cumulative rainfall for OPW rain gauge 80702 (Bweeng - Pump 

House) for 2010 to 2016, indicating that the driest year was 2010 with annual rainfall around 1000 

mm and the wettest year was 2014 with annual rainfall around 1600 mm. 

                                       

 

 

This pattern is different in different rain gauges. The driest year for rain gauge 80722 (Ballygugroe – 

Landfill) was 2010 with annual rainfall around 700 mm and the wettest year was 2015 with annual 

rainfall 1600 mm while 2014 was the second wettest year with annual rainfall around 1000 mm 

(Figure 4.16).  

Year Month Day Hour Minute second Rainfall -mm 

2010 11 7 17 30 0 3.2 

2010 11 7 17 45 0 2.8 

2010 11 7 18 0 0 2.4 

2010 11 7 18 15 0 2.0 

2010 11 7 18 30 0 2.8 

2010 11 7 18 45 0 2.2 

2010 11 7 19 0 0 6.8 

2010 11 7 19 15 0 6.4 

2010 11 7 19 30 0 8.4 

2010 11 7 19 45 0 6.4 

2010 11 7 20 0 0 2.2 

2010 11 7 20 15 0 5.4 

2010 11 7 20 30 0 5.4 

2010 11 7 20 45 0 3.8 

Table 4.9 Part of OPW precipitation data (unrealistic) for rain gauge 80711 in November 2010 

Figure 4.15   Monthly cumulative rainfall for OPW rain gauge 

80702 (Bweeng - Pump House) for 2010 to 2016  



76 
 

                                    

 

 
 
 
This cumulative plot can be used to find any other outliers, which were not recognized by the outlier 

correction method for more investigation. Figure 4.17 shows a big jump in monthly cumulative 

rainfall for OPW rain gauge 80728 (Coole – Pumphouse) in September 2013, which indicates the 

existence of bad data (see Figure 3.3 for rain gauge locations). 

 

                                  

 

 

 

 

Figure 4.16   Monthly cumulative rainfall for OPW rain gauge 

80722 (Ballygugroe – Landfill) for 2010 to 2016  

Figure 4.17   Monthly cumulative rainfall for OPW rain gauge 

80728 (Coole – Pumphouse) for 2010 to 2016  
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4.4.4  River Level Data Gap Filling with Average of River Level’s 

Nearest Record 
 

Gap filling with the average of river level station nearest records as described in section 4.4.2 was 

applied to river level datasets to minimize the amount of bad data in these datasets. In Figure 6.12 

(a), the time series of observed flows for 2011 and Figure 6.13 (c) the time series of observed flows 

for period of 29/12/2015 to 31/12/2015 indicate there were a long sequence of missing values or 

outliers in datasets which were filled by this method. The missing values or outliers practically were 

filled with the constant values. Further consideration might be needed in this case. 

There is no bad data left on river level datasets following application of the procedure.  

If there is not a large number of missing values and outliers in river level data, applying gap filling 

methods are not essential prior to applying the PDM model as PDM omits missing values. 
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Chapter 5        Probability Distributed 

Model (PDM)                            
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5.1   Introduction 
 

The Probability Distributed Model (PDM), is a conceptual rainfall-runoff hydrological model (Moore, 

2007). The model inputs are rainfall and potential evaporation over the catchment and output is 

river flow at the catchment outlet. The main idea of this model is to describe the variation of soil 

moisture storage capacity of the catchment by a probability distribution. The standard model 

employs the Pareto distribution.  Soil moisture varies over the catchment as it depends on the type 

of soil, geology, land use and topography. Instead of trying to model each of these factors, PDM 

introduces the distribution of storage depth over the catchment, which ranges from a minimum 

depth 𝐶𝑚𝑖𝑛 to a maximum depth 𝐶𝑚𝑎𝑥.  

 

5.2 Data preparation for PDM Model  
 

5.2.1 Rain Gauges Contributing Area 
 

The concept of contributing area of a rain gauge becomes an important issue when precipitation is 

available from multiple rain gauges across the catchment. The rain gauge contributing area defines 

an area of influence around a rain gauge. The Thiessen Polygon and Inverse Distance Weighted (IDW) 

methods in ArcGIS can be used to calculate the contributing area of each individual rain gauge. 

 

5.2.2 Thiessen Polygon 
 

The Thiessen polygon also known as Voronoi Diagram specifies the influence area (polygon) around 

each point of a given set of points (Yamada, 2017). Each point inside the polygon is closer to that 

specific point than any other points of the given set. Figure 5.1 illustrates the procedure to generate 

the Thiessen polygons associated with the set of points as follows: 

 draw a line between each rain gauge locations (dash line) 

 draw the perpendicular bisector of each dash line (solid line)   

The solid lines construct the irregular polygons which divide the whole area into a number of smaller 

areas associated with each rain gauge of the given set of rain gauge locations. Therefore the area of 

the catchment (𝐴) is the sum of the sub areas  𝐴 =  ∑ 𝐴𝑖
𝑛
1  where n is the number of rain gauges in 

the area and 𝐴𝑖  represents  the area of influence of each rain gauge .  
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ArcGIS was used to generate the Thiessen polygons and to calculate the percentage of contributing 

area associated with each rain gauge across each of the four subcatchments (nested catchments). 

Figure 5.2(a) to (d) illustrates the Thiessen polygons for the four nested catchments within the 

Blackwater catchment (Duarrigle, Dromcummer, Mallow rail BR and  Killavullen). 

 

            

                      

  

Figure 5.1 Partitioning area associated with a set of points by Thessien polygon method 

(‘Creating Thiessen polygons’, n.d.) 

 

Figure 5.2(a) Thiessen polygon 

for Duarrigle subcatchment  Figure 5.2 (b)Thiessen polygon for 

Dromcummer  nested catchment  
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Figure 5.2(c)Thiessen polygon for Mallow Rail BR (Duarrigle & Dromcummer  & Mallow) nested catchment  

Figure 5.2(d) Thiessen polygon for Killavullen (Duarrigle & Dromcummer  & Mallow & Killavullen ) nested catchment  
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5.2.3 Inverse Distance Weighting (IDW) 
 
The IDW is an interpolation method which assumes that points closer to each other have more 

correlation and similarity than those farther away. Measuring some variables (rainfall, temperature, 

soil moisture) across a spatial area is not possible. The IDW method is widely used to estimate the 

values at unmeasured locations in the area by averaging the value of some measured locations, 

where those locations closer to the unmeasured locations have more influence than those farther 

away. In other words weighting the average of measured locations by the inverse distance so the 

IDW method can be applied to divide the area into sub areas around the given set of points. The IDW 

method was applied on the subcatchment Duarrigle with three rain gauges. Figure 5.3 illustrates 

three-subdivision areas associated with each rain gauge.   

                                                          

 

 

5.2.4 Rating curves  
 

River flows can be calculated from river levels. The river levels are available in the epaHydroNet  and 

OPW HYDRO website (http://waterlevel.ie/hydro-data/). The relationship between river level and 

river flow is given by the rating curve equation:  

                        𝑄 = 𝑎 ℎ𝑏                                                                                           Eq 3.2.1       

where 𝑄 is the river flow in  𝑚3. 𝑠−1, a and b are dimensionless coefficients and h is the river level in 

meters. Each point along a river has a different flow/height (rating curve) relationship as the cross-

sections of a river are usually not constant over the river length. The rating curve is less accurate for 

high flows than low flows as measuring the high flow is more difficult and sometimes is not safe or 

possible to do.  

Figure 5.3 Subdivion area of Duarrigle subcatchment generated by IDW 



83 
 

Coefficients a and b can be derived for a specific location by measuring river level (h) and river flow 

(𝑄) plotting the h against 𝑄 for different heights and flows. The non-linear regression model was 

built in R, based on the relationship between measured river level and river flow. For the period up 

to the year 2006, the estimation of  𝑎  and 𝑏 are 22.09 and 1.61 for the Duarrigle. Figure 5.4 

compares the actual rating curve and the estimate of the curve by estimating of these coefficients. 

               

 

 

These coefficients are different for different places along the river. For example for the Duarrigle 

subcatchment a and b were calculated by the EPA as follow. 

There are three curves: 

  For water level between 0 to 0.2 m   a = 8.857 and b = 1.25151 

 For water level between 0.201m to 1.591 m   a = 22.6327 and b = 1.83451 

 For water level above 1.592 m a = 30.9276 and b = 1.16186 

 As coefficients a and b vary from one place to another along the same river it is imperative to 

consider different equations for the three different stations in the Blackwater catchment. Table 5.1 

and Figure 5.5 show these coefficients for these three stations in the Blackwater catchment (for 

simplicity in Table 5.1 just one set of values of coefficients were presented).The river flow data is 

available on OPW HYDRO website for Killavullen station.  

 

 

 

 

Station a b 

Duarrigle 22.1187 1.6256 

Dromcummer 48.4194 1.7037 

Mallow Rail Bridge 27.2661 1.967 

Figure 5.4  Acual Rating curve and it’s estimation in Duarrigle subcatchment for 2006   

𝑄 = 𝑎 ℎ𝑏  where    𝑎 ≈ 22.09  &  𝑏 ≈ 1.61 

Table 5.1 Rating curve equation coefficients (a and b) for 3 stations on the Blackwater catchment (Steinmann, 2005) 
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Figure 5.5 Rating curves for three stations along the Blackwater river for data collected up to 2005 (Steinmann, 2005). 
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5.3 Probability distributed soil moisture storage  
 

 Each point of a catchment is considered as a single storage or tank with specific storage capacity 

(depth) of 𝑐′ (Figure 5.6) representing the absorption capacity of the soil at that point (CEH, 2012; 

Moore, 2007).  

 

                                                   

 

 

 

The direct runoff production (𝑞′) is represented by precipitation (P) and losses of evaporation (E) at 

any point as follow: 

 

                      𝑞′ =  {
𝑃 − 𝐸 − (𝑐′ − 𝑆0)                 𝑃 >  𝑐′ + 𝐸

0                                                𝑃 ≤  𝑐′ + 𝐸
                                                       Eq 5.1                                 

 
where 𝑆0 is the initial depth of water in storage. The storage capacity (𝑐) at any point can be 

considered as a random variate with probability density function 𝑓(𝑐) and Cumulative Distribution 

Function 𝐹(𝑐) as described in section 2.3.1, 𝐹(𝑐) =  ∫ 𝑓(𝑐)𝑑𝑐  , so the proportion of the basin 

containing stores of capacity less than or equal to 𝐶∗ is  :                                                                                                         

                    𝑃(𝑐 ≤  𝐶∗) = 𝐹(𝐶∗) =  ∫ 𝑓(𝑐)𝑑𝑐
𝐶∗

0
                                                                            Eq 5.2  

where  𝐶∗(𝑡)  is the critical capacity storage below which all the stores are saturated at time 𝑡 and 

start to generate runoff. To understand the storage capacity distribution across the basin, imagine 

that all stores with all different depths (storage capacity) are rearranged in order of depth and with 

their open tops arranged at the same height as shown in Figure 5.7. 

Assume all stores are initially empty (dry) so rainfall at rate P for a unit duration will start to fill the 

stores. During the interval of raining the stores with depth less than the P will start generating direct 

runoff and gradually stores with larger depth and finally stores of depth P will produce direct runoff.  

The direct runoff production also can be represented as:                                     

                     𝑞(𝑡) =  𝜋(𝑡)𝐹(𝐶∗(𝑡))                                                                                                  Eq 5.3  

Figure 5.6 Point representation of runoff production by a single store (CEH, 2012). 

 

𝑆0 
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where 𝜋(𝑡) is net rainfall rate at time(𝑡), and 𝜋(𝑡)   = 𝑃(𝑡) − 𝐸(𝑡) , if we assume the precipitation 

𝑃(𝑡)and evaporation 𝐸(𝑡) occur at constant rate at time (𝑡). The critical capacity will increase over 

the interval (𝑡, 𝑡 +  Δ𝑡) according to: 

                     𝐶∗(𝜏) =  𝐶∗(𝑡) + 𝜋(𝜏 − 𝑡)                                                                                           Eq 5.4 

The volume of direct runoff per unit area during the interval (𝑡, 𝑡 + Δ𝑡)  will be: 

                    𝑉(𝑡 + Δ𝑡) =  ∫ 𝑞(𝜏)𝑑𝜏
𝑡+Δ𝑡

𝑡
=  ∫ 𝐹(𝑐)𝑑𝑐

𝐶∗(𝑡+Δ𝑡)

𝐶∗(𝑡)
                                                      Eq 5.5  

and the water in storage over the basin as a whole, 𝑆(𝑡) will be : 

                    𝑆(𝑡) =  ∫ (1 − 𝐹(𝑐))𝑑𝑐
𝐶∗(𝑡)

0
                                                                                           Eq5.6 

So 𝑆𝑚𝑎𝑥, the total available storage is given by: 

                     𝑆𝑚𝑎𝑥 =  ∫ (1 − 𝐹(𝑐))𝑑𝑐 =  𝑐
∞

0
                                                                                     Eq 5.7 

where 𝑐 is the mean storage capacity over the basin. 

For a given value of storage 𝑆(𝑡), 𝐶∗(𝑡) can be calculated and then the volume of direct runoff 

𝑉(𝑡 + Δ𝑡)  calculated by Eq 5.4 and Eq 5.5. 

Further loss can be introduced to the model as a recharge to groundwater. Assume the rate of 

drainage over the interval (𝑡, 𝑡 + Δ𝑡) is 𝑑(𝑡) then the net rainfall at time (𝑡) is defined as: 

                    𝜋(𝑡) = 𝑃(𝑡) − 𝐸(𝑡) −  𝑑(𝑡)                                                                                           Eq 5.8 

There are several types of distribution that can be used to represent the soil moisture storage 

capacity variation over the catchment such as Pareto, Rectangular, Exponential, Lognormal and 

Triangular distributions. The Pareto distribution was suggested for the PDM standard model, which is 

widely used in practice, and we will use it in this study. The probability density function and the 

cumulative distribution function for the Pareto distribution were given in Eq 2.6 and Eq 2.5 and the 

following relations can be obtained from Eq 5.4 to Eq 5.8: 

 

𝑆𝑚𝑎𝑥 =
𝑐𝑚𝑎𝑥

𝑏 + 1
 

𝑆(𝑡) =  𝑆𝑚𝑎𝑥 [1 −  (1 −  
𝐶∗(𝑡)

𝑐𝑚𝑎𝑥
 )

𝑏+1

] 

𝐶∗ (𝑡) =  𝑐𝑚𝑎𝑥 [1 − (1 −
𝑆(𝑡)

𝑆𝑚𝑎𝑥
)

1
𝑏+1

] 

𝑉(𝑡 + Δ𝑡)  =  π Δ𝑡 −  𝑆𝑚𝑎𝑥 [(1 −
𝐶∗(𝑡)

𝑐𝑚𝑎𝑥
)

𝑏+1

−  (1 −
𝐶∗(𝑡 + Δ𝑡)

𝑐𝑚𝑎𝑥
)

𝑏+1

] 

 



87 
 

Figure 5.7, Figure 5.8 and Figure 2.6 show that the shape of this distribution varies with a parameter 

𝑏. When 0 <  𝑏 < 1 there is more deep storage than shallow storage, when 𝑏 > 1 there is more 

shallow storage.  

 

                         

 

 

                                    

 

 

 

 

5.4  Surface and subsurface storage 

 

Runoff generated from the saturated probability distributed stores contributes to the surface 

storage, representing routing of water via fast pathways to the basin outlet. This is usually 

represented in the PDM by a cascade of two linear reservoirs recast as an equivalent transfer 

function model (O’Connor, 1982). The groundwater storage, representing routing of water to the 

Figure 5.8 Direct runoff production from population of stores (CEH, 2012) 

 

Figure 5.7 Storage elements of different depth and their associated probability density function (CEH, 2012). 
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basin outlet via slow pathways, is usually taken to be of cubic form, with outflow proportional to the 

cube of the amount of water in the store. The outflow from surface and groundwater storages, 

together with any fixed flow representing, say, compensation releases from reservoirs or constant 

abstractions, forms the model output.  

 

5.5 Objective Functions 
 
The PDM model provides two ways of model calibration which is obtained by comparing the 

observed and modelled flows. One way is manual adjustment to reduce the visual differences 

between observed and modelled flows and another way is automatic optimisation to minimise an 

objective function which is defined as a function to measure the difference between the observed 

and computed flows by the model. The most common functions used to measure the model 

performance are RMSE and 𝑅2 Efficiency. If 𝑄𝑡 is the observed flow and 𝑞𝑡 is the computed flow at 

time t  

 the Root Mean Square Error (RMSE) is defined as: 

RMSE = √(𝑛−1 ∑ 𝑒𝑡
2)      where the model error is 𝑒𝑡 =  𝑄𝑡 − 𝑞𝑡  

 𝑅2 statistic defined as: 

𝑅2 = 1 −  
∑ 𝑒𝑡

2

∑(𝑄𝑡− 𝑄)2       where 𝑄 is the mean of n observed flows. The 𝑅2 indicates the 

proportion of variability in observed flows which the model can account for. A value of one 

indicates a perfect model while a value of zero indicates the model is only as good as using 

the mean of observed flows as a predictor. 𝑅2 can be negative which indicates the model is 

even worse than using the mean of observed flows as a predictor.  

 

Table 5.2 shows the most useful objective functions used for model calibration. The variable objtyp 

specifies the type of objective function to be used. Objective function type 21 is generally 

recommended.  
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5.6 PDM model Updating Methods 
 

The PDM model is said to operate in simulation mode if observed flows are used for initialisation the 

model and transforms the rainfall and potential evaporation input to river flow. In order to improve 

model performance, current and past measured values of flow are used to continuously update the 

value of modelled flow. Two updating methods are used in PDM: state correction and error 

prediction. State correction is suitable for smaller catchments while error prediction may be better 

for larger catchments. For some cases state correction may be preferred as it needs only two extra 

parameters and automatic optimisation can calculate them. 

 

 

Objtyp 

(this is entry in input file) 

Description When to use this type of 

objective function 

21 
(or 221 for daily flows) 

Root mean square error(RMSE)     

                   √ 𝑛−1  ∑ 𝑒𝑖
2   

where  𝑒𝑖 =  𝑄𝑖 −  𝑞𝑖 
 

Recommended                         
Has the advantage of giving 
reasonable weight to errors in 
high flows compared to errors in 
lower flows .provides an error 
measure in the units of river flow 
(or level). 

22  
(or 212 for daily flows) 

RMSE of log(base e) error  

√ 𝑛−1  ∑ 𝑒𝑖
2       where   

𝑒𝑖 =  ln (𝑄𝑖) −  ln (𝑞𝑖) =  ln (𝑄𝑖/𝑞𝑖) 

Good for a special use. 
Use this option if you want to pay 
attention to lower flows. The use 
of logs makes it more sensitive to 
errors in low flows.  

24 
(or 214 fo daily flows) 

RMSE of  error in square roots 
 

√ 𝑛−1  ∑ 𝑒𝑖
2   where  𝑒𝑖 =  √𝑄𝑖 − √𝑞𝑖  

Use this option as an 
intermediate between ordinary 
and logarithmic errors. 

31 
(or 231 for daily flows) 

Mean absolute error 
 
              𝑛−1 ∑ |𝑒𝑖|   
 
 where 𝑒𝑖 =  𝑄𝑖 −  𝑞𝑖 

Good for a special use. 
Compared to those based on 
squared errors, places less 
emphasis on reducing the largest 
errors. Can remove distortion in 
calibration caused by a few large 
errors. Provides an error measure 
in the units of river flow (or level). 

