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ABSTRACT
Future fifth generation (5G) networks are envisioned to provide
improved Quality-of-Experience (QoE) for applications by means
of higher data rates, low and ultra-reliable latency and very high
reliability. Proving increasing beneficial for mobile devices running
multimedia applications. However, there exist two main co-related
challenges in multimedia delivery in 5G. Namely, balancing opera-
tor provisioning and client expectations. To this end, we investigate
how to build a QoE-aware network that guarantees at run-time that
the end-to-end user experience meets the end users’ expectations
at the same that the network’s Quality of Service (QoS) varies.

The contribution of this paper is twofold: First, we consider a
Dynamic Adaptive Streaming over HTTP (DASH) video application
in a realistic emulation environment derived from real 5G traces in
static and mobility scenarios to assess the QoE performance of three
state-of-art Adaptive Bitrate Streaming (ABS) algorithm categories:
Hybrid - Elastic and Arbiter+; buffer-based - BBA and Logistic; and
rate-based - Exponential and Conventional. Second, we propose a
Machine Learning (ML) classifier to predict user satisfaction which
considers network metrics, such as RTT, throughput, and number
of packets. Our proposed model does not rely on knowledge about
the application or specific traffic information. We show that our
ML classifiers achieves a QoE prediction accuracy of 87.63 % and
79 % for static and mobility scenarios, respectively.
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1 INTRODUCTION
The steady growth of Internet data services drove the development
of third (3G) and fourth (4G) generations of the mobile commu-
nications standard. Now, the technology is evolving towards its
fifth-generation (5G), motivated by similar traffic demands. 5G [23]
is expected to support significantly higher throughput (10 Gbps), 1-
millisecond end-to-end over-the-air latency, real-time information
processing and transmission, and lower network management op-
eration complexity. In video streaming, HTTP Adaptive Streaming
(HAS) is the de-facto choice of popular services such as YouTube
and Netflix for Internet video distribution. Fuelled by the recent
coronavirus pandemic, mobile video streaming surged, increasing
its share by 60% in the first few months of 2020 [9].

With video streaming expected to account for 82% of all network
traffic within the next three years [1], compared to previous gen-
erations, one of the main challenges in 5G will be the ability to
effectively manage the increased growth in traffic and the corre-
sponding Quality of Experience (QoE) demands. Various techniques
have been proposed to meet end-users’ video QoE, such as splitting
traffic into voice, video, and control flows, but these techniques
come at the cost of in-network optimization and maintenance [21].

Variation in network Quality of Service (QoS) metrics such as
RTT and bandwidth, also play a significant role in determining
the end-users’ video QoE satisfaction. In HAS, besides network
QoS, other factors such as the choice of Adaptive Bitrate Streaming
(ABS) algorithm, plays a major role. Thus, the main goal of this
paper is the proposal of an in-network mechanism able to estimate
end-user video streaming (QoE) experience agnostic to the ABS
algorithm while not relying on knowledge about the application.
In other words, we do not depend on specific characteristics about
the application.
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In this work, we select six state-of-the-art ABS algorithms for
video quality adaptation, categorized into three main groups: i)
Hybrid (Arbiter+ [38] and Elastic [8] ), ii) Buffered (Logistic [32] and
BBA [14]) and iii) Rate-based (Conventional [16] and Exponential
(exponential growth of past throughput)).

We assess the behaviour of the aforementioned state-of-the-art
ABS algorithmswith godash [29]. godash is an open-source headless
DASH player written in Google GO, which implements five well-
known QoE models from the literature. In this paper we focus
primarily on one of the QoE model, namely the ITU-T Rec. P.1203
QoE standard [27, 31] (mode 0 considering metadata only, bitrate,
frame rate, and resolution). In addition, godash also provides logs for
Claey [24], Dunamu [12], Yin [36], and Yu [37]. Finally, we propose
an ML-based QoE estimator derived from different classifiers, with
a specific focus on 5G networks.

The contributions of this work can be therefore summarized as:

• An in-depth analysis of six state-of-art ABS algorithms stream-
ing with varying bandwidth in static and mobile 5G scenar-
ios. The analysis is undertaken through the assessment of
associated QoE models such as the P.1203 QoE standard.

