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Mastitis is one of the most costly diseases to the dairy farming industry. Conventional antibiotic
therapy is often unsatisfactory for successful treatment of mastitis and alternative treatments are
continually under investigation. We have previously demonstrated, in two separate field trials,
that a probiotic culture, Lactococcus lactis DPC 3147, was comparable to antibiotic therapy
to treat bovine mastitis. To understand the mode of action of this therapeutic, we looked at the
detailed immune response of the host to delivery of this live strain directly into the mammary
gland of six healthy dairy cows. All animals elicited signs of udder inflammation 7 h post
infusion. At this time, clots were visible in the milk of all animals in the investigation. The most
pronounced increase in immune gene expression was observed in Interleukin (IL)-1b and IL-8,
with highest expression corresponding to peaks in somatic cell count. Infusion with a live
culture of a Lc. lactis leads to a rapid and considerable innate immune response.

Keywords: Mastitis, Lactococcus lactis, probiotic treatment.

Mastitis is the most common milk production disease
in modern dairy farming. Despite mastitis control pro-
grammes, it is estimated to affect up to 30% of dairy cattle
in the EU and cost the EU dairy industry approximately
E1.55 billion in 2005 (SABRE, 2006). This economic loss
is due to increases in veterinary and treatment costs and a
decrease in the quality and quantity of milk produced by
infected animals. The ability of any individual animal to
overcome mastitis is dependent on treatment and that
animal’s innate immune response. This response begins
with the host recognizing the presence of foreign patho-
gens and is followed by responses at cellular, tissue and
organismal level, leading to the eradication of the patho-
gen. The differential inflammatory responses elicited dur-
ing intramammary infection correlate with the outcome of
the infection, and variations in cytokine production have
been described for different pathogens (Bannerman et al.
2004b; Strandberg et al. 2005; Yang et al. 2008).

Current control methods rely heavily on antibiotics for
both therapeutic and prophylactic purposes. This method
is not only costly, but is frequently ineffective in chronic
subclinical infections, with cure rates for Staphylococcus
aureus mastitis cases ranging widely from 4 to 92%
(Barkema et al. 2006). There are also increasing concerns
regarding the overuse of antibiotics in veterinary medicine
and the emergence of antimicrobial resistant pathogens
(Barkema et al. 2006). This has led to an increased interest
in the development of alternative treatments for mastitis
(Diarra et al. 2003; Alluwaimi, 2004; Gill et al. 2006a;
Kauf et al. 2007). Recently the application of live bacteria
as a potential mastitis therapeutic has gained interest.
Probiotic bacteria can be used to control several infectious
inflammatory and immunologic conditions through antag-
onism and immunomodulation (Cross, 2002). Commensal
bacteria, with a broad spectrum of antimicrobial activity,
have previously been isolated from healthy bovine udders
and suggested as potential anti-mastitis agents (Al-Qumber
& Tagg, 2006). Jiminez et al. (2008) showed that lacto-
bacilli reduce staphylococcal counts in human mastitis
milk over a 14-d period, with no clinical signs of mastitis*For correspondence; e-mail : linda.giblin@teagasc.ie
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in the treatment group. However, Greene et al. (1991) in-
vestigated the effects of treating bovine subclinical mastitis
infections with intramammary infusions of lactobacillus
and although an increase in somatic cell counts (SCC)
occurred, no increase in intramammary cure rate was ob-
served.

Lactococcus lactis DPC 3147 is a food grade organism
that produces the bacteriocin lacticin 3147 (Ryan et al.
1999). This bacteriocin exhibits broad-spectrum antimicro-
bial inhibition against mastitis-causing pathogens in vitro
(Ryan et al. 1998) and when combined with a bismuth-
based teat seal, it provides protection against infection
with Streptococcus dysgalactiae and Staph. aureus in dry
cows (Ryan et al. 1999; Twomey et al. 2000). Klostermann
et al. (2008) recently demonstrated that a resuspended
freeze-dried application of Lc. lactis is as effective as an
antibiotic in curing clinical mastitis cases. Crispie et al.
(2008) showed that administration of the lactococcal cul-
ture into the mammary glands of uninfected animals elicits
an immunomodulatory effect, with substantial recruitment
of polymorphonucleocytes (PMN) and lymphocytes to the
infused quarters. The aim of this study was to investigate
this immunomodulatory effect further, by describing the
innate immune response, at the transcriptional level, to a
deliberate infusion of Lc. lactis DPC 3147 into a healthy
mammary gland.