Table 5.2 The most useful objective functions available within the Model Calibration Shell (CEH, 2012) 
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5.6.1 State correction 
 

The term “state” is used to describe a variable of a model which mediates between inputs to the 

model and the model output (Sozollosi-Nagy, 1976). In the PDM model, the main input is rainfall and 

output is basin flow. So state variables are the water content of the probability distributed soil 

storage, the surface and groundwater stores (𝑆1, 𝑆2 𝑎𝑛𝑑 𝑆3) and the flow out of the surface storage 

and flow out of the groundwater storage (𝑞𝑠 𝑎𝑛𝑑 𝑞𝑏). There is always some error between the actual 

(observed) value and the predicted (modelled) value due to for example, errors in measuring the 

observed value and uncertainty of the model. In rainfall runoff models such as the PDM model, the 

error occurs between the model predictions flows 𝑞 and the observed value of runoff 𝑄 as follows: 

                                   𝜀 = 𝑄 − 𝑞 = 𝑄 − (𝑞𝑠 + 𝑞𝑏)                                                                           Eq 5.9 

The procedure of state correction can be applied to minimize this error. The Kalman filter algorithm 

is a formal approach for state correction (Jazwinski, 1972) which provides an optimal adjustment 

scheme for incorporating observations, through a set of linear operations for linear dynamic models 

and an extended form of Kalman filter for nonlinear dynamic models such as the PDM. By 

apportioning the error, 𝜀 between the surface and groundwater stores in proportion to their 

contribution to total flow as follows: 

                                         𝑞𝑏
∗ =  𝑞𝑏 +  𝛼 𝑔𝑏 𝜀                                                                                   Eq 5.10 

                                        𝑞𝑠
∗ =  𝑞𝑠 + (1 −  𝛼) 𝑔𝑠 𝜀                                                                         Eq 5.11                                                                            

where the superscript  ∗ indicates the value after adjustment, the “gain” coefficients, 𝑔𝑏  and 𝑔𝑠  and  

𝛼 is: 

                                       𝛼 =  
𝑞𝑏

𝑞𝑠+𝑞𝑏
                                                                                                  Eq 5.12             

If  𝑔𝑏  and 𝑔𝑠 are equal to one, then the 𝑞𝑏
∗ + 𝑞𝑠

∗ is equal to the observed value flow. Automatic 

optimisation can be applied to get other values (not equal to one) of model parameters 𝑔𝑏 and 𝑔𝑠 to 

find the best fit between state- adjusted predictions and observed flows. So 𝛼 can be defined as: 

                                       𝛼 =  
𝑞𝑏

𝛽1𝑞𝑠+ 𝛽2𝑞𝑏
                                                                                                  Eq 5.13            

 where 𝛽1  and 𝛽2  are parameters to weight the apportionment to the flow components.The 

recommended values for 𝛽1  and 𝛽2 are 10 and 1.1 to apportion more of the error adjustment to the 



91 
 

surface store. An adjustment to the probability distributed soil moisture may also be made, either of 

the proportional form: 

                                          𝑆1
∗ =  𝑆1 +  𝛼 𝑔𝑔 𝜀                                                                                         Eq 5.14 

or, the direct form of gain with  𝛼   equal to unity.                                                          

5.6.2 Error prediction 
 

Error prediction is an alternative method in PDM for forecast updating in real-time. Let 𝑞𝑡+ℓ be a 

predicted value of the observed flow 𝑄𝑡+ℓ at time 𝑡 + ℓ obtained by running PDM in simulation 

mode, which transform rainfall into flow. The error 𝜂𝑡+ℓ associated with this simulation mode 

forecast is defined as: 

                                                  𝑄𝑡+ℓ =  𝑞𝑡+ℓ + 𝜂𝑡+ℓ                                                                  Eq 5.15 

Let 𝜂𝑡+ℓ|𝑡  (the suffix notation  𝑡 + ℓ|𝑡 should be read as a forecast at time 𝑡 + ℓ  given information 

up to time 𝑡) denote a prediction of the simulation mode error  𝜂𝑡+ℓ , ℓ steps ahead  from a 

forecast origin at time 𝑡 using an error predictor. Then 𝑞𝑡+ℓ|𝑡 a real-time forecast made ℓ steps 

ahead from a forecast origin at time 𝑡 is given by: 

                                                       𝑞𝑡+ℓ|𝑡 =  𝑞𝑡+ℓ + 𝜂𝑡+ℓ|𝑡                                                   Eq 5.16 

and the real-time forecast error is given by:    

                                                  𝑎𝑡+ℓ|𝑡 =  𝑄𝑡+ℓ − 𝑞𝑡+ℓ|𝑡                                                                Eq 5.17 

which is smaller than the simulation-mode forecast error (Eq 5.15 and Eq 5.16). 

An autoregressive (AR) model and autoregressive-moving average (ARMA) model can be used for 

error prediction.  In an AR model, the future value of a variable is assumed to be a linear 

combination of p past observations and a random error with a constant term so the simulated mode 

error at time t can be mathematically expressed as: 

                  𝜂𝑡 =  − 𝜙1𝜂𝑡−1 −  𝜙2𝜂𝑡−2 − ⋯ −   𝜙𝑧𝜂𝑡−𝑝 +  𝑎𝑡                                        Eq 5.18    

where 𝑎𝑡is the residual error (uncorrelated) and { 𝜙𝑖 ∶ 𝑖 = 1, ,2 , … . , 𝑝} are model parameters and 

the number of parameters p is known as the order of the model (Agrawal, 2013). A moving average 

(MA) model uses the past errors as the explanatory variables so the MA model can be expressed as: 
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                 𝜂𝑡 =   𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ −   𝜃𝑞𝑎𝑡−𝑞 +  𝑎𝑡                                               Eq 5.19 

where 𝑎𝑡is the residual error (uncorrelated) and { 𝜃𝑖 ∶ 𝑖 = 1, ,2 , … . , 𝑞} are model parameters, and 

the number of parameters q is the order of the model.  An ARMA model is a combination of AR and 

MA models, which can represented as: 

𝜂𝑡 = − 𝜙1𝜂𝑡−1 −  𝜙2𝜂𝑡−2 − ⋯ −   𝜙𝑝𝜂𝑡−𝑝 +   𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ −   𝜃𝑞𝑎𝑡−𝑞 + 𝑎𝑡 Eq 5.20          

The ARMA model may be used to give the following error predictor:   

   𝜂𝑡+ℓ|𝑡 = − 𝜙1𝜂𝑡+ℓ−1|𝑡   −  𝜙2𝜂𝑡+ℓ−2|𝑡 − ⋯ −   𝜙𝑝𝜂𝑡+ℓ−𝑝|𝑡                                       Eq 5.21 

                    +  𝜃1𝑎𝑡+ℓ−1|𝑡 −  𝜃2𝑎𝑡+ℓ−2|𝑡 − ⋯ −   𝜃𝑞𝑎𝑡+ℓ−𝑞|𝑡                                             ℓ = 1,2, … 

where  

𝑎𝑡+ℓ−𝑖|𝑡 =  {
0                         ℓ − 𝑖 > 0   

𝑎𝑡+ℓ−𝑖                       ℓ − 𝑖 ≤ 0           
                                                          Eq 5.22 

and 𝑎𝑡+ℓ−𝑖  is the one-step ahead predictor error: 

𝑎𝑡+ℓ−𝑖   =  𝑎𝑡+ℓ−𝑖|𝑡+ℓ−𝑖−1  = 𝜂𝑡+ℓ−1 −  𝜂𝑡+ℓ−𝑖|𝑡+ℓ−𝑖−1   

                                                 = 𝑄𝑡+ℓ−𝑖 −  𝑞𝑡+ℓ−𝑖|𝑡+ℓ−𝑖−1                                           Eq 5.23 

and           = 𝜂𝑡+ℓ−𝑖|𝑡 =  𝜂𝑡+ℓ−𝑖 =   𝑄𝑡+ℓ−𝑖 − 𝑞𝑡+ℓ−𝑖       for   ℓ − 𝑖 ≤ 0                 Eq 5.24 

Eq 5.21 can be used recursively to calculate the error prediction  𝜂𝑡+1|𝑡 , 𝜂𝑡+2|𝑡 , … ,  𝜂𝑡+ℓ|𝑡 from 

available values of 𝑎𝑡  ,  𝑎𝑡−1 , … and  𝜂𝑡 ,  𝜂𝑡−1 , ….         

The PDM model simulation-mode value is 𝑞𝑡+ℓ. The error prediction 𝜂𝑡+ℓ|𝑡 is obtained by Eq 5.21. 

Then the real-time forecast 𝑞𝑡+ℓ|𝑡 is calculated by Eq 5.16. 

All of the above can be studied in more detail in the PDM manual and in the Moore’s papers.       

                                                                    

5.7  Model Calibration  
 

The PDM model is normally run within the Model Calibration Shell environment and calibrated using 

interactive menus of Tscal-monitor (Tscal for Time-series Calibration). We need to provide two files 

to run and calibrate the model. 

 Model input file (file extension is .inp e.g test.inp) 
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 File-1 Data Interface file (file extension is .fli e.g test.fli) 

and Model data (e.g River flow data, rain gauge data,etc). Figure 5.9 illustrates the PDM model 

configuration and data requirements. For simplicity the model input files and File-1 Data Interface 

files are referred to by *.inp and *.fli respectively. 

5.7.1 Input file 

The input file contains model configuration information and event dates. The parameters and 

structure options that required to run the standard PDM model are summarised in Table 5.3, with 

suggested values for these parameters. The model parameters including the model specification 

variables and details of the external hydrometric data sources are defined in an input file (*.inp). The 

input file can be divided into 8 parts as follows: 

1. Description, analysis and output required. 

2. Model parameter list. 

3. Contour plot generation. 

4. Extended groundwater model. 

5. Data source selection and model structure. 

6. Event selection. 

7. Error setting. 

8. Forecast settings. 
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Figure 5.9 PDM model configuration and data requirement (CEH, 2012) 
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Param
-eter 

Referred 
to input 
file as  

Unit Description  Function Suggested 
values 

     f Rainfac none Rainfall factor Controls runoff volume 1 

𝝉𝒅 Tdly h Time delay Shifts hydrograph 
vertically along flow axis 

0 

Probability distributed store 
𝑪𝒎𝒊𝒏 Cmax mm Minimum store capacity Affect time of onset of 

runoff and rate of 
wetting up, but also 
feeds back to 
evaporation and 
recharge rates 

0 

𝑪𝒎𝒂𝒙 Cmin mm Maximum store capacity  75 

    b B none Exponent of Pareto distribution 
controlling spatial variability of store 
capacity 

  

Evaporation function 
𝒃𝒆 Be none Exponent in actual evaporation 

function 
Affect variation between 
seasons or years 

2.5 

Recharge function 1: standard 
𝒌𝒈 Kg,sigg ℎ𝑚𝑚𝑏𝑔−1 Groundwater recharge time constant Controls rate of aquifer 

recharge 
105 

𝒃𝒈 Bg none Exponent of recharge function Increase to magnify 
sensitivity of recharge 
rate to soil dryness 

1.5 

𝑺𝒕 St mm Soil tension storage capacity Increase to prevent 
complete drainage of 
soil moisture store and 
maintain evaporation 

0 

2: Demand-based 
     α  none Groundwater deficit ratio threshold   

     β  none Exponent in groundwater demand 
factor function 

  

𝒒𝒔𝒂𝒕  𝑚𝑚ℎ−1 Maximum rate of recharge   

3: Spliting 
    α  none Runoff factor controlling the split of 

rainfall to surface and groundwater 
storage routing when no soil 
recharge is allowed 

  

Surface routing 
𝒌𝟏 K1,sigs h Time constants of cascade of two 

linear reservoris 
Controls peakiness of 
hydrograph 

1-20 

𝒌𝟐 K2,sigs h   1-20 

Groundwater storage routing 
𝒌𝒃 Kb,sigs ℎ𝑚𝑚𝑚−1

(m ≠3) 
Baseflow time constant Controls length of 

recession 
10-200       
(m = 2) 

     m  none Exponent of baseflow nonlinear 
storage 

  

𝒒𝒄 qconst 𝑚3𝑠−1 Constant flow representing 
returns/abstractions 

Shifts hydrograph 
vertically along flow axis 

0 

Table 5.3 Standards PDM model parameters (CEH, 2012) 
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The description of the model parameter list is shown in Table 5.4. Figure 6.1 shows the input file for 

running PDM for the Duarrigle subcatchment.  

 

Parameter Description 

indx Switch to allow parameter value to vary(1) or not(0) 

xs Model parameter value: initial value for parameter. 

smpstp Initial step size for simplex optimisation. 

smptol Convergence tolerance for simplex optimisation. 

xs name Name for parameter(in single quotes) 

/ Slash terminating list of model parameters. 

 

Adjusting the values of these parameters in the input file can be obtained by trial and error. To 

adjust a parameter, set indx (first column in input file) to 1. The following guidance can help to 

choose these parameters: 

 ‘Objtyp’ indicates the type of objective function for automatic optimisation (Table 5.2)  

 If the PDM with the interactive mode is used ‘maxfun’ is set to 9999, otherwise to number of 

function evaluations during calibration (200 is recommended) 

 Variable analyse indicates the unit of measurement for analysing the time-series and 

generating plots, usually set to two stands for units of 𝑚3𝑠−1 . 

 Table 5.5 indicates the setting of parameters for standard PDM model structure 

(configuration). Alternative model configurations are explained in section 5.7.3. 

 To invoke the multiple rain gauges instead of name of a rain gauge under the title of rainfall, 

use the key word ”MULTIPLE” then specify the number of rain gauges and their names and 

also rain gauge weight contributing area as described in section 5.2.2 and 5.2.3. 

 

 

 

 

 

 

Parameter in input file setting Meaning 

Loss model(indl) 1 Pareto distribution 

Runoff model(indr) 0 Normal PDM 

Surface model(inds) 22 Cascade of 2 linear reservoirs 

Baseflow model(indb) 3 Cubic storage 

Table 5.4  Input file Part2, Model parameter list 

Table 5.5 Setting parameters for standard PDM model configuration (CEH, 2012) 
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5.7.2 File -1 Data interface file  
 

The location and format of the required data such as rain gauge data are specified in *.fli. A variety 

of data formats can be handled in *.fli. In this study ‘text’ file was used. Figure 5.10 shows the format 

of these data. 

 

      

                            

                           

 

 

 

 

 

 

5.7.3 Alternative model configurations 
 

The standard PDM model structure with a Pareto distribution of storage depth, a cubic groundwater 

storage and a cascade of two linear reservoirs for surface storage is usually the appropriate model 

for many catchments (Table 5.5). There are some alternative model configurations which may be 

appropriate for specific catchments. 

1. Alternative distribution function (indl) 

Despite the option of alternative distributions, the Pareto distribution is normally used while 

others are unlikely to be used such as the triangular, power, lognormal and exponential 

distributions.  

 

2. Alternative runoff models (indr) 

Table 5.6 shows the different way of partitioning of rainfall between soil storage, fast and 

slow response paths. If indr = 1 the proportion of runoff entering the surface store is α and 

Year Mo Day Hr Mi Se Value 
2010, 11, 5, 19, 0,  0, 0 

2010, 11, 5, 19, 15, 0, 0.2 

2010, 11, 5, 19, 30, 0, 0.4 

2010, 11, 5, 19, 45, 0, 0 

2010, 11, 5, 20, 0,  0, 0.2 

2010, 11, 5, 20, 15, 0, 0.2 

2010, 11, 5, 20, 30, 0, 0.2 

2010, 11, 5, 20, 45, 0, 1 

2010, 11, 5, 21, 0,  0, 0.2 

2010, 11, 5, 21, 15, 0, 0 

 

                                                Figure 5.10 Example of rain gauge data and river data:  

Format (year, month, day, hour, minute, second and value). Value could be rainfall, river flow or river level 
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the proportion entering the base flow store is (1 −  𝛼). When the runoff splitting option is 

used (indr = 1 or 2) then two additional parameters need to be used. Alpha (𝛼): proportion 

of runoff entering surface flow store, the recommended value is 0.5. Theta (θ): Initial value 

of moisture storage as proportion of maximum storage with recommended value of 0.7 to 1. 

If indr = 2, the proportion entering the base flow store is unrestricted and defined by an 

additional parameter β and not (1 −  𝛼).  

 

3. Surface-flow models (inds) 

Non-identical reservoirs by setting the time constant 𝑘2 to a non-zero positive value can 

provide great flexibility in the shape of the hydrograph. Figure 6.5 and Figure 6.6 (a) and (b) 

show hydrographs when 𝑘2 is non-zero positive value. 

 

4. Base flow models (indb) 

For small upland catchments in cases where the recession in not so sustained quadratic (indb 

= 2) or exponential (indb = 4) storage functions can be useful. 

 

Indr 
(runoff) 

Description Use 

0 Normal PDM,Direct runoff goes to surface flow store, 
groundwater recharge goes to the baseflow store 

Preferred choice for most applications 

1,2 No groundwater recharge. Simple split of direct runoff 
between fast and slow paths. 

May be useful for largely impermeable 
catchments with little baseflow 

3,4 Direct runoff to fast path with demand moderated 
recharge to slow (aquifer path) 

Aquifer-dominated catchments. 

 

5.8 PDM Model Inputs 
 

PDM is generally applied at a 15-minute time-step. The daily time step can be useful when 15-minute 

time step data are only available for the short periods of storm events (CEH, 2012). To run the PDM 

model generally we need three main inputs: 

1)  rainfall data  

2) river flow data  

3) potential evaporation data  

Table 5.6 Alternative runoff models (indr) (CEH, 2012) 
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Rainfall data from at least one rain gauge is required. In this study the rainfall data from 23 rain 

gauges across the Blackwater catchment were used. Analysis and converting these data to a format  

which is suitable for the PDM Model was described in chapter 4.   

River flow data are required to compare the simulation output with the observation to 

calibrate/validate the model. These data are derived from river heights measured by automatic 

stations and transformed into flow data using rating curves. The standard way to run the PDM is 

using river flow data. When only river level data are available then there are two ways in PDM to 

convert the river levels to river flows. If the rating curve is known (preferred option) then it can be 

included in the configuration file (PDM calls this configuration file as an input file). If the rating curve 

is unknown then the river level can be fitted to a rating curve by automatic optimization, in PDM 

start with sensible   initial parameters and then apply automatic optimization. 

There is an alternative way to convert the river level to river flow using a rating curve before running 

the PDM. This method was used to obtain river flow in advance. 

