
Cooperative Parallel SAT Local Search
with Path Relinking

Padraigh Jarvis1 and Alejandro Arbelaez2

1 United Technologies Research Centre
JarvisPa@utrc.utc.com

2 School of Computer Science & Information Technology
Insight Centre for Data Analytics
University College Cork, Ireland

a.arbelaez@cs.ucc.ie

Abstract. In this paper, we propose the use of path relinking to im-
prove the performance of parallel portfolio-based local search solvers for
the Boolean Satisfiability problem. In the portfolio-based framework sev-
eral algorithms explore the search space in parallel, either independently
or cooperatively with some communication between the solvers. Path
relinking is a method to maintain an appropriate balance between di-
versification and intensification (and explore paths that aggregate elite
solutions) to properly craft a new assignment for the variables to restart
from. We present an empirical study that suggest that path relinking
outperforms a set of well-known parallel portfolio-based local search al-
gorithms with and without cooperation.

Keywords: SAT · Parallel Local Search

1 Introduction

The propositional satisfiability problem (SAT) is a fundamental problem in com-
puter science with important applications ranging from bioinformatics [19] to
planning [23] and scheduling [22]. The SAT problem consists in determining
whether a given Boolean formula F is satisfiable or not. This formula is usu-
ally represented using the Conjunctive Normal Form (CNF) as follows: F =∧

i

∨
j lij , where each lij represents a literal (a propositional variable or its nega-

tion) and the disjunctions
∨

j lij are the clauses in F . A k-SAT problem indicates
that F contains k literals per clause, for instance a 3-SAT formula can be rep-
resented as follows:

F = (v11 ∨ v12 ∨ v13) ∧ (v21 ∨ v22 ∨ v23) . . . (vn1 ∨ vn2 ∨ vn3)

In the weighted MaxSAT problem, clauses are associated with a positive
weight and the problem consists in minimizing the cost, i.e., the sum of weights of
unsatisfied clauses. The weighted partial MaxSAT problem consists in finding a
solution (or an assignment for the variables) that minimizes cost while satisfying
a given subset of clauses (i.e., hard clauses).

2 Padraigh Jarvis and Alejandro Arbelaez

Complete parallel solvers for the SAT problem have received significant at-
tention recently, these solvers can be divided into two categories the classical
divide-and-conquer approach [14] and the parallel portfolio approach [7, 1]. The
first one typically divides the search space into several sub-spaces, and the second
one lets algorithms compete and cooperate to solve a given problem instance.

In this paper, we focus our attention in cooperative parallel local search
solvers for the SAT and Weighted Partial MaxSAT problems. In our settings,
each member of the portfolio shares its best assignment for the variables. At each
restart point, instead of classically generating a random assignment to start with,
the portfolio aggregates the shared knowledge to carefully craft a new starting
point.

This paper is organized as follows. Section 2 presents key concepts of local
search, including a description of a set of well-known variable selection methods
to tackle SAT and MaxSAT problems. Section 3 provides general concepts about
parallel portfolios of local search algorithms. Section 4 describes our new coop-
erative policies using path relinking. Section 5 evaluates our new cooperative
policies and Section 6 presents concluding remarks and areas of future work.

2 Local Search for SAT and MaxSAT

Algorithm 1 describes the general schema of the local search procedure for the
SAT problem. It starts with a random assignment for the variables in the formula
F (initial-solution line 2). The key point of the local search procedure is depicted
in lines 3-9 where the algorithm flips the most appropriate variable until a certain
stopping condition is met, e.g., a given number of flips is reached (Max-Flips)
or after a given timeout. After this procedure the algorithm restart itself with a
new fresh random assignment for the variables.

