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 12 

The biological rationale for universal coverage with insecticide treated nets (ITNs)  13 

Thirteen years ago my colleagues and I outlined a biological rationale for universal coverage 14 
with insecticide treated nets (ITNs)1 that was rapidly adopted as global policy.2 We developed 15 
behaviourally-explicit mathematical models of malaria transmission and control,1 to illustrate 16 
why the personal protection ITNs provide is insufficient in itself, and challenged the global 17 

strategy of selectively targeting them to vulnerable young children and pregnant women.3-6 18 
Instead, we outlined why even imperfect coverage of all age groups, regardless of their 19 

vulnerability to malaria, is essential to achieve community-wide protection of users and non-20 
users alike by killing off vector populations en masse.1 Beyond explanatory models and a rich 21 
evidence base demonstrating benefits for non-users within communities with high usage,7 the 22 

mass effect has even been visualized using data from a large-scale cluster-randomized control 23 

trial8 in an area where the most important local vector subsequently disappeared9: Impacts 24 
extended hundreds of meters across landscapes, with entire communities lacking ITNs 25 
benefiting from nearby communities who received them.8 Subseuqent scale up of ITNs towards 26 

these universal coverage targets has been spectacularly successful, accounting for most of the 27 
1·3 billion fewer malaria cases and 6·8 million fewer malaria-related deaths that occurred 28 
globally in recent years.10,11 In many cases, ITNs or indoor residual spraying (IRS) of 29 

insecticides have even eliminated populations of the most efficient, human-dependent vectors 30 
entirely.12 These extreme examples illustrate the ultimate power of mass effects upon vector 31 

populations, creating scenarios in which personal protection plays no role in preventing malaria 32 
transmission by a vector species because it no longer exists locally. 33 

While personal protection is far more obvious to funders, distributors and recipients of ITN, 34 
providing the primary motivation for uptake and use, it contributes only a minor fraction of the 35 
overall impact achieved (Figure 1).13 The other component of reduced human-vector contact, 36 

specifically reduced exposure of vectors to infectious humans, is even smaller, especially for 37 
the most efficient and important vectors with strong preferences for human blood (Figure 1).13 38 
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 39 

Figure 1. A simulation analysis of how the overall impacts of insecticide-treated nets (ITNs) are broken 40 
down by contributing underlying mechanism.13 41 

As originally envisaged, adoption of the universal coverage targets was motivated by the need 42 
to suppress vector populations by maximizing their exposure to lethal insecticides while 43 

attacking humans.1,13 This inevitably necessitates reaching all age groups rather than just the 44 
young children and pregnant women most physiologically vulnerable to malaria.1 The term 45 
universal coverage was therefore coined to communicate the goal of maximizing coverage 46 
across all sections of the human population, rather than any necessity to protect every single 47 
person with their own net of: 48 

“Most commonly, the insecticide kills malaria vectors when they come into contact with the 49 

ITN. Therefore, by reducing the vector population, ITNs, when used by a majority of the 50 
target population, provide protection for all people in the community, including those who do 51 

not sleep under one themselves.”2 52 

In fact, one way we communicated the importance of mass effects was using modelling 53 

simulations to illustrate how as little as 35% use by the general population could provide 54 
community-wide protection of non-users equivalent to the levels of personal protection 55 
experienced by individual users.1 Of course models are merely mathematically-explicit 56 
educated guesses, but again empirically-observed examples of local vector elimination with 57 
ITNs or IRS12 provide a singular touchstone for testing the rigour of our thinking: while all 58 
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were associated with programmes that achieved high coverage, and actually exceed 59 

expectations based on standard models12, none could claim to have reached every last person 60 
at all times and places.  61 

Insecticide resistance management through universal coverage with next generation ITNs 62 

Unfortunately, the original rationale for universal coverage with ITNs is now commonly 63 
misunderstood. More worryingly, such misconceptions underpin flawed global policies that 64 

may have irreversible consequences for future generations. I specifically worry about the future 65 
of new “next generation” ITNs (NG-ITNs)14 which are now under evaluation15 with 66 
encouraging early results.16 NG-ITNs are treated with two or more complementary insecticides 67 
from different chemical classes, to prevent propagation of individuals carrying resistance traits 68 
against either insecticides by killing them with the other. NG-ITNs have unprecedented 69 

potential for not only delivering immediately improved impact against pyrethroid-resistant 70 
vectors16 but also circumventing, or at least slowing, emergence of new resistance traits in the 71 