• A proposal for a Machine Learning classifier to estimate QoE
based on RTT, number of packets and throughput.

The rest of the paper is structured as follows: Section 2 presents
background and related work. Section 3 describes the experimental
setup followed by Section 4, which gives a brief introduction into
ML classifiers and pre-processing in Sec 4.1. Section 5 shows how
QoS impacts on QoE, while Section 6 discusses our results. Section
7 concludes our paper and considers future work.

2 BACKGROUND AND RELATEDWORK
In HTTP Adaptive Streaming (HAS), a video file is divided into
different small chunks no longer than a few seconds each, where
each chunk is encoded with different quality levels (representa-
tions) and respective transmission sizes. This permits the client to
select the appropriate chunk at a transmission size that suits the
throughput of the network the client is connected to. Thus per-
mitting an adaptive mechanism through which QoE can increase
when network conditions improve. The structure of each video
stream is described in a Media Presentation Description (MPD) file.
When a video client wants to play a specific video stream, the client
first downloads the MPD file, then the client’s video adaptation
algorithm plays a key role and is responsible for requesting the
most appropriate representation for each segment based on the
clients play-out estimation. The adaptation to network conditions
is one of the reasons that Adaptive HTTP Streaming (DASH) clients
experience better resolution and quality [35]. Incorrect choice in
representation bitrate can cause the end-user to experience a se-
ries of stall events. Stalling describes video playback interruption
due to buffer under-run. When the buffer level is beneath a given
threshold, insufficient data for playback is available, and the video
playback has to be stopped until the buffer is refilled.

Quality of experience (QoE) assessment can be divided into two
main categories: i) Subjective, and ii) Objective. Subjective QoE
assessment utilizes end-users who grade video quality at the end
of a video session using perceiving video quality so-called Mean

Opinion Score (MOS). The ITU-T recommendations [30] for subjec-
tive quality evaluation follow strict setup and testing conditions.
However, subjective QoE is expensive, time-consuming, and doesn’t
scale very well. Moreover, there are many other factors such as
psychological or psycho-physiological, e.g., age, mood, time of day,
gender, and socio-economic status [15] that may influence the re-
sults. For this reason, objective QoE assessment has gained more
popularity [13], with some models that directly map objective QoE
to well-known metrics such as MOS, Peak Signal to Noise Ratio
(PSNR), and Structural Similarity Index Metrics (SSIM). Variance in
the results of these metrics can be tied directly to the quality of the
original video stream, and as such more ground truth is needed to
improve objective QoE values.

The first study that investigates video quality, freezing stall
events, and stall’s duration is proposed in [39]; and was adopted by
the ITU [25]. [18] reviews more recent methodologies to predict
QoE. Similarly, [6] has recently proposed a means to cope with
complex QoS and QoE mapping. [34] investigates stall, initial delay,
and visual quality for end-user QoE. All of these aforementioned
contributions agreed on three factors that influence video qual-
ity during transmission: 1) Stall, 2) Representation Stream Bitrate,
and 3) Visual Quality [20]. However, how different adaptation al-
gorithms influence the end-user’s QoE by varying network QoS
also needs to be taken into account. Therefore, these factors are
discussed in Sec 5 in more detail as well as their impact on the
standardized QoE model P.1203.

Finally, Dimopoulos et al. [11] leverage ML to evaluate the corre-
lation between QoS and QoE to overcome the challenge of measur-
ing end-user satisfaction. Another area where ML techniques were
recently shown a lot of promise is improving and designing ML-
backed ABR schemes. Authors in [2, 10] use ML to compute param-
eters of the existing ABR scheme to adapt to dynamically changing
network conditions. Unlike these approaches, several approaches
train ML model as the replacement for ABR algorithm [7, 19, 33]. In
comparison to the literature, our work considers a linear regression
ML model that considers RTTs, throughput, and number of packets
as input to classifiers to map QoS to QoE. Also, it is important to
note that our ML model is unaware of the underlying algorithm
type (and its characteristics) used for streaming the HAS video and
mandates reasonable realistic results.

