<table>
<thead>
<tr>
<th>Title</th>
<th>Genetic tools for investigating the biology of commensal lactobacilli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fang, Fang; O'Toole, Paul W.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2009-01-01</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
</tbody>
</table>
 http://dx.doi.org/10.2741/3439 |
| **Rights** | © Frontiers in Bioscience |
| **Item downloaded from** | http://hdl.handle.net/10468/112 |

Downloaded on 2019-01-05T05:28:49Z

This is an, un-copyedited, author manuscript that has been accepted for publication in the Frontiers in Bioscience". Cite this article as appearing in the Journal of Frontiers in Bioscience. Full citation can be found by searching the Frontiers in Bioscience (http://bioscience.org/search/authors/htm/search.htm) following publication and at PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed) following indexing.

This article may not be duplicated or reproduced, other than for personal use or within the rule of "Fair Use of Copyrighted Materials" (section 107, Title 17, U.S. Code) without permission of the copyright holder, the Frontiers in Bioscience. From the time of acceptance following peer review, the full final copy edited article of this manuscript will be made available at http://www.bioscience.org/. The Frontiers in Bioscience disclaims any responsibility or liability for errors or omissions in this version of the un-copyedited manuscript or in any version derived from it by the National Institutes of Health or other parties.

Deposited on: 8 February 2010

CORA Cork Open Research Archive http://cora.ucc.ie
Genetic tools for investigating the biology of commensal lactobacilli

Fang Fang 1, Paul W. O'Toole 1

1 Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Genomic resources
 3.1. Genome databases
 3.2. Microarray-based analysis
 3.3. In silico modeling of metabolic pathways
 3.4. Codon usage, operon structure
4. Lactobacillus identification tools
5. Gene transfer systems
 5.1. Transformation
 5.2. Conjugation
 5.3. Transduction
6. Gene expression and control
 6.1. Available plasmids replicons and construction of gene cloning vectors
 6.2. Gene expression and control of expression
 6.3. Genetic markers, promoters
7. DNA mutagenesis systems
 7.1. Integration and insertion systems
 7.2. Random mutagenesis systems
8. Summary and perspectives
9. Acknowledgements
10. References

1. ABSTRACT

Lactobacilli belong to the genus Lactobacillus, the largest genus among the lactic acid bacteria (LAB). They are abundant in plant material and food resources, or they may inhabit niches in or on the bodies of humans and animals, as commensals. Lactobacilli of food origin are commercially important in the production of dairy products, fermented meats, vegetables, and sourdough, and many of their properties have been well studied. Commensal lactobacilli are good candidates for development as probiotics. In recent years, the general biology and host interaction mechanisms of commensal lactobacilli have attracted great interest. Although the metabolic pathways, predicted gene functions, and some phenotypic traits, of commensal lactobacilli can be inferred or deduced to an extent by the growing number of Lactobacillus genome sequencing project, various genetic tools are still required to confirm their phenotypic properties and biological traits. The current state of the art with respect to the available complement of genetic tools including genomic resources, and more traditional approaches to investigate the biology of commensal lactobacilli, will now be reviewed.

2. INTRODUCTION

Lactobacilli are Gram-positive, non-spore-forming, acid-tolerant, aerotolerant or anaerobic with low G+C content (1). With a long application history, lactobacilli are important microbes in industry, which contribute to the production of cheese, yogurt, and other fermented products. Apart from being isolated from a broad range of nutrient-rich environments (2-7), lactobacilli are also part of the commensal human microbiota. They are abundant in the vagina (8), and were also found in the oral cavity (9), the small intestine and the large intestine (10). Because of their history of safe use and their natural presence in the human intestinal tract, commensal lactobacilli offer considerable potential as probiotics. Probiotics are “live microorganisms which when administered in adequate amounts confer a health benefit on the host” (11). It is known from numerous analyses that probiotics benefit the host through a variety of mechanisms (12-17).

Even more so than other lactic acid bacteria (LAB), Lactobacillus species vary greatly in their phenotype, and scientists are faced with an unusually high level of phylogenetic diversity (18). Functional characterization of individual Lactobacillus species therefore requires a variety of genetic tools that may need to be adapted or customized for individual species, which usually have distinguishing properties to be investigated. For example, it is established that some lactobacilli benefit the host through modulation of the immune system (19, 20). Colonization (adhesion or persistence) is an expected, but possibly not essential, feature for strains being developed as probiotics. However, strains which are probiotic are expected to have
Genetic tools for lactobacilli

a wider impact on intestinal ecology, which may include production of antimicrobial substances, and usually requires survival in the stressful environment of the GI (gastrointestinal) tract, including resistance to low pH, and bile. The identification of genes or clusters that contribute to these probiotic-related characteristics is an ongoing challenge for scientists. In this context, genetic analysis and manipulation of these bacteria will be of paramount importance to understand their probiotic functionality and for optimizing their performance in vitro and in vivo. An emerging knowledge of the genomics of Lactobacillus species will allow improved understanding of the probiotic characteristics of these strains. However, the development of genetic tools for lactic acid bacteria, especially commensal lactobacilli, has lagged significantly, notwithstanding a number of significant recent studies. Therefore, novel genetic tools are urgently required to understand the biological potential of many Lactobacillus species. This review summarizes the current status in this area, and highlights issues of greatest urgency for further advancement. As an accompaniment to the sections which follow, Figure 1 illustrates schematically a selection of genetic tools that have been successfully applied to the study of candidate genes involved in probiotic effects in commensal lactobacilli.