future. Evolution of physiological resistance against pyrethroids, until recently considered the 72 
only insecticide class safe enough for ITNs, has already eroded their public health value,14,16,17 73 
threatening a “looming public health catastrophe”.18 Heavily-subsidized ongoing investments 74 
will yield no more than three new insecticide classes for public health in the foreseeable 75 

future.18-20 As explained herein, urgent corrective action is required to reform global policy 76 
regarding where, when and how new insecticides are used.14 Specifically, policy needs to be 77 

fully realigned with the known biological basis of how ITNs work and the immediate need to 78 
deploy them for long term, pre-emptive insecticide resistance management (IRM) before it is 79 
too late. 80 

While pyrethroid-based ITNs co-treated with the synergist piperonyl butoxide (PBO) have 81 
been available for many years (so I will not refer to them here as NG-ITNs), they have been 82 
grossly underutilized because WHO has been too slow and indecisive in recommending them 83 

for programmatic use.14 While they have proven capable of restoring ITN impact over the short 84 
term,17 they are no longer considered a robust tool for pre-emptively slowing emergence of 85 

pyrethroid resistance,21 presumably because these traits are already widespread. However, 86 
much can be learned from the failure to adopt these not-so-new technologies decisively enough 87 

to exploit their full potential.14,15 We cannot afford to repeat the same mistakes with NG-ITNs, 88 
and it is worrying that some current policies regarding PBO-ITNs21,22 appear based on 89 
misconceptions about how ITNs actually work. 90 

Prioritizing ITN lethality over coverage 91 

The most recent position of WHO on adoption of pyrethroid-based ITNs co-treated with PBO 92 

is not only more than a decade overdue, it is also too indecisive14 and misses the most important 93 
corollary of the rationale underpinning universal coverage targets: The immediate 94 
epidemiological benefits of reactive deployment against vector populations that are already 95 

resistant to pyrethoids depends far more upon maximizing vector mortality than upon 96 

maximizing human population coverage (Figure 2). In fact, mortality-induced vector 97 
population suppression is so important that overall impact may be undermined by excito-98 
repellent insecticide formulations that enhance personal protection but deter mosquitoes from 99 

exposing themselves to lethal doses.23-25 It may therefore be more important to emphasize the 100 
quality of ITNs in terms of their ability to kill mosquitoes, than to maximize coverage with 101 

personal protection by minimizing cost per unit. On that basis, I challenge the following 102 
statement regarding PBO-ITNs, which deviates from the original purpose of universal 103 
coverage: 104 
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“Deployment of pyrethroid-PBO nets must only be considered in situations where coverage 105 

with effective vector control (primarily LLINs or indoor residual spraying [IRS]) will not be 106 
reduced; the primary goal must remain the achievement and maintenance of universal 107 

coverage for all people at risk of malaria.”21 108 

 109 

Figure 2. Process-explicit model simulations illustrating how the benefits of ITNs are attenuated far more 110 
by suboptimal lethality to mosquitoes than by poor usage rates. Simulations were carried out as previously 111 
described,25 parameterized based on field estimates of host preference traits of Anopheles gambiae, the most 112 
important malaria vector in Africa, and one head of cattle for every five human residents. Note, however, that 113 
essentially identical results were obtained with parameter values consistent with the far more zoophagic African 114 
vector from the same species complex, An. arabiensis. 115 

Furthermore, the second half of this quote, seems motivated by the perceived need to maximize 116 

equity through universal coverage with personal protection, and ignores the fact that communal 117 
mass effects are completely equitable1,2. Vector population suppression of benefits users and 118 
non-users equally,1,2 and the latter exist in every malarious setting, regardless of how 119 

effectively ITNs are delivered and promoted. Even if universal coverage targets were achieved 120 

all across Africa, >200 million people would still lack a net and depend entirely upon 121 
communal vector population suppression.  122 

Figure 2 illustrates how maximizing lethality to mosquitoes is more important than maximizing 123 
coverage for ITN users and non-users alike. Indeed, non-users are particularly vulnerable to 124 

loss of lethality because they depend entirely upon area-wide vector population suppression for 125 
protection against malaria. Such equity considerations were central to the original rationale for 126 

universal coverage, intended to maximize communal rather than personal protection.1,2 Of 127 
course, equitable access to ITNs is an important goal, and coverage is an important driver of 128 
their completely equitable mass effects. However, current policy21,22 seems based on a one-129 

sided view of this issue, so a more balanced, nuanced and accurately-weighted view of how 130 
ITNs really work is needed. Specifically, recommendations should place greater emphasis on 131 

the more equitable mass effects of ITNs upon vector populations. Policy should therefore 132 
prioritize distribution of the most efficacious nets that kill mosquitoes most effectively, rather 133 

than maximizing the absolute number of nets made available at the lowest price. 134 