3 EXPERIMENTAL SETUP
In this section, we present the experimental setup for the exper-
iments performed using the network emulator mininet1 and go-
dash [22] the headless DASH video player (go accelerated frame-
work). Figure 1 depicts the topology used in the experiments. We
assess the impact of concurrent video streaming clients, keeping
client 1 (1st client) as a reference, and varying the number of con-
current clients between (1,...,2), (1,...,3), (1,...,5); with all of the clients
streaming from the same server. Video quality metrics are assessed
in real-time from the godash player. The network bandwidth sample
values are based on the 5G trace parameters [28], where we select
10 different combinations2 (in Mbps): Mobility (driving) — (38.26 to
10.33), (29.33 to 10.55), (0.5 to 3) and (6 to 14), and static — (72.42 to

1http://mininet.org
2Value combinations taken from: https://github.com/uccmisl/5Gdataset
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9), (70 to 20), (52.06 to 0.5), (4.19 to 8), (0.5 to 6) and (8.29 to 57.15).
These bandwidth combination values consist of different variations
of (static and mobility) network throughput extracted from the 5G
network traces such that the video clients stream from very high
bandwidth to low and moderate and vice versa.

In our experiments, we use a well-known video sample named
Sintel, from the publicly available video dataset for Advanced Video
Coding (AVC) H.264 [26]. Sintel is encoded in thirteen different
representation rates across eight resolutions3. The total stream du-
ration of Sintel is over 14 minutes. Furthermore, Sintel is divided
into chunks/segments of two seconds (2s), from which we stream
60 segments in each experiment, i.e., 60×2s = 120s. The bandwidth
during each experiment is changed after every 4 seconds, i.e., with
4s sampling interval two video segments can be downloaded before
a new bandwidth value is sampled from the 5G trace files. While
not shown in this submission, please note that we also evaluated
other sampling intervals such as (1s, 2s), without noticing a sig-
nificant impact in our evaluation results. The experiments are run

Figure 1: Experiment topology

on a Intel Core i7, SSD Linux machine. The bandwidth is changed
at the bottleneck between S_1 and S_2, at run-time using Linux
Traffic control (TC) and Hierarchical Token Bucket (HTB) [4]. The
bottleneck router buffer is set to be one Bandwidth Delay Product
(BDP). Also, a parameterized script is used to run each experiment,
resulting in one godash logfile per client and a corresponding pcap
file per run. Table 1 shows parts of the content of a godash log file,
composed of the following information: Seg_# as (segment num-
ber), Algorithm (Elastic, Arbiter+, etc.), Seg_Dur (video segment
duration, i.e, 2s), Codec (h264), Width - Height (width and height
of the corresponding video segment), FPS (Frame Rate per Second),
Play_Pos (current play back position (ms)), RTT (Packet level (ms)
- determined using HTTP’s head request), and the output of the
five QoE models (Yin, Duanmu, Yu, Clae, P.1203). Details from each
feature is available in godash [29]. For each experiment, we collect
per-segment QoS information, e.g., RTT, throughput and number of
packets per video segment, from the pcap files with a Python script4.
For each of the clients’ 60 video segments (2 minutes of video in
total), the network QoS information, and each corresponding go-
dash logfile, a PHP script is used to store the experiments’ data in
a database. Example output is shown in Table 2, and is described
as per the following: (Host, Stall, Bitrate, Segment) are indicated
as (host number, stall and bitrate (during the video segment), and
3http://cs1dev.ucc.ie/misl/4K_non_copyright_dataset/2_sec/x264/sintel/DASH_Files/
full/sintel_enc_x264_dash.mpd
4https://github.com/razaulmustafa852/5G/blob/master/updated-per-segment-
others.ipynb

segment number) followed by (Total_Users, Buffer, and Algorithm)
as (total user during the experiment, buffer level on the correspond-
ing segment and adaptation algorithm). The QoS collected from the
pcap files of each segment is indicated as (RTT, throughput, number
of packets) for all five QoE models. We open-source all scripts used
for collection and pre-processing of our generated dataset5.