3. GENOMIC RESOURCES

3.1. Genome databases

Genome sequencing projects provide critical data to underpin investigation of commensal lactobacilli. Twelve Lactobacillus genome sequences including five commensal Lactobacillus strains have been published by January 2008. The sequenced strains belong to Lactobacillus acidophilus (29), Lactobacillus brevis (30), Lactobacillus casei (30), Lactobacillus delbrueckii ssp. bulgaricus (31), Lactobacillus gasseri (30), Pediococcus pentosaceus (30), Lactobacillus helveticus (32), Lactobacillus johnsonii (33), Lactobacillus plantarum (34), Lactobacillus sakei (35), and Lactobacillus salivarius (36). Their genome properties are described in Table 1. There are another three Lactobacillus genome sequencing projects completed but currently unpublished or in press (Lactobacillus reuteri F275, Lactobacillus rhamnosus ATCC53103 and Lactobacillus fermentum IFO3956). More Lactobacillus genome sequencing projects are in process according to the genomes online database (GOLD) (37), from the Lactobacillus species amylyoliticus, antri, buchneri, coleohominis, cristasus, iners, jensenii, reuteri, paracasei, syntoryeus, and ultunensis. The complete genome resources deposited in the NCBI database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&tool=toolbar) and other databases provide not only complete genome information, but also bioinformatics tools for genome analysis. Websites like KEGG (http://www.genome.jp/kegg/), JGI microbial genomics (http://genome.jgi-psf.org/mic_home.html) offer predicted metabolic pathways or comparative analysis and annotation of publicly available genomes. In addition, the JCVICMR on-line resource from the J. Craig Venter Institute (http://cmr.jcvi.org/cgi-bin/CMR/CmrHomePage.cgi) provides genome tools including genome summary information, graphical displays, genome properties, and sophisticated genome analysis tools (gene position search, protein motif search, restriction digest, pseudo 2D gel, codon usage, putative operon predictions, primer search etc.) as well as comparative tools. The available genome databases will provide information underpinning the understanding of the biology and function of sequenced Lactobacillus species as well as those of strains from the same species.

3.2. Microarray-based analysis

Sequenced and annotated Lactobacillus genomes provide comprehensive information about predicted gene functions, in silico-constructed bacterial metabolic pathways, and especially potential host interaction factors and gene functions in candidate probiotic strains. However, these are all, by definition, merely predicted functions, unless and until they are confirmed experimentally. On the basis of sequenced genomes, microarray-based assay is an efficient methodology to measure gene transcription, and it can be used in comparative genomic hybridization, single nucleotide polymorphism studies, tiling array analyses, and promoter sequence/function studies (38). Among those genome sequences available for commensal lactobacilli, microarray techniques were mainly employed to investigate stress response genes involved in gut persistence such as bile responsive genes (39, 40), acid resistance genes (41) and gut persistence associated genes (42). Targeted analyses of specific operons like those for bile-resistance (43), carbohydrates utilization (44, 45), and also systems involved in regulation of adherence (46) can also be accomplished by microarrays. There are other applications that microarray technology can address. It can track changes in the expression of genes along the digestive tract (47), and can be used to detect gene expression responsive to the intestinal tract (48-50), and to analyze integration and distribution of Lactobacillus prophages (51). Microarrays are also being developed which support thousands of 16S ribosomal RNA (rRNA) gene probes that are specific for intestinal bacteria, for community analysis, as described elsewhere in this volume.

3.3. In silico modeling of metabolic pathways

Genome sequencing projects can dramatically accelerate the understanding of biological capabilities of lactobacilli. Exemplifying this, genome-scale metabolic networks can be reconstructed based on the functional annotation of predicted genes, genome and metabolic pathway databases, and targeted experimental verification. For commensal lactobacilli, there are few such networks constructed, with the prominent example of LalplantCyc (52) for the genome sequence of L. plantarum WCFS1 potentially serving as a model. The metabolic network links functional genes with metabolic reactions, which can be used to investigate cellular properties of organisms and help scientists to understand the diversity of their capabilities, roles and interactions. Recently, an AUTOGRAPH-method (Automatic Transfer by Orthology of Gene Reaction Associations for Pathway Heuristics) (53) has been developed to accelerate the process of metabolic reconstruction. However, the quality of the metabolic network derived from it depends on the availability and quality of manually curated metabolic networks and the orthology detection. Given the critical role of metabolism of lactic acid bacteria in carbohydrate and protein catabolism, the extension of in
Genetic tools for lactobacilli

silico metabolic mapping to other species is highly desirable, reinforced by experimental validation where appropriate. Considering an individual Lactobacillus strain as a cell factory (54), metabolic models will help to build cellular signaling and regulatory networks.

3.4. Codon usage and operon structure

Access to complete genome sequences of commensal lactobacilli provides empowering information for rational design of cloning experiments, for example to facilitate heterologous gene expression. Thus, there is an accompanying requirement to characterize properties such as codon usage, for trouble-shooting and optimizing protein production. Bioinformatic tools like Artemis (Sanger, Cambridge, UK) and the JCVI-CMR on-line genome tools can derive codon usage patterns for a bacterium whose genome sequence is available. However, despite the high bias of the codon usage in lactobacilli (55), there are surprisingly no meta-analyses of this topic in the post-genomic era.

Given the high coding density typical of prokaryotes, and utilization of single promoters for co-transcription of complex operons, many biologically interesting genes in commensal lactobacilli are likely subject to co-regulation and transcriptional dependence on contiguous genes. The burgeoning availability of genome sequences, improved tools for motif detection such as deployment of Hidden Markov models (HMM) (56), and the increasing power of comparative genomics (57) will collectively ensure that powerful tools are available to identify genes, operons, promoters and regulatory sequences.

4. LACTOBACILLUS IDENTIFICATION TOOLS

Identification of lactobacillus species has been historically contentious, and some high-profile strains have been reclassified. Meaningful biological investigations of commensal lactobacilli benefit from robust identification and phylogenetic positioning of strains that are often isolated from very complex environments. The classification of lactobacilli is complex and controversial: Identification of commensal lactobacilli is difficult as they belong to a large extremely diverse genus Lactobacillus which contains 147 recognized species to date (58). Genetic investigations and tools therefore provide important adjuncts to taxonomy tools based on physiological, biochemical and molecular profiles available for differentiation of Lactobacillus as described in Table 2. The classic approach such as employment of API 50 CH strips (bioMérieux, Inc., Marcy l’Etoile, France) (59) based on carbohydrates fermentation profiles is common and efficient for the identification of lactobacilli. However, due to the diversity of Lactobacillus and lack of database profiles for species including L. gasseri, L. jensenii, L. iners and Lactobacillus vaginalis, identification of commensal Lactobacillus species by API 50 CH can lead to misidentification or uninterpretable results (60). Complicating identification are persistent errors in classification; for example, it is not robust to divide some species into subspecies (61) either by molecular techniques, or by reference to carbohydrate utilization profiles in the API 50 CH database. Therefore, differentiation of Lactobacillus species according to physiological and biochemical criteria alone can be unreliable.