Algorithm 1 Local Search (CNF formula F, Max-Flips, Max-Tries)

1: for try := 1 to Max-Tries do
2: A := initial-solution(F)
3: for flip := 1 to Max-Flips do
4: if A satisfies F then
5: return A
6: end if
7: x := select-variable(A)
8: A := A with x flipped
9: end for

10: end for
11: return ‘No solution found’

As one may expect, a critical part of the algorithm is the variable selection
function (line 7 select-variable), which indicates the next variable to be flipped
in the current iteration of the algorithm. Currently, nearly all variable selection

Cooperative Parallel SAT Local Search with Path Relinking 3

algorithms are variations of the GSAT [18] and WalkSAT [17] algorithms orig-
inally proposed for the SAT problem. These two algorithms attempt to select
the variable with the highest score.

score(x) = make(x)− break(x)

Intuitively, make(x) indicates the total number of clauses that are currently
unsatisfied but become satisfied after flipping x. Similarly, break(x) indicates
the total number of clauses that are currently satisfied but become unsatisfied
after flipping x. Taking this into account, local search algorithms tend to select
variables with the minimum score, flipping those variables would most likely
increase the chances of obtaining the optimal assignment for the variables. In
the following, we describe seven well-known variable selection algorithms for the
SAT and MaxSAT problems.

– WalkSAT [17] uniformly at random selects an unsatisfied clause c. Then,
with a probability wp selects a random variable from c and with probability
1-wp identifies the most suitable variable in c.

– AdaptNovelty+ (AN+) [8] uses an adaptive mechanism to properly self-tune
the noise parameter (wp) of WalkSAT algorithms (e.g., Novelty+).
AdaptNovelty+ introduces a new parameter φ to control the value of wp.
wp is initially set to 0 and updated when search stagnation is observed,
i.e., wp = wp + (1 + wp) × φ. Additionally, whenever an improvement is
observed wp is decreased, i.e., wp = wp − wp × φ/2. The authors define
search stagnation as a stage when no improvement has been observed in the
objective function for a given number of iterations.

– G2WSAT (G2) [11] introduces the concept of promising decreasing variable.
Broadly speaking, a variable is decreasing if flipping it improves the objective
function (i.e., total number of (weighted) violated clauses).

– Adaptive G2WSAT (AG2) [11] aims to integrate an adaptive noise mecha-
nism into the G2WSAT algorithm.

– PAWS (Pure Additive Weighting Scheme) [20] assigns a weight penalty to
each clause, with those that go unsolved having their weight penalty changed.
This solver includes a chance to make a flip that will result in a lateral
movement in satisfiability and a variable to determine how often the weights
of clauses are changed.

– Dist [5] proposes a variable selection scheme based on hard and soft clauses.
Dist initially, maintains a list of hard-decreasing variables (i.e., a set of
promising decreasing variables of hard clauses), and the algorithm defines
a hard and a soft score for the variables in the problem. Furthermore, the
authors propose to on-the-fly adjust the weight of hard clauses. This way,
Dist bias the variable selection process towards improving the score of hard
clauses with the set of hard-decreasing variables.

– CCLS [13] maintains a list of candidate variables CCMPVars (Configuration
Checking and Make Positive), each variable x in the list has a make(x) >
0 and the age of x is smaller than at least one of its neighbour variables

4 Padraigh Jarvis and Alejandro Arbelaez

(i.e., a variable sharing at least one clause). In the diversification phase with
probability p performs a random walk step; otherwise, with a probability
1-p in the intensification phase the algorithm selects the variable with the
greatest score in CCMPVars. However, if CCMPVars is empty the algorithm
performs a random walk. CCEHC [12] extends CCLS to prioritize the search
towards variables involved in violated hard clauses.

3 Parallel Local Search

In this paper, we use the traditional parallel portfolio framework by executing
several algorithms in parallel (or different copies of the same one with different
random seeds). Therefore, each algorithm independently executes a sequential
restart-based local search algorithm and we periodically restart the algorithms
to aggregate the common knowledge of the portfolio.

M =


X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

...
...

Xc1 Xc2 . . . Xcn


Fig. 1. Pool of elite solutions.