 Required potential evaporation data can be obtained from external sources such as climatological 

observation station making daily observation or can be internally generated by a yearly sine curve 

with average value over the year. In this study, the sin curve PE profile over the year with averaging 

1.4 is used. Figure 5.11 illustrates monthly mean potential evaporation from 2016 to 2019 at Cork 

Airport station, which was obtianed from Met Éireann website (monthly data section). Yearly PE is 

516.3 mm and daily average is 1.4 (516.3/ 365 = 1.4). 
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Figure 5.11  Monthly meanPotential Evaporation 2016 to 2019 at Cork Airport 

station 
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Chapter 6     PDM Calibration and 

Validation 
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6.1 Subcatchments of the Munster 

Blackwater 
 

We examine four of the Munster Blackwater subcatchments. These are subcatchments to Duarrigle 

(area 247𝑘𝑚2), to Dromcummer (area 862 𝑘𝑚2), to Mallow Rail BR (area 1168 𝑘𝑚2) and to 

Killavullen (area 1248 𝑘𝑚2). Table 6.1 shows available quality controlled river data in each 

subcatchment.  The river flow data are available for Killavullen. The river flow data were defined by 

applying rating curves to water level recorded at Duarrigle, Dromcummer and Mallow Rail BR. The 

river level data are available for the period 2010 to 2013 in Duarrigle, while river flow/river level data 

for the other three subcatchments are available for the period 2010 to 2018. Rainfall data for all 

subcatchments are available for the period 2010 to 2017. Therefore, the PDM hydrological model is 

run for the last three subcathments of Blackwater catchment (Dromcummer, Mallow Rail BR and 

Killavullen) over the period 2010 to 2017. The Duarrigle subcatchment was omitted for analysis due 

to data unavailability for the period 2013 to 2017. 

 

6.2    Model Calibration 
 

The PDM model was first applied to the Dromcummer subcatchment of area 862.50 𝑘𝑚2 using a 15-

minute time step of river flow data and precipitation from 11 raingauges over the period 2010 to 

2017. The year 2014 was chosen for detailed analysis. 

To represent the PDM functionality the PDM  was run for Dromcummer for 2014, as this year has the 

best data quality for both precipitation and river level/river flow. This was done as a calibration, step 

by step to show both manual and automatic optimisation. Adding or adjusting different parameters 

to the model can help to improve the model simulation (see Appendix A.1 for how to prepare to run 

 15-Minute Rainfall River level/river flow 

Duarrigle 01/01/2010 -22/10/2017 01/01/2010 -26/12/2013 

Dromcummer 01/01/2010 -22/10/2017 01/01/2010 -27/09/2018 

Mallow Rail BR 01/01/2010 -22/10/2017 01/01/2010 -31/08/2018 

Killavullen 01/01/2010 -22/10/2017 01/01/2010 -31/08/2018 

Table 6.1 Available quality controlled river level/river flow data in each subcatchment. 
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the PDM model in more detail). Figure 6.1 illustrates the input file (*.inp) with recommended initial 

parameters. Figure 6.2 shows the modelled river flow generated by running PDM for this input file. 

The modelled flow show peaks that are too high and low flows that are too low. The measure of 

performance indicates the quality of model performance,  𝑅2 = 0.7047, which is good but still not 

sufficient. To improve the model performance, some facts about the area and trial and error of 

parameters adjustment was used. Some of the parameters were manually adjusted and then 

automatic optimisation was applied. PDM provides an automatic optimisation method to improve 

the model accuracy through an iterative procedure from the initial parameters. The performance of 

the optimisation depends on the choice of initial parameters. If the initial parameters are poorly 

adjusted then optimisation might not converge. The combination of manual adjustment of 

parameters with automatic optimisation is the optimum way to adjust the parameters to improve 

the performance of the model. 

The parameter adjustment after a mixture of manual and automatic optimisation is shown in Figure 

6.3, the resulting hydrograph is shown in Figure 6.4 and Figure 6.4(b) is shown a zoom in a particular 

region of the hydrograh.  𝑅2 = 0.9576 indicates sufficient improvement in the model from an initial 

𝑅2 of 0.7047. Table 6.2 illustrates the comparison between these two model runs. 

This process was repeated for Mallow Rail BR with an area of 1168.65 𝑘𝑚2 and using 15 rain gauges. 

The model was also run for Killavullen with an area of 1248.32 𝑘𝑚2 and using 17 rain gauges over 

the year 2014 as a calibration. Figure 6.5 and Figure 6.7 show parameters adjusted after this process 

and the resulting hydrographs are shown in Figure 6.6 and Figure 6.8.   

 

 

 

 

 

 

 

indx        xs            smpstp          smptol       xs name 

   1       1.0000         5.00000E-02     1.00000E-02  'rainfac' 

   1      3.33508E-03     4.00000E-03     8.00000E-04  'cmin' 

   1       43.445        -0.43445         8.00000E-02  'cmax' 

   1      0.16433         1.00000E-02     2.00000E-03  'b' 

   1       88.740        -0.88740         1.00000E-02  'be' 

   1       9.0275         9.02752E-02     1.80550E-02  'k1' 

   1       5.1081        -5.10808E-02     1.02162E-02  'k2' 

   1       45.210         0.45210         8.00000E-02  'kb' 

   1       2166.5         -21.665          3.7997      'kg' 

   1       23.083         0.23083         2.00000E-03  'St' 

   1       2.2647        -2.26472E-02     2.00000E-03  'bg' 

   1      0.74125         7.41246E-03     1.48249E-03  'qconst' 

   1      0.54890        -5.48899E-03     1.09780E-03  'tdly' 

 / 

 

Figure 6.3  Part of the PDM input file for Dromcummer subcatchment after manual 

adjustment and automatic optimisation. See Table 5.4 for parameter descriptions.  
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PDM: BlackWater at Dromcumnr (Munster)                                            
 objtyp  maxfun  konvge    objtol  
  11     1000        4     8.00000     
analys    qmin       qmax         pkmin    pkrge 
   2      0.00      1000.0          8.00    48 
 prtfnf  prtopt   common file name of plot files 
   0       3     'USER_EVPLOT' 
indx     xs    smpstp  smptol    xs name (<= 8 chars) 
  1      1.0     0.01     0.05    'rainfac' 
  1      0        0.2       0.02    'cmin' 
  1      75     1.20      0.8     'cmax' 
  1     2.       0.1        0.05    'b' 
  1     2.5     0.3       0.01    'be' 
  1    8.        0.1        0.02    'k1' 
  1    3.        0.04     0.09     'k2' 
  1    150     0.4       0.08    'kb' 
  1 100000.00   306.0    10.00   'kg' 
  1    0         0.23      0.002    'St' 
  1    1.5      0.013    0.002   'bg' 
  1    0.0      0.01      0.002   'qconst' 
  1    0.0      0.01      0.002   'tdly'  
 / 
PROBABILITY DISTRIBUTED LOSS MODEL 
 Flow    Rainfall   Climate-station   Daily Rain 
'Drom_flow_10_17'  'MULTIPLE'  'sin curve    1.40000'  'NULL' 
loss  runoff  surface  base  tdly    i_sdp  nsdr  sqmodel  oap 
   1      0     22      3    -13      0      0    'NONE'  'FLOW' 
Multiple gauges (number) 
  11 
'BMET_80711'  'BMET_80712'  'BMET_80716'  'BMET_80713'  'BMET_80705'  'BMET_80704'  'BMET_80717'  
'BMET_80714'  'BMET_80710'  'BMET_80720'  'BMET_80708' 
 Number rain zones and gauge weights 
   1 
 0.063 0.096 0.102 0.064 0.095 0.121 0.097 0.078 0.166 0.026 
 0.092 
Catchment area (km**2) 
862.5 
Event Begin       Event End       Noi     End 15min Rain 
'00:00  01 Jan 2014'  '23:45 29 12 2014'    /      
/ 
error parameters:  0(SIM) /,  or  1(UPD) upd miter gaintyp,  or  2(ARMA) p q 
0 / 
forecast mode:  0 = no forecast,  1 = fixed origin,  2 = fixed lead-time 
0 /  
forecast times ( 1 read-statement per event) 
/ 
prtflg 
-1 

 

Figure 6.1 PDM input file for Dromcummer subcatchment with recommended initial values. 

See Table 5.3 and PDM User Manual for definition of model parameters 
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 𝑅2 Rainfall 

(mm) 

Computed 

baseflow  

(mm) 

Observed 

flow  

(mm) 

Computed 

flow  

(mm) 

Potential 

evaporation 

(mm) 

Actual  

evaporation 

(mm) 

Net 

rainfall 

(mm) 

Default 

initialisation 

0.704 1399.35 8.52 988.37 1044.94 511.00 361.87 1037 

Manual and 

optimization 

0.957 1399.35 513.52 988.37 1001.87 511.00 439.71 959.64 

PDM: BlackWater at Mallow Rail BR(Munster)                                            

 objtyp  maxfun  konvge    objtol  

  11     1000        4     8.00000     

analys    qmin       qmax         pkmin    pkrge 

   2      0.00      1000.0          8.00    48 

 prtfnf  prtopt   common file name of plot files 

   0       3     'USER_EVPLOT' 

indx  xs      smpstp       smptol       xs name 

1  1.0000    5.00000E-02   1.00000E-02  'rainfac' 

1  1.2281   -1.89606E-02   1.11309E-03  'cmin' 

1  59.209    0.59209       8.00000E-02  'cmax' 

1  0.19672  -1.96723E-03   3.64016E-04  'b' 

1  386.79    3.8679        1.00000E-02  'be' 

1  9.1712   -9.17123E-02   9.37700E-03  'k1' 

1  5.9750    6.28698E-02   1.25740E-02  'k2' 

1  86.496   -0.86496       7.19672E-02  'kb' 

1  150.28    1.5028        0.29627      'kg' 

1  39.481   -0.39481       2.00000E-03  'St' 

1  1.5664    1.56636E-02   2.00000E-03  'bg' 

1  7.9126   -7.91259E-02   1.65727E-03  'qconst' 

1  3.5011    3.50114E-02   2.00000E-03  'tdly'    

/ 

PROBABILITY DISTRIBUTED LOSS MODEL 

 Flow    Rainfall   Climate-station   Daily Rain 

'Mall_flow_10_17' 'MULTIPLE' 'sin curve 1.40000'  'NULL' 

loss  runoff  surface  base  tdly    i_sdp  nsdr  sqmodel  oap 

   1      0     22      3    -13      0      0    'NONE'  'FLOW' 

Multiple gauges (number) 

  15 

'BMET_80711' 'BMET_80712'  'BMET_80716'  'BMET_80713'  'BMET_80705' 

'BMET_80704' 'BMET_80717'  'BMET_80714'  'BMET_80710'  'BMET_80720'  

'BMET_80708' 'BMET_80718'  'BMET_80702'  'BMET_80701'  'BMET_80715' 

 Number rain zones and gauge weights 

   1 

0.0468  0.072  0.0765  0.0471  0.0699  0.0632  0.0692  0.0587  0.1244  

0.06   0.0682  0.0863  0.0657  0.03    0.062  

 Catchment area (km**2) 

1168.65 

Event Begin       Event End       Noi     End 15min Rain 

'00:00  01 Jan 2014'  '23:45 29 Dec 2014'    /      

/ 

 

Figure 6.5   PDM input file for Mallow Rail BR subcatchment after manual and automatic optimisation  

Table 6.2 Summary of PDM Model outputs for Dromcummer for the full year of 2014 before and 

after manual and automatic optimisation. Note the significant improvement of the optimisation. 
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PDM: BlackWater at Killavullen(Munster)                                            

 objtyp  maxfun  konvge    objtol  

  11     1000        4     8.00000     

analys    qmin       qmax         pkmin    pkrge 

   2      0.00      1000.0          8.00    48 

 prtfnf  prtopt   common file name of plot files 

   0       3     'USER_EVPLOT'  

indx xs     smpstp        smptol       xs name 

1  1.0000   5.00000E-02  1.00000E-02  'rainfac' 

1  0.54017  2.97896E-02  1.11309E-03  'cmin' 

1  73.682  -0.73682      8.00000E-02  'cmax' 

1  0.22553  3.24543E-03  3.64016E-04  'b' 

1  719.20  -7.1920       1.00000E-02  'be' 

1  18.148   0.18148      9.37700E-03  'k1' 

1  5.4563  -5.45631E-02  1.09126E-02  'k2' 

1  126.24   1.2624       7.19672E-02  'kb' 

1  273.08  -4.0969       0.29627      'kg' 

1  48.322   0.48322      2.00000E-03  'St' 

1  1.6378  -1.63779E-02  2.00000E-03  'bg' 

1  4.7218   4.72178E-02  1.65727E-03  'qconst' 

1  3.3467  -3.34669E-02  2.00000E-03  'tdly' 

 / 

PROBABILITY DISTRIBUTED LOSS MODEL 

 Flow    Rainfall   Climate-station   Daily Rain 

'kil_flow_1'  'MULTIPLE'  'sin curve    1.40000'  'NULL' 

loss  runoff  surface  base  tdly    i_sdp  nsdr  sqmodel  oap 

   1      0     22      3    -13      0      0    'NONE'  'FLOW' 

Multiple gauges (number) 

  17 

'BMET_80711'  'BMET_80712'  'BMET_80716'  'BMET_80713'  'BMET_80705'  

'BMET_80704'  'BMET_80717'  'BMET_80714'  'BMET_80710'  'BMET_80720'  

'BMET_80708'  'BMET_80718'  'BMET_80702'  'BMET_80701'  'BMET_80715'  

'BMET_80721'  'BMET_80732' 

 Number rain zones and gauge weights 

   1 

0.0438  0.0674  0.0717  0.0441  0.0654  0.0591  0.0648  0.055   0.1165  

0.0547  0.0638  0.0778  0.0615  0.0281  0.0626  0.0487  0.015   

 Catchment area (km**2) 

1248.32 

Event Begin       Event End       Noi     End 15min Rain 

'00:00  01 Jan 2014'  '23:45 29 Dec 2014'    /      

/ 

 

Figure 6.7   PDM input file for Killavullen subcatchment after manual and automatic optimisation.  
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Table 6.3 shows the summary of the models for Mallow Rail BR and Killavullen. The high values of 𝑅2  

of more than 90% for both model runs indicate the models can account for a high proportion of the 

variability in the observed flows. The value of potential evaporation (PE) is 511 and actual 

evaporation (AE) as computed by the models are 446.25 and 452.85 for Mallow Rail BR and 

Killavullen. These values of AE across Ireland range from about 88 % to 95 % of the potential 

evaporation. The value of observed flow and computed flow for both model runs are similar. This 

confirms that the PDM model with these adjusted parameters can account for about 90% of the 

variability of observed flows. This completes the calibration process. Now we can use PDM with 

these parameters for validation and forecasting. Appendix A shows the performance and summary 

of the results of the PDM model runs for three subcatchments over the period of 2010 to 2017. 

 

 

6.3    Model Validation 
 

6.3.1 Model validation for a year 
 

After calibration, the PDM model (without changing any parameters) was applied for each year 

between 2010 to 2017 on three subcatchments for validation. Table 6.4 shows the summary of the 

performance of each model run for 2015 as validation and Figures 6.9 to Figure 6.11 show the 

resulting hydrograph for each of the three subcatchments for 2015. Apendix A contains the summary 

and hydrograph for the period of 2010 to 2017. These indicate the PDM model runs can account for 

about 90% of the variability of observed flows in different subcatchments over a long period of time 

especially when a high standard of data quality are available, for example in 2015.  

 

 

  

 𝑅2 Rainfall 

(mm) 

Computed 

baseflow   

(mm) 

Observed 

flow  

(mm) 

Computed 

flow  

(mm) 

Potential 

evaporation 

(mm) 

Actual  

evaporation 

(mm) 

Net 

rainfall 

(mm) 

Mallow 

Rail BR 

0.9558 1374.93 738.01 1173.01 1170.85 511 446.25 928.68 

Killavullen 0.9641 1358.19 595.56 1072.15 1059.77 511 452.85 905.33 

Table 6.3 Summary of PDM Model outputs after manual and automatic optimisation in two subcatchment for 2014 
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6.3.2 River Flow Comparison  

 

Comparison between observed river flows at three subcatchments for each year between 2010 to 

2017, Figure 6.12 (a) to (h) indicate the river flow at Dromcummer (area 862 𝑘𝑚2) is less than the 

river flow at Mallow Rail BR (area 1168 𝑘𝑚2) as expected. While river flow at Mallow Rail BR is more 

than river flow at Killavullen (area 1248 𝑘𝑚2) despite that Killavullen has a catchment area 7 % 

greater than Mallow Rail BR.  

The magnitude and duration of the flood depends on the catchment characteristics (see Figure 3.4 

and Figure 3.5) such as catchment area, precipitation, stream slope, soil type, topography, geology 

and land cover, and extent of lakes and peatland within the catchment (Kiely, Leahy, Fenton, & 

Donovan, 2008). The river flows at Killavullen being less than Mallow Rail BR’s may be explained by  

1. Current inaccuracies of either or both rating curves.   

2. By the fact that as the river approaches Mallow Rail BR and Killavullen, there is a wide 

flood plain for flood attenuation. 

3. By high flows underestimated at Killavullen as flow bypasses at the side of the bridge at 

Killavullen and may not be correctly measured.  

4. Also karstic caves and depressions on the floodplain downstream of Mallow and near 

Killavullen may cause additional losses to groundwater when the ground is not saturated 

(Donovan, 2015). 

 

 𝑅2 Rainfall 

(mm) 

Computed 

baseflow  

(mm) 

Observed 

flow  

(mm) 

Computed 

flow  

(mm) 

Potential 

evaporation 

(mm) 

Actual  

Evaporation 

(mm) 

Net 

rainfall 

(mm) 

Dromcummer 0.9213 1525.42 505.90 1061.41 1066.79 511 473.84 1051.58 

Mallow Rail BR 0.8756 1436.90 691.06 1197.20 1141.02 511 486.81 950.09 

Killavullen 0.9224 1413.35 543.62 1074.12 1009.72 511 493.79 919.55 

Table 6.4 Summary of validation of PDM Model for 2015. Note that the observed and computed 

flows are close.  
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A comparison between observed river flow for the three subcatchments for the largest event of each 

year (Figure 6.13 (a) to (d)) indicate the shape of hydrograph in each subcatchment for each event is 

very similar. In Dromcummer the rate of increasing observed river flow during the event to reach the 

peak is slightly similar to the rate of decreasing observed river flow after the event and the 

hydrograph is wide during the peak time. While the shape of hydrographs in Mallow show different 

patterns, there are sometimes two successive flood waves, the first one is smaller than the second 

one. Several tributaries join the Blackwater river in different locations (Figure 3.5), so 

unsynchronised flood waves from these tributaries may cause the two successive waves in the 

hydrograph. The rate of increase of the hydrograph is slightly less than the rate of decrease in 

Mallow.  

The shapes of the observed hydrographs In Killavullen are wide, the rate of increase being less than 

the rate of decrease. River flow is lowest at Dromcummer and highest in Mallow despite Killavullen 

being farthest downstream. Table 6.6 shows each events peak time and peak flow at each 

subcatchment. 