Materials and Methods

Animal selection

For methodology set-up, a preliminary study was per-
formed with a Holstein Friesian in her sixth lactation and a
Norwegian Red in her second lactation. The animals were
selected based on their low SCC and the healthy appear-
ance of their udders and milk. The follow-up study con-
sisted of four healthy Holstein Friesian cows (Cows H, J, K
and L) in their first lactation and were selected using the
same selection criteria as above. Quarter milk samples
from all cows were collected aseptically for 7 d prior to
experimental challenge. The milks were screened for the
presence of pathogens by streaking 10 ml onto Aesculin
Blood Agar (ABA) plates containing blood agar base No. 2
(Oxoid), supplemented with 7% citrated whole calf blood
(v/v) and 0.1% aesculin (v/v) (Sigma, St. Louis MO, USA)
and incubating overnight at 37 8C. SCC was performed
using a Somacount 300� (Bently Instruments Inc., Chaska
MN, USA) somatic cell counter. Infusions and milk and
blood sampling were performed under licence from the
Irish Department of Agriculture and Food, and the cows’
health was subsequently monitored by trained farm staff
and veterinary personnel.

Preparation of Lc. lactis and intramammary challenge

Lc. lactis DPC 3147, isolated originally from a kefir grain
(Ryan et al. 1998), was grown at 30 8C in M17 broth

(Difco Laboratories, Detroit MI, USA) supplemented with
0.5% lactose (LM17). Two millilitres of this culture was
diluted with 3 ml of sterile Water for Injection B.P.�

(Antigen Pharmaceuticals Ltd., Roscrea, Ireland) and this
5-ml suspension (containing 108 cfu Lc. lactis) was used
for challenge. Immediately following the morning milking,
one quarter from each animal was infused with this sus-
pension into the teat sinus via the streak canal. The infu-
sions were inoculated to a depth of 17 mm using a syringe
with a blunted smoothed tip to prevent injury to the teat.
Following infusion the culture was massaged upwards into
the quarter. A second quarter from each animal, where
possible the contralateral quarter, was selected as the con-
trol quarter. To minimize animal handling and conform to
animal welfare best practices, no infusion was made in the
control quarter.

Milk sampling

Following challenge, 10 ml of milk from each quarter was
collected aseptically and 100 ml was plated on LM17 agar
plates containing 0.5% lactose to determine Lc. lactis
counts. One-hundred microlitres was also plated onto ABA
plates for total microbiological analysis. Total quarter milk,
(or up to a 2-l volume), was then collected from the in-
fused quarter and the control quarter immediately prior
to infusion and at 7 h, 24 h, 72 h, 7 d and 14 d post in-
fusion (PI).

Harvesting milk somatic cells for RNA isolation

One millilitre of 0.5 M-EDTA (Sigma-Aldrich, Ireland Ltd.,
Dublin) was added per litre of milk (Boutinaud et al. 2002)
and the milk samples were then centrifuged at 1500 g
at 4 8C for 30 min. The fat layer was removed from each
sample using a sterile spatula and the skim milk carefully
decanted. The cell pellets were washed twice in phos-
phate-buffered saline (PBS, Sigma) pH 7.4 with EDTA at a
final concentration of 0.5 mM. The washed cell pellets
were then resuspended in 1 ml of TriPure isolation reagent
(Roche Diagnostics, Bell Lane, East Sussex, UK) and
pipetted up and down until fully homogenized.

Blood leucocyte isolation

Blood samples were taken at the same time points as the
milk samples. Briefly, 10 ml blood was collected from the
tail vein in a sampling tube containing potassium ethylene-
diaminetetraacetic acid (EDTA K3E 15%, 0.12 ml; BD
VacutainerTM BD Vacutainer Systems, Preanalytical sol-
utions, Belliver industrial Estate, Plymouth, UK) and placed
immediately on ice for subsequent RNA extraction. The
samples were combined with 40 ml erythrocyte lysis buffer
(ELB) from Qiagen (Qiagen House, Crawley, West Sussex,
UK) and placed on ice for 15 min. Following centri-
fugation at 3000 g the supernatant was decanted and the
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leucocytes were washed in an additional 20 ml ELB. The
cells were then resuspended in 1 ml of TriPure reagent
(Roche Diagnostics).