In our parallel algorithm we maintain a pool of elite solutions. In this context,
each algorithm in the portfolio shares the best solution observed so far in a shared
pool M (see Figure 1). Where n indicates the total number of variables of the
problem and c indicates the number of local search algorithms in the portfolio.
In the following we are associating local search algorithms and processing cores.
Each element Xji in the pool denotes the ith variable of the best solution found
so far by the jth core.

The initial restarting solution of the algorithms in the portfolio is determined
by the cooperation protocol and is a composition of the solutions in the pool.
Therefore, maintaining an appropriate balance between diversification and in-
tensification of the solutions in the pool is an important step in the proposed
cooperative framework. We remark that we use a random solution for the first
start and the cooperative framework afterwards.

Recently, [2] proposed seven cooperative algorithms for parallel SAT solving.
These strategies range from a voting mechanism, where each algorithm in the
portfolio suggest a value for each variable, to probabilistic constructions. This
way, the variable-initialization function (line 2, Algorithm 1) uses cooperation
(after the second restart) in lieu of random values for the variables.

Prob uses a probability function based in the number of occurrences of vari-
ables with positive and negative values. PNorm normalizes the probability func-
tion with the quality of the solutions (i.e., number of unsatisfied clauses), there-
fore, values involved in better truth assignments are most likely to be used in

Cooperative Parallel SAT Local Search with Path Relinking 5

the future. Complete details about these two popular cooperative techniques are
available in [2].

Other work in the area includes PGSAT [15], a parallel version of the GSAT
algorithm. The entire set of variables is randomly divided into τ subsets and
allocated to different processors. In this way at each iteration, if no global solu-
tion has been obtained, the ith processor uses the GSAT score function to select
and flip the best variable for the ith subset. Another contribution to this parallel
architecture is described in [16] where the authors aim to combine PGSAT and
random walk. Thus at each iteration, the algorithm performs a random walk
step with a certain probability wp, that is, a random variable from an unsatis-
fied clause is flipped. Otherwise, PGSAT is used to flip τ variables in parallel at
a cost of reconciling partial configurations to test if a solution is found.

4 Path Relinking

Path relinking [6] is a popular technique to generate new solutions by exploring
paths that connect elite solutions. To generate the new solution (i.e., line 2 in
Algorithm 1), an initial solution and a guiding solution are selected from the
pool to represent the starting and the ending points of the path.

Si

S1

S2

S3

S4

Sg
Initial

Solution

Guiding
Solution

Path of solutions

Fig. 2. Path relinking.

In this paper, we use path relinking to generate new starting solutions for
the algorithms in the portfolio. Figure 2 depicts the process of generating the
path of solutions. We select the initial (si) and guiding (sg) solutions, and then
the path relinking algorithm generates the intermediate solutions by replacing
values for the variables in si with values from sg. In the context of this paper,
the path of solutions regulates the intensification/diversification trade-off. The
first neighbour solution of si denotes, at least, one change in the initial solution
and n-1 chances in the guiding solution.3 Ideally, in order to balance the diversi-
fication/intensification trade-off, the new generated solution should be in middle
between the si and sg.

Algorithm 2 shows our path relinking algorithm to generate a new starting
solution. Let si and sg denote the initial and guiding solutions and pd ∈ [0, 1]

3 n denotes the number of variables in the problem.

6 Padraigh Jarvis and Alejandro Arbelaez

denotes the probability of using the initial or guiding solution for each variable
in the problem. In particular, we explore the following four alternatives to define
si and sg:

– best2rand (b2r): si represents the best solution in M and sg is randomly
selected from M ;

– cbest2rand (cb2r): si represents the best solution obtained so far for the
processing unit that is currently seeking a new starting solution and sg is
randomly selected from M ;

– best2cbest (b2cb): si represents the best solution in M and sg represents the
best solution obtained so far for the processing unit that is currently seeking
a new starting solution;

– best2sbest (b2sb): si represents the best solution in M and sg represents the
second best solution available in M .

