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Alterations in intestinal microbiota composition are associated with chronic conditions including obesity and 

inflammatory diseases. The microbiota of older persons displays greater inter-individual variation than that of 

younger adults. Here we show that the faecal microbiota composition from 178 elderly subjects formed distinct 

groups correlating with residence location, in the community, day-hospital, rehabilitation, or in long-term 

residential care. However, clustering of subjects by diet separated them by the same residence location and 

microbiota groupings. The separation of microbiota composition significantly correlated with measures of 

frailty, co-morbidity, nutritional status, markers of inflammation and with metabolites in faecal water. The 

individual microbiota of people in long-stay care was significantly less diverse than that of community dwellers. 

Loss of community-associated microbiota correlated with increased frailty. Collectively the data support a 

relationship between diet, microbiota and health status, and indicate a role for diet-driven microbiota alterations 

in varying rates of health decline upon aging. 
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The gut microbiota is required for development and for homeostasis in adult life. Compositional changes have 

been linked with inflammatory and metabolic disorders1, including inflammatory bowel disease2,3, irritable 

bowel syndrome4,5 and obesity6 in adults. The composition of the human intestinal microbiota is individual-

specific at the level of Operational Taxonomic Units (OTUs) and stable over time in healthy adults7. The 

composition of the intestinal microbiota in older persons (>65 years) is extremely variable between individuals8, 

and differs from the core microbiota and diversity levels of younger adults8,9. A feature of the ageing process is 

immuno-senescence or “inflammaging”, evidenced by persistent NF-κB-mediated inflammation and loss of 

naïve CD4+ T-cells10. The microbiota is pivotal for homeostasis in the intestine11, and chronic activation of the 

innate and adaptive immune system is linked to inflammaging12. Correlations have previously been made 

between specific components of the microbiota and pro-inflammatory cytokine levels, but these did not separate 

young adults from older persons9. Alterations in the microbiota composition have also been associated with 

frailty13, albeit in a small cohort from a single residence location. 

 Deteriorations in dentition, salivary function, digestion, and intestinal transit time14 may affect the 

intestinal microbiota upon aging. A controllable environmental factor is diet, which has been shown to influence 

microbiota composition in animal models, in small-scale human studies15-20, and over the longer term21. 

However, links between diet, microbiota composition and health in large human cohorts are unclear. To test the 

hypothesis that variations in the intestinal microbiota of older subjects impact on inflammaging and frailty 

across the community, we determined the faecal microbiota composition in 178 older persons. We also collected 

dietary intake information, and measured a range of physiological, psychological and immunological 

parameters. Dietary groupings were associated with separations in the microbiota and health datasets whereby 

the healthiest people live in a community setting, eat differently and have a distinct microbiota from those in 

long-term residential care. Measures of increased inflammation and increased frailty support a diet-microbiota 

link to these indicators of accelerated aging, and suggest how dietary adjustments could promote healthier aging 

by modulating the gut microbiota. 
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Microbiota and residence location  

We previously identified considerable inter-individual variability in the faecal microbiota composition of 161 

older persons (≥65 years), including 43 receiving antibiotics 8. To investigate links between diet, environment, 

health and microbiota, we analyzed 178 subjects, non-antibiotic treated, for whom we also had dietary 

information, and stratified by community residence setting: (a) community-dwelling, n=83; (b) attending an out-

patient day hospital n=20; (c) in short-term (< 6-weeks) rehabilitation hospital care, n=15; (d) in long-term 

residential care (long-stay), n=60. The mean subject age was 78 (±8 s.d.) years, with a range of 64 to 102 years, 

and all were of Caucasian (Irish) ethnicity. We included 13 young adults with a mean age of 36 (±6 s.d.) years. 

We generated 5.4 million sequence reads from 16S rRNA gene V4 amplicons, with an average of 28,099 

(±10,891s.d.) reads per subject. 

UniFrac β-diversity analysis indicates the extent of similarity between microbial communities22. 