These arguments are not intended to undermine the goal of universal coverage in any way, but 135 

rather to re-emphasize its intended purpose. Nor am I advocating for lowering of universal 136 
coverage targets, because higher coverage with a given product will always deliver greater 137 
benefits than low coverage. However, maximizing coverage is just one of several competing 138 
priorities that need to be traded off against each other. ITN lethality may be prioritized above 139 
coverage, requiring quantity to be compromised in favour of quality. However, as explained 140 
below, smaller quantities of higher quality nets need not necessarily compromise coverage if 141 
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they last longer. Most important of all, deploying diversified product suites for pre-emptive 142 

IRM over the long-term may be more important than maximizing the coverage or impact 143 
immediately achievable with any single product.  144 

Prioritizing ITN durability over affordability 145 

Another key aspect of quality is durability, which may contribute more to high coverage than 146 
net distribution rates. Figure 3 illustrates a scenario in which coverage is boosted to the current 147 

WHO universal coverage target of 80%, by switching to an ITN product that is 50% more 148 
expensive to procure but lasts two years rather than one. While supply rates for this more 149 
expensive hypothetical product were obviously lower within the constraints of a fixed budget, 150 
the resulting drop in procurement rate was not as dramatic as the increase in procurement price 151 
(25% versus 50%, respectively). This is because a large fraction of the overall cost of supplying 152 

to the end user is associated with in-country delivery rather than procurement per se26: 26: 153 
Assuming delivery costs per net are approximately constant, regardless of how long they last, 154 

more durable nets will offset some of the incremental costs of procuring them by reducing total 155 
delivery costs per year for a given number of nets. Investing in more expensive, higher quality 156 
nets that last longer may increase coverage (Figure 3) and improve equity of ITN benefits26 157 
through both personal and communal protection mechanisms. 158 

 159 

Figure 3. Simulation of a scenario in which a national malaria control programme began distributing 160 
ITNs costing $2 per unit27 with an in-use half-life of 1 year28, but then switched to a higher quality 161 
product costing $3 with a 2 year half-life, resulting in boosting of coverage to surpass the WHO universal 162 
coverage targets. Assumptions: A hypothetical national malaria control programme serving 50 million people 163 
has a fixed annual budget of $30 million for insecticide treated nets, for which the delivery cost per net are $2 164 
each.26  165 

 166 

Prioritizing ITN product diversity over efficacy 167 

While it is obviously important that ITNs kill mosquitoes today, it is even more important that 168 
they continue to do so in the future, especially bearing in mind how long it takes to develop 169 
these products and bring them to market. The term quality must also embrace strategic long-170 
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term functionality, in terms of enabling proactive, pre-emptive IRM. While individual NG-ITN 171 

products with two or more active ingredients diversify the insecticidal modes of action 172 
mosquitoes must simultaneously evolve resistance mechanisms against, the possibility of using 173 
different products with different insecticide combinations in rotations or mosaics29 has even 174 

greater potential. If one accepts that diversification of NG-ITN products to enhance pro-active 175 
IRM is a good idea, it follows that no single product should be prioritized above all others. 176 
Even if one product performs better than others in a given time and setting (eg references 16 177 
and 17), relying too exclusively upon it over the short term will inevitably undermine the 178 
potentially greater long terms benefits of pre-emptive IRM with a diversified suite of 179 

complementary products. It is unlikely that any two NG-LLINs with different active 180 
ingredients would have identical effects on malaria transmission but it would still be preferable 181 
to use both for pre-emptive IRM, rather than rely solely on the product with the highest 182 
efficacy. I therefore challenge the latest policy proposal that new NG-ITN products need to be 183 
evaluated in a fragmented set of largely unproven new classes, for which epidemiological 184 

superiority to pyrethroid-only nets needs to be conclusively demonstrated: 185 

“ITNs would be categorized into [five] classes. For each class, a ‘first-in-class’ product will 186 
have to demonstrate epidemiological impact against malaria in at least two trials conducted in 187 

geographically separate settings for WHO to issue a policy recommendation.” 30 188 