The path relinking algorithm uses pd to balance the diversification vs. intensi-
fication trade-off dilemma, a value close to 1 (resp. 0) favours sg (resp. si). There-
fore, pd=0.5 is a reasonable value for a proper intensification/diversification bal-
ance of the solutions. Furthermore, best2rand and cbest2rand provide further
diversification benefits as the method randomizes the selection of the solutions
in the pool. Certainly, biasing the search towards si or sg might improve perfor-
mance for specific problem families. However, without explicit knowledge of the
target instances we recommend pd=0.5.

Algorithm 2 Path-relinking(Si, Sg, pd)

1: s := si
2: for i := 1 to |s| do
3: if with probability pd then
4: s[i] := sg[i]
5: end if
6: end for
7: return s

5 Experiments

In this section, we present experiments for our cooperative parallel portfolios
using path relinking for SAT and Weighted Partial MaxSAT Solving. We decided
to build our parallel portfolio on top of UBCSAT [21], a well-known local search
library that provides efficient implementations of popular local search algorithms
for SAT and MaxSAT.

In our experiments we use the sequential local search algorithms with their
default parameters and MaxFlips = 106 except for non-cooperative algorithms.
Indeed, sequential algorithms are equipped with important diversification tech-
niques and usually perform better without restarts and therefore we use MaxFlips
= ∞ for non-cooperative parallel portfolios.

Cooperative Parallel SAT Local Search with Path Relinking 7

5.1 SAT Experiments

In these experiments we consider all known satisfiable uniform random k-SAT
instances from the 2017 and 2018 SAT competitions (for a total collection of 174
instances).4 and we consider the following algorithms: AN+, G2WSAT, PAWS,
AG2. We evaluated the impact of our cooperative policies with two versions
of the portfolio. The first version analyses the impact of the new policies with
multiple copies of the same algorithm and the second one implements a parallel
portfolio with four different algorithms.

We conducted this set of experiments on 15 machines running Ubuntu18.04
with 16GB of RAM and a AMD Razen 5 2400g CPU with 4 cores. We ran each
solver 5 times on each instance (each time with a different random seed) with
a 5-minute time cutoff. For each pair 〈instance, solver〉 we compute the median
time and the Penalized Average Runtime (PAR10), i.e., average runtime, but
unsolved instances are considered as 10× the time-limit [9], over all 5 runs .

Figure 3 shows the cactus plot of the parallel portfolios with multiple copies
of the same algorithm. The y-axis gives the number of solved instances and
the x-axis presents the cumulative runtime. In this figure, it can be seen that
our new cooperative policies with path relinking outperform (except for AN+)
existing techniques such as: PNorm, Prob, and a portfolio without cooperation
(non-coop).

Figures 3(a) and 3(b) show the performance of the two weakest algorithms,
that is, AG2 with 51 instances in 280 seconds (for Prob) and AN+ with 43
instances in 267 seconds (for best2cbest). Figure 3(c) shows that best2cbest is the
best cooperative policy for PAWS solving 60 instances in 276 seconds. On the
other hand, Figure 3(d) summarizes the performance of the best algorithm, it can
be observed that the non-cooperative framework outperforms the other methods
when the time cutoff is up 150 seconds. However, after this point, best2sbest and
best2cbest report outstanding performances with respectively 74 instances in 275
seconds and 72 instances in 281 seconds.

Figure 4 shows the cactus plot of the parallel portfolio with different algo-
rithms, sequential reports the performance of the best sequential algorithm (i.e.,
G2WSAT). Similarly to Figure 3(d) the non-cooperative portfolio reports a very
good performance up to about 200 seconds. However, after this point our new
path relinking policies largely outperform non-coop, Prob and PNorm. In partic-
ular, cbest2rand (resp. best2cbest) solves 7.4% (resp. 12%) more instances than
PNorm (resp. Prob).

Table 1 reports complete details of the performance of a 4-core portfolio with
different algorithms. # Solved reports the number of solved instances within the
time limit, Time denotes the average time in seconds for solved instances (i.e.,
average across instances of the median across 5 runs on a given instance), and
PAR10 reports the average PAR10 of the parallel portfolio. It can be observed
that all our new path relinking policies outperform existing methods (except
best2sbest), i.e., cbest2rand and best2cbest solve seven (resp. five) more instances
than PNorm (resp. Non-cooperation).