UniFrac PCoA analysis of 47,563 OTUs (grouped at 97% sequence identity) indicated a clear separation 

between community-dwelling and long-stay subjects using both weighted and un-weighted analysis (Fig. 1A, 

1B). Microbiota from the 13 younger controls clustered with community-dwelling subjects. Eighteen other non-

UniFrac β-diversity metrics supported microbiota separation by residence location (Supplementary Fig. 1). 

When we examined OTU abundance, we identified a cluster comprising the majority of the long-stay 

subjects separated from the majority of the community-dwelling and young healthy subjects (Fig. 1C). Family-

level microbiota assignments showed that long-stay microbiota had a higher proportion of phylum 

Bacteroidetes, compared to a higher proportion of phylum Firmicutes and unclassified reads in community-

dwelling subjects (Fig. 1C). At genus level, Coprococcus and Roseburia (of the Lachnospiraceae family) were 

more abundant in the faecal microbiota of community-dwelling subjects (Supplementary Table 1 shows 

complete list of genera differentially abundant by community location). Genera associated with long-stay 

subjects included Parabacteroides, Eubacterium, Anaerotruncus, Lactonifactor and Coprobacillus 

(Supplementary Table 2). The genera associated with community belonged to fewer families; Lachnospiraceae 

were the most dominant. Thus, the microbiota composition of an individual segregated depending on where they 

lived within a single ethnogeographic region, in a homogeneous cohort where confounding effects of climate, 

culture, nationality and extreme environment were not a factor. 
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Concordance of diet and microbiota  

Dietary data (for 168 of the 178 subjects, plus five PEG-fed subjects [percutaneous endoscopic 

gastrostomy]) was collected through a semi-quantitative, 147-item, food frequency questionnaire (FFQ), 

weighted by 10 consumption frequencies.  This data was visualised with Correspondence Analysis (CoA; Fig. 

2A). The first CoA axis described over 11% of the dataset variance and most differences in food consumption 

between community-dwelling and long stay subjects. The most discriminating food types were vegetables, fruit 

and meat, whose consumption changed in a gradual manner along the first eigenvector.  Procrustes analysis of 

the FFQ and the microbiota β-diversity was used to co-visualise the data (Fig. 2B). Separations based on either 

diet or microbiota co-segregated along the first axis of both datasets (unweighted and weighted UniFrac Fig 2B; 

Monte-Carlo P-value < 0.0001). Application of complete linkage clustering and Euclidean distances to the first 

eigenvector (Fig. 2C) revealed four Dietary Groups (DGs). DG1 (“low fat/high fibre”) and DG2 (“moderate 

fat/high fibre”) included 98% of the community and day hospital subjects, and DG3 (“moderate fat/low fibre”) 

and DG4 (“high fat/low fibre”) included 83% of the long-stay subjects. For a complete description of DGs, see 

Supplementary Notes and Supplementary Table 3. 

The Healthy Food Diversity index (HFD23) positively correlated with three microbiota diversity indices 

(Supplementary Fig. 2A), and all four indices showed significant differences between community and long-stay 

subjects (Supplementary Fig. 2B), suggesting that a healthy, diverse diet promotes a more diverse gut 

microbiota. Analysing by DGs rather than residence location confirmed that both microbiota and diet were most 

diverse in DG1, and least diverse in DG3 and DG4 (Suppl. Fig 3). Procrustes analysis similarly showed that the 

DGs were associated with separations in microbiota composition (Suppl. Fig 3). Furthermore, the microbiota 

was associated with the duration in long-stay, with residents for more than a year having a microbiota that was 

furthest separated from community-dwelling subjects (Suppl. Fig 4). For the majority of these longer-term 

residents, the diet was different from that in more recently admitted subjects (Suppl. Fig 4). Examination of 

duration of care (Suppl. Fig 4C), showed that diet changed more quickly than the microbiota did, both in the 

direction away from the community types. After one month in long stay, all subjects had a long-stay diet, but it 

took a year for the microbiota to be clearly the long-stay type. Collectively the data suggested that the 

composition of the microbiota was determined by the composition and diversity of the diet. 
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Community setting and faecal metabolome 