Molecular approaches are more reliable, and have been used to distinguish lactobacilli at the species or strain level. Most of these molecular approaches are based on analyzing differences in PCR amplicons derived from fragments or regions including 16S ribosomal RNA (rRNA) gene (62), 16S-23S rRNA intergenic spacer region (63, 64), groEL (hsp60 PCR-RFLP) (65) or random DNA (randomly amplified polymorphic DNA, RAPD) (66). These strain identification tools are efficient and can distinguish lactobacilli at species level. For differentiating genotypically close Lactobacillus species or distinguishing at strain level, it is necessary to employ identification tools that couple PCR with restriction or electrophoresis analysis, such as amplified ribosomal DNA restriction analysis (ARDRA) (67, 68), PCR-coupled temperature or denaturing gradient gel electrophoresis (PCR-TGGE and PCR-DGGE) (69, respectively), transferred-DNA (tDNA) intergenic spacer PCR (tDNA-PCR) (70) and multiplex RAPD-PCR (71). The choice of application of these approaches mainly depends on the requirement for differentiation. Methods based on whole genome polymorphisms such as renaturing SDS-PAGE (72), pulsed-field gel electrophoresis (PFGE) (73), amplified fragment length polymorphism (AFLP) (74) and temporal temperature gradient gel electrophoresis (TTGE) (75) are also useful to determine the relatedness of Lactobacillus isolates.

Of great interest, some methods such as typing IS (insertion sequence) elements have been used to group lactobacilli of the same species into clusters which correlated with the isolation source (76). Other identification tools based on microarrays proved useful for the characterization of lactobacilli. For example, genome-probing microarrays (GPM) (77) detected a linear relationship between the hybridization signal intensity and target genome quantity. This method showed high sensitivity for identifying Lactobacillus strains in a community background. (0.25% prevalence in the total community, testing 2.5 total ng DNA, was still detectable). Another genome-typing approach identified regions of variance among L. plantarum strains (78). This method was able to distinguish L. plantarum into two groups. Robust phylogenetic positioning of lactobacilli, complemented by phylogenomics, will be useful for ecological studies of environments such as the gut that contain many members of this genus.

5. GENE TRANSFER

Although genetic manipulation of strains for usage in food preparation is prohibited in many jurisdictions, there is still a great deal to be learned by studying Lactobacillus gene function in a heterologous background. Thus it is essential to develop methods for transferring genes between strains and model hosts.
Genetic tools for lactobacilli

5.1. Transformation

Replicons derived from different plasmids that have been demonstrated to replicate in lactobacilli are listed in Table 3. Electroporation has been widely used for plasmid transfer and cloning in many lactobacilli. For most species, transformation occurs at reasonable frequencies, namely 10^7 transformants per μg of DNA or greater, though this transformation efficiency is lower than that possible with lactoccoci. However, the transformation efficiencies for some Lactobacillus species like L. crispatus, L. delbrueckii, and L. helveticus are quite low, at approximately 30-50 transformants per μg of DNA, and many strains of those species are non-transformable (79). The low efficiency of transformation could be due to the presence of incompatible plasmids (80, 81) in the recipient. Therefore, either improvement of cell competence preparation protocols, or development of new plasmid replicons, is required for gene transfer via electroporation in these species. An additional barrier to transformation is the presence of diverse restriction/modification systems, which are evident from genome sequences of lactobacilli such as L. acidophilus, L. brevis, L. casei, L. delbrueckii ssp bulgaricus, L. gasseri, L. helveticus, L. plantarum and L. salivarius (Table 1).

5.2. Conjugation

Although electroporation is widely used for gene transfer and cloning in lactobacilli, some species of this genus are poorly transformable or non-transformable. Conjugation is an alternative approach for the introduction of novel DNA into poorly-transformable lactobacilli (79). Conjugal gene transfer can be achieved by conjugative plasmids (26), or comobilization of a nonconjugative plasmid with a conjugative plasmid (89). For instance, conjugal gene transfer was used to introduce a heterologous gene encoding beta-glucanase into a non-transformable strain of the species L. helveticus (90). Conjugation can also be used to transfer genes between different species. Therefore, development of a recombinant plasmid transfer system based on conjugation may be a useful and potentially broad-range tool for gene transfer in lactobacilli. Normally, the source vector for conjugal gene transfer comes from existing conjugal plasmids. Construction of a conjugal plasmid can alternatively be accomplished by cloning the mobilization region into a Lactobacillus cloning vector. Some Lactobacillus species harbour transmissible or conjugative plasmids. For example, the sequenced L. plantarum strain WCFS1 harbours a conjugative plasmid pWCFS103 (26). The megaplasmid of L. salivarius UCC118 contains a tract of genes related to conjugation (36), though they appear to be genetically corrupt (28). Genes encoding TraA related to transmission were also found in a small plasmid present in the same strain (28). This plasmid formed the basis for development of a vector that could be mobilized into L. salivarius and various other species. This emphasizes the potential of adapting endogenous plasmids for developing new genetic tools for lactobacilli.

5.3. Transduction

Another gene transfer method is transduction, bacteriophage-mediated chromosomal or plasmid DNA transfer. Transduction has been infrequently reported for gene transfer in lactobacilli compared with transformation, electroporation and conjugation. To our knowledge, transduction was only employed in four Lactobacillus strains, L. delbrueckii (91), L. gasseri (92) L. acidophilus (93) and L. salivarius (94) with bacteriophage LL-H/S, Φadh and PLS-1, respectively. The role of transduction in gene mapping and linkage studies is redundant in the post-genomic era, but transduction remains a useful alternative method, albeit one requiring time investment for isolating appropriate phage.