4 https://satcompetition.org/

8 Padraigh Jarvis and Alejandro Arbelaez

(a) AG2 (b) AN+

(c) PAWS (d) G2WSAT

Fig. 3. Cactus plot for 4-core portfolios using copies of the the same algorithm.

Table 1. Portfolio full results

Method # Solved Time PAR10

Sequential 53 51 2101

Non-cooperative 63 41 1928

Pnorm 65 58 1901

Prob 62 55 1950

best2cbest 70 73 1822

cbest2rand 70 69 1821

best2rand 68 66 1853

best2sbest 64 61 1919

Cooperative Parallel SAT Local Search with Path Relinking 9

Fig. 4. Cactus for 4-core Portfolio with different algorithms

Table 2 reports the performance of a 4-core parallel portfolio with multiple
copies of the best sequential algorithm, i.e., G2WSAT. In this experiment, we
observe that all our new policies outperform well-known techniques, for instance,
the worst path relinking algorithm solves more instances than the best exiting
technique for this experiment (i.e., Prob). Furthermore, our overall best new pol-
icy (i.e., best2sbest) solves 21% more instances than the non-cooperative portfolio
and 25% more instances than the best existing method. As expected the time of
solved instances increases as this parallel algorithm solves more instances.

Finally, Table 3 summaries the overall results of the 4-core portfolios. Al-
gorithm indicates the base local search algorithm. Coop. Policy indicates the
cooperative policy, each cell shows the performance of Non-cooperative portfo-
lios, Prob, and the best parallel portfolio for the reference algorithm.5 As it can
be observed the cooperative portfolio always outperform the non-cooperative
one, and our new path relinking policies outperform all other policies in 4 out of
5 experiments. Furthermore, G2 equipped with best2sbest is the overall winner
policy with 74 solved instances in 87 seconds.

5 Please notice that AG2 only reports two cooperative policies as Prob is the winner
strategy.

10 Padraigh Jarvis and Alejandro Arbelaez

Table 2. Results for 4-core G2 Parallel Portfolios

Method # Solved Time PAR10

Sequential 53 51 2101

Non-cooperative 59 31 1993

PNorm 61 57 1968

Prob 62 55 1950

best2cbest 72 79 1791

cbest2rand 70 78 1824

best2rand 69 82 1843

best2sbest 74 87 1761

Table 3. Experiment results

Algorithm Coop. Policy # Solved Time PAR10

AG2
Non-cooperation 48 54 2187
Prob 51 45 2134

AN+
Non-cooperation 38 51 2355
Prob 38 52 2356
best2cbest 43 54 2272

G2
Non-Cooperation 59 31 1993
Prob 62 55 1950
best2sbest 74 87 1761

PAWS
Non-Cooperation 54 67 2090
Prob 51 63 2139
best2cbest 60 41 1990

Portfolio
Non-Cooperation 63 41 1928
Prob 62 55 1950
cbest2rand 70 69 1821

Cooperative Parallel SAT Local Search with Path Relinking 11

5.2 Weighted Partial MaxSAT

We conducted experiments using crafted and random instances. The first dataset
is a collection of 234 crafted instances used regularly in the annual MaxSAT com-
petitions: staff-scheduling (12), auctions/auc-paths (20), auctions/auc-scheduling
(20), min-enc/planning (30), warehouses (18), casual-discovery (35), csg (10),
random-net (32), set-covering (45), mip-lib (12).

For the second dataset, we followed a similar approach as [13] and used
makewff [24] to generate 270 uniform random weighted partial MaxSAT in-
stances around the phase transition, i.e., 90 3-SAT instances, 90 5-SAT instances,
and 90 7-SAT instances; and the number of variables per instance ranges from
2000 to 4000 (3-SAT), 1000 to 3000 (5-SAT), and 300 to 500 (7-SAT). For each
random instance we randomly split clauses into two disjoint sets with hard and
soft clauses. The number of hard clauses varies bewteen 10% - 40% of the total
clauses in the problem.