 

 Dromcummer  
(area 862 𝑘𝑚2) 

Mallow Rail BR 
(area 1168 𝑘𝑚2) 

Killavullen 
(area 1248 𝑘𝑚2) 

Event No.  Peak  Time Peak Flow 

𝑚3. 𝑠−1 

Peak  Time Peak Flow 

𝑚3. 𝑠−1 

Peak  Time Peak Flow 

𝑚3. 𝑠−1 
1 2010/01/12 

18:15 
268.96 2010/01/13 

00:30 
504.03 2010/01/13 

03:00 
333.68 

2 2011/11/29 
17:45 

254.24 2011/11/30 
01:15 

388.15 2011/11/30 
05:00 

277.14 

3 2012/08/16 
00:45 

240.34 2012/08/16 
03:30 

291.1 2012/08/16 
06:45 

233.81 

4 2013/12/30 
07:00 

282.32 2013/12/30 
14:30 

463.9 2013/12/30 
17:00 

314.15 

5 2014/02/03 
12:15 

261.64 2014/02/03 
19:30  

367.83 2014/02/03 
23:30 

279.04 

6 2015/12/30 
09:00 

311.6 Unreliable  
data 

Unreliable  
data 

2015/12/30 
15:15 

406.16 

7 2016/01/02 
09:30 

294.03 2016/01/02 
07:45 

524.02 2016/01/02 
10:15 

362.96 

8 2017/10/22 
01:00 

284.54 2017/10/22 
07:00 

336.34 2017/10/22 
11:00 

268.8 

Table 6.6  Comparison of observed  flood events peak time and observed peak flow (𝑚3. 𝑠−1) 

at three subcatchments . Event No.3 shows the peak flow at Killavullen is greater than the 

peak flow at Dromcummer. Note that Figure 6.13 (b) (N0.3) shows the peak flow at 

Dromcummer is wide and the maximum flow occurs at the end of the flood event.  
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Figure 6.13 (a) Comparison of observed river flow in three subcatchments for the largest event in 2010 and 

2011. Note that the hydrograph at Mallow shows the culmination of two flood waves, the flood wave A and 

the second wave B superimposed on flood wave A. 
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Figure 6.13 (b) Comparison of observed river flow in three subcatchments for the largest event in 2012 and 

2013 
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Bad data: 

Consequence 

of same value 
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Figure 6.13 (c) Comparison of observed river flow in three subcatchments for the largest event in 2014 and 2015 

Bad data: 

Consequence 

of same value 
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Figure 6.13 (d) Comparison of observed river flow in three subcatchments for the largest event in 2016 and 2017 

7 

8 
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Table 6.6 and Figure 6.13 (c) (N0.5) show the highest flood event at the three subcatchments in 

2014. The highest peak flow of 261.64  𝑚3. 𝑠−1  occurred on 2014/02/03 at 12:15 at Dromcummer,  

then at 19:30 (7 hours 15 minutes later)  at Mallow Rail BR with 367.83 𝑚3. 𝑠−1  flow and after 

another  four hours (at 23:30)  at Killavullen with 279.03 𝑚3. 𝑠−1  flow. At Dromcummer the river 

flow grew from 73.72 𝑚3. 𝑠−1 to 261.64 𝑚3. 𝑠−1 on 2014/02/02 at 23:45 after approximately 12 

hours that means the growth rate of river flow is 15.66  𝑚3. 𝑠−1. ℎ−1.  While the growth rate of river 

flow at Mallow Rail BR and Killavullen are 12.5 𝑚3. 𝑠−1. ℎ−1  and  6.8 𝑚3. 𝑠−1. ℎ−1 respectively. This 

indicates the river flow grows more rapidly and decreases faster at Dromcummer than at the two 

other subcatchments. This is due to the fact that the gradient of the river is greater upstream (above 

Dromcummer) than the slope at the downstream locations of Mallow and Killavullen. This can be 

examined for more events to find a probable pattern to estimate the time of arrival floods in 

different subcatchments. 

 

6.3.3 Model Validation for an Event 

 

The accuracy and suitability of PDM for long periods (yearly) were examined in section 6.3.1. In this 

section we will study PDM’s use for short period floods events (e.g. a few days) in more detail. There 

were several flood events (observed flow more than 320 𝑚3. 𝑠−1 ) during 2010 to 2017. The largest 

flood event at Mallow Rail BR and the associated events in the two other subcatchments (as the 

largest event in Mallow Rail BR is not necessarily the largest event in the two other subcatchments) 

for each year were selected (see Table 6.5). Comparison between river flows in the three 

subcatchments was made to find the pattern of the peak flows and to select different peak flood 

events. 

 

 

Time Observed River flow (𝑚3. 𝑠−1) 

2010/01/13    00:30 504.03 

2011/11/30    1:15 388.15 

2012/06/08    10:30 369.38 

2013/12/30    14:30  463.9 

2014/02/03    19:30 367.83 

2015/12/30    17:45 518.3 

2016/01/02    07:45 524.02 

2017/10/22    07:00 336.34 

Table 6.5 Mallow Rail BR’s annual maxima river flow in each year during 2010 - 2017 
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6.3.4 Case 1: Event from 3𝑡ℎ Feb 2014 to 5𝑡ℎ Feb 2014 

 

The PDM model was run (with calibration parameters) for the event between 3𝑡ℎFeb 2014 to 5𝑡ℎ 

Feb 2014 in three subcatchments as validation (i.e. no change to the parameters as used in the 

calibration run). To obtain the correct initial states in the start of the event two ways can be applied: 

 Determine the number of time step (Noi) for initialization at the start of an event.  In input  

file (*.inp) after start and ending event’s dates, adding this number. For example:  

 

 

 Consider the whole period of records as a two continues events. The first event starts from 

the beginning of the available record or calibration period to the just a time step before the 

beginning of an intended event and the second event starts from the beginning of intended 

event to the end of intended event. For example: 

 

 

 

Table 6.7 shows the summary of each model run performance. The resulting hydrographs are 

illustrated in Figure 6.14 to Figure 6.16. They indicate the shape of the computed flow in 

Dromcummer is similar to the shape of the observed flow with the observed peak flows seeming to 

be wider and decreasing more rapidly than the modeled flow. The accuracy of the model is 93 %, 

which indicates the estimation of the magnitude of the computed flows, are close to the observed 

flows for most of the time.  

 𝑅2 Rainfall 

(mm) 

Computed 

baseflow  

(mm) 

Observed 

flow  

(mm) 

Computed 

flow  

(mm) 

Potential 

evaporation 

(mm) 

Actual  

evaporation 

(mm) 

Net 

rainfall 

(mm) 

Dromcummer 0.9376 37.04 8.67 30.46 29.34 0.51 0.51 36.53 

Mallow Rail BR 0.8089 35.52 12.70 31.48 29.68 0.51 0.51 35.01 

Killavullen 0.7834 35.97 10.54 25.15 27.15 0.51 0.51 35.46 

Table 6.7 At the three river stations, a summary of validation of the PDM Model for the 

Event from 03/02/2014 to 05/02/2014  

Event Begin       Event End       Noi     End 15min Rain 
'00:00  03 Feb 2014'      '23:45 05 Feb 2014'   2594  /      

 

Event Begin       Event End       Noi     End 15min Rain 
‘00:00  01 Jan 2014'      '23:45 02 Feb 2014'     /   
'00:00  03 Feb 2014'      '23:45 05 Feb 2014'     /      
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Note that observed flows and computed flows are the total flows during the event. The 𝑅2 Efficiency 

is a function of the sum of differences of observed flow and computed flow in each time step. When  

𝑅2 Efficiency is small, it means the computed flow in a specific time is not a good estimation of 

observed flow. So observed flow could be close to computed flow but 𝑅2 Efficiency being small that 

indicates the overall performance of the model is not sufficient (see Figure A.4 (c) in Appendix A). 

The PDM model is sufficient when the 𝑅2 Efficiency is large and observed flow is close to computed 

flow. Actual evaporation is about 90% of Potential evaporation.   

The model performance at Mallow Rail BR is not as good as the model’s performance at 

Dromcummer but is better than the model’s performance at Killavullen. The shape of the computed 

hydrograph is similar to the shape of the observed hydrograph, but does not show the two 

successive peaks. In general, the computed flow is underestimated.  

The model performance at Killavullen is also not as good as the model’s performance at the two 

other subcathments. The growth rate of computed flow is bigger than the growth rate of observed 

flow so the peak value was estimated earlier and the rate of decrease of computed flow is less than 

the rate of decrease of observed flow. In general, the computed flow is overestimated at Killavullen.  

Figure 6.14 to Figure 6.16 show the modelled versus observed highest flood event at the three river 

stations in 2014. The highest modelled peak flow was estimated as 265.035 𝑚3. 𝑠−1 on 2014/02/03 

at 11:15, one hour earlier than the observed peak flow of 261.64 𝑚3. 𝑠−1 in Dromcummer (Table 6.6 

and Table 6.8).  

At Mallow Rail BR the highest modelled peak flow was estimated as 340.862 𝑚3. 𝑠−1at 15:00, four 

hours earlier than the observed peak flow of 367.83 𝑚3. 𝑠−1. Modelled peak flow in Mallow was 

estimated four hours later than the modelled peak flow in Dromcummer. The modelled peak flow in 

Killavullen was estimated one hour thirty minutes later than Mallow at 16:30 with modelled flows of 

280.376 𝑚3. 𝑠−1 by comparison with the observed peak flow of 279.04 𝑚3. 𝑠−1. The highest 

modelled flow estimated well but seven hours earlier than the observed flow in Killavullen.  

At Dromcummer the modelled river flow growth from 74.0 𝑚3. 𝑠−1 to 265.03 𝑚3. 𝑠−1 at 11:15 after 

approximately 11 hours so the growth rate of modelled river flow is 17.66  𝑚3. 𝑠−1. ℎ−1.  While the 

growth rate of modelled river flow at Mallow Rail BR and Killavullen are 20.75 𝑚3. 𝑠−1. ℎ−1 and 

4.01𝑚3. 𝑠−1. ℎ−1.the growth rate of modelled flow slightly different from growth rate of observed 

flows particularly for Mallow which growth rate of modelled flows was estimated 20.7 𝑚3. 𝑠−1. ℎ−1  

while the growth rate of observed flows was 12.5 𝑚3. 𝑠−1. ℎ−1. This indicates the modelled river 

flows grow faster than observed flows. Table 6.8 shows the modelled peak flow time, magnitude  
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and the rising rate and falling rate at three subcatchments indicates that the modelled flow falling 

limb is more than twice as rising limb. Further research might address the possibility of using the 

model to generate wider hydrographs. 

 

 

 

 Time peak  Flow peak 
𝑚3. 𝑠−1 

Rising rate  
𝑚3. 𝑠−1. ℎ−1 

Falling rate 
𝑚3. 𝑠−1. ℎ−1 

Rising limb 
hours 

Falling limb 
hours 

Dromcummer 2014/02/03 
11:15 

265.035 17.36 7.25 11:15 28:30 

Mallow Rail BR 2014/02/03 
15:00 

340.862 20.75 8.14 11:15 27:45 

Killavullen 2014/02/03 
16:30 

280.376 4.015 5.29 12:00 26:30 

Table 6.8  Comparison of modelled  peak time, flow, rising and falling limb  at three river stations.  
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 Chapter 7  Precipitation Streamflow 

Sensitivity Modelling   
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7.1  Precipitation Streamflow Sensitivity 

Modelling 
 

Floods can be the result of several factors with rain being the most important. Generally increasing 

intensive and heavy rain can generate flooding. Trend analysis on the Killavullen subcatchment with 

area 1248 𝑘𝑚2  confirmed that there are strong trends in both temperature and rainfall and also 

showed a significant positive persistent trend in the flows, most of which is attributable to the 

unprecedented large rainfall amounts (Nicholson, 2012). While using global data sets for non-urban 

catchments in different geographical zones shows that for catchments with areas greater than 

1000 𝑘𝑚2, the increase in rainfall from a warming world does not seem to increase the magnitude of 

extreme flood events (Wasko & Sharma, 2017). However for catchments with areas less than 1000 

𝑘𝑚2, the reverse seems to be true (Wasko & Sharma, 2017). This latest study indicates precipitation-

temperature sensitivity is positive while streamflow-temperature sensitivity is negative. That means 

precipitation increases with higher temperature while the streamflow paradoxically decreases with 

higher temperature. This can be explained using the term of “hydrological losses”. Considering the 

fact that all precipitation is not converted to streamflow, some precipitation infiltrates to ground, 

some evaporates and the rest which is less than the total precipitation will generate streamflow. The 

trend analysis was applied in different catchment sizes which indicates the streamflow increases 

with higher temperature for smaller catchments with less precipitation losses (they define small 

catchment with area less than 1000  𝑘𝑚2  and large catchment with area larger than 1000  𝑘𝑚2 ). If 

we consider the Killavullen subcatchment as a small catchment, both studies (Nicholson, 2012 and 

Wasko & Sharma, 2017) represent the same result. 

The PDM Model’s validation in chapter 6 confirms that the PDM model can be used to account for 

the variability of observed flows in the Munster Blackwater in different situations over both long and 

short periods of time especially when a high standard of data quality is available. The next step 

would be to test the PDM model to predict the computed flows under possible future climate change 

conditions. One of these climatic change scenarios is the growth of precipitation as is suggested for 

Ireland (Fealy, Bruyére, & Duffy, 2011; Gleeson, McGrath, & Treanor, 2013). In this chapter, the 

relation between growth of rainfall and flows will be examined. First, the PDM models have been run 

for the year 2014 with the annual precipitation increased linearly by 10%, 15%, 20%, 25% and 30%. 

Comparison of computed flows of these PDM model runs for each subcatchment is illustrated in 

Figure 7.1(a) to 7.1(c). This indicates that there are different patterns of growth of computed flows.  
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Figure 7.2 shows a shorter period of time (between 2014/09/30 to 2014/10/04). There is a small 

percentage increase of computed flow for low flows and there is greater percentage increase of 

computed flow for higher flows. To examine these two patterns, two periods were selected: one 

contains maximum observed flow and the second contains the low observed flows. 

 

 

 

 

 
 

7.1.1  Pattern 1: period containing the largest event (high flow) 

 

The PDM model was run for the case study event in each subcatchment when precipitation was 

increased by 10%, 15%, 20%, 25% and 30%  (presented in section 6.3.1). A comparison of computed 

flows of these PDM model runs for the Dromcummer subcatchment is shown in Figure 7.3. 

Comparison of the ratio of the computed flow when rainfall is increased by 10, 15,20..30 % to 

computed flow with actual rainfall (Figure 7.4) indicates that there is a  strong positive linear 

correlation between increases in computed flows and increases in rainfall when the observed flow is 

large. 

Figure 7.2 Comparison between the computed flows when rainfall increases by 

(10, 15,.. 30 % ) in Dromcummer for period of 31𝑡ℎJan 2014 to 4𝑡ℎ Feb 2014   
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The linear regression models (M1, M2 and M3) for three subcatchments (Dromcummer, Mallow Rail 

BR and Killavulllen) can be written as follows: 

M1: Computed flow growth%   = 1.06 * rainfall growth% + 0.079                                    Eq (7.1) 

M2: Computed flow growth%   = 1.04 * rainfall growth% + 0.013                                    Eq (7.2)   

M3:  Computed flow growth%   = 1.02 * rainfall growth% + 0.09                                      Eq (7.3)  

  

 
 

 

 

                      

                        

Figure 7.3 Comparison between the computed flows when rainfall increases 

by (10, 15,.. 30 % ) in Dromcummer for the period 3𝑡ℎFeb 2014 to 5𝑡ℎ Feb 

2014 (high flow events) 

Figure 7.4 Comparison between the ratio of new flow (computed flow with rainfall increases by 10, 15,.. 

30 % ) to old flow  (computed flows with actual rainfall) for largest flow (3𝑡ℎFeb 2014 to 5𝑡ℎ Feb 2014) 

for three subcatchments. The equation for high flow in Dromcummer is:  

                              Computed flow growth %   = 1.06 * rainfall growth % + 0.079                                    
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Table 7.1 shows the summary of each linear regression model for each subcatchment. P-values are 

very small, less than 0.05 (the significance level) indicating the linear regression model fits the data 

better than the model with no independent variables.  

This means that for every additional 1 % growth in rainfall there is 1.06 % growth in computed flow 

at Dromcummer.  Similarly, increasing rainfall by 10% results is an increase in the flow by 10.6%  or 

increasing the rainfall by 20%  results is a flow increase of 21.2 %. These linear models can be used 

for flow prediction in each subcatchment when flows are high (e.g. after heavy rainfall events). This 

model exprement assumes there is no change in evaporation. However with increasing rainfall (as a 

result of increase in temperature) we expect an increase in evaporation. There may also be an 

increase or a decrease in soil moisture. If soil moisture increases, then it is possible that flows  

increases will be less than the values given below in Table 7.1. 

 

 

 

 

 PDM describe the variation of soil moisture storage capacity at different points of the catchment by 

a probability distribution. PDM introduces the distribution of storage depth over the catchment, 

which ranges from a minimum depth 𝐶𝑚𝑖𝑛 to a maximum depth 𝐶𝑚𝑎𝑥.  So 𝐶𝑚𝑖𝑛 and  𝐶𝑚𝑎𝑥  are two 

parameters to control the soil moisture in PDM.  

Soil tension storage capacity (𝑆𝑡) is another parameter which controls the soil moisture and 

evaporation to prevent complete drainage of soil moisture store and maintain evaporation (Table 

5.3). So in further research by changing these three parameters in PMD input file (*.inp) and keeping 

other parameters unchanged the impact of soil moisture on flow can be examined when rainfall 

increases. 

 

7.1.2  Pattern 2: period containing the smallest event (low flow) 

 
The PDM model was run for the period which contains low observed flow in each subcatchment 

when precipitation increases by 10%, 15%, 20%,  25% and 30%. Comparison of computed flows of 

these PDM model runs in the period of (2014/09/17 to 2014/09/19) for the Dromcummer 

subcatchment (Figure 7.5) indicates the growth of computed flow is not linear when precipitation 

Model Intercept Slope R-square P-value 

M1 for Dromcummer 0.079 1.06 1.00 2.105 ∗ 10−10 

M2 for Mallow 0.13 1.04 1.00 2.472 ∗ 10−9 

M3 for Killavullen 0.09 1.02 1.00 1.861 ∗ 10−9 

Table 7.1 Summary of each linear regression model for each subcatchment. 

M1:  Computed flow growth%   = 1.06 * rainfall growth% + 0.079     

M2: Computed flow growth%   = 1.04 * rainfall growth% + 0.013          

M3:  Computed flow growth%   = 1.02 * rainfall growth% + 0.09                                    
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increases by 10%, 15%, 20%, 25% and 30%. Figure 7.6 illustrates the nonlinear relation between the 

ratio of the computed flow when rainfall increases by 10, 15, 20, 25, 30 % by computed flow with 

actual rainfall and rainfall growth. Table 7.2 shows the computed flow when rainfall increases by 10, 

15,20, 25, 30% . When rainfall increases by 10% computed flow increases only 1.150% ((0.966/0.955) 

*100  -100 ≈ 1.15). For 20% increase of rainfall computed flow increase by around 3.14% 

((0.985/0.955)*100 – 100 ≈ 3.14). While 30% increases of rainfall produce around 12% increase of 

computed flow ( (1.069/0.955)*100 – 100 ≈ 11.93). Further investigation is needed to obtain the 

nonlinear model for each subcatchment. 

  

 

 

Figure 7.5 Comparison between the computed flows when rainfall increases by (10, 15,.. 30 % ) 

in Dromcummer for period of  2014-09-17 to 2014-09-19.(low flow event) 

 

Figure 7.6 Comparison between the ratio of new flow (computed flow with rainfall increases by (10, 15,.. 

30 % ) to old flow ( computed flows with actual rainfall) for lowest flow( 2014-09-17 to 2014-09-19) in  

the Dromcummer subcatchment. 
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7.2   Discussion 

The nonlinear growth of flows when flow is low can be explained as follows: when the flow is low, 

some of the incoming water (rainfall growth) infiltrates to ground until the ground will be saturated 

so the growth of flow is slow. After ground saturation, all incoming water (rainfall growth) will 

produce runoff so in this stage the flow grows very fast. After this stage, pattern 1 occurs, meaning 

rainfall growth will produce runoff so the flows will grow linearly.     

A limitation of these sensitivity analyses is that there is no change in potential/actual 

evapotranspiration for any rainfall increases. As reported in IPCC reports, Ireland is expected to 

undergo temperature increases which will increases AE. However in Ireland, there is little 

evapotranspiration during short term flood events (e.g. one day).  

