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An Illustration of the Use of Model-Based
Bootstrapping for Evaluation of Uncertainty in

Kinetic Information Derived from Dynamic PET
Fengyun Gu, Qi Wu, Finbarr O’Sullivan, Jian Huang, Mark Muzi and David A. Mankoff

Abstract—Kinetic mapping via mixture analysis[8, 10]
involves comprehensive voxel-level analysis of dynamic PET
data. Bootstrapping from the fitted mixture model gives the
ability to directly simulate statistical copies of the 4-D PET
data, and following suitable analysis, subsequent simulations of
the associated kinetic maps. This gives the ability to numerically
evaluate uncertainties in inferences associated with kinetic
information. We provide a simple introduction to the concept of
the model-based bootstrap and an illustration of the use of the
approach for kinetic mapping from dynamic PET using results
from recent work in Huang et al.[4]. The illustration is from a
PET flow-metabolism imaging study in a breast cancer patient.
It involves separate dynamic PET imaging following injections
of O-15 H2O and F-18 FDG. The bootstrapped data is created
in the image domain rather than the projection domain, so
there is no reconstruction requirement involved.

Index Terms—Mixture models, Spatial autocorrelation, Model-
based bootstrap, Standard errors, Simulation.

I. INTRODUCTION

POSITRON emission tomography (PET) is a radio-tracer
imaging technique which is widely used in the clinical

management of cancer patients. When used in dynamic mode,
PET has the ability to recover detailed information about
the local kinetics (transport and metabolism) of the tracer’s
interaction with tissue. Additive mixture models have been
used to map local tissue residues and associated kinetic
summaries from such dynamic PET data[9, 10, 11].The mod-
elling process involves representation of the full dynamic PET
information. Thus, if the fit of the model is satisfactory, there
is an opportunity to use the model to construct a scheme
for simulation of statistical copies of the 4-D PET data.
Using a combination of numerical simulation and analysis of
physical phantom data, a comprehensive statistical model has
been developed to represent the distribution and 3-D spatial
autocorrelation structure of practical PET scanner data[7, 4].
These methods allow PET data simulation without recourse to
the raw projection domain data. Many Bootstrap methods[5, 3]
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have been proposed for assessment of the statistical variation
of PET data. Most of them focus on resampling list-mode
and sinogram PET data. Such methods (particularly for 3-
D iterative reconstructions) have limited ability to produce
sufficient bootstrap samples, in excess of several hundred,
to provide convincing estimates sufficient for evaluation of
confidence intervals.

The basic concept of the approach is developed in section
II. An illustration with data from a flow-metabolism study are
described in section III. The paper concludes with discussion.

II. METHODOLOGY

A. Model-based Bootstrapping

The bootstrap is well-developed approach to evaluation of
the sampling characteristics of statistical estimators[1, 2]. The
process is summarized in Fig. 1. To have a better under-
standing of model based bootstrap in the further analysis, we
simplify to a linear model setting. We assume there is a linear
relationship between a 1-d predictor variable x and response
variable y. ε is a sequence of independent identically dis-
tributed(iid) random variables following a normal distribution
with zero mean and standard deviation σ.

y = xβ + ε, ε ∼ N(0, σ2) (1)

Model fitting provides an estimation of β (β̂) and
residuals(r) as below: β̂ = argmin

β

∑n
i=1(yi − xβ)2

r = y − xβ̂

A normal model can be used to fit residuals and estimate
the noise variance σ2.

σ̂2 =
RSS(β̂)

n− 1

If the linear model is appropriate, we can simulate data y
based on the model fitting and diagnostics:

y∗ = xβ̂ + ε∗, ε ∼ N(0, σ̂2) (2)

Sampling distribution of bootstrap estimates can be obtained
from linear modelling fitting of y∗ and x. The variation
of these estimates can be used to approximate the standard
error/uncertainty of original estimate β̂.

SE(β̂) ≈
√
V ar(β̂∗) (3)
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Fig. 1: Schematic summary of the Model-based Bootstrap Concept in a Simple Linear Regression Model.

B. Adaptation to Kinetic analysis of Dynamic PET

The mixture analysis process involves representation of
voxel-level PET data, which can be expressed as a linear
combination of several underlying time activity curves(sub-
TACs).

z(x, t) = α(x)
′
µ(t) + σxσtε(x, t) (4)

where z are the full voxel-level data, α are positive mixing
coefficients, µ are sub-TACs, σx and σt represent spatial
and temporal variation, ε(x, t) is the measurement/modeling
error process. A comprehensive statistical model for PET data,
accounting for 3-D auto-covariance and distributional char-
acteristics associated with both iterative and non-iteratively
reconstructed data, has been developed in recent work by our
group[7, 4]. This modelling approach has been validated using
numerical simulations and physical phantom measurements.

Residuals from mixture model are defined as

r(x, t) = z(x, t)− α̂(x)
′
µ̂(t)

A detailed analysis of the spatial covariance of residuals gives
the opportunity to describe the standardized residuals process
in terms of a stationary SAR processWe use this approach to
simulate 4D data based on the mixture model:

z∗(x, t) = α̂(x)
′
µ̂(t) + σ̂xσ̂tε

∗(x, t) (5)

Hence, a set of bootstrap simulations of the 4-D PET data can
be derived. Each dataset is analyzed using the a full mixture
model process to derive maps of kinetic parameters. Analysis
of the bootstrapped kinetic data provides assessments of un-
certainty metabolic parameters. The process is summarized in
Fig. 2.

III. ILLUSTRATIVE EXAMPLE

A series of flow-metabolism PET studies conducted in
locally advanced breast cancer (LABC) patients have been
reported by Mankoff et al.[6]. We consider data from this
series. The patient underwent PET scanning prior to surgical
resection and prior to scheduled neo-adjuvant chemotherapy.
PET scanning involved dynamic imaging with O-15 H2O and
F-18 FDG in the same session. Details of PET radiotracer
production and dynamic imaging protocols are given in the
earlier reports[11, 6]. The 4-D PET data set consists of an
imaging volume with N = 128×128×35 voxels and T = 82

time-frames of acquisition. Arterial input functions for kinetic
analysis were recovered from left-ventricle (LV) ROIs - the
”gold-standard” in this setting.

The results of 350 Bootstrap realizations are shown in Fig.
3. The distribution of parametric images reports measures of
the uncertainty - standard errors. The average standard error
(standard deviation of the bootstrap values) by various color
levels represented in the coronal scan. The bootstrap analysis
can also be used to obtain direct evaluation of uncertainties in
regional parameters and separation between tumor and normal
breast tissue.

Fig. 2: Model-based Bootstrapping of Dynamic PET

IV. DISCUSSION
Comprehensive modeling of full 4-D dynamic PET data,

gives the potential to construct a model-based bootstrap ap-
proach for assessment of the statistical uncertainties of com-
puted imaging biomarkers. This approach has significant po-
tential to practically supplement quantitative decision making
based on complex PET imaging biomarkers in an individual
patient. Full technical details of the approach are contained in
a paper which will be submitted for publication.



Fig. 3: Coronal views of parametric images of flow, metabolism and mismatch from the breast cancer study. The region of the
tumour on the slice is indicated in Attenuation image. Color bars are augmented to present the average standard error (white
profile above the color bar) for all pixels on the coronal slice with the corresponding color intensity.
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