Faecal metabolites correlate with microbiota composition and inflammatory scores in Crohn’s Disease24. We 

therefore performed metabolomic analysis ( NMR spectroscopy) of faecal water from 29 subjects, representative 

(by UniFrac) of three community settings. (Day-hospital subjects grouped closely to community-dwellers by 

microbiota and dietary analysis, and were not included).  A representative NMR profile is presented in 

Supplementary Fig 5. Initial PCA analysis showed a trend for separation according to community setting (data 

not shown). Pair-wise statistical models were therefore constructed according to the cluster groups. Valid and 

robust models were obtained for comparison of NMR spectra from community and long-stay subjects, and 

community and rehabilitation subjects (Fig. 3). The major metabolites separating community from long-stay 

subjects were glucose, glycine and lipids (higher levels in long-stay than community), and glutarate and butyrate 

(higher levels in community subjects). Co-inertia analysis of the genus-level microbiota and metabolome data 

revealed a significant relationship (p-value <0.01) between the two datasets (Supplementary Figure 6 and 

Supplementary Notes). Notwithstanding three long-stay subjects, a diagonal separated community from long-

stay in both microbiota and metabolome datasets. Other metabolites of interest were acetate, propionate and 

valerate, which were more abundant in community dwellers (Supplementary Fig. 6).  

To further investigate microbial short-chain fatty acid (SCFA) production, the frequency of microbial 

genes for SCFA production was investigated by shotgun metagenomic sequencing. We sequenced 125.9 Gb of 

bacterial DNA from 27 of the 29 subjects, and assembled contigs with a total length of 2.20 Gb, containing 2.51 

million predicted genes (Suppl. Table 4). Consistent with reduced microbiota diversity, (Supp. Fig. 3), there 

were significantly fewer total genes predicted, and higher N50 values, in the assembled metagenomic data of 

long-stay subjects compared to rehabilitation or community subjects (Supp. Figure 7). The metagenomes were 

then searched for key microbial genes in butyrate, acetate and propionate production, revealing significantly 

higher gene counts and coverage for butyrate- and acetate- producing enzymes (BCoAt and ACS, respectively) 

in community and rehabilitation compared to long-stay subjects (Suppl. Fig 8 and Suppl. Table 5). There was 

also significantly higher coverage of the propionate related genes (PCoAt) in community compared to long-stay 

subjects but the higher gene count was not significant (Suppl. Table 5). These observations are consistent with 

the association of butyrate, acetate and propionate and the direction of the main split between long-stay and 
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community subjects in the metabolome; candidate genera associated include Ruminococcus and Butyricicoccus 

for butyrate production (Supplementary Fig 6), but require validation in larger cohorts. Microbiota function 

deduced from the metagenome thus corresponded to the measured metabolome for at least one key metabolite 

that can affect health25.  

 

Microbiota-health correlations 

Markers of inflammation (serum TNFα, IL-6 and IL-8 and C-reactive protein (CRP)) were significantly 

higher in long-stay and rehabilitation subjects than in community dwellers (Supplementary Fig. 9). Long-stay 

subjects also scored poorly for  diverse health parameters (Supplementary Tables 6 and 7) including the 

Charlson co-morbidity index (CCI, a robust predictor of survival encompassing 19 medical conditions26), the 

Geriatric Depression Test (GDT), the Barthel Ìndex (BI27), Functional Independence Measure (FIM28), Mini-

mental State Exam (MMSE29), and Mini Nutritional Assessment (MNA30).  

 Correlations between health parameters and microbiota composition were examined using quantile 

(median) regression tests, adjusted for gender, age and community setting with an additive model 

(Supplementary Methods). Median regression gives less weight to extreme values than the linear regression 

based on ordinary least squares and consequently, is less influenced by outliers. The model was adjusted for 

medications that might influence the tested parameters (Supplementary Table 8). The effect of medication was 

generally small (Supplementary Table 8). Since ethnicity was exclusively Irish Caucasian it did not require 

model adjustment. The microbiota composition did not differ for males and females after adjusting for age and 

location. 

