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Abstract—Thanks to its inherent capabilities (such as, fairly 
long radio coverage with extremely low power consumption), 
LoRaWAN can support a wide spectrum of low rate use-cases in 
the industry 4.0. In this paper, both plain and energy harvesting 
industrial environments are considered to study the performance 
of LoRa radios for industrial automation. In the first instance, a 
model is presented to investigate LoRaWAN in the industry 4.0  
in terms of battery life, battery replacement cost, and damage 
penalty. Then, the energy harvesting potential, available within 
an industry 4.0, is highlighted to demonstrate the impact of 
harvested energy on the battery life and sensing interval of LoRa 
motes deployed across a production facility. The key outcome of 
these investigations is the cost trade-off analysis between battery 
replacement and damage penalty along different sensing intervals 
which demonstrates a linear increase in aggregate cost up to 

£1500 in case of 5 min sensing interval in plain (non-energy 

harvesting) industrial environment while it tends to decrease after 
a certain interval up to five times lower in Energy Harvesting 
(EH) scenarios. In addition, the carbon emissions due to the 
presence of LoRa motes and the annual CO2 emission savings  

per node have been recorded up to 3 kg/kWh when fed through 

renewable energy sources. The analysis presented herein could 
be of great significance towards a green industry with cost and 
energy efficiency optimization. 

Index Terms—Industrial automation, cost and performance 

evaluation, carbon savings in industry 4.0, energy harvesting, 
Industrial IoT, LoRaWAN. 

I. INDUSTRIAL INTERNET OF THINGS AND THE FOURTH 

INDUSTRIAL REVOLUTION 

Industrial Internet of Things (IIoT) [1] is a recent wave       

of connectivity and communication technologies that is being 

predicted as the game changer in redesigning and reshaping 

the concept of a smart industry witnessing the new industrial 

revolution. IIoT introduces a set of standards [2], [3] (e.g,  

high powered-wireless acess, low cost wireless access, and 

low power wide area) to enable the connectivity of a wide 

range of manufacturing equipment to a web-based network 

and integrates this data for timely decision making [4]. IIoT 
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connects a wide range of sensor  devices  deployed  across  

the production line to different  analytic  systems  inducing  

the ultimate performance improvement that can lead towards 

billions of dollars of savings [5]. 

Due to their distinct features to meet radio coverage, scala- 

bility, and energy requirements for the Industry 4.0 paradigm, 

Low Power-Wide Area Network (LP-WAN) [6] are considered 

the trend setters in the evolution of wireless communications. 

A plethora of LP-WAN technologies are out in the market 

these days that include: Sigfox, Long Range Wide Area Net- 

work (LoRaWAN), NarrowBand Internet of Things (NB-IoT), 

DASH7, LTE-M1, Ingenu, and Weightless to name a few [6]. 

Among them, LoRaWAN [7], [8], Sigfox and, Weightless have 

already been proposed suitable for most of the Machine-to- 

Machine (M2M) communication scenarios in IIoT use-cases 

because of their common characteristics (such as, low power 

consumption, high scalability with extended radio coverage, 

and simple/low-cost network infrastructure) [9]. 

Despite several low power technologies have recently been 

introduced to cater IIoT  use-cases,  energy  is  still  one  of  

the major challenges for this kind of applications. Energy 

exhaustive operation of sensor nodes (also known as motes) 

installed within a harsh industrial environment or inaccessible 

places (e.g., in many industrial monitoring use-cases) makes   

it impractical to replenish the batteries frequently. Moreover, 

these batteries are an expendable resource with adverse en- 

vironmental effects. On the other hand, an optimal sensing 

interval to generate alerts can well avoid the fast battery 

drainage but, sometimes, even a slight latency in popping-    

up an urgent alert costs a bulk of damaged products wasting 

the useful resources at the production line. The situation 

becomes even more critical when  the  production  costs  of  

the manufactured products are significantly high and timely 

detection of various anomalies at different production stages 

can avoid huge financial losses for a smart industry. However, 

choosing between the energy optimal operation and the con- 

tinuous monitoring during the production process, being the 

two contradictory goals, involves a narrow line trade-off. 

To bridge this gap, the present manuscript extends [10] with 

the following contributions: 

• The presented model evaluates the feasibility of 

LoRaWAN for plain and energy harvesting industrial 

environments. 

• The lifetime of Long Range (LoRa) monitoring devices is 

calculated considering different sensing intervals and then 

the impact of these intervals is studied on the lifetime of 

LoRa monitoring nodes. 
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• Two significant operational costs (i.e., battery replace- 

ment and damage penalty) are assessed and the optimal 

sensing interval is suggested. 

• The renewable energy potential in industrial environment 

is exploited to feed LoRa nodes and a socio-economic 

analysis is presented. 

• The CO2 emissions are evaluated due to the presence 

of LoRa end-nodes and total emission savings are high- 

lighted in case of energy harvesting LoRa deployments. 