After a preliminary experimentation we decided to use multiple copies of
AdapNovelyt+ to build our parallel portfolio for the random dataset. We would
like to remark that WalkSAT and G2WSAT reported a poor performance and
were unable to find feasible solutions for this problem family (i.e., satisfying all
hard clauses). Alternatively, we use AdaptNovelty+, WalkSAT, and G2WSAT
for crafted instances, so that we build our portfolios for crafted instances as
follows:

– 4 Cores: AdaptNovelty+ (2 cores), WalkSAT (1 core), and G2WSAT (1 core);
– 8 Cores: AdaptNovelty+ (3 cores), WalkSAT (2 cores), and G2WSAT (3

cores).

We compare our cooperative algorithm against the following state-of-the-art
local search solvers (with their recommended parameters): Dist, CCEHC, CCLS,
Prob, and PNorm.6 We remark that we use the same configurations for all our
portfolios using the UBCSAT library. Unfortunately, Dist, CCEHC, CCLS do
not support parallelism, and therefore, the only feasible parallel option for these
solvers is the parallel portfolio without cooperation.

We conducted this set of experiments in the Microsoft Azure Cloud using
DS4 v2 virtual machines with 28 GB of RAM and 8 cores at 2.40 Ghz Intel
Xeon Processors E5-2673 running ubuntu. We ran each solver 5 times on each
instance (each time with a different random seed) with a 5-minute wall-clock
timeout (300 seconds) for each experiment. For each pair 〈instance, solver〉 we
compute the median time and solution quality over all 5 runs. Furthermore, we
report the number of instances a given solver finds the best solution among all
the solvers. We restart our local search solveres in all cooperative portfolios (i.e.,
PNorm, best2rand, and best2cbest) every 106 iterations or flips.

We start our evaluation with Figure 5, we compare the performance of
best2rand (cooperative portfolio) vs. Portfolio (non-cooperative portfolio) with

6 In this paper, we use the implementation of Dist, CCEHC, CCLS, Prob and PNorm
available in the SAT competitions and the website of the authors.

12 Padraigh Jarvis and Alejandro Arbelaez

eight cores. In both cases we use the same reference algorithms to build the
portfolio.

As it can be seen in the figure, the cooperative framework implementing path
relinking helps to considerably improve performance. For random instances (Fig-
ure 5(a)) best2rand outperforms Portfolio for 128 instances; for 22 instances both
solvers report the same solution cost; and only for 28 instances Portfolio out-
performs best2rand. Alternatively, for crafted instances (Figure 5(b)) best2rand
outperforms Portfolio for 73 instances; Portfolio outperforms best2rand for 106
instances; and interestingly the non-cooperative portfolio only outperforms the
cooperative one for 10 instances. It is also worth mentioning that best2rand is
faster than Portfolio when both parallel solvers report the same solution cost,
i.e., 13 and 47 times faster for random and crafted instances.

(a) Random instances. (b) Crafted instances.

Fig. 5. best2rand vs. Portfolio. Proportion of instances where the best2rand is better
(resp. worst and equal) than Portfolio (counterpart portfolio without cooperation).

Table 4 presents further experimental results with the performance of sequen-
tial and parallel algorithms with and without cooperation using 4 and 8 cores
for random instances. We recall that for random instances we build our parallel
portfolio with and without cooperation using AdaptNovelty+ (denoted as Port-
folio in the table), and we omit the performance of WalkSAT and G2WSAT as
these two solvers are unable to find feasible solutions for this problem family.
Actually, the sequential version of the solvers in UBCSAT are unable to find
the best solution for random instances (i.e., an assignment for the variables that
satisfies all hard clauses), while CCLS and CCEHC solve 2 instances.