Significant associations between several health/frailty measurements and the major separations from 

microbiota UniFrac analysis (Fig. 1) are shown in Table 1. For example, a positive change in microbiota along 

the full range of the PC1 axis in the un-weighted UniFrac PcoA for long-stay-only subjects was associated with 

inflammation (CRP increase of 13.9 mg/l), and other inflammatory markers significantly correlated with 

microbiota (IL-6 and IL-8, whole cohort). As expected, there was minimal variability amongst community-

dwelling subjects, but within the long-stay subjects the most significant associations related to functional 

independence (FIM), Barthel index, and nutrition (MNA), followed by blood pressure, and calf circumference. 

The latter may be attributable to the influence of diet and/or the microbiota on muscle mass, sarcopaenia31, and 
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thereby on frailty. This was supported by investigation of linkage between frailty and faecal metabolites 

(Probabilistic principal components and covariates analysis; PPCCA32). Thus, FIM and Barthel indices were 

significant covariates with the faecal water metabolome (Supplementary Figure 10) and levels of acetate, 

butyrate and propionate increased with higher values of both indices (i.e. less frail subjects). Amongst 

community-dwelling subjects, there was also a strong association between microbial composition and nutrition 

(MNA) and a weaker link with blood-pressure, for which a relationship with the microbiota has previously been 

established33. There was no correlation between the Bacteroidetes : Firmicutes ratio and BMI, though there was 

a correlation with overall microbiota in long-stay subjects. Measures for the Geriatric Depression Test (GDT) 

showed significant microbiota association with PCoA axis 2 (Table 1). We detected no significant confounding 

of microbiota-health correlations due to medications, antibiotic treatment (prior to the one-month exclusion 

window), and diet-health correlations separate from dietary impact on microbiota (Supplementary Notes). 

Taken together, the major trends in the microbiota that separated healthy community subjects from less 

healthy long-stay subjects were associated with markers for increased frailty and poorer health, having adjusted 

for gender, age and location. Because location largely determines diet (Fig. 2), adjusting for location reduces the 

effect of diet, and since there was also clear evidence for microbiota-health associations within the long-stay 

setting, we infer that the causal relationship is in a diet-microbiota-health direction. 

 

Microbiota structure and healthy ageing 

Gut microbiota can be assigned to one of three enterotypes34, driven by Bacteroides, Prevotella and 

Ruminococcus species. A recent study detected only the Bacteroides and Prevotella enterotypes, which were 

associated with diets rich in protein and carbohydrate, respectively21. Using those methods, we predicted an 

optimal number of two clusters using five of six methodologies, albeit with weaker support than previous 

studies (Suppl. Fig 11). In line with a previous study21, the two clusters associated with Bacteroides and 

Prevotella, but not Ruminococcus. Although enterotype assignments from the three approaches were very 

different (Supp. Fig. 11), community subjects were more frequently of the Prevotella enterotype.  

To identify patterns in the microbiota, we established co-abundance associations of genera 

(Supplementary Fig. 12A), and then clustered correlated genera into six co-abundance groups (CAGs) 

(Supplementary Fig. 12B). These are not alternatives to enterotypes, which are subject-driven and poorly 
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supported in this elderly cohort, but they describe the microbiota structures found across the subject groups in 

statistically significant co-abundance groups (Supplementary Notes). The dominant genera in these CAGs were 

Bacteroides, Prevotella, Ruminococcus, Oscillibacter, Alistipes, and the central Odoribacter CAG. These CAG 

relationships are termed Wiggum plots, in which genus abundance can be represented as discs proportional to 

abundance (Supplementary Fig. 12), to normalized over-abundance (Fig. 4), or to differential over-abundance 

(Supp. Fig. 13). In the Wiggum plot corresponding to the whole cohort (Supplementary Fig. 12), the path away 

from the Ruminococcus CAG towards the Oscillibacter CAG shows a reduced number of genera that make 

butyrate, and an increased number able to metabolize fermentation products. 