The present contribution will focus on the LoRaWAN archi- 

tecture, but the developed model can also be extended to apply 

to other LP-WAN standards with slight customization. 

This manuscript is outlined as follows: Section II summa- 

rizes the current state-of-the-art and provides a comparison of 

the available LP-WAN options. Section III presents a model  

to evaluate the performance of LoRaWAN in plain industrial 

scenario while the model for battery life and sensing interval 

evaluation is presented in Section IV for energy harvesting  

industrial environment. The results and discussions, covering 

both plain and harvesting industrial environments, are provided 

in Section V. Finally, the concluding remarks are presented in 

Section VI. 

II. STATE OF THE ART AND ESSENTIAL COMPARISON OF 

LP-WAN TECHNOLOGIES 

This section not only outlines the recent developments and 

proposals for monitoring the industrial processes but also 

discusses the potential of LP-WAN technologies targeting 

industrial use-cases [5]-[9]. Following are the few articles 

discussing the recent developments in this domain in terms of 

highlighting the significance of different LP-WAN solutions  

to be adopted for industrial automation and their comparison 

based on the range of Key Performance Indicators (KPI’s) 

identified as critical for industry 4.0. 

The first effort to highlight the significance of LP-WAN 

paradigm for long-term industrial scenarios was  made  by 

[9]. The authors have identified the few suitable LP-WAN 

candidates to fulfill the strict requirements (such as, reliability 

and energy efficiency) imposed by IIoT networks. The work 

classifies the existing industrial solutions into short-range and 

long-range communication technologies for IIoT and urges the 

latter being the future of IIoT applications for scalability, long 

radio coverage, roaming and, energy efficiency). 

Similarly, the state of the art of LP-WAN technologies 

currently serving IoT applications has been reviewed by [11]. 

In particular, the authors focus on two famous and widely 

accepted LP-WAN solutions; ultra-narrow band technology by 

Sigfox and Semtech’s Chirp Spread Spectrum (CSS) tech- 

nology introduced in LoRaWAN. They held several experi- 

ments for both the solutions to evaluate their performance in 

terms of radio coverage and energy consumption. Concluding 

their remarks, the authors revealed that private networks in 

LoRaWAN are the future of Industry 4.0 because of their 

suitability towards a range of IIoT use-cases. 

According to [12], the existence  of  LP-WAN  solutions  

has made it possible to achieve the goals anticipated by 

Industry 4.0. LoRaWAN and Narrow-Band Internet of Things 

(NB-IoT) are identified as the key players and performance 

evaluation is presented arguing LoRaWAN is the best in terms 

of cost, battery life, and energy efficiency while NB-IoT is 

unbeatable with respect to Quality of Service (QoS), latency 

and, reliability. The authors in [12] conclude that LoRaWAN is 

best suited for a bulk of industrial Internet of Things (IoT) use- 

cases such as predictive maintenance and anomaly detection. 

The QoS was one of the parameters missing in the study  

of LoRaWAN for industrial monitoring as mentioned in [12]. 

[13] proposes analytical models to investigate LoRaWAN 

uplink (of class A device) with respect to several parameters 

like latency, throughput and collision rate. The authors have 

conducted simulations to demonstrate the efficiency of their 

model and claim that their model is quite useful for the 

resource optimization in a cell for a preset QoS requirement. 

Another insight of the LP-WAN solutions was presented by 

[14] which primarily highlights the notion of Low Throughput 

Networks (LTN). The authors evaluate the performance of 

different independent LP-WAN technologies flourished out 

before the standardization of LTN. For this purpose, they study 

three major technologies; LoRaWAN, Sigfox and, OnRamp. 

The authors conclude that the studied technologies may only 

be suitable for the use-cases where the constraints like jitter, 

delay and, throughput are relaxed despite their higher radio  

coverage. 

The importance of industrial monitoring and control pro- 

cesses in terms of productivity enhancements has been em- 

phasized in [15]. They identify a list of factors influencing 

performance goals (such as communication throughput, radio 

coverage, data security). The authors are convinced that a 

cellular based IoT solution is inevitable to achieve required 

performance level. Hence, a design and implementation of IoT 

network is proposed for industrial monitoring and control. The 

authors conclude that their proposed IoT solution performs 

well in terms of pre-identified parameters. 

Sigfox has been considered by [16] because of its higher  

radio coverage, almost equivalent to that of cellular networks 

but against a fraction of energy consumption. The authors 

investigate Sigfox based heterogeneous network architecture 

where they propose the combination of ultra-low energy 

consumption star network topology suitable for short range 

communication with a Sigfox gateway. The authors perform 

several experiments with energy modeling and claim that this 

kind of infrastructure guarantees a large coverage areas and 

longer battery life (up to 4 years) of end-devices. 