 

 

  

Rainfall 
Increases 

Event Type: High Flow 
Flows ((𝑚3. 𝑠−1) 

Event Type: low Flow 
Flows ((𝑚3. 𝑠−1) 

0 % 272.692 0.955 

10 301.821 0.966 

15 316.325 0.974 

20 330.792 0.985 

25 345.249 1.008 

30 359.692 1.069 

Table 7.2 High flows and low flows increase when rainfall increases by 10, .. 30% in Dromcummer 
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Chapter 8   Discussion and Conclusions 
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8.1   Discussion 
 
The aim of this research has been to simulate the outflow hydrograph of storm events (rather than 

long-term flows) for the Munster Blackwater catchment. Several hydrological models from four main 

categories: lumped, semi-distributed, fully distributed and artificial neural networks have been 

reviewed to choose a suitable hydrological model for the Munster Blackwater catchment. The PDM 

hydrological lumped model (Moore, 2007) developed at the UK Center for Ecology & Hydrology was 

chosen for this study primarily because it does not require detailed data on the catchment 

topography, land cover and soils. It requires 15-minute rainfall, river flows and potential 

evaporation. With various parameterisations, PDM is then able to produce the riverflow hydrograph 

time series. 

 Precipitation data and river level/ flow data from different sources ( OPW, EPA and Met Éireann) for 

three subcatchments of the Munster Blackwater catchment was examined to obtain the best 

possible input data suitable for PDM.  

Primary analysis of rainfall and river flow data revealed a significant amount of missing values and 

outliers especially in precipitation data from the OPW.  Several gap filling methods were developed 

and applied to reduce the amount of missing data and outliers. A machine learning method, Kmeans 

clustering, was applied to cluster the rain gauges based on their precipitation similarity. Then a gap 

filling method was applied in each cluster to fill the missing values and modify the outliers of each of 

the 23 rain gauges with values from its cluster’s members. This method reduces significantly the 

amount of missing values and outliers when there are more than two members in each cluster and 

also reduces the chance of long sequences of missing values and outliers. A combination of several 

gap filling methods was applied to obtain maximum quality controlled data. There is a potential risk 

in gap filling the long sequences of missing values with their nearest records to create a long 

sequence of the same values in the data, so further examination is required in this case. 

The validation of the calibrated PDM model for three subcatchments (Dromcummer, Mallow Rail BR 

and Killavullen) of the Munster Blackwater catchment for both long (annual) and short (flood event) 

periods of time was examined. PDM produced good results of river flow output during the 

calibration period for the year 2014, particularly when the model’s automatic optimisation was used. 

 

8.1.1  Validation for Long period of time (annually) 
 
Tables A.1 (a) to (c) in Appendix A contain summaries of annual PDM Model runs in three 

subcatchments and Figures A.3 (a) to (c) show the resulting hydrographs.  
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The comparison of these tables and figures can be summarised as follows: 

 The accuracy (𝑅2) for 2015 is greater than 90% in each subcatchment. 

 The worst accuracy is in 2013 for all three subcatchments due to some remaining bad data 

which were not detected by the gap filling and outliers correction methods (high amount of 

rainfall but all less than 15 mm and not sequential, see Figure 4.17). Total computed flows 

during the year are overestimated in all subcatchments. There are a few periods when 

computed flows are highly overestimated, between April and May. At the beginning of Oct 

2013 when computed flow peaks are very high, greater than 300 𝑚3. 𝑠−1 and wide (long 

duration), the observed flows are around 100 𝑚3. 𝑠−1 and narrow (short duration). These 

events need more investigation as it might be due to a timing error in the data. The rest of 

the peak observed flows are underestimated. (See Figures A.3( a) to (c) N0.4 ) 

 The PDM model performance shows better accuracy at Mallow Rail BR and Killavullen, with  

𝑅2 more than 80 %.  

 Overall computed flows per year are overestimated in each year except 2012 and 2015. 

 

  8.1.2  Validation for short period of time (event) 
 

The largest events in each year between 2010 to 2017 at Dromcummer and the associated events in 

two other subcatchments were selected and the PDM model run for each subcatchment to examine 

the behaviour of the event in each consecutive subcatchment. The summary of these model runs is 

shown in Tables A.2 (a) to (c) and Figures A.4 (a) to (c), Appendix A illustrate the resulting 

hydrograph. The following results derive from study of these Figures and Tables: 

 The peak timing is very accurate for all events in all subcatchments except the event of 2017 

when the computed flows predicted reached their peaks earlier than observed flow peaks. 

Observed flows grow smoothly and declines sharply while computed flows behaves vice 

versa. 

 The shapes of computed flow hydrographs for each event at each subcatchment are similar 

(see section 6.3.4, similar to case study 1).  

 The overall performance of the model is worst at Killavulen for each event. 

 In most events the overall performance of the models is best at Mallow Rail BR, the accuracy 

in some cases is greater than 90 %. 

 The best peak estimates are at the Mallow Rail BR ( 𝑅2 = 0.9461 ). 
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 In most cases peak flows will estimated well, or overestimated in Dromcummer and 

Killavullen. 

8.1.3 Conclusion 
 

Preliminary analysis of rainfall and river flow data shows significant amount of missing values and 

outliers especially in precipitation data from the OPW. This justifies the use of several gap-filling 

methods particularly using Machin learning, i.e. Kmeans clustering method to reduce these 

significant amounts of missing and outliers to an acceptable level prior to run the PDM Model. (PDM 

omits the period of missing value in flow data and needs catchment average rainfall time series, 

which can be obtained by Thiessen polygon prior to run the PDM model). 

The validation of the calibrated PDM model for three subcatchments (Dromcummer, Mallow Rail BR 

and Killavullen) of the Munster Blackwater catchment for both long (annual) and short (flood event) 

periods produced good results of river flow output and confirmed that PDM is a suitable hydrological 

model for modelling riverflow in the Munster Blackwater.  

Although the sensitivity analysis was explored just by impact of increasing precipitation on riverflow 

(in absent of other weather features such as temperature) for both long (annual) and short (flood 

event) period. The results show general agreement with studies discussed in section 7.1 (Nicholson, 

2012; Wasko & Sharma, 2017) by considering topography and catchment’s size (the area of three 

Blackwater’s subcatchments are less or around 1000 km).  The results also show the high flows 

(period 03/02/2014 to 05/02/2014, consider the high flow events mostly occurs in winter and spring) 

increased at a little greater percentage than the rainfall and the low flows ( period 17/09/2014 to 

19/09/2014, the low flow events mostly occurs in summer and autumn) increased at a much lower 

rate than the rainfall increases (further research is needed for reduction of rainfall). This confirms 

the previous studies results discussed in section 1.3 (Charlton et al., 2001; Steele-Dunne et al., 2008) 

which predicted that reductions in riverflows are likely for autumn months, accompanied by higher 

flows in winter and spring.  

The following conclusion derive from this study: 

 PDM is a suitable hydrological model for modelling riverflows in the Munster Blackwater. 

 Once calibrated and parameters are optimised by PDM, the streamflow is modelled well. 

  Good simulations were achieved in validation by using the same parameter list as were used 

during calibration.  

 Peak flows and low flows were modelled well (e.g 𝑅2 = 0.9461). 
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 While the peak flow magnitudes were modelled well, the timing of the peaks was not as 

good as expected. This may be due to the fact that PDM produced hydrographs that tended 

to be short duration (narrow) almost bell shaped, while the observed peaks tended to be 

much longer duration (wide). Some observed peaks at Mallow and Killavullen lasted as long 

as 12 hours while PDM modelled peaks tended to be shorter about a few hours.  

 In a sensitivity analysis when rainfall was increased by 10 to 30 %, the high flows increased at 

a little greater percentage than the rainfall. For instance for 10% increase in rainfall, the 

riverflow high peaks increased by 10.6 %. However the low flows increase at a much lower 

rate than the rainfall increases. 

 

8.1.4 Recommendations for Further Research  
 

 The quality of PDM models performance in both long and short periods of time is 

dependent on the data quality of both precipitation and river level/ flows. River level/ 

flow data in particular needs more examination to reduce the long sequences of missing 

values on the Munster Blackwater. 

 Use other PDM models options to improve accuracy of the models: for example PDM 

extension for groundwater catchments. 

 Apply the PDM models for different events including high, medium and low flows to 

examine the accuracy of models in these situations to find out the suitability of PDM 

models for different situations. 

 More study of climatic conditions, examining the PDM models in different events with 

high, medium and low flows when the rainfall increases by 10, 15 , .. % and find the 

relationship between growth of rainfall and flow in different subcatchments to get 

better conclusions and find linear and/or nonlinear models to define this relation which 

can be used for flow prediction.  

 Use PDM to change the soil moisture states. In other words reduce the soil moisture and 

see what is the impact on flood flows. Repeat for increases in soil moisture. 

 Use PDM to examine the relation between growth of potential evaportation and flows 

when potential evaporation increases by 10%, 15%, 20%, 25% and 30%. 
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Validation- 2010 to 2017   
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A.1  Instructions On How To Run PDM Model 
 

After preparing 15-minutes precipitation data and river level/ flow in suitable format for PDM (Figure  

5.10), the standard PDM model with multiple rainfall data is calibrated for each subcatchment as 

follows:  

1. Create a folder for each subcatchment (e.g Drom2010) 
2. Copy all rainfall data and river flow data associated with a subcatchment in the subcatchment’s 

folder 
3. Create the input file (*.inp) (e.g Drom2010.inp) with recommended initial values (e.g Figure 6.1)  
4. Run the PDM model by clicking on c:/CEH Model Calibration and navigate to a folder (e.g 

Drom2010) and select Drom2020.inp  
5. The dummy data interface file (Drom2010.flx) is automatically produced , copy and save it as a 

Drom2010.fli 
6. Open Data interface file (Drom2010.fli) which contains several data blocks, we should complete 

them with the filename of rainfall data and river flow data (Figure A.1)  by adding  
6.1. sfile  rainfall data filename /river flow data filename (e.g  BMET_80720.dat) 
6.2. close  

7. Save and close the file 
8. Run the PDM model again, this time PDM model produces a hydrograph of observed and 

modelled flow in the Model calibration shell. Observed flow is in black, modelled flow is in red 

and base flow is in blue. 
9. For manual parameter adjustment enter ‘W’ and then the number of the parameter you wish to 

modify (this is a trial and error process and some knowledge about catchment can help to select 

suitable value, also the shape of produced hydrograph can help to adjust the parameters). The 

manual adjustment can be applied for parameters with ‘indx’ set to 1 (Figure 6.1). This can be 

applied for as many parameters you wish to modify. 
10. Select ‘X’ from the calibration menu to stop the PDM and create an output file (e.g 

Drom2010.out) and also a copy of input file (Drom2010.inp_rev01), ‘Y’ will stop the model 

without creating the output file. 
11. Examine the output file (water balance section) to find the PDM model’s performance result and 

its accuracy (𝑅2)  
12. If the actual evaporation (AE) is overestimated/underestimated then the value of parameter ‘be’ 

should be decreased/increased.  
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13. Run the model again, and select ‘O’ from the calibration menu to apply automatic  optimisation, 

the parameters with ‘indx’ set to 1 will change automatically in each time step.  
14. Repeated the step 9 to 13 several times to get the best accuracy. 
15. Set the value of ‘indx’ to 0 in input file (Drom2010.inp) to avoid any change of the parameters, 

now the PDM model is ready for validation. 
16. In input file (Drom2010.inp) modify the date of events (it could be a single event or multiple 

events) and run the model again.  
PDM has some useful tools for creating interactive and informative hydrographs. By selecting ‘G’ 

from calibration menu, the graphic submenu is activated, which has several useful options for 

example: 

 Zoom: zoom in a particular part of hydrograph to examine more details. 

 L: display the lower plot contains the rainfall and Soil moisture Deficit (SMD) plots. 

 I: change x-axis scale labelling  

  PDM also produced an output file containing the result of the model in each time step (15 minutes) 

which can be used for more investigation. Figure (A.2) shows a part of this output. This file was used 

in chapter 7 to examine the result of modified climatic condition. 
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NEXT data-series required is for site-id=<Drom_flow_10_17> 
! data-type = river flows 
! time-step =     15 minutes! this is event-data 
! Requirements for event river flows are 
! instantaneous values at date-time given 
NAME not known 
! above should be a descriptive site name, if known 
! Data should cover at least the following period 
! First time-point 24:00 31 DEC 2009  
! Last  time-point 24:00 31 DEC 2010  
! Minumum number of data-points in file    35041 
sfile Drom_flow_10_17.dat 
close 
FIRST 24:00 31 DEC 2009  
LAST  24:00 31 DEC 2010  
DATA     <<Drom_flow_10_17>> 
END      <<Drom_flow_10_17>> 
! --------------------------------------------------------------------------- 
! NEXT data-series required is for site-id=<BMET_80711> 
! data-type = rainfall 
! time-step =     15 minutes! this is event-data 
! Requirements for event rainfall are 
! totals date-labelled by end of interval 
! 
NAME not known 
! above should be a descriptive site name, if known 

! Data should cover at least the following period 
! First time-point 24:00 31 DEC 2009  
! Last  time-point 24:00 31 DEC 2010  
! Minumum number of data-points in file    35041 
sfile BMET_80711.dat 
close 

FIRST 24:00 31 DEC 2009  

LAST  24:00 31 DEC 2010  

DATA     <<BMET_80711>> 

END      <<BMET_80711>> 

 

Figure A.1  Part of PDM data interface file for Dromcummer subcatchment  

 

 

 

 

   time(hrs)  observed   computed      error   Baseflow        SMD   Rainfall  qauxconst 
      0.000    141.750    141.685      0.065     45.967      0.057      0.514      0.847 
      0.250    144.330    141.498      2.832     45.965      0.113      0.277      0.847 
      0.500    146.920    141.352      5.568     45.961      0.000      0.085      0.847 
      0.750    148.230    141.417      6.813     45.961      0.000      0.191      0.847 
      1.000    150.860    141.559      9.301     45.961      0.000      0.375      0.847 
      1.250    152.180    141.678     10.502     45.961      0.000      0.399      0.847 
       
 Figure A.2  Part of PDM output file for Dromcummer subcatchment  
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  A.2  Example of annual runs of PDM for each subcatchment 
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N
o 

Year 𝑅2 Rainfall 

(mm) 

Computed 

baseflow 

(𝑚3. 𝑠−1) 

Observed 

flow 

(𝑚3. 𝑠−1) 

Computed 

flow  

(𝑚3. 𝑠−1) 

Potential 

evaporation 

(mm) 

Actual 

evaporation 

(mm) 

Net 

rainfall 

(mm) 

1 2010 0.5264 1028.13 339.21 364.83 674.51 511 390.79 637.33 

2 2011 0.3104 1429.69 456.19 812.66 976.55 511 465.62 964.08 

3 2012 0.3935 1331.84 474.52 930.79 873.62 511 503.68 828.16 

4 2013 0.3126 1290.21 433.83 822.85 888.66 511 427.19 863.02 

5 2016 0.6600 1489.98 515.60 762.96 1042.40 511 486.81 1003.18 

6 2017 0.6054 966.46 300.42 431.50 566.11 491.31 409.28 557.18 

N
o 

Year 𝑅2 Rainfall 

(mm) 

Computed 

baseflow 

(𝑚3. 𝑠−1) 

Observed 

flow 

(𝑚3. 𝑠−1) 

Computed 

flow  

(𝑚3. 𝑠−1) 

Potential 

evaporation 

(mm) 

Actual 

evaporation 

(mm) 

Net 

rainfall 

(mm) 

1 2010 0.8132 963.67 508.28 670.55 793.12 511 407.40 556.27 

2 2011 0.7916 1270.48 616.58 947.23 1001.34 511 470.15 800.33 

3 2012 0.7123 1293.10 645.95 1108.33 1002.61 511 511 782.10 

4 2013 -0.5814 1443.21 656.47 1016.18 1200.82 511 449.97 993.24 

5 2016 0.8506 1366.93 693.75 981.26 1120.47 511 491.06 875.87 

6 2017 0.8148 938.49 437.54 587.85 666.02 491.20 429.38 509.11 

N
o 

Year 𝑅2 Rainfall 

(mm) 

Computed 

baseflow 

(𝑚3. 𝑠−1) 

Observed 

flow 

(𝑚3. 𝑠−1) 

Computed 

flow  

(𝑚3. 𝑠−1) 

Potential 

evaporation 

(mm) 

Actual 

evaporation 

(mm) 

Net 

rainfall 

(mm) 

1 2010 0.8239 955.02 392.73 619.28 684.17 511 423.14 531.88 

2 2011 0.7354 1300.38 503.64 865.08 929.35 511 475.33 825.05 

3 2012 0.7657 1289.07 533.13 1008.52 916.34 511 511 778.07 

4 2013 -0.8656 1390.56 520.39 880.91 1045.16 511 464.13 926.44 

5 2016 0.8268 1338.26 557.48 918.90 997.69 511 498.45 839.82 

6 2017 0.8173 924.65 339.47 596.30 572.11 491.21 438.91 485.75 

Table A.1 (c) Summary of annual validation Killavulen- 2010, 2011, 2012, 2013, 2016 and 2017 

 

Table A.1 (b)   Summary of annual validation at Mallow Rail BR-  2010, 2011, 2012, 2013, 2016 and 2017 

Table A.1 (a)    Summary of annual validation at Dromcummer- 2010, 2011, 2012, 2013, 2016 and 2017  
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A.2  PDM Event Hydrograph examples 
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N
o 

Year 𝑅2 Rainfall 

(mm) 

Computed 

baseflow 

(𝑚3. 𝑠−1) 

Observed 

flow 

(𝑚3. 𝑠−1) 

Computed 

flow  

(𝑚3. 𝑠−1) 

Potential 

evaporation 

(mm) 

Actual 

evaporation 

(mm) 

Net 

rainfall 

(mm) 

1 2010 0.8878 45.48 2.81 27.88 32.76 0.13 0.13 45.36 

2 2011 0.8870 40.48 4.94 25.73 24.64 0.37 0.37 40.11 

3 2012 0.8228 62.36 6.4 34.99 40.56 7.06 7.06 55.30 

4 2013 0.8332 34.06 8.99 39.48 37.59 0 0 34.06 

5 2015 0.5341 53.51 13.28 55.65 65.35 0 0 53.51 

6 2016 0.4741 66.44 13.41 59.49 65.29 0.01 0.01 59.29 

7 2017 0.2048 25.88 9.02 37.72 32.63 1.17 1.17 24.12 

N
o 

Year 𝑅2 Rainfall 

(mm) 

Computed 

baseflow 

(𝑚3. 𝑠−1) 

Observed 

flow 

(𝑚3. 𝑠−1) 

Computed 

flow  

(𝑚3. 𝑠−1) 

Potential 

evaporation 

(mm) 

Actual 

evaporation 

(mm) 

Net 

rainfall 

(mm) 

1 2010 0.9309 44.03 5.46 37.10 36.46 0.12 0.12 43.91 

2 2011 0.6583 35.96 6.74 28.37 23.09 0.38 0.38 28.37 

3 2012 0.6717 61.81 7.75 33.39 38.82 7.07 7.07 54.74 

4 2013 0.8729 53.91 16.65 47.86 51.25 0 0 53.91 

5 2015 0.9316 52.54 19.04 65.16 62.69 0 0 52.54 

6 2016 0.9461 65.54 19.27 67.79 67.75 0.01 0.01 65.54 

7 2017 0.5177 23.35 13.04 31.79 30.48 1.77 1.77 21.58 

N
o 

Year 𝑅2 Rainfall 

(mm) 