4 MACHINE LEARNING: METHODOLOGY
In this section we introduce the various Machine Learning models
we use in our work. Typically, ML problems can be classified as the
following: i) Supervised, and ii) Un-supervised. Supervised can be
further divided into two types. i) regression, and ii) classification.
During a typical classification problem, theMLmodels try to predict
certain categorical classes, but, in regression, the model outputs
real value such as integers or floating-point numbers based on
input variables. For a comprehensive analysis of the dataset, that
requires less computational overhead during the pre-processing
phases, such as scaling and normalization, we selected Decision
Tree Regression (DTR), Multi-linear Regression (MLR) and Random
Forest Regression (RFR).

DTR utilises a tree-like structure in its models, and is popular
in both regression and classification problems. Departing from the
root (parent) node, child nodes are decided by the largest Infor-
mation Gain (IG) [5], and the iterative process terminates when
the leaves are so-called pure. MLR is a statistical technique used
to predict correlation between variables from independent predic-
tors. MLR, or simply Multiple Regression (MR), is used to explain
the relationship between one continuous dependent variable and
two or more independent variables [3]. The relationship between
variables can tell the change in the target value, by fitting a line
through the observations. In our experiments, we have three main
input variables (network QoS parameters) to the MLR classifier:
RTT, number of packets for each video segment, and throughput.

Finally, we also apply RFR, which is used for classification and
regression by building multiple DTs. RFR is also commonly known
as Bagging, because it trains each DT on different data samples
and, finally, instead of relying on a single tree, it merges all of
them together before taking the final decision [17]. In our experi-
ments using different regression classifiers we find the strength of
independent variable on dependent variable Y (P.1203) [27, 31], in
other words, how RTT, number of packets per video segment and
throughput have impact P.1203’s score.

P.1203𝑡 = 𝛼 + 𝛽1RTT𝑡 + 𝛽2Packets𝑡 + 𝛽3Throughput𝑡 + 𝜖 (1)

In Equation (1), 𝛽1 , 𝛽2 and 𝛽3 are regression coefficients associated
with RTT, number of packets per video segment, and throughput,
respectively. 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 is the random error component reflecting the
difference between the observed and fitted linear relationship.

4.1 Pre-processing
By inspecting the pattern changes in RTT and throughput, we split
60 video segments from the log file into 4 equal parts, i.e, 30s each.
Note that the length of the video file in each experiment run is 2

5https://github.com/razaulmustafa852/5G
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Table 1: godash log file, 1st client: First 5 video segments of 2s video segment duration with BBA algorithm

Seg_# Algorithm Seg_Dur Codec Width Height FPS Play_Pos RTT P.1203 Claey Duanmu Yin Yu

1 BBA 2000 H264 320 180 24 0 50.649 1.878 0.000 1726.005 239515.000 233515.000
2 BBA 2000 H264 384 216 24 4000 88.149 1.890 0.419 2305.465 309046.000 467030.000
3 BBA 2000 H264 384 216 24 6000 60.046 1.903 0.477 2467.704 332223.000 845607.000
4 BBA 2000 H264 384 216 24 8000 33.467 1.766 0.509 2560.764 343791.373 5028184.000
5 BBA 2000 H264 384 216 24 10000 20.293 1.649 0.529 2616.268 350744.524 9576761.000

Table 2: Features stored in the database for offline investigation

Host Stall Bitrate Segment Total_Users Buffer Algorithm RTT Throughput Packets P.1203 Claey Duanmu Yin Yu

1 0 2441 60 2 30704 exponential 11.24 899614.28 194 4.88 5.11 77.34 252609.84 4.32
1 0 5314 59 2 30479 exponential 8.17 2034351.78 313 4.88 5.10 77.34 248234.83 4.31
1 0 218 37 2 2543 arbiter 42.67 197013.62 20 1.24 0.41 46.88 9641.51 0.28
1 240 173 34 2 2000 arbiter 58.19 84982.20 16 1.24 0.41 47.55 11335.03 0.29

minutes. Together with this processed data, we take all comprehen-
sive information available in godash log files, i.e., aggregated RTT,
throughput, number of packets per video segment, and P.1203 score
as shown in Table 3. The three columns in the middle of Table 3
are used as input for the for ML classifiers to predict P.1203 scores.