To simplify the microbiota data for health correlation, we utilized the eight subject divisions identified 

by OTU clustering (Fig. 1C). These eight divisions were superimposed on a UniFrac PCoA analysis of the data 

in Fig 1A, defining 8 subject groups (Fig. 4, Groups 1a through 4b). These are separation points within a 

microbiota composition spectrum that represent groups of individuals who have significantly different 

microbiota as defined by the permutation MANOVA test on un-weighted Unifrac data. We then constructed 

individual Wiggum plots for the microbiota in these 8 groups (Fig. 4).  The transition from healthy community-

dwelling subjects, to frail long-term care residents, is accompanied by distinctive CAG dominance, most 

significantly in abundances of Prevotella and Ruminococcus CAGs (community associated) and Alistipes and 

Oscillibacter CAGs (long-stay associated). 

Our analysis of Figure 4 suggested two paths from community-associated health to long-stay associated 

frailty (plot 1a through 4a, and 1b through 4b), which were examined with reference to health correlations in 

Table 1, plus separate PCoAs for the community-only, and long-stay only subjects. The community and whole-

cohort analyses identified an association of depression with axis 2 – subjects in the lower path had higher GDT 

scores. IL-6 and IL-8 levels were higher in the upper path by whole-cohort analysis (Fig. 4; Supplementary 

figure 14), while CRP levels were higher in the lower path in long-stay-only analysis. Furthermore, subjects in 

the lower path had higher systolic and diastolic BP, except in the community-only analysis. This apparent 

inconsistency is explained by a highly significant change in diastolic BP along the primary PCoA axis in the 

long-stay subjects, emphasizing the value of a stratified cohort. The subjects in the upper path were older but 

displayed higher Barthel and FIM scores than subjects of a similar age in the lower path (Supp. Fig. 14), 

consistent with healthier aging. Movement along PCoA axis 1 of the whole cohort (i.e. from community to 
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long-stay left to right, Fig. 4) is associated with a reduction in abundance of Ruminococcus and Prevotella, and 

increased abundance of the Oscillibacter CAG, accompanied by calf circumference decrease and weight 

decrease (Table 1), and increase in IL-6 levels. Moving along axis 1 of the long-stay PCA (i.e. between the two 

right-ward arms) is accompanied by a reduction in the Oscillibacter CAG, increase in abundance of the 

Bacteroides CAG, reduced FIM and Barthel indices, and increased levels of CRP (Fig. 4). Consideration of the 

microbiota-health correlations in the long-stay cohort (Fig. 4), upwards along axis 2, highlights the association 

with increased frailty, reduced muscle mass, and poorer mental activity moving away from community type 

microbiota.  

 Health-microbiota associations were statistically significant, even when regression models were 

adjusted for location. Although other factors undoubtedly contribute to health decline, which are difficult to 

completely adjust for in retrospective studies, the most plausible interpretation of our data is that diet shapes the 

microbiota, which then impacts on health in older persons. Diet-determined differences in microbiota 

composition may have subtle impacts in young adults in developed countries which would be difficult to 

correlate with health parameters, but become far more evident in the elderly who are immunophysiologically 

compromised. This is supported by the stronger microbiota-health associations evident in the long-stay cohort, 

where there is now a reasonable case for microbiota-related acceleration of aging-related health deterioration. 

An ageing population is now a generalized feature of western countries35,36 and an emerging phenomenon even 

among developing countries. The association of the intestinal microbiota of older persons with inflammation12 

and the clear association between diet and microbiota outlined in this and previous studies20,21,37,38, argue in 

favour of an approach of modulating the microbiota with dietary interventions designed to promote healthier 

aging. Dietary supplements with defined food ingredients that promote particular components of the microbiota 

may prove useful for maintaining health in older persons. On a community basis, microbiota profiling, 

potentially coupled with metabolomics, offers the potential for biomarker-based identification of individuals at 

risk for, or undergoing, less healthy aging.  
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METHODS SUMMARY  

 Amplicons of the 16S rRNA gene V4 region were sequenced on a 454 Genome Sequencer FLX 

Titanium platform. Sequencing reads were quality-filtered, OTU-clustered, chimera-filtered and further 

analyzed using the QIIME pipeline39 and RDP-classifier40. Statistical analysis was performed using Stata and R 

software packages. Nuclear magnetic resonance (NMR) spectroscopy was performed on a 600 MHz Varian 

NMR Spectrometer as previously described41.   