RNA extraction and cDNA synthesis

Total RNA of milk cells and blood cells was extracted
using TriPure (Roche Diagnostics) according to the manu-
facturer’s instructions. RNA was quantified using optical
density readings at 260 nm and the integrity was analysed
following electrophoresis through glyoxyl gels (Ambion).
One microgram of RNA was DNAse treated and reverse
transcribed to cDNA using the QuantiTect� Reverse
Transcription Kit (Qiagen, Crawley, West Sussex, UK) ac-
cording to manufacturers instructions in a final volume of
20 ml.

Quantification by real-time PCR

Primers were designed for real-time PCR across intron/
exon boundaries where possible, to minimize amplification
of DNA. The primers were designed using data available
in the Genbank database, and accession numbers are given
with the primer sequences in Table 1. In addition to the
immune genes under investigation a housekeeping gene, a
ubiquitin conjugating enzyme (E2D2), was also included
for analysis.

Quantitative analysis of the genes of interest was
performed in a LightCycler 480 instrument (Roche

Diagnostics) using a dilution series of external plasmid
DNA standards (Pfaffl, 2001). Plasmid standards were
created for each gene by cloning a cDNA PCR product
into pCR TOPO (Invitrogen, Life Technologies, Carlsbad
CA, USA). Cloning was confirmed by sequencing. One
microlitre of each dilution was used per 10 ml LightCycler
reaction. The LightCycler 480 SYBR Green I Master kit
(Roche Diagnostics) was used for quantification according
to the manufacturer’s instructions using 0.5 mM forward
and reverse primer. Each programme began with initial
denaturation at 95 8C for 10 min, followed by 50 cycles of
quantification consisting of 5-s denaturation at 95 8C, 10-s
annealing and 25-s elongation at 72 8C. Annealing tem-
peratures for each gene are given in Table 1. Melting curve
analysis was performed on each product by heating from
a temperature 5 8C above the annealing temperature to
95 8C in the continuous fluorescence acquisition mode to
ensure specificity of Lightcycler products. For each gene,
Lightcycler runs were performed in triplicate.

Statistical analysis

Results for the preliminary study were not included in the
statistical analysis to exclude age and breed as a random
effect. Gene expression data and SCC data were visually
assessed for normality. Expression data and SCC data were
then transformed by obtaining the natural log. SCS refers to
the transformed variable of the SCC. A hierarchical mixed
model (PROC MIXED; SAS Version 9.1, SAS Institute Inc.,

Table 1 Primers and conditions used for real-time PCR analyses (Ta is the annealing temperature)

Gene Primer sequence Accession no Ta (8C)