These results confirm that the cooperative approach with path relinking out-
performs its counterpart portfolio with existing cooperative policies and without
cooperation. For instance, best2rand solves (with 8 cores) respectively 36 and 32
more instances than the reference portfolio without cooperation (i.e., Portfolio)
and PNorm.

As expected our non-cooperative portfolio is considerably weaker than CCLS
(best sequential solver). However, adding our suggested cooperative framework

Cooperative Parallel SAT Local Search with Path Relinking 13

Table 4. Results for random instances.

Algorithm
Sequential 4 Cores 8 Cores

Time (s) Best Time (s) Best Time (s) Best

best2rand – 0 189.6 22 157.4 54

best2cbest – 0 176.2 20 185.5 49

PNorm – 0 149.8 7 162.9 22

Portfolio – 0 114.1 6 166.3 18

CCLS 183.9 2 143.3 15 139.6 38

Dist 2.3 1 108.1 7 108.4 14

CCEHC 266.5 2 116.1 7 125.4 16

leads to substantial performance improvements. As a result of that, our cooper-
ative portfolio greatly outperforms the parallel version of CCLS, e.g., best2rand
solves 7 and 16 more instances than CCLS with 4 and 8 cores.

Table 5. Results for crafted instances.

Algorithm
Sequential 4 Cores 8 Cores

Time (s) Best Time (s) Best Time (s) Best

best2rand 49.2 74 56.6 113 57.3 123

best2cbest 49.2 74 51.3 110 87.0 138

PNorm 49.2 74 38.8 101 38.4 103

Portfolio 49.2 74 35.4 98 26.2 99

AdaptNovelty+ 49.2 74 40.8 86 42.9 91

WalkSAT 10.2 41 12.6 44 20.3 48

G2WSAT 25.8 57 16.1 60 12.1 61

CCLS 4.5 45 11.3 50 9.7 50

Dist 14.7 88 11.4 94 27.3 108

CCEHC 15.1 109 13.0 115 18.7 121

We now switch our attention to crafted instances (Table 5). In this experi-
ment, we include experimental results for our reference sequential solvers from
UBCSAT (i.e., WalkSAT, G2WSAT, and AdaptiveNovelt+) as these solvers re-
port competitive performance against modern local search solvers (i.e., CCLS,
Dist, and CCEHC) for the Weighted Partial MaxSAT problem. In this dataset,
it can be observed that CCEHC is the best sequential solver, reporting 109
instances with the best performance, followed by Dist (88 instances), and Adap-
tiveNovelty+ (74 instances).

Similarly to random instances, our cooperative solver with path relinking out-
performs its counterpart solvers PNorm (cooperative solver) and Portfolio (par-
allel portfolio without cooperation). For instance, bets2rand solves 9 and 12 more
instances than PNorm and Portfolio with 8 cores. CCEHC is the best portfolio
with 4 cores solving 115 instances, 2 more than best2rand. This performance dif-
ference is mainly because CCEHC is considerably better (for this dataset) than

14 Padraigh Jarvis and Alejandro Arbelaez

Fig. 6. Cactus plot for 8-core portfolios with random instances.

our sequential algorithms from the UBCSAT library. Finally, best2cbest leads
the ranking (with 8 cores) by solving 17 more instances than the parallel port-
folio with the best sequential solver (i.e., CCEHC). Certainly, this performance
improvement comes from our path relinking cooperative framework.

Finally, Figures 6 and 7 show the cactus (i.e., number of solved instances with
given a time limit) plot for 8-core portfolios for random and crafted instances.
best2rand (b2r) is the best parallel solver, the second place is for best2cbest
(b2c), and the third place is for CCLS. On the other hand, for crafted instances
(Figure 7) best2cbest and best2rand are the most effective solvers.

6 Conclusions and Future Work

In this paper, we proposed a cooperative framework using path relinking, a well-
known technique to combine solutions in meta-heuristic search. The algorithm
exploits parallelism by executing multiple local search algorithms in parallel,
at each restart point, instead of classically generating a random solution to
start with, we propose the use of path relinking to carefully craft new starting
solutions.