In addition to the aforementioned literature, some other 

works (e.g., [17]-[20]) also discuss the lifetime of sensor 

nodes through duty-cycled operation [19], [20]) on the cost   

of communication delays but their studies neither take into 

account the complex LoRa deployments nor operating costs 

(e.g., battery replacement and damage penalty) in industrial 

settings where trying to curtail the one, compliments the other 

type of cost. To  the best of author’s knowledge, this work     

is the premier to thoroughly investigate LoRaWAN and its 

carbon footprints for the industry 4.0 services in the presence 

of several harvesting sources to pare the reliance on battery- 

powered operation. Salient features of some of the major LP-

WAN players, analyzed and marked suitable for industrial 

use-cases so far, are reviewed in Table I. The selection of a 
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TABLE I 

COMPARISON OF LP-WAN TECHNOLOGIES STUDIED FOR INDUSTRIAL 

MONITORING APPLICATIONS 

industrial environment. Being a part of IIoT, the LoRa end- 

devices monitor several industrial parameters (such as pollu- 

   Parameters LoRaWAN Sigfox NB-IoT tion monitoring, fire detection, flow level monitoring, leakage 

detection, and temperature monitoring). It is pertinent to note 

that an average energy consumption reading for different LoRa 

SFs is considered assuming unidirectional (uplink) communi- 

cation initiated by periodic transmitters in the lifetime evalu- 

ation. Here, the frequency of periodic transmitter (monitoring 

device) to sense and report an anomaly plays a significant 

role. Various sensing intervals are considered to investigate  

the average battery life against their operation on different 

LoRaWAN transmitting powers and Spreading Factor (SF) 

(ranging from 7 to 12). Furthermore, no variation in the 

energy consumption is evident until the application payload 

size of 3 bytes which seems appropriate to several industrial 

applications for reporting an anomalous behavior. 

The front-end communication in LoRaWAN network ar- 

chitecture takes place choosing a combination of SF, Code 

Rate (CR), and channel frequency. The SF can be seen as the 

logarithmic ratio between symbol rate Rs and chip rate Rc 

  <15km suburban 50km rural <35km  rural  and can be expressed as SF = log2 Rc . Let Ta be the time 

single technology is not straight forward involving different 

convolutions depending upon the individual use-case. 

The choice of LoRaWAN for industrial monitoring and 

control applications (such as, anomaly detection and predictive 

maintenance) is justifiable because of the following reasons. 

First, LoRaWAN depicts the least current drawn among all 

counterparts in similar conditions. Second, despite being the 

proprietary physical layer solution itself, LoRa has an open 

source protocol stack as LoRaWAN that seems more open to 

adopt. Third, it enjoys a reasonable trade-off for throughput 

while operating in unlicensed ISM band. Fourth, LoRaWAN 

packets experience minimum uplink latency that can be of 

significance in industrial monitoring scenarios. Fifth, cost 

effectiveness is another decisive parameter that may cause 

standing LoRaWAN far apart from its counterparts with an 

added advantage of fair scalability potential within an industry. 

Finally, LoRaWAN has got significant attention in recent years 

for its rapid adaption for public network infrastructures already 

deployed by several network operators. 

taken for submitting a packet into the sub-band for onward 

transmission (also named as Time on Air and hereafter referred 

as Air Time, Ta). Then, Ta, can be evaluated as: 
Ta = Tpreamble + Tpayload (1) 

The  first  part  of  Ta  is   the   time   taken   by   a   pream- 

ble to transmit and can  be  calculated  as  Tpreamble  = 

(Length of programmed preamble+4.25) Tsym whereas Tsym 
is the time taken to transmit only a single symbol, expressed  

as Tsym =  2SF  1  .  Here,  SF  and  BW  represent  the 

current spreading factor and bandwidth configurations being 

used. Similarly, Tpayload is another  part  of  Ta,  the  total  

time needed to transmit a payload and can be viewed as 

Tpayload = No. of payload symbols Tsym. Let  Toff  be  the 

time for which the channel is unavailable for transmission 

(also known as Off-Time). In case the channel is unavailable, 

the end-node must have to wait for an interval Toff before       

it schedules the subsequent transmission. It is to note that,   

for the sake of simplicity, the proposed model considers 

retransmissions as new transmission after waiting Toff . As  

per [22], it emerges that: 

III. LORAWAN FOR INDUSTRIAL MONITORING 

This section starts with shedding some light on the fea- 
Toff = Ta 

   1 
(2) 

d - 1 

sibility of LoRaWAN for industrial monitoring applications. 

Furthermore, it presents system model for evaluating the 

battery life, battery replenishment cost, and damage penalty. 

LoRa has emerged as a robust physical layer propriety 

solution in last few years introduced by French company Cy- 

cleo, later acquired by Semtech. Thanks to its higher receiver 

sensitivity, LoRa can enable communications with a received 

signal power as low as -137 dBm operating on sub-GHz ISM 

band and employs wide channel bandwidth. Following these 

peculiarities, LoRa has been adopted as a physical layer tech- 

nology by LoRaWAN protocol stack currently being promoted 

by LoRaTM Alliance of over 160 members worldwide [21]. 