Computed 

baseflow 

(𝑚3. 𝑠−1) 

Observed 

flow 

(𝑚3. 𝑠−1) 

Computed 

flow  

(𝑚3. 𝑠−1) 

Potential 

evaporation 

(mm) 

Actual 

evaporation 

(mm) 

Net 

rainfall 

(mm) 

1 2010 0.7933 44.05 5.49 29.07 35.66 0.12 0.12 43.92 

2 2011 0.7245 34.77 5.91 22.03 19.50 0.37 0.37 34.40 

3 2012 0.2849 60.65 7.40 28.08 36.57 7.07 7.07 53.59 

4 2013 0.4471 53.35 15.34 36.79 46.73 0 0 53.35 

5 2015 0.5422 52.53 15.81 51.50 57.78 0 0 52.53 

6 2016 0.0596 64.64 15.91 51.16 62.55 0.01 0.01 64.64 

7 2017 0.3858 22.77 10.70 27.04 26.87 1.77 1.77 20.99 

Table A.2 (a)   Summary of events validation at Dromcummer- 2010 to 2017  

Table A.2 (b)    Summary of events validation at Mallow Rail BR- 2010 to 2017  

Table A.2 (c)    Summary of events validation at Killavullen- 2010 to 2017  
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Appendix B   Python & R Code  
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B.1 Python Code MERA data using GRIBapi Package:      
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#    Monthly Rainfall 
#    1)  inpu1:  file contain raingauges lat,lon and elevation  
#    2) input : high resolution rainfall data from MERA for each month of 2010 
#    2) output: file contain lat, lon, total monthly rainfall of nearest point to raingues’ location 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
import traceback 
from  gribapi import * 
import pyproj  
import numpy as np 
import pandas as pd 
from Tkinter import Tk 
from tkFileDialog import askopenfilename 
 
Tk().withdraw()                                            # we don't want a full GUI, so keep the root window from appearing 
file_grb = askopenfilename()                     # show an "Open" dialog box and return the path to the selected file 
path = file_grb[:file_grb.find('MERA')]+'MERA/MERA_Month/        '# path for output , all monthly rainfall data 
fout = path + file_grb[file_grb.find('_2010'):file_grb.find('_61')] +'.csv'     # define the name of each output file 
VERBOSE=1 
filename = '/media/sf_Geotopshare/stationLL.csv'           # input file contains raingauges’ lon,lat and elevation  
# define function to read raingaues’ data and find the each raingauge’s nearest point from MERA 
#calculate monthly rainfall of these points 
#write each a file contains raingauge’s nearest point lat, lon and monthly rainfall 
def  monthly_rain(): 
    df_s1 = pd.DataFrame(columns=['seq','rain']) 
    fn = open(filename, 'r') 
    df_station =    pd.read_csv(fn,names= 
                             ['FID','Stn_No_','Station_Na','Catchment','Easting','Northing','Elevation','lon','lat'],header = 0) 
    df_station['nlat'] = 0.0 
    df_station['nlon'] = 0.0 
    df_station['total_rain'] = 0.0 
    f1 = open(file_grb) 
    mcount = grib_count_in_file(f1) 
    gid_list = [grib_new_from_file(f1) for i in range(mcount)] 
    tag = True 
    s = 1  
    for gid in gid_list:  
      for i in range(len(df_station.index)): 
          nearest = grib_find_nearest(gid,float(df_station.lat[i]),float(df_station.lon[i]))[0]  
          if tag: 
             df_station.nlat[i] = nearest.lat 
             df_station.nlon[i] = nearest.lon-360  
          if (s % 3 == 0) : 
               df_station.total_rain[i] += nearest.value 
      tag = not tag   
      s += 1 
    df_station.to_csv(fout,sep =',',ignore_index = True) 
 
monthly_rain() 
 
 
 
 
 
 



209 
 

#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#    Annual Rainfall  
#    1) inputs:  12 files  contain lat, lon, total monthly rainfall of nearest point to each rain gauge’s location  
#    2) output: flie contains lat, lon and total annual rainfall of nearest point to each rain gauge’s location  
#-------------------------------------------------------------------------------------------------------------------------------------------------  
 
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] 
path = '/media/sf_Geotopshare/MERA/MERA_Month/'  # path of monthly data produce by monthly_rain function 

path1 = '/media/sf_Geotopshare/MERA/' 
listfile = os.listdir(path)   # create list of 12 months monthly rainfall data 
fout = path + 'annual_2010.csv' # define output file 
colnames = 
['FID','Stn_No_','Station_Na','Catchment','Easting','Northing','Elevation','lon','lat','nlat','nlon','total_rain'] 
# number of raingues  
stn = ('80701','80702','80703','80704','80705','80706','80707','80708','80709','80710',  
       '80711','80712','80713','80714','80715','80716','80717','80718','80719','80720', 
       '80721','80722','80723','80724','80725','80726','80727','80728','80729','80730', 
       '80731','80732') 
y_pos = np.arange(len(stn))        
tag = True 
m = 0 
i = 0 
mn_rain = np.zeros((12,32)) 
# Read each monthy rainfall data to calculates annual rainfall 
for fn in listfile: 
    df = pd.read_csv(path + fn,names = colnames,header = 0) 
    mn_rain[m,:] = df.total_rain 
    if tag : 
       df_annual = df  
       tag = not tag 
    else :   
      df_annual.total_rain += df.total_rain 
    m += 1   
df_annual.to_csv(fout,sep= ',', ignore_index=True)   
 
 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#    Plots(Bar plot , Box plot)  
#    1) inputs:  12 file monthly rainfall  
#    2) input:  annual rainfall 
 #----------------------------------------------------------------------------------------------------------------------------- -------------------- 
def Bar_MERA():    # plot annual rainfall for each rainggauge’s nearest point  
   opann_rain_10 = genfromtxt(path1 + 'ann_rain_10.csv', delimiter=' ') 
   plt.bar(df_annual.FID,df_annual.total_rain,width = 0.004, align = 'center' ) 
   plt.xticks(y_pos,stn,rotation = 90,fontsize = 12,fontname = 'Calibri') 
   plt.xlabel('Staion Number') 
   plt.ylabel('Rainfall: mm') 
   plt.show() 
Bar_MERA()    
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#   Plot:  Compare Monthly rainfall from MERA with OPW  
#---------------------------------------------------------------------------------------------------------------------------------------------- --- 
def compare_MERA_OPW(): 
   opann_rain_10 = genfromtxt(path1 + 'ann_rain_10.csv', delimiter=' ') 
   print opann_rain_10 
   plt.bar(df_annual.FID,df_annual.total_rain,color = 'g',width = 0.3, align = 'center' ) 
   plt.bar(df_annual.FID +0.3,opann_rain_10,color = 'r',width = 0.3, align = 'center' ) 
   plt.xticks(y_pos,stn,rotation = 90,fontsize = 12,fontname = 'Calibri') 
   plt.xlabel('Staion Number') 
   plt.ylabel('Rainfall: mm') 
   plt.legend(['MERA','OPW']) 
   plt.show() 
#compare_MERA_OPW() 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#   Plot:  Scatter plot of Monthly rainfall from MERA  
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
def scatter_MERA(): 
  for i in range(1,32): 
     plt.scatter(range(12), mn_rain[:,i], i , label="StN='{0}'".format(stn[i])  ) 
  plt.legend(numpoints =1, bbox_to_anchor=(1.02, 0.8),loc = 0, 
  bbox_transform=plt.gcf().transFigure, fontsize = 6)  
  plt.xticks(range(12),months,rotation = 45,fontsize = 8,fontname = 'Calibri')            
  plt.xlabel('Month') 
  plt.ylabel('Rainfall: mm')  
  plt.show() 
#scatter_MERA()   
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#   Plot:  Boxplot of Monthly rainfall from MERA  
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
mn_rain = np.zeros((32,12)) 
for fn in listfile: 
  df = pd.read_csv(path + fn,names = colnames,header = 0) 
  mn_rain[:,m] = df.total_rain 
  m += 1   
     
def Box_MERA(): 
    plt.boxplot(mn_rain) 
    plt.xticks(range(1,13),months,rotation = 45,fontsize = 8,fontname = 'Calibri')            
    plt.xlabel('Month') 
    plt.ylabel('Rainfall: mm')  
    plt.show() 
Box_MERA()     
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B.2 R Code for River level/ River flow data: 
 
#----------------------------------------------------------------------------------------------------------------------- -------------------------- 
#    create a datframe with PDM format contains 15-minute time step  
#    from 2010 to 2017 to fill unrecorded values in river level/river flow data 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
from_opw <- as.POSIXlt("2010/01/01 00:00:00", tz = "GMT") 
to_opw <- as.POSIXlt("2017/12/30 00:00:00", tz = "GMT") 
 
my_data_opw <- data.frame(X1 = seq.POSIXt(from_opw, to_opw , by = "15 mins", format = "%Y/%m/%d 
%H:%M:%S" )) 
my_data_opw <- separate(my_data_opw,"date", c("Date", "Time"), sep = " ") 
my_data_opw <- separate(my_data_opw,"Date", c("Year", "mm", "dd"), sep = "/") 
my_data_opw <- separate(my_data_opw,"Time", c("hh", "mn", "ss"), sep = ":") 
my_data_opw$Year <- as.integer(my_data_opw$Year) 
my_data_opw$mm <- as.integer(my_data_opw$mm) 
my_data_opw$dd <- as.integer(my_data_opw$dd) 
my_data_opw$hh <- as.integer(my_data_opw$hh) 
my_data_opw$mn <- as.integer(my_data_opw$mn) 
my_data-opw$ss <- as.integer(my_data_opw$ss) 
 
nrow(my_data_opw) 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#    function to find missing, unrecorded and outliers of river level data 
#    input filename and thershold of outliers  
#------------------------------------------------------------------------------------------------------------------------------------------------- 
total_row <- nrow(my_data_opw) 
summary_2fn <- function(fn,tr){ 
  gap <- total_row - nrow(fn) 
  missing <- nrow(fn[is.na(fn$V2),]) 
  outlier5 <-  nrow(fn[fn$V2 > tr & !is.na(fn$V2),]) 
  percent <- round((gap + missing + outlier5) * 100 / total_row,2) 
  tprint <- paste(  '  ', gap , '  ', missing ,'   ', outlier5,'   ',percent  ) 
  print (tprint) 
} 
 
summary_2fn(dro_lvl_2010_2017,3) # summary of Dromcummer river levle data outlier less than 3 m 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#    function to find missing, unrecorded and outliers of river flow data 
#    input filename and thershold of outliers  
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
summary_1fn <- function(fn,tr){ 
  gap <- total_row - nrow(fn) 
  missing <- nrow(fn[is.na(fn$flow),]) 
  outlier5 <-  nrow(fn[fn$flow > tr & !is.na(fn$flow),]) 
  percent <- round((gap + missing + outlier5) * 100 / total_row,2) 
  tprint <- paste(  '  ', gap , '  ', missing ,'   ', outlier5,'   ',percent  ) 
  print (tprint) 
} 
 
 
 



212 
 

#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#     convert flow data from OPW to PDM format (for Killavullen)     
#-------------------------------------------------------------------------------------------------------------------------------------------------  
Pdm_flow_format<- function(fn){ 
  # tmp_file <- fn[substr(fn$V1,1,4) == as.character(year),] 
  tmp_file <- fn 
  num_row <- nrow(tmp_file) 
  print(num_row) 
  fn_out_n <- paste("kil_flow_1",".dat",sep = '') 
  fn_out <- data.frame (Date = character(num_row), Time = character(num_row) ,flow = double(num_row) ) 
  tmp_file$X1 <- as.POSIXct(tmp_file$X1) 
  tmp_file$X2 <- as.numeric(tmp_file$X2) 
  #tmp_file$V3 <- as.numeric(tmp_file$V3) 
  fn_out$Date <- format( tmp_file$X1 ,format = "%Y/%m/%d") 
  fn_out$Time <- format(tmp_file$X1 ,format = "%H,%M,%S") 
  fn_out <- separate(fn_out,"Date", c("Year", "mm", "dd"), sep = "/") 
  fn_out <- separate(fn_out,"Time", c("hh", "mn", "ss"), sep = ",") 
  fn_out$flow <- tmp_file$X2 
  fn_out$colz <- 0  
  fn_out$Year <- as.integer(fn_out$Year) 
  fn_out$mm <- as.integer(fn_out$mm) 
  fn_out$dd <- as.integer(fn_out$dd) 
  fn_out$hh <- as.integer(fn_out$hh) 
  fn_out$mn <- as.integer(fn_out$mn) 
  fn_out$ss <- as.integer(fn_out$ss) 
  #fn_out <- fn_out[fn_out$mn == 0 & fn_out$ss == 0,] 
  index <- with(fn_out, order(Year,mm,dd,hh,mn,ss)) 
  flow_sort <- fn_out[index,]  
  write.table(fn_out,fn_out_n,sep = ", ",col.names = FALSE, row.names = FALSE) 
  return(fn_out) 
} 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#       function to fill the gap (missing value) with two nearest record 
#       input:  15-minutes time step data and filename 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
average_gap_filling <- function(mdata,fn){ 
  tmp_fn  <- merge(mdata,fn,by = "X1" , all.x=TRUE) 
  len <- nrow(tmp_fn)-1 
  if (is.na(tmp_fn$X2[1]) & !is.na(tmp_fn$X2[2])) 
    tmp_fn$X2[1] <- tmp_fn$X2[2] 
  for(i in 2:len){ 
    b <- i -1 
    a <- i+1 
    if (is.na(tmp_fn$X2[i]) & !is.na(tmp_fn$X2[b])) { 
      if (!is.na(tmp_fn$X2[a])) 
        tmp_fn$X2[i] <- (tmp_fn$X2[b] + tmp_fn$X2[a]) /2 
      else 
        tmp_fn$X2[i] <- tmp_fn$X2[b] 
      #print (paste(i,tmp_fn$V1[i],tmp_fn$V2[b], tmp_fn$V2[i],tmp_fn$V2[a]))  
    } 
  } 
  if (is.na(tmp_fn$X2[len+1])){ 
    tmp_fn$X2[len+1] <- tmp_fn$X2[len] 
    print (paste(i,tmp_fn$X1[i],tmp_fn$X2[b], tmp_fn$X2[i],tmp_fn$X2[a]))  
  } 
  return(tmp_fn) 
} 
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#      Function to find outliers greater than the thershold tr 
#      and correct them with average of two nearest record 
#      input: filename and thershold   
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
average_outler_filling <- function(fn,tr){ 
  #tmp_fn  <- merge(my_data,fn,by = "V1" , all=TRUE) 
  tmp_fn <- fn 
  len <- nrow(tmp_fn)-1 
  if (tmp_fn$X2[1] > tr & tmp_fn$X2[2] <= tr) 
    tmp_fn$X2[1] <- tmp_fn$X2[2] 
  for(i in 2:len){ 
    b <- i -1 
    a <- i+1 
    if (!is.na(tmp_fn$X2[i])  & !is.na(tmp_fn$X2[b]) ){ 
      if (tmp_fn$X2[i] > tr & tmp_fn$X2[b] <= tr){ 
        if (tmp_fn$X2[a] <= tr) 
          tmp_fn$X2[i] <- (tmp_fn$X2[b] + tmp_fn$X2[a]) /2 
        else 
          tmp_fn$X2[i] <- tmp_fn$X2[b] 
      } 
    } 
  } 
  if (tmp_fn$X2[len+1] > tr & !is.na(tmp_fn$X2[len+1])){ 
    tmp_fn$X2[len+1] <- tmp_fn$X2[len] 
    print (paste(i,tmp_fn$X1[i],tmp_fn$X2[b], tmp_fn$X2[i],tmp_fn$X2[a]))  
  } 
  return(tmp_fn) 
} 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#       function to calculate river flow using rating curve coefficient(a & b) and river level data 
#       input: river level data file and a & b      
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
Pdm_calflow_1coef <- function(fn,a1,b1){ 
  # tmp_file <- fn[substr(fn$V1,1,4) == as.character(year),] 
  tmp_file <- fn 
  num_row <- nrow(tmp_file) 
  print(num_row) 
  fn_out_n <- paste("Drom_flow_1",".dat",sep = '') 
  fn_out <- data.frame (Date = character(num_row), Time = character(num_row) ,flow = double(num_row) ) 
  tmp_file$X1 <- as.POSIXct(tmp_file$X1) 
  tmp_file$X2 <- as.numeric(tmp_file$X2) 
  #tmp_file$V3 <- as.numeric(tmp_file$V3) 
  fn_out$Date <- format( tmp_file$X1 ,format = "%Y/%m/%d") 
  fn_out$Time <- format(tmp_file$X1 ,format = "%H,%M,%S") 
   
  fn_out <- separate(fn_out,"Date", c("Year", "mm", "dd"), sep = "/") 
  fn_out <- separate(fn_out,"Time", c("hh", "mn", "ss"), sep = ",") 
  #fn_out$flow <- round(a1 * (tmp_file$X2 ^ b1 ),2) 
  for (j in 1:nrow(tmp_file)){ 
    if (tmp_file$X2[j] > 0) 
      fn_out$flow[j] <- round(a1 * (tmp_file$X2[j] ^ b1 ),2) 
    else 
      fn_out$flow[j] <- 0 
  } 
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 fn_out$colz <- 0 
   
  fn_out$Year <- as.integer(fn_out$Year) 
  fn_out$mm <- as.integer(fn_out$mm) 
  fn_out$dd <- as.integer(fn_out$dd) 
   
  fn_out$hh <- as.integer(fn_out$hh) 
  fn_out$mn <- as.integer(fn_out$mn) 
  fn_out$ss <- as.integer(fn_out$ss) 
  #fn_out <- fn_out[fn_out$mn == 0 & fn_out$ss == 0,] 
   
  write.table(fn_out,fn_out_n,sep = ", ",col.names = FALSE, row.names = FALSE) 
  return(fn_out) 
} 
 
 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
#       function to find the suitable confident in Duarrigle based of the river level 
#       input: height of river level 
#-------------------------------------------------------------------------------------------------------------------------------------------------  
find_coff <- function(value){ 
  # print(value) 
  range <- c(0,0.201,1.592,2.385) 
  indx <- 3 
  for (i in 2:4){ 
    if (value >= range[i-1] & value < range[i] ) 
      indx <-  i-1 
  } 
  return(indx) 
} 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#       function to calculate river flow using rating curve coefficient(different a & b for Duarrigle) and river level #  
#      data 
#       input: river level data file  
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
Pdm_calflow <- function(fn){ 
  # tmp_file <- fn[substr(fn$V1,1,4) == as.character(year),] 
  tmp_file <- fn 
  num_row <- nrow(tmp_file) 
  print(num_row) 
  # 3 different value for coefficient a & b for Duarrigle 
  a1 <- c(8.857,22.6327,30.9276) 
  b1 <- c(1.25151,1.83451,1.16186) 
  # fn_out_n <- paste("Dur_flow_",as.character(year),".dat",sep = '') 
  fn_out_n <- paste("Dur_flow_nf",".dat",sep = '') 
  fn_out <- data.frame (Date = character(num_row), Time = character(num_row) ,flow = double(num_row) ) 
  tmp_file$V1 <- as.POSIXct(tmp_file$V1) 
  tmp_file$V2 <- as.numeric(tmp_file$V2) 
  tmp_file$V3 <- as.numeric(tmp_file$V3) 
  fn_out$Date <- format( tmp_file$V1 ,format = "%Y/%m/%d") 
  fn_out$Time <- format(tmp_file$V1 ,format = "%H,%M,%S") 
   
  fn_out <- separate(fn_out,"Date", c("Year", "mm", "dd"), sep = "/") 
  fn_out <- separate(fn_out,"Time", c("hh", "mn", "ss"), sep = ",") 