Extensive experiments on a large number of instances for the SAT and
Weighted Partial MaxSAT problems suggest that our new cooperative framework
outperforms its counterpart parallel portfolio with and without cooperation. Fur-
thermore, we have seen improvements for parallel portfolios with multiple copies
of the same algorithm and parallel portfolios with different algorithms.

In the future, we would like to investigate the use offline and online tuning
of the pd parameter to balance the diversification vs. intensification trade-off.

Cooperative Parallel SAT Local Search with Path Relinking 15

Fig. 7. Cactus plot for 8-core portfolios with crafted instances.

On the one hand, for the offline case, we plan to explore automatic tools such as
ParamLS [10] and F-RACE [4]. On the other hand, for the online case, we would
like to investigate the use of reinforcement learning for self-adaptive tuning of the
pd parameter. Finally, we would like to investigate the use of supervised machine
learning to identify the best set of algorithms for a given problem instance [3].

References

1. Arbelaez, A., Codognet, P.: From sequential to parallel local search for SAT. In:
EvoCOP. pp. 157–168 (2013)

2. Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: LION 5.
pp. 46–60 (2011)

3. Arbelaez, A., Hamadi, Y., Sebag, M.: Continuous search in constraint program-
ming. In: Autonomous Search, pp. 219–243 (2012)

4. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: GECCO. pp. 11–18 (2002)

5. Cai, S., Luo, C., Lin, J., Su, K.: New local search methods for partial maxsat.
Artif. Intell. 240, 1–18 (2016)

6. Glover, F.: Tabu search for nonlinear and parametric optimization (with links to
genetic algorithms). Discrete Applied Mathematics 49(1-3), 231–255 (1994)

7. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. JSAT 6(4),
245–262 (2009)

8. Hoos, H.H.: An adaptive noise mechanism for walksat. In: AAAI/IAAI. pp. 655–
660 (2002)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the empirical evaluation of
competing algorithm designs. Ann. Math. Artif. Intell. 60(1-2), 65–89 (2010)

16 Padraigh Jarvis and Alejandro Arbelaez

10. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: An automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

11. Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local
search for SAT. In: SAT’07. pp. 121–133 (2007)

12. Luo, C., Cai, S., Su, K., Huang, W.: CCEHC: an efficient local search algorithm
for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)

13. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algorithm
for weighted maximum satisfiability. IEEE Trans. Computers 64(7), 1830–1843
(2015)

14. Martins, R., Manquinho, V.M., Lynce, I.: An overview of parallel SAT solving.
Constraints 17(3), 304–347 (2012)

15. Roli, A.: Criticality and parallelism in structured SAT instances. In: Principles and
Practice of Constraint Programming - CP 2002, 8th International Conference, CP
2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings. pp. 714–719 (2002)

16. Roli, A., Blesa, M.J., Blum, C.: Random Walk and Parallelism in Local Search.
In: Metaheuristic International Conference (MIC’05). Vienna, Austria (2005)

17. Selman, B., Kautz, H.A., Cohen, B.: Noise Strategies for Improving Local Search.
In: AAAI. pp. 337–343 (1994)

18. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satis-
fiability problems. In: AAAI’96. pp. 440–446

19. Strickland, D.M., Barnes, E.R., Sokol, J.S.: Optimal protein structure alignment
using maximum cliques. Operations Research 53(3), 389–402 (2005)

20. Thornton, J., Pham, D.N., Bain, S., Jr., V.F.: Additive versus multiplicative clause
weighting for SAT. In: AAAI. pp. 191–196 (2004)

21. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation
environment for SLS algorithms for SAT & MAX-SAT. In: SAT’04 (2004)

22. Vasquez, M., Hao, J.: A ”logic-constrained” knapsack formulation and a tabu algo-
rithm for the daily photograph scheduling of an earth observation satellite. Comp.
Opt. and Appl. 20(2), 137–157 (2001)

23. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: AAAI’12
24. Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum

satisfiability. In: IJCAI’03. pp. 1179–1186 (2003)