The system model envisaged in this paper considers an 

implementation of LoRa based monitoring devices in the 

Following is an example of evaluating the air time and the 

time between subsequent packet starts in case of 0.1%, 1% and 

10% duty-cyle allowance against different spreading factors in 

LoRaWAN as shown in Table II. 
TABLE II 

AIR TIME EVALUATION OF LORAWAN FOR DIFFERENT LORA 

CONFIGURATION SETTINGS 
 

Spreading 
Factor 

Air  Time - 
=Ta(ms) 

Time between packet starts (s) 
d=0.1% d =1% d =10% 

SF7 46.336 46.34 4.63 0.46 
SF8 92.672 92.67 9.27 0.93 
SF9 164.864 164.86 16.49 1.65 
SF10 329.728 329.73 32.97 3.30 
SF11 659.456 659.46 65.95 6.59 

SF12 1155.072 1155.07 115.51 11.55 

The LoRaWAN configuration settings considered in the 

Spectrum 
Business Model 
Duplex Mode 

Unlicensed ISM 
Alliance 
Half 

Unlicensed ISM 
Proprietary 
Half 

Licensed LTE 
Proprietary 
Half 

Modulation CSS BPSK OFDM 
Bandwidth 125/250 kHz 100 Hz 180 kHz 
Data Rates 290 bps-50 kbps 100 bps 250 kbps 
Current (Sleep) 0.1 µA 1.3 µA 5 µA 
Link Budget 157 dB 149 dB 164 dB 
Uplink Latency <2 s  <3 s  <10 s 
Payload Size 51-243 B 8-12 B 1500-1600 B 
Security AES (128 bit) 16 bit 128-256 bit 
Scalability Medium Low High 
Adaptive Data Yes No No 
Rate    

Interference High High Low 
Immunity    

Current Draw 44 mA 49 mA 120-300 mA 
@14dBm    

Private network Yes Yes Yes 
Localization Yes (TDOA) Yes (RSSI) No 
Deployment $100- $700- $15000/base 
Cost 1000/gateway 1200/gateway station 
Range 2-5km urban, 10km urban, <15km urban, 
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lifetime evaluation are presented in Table III. Here, it is 

important to note that all the LoRa configurations settings are 

assumed constant throughout this evaluation. Each parameter 

in LoRaWAN configuration is critical and modifying this 

setting would consequently influence the air time. Further- 

more, an application payload size of 3 bytes is considered    

for this evaluation as no variation in the energy consumption 

is recorded until this payload size which seems appropriate   

to several industrial applications for reporting an alert to the 

expert systems. For example, it can suffice the need to share 

the status of a range of important parameters to be monitored 

(such as temperature, pressure, light, acceleration, and so on) 

[23]. TABLE III 

TABLE IV 

ASSUMPTIONS DRAWN FOR BATTERY REPLENISHMENT COST 

EVALUATIONS 
 

Cost Parameters Assumed Values 

The lifetime (in years) evaluated for Industrial 
monitoring devices on 14 dBm power output. 
Current market value per battery (£), Cb. 
The number of batteries installed per node. 
Variable labor cost per node as per replace- 
ment complexity (£), Cr . 
Cost per node for Disposing-of the batteries 
in T period (£), Cdiss.. 

0.10 - 5.14 
 

3.7 
1 
3.5 - 10 

 

0.10 

transmit mode. The total mean charge can be expressed as the 

summation of the products for average current draws and the 

time periods when a node remains in a certain state. It could 

be represented as: 
    LORAWAN ASSUMED PARAMETERS  FOR  THE  LIFETIME EVALUATION                

  LoRaWAN Parameters Values  

Application Payload Size 1-3 B 

Payload size 14-16 B 

Modulation Method LoRa (based on CSS) 

Spreading Factor (SF) 7-12 

Coding Rate 4/5 

Bandwidth 125 kHz 

Number of Preamble Symbols 8 

Frequency 865 MHz 

Cyclic Redundancy Check enabled 

Explicit Header ON 

Low  Data Rate Optimizer AUTO 

  Transmit Power 14 dBm  

As the LoRa motes are conventionally battery-powered in 

nature so they are supposed to adopt duty-cycled operation    

to reach a longer battery life. After each measurement, the 

monitoring nodes periodically go to sleep before their next 

transmission cycle. Let  the  sensing  interval,  !::  sense,  be 

the pause time between consecutive slots, the sleep interval, 

!:: tsleep, be the amount of time for which the LoRa nodes 

remain in sleep mode, and !::  tswitch be the time taken by the 

total = Istate   !:: tstate, state tx, sleep, swap (5) 
state    

Similarly, total mean energy, Etotal, can also be the product 

of total average charge calculated in Eq. (5) and voltage 

applied (on Semtech’s SX1272) so it can be represented as: 