215 
 

  for (j in 1:nrow(tmp_file)){ 
    tmp_lvl <- tmp_file$V2[j] 
    k <- find_coff(tmp_lvl) 
    fn_out$flow[j] <- round(a1[k]* (tmp_lvl ^ b1[k] ),2) 
  } 
  fn_out$colz <- 0 
   
  fn_out$Year <- as.integer(fn_out$Year) 
  fn_out$mm <- as.integer(fn_out$mm) 
  fn_out$dd <- as.integer(fn_out$dd) 
   
  fn_out$hh <- as.integer(fn_out$hh) 
  fn_out$mn <- as.integer(fn_out$mn) 
  fn_out$ss <- as.integer(fn_out$ss) 
  #fn_out <- fn_out[fn_out$mn == 0 & fn_out$ss == 0,] 
   
  write.table(fn_out,fn_out_n,sep = ", ",col.names = FALSE, row.names = FALSE) 
  return(fn_out) 
} 
 
#-------------------------------------------------------------------------------------------------------------------------------------------------  
#    apply gap filling and outliers correction and create PDM format flow data for Killavullen 
#    write the PDM format data in a Kil_flow_1.dat  
#---------------------------------------------------------------------------------------------------------------------------------- --------------- 
fgap_kil_flow_10_17 <- average_gap_filling(my_data_opw,kil_flow_2010_2017) 
foutl_kil_flow_10_17 <- average_outler_filling(fgap_kil_flow_10_17,450) 
kil_flow_10_17 <- subset(foutl_kil_flow_10_17[!duplicated(foutl_kil_flow_10_17$X1),]) 
kil_flow1017 <- Pdm_flow_format(kil_flow_10_17) 
 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
#        flow data for Mallow from river level data  
#        write the PDM format in Mal_flow_10_17.dat 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
fgap_mal_lvl_10_17 <- average_gap_filling(my_data_opw,mal_lvl_2010_2017) 
foutl_mal_lvl_10_17 <- average_outler_filling(fgap_mal_lvl_10_17,4.5) 
 
mal_lvl_10_17 <- subset(foutl_mal_lvl_10_17[!duplicated(foutl_mal_lvl_10_17$X1),]) 
nrow(durv3_lvl_10_13) 
mal_flow1017 <- Pdm_calflow_1coef (mal_lvl_10_17,27.266,1.967) 
index <- with(mal_flow1017, order(Year,mm,dd,hh,mn,ss)) 
flow_sort <- mal_flow1017[index,] 
write.table(flow_sort,'Mal_flow_10_17.dat',sep = ", ",col.names = FALSE, row.names = FALSE) 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#        flow data for DromCummer from river level data  
#        write the PDM format in Drom_flow_10_17.dat 
#---------------------------------------------------------------------------------------------------------------------------- --------------------- 
fgapdr_lvl_10_17 <- average_gap_filling(my_data_opw,dro_lvl_2010_2017) 
foutl_dr_lvl_10_17 <- average_outler_filling(fgapdr_lvl_10_17,3.) 
 
dro_lvl_10_17 <- subset(foutl_dr_lvl_10_17[!duplicated(foutl_dr_lvl_10_17$X1),]) 
nrow(durv3_lvl_10_13) 
dro_flow1017 <- Pdm_calflow_1coef(dro_lvl_10_17,48.419,1.703) 
index <- with(dro_flow1017, order(Year,mm,dd,hh,mn,ss)) 
Dro_flow_sort <- dro_flow1017[index,] 
write.table(Dro_flow_sort,'Drom_flow_10_17.dat',sep = ", ",col.names = FALSE, row.names = FALSE) 
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#        flow data for Duarrigle from river level data  
#        write the PDM format in Dur_flow_10_13.dat 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
fgapd_lvl_10_13 <- average_gap_filling(dur_lvl_2010_2013) 
foutl_d_lvl_10_13 <- average_outler_filling(fgapd_lvl_10_13,3.8) 
 
durv2_lvl_10_13 <- subset(foutl_d_lvl_10_13[!duplicated(foutl_d_lvl_10_13$V1),]) 
nrow(durv3_lvl_10_13) 
dur_flow1013 <- Pdm_calflow(durv2_lvl_10_13) 
index <- with(dur_flow1013, order(Year,mm,dd,hh,mn,ss)) 
flow_sort <- dur_flow1013[index,] 
write.table(flow_sort,'Dur_flow_10_13.dat',sep = ", ",col.names = FALSE, row.names = FALSE) 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
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B.3   R Code for plot River level/ River flow data:   
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#    plot to compare observed river flow at different subcatchment in each year                                                        #    
input: year                                                                                                                                                                               #--
----------------------------------------------------------------------------------------------------------------------------- ------------------ 

pl_flow <- function(year){ 
  nx <- nrow(mal_flow1017[mal_flow1017$Year== year,]) 
  p1 <- ggplot() + 
    #geom_line(data = dur_flow1013[dur_flow1013$Year== year,] , aes(x=1:nx, y = flow, colour= 'Duarrigle')) +  
    geom_line(data = dro_flow1017[dro_flow1017$Year== year,] , aes(x=1:nx, y = flow, colour= 'Dromcummer')) 
+  
    geom_line(data = mal_flow1017[mal_flow1017$Year == year,], aes(x=1:nx, y= flow, colour='Mallow Rail BR')) 
+ 
    geom_line(data = kil_flow1017[kil_flow1017$Year== year,], aes(x=1:nx, y= flow, colour='Killavulen')) + 
    xlab(paste("15-minute time step", year)) + ylab("River Flow- m^3/s") + 
    scale_x_continuous(breaks = c(0,2920,5840,8760,11680,14600,17520,20440,23360,26280,29200,32120),  
                       labels = c('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec') ) + 
    scale_colour_manual("Stations :",  
                        values = c(  "Dromcummer" = "blue", "Mallow Rail BR" = "green", "Killavulen" = "red")) +  
    theme(legend.position = "top") 
   
  return(p1) 
} 
pl_flow(2014) 
 
#----------------------------------------------------------------------------------------------------------------------------------------- -------- 
#   plot time series of river level from 2010 to 2017 at Dromcummer 
#-------------------------------------------------------------------------------------------------------------------------------------------------  
date_l <- c('Jan 2010','Jan 2011','Jan 2012','Jan 2013','Jan 2014','Jan 2015','Jan 2016','Jan 2017') 
break_l <- 364 * 24 * 4 * c(0:7)  
plot_lvl <- ggplot(data = dro_flow1017,aes(x = 1:nrow(dro_flow1017),dro_flow1017$flow)) + 
  geom_bar(sta = "Identity",width = 0.1, color = "gray") 
plot_lvl + xlab("Date") + ylab("River Flow- m^3/s") + 
  scale_x_continuous(breaks = break_l, labels = date_l ) 
 
plot_lvl <- ggplot(data = dro_lvl_10_17,aes(x = 1:nrow(dro_lvl_10_17),dro_lvl_10_17$X2)) + 
  geom_bar(sta = "Identity",width = 0.1, color = "gray") 
plot_lvl + xlab("Date") + ylab("River Level- m") + 
  scale_x_continuous(breaks = break_l, labels = date_l ) 
 
#-------------------------------------------------------------------------------------------------------------------------------------------------  
#     plot to compare  observed flow for an event at 3 subcatchment 
#     input: event start time(year,month, day and hour) and event duration 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
pl_flow_event_r <- function(year,m,d,h,dur){ 
  ind <- which(mal_flow1017$Year == year & mal_flow1017$mm == m & mal_flow1017$dd == d & 
mal_flow1017$hh == h & mal_flow1017$mn == 15) 
  ind_end <- ind + (dur * 24 *4) 
  nx <- ind_end - ind +1 
  print (nx) 
  l24 <- as.Date( paste(mal_flow1017[ind,]$Year,mal_flow1017[ind,]$mm,mal_flow1017[ind,]$dd , sep='-')) 
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  u24 <- 
as.Date(paste(mal_flow1017[ind_end,]$Year,mal_flow1017[ind_end,]$mm,mal_flow1017[ind_end,]$dd, 
sep='-')) 
  date_l <- as.Date(l24: u24,origin = '1970-01-01') 
  print (date_l) 
  ll <- length(date_l) -1 
  break_l <- 100* c(0:ll) 
  print(break_l) 
  p1 <- ggplot() + 
    geom_line(data = dro_flow1017[ind:ind_end,] , aes(x=1:nx, y = flow, colour= 'Dromcummer')) +  
    geom_line(data = mal_flow1017[ind:ind_end,], aes(x=1:nx, y= flow, colour='Mallow Rail BR')) + 
    geom_line(data = kil_flow1017[ind:ind_end,], aes(x=1:nx, y= flow, colour='Killavulen')) + 
    xlab(paste("15-minute time step",l24, 'to',u24)) + ylab("River Flow- m^3/s") + 
    scale_x_continuous(breaks = break_l, labels = paste(date_l,h,':00') ) + 
    scale_colour_manual("Stations :",  
                        values = c(  "Dromcummer" = "blue", "Mallow Rail BR" = "green", "Killavulen" = "red")) +  
    theme(legend.position = "top") 
   
  return(p1) 
} 
pl_flow_event_r(2012,8,15,10,2) 
 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#     two functions to find the largest event in a year or spesific time 
#     input: filename, year or  event starttime and duration 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
flow_event_time <- function(fn,year,m,d,h,dur){ 
  ind <- which(mal_flow1017$Year == year & mal_flow1017$mm == m & mal_flow1017$dd == d & 
mal_flow1017$hh == h & mal_flow1017$mn == 15) 
  ind_end <- ind + (dur * 24 *4) 
  I_temp <- fn[ind:ind_end,] 
  print (I_temp[which.max(I_temp$flow),]) 
} 
 
larg_event <- function(fn,year){ 
  I_temp  <- fn[fn$Year == year,] 
  print (I_temp[which.max (I_temp$flow),]) 
} 
larg_event(dro_flow1017,2012) 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#  Climatic condition growth of rainfall by 10,15,20,0030 % in 2014 
#  import PDM output when rainfall increase by 10,15,.. 30 % for each subcatchment for spesific year e.g 2014 
#  make a list of each subcatchment (e.g afd is a list of Dromcummer PDM output when rainfall increases by %) 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
afd <- list(Dro14_1,Dro14_11, Dro14_15 , Dro14_20,Dro14_25, Dro14_30) 
afm <- list(Mal14_1,Mal14_11, Mal14_15 , Mal14_20,Mal14_25, Mal14_30) 
afk <- list(kil14_1,kil14_11, kil14_15 , kil14_20,kil14_25, kil14_30) 
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
# function to generate an annual plot for comparing ratio of computed flow  
# for different amount of rainfall(10,15,..30%) by computed flow with actual rainfall 
# input: filename(e.g afd,afm,afk) and year 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
plRatio_flow <- function(fn,year){ 
  nx <- nrow(fn[[1]]) 
  p1 <- ggplot() + 
    #geom_line(data = dur_flow1013[dur_flow1013$Year== year,] , aes(x=1:nx, y = flow, colour= 'Duarrigle')) +  
    geom_line(data = fn[[1]] , aes(x=1:nx, y = fn[[2]]$computed/fn[[1]]$computed, colour= '10%')) +  
    geom_line(data = fn[[1]] , aes(x=1:nx, y = fn[[3]]$computed/fn[[1]]$computed, colour= '15%')) +  
    geom_line(data = fn[[1]] , aes(x=1:nx, y = fn[[4]]$computed/fn[[1]]$computed, colour= '20%')) +  
    geom_line(data = fn[[1]] , aes(x=1:nx, y = fn[[5]]$computed/fn[[1]]$computed, colour= '25%')) +  
    geom_line(data = fn[[1]] , aes(x=1:nx, y = fn[[6]]$computed/fn[[1]]$computed, colour= '30%')) +  
    scale_x_continuous(breaks = c(0,2920,5840,8760,11680,14600,17520,20440,23360,26280,29200,32120),  
                       labels = c('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec') ) + 
    xlab(paste("15-minute time step", year)) + ylab("Ratio of new flow by old flow") + 
    scale_colour_manual("increase rainfall by :",  
                        values = c(  "10%" = "blue", "15%" ="red","20%" ="green","25%" ="black" , "30%" ="orange" )) +  
    theme(legend.position = "top") 
   
  return(p1) 
} 
plRatio_flow(afd,2014) 
plRatio_flow(afm,2014) 
plRatio_flow(afk,2014) 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#   calculate number of hours 
#   input: number of month and day  
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
n_day <- c(31 ,28 ,31,30 ,31 ,30,31,31,30,31,30,31) 
n_hours <- function(mn,day){return( (sum(n_day[1:mn]) + day) * 24 )} 
n_hours(12,30) 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#function to generate a plot for comparing computed flow for different amount of rainfall(10,15,..30%) 
# input: filename(e.g afd,afm,afk) and start and end time(hours) 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
 
pl_flow_between <- function(fn,l,u){ 
  fn1 <- fn[[1]][fn[[1]]$time.hrs.>l & fn[[1]]$time.hrs.< u,] 
  nx <- nrow(fn1) 
  l24 <- l/24 +1 
  u24 <- u/24 +1 
  date_l <- as.Date(l24: u24,origin = '2014-01-01') 
  print (date_l) 
  ll <- length(date_l) -1 
  break_l <- 100* c(0:ll) 
  nx <- nrow(fn1) 
  p1 <- ggplot() + 
    #geom_line(data = fn1 , aes(x=1:nx, y = fn1$observed, colour= 'Obs_flow')) +  
    # geom_line(data = fn1 , aes(x=1:nx, y = fn1$computed, colour= 'computed flow for acual rainfal')) +  
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    geom_line(data = fn1 , aes(x=1:nx, y = fn[[2]][fn[[2]]$time.hrs.> l & fn[[2]]$time.hrs.< u,]$computed, colour= 
'10%')) +  
    geom_line(data = fn1 , aes(x=1:nx, y = fn[[3]][fn[[3]]$time.hrs.> l & fn[[3]]$time.hrs.< u,]$computed, colour= 
'15%')) +  
    geom_line(data = fn1 , aes(x=1:nx, y = fn[[4]][fn[[4]]$time.hrs.> l & fn[[4]]$time.hrs.< u,]$computed, colour= 
'20%')) +  
    geom_line(data = fn1 , aes(x=1:nx, y = fn[[5]][fn[[5]]$time.hrs.> l & fn[[5]]$time.hrs.< u,]$computed, colour= 
'25%')) +  
    geom_line(data = fn1 , aes(x=1:nx, y = fn[[6]][fn[[6]]$time.hrs.> l & fn[[6]]$time.hrs.< u,]$computed, colour= 
'30%')) +  
    scale_x_continuous(breaks = break_l, labels = date_l ) + 
    xlab(paste("15-minute time step", 2014)) + ylab(" flow  m^3/s") + 
    scale_colour_manual("increase rainfall by :", values =  
      c("Obs_flow" ="black", 'computed flow for acual rainfal'= "green","10%" = "blue", "15%" ="red","20%" 
="orange" , "25%" ="yellow", "30%" ="purple")) +  
    theme(legend.position = "top") 
  return(p1) 
} 
pl_flow_between(afd,790,830) 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
# function to generate an event plot for camparing ratio of computedflow  
# for different amount of rainfall(10,15,..30%) by computed flow with actual rainfall 
# input: filename(e.g afd,afm,afk) and start and end time(hours) 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
plRatio_flow_between <- function(fn,l,u){ 
  fn1 <- fn[[1]][fn[[1]]$time.hrs.>l & fn[[1]]$time.hrs.< u,] 
  nx <- nrow(fn1) 
  l24 <- l/24 +1 
  u24 <- u/24 +1 
  date_l <- as.Date(l24: u24,origin = '2014-01-01') 
  ll <- length(date_l) -1 
  break_l <- 100* c(0:ll) 
  p1 <- ggplot() + 
    geom_line(data = fn1 , aes(x=1:nx, y = fn[[2]][fn[[2]]$time.hrs.> l & 
   fn[[2]]$time.hrs.< u,]$computed/fn1$computed, colour= '10%')) +  
     geom_line(data = fn1 , aes(x=1:nx, y = fn[[3]][fn[[3]]$time.hrs.> l  
    & fn[[3]]$time.hrs.< u,]$computed/fn1$computed, colour= '15%')) +  
     geom_line(data = fn1 , aes(x=1:nx, y = fn[[4]][fn[[4]]$time.hrs.> l  
    & fn[[4]]$time.hrs.< u,]$computed/fn1$computed, colour= '20%')) +  
    geom_line(data = fn1 , aes(x=1:nx, y = fn[[5]][fn[[5]]$time.hrs.> l  
   & fn[[5]]$time.hrs.< u,]$computed/fn1$computed, colour= '25%')) +  
    geom_line(data = fn1 , aes(x=1:nx, y = fn[[6]][fn[[6]]$time.hrs.> l  
    & fn[[6]]$time.hrs.< u,]$computed/fn1$computed, colour= '30%')) +  
    scale_x_continuous(breaks = break_l, labels = date_l ) + 
    xlab(paste("15-minute time step", 2014)) + ylab("Ratio of newflow / oldflow") + 
    scale_colour_manual("increase rainfall by :",  
                        values = c("10%" = "blue", "15%" ="red", "20%" ="orange" , "25%" ="yellow", "30%" ="purple")) +  
    theme(legend.position = "top") 
   
  return(p1) 
} 
plRatio_flow_between(afd,790,830) 
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#-------------------------------------------------------------------------------------------------------------------------------------------------  
#function to create a list of max or min or sum of computed flow with different rainfall(10,15,...30 %) 
#input: list of PDM output file (afd,afm or afk) and operation(max,min or sum 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
df_sub <- function(afn,f){ 
  max_f <- which.max(afn[[1]]$observed) 
  min_f <- which.min(afn[[1]]$observed) 
  for ( i in 2:6) 
    test_dro[i-1] <- switch(f, 
                            max = 100 *(afn[[i]][max_f,]$computed / afn[[1]][max_f,]$computed ) -100, 
                            sum = 100 * (sum(afn[[i]]$computed)/sum(afn[[1]]$computed)) -100, 
                            min = 100 *(afn[[i]][min_f,]$computed / afn[[1]][min_f,]$computed ) -100 
    ) 
  df <- data.frame(xl,test_dro) 
  return(df) 
}   
mfd <- df_sub(afd,"min") 
mfm <- df_sub(afm,"min") 
mfk <- df_sub(afk,"min") 
 
dfd <- df_sub(afd,"max") 
dfm <- df_sub(afm,"max") 
dfk <- df_sub(afk,"max") 
 