Table 3: Processed dataset used in the ML classifiers

Column User Algorithm RTT Throughput Packets P1203

2 1 Arbiter 3.76 2584825.53 126.46 3.12
5 2 Elastic 0.23 7682269.18 65 3.02
2 2 BBA 0.58 2866549.71 64 2.94
5 1 Logistic 0.16 7212008.60 17 1.87
4 1 Conventional 0.66 6377796.25 87.73 3.56
4 2 Exponential 8.65 1077560.73 291.86 4.84

The first three columns (Column, User, Algorithm) are used to dif-
ferentiate each trace fed into the ML model separately. For instance,
(Column=1) means the first scenario from the 5G trace parameters
described in Section 3. To train a single model for static and mo-
bility scenarios, we use pandas.get_dummies to convert categorical
algorithm names into dummy, or indicator, variables. The proposed
ML methods, i.e, DTR, MLR and RFR using Python’s scikit-learn
library were trained on 80 % of data, while the remaining 20 % used
for testing trained ML models.

5 QOS IMPACT ON QOE
In this section, we assess the impact of network QoS on client QoE.
We illustrate the relationship between QoS and QoE for each of
following ABS algorithms: Rate-based — Conventional [16] and
Exponential, Buffer-based — Logistic [32] and BBA [14], and Hybrid
— Arbiter+ [38] and Elastic [8]. The adaptation mechanism of each
of the selected algorithms is explained in Table 4.

We evaluate all ABS algorithms in Table 4 in two test scenarios: a)
Good, and b)Moderate. In both cases, three keymetrics are analyzed
(RTT, number of stalls, and the P.1203 standardized scores). For
scenario a) the bandwidth range is (6 – 14) Mbps and scenario b) the
range is (0.5 – 3) Mbps6 After each experiment, godash generates
QoE metrics, from which we select the P.1203, mode 0, standardized
scores (which we denote as P.1203). P.1203 generates a value in a
6Due to space constraints, we select the mobility scenario from the whole range of
our experiments, which contain the most interesting results in our opinion, and not
all possible combinations for static and mobility scenarios from Section 3.

Table 4: ABS Algorithm Adaptation Mechanisms

Algorithm Type Mechanism

Arbiter [38] + Hybrid
The quality selection policy includes tar-
geting a reduction of the stall risk by per-
forming smooth representation switches.

Elastic [8] Hybrid
Is designed to ensure application-level
fairness in the case of sharing a bottle-
neck.

BBA [14] Buffer-based
Represents the class of algorithms that
solely depends on buffer-level in the
adaptation decision.

Logistic [32] Buffer-based
This model is able to find the optimal
buffer required for any given set of video
quality levels.

Conventional [16] Rate-based
The TCP download throughput observed
by a client is directly taken as its fair
share of the network bandwidth.)

Exponential Rate-based Exponential growth of past throughput.

scale ranging from 0 to 5 (where a higher score values denotes a
better QoE value for the client). For example, 0 means the lowest
and worst P.1203 score, which, in other words describes a scenario
when a video is streamed under poor network conditions. Next let
us consider two concurrent streaming clients, based on the topology
as shown in Figure 1. In each of the following figures, we group
each of the algorithms per HAS category, and illustrate a range of
their outputs in both test scenarios (across two figures - the first
figure illustrating adaptation in segment bitrate and the second
figure showing changes in RTT, Stalls and P.1203 values). This
gives a clear overview of how these algorithms adapt in different
scenarios and also which of the algorithms performs better in each
scenario (typically, the higher the segment bitrate, the better the
overall QoE - two items to note: 1) stalls are not shown here, and
stalls dramatically decrease user QoE and 2) constant switching
between bitrates (assuming changes in different resolutions) also
reduces overall user enjoyment.