Etotal  = Qtotal · VED (6) 

The Semtech’s monitoring devices are considered for the 

lifetime evaluation assuming the current draw of 44 mA for a 

transmit power of 14 dBm assuming the Lithium-Ion battery 

[24]. Here, the mean total charge and the energy consumption 

refers to average of six different readings for all LoRa SFs 

(from 7-12) with 30 repetitions each for a single mote. While 

testing the feasibility for a wide range of sensing intervals for 

LoRa motes, a fair range of sensing intervals (i.e., from 60s to 

300s) is considered to study the impact of varying !:: sense on 

the consumption reading of LoRa nodes. Moreover, following 

the Eq. (6), the mean energy consumption per day, Eday, and 

the mean energy consumed during a whole year can easily be 

evaluated. At this stage, it is possible to evaluate the average 

battery life, LB, (in years) with the assumption of total  battery 
capacity, CB, of 1000 mAh (i.e., 11880J @ 3.3V): 

 nodes in switching between the active and sleep modes, then  B  

the !::  Tsense can be represented as: B 
E 

!::  Tsense = !::  tsleep +2 · !::  tswitch. (3) B. Battery replenishment cost 
day 

Sensing interval plays a crucial role for the expert systems 

to ensure timely decision making. Where short sensing interval 

helps detecting the anomaly at early stages, it also  causes 

short battery life hence batteries are replenished frequently. 

Similarly, long sensing interval lets the monitoring devices 

maintain their operation for several years, it may incur delays 

in fault detection hence, production efficiency is on the stake. 

A. Battery life 

Here, it is important to note that the LoRa devices are 

assumed to be periodic transmitter where the current draw for 

sleep, Isleep, and switching modes, Iswap, are 100 nA and 

21.9 mA, respectively [24].          

Instead, the average charge, Q, in each state (i.e., tranmit, 

sleep, and switch) can be evaluated considering the current 

draws in different modes of LoRa monitoring device and the 

time duration for which a device remains in a certain state. 

For example: Qtx  = Itx · !::  ttx (4) 

where, !:: ttx is the time duration when a node is in transmit 

state and Itx can be seen as the average current drawn in 

The replenishment cost for the batteries comprises of three 

sub-costs; battery purchase, labor, and the dispose-of  cost  

for the replaced batteries. The first and third type of costs   

can be seen as fixed costs ignoring the inflation factor with 

time. While the second cost (i.e., labor) solely depends on the 

complexity level of battery replacement and the type of indus- 

try where the battery  replenishment  is needed.  For instance, 

a monitoring node installed within a machinery structure is 

more complex to handle than the one installed on the outer  

surface hence, the labor cost would vary accordingly. For 

battery replacement cost evaluation, the assumptions drawn 

are presented in Table IV. 

The first type of cost (i.e., battery purchase cost, Cpurchase) 

can be seen as the total capital required for purchasing the 

number of batteries needed in a time period as: 

Cpurchase  = Cb · Ncycle (8) 

Here, Cb is the cost incurred to purchase a single battery and 

Ncycle is number of replacement cycles required in a time 

period, T , respectively. It is significant to remark that a time 
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period of 20 years is assumed for the cost evaluation as it is 

believed to be the fair lifetime attainable through monitoring 

devices in energy harvesting industrial environment. Likewise, 

cumulative labor cost for battery installation, Clabor, is the 

variable cost that can be evaluated as: 

Clabor  = Cr · Ncycle (9) 

where, Cr is the variable labor cost per node for battery 

replenishment based upon the complexity of installation. The 

dispose-of cost for batteries, Cdiss., is the cost incurred on 

disposing-of the replaced batteries that is not usually higher 

but it may still be significant in case of large-scale network  

deployment where thousands of nodes need replacement in      

a time period. Cdiss. is evaluated considering £1600 as an 

average dispose-of cost for every ton of wastage for the expired 

batteries as per the recent statistics reported by the UK Gov- 

ernment [25]. Therefore, the total battery replacement cost,  

Crepl., can be expressed as a summation of the aforementioned 

costs in a time period. It could be represented as: 

Crepl. = Cstate, state 2 {purchase, labor, diss.} (10) 
state 

C. Damage penalty 

The cost incurred on damaged products manufactured on the 

production line due to a possible latency in anomaly detection 

can be referred to as the damage penalty. This kind of latency 

can also be respected as the damage interval, 6 damage and 

could be expressed as: 

radio signals when transmitted with 3W from a distance of       

5 m at 9 MHz based on Powercast P2110 harvester module  

which features ultralow power consumption and fairly high 

efficiency. The potential referred hereby is exploitable in most 

industrial setups and has already been utilized to feed sensors 

in a variety of IIoT applications [26], [27]. 