IL-1b IL1B-591 F: 5k-TGG GTA TCA AGG ACA AGA ATC-3k NM_174093 51
IL1B-772 R: 5k-CCA GTT AGG GTA CAG GAC AGA C-3k

IL-8 IL8-305 F: 5k-CTA AAC CCC AAG GAA AAG TG-3k NM_173925 50
IL8-693 R: 5k-CAA GAT TAA CAA AAA CCG AAA ACA-3k

IL-10 IL10-373 F: 5k-CGC TGT CAT CGC TTT CTG-3k NM_174088 53
IL10-482 R: 5k-AAC TCA CTC ATG GCT TTG TAG-3k

IL-12 IL12-789 F: 5k-GAG CAC CCC GCA TTC CTA CTT C-3k U11815 57
IL12-974 R: 5k-GAC ACA GAT GCC CAT TCA CTC CAG-3k

TNF-a TNF a-2394 F: 5k-TAA CAA GCC GGT AGC CCA CG-3k AF011926 64
TNF a-2385 R: 5k-GCA AGG GCT CTT GAT GGC AGA-3k

NF-kB NFkB-719 F: 5k-ACC CTA TGA GCC AGA GTT T-3k AY849381 54
NFkB-1216 R: 5k-AAG GCA TTG TTC AGT ATC C-3k

TLR-2 TLR2-2236 F: 5k-CAT TCC TGG CAA GTG GAT TAT C-3k NM_174197 61
TLR2-2433 R: 5k-GGA ATG GCC TTC TTG TCA ATG G-3k

TLR-4 TLR4-132 F: 5k-TCT CTA CAA AAT CCC CGA CAA CAT-3k NM_174198 57
TLR4-369 R: 5k-AGA AAA GGC TCC CCA GGC TAA ACT-3k

CD14 CD14-156 F: 5k-CCT GCG AGC TGG ACG ACG ACG AT-3k NM_174008 61
CD14-354 R: 5k-CGA ACG CGC AGA GCC TTG ATT GTG-3k

CXCR1 CXCR1-648 F: 5k-CAA TAC AAC GAA ATG GCG GAT GAT-3k U19947 60
CXCR1-849 R: 5k-CAG GTT GTA GGG CAG CCA GCA GAG-3k

E2D2 E2D2-48 F: 5k-CAG GGG TGG AGT ATT TTT CTT GA-3k XM_582519 57
E2D2-339 R: 5k-AGT CCA TTC CCG AGC TAT TCT GTT-3k
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Cary NC, USA) was used to quantify the effect of treatment
on SCS and gene expression. The dependent variable was
transformed gene expression or SCS. Fixed effects included
in the model were time, treatment, and time by treatment
interaction. Where significant (P<0.05) a covariate, which
was the gene expression or SCS for the control and infused
quarters prior to the start of the experiment, was included
as a fixed effect. This accounted for intra-cow variation.
Time relative to the start of experiment was included as
a repeated effect within udder quarter, and cow was in-
cluded as a random effect. The most appropriate covari-
ance structure among records was determined using
Akaike information criterion. Least squares means were
extracted from the analysis and differences between the
control and infused quarters were considered significant
at P<0.05. For graphical representation (Figs 2, 3 and 4)
transformed gene expression data were back-transformed.
Fold change was determined as the difference between
peak gene expression and pre-infusion levels divided by
pre-infusion expression for that gene.

Results

Recovery of viable bacteria from challenged quarters

To establish whether Lc. lactis successfully survived fol-
lowing intramammary infusion, milk samples were taken

aseptically 7 h, 24 h, 48 h, 72 h and 7 d PI. Viable Lc.
lactis were recovered at 7 h and 24 h from all cows (H, J, K
and L). The bacterium was recovered 48 h PI from Cows
H, J, and L and at 72 h PI from Cow K (Table 2). No other
bacteria were recovered from the infused quarters through-
out the trial. Control quarters remained clear of bacteria
for the duration of the trial.

Physical response and milk characteristics

All animals elicited signs of udder inflammation in the
infused quarters 7 h PI. These included swollen infused
quarters, an elevation in rectal temperature or an elevated
SCS i.e. above 12.2 (198 789 cells/ml) SCS (see Table 2
and Fig. 1). At this time, clots were visible in the milk of
all four cows. SCS of the animals was recorded as >16.12
(10 000 000 cells/ml) as an accurate estimation could not
be made due to the presence of clots. All animals had a
self-limiting infection which was completely cleared 7 d
PI. Consequently, antibiotic intervention was not required.
Statistical analysis of the four Holstein Friesian cows in
their first lactation demonstrated that SCS remained at
elevated levels until 72 h PI. SCS of the infused quarters
were greater than control quarters at 7 (P<0.01), 24
(P<0.001), 48 (P<0.001) and 72 h (P<0.001) PI. At 7 d PI,
the average SCS for infused quarters was <12.2, so the
quarters were considered clear of infection at this time

Table 2 Rectal temperature, physical changes and viable Lactococcus lactis recovered in (a) infused quarters and (b) control quarters
following intramammary Lc. lactis DPC 3147 infusion (PI=post infusion)

(a) Infused quarters

Cow H Cow J Cow K Cow L

Rectal temperature, 8C† 39.2 39.8 38.8 N/A‡
Milk presentation† C2 Clots C2 Clots C1 Clots C2 Clots
Udder presentation† Slight Slight Slight Slight

Swelling Swelling Swelling Swelling

Viable Lc. lactis recovered, cfu/ml:
Pre-infusion 0 0 0 0
7 h PI >3000 >3000 >3000 >3000
24 h PI 940 2160 2390 1210
48 h PI 80 100 220 40
72 h PI 0 0 0 0

† 7 h PI ; ‡ rectal temperature for this animal was not obtained

(b) Control quarters

Cow H Cow J Cow K Cow L

Milk presentation† No Clots No Clots No Clots No Clots
Udder presentation† No Swelling No Swelling No Swelling No Swelling

Viable L. lactis recovered, cfu/ml:
Pre-infusion 0 0 0 0
7 h PI 0 0 0 0
24 h PI 0 0 0 0
48 h PI 0 0 0 0
72 h PI 0 0 0 0

† =7 h PI
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(Fig. 1) but was still different from the control quarters
(P<0.01). Similar results were observed in the preliminary
study (data not shown).