6. GENE EXPRESSION AND CONTROL

6.1. Available plasmids replicons and construction of gene cloning vectors

Cloning vectors for lactobacilli can be divided into three classes (95): Promiscuous plasmids based on rolling cycle replication (RCR) replicons such as pWV01 (96) derivatives; plasmids with replication origins for both E. coli and gram-positive bacteria such as pAMβ1 (97) or pSH71 (98) based replicons; and native Lactobacillus vectors with selectable markers and alternative replication origins for gram-negative bacteria. Presence of plasmids is a common feature in Lactobacillus species (80). This characteristic of Lactobacillus supplies a large reservoir of plasmids which can be exploited for the construction of the third class of Lactobacillus vector, and for diverse recombinant applications. Since repA-based plasmid replicons replicate via the theta mode of replication, which confers stability, derivatives of this replicons type have been widely used (86-88, 99-101) to construct vectors for L. casei, L. plantarum, L. delbrueckii, L. fermentum, and L. sakei. Some of the constructed vectors have a broad host range. For example, the shuttle vector pLP825 could be introduced by electroporation into L. casei, L. pentosus, L. plantarum, L. acidophilus, L. fermentum, and L. brevis strains with similar efficiencies (81). Derivatives of pLP1, a 2.1 kb plasmid extracted from L. plantarum CCM 1904 (ATCC 8014) can replicate in L. curvatus, L. sakei, Carnobacterium, and Leuconostoc mesenteroides (102). L. salivarius UCC118 harbours 3 plasmids (36), a megaplasmid pMP118 and two endogenous plasmids pSF118-44 and pSF118-20 which putatively replicate via a theta replication mechanism. The repA of pSF118-20 has high sequence similarity with repA of plasmids from different Lactobacillus species. This suggests it has the potential to be used to develop vectors with broader host range among the lactobacilli (28).

6.2. Gene expression and control of expression

Among the available gene expression systems for application in Lactobacillus, the Lactococcus nisin-controlled gene expression system may be the most widely used. As listed in Table 4, the nisin regulated gene expression system has been used for gene expression in L. plantarum (103), L. helveticus (104) and L. reuteri (105). Gene expression under constitutive promoters e.g. pldh (106, 107) or through integration upstream of a native promoter (108) has also been employed in lactobacilli. There are
Genetic tools for lactobacilli

other systems such as sakacin (109) or lactose inducible (110) gene expression systems available for conditional gene expression in lactobacilli. The nisin controlled gene expression system has been employed in L. salivarius UCC118 for expressing the osmoprotective glycine-betaine transporter betL (111) by adaptation of the pNZ8048 and pNZ9530 (112) system. However, this system requires addition of multiple antibiotics, which could either induce stressful effects on the host or prevent gene expression in strains that already harbour an antibiotic resistance marker. In addition, low level expression of betL without induction was detected when using the pNZ8048 and pNZ9530 nisin regulated gene expression system. Therefore, optimization of inducible expression and perhaps integration of the nisRK gene into the chromosome of L. salivarius UCC118 (and other species) is desirable. Moreover, constitutive gene expression systems would be useful for many species, as a complement to inducible expression systems.

6.3. Genetic markers, promoters

Commensal lactobacilli, by virtue of their source niches, are suitable candidates to be explored and developed as probiotic agents. The probiotic characteristics and safety aspects of such strains must be ratified before their employment as food supplements or functional adjuncts. In this context, the development of genetic makers that can be used as tags to investigate the biology of commensal lactobacilli, and the mechanism of their interaction with the host in vivo, is desirable. Various reporter systems have been developed to date. Homologous recombination in Lactobacillus have been adapted to detect in real time, and its monitoring is less laborious compared with other reporter systems.

Genes encoding enzymes that produce light include lux (which encodes bacterial luciferase) from Photorhabdus luminescens, Vibrio harveyi or Vibrio fisheri, and gfp (that encodes Green Fluorescent Protein) from Aequorea victoria. The bioluminescence reporter system was widely used in L. casei (120, 121), L. jensenii (122), L. plantarum and L. gasseri (123) for various utilities. However, due to the requirement for FMNH2 (reduced riboflavin mononucleotide), which is involved in the emission of luminescence by bacteria harbouring the lux genes, the NAD (P)H:FMN oxidoreductase (EC 1.6.8.1) is required to generate a constant level of FMNH2 for continuous emission of light (124). Therefore, use of bioluminescence as a genetic marker may not be possible in Lactobacillus strains or species that lack NAD (P)H:FMN oxidoreductase.

Expression of gfp was employed in L. acidophilus (83), L. reuteri (105), L. casei (110), L. hevelicu (79), L. sakei (125) and L. plantarum (103) by either integration into the chromosome or gene fusion in an expression vector. GFP tagging was also used to track L. debrueckii and L. fructosus for localization on the GI epithelium (107) and to monitor the behavior of L. rhamnosus GG in vivo (118). These and other markers will soon be deployed to monitor commensal bacteria in vivo, which is highly desirable. For example, L. salivarius has demonstrated probiotic properties in human trials and animal models (126-129). However, very little is known about the fate of live L. salivarius cells when administered in vivo, or about the interaction of these microorganisms with the gastrointestinal ecosystem. For future applications, it would be extremely useful to have reporter systems (gfp or lux fusions) to monitor bacterial cell distribution and gene expression by L. salivarius and other commensal lactobacilli in animal models. In order to investigate the biology of commensal lactobacilli, availability of defined promoters would be highly advantageous for multiple applications. For a specific microorganism, most promoters required could be isolated and identified from a genome library. Promoters regulated by e.g. bacteriocin induction peptides could be used as inducible promoters. Microarray based transcriptional analysis is an efficient method to characterize strong promoters, and promoters which function at different bacterial growth phases. Among commensal lactobacilli, a synthetic promoter library was constructed for L. plantarum WCFS1 and was then evaluated by expression of GusA and PepN (130). Further studies on Lactobacillus promoter sequences, in a broader range of species, are clearly warranted.