Surplus harvested energy from the industrial environment 

may be useful for achieving two significant milestones. First, 

it may serve to reduce the energy requirement of battery- 

powered monitoring devices by enabling them to operate on 

harvested energy when available. Monitoring devices only go 

for a battery-powered operation in the  absence  of  harvest- 

ing energy that would eventually prolong the battery life. 

Second, as the sensing interval reciprocates damage penalty   

in an industrial environment, the newly harvested energy 

could be employed to seek the trade-off by shrinking the 

sensing interval up to a fair percentage without negotiating    

on the lifetime. This flexibility can dramatically improve the 

production efficiency of various product lines in industry 4.0 

depending upon Cu and Rp of the manufacturing plant. 

A. Battery life with energy harvesting 

Let A = e1, e2, ..., em represents the total amount of 

harvested energy supplied to the system through m different 

renewable energy sources where; m N, then the amount of 

energy available in the energy buffer integrated from all m 

sources can be expressed as: 

6Tdamage = tdetect - toccur ; 0 6 6Tdamage 6 6Tsense 
 

 
ebuf. = 

X 
e 

 

 

(13) 

detected while toccur is the anomaly occurrence time. Now,    

let   damage,  Rp,  and  Cu  be  the  damage  penalty,  the  rate 

of production at the manufacturing line, and the unit cost of 

production assumed for a specific unfinished product, then the 

Similarly, let S= 1, 2, 3,..., n 1, n n R be the 

harvesting time divided into n different slots, then the amount 

of harvested energy available to the energy buffer at the end  

of any ith slot can be represented as: 

damage penalty can be expressed by the following equation: ebuf. = (ebuf. - eins.)+ ehar. (14) 

Pdamage  = 6Tdamage ⇥ Rp ⇥ Cu (12) where, ebuf., eins, and ehar. are the energy available in the 
The damage penalty is increased as a function of the damage i-1 i  i 

interval with increasing value of 6T 
 

sense . It is important to 
buffer until the end of previous slot (i.e., i  1th), the amount of 
instantaneous energy  consumed during current  (i.e., ith)  slot, 

note that different product categories (such as very expen- 

sive, expensive, medium, and cheap) are considered for the 

evaluation of damage penalty in different industrial scenarios 

with increasing unit costs, Cu (e.g., 10, 70, 150, and 500) and 

and the newly harvested energy just added to the system in the 

ith slot, respectively. Hence, the amount of energy harvested 

over the period of total n slots can be represented realizing  

the Eq. 14 as: 
decreasing rate of productions, Rp (i.e., 30, 6, 3, and 1)/min, 
respectively. 

n 

Ebuf.dn = 
Z n-1 n 

ebuf.dn - 
eins.dn

l

+

Z
 ehar.dn 

IV. E 0 0 NERGY HARVESTING FOR INDUSTRIAL MONITORING n-1 n-1 (15) 
 

This study considers an industrial environment with mean 

harvesting potential per day for three different harvesting 

sources to make the evaluation procedure simple. First, ar- 

tificial light bulbs are considered with a potential to har- 

given that    n-1 ebuf.dn >   
n     

eins.dn for an uninterrupted 

operation which implies that the amount of energy remained 

in the buffer during previous slots should always be greater 

than the energy required in the next slot. Here, replacing the 

value of ebuf. from Eq. (13) in the above expression: 
vest a fair amount of energy during the working hours at "

Xm
 
Z n-1 

 
 

X Z n 
 

  

# 
X Z n

 
 

200  lx.  Second,  the  harvesting  potential  due  to  change  in temperature  is  reported  to  scavenge  reasonable  amount   of 
energy at two different temperature gradients (i.e., 10 hour 

Ebuf.dn = 
0 

a=1 
ebuf.dn 

0 

a=1 
eins.dn 
n-1 

+ 
a=1 ehar.dn 

n-1 

(16) 
@5oC and  5  hours  @10oC)  employing  TG12-2.5-01L with 
efficient thermoelectric effect that is based on Aluminium 

oxide costing only £2/kg. The cost of maintaining this thermal 

If there are n slots in a day, then the average amount of energy 

harvested  per  day,  E
h    

,  is  equal  to  the  amount  of energy 

added to the system over n time slots as follows: 

gradient varies depending on the type of element material 

being used. Third, the amount of energy harvested due to 

h 
Eday = 

n 

Ebuf.dn (17) 
0 

a - a 

a=1 Here, 

m 

(11) 
tdetect  is  the  time  period  after  which  an  anomaly is 

a 

i i-1 i i 

n 
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Now, substituting the value of n Ebuf.dn from Eq. (16), we  can 

rewrite the above equation as: 

spreading factors. The maximum value of energy consumption 

(almost 85 J a day) is reported when the node senses every 

h 

"
Xm

 

 

Z n-1 
 

 

X Z n 
 

 

# 
X Z n

 
 

  

minute. It is obvious to note that the average consumption goes 

 
a=1 0 a=1 n-1 a=1 n-1 

(18) the average value of energy consumption per day is at the 

Here, the new energy  requirement  per  day,  E
0  

,  can  be 

seen as a difference of previous energy demand drawn per 

day, Eday, derived by the Eq. (6) and the amount of newly 

harvested energy per day, E
h 

, that becomes the part of the 

system. It can be expressed as: 
 

   

minimum when LoRa monitoring nodes sense and report for 

an anomaly every five minutes. 