Figure 2 shows that the rate-based Exponential and Conven-
tional algorithms perform similarly over the experiment time in
both Good (a) andModerate (b) scenarios. In scenario a) Good: up to
50s, both algorithms deliver on average 1 Mbps. Around (20s – 30s)
and (50s – 60s), higher segment bitrate can be translated directly
into higher video resolution. Figure 5 shows similar trends in RTT,
number of stalls, and P.1203 score, with an overall slight advantage
for Conventional in scenario a). In the Moderate scenario, Expo-
nential achieves a small advantage in overall segment bitrate, i.e.,
achieving higher visual video quality. It is important to note that
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in Figure 5, both algorithms constantly make the wrong choice of
representation bitrate (achieving an overall higher representation
level of video quality), which can be seen in the levels of stalls in
both test scenarios.

1500
3000
4500
6000
7500
9000

10500
Exponential (Moderate)
Exponential (Good)

0 10 20 30 40 50 60

1500
3000
4500
6000
7500
9000

10500
Conventional (Moderate)
Conventional (Good)

Segments

Se
gm

en
ts
 b
itr
at
e

Figure 2: Rate-based

Figure 3 presents the output of the buffer-based BBA and Logistic
algorithms. These algorithms perform very similarly over the ex-
periment time, with a small advantage in terms of segment bitrate
for BBA in scenario a). Figure 6 shows that although Logistic does
not report any stall in scenario a), video segments have consider-
ably higher RTT and overall lower P.1203 score. However, scenario
b) reports that both algorithms are comparably similar, with BBA
reporting overall lower P.1203 scores thus translated into lower
video resolution. It can also be seen in Figure 6, that in moderate
bandwidth scenarios, fluctuations in the bandwidth can cause the
buffer-based algorithms to make the wrong choice. Highlighting
the need for a predictive model for adaptive algorithms in cellular
networks.
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Figure 3: Buffer-based

Finally, Figure 4 shows that the hybrid algorithm, Arbiter+ con-
sistently outperforms Elastic in scenarios a) and b) with higher
segment bitrate. However, looking at Figure 7 higher segment bi-
trate come at the cost of more stalls that also result in lower P.1203
scores translated into lower video quality. In other words, one can
conclude in both scenarios, a) and b), that Arbiter+ tries to main-
tain higher segment bitrate, even though it experiences more stall
events and lower P.1203 scores as direct consequence.
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Figure 4: Hybrid

These controlled experiments and single runs of each ABS algo-
rithm in Table 4 give us a bird view of the impact of bandwidth vari-
ation, described as scenarios a) Good and b) Moderate. We note that
for each of the ABS algorithms, they follow quite different strategies
to adjust the video bitrate. Following the methodology described in
Section 4, we would like to use next network QoS information (RTT,
number of packets for each video segment, throughout) and apply
different ML algorithms to estimate the resulting P.1203 score. The
result of the predicted P.1203 scores will be then compared against
our ground-truth, namely, the values reported by godash.

6 VIDEO QOE PREDICTIONWITH ML
In Section 4, we describe themethodology to applyML to predict the
P.1203 score as a function of varying network QoS. In our analysis,
we use a total of 13,547 observations (approximately 225 client runs
- across 2-client, 3-client and 5-client experiments) as input and
evaluate three regression classifiers, namely, DTR, MLR, and RFR.
The input dataset used in our experiments describe a static and a
mobility (driving) scenario as already discussed in Section 3.

Initially, each classifier is separately trained with each of the
ABS algorithm categories, namely: Rate-based, buffer-based and
hybrid. In other words, each classifier is trained with data from both
Arbiter+ and Elastic for the Hybrid category, and the same is done
for rate- and buffer-based ABS algorithms. Table 5 shows for the
static scenario that RFR achieves much higher accuracy compared
to DTR and MLR.

To quantify the predicted error of the P.1203 values to the ground-
truth P.1203 scores, we use the Mean Absolute Error (MAE):

𝑀𝐴𝐸 = ( 1
𝑛
)

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑥𝑖 | (2)

MAE is a metric used to find the similarity between two sets. The
absolute error is the absolute difference, whereas the error is the
difference of two numbers. In order to find MAE, we first need to
find the absolute error between two values, and then find the mean
of these values. In Equation (2), 𝑦 and 𝑥 correspond to the actual
and predicted value, respectively.