Habitual dietary intake was assessed using a validated, semi-quantitative, food frequency questionnaire 

(FFQ), administered by personnel who received standardised training in dietary assessment. FFQ coding, data 

cleaning and data checks were conducted by a single, trained individual to ensure consistency of data.   
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Figure legends  

Figure 1. Microbiota analysis separates elderly subjects based upon where they live in the community. A) 

unweighted and B) weighted UniFrac PCoA of faecal microbiota from 191 subjects. Subject colour coding: 

Community (green), Day Hospital (yellow), Rehabilitation (orange), Long-stay (red), and Young healthy 

control subjects (purple). C) Hierarchical Ward-linkage clustering based on the Spearman correlation 

coefficients of the proportion of OTUs, filtered for OTU subject prevalence of at least 20%. Subjects colour 

coding as in A. Labelled clusters in top of panel C ( basis for the eight groups in Figure 4) are highlighted by 

black squares. OTUs are clustered by the vertical tree, colour coded by Family assignments. Bacteroidetes 

phylum: blue gradient, Firmicutes - red, Proteobacteria - green, and Actinobacteria - yellow. Only 774 OTUs 

confidently classified to Family level are visualised. The bottom panel shows relative abundance of Family-

classified microbiota. 

 

Figure 2. Dietary patterns in community location correlate with separations based upon microbiota composition. 

A) Food correspondence analysis. Top panel, FFQ PCA;  bottom panel, driving food types. B) Procrustes 

analysis combining unweighted and weighted UniFrac PCoA of microbiota (non-circle end of lines) with Food 

Type PCA (circle-end of lines). C) Four dietary groups revealed through complete linkage clustering using 

Euclidean distances applied to first eigenvector in correspondence analysis. Colour codes in A, and horizontal 

clustering in B and C, are community location, as per Figure 1. Food labelling in lower panel in A, and vertical 

clustering in C: fruit and vegetables (green), grains such as potatoes/cereals/bread  (orange), meat (brown), fish 

(cyan), dairy products (yellow), sweets/cakes/alcohol (blue), vitamins/minerals/tea . (grey). Only peripheral and 

most driving foods are labelled; for complete list see Suppl. Table 2. 

 

Figure 3. PLS-DA plots of 1H NMR spectra of faecal water from A) community subjects (green) versus long-

stay subjects (red); R2=0.517, Q2=0.409, 2 component model,B) community subjects (green) versus 

rehabilitation subjects (orange).R2=0.427, Q2=0.163, 2 component model. The ellipses represent the Hotellings 

T2 with 95% confidence. To confirm the validation of the model, permutation tests (n=1,000) were performed. 

For model A, the 95% CI for the misclassification error rate (MER) was (0.43, 0.57). Using the PLS-DA model 
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on the data resulted in an MER of 0.2 which is outside the 95% CI obtained for random permutation tests thus 

validating the model. For model B, using permutation testing the 95% CI for the MER was (0.45, 0.55). Using 

the PLS-DA model on the data resulted in an MER of 0.16 which is outside the 95% CI obtained for random 

permutation tests. 

 

Figure 4. Transition in microbiota composition across residence location is mirrored by changes in health 

indices. The PCoA plots show 8 groups of subjects defined by unweighted UniFrac microbiota analysis of 

community subjects (left), the whole cohort (centre), and long-stay subjects (right). The main circle shows the 

Wiggum plots corresponding to the 8 groups from whole-cohort analysis, in which disc sizes indicate genus 

over-abundance relative to background. The pie charts show residence location proportions (colour coded as in 

Fig 1C) and number of subjects per subject group. Curved arrows indicate transition from health (green) to 

frailty (red). 
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