7. MUTAGENESIS SYSTEMS

Generally, there are two methods for generating genetic mutants in lactobacilli for targeted and random mutagenesis. The first is integration, which is rec-dependent recombination of cloned DNA with a homologous locus. The second is rec-independent, which involves transposons or insertion sequences.

7.1. Integration and insertion systems

Integration of genes or vectors into the chromosome of bacteria is a critical genetic tool. Integration may be required in manipulation of gene stabilization, fusion, amplification, deletion, insertional mutagenesis, and creation of physical/genetic maps. A number of techniques for integration in Lactobacillus have been developed to date. Homologous recombination in lactobacilli can be achieved by one plasmid or two plasmid systems. One plasmid systems have been widely used in LAB. They are based on either temperature-sensitive integrated vectors such as pG+host (pWV01 derivative (131)), pIP501 (pSA3 derivative (132)), pTN1 (115) and an unstable replicon pGID (pE194 derivative) (133) or non-replicative plasmids such as pUC18/19 (134) and pBluescript SK (108, 135). The two plasmid systems include the pORI28 system (136, 137) and its derivative systems pORI19-pVE6007 (138) and pORI28-pTK669 (139). pORI28-pTK669 system is an expansion of pORI28 for use in thermophilic lactobacilli, by site specific DNA replacement (140, 141). These systems are all based on the conditional replication of the lactococcal pWV01-derived vector pORI. Combining the system with a temperature-sensitive pWV01 derivative increased the frequency of Campbell-type recombinants. The pORI19-pVE6007 gene integration system has been successfully adapted to delete a gene encoding sorbitol (24), multiple genes for surface proteins (24), and a gene which encodes a bacteriocin transporter.
Genetic tools for lactobacilli

on the megaplasmid pMP118 in *L. salivarius* UCC118 (23). However, for deletion or disruption of genes on a genome-wide scale, pVE6007 and pORI is not an efficient integration system. Powerful and universal gene deletion or disruption tools need to be developed for such a specific requirement. A novel method for the directed genetic manipulation of the *Bacillus subtilis* chromosome free of any selection markers has been developed recently (142). This method employed the *Escherichia coli* toxin gene *mazF* as a counter-selectable marker, which makes it possible to repeatedly and successfully inactivate a specific gene, to introduce a gene of interest, and to accomplish the in-frame deletion of a target gene in the same strain. In addition, there are other new mutagenesis systems, such as that using extracellular endoglucanase A (*celA*) of *Clostridium thermocellum* as a screening marker (143) and the Cre-lox-based system (144) which has been developed and employed in *L. plantarum*.

In addition to homologous recombination strategies via suicide or temperature-sensitive replicons, prophages constitute a substantial proportion of the mobile DNA of their bacterial hosts. Two temperate phages from *L. delbrueckii* (145, 146) and *L. gasseri* (147) were used to construct site-specific integration vectors. A DNA sequence was stably introduced into the chromosome of *L. casei* by application of prophage integration and it could be subsequently excised (148). Sequence analysis revealed that *L. plantarum* (34), *L. gasseri* (149), *L. casei* (149), *L. johnsonii* (51), and *L. salivarius* (149) contain 2 (Lp1and Lp2a), 1 (Lgal), 1 (Lca1), 2 (Lj928 and Lj965), and 2 (Sal1 and Sal2) intact prophage sequences, respectively. Thus, genomes of sequenced *Lactobacillus* species provide the potential for establishing efficient and site-specific integration systems for commensal lactobacilli.

7.2. Random mutagenesis systems

Random mutagenesis is a valuable genetic tool to study genes and their regulators. However, it requires generation of a genuinely random i.e. non-biased mutant library. *In vivo* expression technology (IVET) (150) can be used to detect bacterial genes that are specifically induced in their host. IVET and R-IVET (resolvase-based *in vivo* expression technology) were used to detect *L. reuteri* 100-23 (151) and *L. plantarum* WCFS1 (152) genes specifically induced in the murine gut. Both transposon mutagenesis and insertion sequences (IS) are common approaches for generating a mutant library. However, there are only a few transposon-based mutagenesis systems available for lactobacilli. The conjugative transposon Tn916 family and transposon Tn917 from *Enterococcus faecalis* have been used for random insertional mutagenesis of LAB (153-156), with the latter example being in *L. plantarum*. However, both systems appear to have limitations in their utility for generating mutant libraries for LAB, due to low transfer and integration frequencies and limited transposon carriers. Therefore, the most frequently used mutagenesis approach for lactobacilli is IS-based mutagenesis. IS-elements can be used for construction of suicide insertion vectors. The discovery of functional IS-elements in lactobacilli should aid in the development of mutagenic IS-elements for a variety of intestinal lactobacilli. The insertion of IS223 into pSA3 (157), and IS1223 or IS1201 into pIP501 (158) exemplify the successful usage of IS elements for random mutagenesis in lactobacilli. The addition of the lactococcal IS51 to the thermosensitive replicon pG host allowed construction of a food grade random mutagenesis system which has been employed for generating stable mutants in *L. plantarum* (159) and other gram-positive bacteria (160). Patnaik (161) accomplished genome shuffling by recursive pool-wise protoplast fusion and successfully identified shuffled strains that produced more lactic acid than the wild type. It will be interesting to see if this approach can be used to improve host association, or intestinal persistence, in commensal lactobacilli.