Cytokine changes in infused quarters

The panel of immune genes investigated consisted of Toll-
like receptor (TLR) 2, TLR4, cluster of differentiation (CD)
14, interleukin (IL)-1b, IL-8, IL-10, IL-12, tumour necrosis
factor (TNF)-a, nuclear factor-kappa B (NF-kB) and
chemokine receptor CXCR1. Statistical analysis of the four
cows in their first lactation demonstrated that all ten
immune genes investigated were significantly upregulated
7 h post challenge. The greatest increase was noticed in
IL-1b, IL-8 and CXCR1 expression, which underwent a
7000-fold, 4400-fold and 2700-fold average increase
within 7 h PI respectively (P<0.001, Fig. 2a, b, c). Ex-
pression of all three genes in the infused quarters differed
from the control quarters up to 72 h PI (P<0.05); however,
there was no significant difference 7 d PI.

For TLR2, the highest levels were detected 7 h PI
(average 600-fold increase; P<0.001; see Fig. 3a) with a
second, albeit lesser peak at 72 h PI (P<0.01). Levels of
TLR2 in the infused quarters were still greater (P<0.05)
than in the control quarters 7 d PI; however, there was
no significant difference between the control and infused
quarters 14 d (2 weeks) PI. TLR4 showed a greater fold
increase within 7 h of challenge. Expression levels were
on average 1000-fold greater than pre-infusion levels
(P<0.001; see Fig. 3b). Expression in the infused quarters
was not significantly different from the control quarters
7 d PI.

TNF-a expression was greatest at 7 h PI with, on
average, almost a 450-fold increase (P<0.001) within that
time (Fig. 3c). Gene expression levels remained elevated

until 72 h PI (P<0.01) when compared with control quar-
ters. The highest levels of NF-kB were also observed in
all animals 7 h PI (P<0.001). The fold change in all ani-
mals did not vary as much as other genes, with on average
a 45-fold increase in RNA levels. Transcript abundance
in the infused quarters remained greater (P<0.05) than
in the control quarters until 7 d PI (Fig. 4a). CD14 was
also greater 7 h PI, with an average 500-fold increase
(P<0.001) within that time. Elevated levels (P<0.05) were
still observed 7 d PI; however, there was no significant
difference between the control and infused quarters 14 d
PI (Fig. 4b). IL-12 gene expression in the infused quarters
was greater than the control quarters at 7, 24 and 48 h PI
(P<0.001). Peak in expression levels occurred at 7 h PI
(>300-fold increase). The increase of expression of this
gene was short-lived, however, and there was no difference
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given as the exponential of transformed data ±95% confidence
intervals. *** P<0.001; ** P<0.01; * P<0.05.
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between the control and infused quarters by 72 h PI
(Fig. 4c).

IL-10 expression also peaked at 7 h PI (average 400-fold
up-regulation) and infused quarters were greater than
control quarters (P<0.001). Elevated levels remained dif-
ferent (P<0.05) from control quarters expression until 7 d
PI, with no difference 14 d PI (Fig. 4d).

There was no significant difference in expression levels
of the housekeeping gene, E2D2, throughout the chal-
lenge (data not shown). Results from the preliminary study
showed similar gene expression profiles, with notable in-
creases in IL-1b and IL-8 observed (data not shown).

Cytokine expression in control quarters and blood

Control quarters acted as internal controls for the infused
quarters in each animal. Throughout the trial, there were
some slight, non-significant increases in gene expression in
control quarters at 7 h and 24 h PI, relative to immediately
prior to the start of the experiment; however, these in-
creases were much less pronounced than in the infused
quarters. An increase in pro-inflammatory cytokine gene
expression was also observed 14 d PI; however, this was
not significantly different from pre-infusion levels (Figs 2,
3, 4). No significant changes in gene expression were
observed in the blood of any of the animals in this study
(data not shown).