Instead, I applaud the bolder approach of the new WHO pre-qualification system, which has 189 

already taken some NG-ITNs products closer to a defragmented market by listing them 190 
alongside pyrethroid-only ITNs on the basis that they are “…assumed to provide an 191 
epidemiological impact that is at least as good as that of a pyrethroid-only net”.30 I also appeal 192 

for accelerated product diversification, ideally within a single, integrated NG-ITNs product 193 
class. Ultimately they are all NG-ITNs, so while proof of equivalence for products with a given 194 

combination of active ingredients is essential to prevent inferior products entering the market, 195 
insisting on equivalence between the proposed numerous different classes may be 196 

counterproductive: Even products with active ingredients and modes of action that prove less 197 
efficacious than others may be useful for pre-emptive IRM schemes, in which they are 198 

deployed alongside others with different insecticides, as rotations, mosaics or micro-mosaics. 199 
Perhaps the most difficult challenge facing programmes undertaking pre-emptive IRM is 200 
accepting and justifying somewhat lower impact than would be possible with a single optimal 201 

product over the short term, so that the impact can be sustained over the long term. The 202 
proposed new policy fragments ITNs into so many classes that the most novel, and therefore 203 
useful, of these will become available too late for pre-emptive IRM alongside those already 204 

closer to market. 205 

Another drawback of current policy is the disincentive it creates for manufacturers to develop 206 
new insecticides and ITN products. Why would any manufacturer invest in a new high quality 207 
ITN product with IRM functionality when they see others gathering dust on the shelves for 208 

over a decade?14,21,22 Similarly, innovation is heavily disincentivized when new NG-ITNs are 209 
separated into several new intervention classes, each requiring supporting epidemiological 210 

evidence bases in their own right.30,31 Recent progress15 is encouraging, as is the most recent 211 
stance of the prequalification system to market defragmentation30 but far more is needed to 212 
accelerate acceptance of NG-ITN as merely a variant of the ITN product class, thus mitigating 213 
prohibitive investment risks that stifle innovation in this "high risk and low reward" market.32 214 

Prioritizing timely recommendations for new products over evidence-based certainty 215 

In any case, the long-term benefits of such proactive, pre-emptive interventions with multiple 216 
active ingredients, to retard emergence of new resistance traits, are impossible to rigorously 217 
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demonstrate in epidemiological terms until it’s too late to use them for this purpose (Figure 4). 218 

NG-ITNs which can pre-emptively slow emergence of resistance need not confer any 219 
measurable epidemiological advantage when used early enough to do so: The resistance traits 220 
they are intended to prevent emergence of should still be so rare that the combination of 221 

insecticides may have no measurable advantage in terms of improved mosquito mortality or 222 
epidemiological impact (Figure 4). I therefore challenge current recommendations for PBO-223 
ITNs on the basis that they are illogical in principle: 224 

“Pyrethroid-PBO nets are not expected to have any added benefit in areas where the main 225 
malaria vectors are susceptible to pyrethroids and/or do not harbor resistance mechanism(s) 226 

that are affected by PBO, i.e., monooxygenase-based resistance mechanism.”21 227 

If PBO-ITNs or NG-ITNs appear to have no noticeable advantage in terms of killing 228 

mosquitoes or reducing malaria transmission, because no resistance mechanism yet exists that 229 
attenuates their efficacy, this actually represents an opportunity to deploy them before their full 230 

potential for long term, pre-emptive IRM is lost.  231 

 232 

Figure 4. A hypothetical illustration of the epidemiological trajectories expected in an experimentally 233 
controlled study to demonstrate the incremental long-term benefits of deploying NG-ITNs for pre-234 
emptive insecticide resistance management, to prevent resistance traits from emerging in the first place. 235 

I therefore challenge the logic of awaiting clear evidence for epidemiological superiority of 236 
any new tool with potential for use in pre-emptive IRM schemes intended to tackle new 237 
resistance traits before they become common enough to cause resurgence of malaria: 238 

“VCAG will review further epidemiological trial data as soon as they become available… 239 

[to] … allow the conditional endorsement of pyrethroid-PBO nets to be converted into the 240 
full establishment of the class.” 241 
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“WHO will formulate specific policy recommendations for these ‘first-in-class’ products 242 

provided the data demonstrate that these products have public health value … based on the 243 
demonstration of … entomological and epidemiological efficacy against vectors and human 244 
infections and/or disease, respectively.”30 245 