2) Battery life with different transmitting powers: After 

evaluating the energy consumption, the average battery life 

can also be calculated as reported in Figure 2. As LoRa 

monitoring devices are capable of transmitting with different 0 
day = Eday 

h - Eday 
(19) output powers, the results are taken with four different power 

The new battery life of LoRa monitoring nodes is reeval- 
uated employing Eq. (7) once the new energy requirement   

per  day,  E
0  

,  is  established.  This  is  evaluated  considering 

the same assumptions regarding capacity of the battery and 

applied voltage (1000 mAh @ 3.3 V) as followed in non- 

energy harvesting life evaluations. Here, the newly calculated 

lifetime would also contribute in reducing the total battery 

replacement cost, Crepl., with the damage penalty being the 

constant. 

B. Sensing interval with energy harvesting 

In some industrial environments, the damage penalty causes 

far more harm than the frequent battery replacements. Control- 

ling Crepl. would not be a feasible option in those cases. To 

avoid/control damage, sensing interval can be shortened to 

more frequently update the expert systems in the presence of 

harvested energy while maintaining the existing battery life. 

This provision of interval contraction depends on the actual 

amount of harvested energy available at buffer in a particular 

instance can be equal to the relaxation in energy quota due to 

the availability of harvested energy at an instant. It can be seen 
 

 

as the ratio of the average harvested energy per day, E
h   

, to 
 

 

the energy demand per day, Eday. Thus, the contracted interval 
in  case  of  energy  harvesting  availability,  6Ts

0
ense,  could  be 

represented as: 

configurations ranging from 13 dBm to 20 dBm. The battery 

life is significantly increased between 1 min and 5 min 

sensing intervals. The maximum battery life (of approximately 

8 years) can be observed in case of 13 dBm as the current draw 

in this configuration is minimum (28 mA) as compared to 

configuration of 20 dBm when the monitoring nodes undergo 

maximum current draw (125 mA) yielding less than 2 years  

of battery life [24]. 

Here, 14 dBm is the maximum transmission power allowed 

for an emitter in 1% duty cycle sub-band under European leg- 

islations for transmission power restrictions. Figure 3 zooms 

into the 14 dBm power configuration setting where the mon- 

itoring nodes successfully achieve a lifetime of 5 years when 

they wake back every 5 min to measure and transmit. The 

monitoring nodes with sensing interval of less than 1 min  

are not able to last for even an year. Here, it is interesting to 

note that the delay of every minute after the first minute in  

the sensing interval yields almost one-year increment in the 

overall battery life of monitoring node in this case. 

3) Sensing intervals compatible with LoRaWAN: The num- 

ber of messages per day in LoRaWAN depends on the two 

different factors. First, the choice of spreading factor for 

communication as every SF  in LoRaWAN  incurs different air 
time. Second, duty-cycle of a particular sub-band available for 

6Ts
0
ense 

= 6Tsense - 

"

 

h 
E 

sense       
Eday 

(20) 
communication as there may be multiple sub-bands at each 
transmission with different duty-cycle allowance (e.g., 0.1%, 

1%, or 10%). Figure 4 gives an overview of the maximum 
This contracted sensing interval would enable the fair re- 

duction of the damage penalty, Pdamage, setting the battery 

replacement cost as a constant. 

V. RESULTS AND DISCUSSION 

This section spans the results of LoRaWAN evaluation 

following the proposed model (elaborated  in  Sections  III  

and IV) along with a detailed discussion on these results. It 

can be divided into two sub-sections; i) standard LoRaWAN 

evaluation for industrial monitoring and ii) LoRaWAN in 

industrial monitoring with energy harvesting capabilities. 

A. LoRaWAN evaluation in industrial monitoring scenarios 

1) Energy consumption : Energy consumption can be seen 

as the foremost LoRaWAN parameter that serves to evaluate 

the battery life in the industrial environment. Figure 1 presents 

the average energy consumption of LoRa monitoring node per 

day against a range of fair sensing Intervals. The average 

energy consumption is the average value of all the energy 

consumptions reported while operating on different LoRaWAN 

number of messages that can be transmitted by a monitoring 

node deployed across the production line when different active 

and sleep periods are selected. The higher the duty-cycle 

allocation, the higher the number of messages. The number   

of messages reduce significantly moving along the SFs up to 

only a few messages per day in case of SF12 and 0.1% duty- 

cycle. 
Figure 5 shows how different sensing intervals are sup- 

ported by different SFs in LoRaWAN in terms of number of 

messages compatibility. For example, only SF7 can support 

the maximum number of messages with 5 s sensing interval 

and monitoring nodes cannot employ other spreading factors 

available in LoRaWAN to  practically  transmit  this  number 

of messages. It is obvious that LoRa monitoring nodes only 

support the sensing intervals above 60 s to avoid violating    

of duty-cycle compliance. It implies, a fair range for sensing 

interval in LoRaWAN can only be in terms of minutes (i.e., 

from 1 min to 5 min). Therefore, rest of the results assume 

this range of sensing intervals. 