Discussion

This study was initiated to determine the effect of a delib-
erate intramammary infusion with a food-grade bacterium,
Lc. lactis DPC 3147, in healthy lactating dairy cows. Ex-
perimental trials have previously shown that treatment
with Lc. lactis live culture is effective for cases of clinical
and subclinical mastitis (Klostermann et al. 2008). We
describe a massive immune response, with an increase in
all pro-inflammatory genes investigated. The most signifi-
cant difference was observed in expression of IL-1b, IL-8
and CXCR1, where a 7000-fold, 4400-fold and 2700-fold
increase, respectively, was observed within 7 h of infusion.
The magnitude of the response is particularly noteworthy
as Lc. lactis does not colonize within the udder and bac-
terial counts recovered from milk decrease to zero 72 h PI.
All animals experienced an increase in SCC and swollen
udder quarters. However, the immune response was
short-lived and SCC, as well as expression of most pro-
inflammatory genes had returned to pre-infusion levels
within 1 week.

As a therapeutic, the immune profile elicited by this
Gram-positive bacterium is distinctly different from a
pathogen assault. The Gram-positive pathogen Staph.
aureus fails to upregulate expression of IL-8 and TNF-a
at both gene and protein level (Bannerman et al. 2004b;
Yang et al. 2008). Str. uberis induces a late TNF-a response
and a sustained elevated expression of IL-1b protein
(Bannerman et al. 2004a). Str. dysgalactiae infusion caused
a subdued immune response with IL-8 gene up-regulation
typically peaking at a 10–100-fold increase per 30 000 cfu/
ml bacteria recovered (data not shown). Escherichia coli,
a Gram-negative pathogen induces a much more acute re-
sponse with an increase >50-fold and >100-fold increase
of IL-8 and TNF-a gene expression, respectively,within 12 h
of challenge, and an increase in abundance of these proteins
within 16 h (Bannerman et al. 2004b; Yang et al. 2008).
However, the magnitude and speed of the response is still
less than that to Lc. lactis. Up-regulation of cytokines and
chemokines is necessary to mount a successful defence
against mammary pathogens. Lc. lactis is capable of pro-
viding a substantial immune stimulation.
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As Lc. lactis is a Gram-positive bacterium and TLR2
binds to lipotechoic acid, the observed increase in TLR2
expression was to be expected. However, the increase in
TLR4 and CD14, whose gene products are involved in LPS
recognition, was of the same magnitude and, in the case
of TLR4 in some animals, greater than the up-regulation
of TLR2. Ozinsky et al. (2000) proposed that TLRs are re-
cruited to all phagosomes of macrophages to sample
the contents, identify the bacteria and initiate the most
effective response. Indeed, Goldammer et al. (2004) also
observed an increase in both TLR2 and TLR4 RNA in
mastitic tissue of cows infected by the Gram-positive
Staph. aureus.

Once a bacterium is recognized through TLR signal-
ling, cells usually secrete TNF-a and IL-1b to induce an
acute phase response, activate NF-kB and increase IL-8
protein abundance. Our data set described a massive burst
of IL-1b and IL-8 gene expression and a significant up-
regulation of TNF-a at the first PI sampling time. The
up-regulation of IL-8 gene expression was supported by a
concomitant increase in IL-8 protein concentration in a
representative milk sample (P Rainard, personal com-
munication), as measured by ELISA (Rainard et al. 2008).
In addition the CXCR1 gene, which codes for an IL-8 re-
ceptor on neutrophils, is significantly up-regulated. Further
circumstantial evidence that IL-8 expression is consider-
ably increased is the observation of a large influx of neutro-
phils to the site of infusion in a comparable study by

Crispie et al. (2008). The massive stimulation of IL-1b
by Lc. lactis may be one of the immunomodulatory
mechanisms in which the bacterium confers its therapeutic
effect. Oviedo-Boyso et al. (2008) has shown adminis-
tration of the pro-inflammatory cytokines, TNF-a and
IL-1b, increases the endocytic activity of the bovine
endothelial cells (BEC) for Staph. aureus and enhances the
ability of BEC to eliminate intracellular Staph. aureus and
Staph. epidermidis in vitro. Wedlock et al. (2008) state that
administration of recombinant bovine IL-1b to mammary
glands at drying off results in sterile mastitis (i.e. increased
SCC) but lowers the incidence of new intramammary in-
fection by Streptococcus uberis.