sfd <- df_sub(afd,"sum") 
sfm <- df_sub(afm,"sum") 
sfk <- df_sub(afk,"sum") 
 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
# function to plot the relation between growth of rainfall withgrowth of (max, min or sum)of computed flow 
#input : list of (max,min or sum of computedflow in different subcatchment) and operation type(max,min,sum) 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
pl_fun <- function(fn1,fn2,fn3,type){ 
  type_y <- switch(type,  
                   sum = " (Total of new flow/ Total old flow) %", 
                   max = "Event maximum flow growth %", 
                   min = "Event minimum flow growth %" 
  ) 
  pl <- ggplot() +  
    geom_line(data = fn1, aes(x = xl, y = test_dro,colour= 'Dromcummer' )) + 
    geom_point(data = fn1, aes(x = xl, y = test_dro)) + 
    geom_line(data = fn2, aes(x = xl, y = test_dro , colour = 'Mallow')) + 
    geom_point(data = fn2, aes(x = xl, y = test_dro)) + 
    geom_line(data = fn3, aes(x = xl, y = test_dro , colour = 'Killavulen')) + 
    geom_point(data = fn3, aes(x = xl, y = test_dro)) + 
    xlab ("Rainfall grpwth %") +  ylab (type_y)+xlim(10,30) + 
    scale_colour_manual("Subcatchment  :",  
                        values = c(  "Dromcummer" = "blue", "Mallow" ="red" , "Killavulen" = "green")) +  
    theme(legend.position = "top")   
  return(pl) 
} 
 
pl_fun(dfd,dfm,dfk,"max") 
pl_fun(mfd,mfm,mfk,"min") 
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
# fit the linear model to event maximum flow growth   
# input: filename (e.g dfd) list of maximum computed flow when rain fall growth by 10,...30 % 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
pl_linear_1 <- function(fn1){ 
  type_y <- " function of flow %" 
  linmodel <- lm(test_dro~ xl, data=fn1) 
  print(linmodel) 
  print(summary(linmodel)) 
  pred_fn1 <- data.frame(fn1_pred = predict(linmodel, fn1), xl= fn1$xl) 
  pl <- ggplot() +  
    geom_point(data = fn1, aes(x = xl, y = test_dro, color = 'flow growth')) + 
    geom_line (data = pred_fn1,aes(x = xl, y = fn1_pred)) + 
    xlab ("Rainfall grpwth %") +  ylab (type_y)+xlim(10,30) + 
  return(pl) 
} 
pl_linear(dfd) 
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B.4  R Code rainfall data, Kmeans clustering, gap filling: 
 
setwd("D:/Blackwater15min/")                         # set working directory contains all rainfall data from OPW 
list.filenames <- list.files(pattern=".csv$")       # create a list of  raingauge’s namefiles (32 file from OPW) 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#    function to convert OPW rainfall data to PDM format from start time 
#    input:  filename and start time 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
Pdm_fileformat <- function(fn,start_time){ 
  fn$Date <- format(as.POSIXct(fn$Date,"%d/%m/%Y",tz="") ,format = "%Y/%m/%d") 
  tmp_file <- subset(fn,fn$Date >= start_time)  
  num_row <- nrow(tmp_file) 
  print(num_row) 
  fn_out <- data.frame ( Date = character(num_row),Time =character(num_row) ,Iprec = double(num_row) ) 
  fn_out$Date <- tmp_file$Date 
  fn_out$Time <- as.character(tmp_file$Time) 
  fn_out <- separate(fn_out,"Date", c("Year", "mm", "dd"), sep = "/") 
  fn_out <- separate(fn_out,"Time", c("hh", "mn", "ss"), sep = ":") 
  fn_out$Iprec <- as.numeric(as.character(tmp_file$Value..mm.)) 
  fn_out$colz <- 0 
  fn_out$Year <- as.integer(fn_out$Year) 
  fn_out$mm <- as.integer(fn_out$mm) 
  fn_out$dd <- as.integer(fn_out$dd) 
  fn_out$hh <- as.integer(fn_out$hh) 
  fn_out$mn <- as.integer(fn_out$mn) 
  fn_out$ss <- as.integer(fn_out$ss) 
  return (fn_out) 
} 
 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#   read each rainfall data convert to PDM format by call the above function  
#   input: file name , start and end time (e.g 2010 to 2017) 
#   output: list of PDM rainfall format 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
Read_fun <- function(lfile,start_time){ 
  ldata <-list()  
  for (i in 1:length((list.filenames))) 
  { 
    test_file <-read.csv(file = list.filenames[i],skip = 15)[ ,c('Date', 'Time', 'Value..mm.', 'State.of.value')] 
    ldata[[i]] <- Pdm_fileformat(test_file,i,start_time) 
    rm(test_file) 
  } 
  return(ldata) 
}   
 
list.data <- Read_fun(list.filenames,start_time) 
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#  function to generate the summary of number of missing and outliers of each  #  rain gauges’ data. 
#   this function can be used before and after gap filling  methods  
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
summary_2fn <- function(list_fn,mrain){ 
  for (i in 1:length(list_fn)){ 
    gap <- total_row - nrow(list_fn[[i]]) 
    missing <- nrow(list_fn[[i]][!complete.cases(list_fn[[i]]),]) 
    outlier5 <-  nrow(list_fn[[i]][list_fn[[i]]$Iprec > mrain & complete.cases(list_fn[[i]]),]) 
    percent <- round((gap + missing + outlier5) * 100 / total_row,2) 
    tprint <- paste( i, '  ', gap , '  ', missing ,'   ', outlier5,'   ',percent  ) 
    print (tprint) 
     
  } 
} 
Summary_2fn(list.data)       # summary before gap filling  
summary_2fn(glist.data)    # summary after gap filling  
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
# function to generate summary of missing value in each rain gauge for each year  
#  this function can be applied before and after gap filling     
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
miss_per_year <- function(gdata,stn){ 
  list.year <- c("2010","2011","2012","2013","2014","2015","2016","2017")  
  for (year in list.year){ 
    print(paste(year, nrow(gdata[[stn]][!complete.cases(gdata[[stn]]) & gdata[[stn]]$Year == year  ,]))) 
  } 
} 
 
 
#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
#  function to gap filling between two raingauges and outliers greater than a threshold in this case 15 mm 
# input: 2 rainfall data and threshold 
# ----------------------------------------------------------------------------------------------------------------------------- ------------------- 
fill_gapping <- function (fn1,fn2,tr){ 
  tests <- merge(fn1,fn2,by = c("Year","mm","dd","hh","mn","ss"),all = TRUE) 
  #****** sort testf by date and time ************ 
  index <- with(tests, order(Year,mm,dd,hh,mn,ss)) 
  testf <- tests[index,] 
  testf$Iprec.x[is.na(testf$Iprec.x)] <- testf$Iprec.y[is.na(testf$Iprec.x) ] 
  testf$Iprec.y[is.na(testf$Iprec.y)] <- testf$Iprec.x[is.na(testf$Iprec.y)] 
  testf$Iprec.x[testf$Iprec.x > tr & !is.na(testf$Iprec.x) ] <- testf$Iprec.y[testf$Iprec.x > tr & !is.na(testf$Iprec.x) 
& !is.na(testf$Iprec.y)]  
  testf$Iprec.y[testf$Iprec.y > tr & !is.na(testf$Iprec.y) ] <- testf$Iprec.x[testf$Iprec.y > tr & !is.na(testf$Iprec.y) 
& !is.na(testf$Iprec.x)] 
  fn1$Iprec <- testf$Iprec.x 
  fn1$colz <- 0 
  fn2$Iprec <- testf$Iprec.y 
  fn2$colz <- 0 
  return(list(fn1,fn2)) 
} 
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
# Gap filling between members of a cluster 
#input: list of name of  rainfall  data in a cluster or group 
#input: list of rainfall data in a cluster and thershold 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
group_fill_gaping <- function(Glist,glist.data,tr){ 
  len <-length(Glist) -1 
  for (t in 1: len){ 
    len1 <- length(Glist) - t  
    for (i in 1:len1){ 
      ii <- i+ 1 
      for (j in ii: length(Glist)){ 
        # print(paste('i:', i, 'j :',j,'807',Glist[i],'807',Glist[j])) 
        test1 <- fill_gapping(glist.data[[Glist[i]]],glist.data[[Glist[j]]],tr) 
        glist.data[[Glist[i] ]] <- test1[[1]] 
        glist.data[[Glist[j] ]] <- test1[[2]] 
      } 
    } 
  } 
  return(glist.data) 
} 
 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
#  run group gap filling  after Kmeans clustering  
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
gMnlist <-list( c(1,17,18,27,28), c(2,4,5,13),c(6,7,14,19,22),c(11,12,16),c(15,21,32),c(8,10,20)) 
gMnlist.data <- list.data 
 
for(k in 1:length(gMnlist.data)) 
{ 
  tmp_file <- merge(my_data,gMnlist.data[[k]],by = c("Year","mm","dd","hh","mn","ss") , all=TRUE) 
  index <- with(tmp_file, order(Year,mm,dd,hh,mn,ss))        # sort testf by date and time  
  gMnlist.data[[k]] <- tmp_file[index,] 
} 
for (k in 1:length(gMnlist)) 
{ 
  tr = 20 
  gMnlist.data <- group_fill_gaping(gMnlist[[k]],gMnlist.data,tr)    
} 
 
#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
# kmaeans clustring forall stations except those with high number of missing or outliers  
#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
del_stations <- c("80731","80730","80729", "80725","80709","80724","80703","80723","80726") 
kannualene <- subset(annual_2010[ !(annual_2010$Stn_No_ %in% del_stations ), ]) 
# kmeans with 3 features easting, Northing, elevation  to find the nearest neighbors for each stations 
set.seed(18) 
clene <- kmeans(kannualene[,c(6,7,8)],6,nstart = 15) 
#str(clrain)    create csv file adding cluster column 
kannualene$cluster <- 0 
for (i in 1:10){ 
  print(kannualene$Stn_No_[clene$cluster == i] ) 
  kannualene$cluster[clene$cluster == i] <- i 
} 
setwd("D:/PDMProg/BW_15rainfall/") 
write.table(kannualene,"kannualene.csv",sep = ", ",col.names = FALSE, row.names = FALSE) 
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#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
# Elbow Method for finding the optimal number of clusters 
#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
set.seed(123) 
# Compute and plot wss for k = 2 to k = 15. 
k.max <- 12 
data <- kannual[,c(13)] 
wss <- sapply(1:k.max,  
              function(k){kmeans(data, k, nstart=50,iter.max = 12 )$tot.withinss}) 
wss 
plot(1:k.max, wss, 
     type="b", pch = 19, frame = FALSE,  
     xlab="Number of clusters K", 
     ylab="Total within-clusters sum of squares") 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#  kmeans clustering using monthly rainfall (12 months) 
#----------------------------------------------------------------------------------------------------------------------------------------- -------- 
del_stations <- c("80731","80730","80729", "80725","80709","80724","80703","80723","80726") 
kMn_rain <- subset(Mn_rain[ !(Mn_rain$Stn_No_ %in% del_stations ), ]) 
set.seed(50) 
clMn_rain <- kmeans(kMn_rain[,13:24],6,nstart = 50) 
#create csv outout file adding cluster column  
kMn_rain$cluster <- 0 
for (i in 1:12){ 
  print(kMn_rain$Stn_No_[clMn_rain$cluster == i] ) 
  kMn_rain$cluster[clMn_rain$cluster == i] <- i 
} 
write.table(kMn_rain,"kMn_rain.csv",sep = ", ",col.names = FALSE, row.names = FALSE) 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#  function to plot the Kmeans clustering result 
#------------------------------------------------------------------------------------------------------------------------------------------------- 
kmeans_plot <- function(fn,clname,varname,f){ 
  # y <- colnames(fn)[colnum] 
  ggplot(fn, aes(clname$cluster,varname, group = as.factor(clname$cluster), color =as.factor( 
clname$cluster),label = Stn_No_)) + geom_text(size = 3)+ 
    labs(x = "Cluster", y = paste("Rainfall in",f)) + scale_colour_discrete(name  ="Clusters") 
} 
 
kmeans_plot(kannual,clrain,kannual$total_rain, "year 2010") 
i = 12 
kmeans_plot(kMn_rain,clMn_rain,kMn_rain[,12+i],month.abb[i]) 
   
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#    summary after fill gaping  
#-------------------------------------------------------------------------------------------------------------------------------------------------  
miss_per_year <- function(gdata,stn){ 
  list.year <- c("2010","2011","2012","2013","2014","2015","2016","2017")  
  for (year in list.year){ 
    print(paste(year, nrow(gdata[[stn]][!complete.cases(gdata[[stn]]) & gdata[[stn]]$Year == year  ,]))) 
  } 
} 
miss_per_year(gMnlist.data,7) 
miss_per_year(list.data,7) 
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#  calculate annual rainfall for a given year for each rainguges after gap filling 
# gMNlist.data (list of clean rainfall files from OPW      
# ----------------------------------------------------------------------------------------------------------------------------- -------------------- 
nx <- nrow(gMnlist.data[[1]][gMnlist.data[[1]]$Year== "2010",]) 
ann_rain <- data.frame() 
for (i in 1:32) 
{ 
  for( j in 1:12){ 
    ann_rain[i,j] <- sum(gMnlist.data[[i]][gMnlist.data[[i]]$Year == 2010 & gMnlist.data[[i]]$mm == j ,]$Iprec)  
    if (is.na(ann_rain[i,j])) 
      ann_rain[i,j] <- 0 
  }   
  write.table(ann_rain,"ann_rain_10.csv",sep = ",",col.names = FALSE, row.names = FALSE) 
} 
ann_rain <- data.frame() 
ann_rain <- list() 
for (i in 1:32) 
{ 
  ann_rain[i] <- sum(gMnlist.data[[i]][gMnlist.data[[i]]$Year == 2010 ,]$Iprec)  
  if (is.na(ann_rain[i])) 
    ann_rain[i] <- 0 
  write.table(ann_rain,"ann_rain_10.csv",sep = "\n",col.names = FALSE, row.names = FALSE) 
} 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
# test group fill gaping  
#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
cummulat_plot <- function(cl_n,year){ 
  p1 <- ggplot()  
  nx <- length(gMnlist[[cl_n]]) 
  for (i in gMnlist[[cl_n]]){ 
    p1 <- p1 + geom_line(data = gMnlist.data[[i]][gMnlist.data[[i]]$Year== year,], aes(x=1:nx, 
y=cumsum(Iprec)),size =1.3)  
  } 
  p1 <- p1 + xlab("Time -15 minutes") + ylab("Cumulative rainfall- mm") + 
    ggtitle(paste("Cumulative rainfall- clean data reduce missing value", year))  
  # + scale_colour_manual("Raingauge",  
  #    values = c("1" = "blue", "2" = "green", "3" = "red", "4" = "black","5" = "yellow")) 
  return(p1) 
} 
 
#------------------------------------------------------------------------------------------------------------------------------------------------  
# find sequence of rainfall > 4  
#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
seq_rain <- function(fn,num){ 
  len <- nrow(fn) - num 
  for (start in 1:len ){ 
    end <- start + num -1  
    tests <- fn[start:end,]   
    if (nrow(tests[!is.na(tests$Iprec)&  tests$Iprec > 5, ]) == num ){ 
      print (start) 
    } 
  } 
} 
seq_rain(ave1,4) 
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#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
# change zero rainfall between 2 high amount of rainfall  
#----------------------------------------------------------------------------------------------------------------------------- ------------------- 
midel_rain <- function(fn,tr){ 
  len <- nrow(fn)-1 
  for(i in 2:len){ 
    b <- i -1 
    a <- i+1 
    # print(i) 
    if (!is.na(fn$Iprec[b]) & !is.na(fn$Iprec[a]) & !is.na(fn$Iprec[i]) ) 
      if( fn$Iprec[b] >= tr & fn$Iprec[i] == 0 & fn$Iprec[a] >= tr ){ 
        fn$Iprec[i] <- (fn$Iprec[b] + fn$Iprec[a]) /2 
        print (paste(i,fn$Year[i],fn$mm[i],fn$dd[i], fn$hh[i],fn$mn[i],fn$Iprec[b], fn$Iprec[i],fn$Iprec[a])) 
      }   
  } 
  return(fn) 
} 
 
 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
#  Gap filing with average of 2 nearest record  
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
average_gap_filling <- function(fn){ 
  #tmp_fn  <- merge(my_data,fn,by = "V1" , all=TRUE) 
  tmp_fn <- fn 
  len <- nrow(tmp_fn)-1 
  if (is.na(tmp_fn$Iprec[1]) & !is.na(tmp_fn$Iprec[2])) 
    tmp_fn$Iprec[1] <- tmp_fn$Iprec[2] 
  for(i in 2:len){ 
    b <- i -1 
    a <- i+1 
    # print(i) 
    if (is.na(tmp_fn$Iprec[i]) & !is.na(tmp_fn$Iprec[b])) { 
      if (!is.na(tmp_fn$Iprec[a])) 
        tmp_fn$Iprec[i] <- (tmp_fn$Iprec[b] + tmp_fn$Iprec[a]) /2 
      else 
        tmp_fn$Iprec[i] <- tmp_fn$Iprec[b] 
      #print (paste(i,tmp_fn$V1[i],tmp_fn$V2[b], tmp_fn$V2[i],tmp_fn$V2[a]))  
    } 
  } 
  if (is.na(tmp_fn$Iprec[len+1])){ 
    tmp_fn$Iprec[len+1] <- tmp_fn$Iprec[len] 
  } 
  return(tmp_fn) 
} 
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#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
# Compare monthly rainfall from OPW and MERA (for raingauge 80711) 
#-------------------------------------------------------------------------------------------------------------------------------------------------  
i = 11 
rain_mon <- data_frame('month' = integer(24),'rain' = numeric(24)  ,'type' = character(24) ) 
for (m in 1:12){ 
  rain_mon$month[m] <- m 
  rain_mon$type[m] = 'MERA' 
  rain_mon$rain[m] <- Mn_rain1[i,m+12] 
  rain_mon$month[m+12] <- m 
  rain_mon$type[m+12] = 'OPW' 
  rain_mon$rain[m +12] <- sum(gMnlist.data[[i]][gMnlist.data[[i]]$Year == 2010 & gMnlist.data[[i]]$mm == 
m,]$Iprec) 
} 
 
p1<- ggplot(data = rain_mon, aes(x=month ,y = rain , fill = type, width = 0.8)) + 
  geom_bar(  stat="identity" , position= 'dodge' ) + 
  xlab("Month") + ylab("Monthly rainfall- mm")  + 
  scale_x_continuous (breaks = c(1:12), 
                      labels= c('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec') )  + 
  scale_fill_discrete("Raingauge") + 
  theme(legend.position = "top") 
p1 
 
#--------------------------------------------------------------------------------------------------------------------------- ---------------------- 
#plot times series of raingauge (e.g 80711) in spesific month 
#----------------------------------------------------------------------------------------------------------------------------- -------------------- 
pl_rain <- function(rn,year, mn){ 
  date_l <-  2* c(1:15) 
  break_l <- 2  * 24 * 4 * c(1:15)  
  nx <- nrow(gMnlist.data[[rn]][gMnlist.data[[rn]]$Year== year  & gMnlist.data[[rn]]$mm == mn & 
gMnlist.data[[rn]]$Iprec <= 15,]) 
  p1 <- ggplot() + 
    geom_line(data = gMnlist.data[[rn]][gMnlist.data[[rn]]$Year== year & gMnlist.data[[rn]]$mm == mn & 
gMnlist.data[[rn]]$Iprec <= 15 ,] , aes(x=1:nx, y = Iprec) ) +  
    xlab(paste("15-minute time step Nov", year)) + ylab("Rainfall- mm")  + 
    scale_x_continuous(breaks = break_l,  
                       labels = date_l ) 
  return(p1) 
} 
 
pl_rain(11,2010,11) 
 

 

 

 

 

 

 

 