8. SUMMARY AND PERSPECTIVES

It is now five years since the first genome of a *Lactobacillus* was definitively elucidated by sequencing. Primary molecular genetic tools like gene cloning, expression and disruption have been constructed for investigating traits including probiotic characteristics. Though most of these are derivatives of lactococcal genetic tools, some customized systems for use in lactobacilli have been developed recently. Following genetic characterization, genetically modified organisms (GMOs) will not ultimately be used for human consumption in most jurisdictions; thus there is a parallel requirement for development of *in vivo* assays and appropriate animal models, to demonstrate proof of concept or functionality in genes that have been modified or altered. However, considering the heterogeneity of this genus, a novel greatly-expanded repertoire of genetic tools is required. Approaches are also desirable for DNA manipulation in *Lactobacillus* strains with atypical genome architectures. For example, megaplasmids are widely present in *L. salivarius* strains and a few other species (162). Thus, efficient gene disruption systems need to be developed to inactivate genes of interest which are located on megaplasmids. Plasmid Toxin-antitoxin (TA) addiction systems (163) that contribute to plasmid maintenance or stability in the relevant host were detected in *L. plantarum* (164) and *L. salivarius* (28). However, plasmid TA systems are not well understood in *Lactobacillus* e.g. the mode of toxin action. Given the fact that curing a resident plasmid has been accomplished by production of the relevant antitoxin *in trans* (28), adaptation of plasmid TA systems for plasmid curing or for recombinant plasmid retention will become feasible and desirable, as more manipulations are required in natural isolates with complex plasmid profiles. Following the leading example of *L. plantarum* WCFS1 (165), analytical tools like proteomics should be employed for detecting stress response, looking for biomarkers, and for detecting secreted proteins of commensal lactobacilli. With the discovery of presumptive contingency metabolic genes in some genomes, lactobacillus metabolomic studies coupled with *in silico* modelling will be another fruitful approach for studying the adaptation of strains to environmental conditions. For providing extended safety validation of probiotics for human consumption, systems approaches that are underpinned by genetic tools will provide additional supporting data on individual gene function, and overall strain phenotypes. Following patterns in the development of genetic systems for microbial pathogens, and well-
Genetic tools for lactobacilli

characterized lactic acid bacteria such as Lactooccus, we anticipate that the next decade will witness establishment of a more comprehensive set of genetic tools for the lactobacilli, which will be broadly welcomed.

9. ACKNOWLEDGEMENTS

This work was supported by Science Foundation Ireland through a Centre for Science, Engineering and Technology award to the Alimentary Pharmabiotic Centre, UCC.

11. REFERENCES

Genetic tools for *lactobacilli*

Genetic tools for lactobacilli

Genetic tools for lactobacilli

Genetic tools for lactobacilli

Genetic tools for lactobacilli

Abbreviations: ATCC: American type culture collection; AUTOGRAPH: automatic transfer by orthology of gene reaction associations for pathway heuristics; DPC: moorepark culture collection, dairy products research centre, Ireland; FMNH₂: reduced riboflavin mononucleotide; GFP: green fluorescent protein; GI: gastrointestinal; GMOs: genetically modified organisms; GOLD: genomes online database; GPM: genome-probing microarrays; HMM: Hidden Markov models; IS: insertion sequence; IVET: *in vivo* expression technology; JCVICMR: J. Craig Venter Institute comprehensive microbial resource; JGI: Doe Joint Genome Institute; KEGG: kyoto encyclopedia of genes and genomes; LAB: lactic acid bacteria (LAB); NAD (P)H: reduced nicotinamide adenine dinucleotide (phosphate); NCBI: national centre for biotechnology information; NCC: nestlé culture collection, Switzerland; NCIMB: national collections of industrial food and marine bacteria, UK; R-IVET: resolvase-based expression technology; rRNA; TA: toxin-antitoxin; UCC: University College Cork, Ireland; WCFS: Wageningen centre for food sciences, The Netherlands

Key Words: Lactobacillus, Probiotics, Genomics, Genetic Tools, Review

Send correspondence to: Dr Paul W. O'Toole, Dept of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland, Tel: 353-21-4903997, Fax: 353-21-4903101, E-mail: pwotoole@ucc.ie

Table 1. Published *Lactobacillus* genomes with relevant properties (January 2008)¹

<table>
<thead>
<tr>
<th>LB¹</th>
<th>Size²</th>
<th>gln³</th>
<th>BS⁴</th>
<th>Pph⁵</th>
<th>hsb⁶</th>
<th>rᵃ⁷</th>
<th>R-M⁸</th>
<th>Resource</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>1.99</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>Human source</td>
<td>29</td>
</tr>
<tr>
<td>Lb</td>
<td>2.54</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>I/III</td>
<td>Starter culture</td>
<td>30</td>
</tr>
<tr>
<td>Lc</td>
<td>2.92</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>Emmenthal cheese</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Ld1</td>
<td>1.86</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>I/II</td>
<td>Bulgarian yogurt</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Ld2</td>
<td>1.86</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>I/II</td>
<td>French starter</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Lg</td>
<td>1.89</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>Human GI tract</td>
<td>30</td>
</tr>
<tr>
<td>Lh</td>
<td>2.08</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2/I/III</td>
<td>Cheese isolate</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Lj</td>
<td>2.99</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>Human isolate</td>
<td>33</td>
</tr>
<tr>
<td>Lk</td>
<td>2.91</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>Human saliva</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Lk</td>
<td>1.88</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>French sausage</td>
<td>35</td>
</tr>
<tr>
<td>Ll</td>
<td>1.83</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>I/II</td>
<td>Human ileum</td>
<td>36</td>
</tr>
<tr>
<td>Lm</td>
<td>1.83</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Plants</td>
<td>30</td>
</tr>
</tbody>
</table>

¹ Data are derived from published *Lactobacillus* genome information and EGRO™ integrated genomics (Chicargo, USA)
² *Lactobacillus* strains: La, *L. acidophilus* NCFM; Lb, *L. brevis* ATCC367; Lc, *L. casei* ATCC334; Ld1, *L. delbrueckii* ssp
Genetic tools for lactobacilli

bulgaricus ATCC11842; Ld2, *L. delbrueckii* ssp *bulgaricus* ATCCBAA365; Lg, *L. gasseri* ATCC33323; Lh, *L. helveticus* DPC4571; Lj, *L. johnsonii* NCC533; Lp, *L. plantarum* WCF81; Lsk, *L. sakei* 23K; Lsl, *L. salivarius* UCC118; Pp, *P. pentosaceus* ATCC25745.
*Genome (chromosome) size (Mb) 4 Number of plasmid in the genome 5 Number of IS family that IS elements from the relevant *Lactobacillus* genome belong to 6 Number of intact prophage in the corresponding *Lactobacillus* genome 7 Number of genes that encoding cholyglycine hydrolase (EC 3.5.1.24) 8 Number of genes that encoding sortase 9 Number/type of intact restriction-modification system in the relevant *Lactobacillus* genome*