It may be possible to successfully conduct a rigorously-controlled, cluster-randomized phase 246 
III experimental study that conclusively demonstrates the long-term merits of pre-emptive 247 
versus reactive IRM strategies, in which complementary active ingredients were respectively 248 

introduced simultaneously in combinations rather than sequentially as stand-alone active 249 
ingredients (Figure 4) However, such studies would inevitably undermine the usefulness of the 250 
decisions they were meant to inform: No advantage of pre-emptive IRM would be obvious 251 
until resistance had emerged at high frequency in the clusters assigned to the reactive strategy 252 
(Figure 4), from where they would spread throughout the study area and beyond. Waiting on 253 

availability of unambiguous epidemiological evidence is therefore illogical unless one assumes 254 

new active ingredients can be developed as quickly as new resistance traits emerge and that a 255 

reactive, post-emergence resistance mitigation strategy is acceptable.  256 

Learning from decisive historical recommendations for antimalarial drug combination 257 
therapies 258 

While it is clearly preferable to make confident decisions based on a robust evidence base 33, 259 
sometimes that is not available and will not be available fast enough to intervene pre-emptively. 260 
Logical frameworks for making timely health policy decisions in the absence of unambiguous 261 

evidence, drawing as much on societal considerations and intuitive common sense, are well 262 
established but underutilized34-36 and need greater emphasis for timely adoption of new vector 263 

control methods.14,37 It is also worth remembering that almost all the most successful vector 264 
control programmes in history (ITNs are the only exception) were established before modern 265 
standards of rigorous evidence37, yet none of us would question the validity of those decisions 266 

today. 267 

Elsewhere in the malaria arena, the World Health Organization (WHO) has an impressive track 268 
record of making bold, timely recommendations in relation to pre-emptive resistance 269 

management. When malaria parasites developed resistance against commonly-used 270 
antimalarial drugs at the turn of the century, WHO was swift to act.38-40 Prompt 271 

recommendations for multiple combination therapies,40 the benefits of which we still enjoy 272 
today, were based on widely-accepted recognition of: 273 

“the potential value of drug combinations…to improve efficacy, delay development and 274 
selection of drug-resistant parasites and thus prolong the therapeutic life of existing 275 

antimalarial drugs.”38 276 

This landmark recommendation was made despite similar uncertainties 41 to those we face 277 

today regarding NG-ITNS, not least of which were: 278 

“Lack of evidence of its effectiveness in delaying development of resistance in areas of high 279 
transmission”39 280 

WHO not only recommended rapid adoption of artemisinin-based combination therapies, it 281 
simultaneously did so for five different combinations of active ingredients and also 282 

“established a system for pre-qualification of manufacturers”40 like  the one accelerating 283 
progress of some NG-ITN products to market.30  Soon afterwards, WHO recommended both 284 
regulators and manufacturers immediately remove artemisinin monotherapies from the 285 
market.42 286 
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Applying the same bold leadership philosophy to ITNs today would translate into immediate, 287 

unreserved and universal recommendations for all first-in-class PBO-ITN and NG-ITN 288 
products that have proven capable of killing resistant mosquitoes more effectively than 289 
pyrethroid-only ITNs. The proposal to enable rapid adoption of equivalent products based on 290 

laboratory and semi-field entomological evidence alone is welcome but should avoid 291 
fragmenting the regulatory framework into too many classes, each requiring its own supporting 292 
epidemiological evidence base. It should also place less emphasis on the need to achieve 293 
equivalent efficacy because: (1) As explained above, diversity of product active ingredients 294 
and modes of action may be more important for long term IRM than immediate efficacy, (2) 295 

While antimalarial drugs act over periods of days in the standardized environment of the human 296 
body, ITNs need to remain efficacious for years in diverse physical and social environments, 297 
so durability and performance of different products are best evaluated in the field28,43,44 through 298 
routine programmatic monitoring.45,46 Already, the first such programmatic evaluations reveal 299 
net lifetimes varying greatly between products and settings, ranging from approximately one 300 

to three years 28,43,44. It is neither practical nor affordable to evaluate all products across all 301 
settings with rigorous large-scale trials, nor can programmes afford to wait on unambiguous 302 

evidence, so routine post-marketing assessments are the only realistic way forward45,46. 303 

WHO has historically provided the kind of decisive leadership needed to combat resistance 304 
against anti-malarial drugs, by rapidly recommending combination therapies. It is now time to 305 

extend these traditions to stewardship of NG-ITNs, to safeguard their future as tools for pre-306 
emptive IRM with the same urgency. 307 
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