Similarly, Table 6 shows the classifiers’ results for the mobil-
ity (driving) scenario, where RFR has a considerably lower MAE
and much better accuracy see Table 7. In the static scenario, the
same regression classifier RFR has an accuracy of 87.63 % whereas
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Figure 5: Rate-based, scenarios a) and b) (1st video client): RTT, stalls, and P.1203 score per video segment for 60 video segments
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(c) P.1203, scenario a)
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(d) RTT, scenario b)
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Figure 6: Buffer-based, scenarios a) and b) (1st video client): RTT, stalls, and P.1203 score per video segment for 60 segments
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(c) P.1203, scenario a)
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(d) RTT, scenario b)
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(e) Stall, scenario b)
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Figure 7: Hybrid, scenarios a) and b) (1st video client): RTT, stalls, and P.1203 score per video segment for 60 segments

Table 5: Static scenario: Rate-based, Buffer-based and Hy-
brid: Classifiers’ accuracy with MAE

Algorithm Classifiers MAE [%]

Arbiter +, Elastic
DTR 0.20
RFR 0.17
MLR 0.55

BBA, Logistic
DTR 0.12
RFR 0.07
MLR 0.12

Conventional,
Exponential

DTR 0.23
RFR 0.10
MLR 1.03

DTR has 78.68 % and 72.37 % in the static and mobility scenarios,
respectively.

7 CONCLUSION
In this paper, we leverage Machine Learning (ML) to train an algo-
rithm agnostic classifier that predicts user quality-of-experience of
video session based on network quality-of-service metrics, RTT, a
number of packets and measured throughput.

To generate a dataset upon which we train our ML models, we
investigated the achievable video quality of different state-of-art
Adaptive Bitrate Streaming (ABS) algorithms commonly found in
HTTP Adaptive Streaming (HAS), by varying the network quality-
of-service (bandwidth) sampled from real 5G traces. From this in-
vestigation, we understand the impact of bandwidth variation on

Table 6: Mobility scenario: Rate-based, Buffer-based and Hy-
brid: Classifiers’ accuracy with MAE

Algorithm Classifiers MAE [%]

Arbiter +, Elastic
DTR 0.31
RFR 0.31
MLR 0.55

BBA, Logistic
DTR 0.01
RFR 0.01
MLR 0.19

Conventional,
Exponential

DTR 0.13
RFR 0.07
MLR 0.70

Table 7: Classifiers’ accuracy in static andmobility scenarios

Case Classifiers Accuracy

Static
DTR 78.68 %
RFR 87.63 %
MLR 40.01 %

Driving
DTR 72.37 %
RFR 79.00 %
MLR 58.67 %

each category of ABS algorithm (Rate-based, Buffer-based and Hy-
brid) and how they follow different strategies to adapt the video
bitrate and achievable quality-of-experience. After collecting the



Conference’17, July 2017, Washington, DC, USA Raza Ul Mustafa, Simone Ferlin, Christian Esteve Rothenberg, Darijo Raca, and Jason J. Quinlan

resulting P.1203 scores in these experiments, we applied three dif-
ferent machine learning classifiers on the same data to verify the
predicted P.1203 score compared to our ground-truth, namely, the
P.1203 reported by godash log files. We find out that Random Forest
Regression (RFR) outperforms both Decision Tree (DTR) and Multi-
linear Regression (MLR), achieving higher accuracy of 87.63% and
79.00% in static and mobility scenarios, respectively.

For future work, we would expect to extend our study in differ-
ent directions: First, we would like to analyse the impact of both
bandwidth and throughput, i.e., vary both values simultaneously,
in the video quality of experience of the end-user. Also, we would
like to improve our analysis by selecting more video segments per
sampled value as well as more concurrent video clients. Finally,
we would like to investigate online real-time quality-of-experience
prediction with at least one of our selected classifiers in this study,
i.e., RFR, in both static and low/high mobility scenarios.
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