Table 2. Approaches for the identification of lactobacilli

<table>
<thead>
<tr>
<th>Approach</th>
<th>Principle</th>
<th>Discrimination level and application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>API 50 CH strips</td>
<td>Identify species based on their carbohydrates fermentation profiles</td>
<td>Species level</td>
<td>59</td>
</tr>
<tr>
<td>16S rRNA sequence</td>
<td>Differentiate species based on their 16S phylogeny</td>
<td>Species level</td>
<td>62</td>
</tr>
<tr>
<td>16S-23S rRNA ISRs²</td>
<td>Multiplex PCR assay based on strain 16S-23S rRNA intergenic spacer region and its 23S rRNA gene flanking region</td>
<td>Can identify human stool samples and distinguish lactobacilli at species level</td>
<td>63, 64</td>
</tr>
<tr>
<td>dDNA-PCR³</td>
<td>Identify species on their unique tDNA fingerprint patterns</td>
<td>Species level</td>
<td>70</td>
</tr>
<tr>
<td>htap60 PCR-RFLP⁴</td>
<td>Differentiate strains from their groEL PCR restriction fragment length polymorphism patterns</td>
<td>Can differentiate 110 Lactobacillus isolated from cheese and dry-fermented sausages</td>
<td>65</td>
</tr>
<tr>
<td>RAPD⁵</td>
<td>Differentiate strains from the random amplified polymorphic DNA pattern</td>
<td>Used for typing L. plantarum strains</td>
<td>66</td>
</tr>
<tr>
<td>Multiplex RAPD-PCR</td>
<td>Based on PCR generated unique DNA profiles</td>
<td>Clustered lactobacilli gastrointestinal isolates. Can characterize and infer the relatedness of Lactobacillus isolates</td>
<td>71</td>
</tr>
<tr>
<td>RAPD-PCR and AFLP⁶</td>
<td>Differentiate strains on the RAPD-PCR and AFLP generated genomic fingerprint patterns</td>
<td>Can differentiate phenotypically highly similar species (eg., L. gasseri and L. johnsonii, L. amylovorans and L. plantarum)</td>
<td>74</td>
</tr>
<tr>
<td>TTGE⁷</td>
<td>Differentiate variation in 16S rRNA sequence of lactobacilli by electrophoresis</td>
<td>Can distinguish closely-related target species and reveal sequence heterogeneities in the 16S rDNA genes</td>
<td>75</td>
</tr>
<tr>
<td>ARDRA⁸</td>
<td>Differentiate strains from their amplified ribosomal DNA restriction patterns</td>
<td>Differentiated Lactobacillus from gastrointestinal, food and birds isolates at species level</td>
<td>67, 68</td>
</tr>
<tr>
<td>Renaturing SDS-PAGE⁹</td>
<td>Identify Lactobacillus from their electrophoretic pattern of peptidoglycan hydrolases</td>
<td>Distinguished phylogenetically close species from food isolates</td>
<td>72</td>
</tr>
<tr>
<td>DGGE¹⁰ and specific primers</td>
<td>Identify strains by the combination of gel electrophoresis of DNA PCR fragments and 16S-23S rDNA intergenic spacer region</td>
<td>Can identify Lactobacillus from human and procine GI isolates at species level</td>
<td>69</td>
</tr>
<tr>
<td>F AFLP¹¹</td>
<td>PCR based whole genome DNA fingerprint with selective amplification of restriction fragments</td>
<td>Can delineate L. rhamnosus strains from food and human isolates at intraspecific level</td>
<td>73</td>
</tr>
<tr>
<td>PFGE¹²</td>
<td>Differentiate by electrophoresis patterns of restricted whole genome</td>
<td>Can determine L. rhamnosus genotypic relatedness at strain level when combine with F AFLP</td>
<td>73</td>
</tr>
<tr>
<td>GPM¹³</td>
<td>Based on whole genome sequence</td>
<td>Species level; can quantitatively identify LAB¹⁴ community from food</td>
<td>77</td>
</tr>
<tr>
<td>Genome microarray</td>
<td>Based on whole genome sequence</td>
<td>Can distinguish to strain level and reveal the diversity of a species</td>
<td>78</td>
</tr>
</tbody>
</table>

Abbreviations: 1 ribosomal RNA, 2 intergenic spacer regions, 3 tDNA intergenic spacer polymerase chain reaction, 4 PCR restriction fragment length polymorphism, 5 randomly amplified polymorphic DNA, 6 amplified fragment length polymorphism, 7 temporal temperature gradient gel electrophoresis, 8 amplified ribosomal DNA restriction analysis, 9 sodium dodecyl sulfate polyacrylamide gel electrophoresis, 10 denaturing gradient gel electrophoresis, 11 fluorescent amplified fragment length polymorphism, 12 pulsed-field gel electrophoresis of macrorestriction fragments, 13 genome-probing microarray, 14 lactic acid bacteria