NF-kB expression was also up-regulated following
Lc. lactis challenge, but the fold change was not as
noticeable as for other genes. This may be explained by
the relative abundance of cytoplasmic NF-kB protein
awaiting activation. IL-10 was included in the gene panel
to describe an anti-inflammatory response in the mammary
gland due to the presence of Lc. lactis. Peak levels of IL-10
were observed 7 h PI with an average 400-fold change
from pre-infusion levels. As distinct from the majority of the
other genes investigated, IL-10 remained elevated beyond
one week PI.

Control quarters exhibited a negligible increase in SCS
and expression of a number of pro-inflammatory genes.
These increases were most likely due to cross-talk be-
tween quarters (Berry & Meaney, 2006). No response was

***
*

**
* * NS

1.E+00

1.E+02

1.E+04

1.E+06

0 50 100 150 200 250 300 350 400

Time (hours)

G
en

e 
C

op
y 

N
um

be
r

Infused Control Infused Control

* NS
****

***

1.E+00

1.E+02

1.E+04

1.E+06

0 50 100 150 200 250 300 350 400

Time (hours)

G
en

e 
C

op
y 

N
um

be
r

***
*** ***

NS NS NS

1.E+00

1.E+02

1.E+04

1.E+06

0 50 100 150 200 250 300 350 400

Time (hours)

G
en

e 
C

op
y 

N
um

be
r

Infused Control Infused Control

***
* ** * * NS

1.E+00

1.E+02

1.E+04

1.E+06

0 50 100 150 200 250 300 350 400

Time (hours)

G
en

e 
C

op
y 

N
um

be
r

(a) NF-κB

(b) CD14

(c) IL-12

(d) IL-10

Fig. 4. Gene expression profiles in infused quarters compared to control quarters. (a) NF-kB; (b) CD14; (c) IL-12; (d) IL-10. Values
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observed at the systemic level. No infusion was adminis-
tered to the control quarter. While we cannot rule out
the possibility that the process of infusion in this study is the
cause of the inflammatory reaction, we believe that it is
highly unlikely. Previous and repeated trials by our research
team has shown that infusion of sterile water into the con-
trol quarter does not cause irritation or inflammation as
measured by gene expression, SCC and physical appear-
ance. The immune response to Lc. lactis is also dose-
dependent with a lower dose of 103 cfu eliciting no response
(Crispie et al. 2008) and no change in immune gene ex-
pression (K Klostermann, unpublished observations).

Treatment with Lc. lactis compares very favourably
with other therapies recently investigated to treat mastitis.
Cytokine therapy has been investigated, but only as a
prophylactic treatment and use of some cytokines was
found to have serious side-effects, especially at certain
times of year (Alluwaimi, 2004; Wedlock et al. 2008;
Zecconi et al. 2008). Vaccination strategies have produced
varying results and many require repeated dosing or
boosters over a series of months (Middleton et al. 2009).
LPS treatment was found to give only a transient decrease
in bacterial numbers, but not to improve cure rates. Also,
repeat dosing might be required, eventually reducing effi-
cacy (Kauf et al. 2007). Lactoferrin has proved effective,
but only in combination with antibiotics (Lacasse et al.
2008). Bacteriophage therapy has been hampered by the
discovery that phage activity against Staph. aureus was
inhibited in bovine milk (O’Flaherty et al. 2005; Gill et al.
2006b). However, Lc. lactis DPC 3147 may prove to be a
successful non-antibiotic treatment for mastitis because of
is ability to (a) produce a bacteriocin with broad spectrum
antibacterial activity against Gram-positive pathogens
(Ryan et al. 1998) and (b) elicit a rapid and substantial
innate immune response.

The authors gratefully acknowledge Dr Stuart Childs, Dr Frank
Buckley and Ballydague farm staff. We also wish to sincerely
thank Dr Pascal Rainard, INRA for ELISA data. This work was
funded by the Irish Dairy Research Trust, the Teagasc Retooling
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