Table 3. Replicons that may be transformed into Lactobacillus

<table>
<thead>
<tr>
<th>Replicon</th>
<th>Type</th>
<th>Ts/µg DNA</th>
<th>Host</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSH71</td>
<td>RC²</td>
<td>10¹⁰</td>
<td>L. salivarius UCC118</td>
<td>82-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10¹⁰</td>
<td>L. acidophilus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10¹⁰</td>
<td>L. helveticus KU107</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. delbrueckii subsp. bulgaricus V104</td>
<td></td>
</tr>
<tr>
<td>pWV01</td>
<td>RC</td>
<td>10¹⁰</td>
<td>L. salivarius UCC118</td>
<td>82, 84, 85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10¹⁰</td>
<td>L. salivarius Sn1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>10¹⁰</td>
<td>L. delbrueckii subsp. bulgaricus V104</td>
<td></td>
</tr>
<tr>
<td>pAM51</td>
<td>Theta</td>
<td>10¹⁰</td>
<td>L. salivarius Sn1</td>
<td>85</td>
</tr>
<tr>
<td>pLC404</td>
<td>theta</td>
<td>10¹⁰</td>
<td>L. casei L-49-4</td>
<td>86</td>
</tr>
<tr>
<td>pKV590</td>
<td>theta</td>
<td>10¹⁰-10¹⁰</td>
<td>L. acidophilus NIAIL-54</td>
<td></td>
</tr>
<tr>
<td>pLEM3</td>
<td>RC</td>
<td>10¹⁰-10¹⁰</td>
<td>L. delbrueckii subsp. bulgaricus V104</td>
<td>84</td>
</tr>
<tr>
<td>pUL1</td>
<td>ND*</td>
<td>>10¹⁰</td>
<td>L. delbrueckii subsp. bulgaricus V104</td>
<td>84</td>
</tr>
<tr>
<td>pWS58</td>
<td>ND</td>
<td>>10¹⁰</td>
<td>L. delbrueckii subsp. bulgaricus V104</td>
<td>84</td>
</tr>
<tr>
<td>pLT2</td>
<td>RC</td>
<td>10¹⁰</td>
<td>L. plantarum NCL21</td>
<td>88</td>
</tr>
<tr>
<td>pX1</td>
<td>RC</td>
<td>10¹⁰</td>
<td>L. salivarius Sn1</td>
<td>85</td>
</tr>
<tr>
<td>pLP25</td>
<td>ND</td>
<td>10³-10¹⁰</td>
<td>L. casei ATCC 393</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. plantarum NDO 1193</td>
<td></td>
</tr>
<tr>
<td>pLP825</td>
<td>ND</td>
<td>10³-10¹⁰</td>
<td>L. acidophilus NCK 89</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. bulgaricus VK3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L. fermentum NCK127</td>
<td></td>
</tr>
</tbody>
</table>
Genetic tools for lactobacilli

<table>
<thead>
<tr>
<th>Strain</th>
<th>Gene/Protein</th>
<th>Inducer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. brevis</td>
<td>chimictric S-layer</td>
<td>nisin</td>
<td>113</td>
</tr>
<tr>
<td>L. casei ATCC393</td>
<td>virus VP60</td>
<td>nisin</td>
<td>114</td>
</tr>
<tr>
<td>L. gasseri</td>
<td>pepl</td>
<td>nisin</td>
<td>115</td>
</tr>
<tr>
<td>L. helveticus CNRZ32</td>
<td>gusA</td>
<td>nisin</td>
<td>104</td>
</tr>
<tr>
<td>L. paracasei SFBY 338</td>
<td>groEL</td>
<td>nisin</td>
<td>116</td>
</tr>
<tr>
<td>L. plantarum</td>
<td>gusA, alc, TFC</td>
<td>nisin</td>
<td>103, 117</td>
</tr>
<tr>
<td>L. rhamnosus GG</td>
<td>GFP</td>
<td>nisin</td>
<td>118</td>
</tr>
<tr>
<td>L. reuteri</td>
<td>amyL</td>
<td>nisin</td>
<td>105</td>
</tr>
<tr>
<td>L. sakei/plantarum</td>
<td>gusA, pepN</td>
<td>nisin, sakacin</td>
<td>109, 119</td>
</tr>
<tr>
<td>L. salivarius UCC118</td>
<td>betl</td>
<td>nisin</td>
<td>111</td>
</tr>
</tbody>
</table>

Abbreviations: 1) transformants, 2) rolling cycle, 3) not determined

Table 4. Bacteriocin-controlled gene expression accomplished in lactobacilli

<table>
<thead>
<tr>
<th>Strain</th>
<th>Gene/Protein</th>
<th>Inducer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. brevis</td>
<td>chimictric S-layer</td>
<td>nisin</td>
<td>113</td>
</tr>
<tr>
<td>L. casei ATCC393</td>
<td>virus VP60</td>
<td>nisin</td>
<td>114</td>
</tr>
<tr>
<td>L. gasseri</td>
<td>pepl</td>
<td>nisin</td>
<td>115</td>
</tr>
<tr>
<td>L. helveticus CNRZ32</td>
<td>gusA</td>
<td>nisin</td>
<td>104</td>
</tr>
<tr>
<td>L. paracasei SFBY 338</td>
<td>groEL</td>
<td>nisin</td>
<td>116</td>
</tr>
<tr>
<td>L. plantarum</td>
<td>gusA, alc, TFC</td>
<td>nisin</td>
<td>103, 117</td>
</tr>
<tr>
<td>L. rhamnosus GG</td>
<td>GFP</td>
<td>nisin</td>
<td>118</td>
</tr>
<tr>
<td>L. reuteri</td>
<td>amyL</td>
<td>nisin</td>
<td>105</td>
</tr>
<tr>
<td>L. sakei/plantarum</td>
<td>gusA, pepN</td>
<td>nisin, sakacin</td>
<td>109, 119</td>
</tr>
<tr>
<td>L. salivarius UCC118</td>
<td>betl</td>
<td>nisin</td>
<td>111</td>
</tr>
</tbody>
</table>

Abbreviations: 1) the C subunit of the tetanus toxin, 2) green fluorescent protein.
Figure 1. Available genetic tools for functional analysis of candidate probiotic genes in commensal lactobacilli
Characterization of mannose-specific proteins in L. plantarum WCFS1 by biodiversity screen (21); Bioinformatics analysis of mucus-binding proteins in Lactobacilli (22); Functional analysis of in vivo L. salivarius UCC118 anti-Listeria monocytogenes activity by gene disruption (23); Functional analysis of sortase and sortase dependent proteins in the interaction with intestinal epithelial cells by gene deletion in L. salivarius UCC118 (24); Functional analysis of bsh by gene disruption in L. acidophilus NCFM (25); Horizontal gene transfer through conjugation in L. plantarum WCFS1 (26); Adaptation of endogenous plasmids for construction of gene cloning and expression vectors in L. salivarius UCC118 (28).
Genetic tools for *lactobacilli*