on decreasing as sensing interval is increased. For example, a + a a 
Eday = 

E 
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Fig. 1. Average energy consumption per day against 
sensing intervals 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Average battery life of monitoring device 
considering different transmitting powers in LoRaWAN 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.  3.    Average  battery  life  achievable  assuming 14 
dBm transmission power 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Maximum number of messages acheivable per 
day with different LoRa settings considering regional 
duty cycle restrictions 

 
      

4) Statistics for battery replacement cost: The higher man- 

agement in a smart industry always finds it difficult replacing 

the batteries of monitoring nodes for two reasons; (i) it incurs 

a lot of industrial resources in terms of cost and time, (ii)     

the entire production process needs to be in non-operational 

state that results in huge financial losses and deteriorates 

production efficiency. Figure 6 presents cumulative battery 

replacement cost as a function of variation in the installation 

labor cost when it is considered between £3.5 to £10 per 

replacement as per the complexity of the spot. These costs are 

anticipated for a fair range of sensing intervals identified in 

Figure 5. It is obvious that cumulative battery replacement cost 

keeps increasing when shortening the sensing interval as extra 

number of replacement cycles are required when the LoRa 

devices wake back frequently (such as, in 1 min interval). 

Likewise, variation in the replacement cost does not affect 

much for the sensing intervals above 2 min and is reported 

just over £100. 

5) Statistics for damage penalty: The damage penalty can 

be seen as the second type of cost but higher enough to be paid 

significant attention by the administration of a smart industry. 

The longer the sensing interval, the longer the damage interval 

it may cause. The best case can be the lower bound of sensing 

interval so that to avoid any delays in detecting the anomalous 

situation. Similarly, the worst case may be the longest sensing 

interval when the anomaly was occurred just after the previous 

cycle and the smart system would be able to detect this 

anomaly in the next cycle at the earliest after waiting for the 

whole sensing interval (e.g., 6 sense = 5 min). 

Figure 7 compares four different product lines from industry 

4.0 with different unit costs and production rates given in 

Section III. Although there is not a noticeable difference 

between the damage penalty of all four cases on lower part   

of sensing interval, but as we move on to higher sensing 

interval, the difference appears to be significant. The product 

with minimum unit cost and higher production rate seems to 

be the most ideal case when the penalty does not go beyond 

£1500 even with the longest sensing interval (i.e., 5 min). The 

damage penalty may go up to £2500 in case of maximum unit 

cost and lowest production rate following the same sensing 

interval. 

6) The overall cost in non-energy harvesting scenarios: 

The overall cost includes both types of contradictory costs 

evaluated previously; battery replacement cost and damage 

penalty. Figure 8 throws light on an overall picture depicting 

both types of cost to estimate a clear contribution of each  

type of cost. It is significant to note that the results in the       

all four product categories witnessed the same trend (i.e., 

linear increase in cost) hence, due to the space limitations,   

the only instance (i.e, Cu = £10 and Rp  =  30/min)  was  

opted to demonstrate the trend  as  in  Figure  8.  To  present 

an example, the damage penalty is recorded when the unit  

cost of production is £10 and the rate of production reaches 

30 products per minute. Initially, the proportion of battery 

replacement cost is 44% in comparison to overall cost that 

goes down to 3% of the overall cost when the LoRa monitoring 

nodes reach 5 min of sensing interval. On the other hand, 

damage  penalty  is  doubled  over  every  minute  of  sensing 
 

Fig. 5. LoRaWAN support for sensing intervals in case 
of 1% duty cycle restriction by EU regulations 
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interval starting from £300 (when sensing interval is 1 min) 

to £1500 in case of 6T sense = 5 min. 

B. LoRaWAN in industrial monitoring scenarios with energy 

harvesting capabilities 

Industrial potential for renewable energy comes into play   

in two different ways. First, due to the presence of harvested 

energy from the industrial environment, LoRa monitoring 

nodes can be fed by newly harvested energy minimizing the 

battery powered operation. Second, thanks to the energy scav- 

enging capabilities present in industrial environment, sensing 

interval appears to be flexible and can be contracted as per the 

relaxation in energy quota. This section highlights the benefits 

of exploiting the harvesting potential in terms of extended 

battery life and flexible sensing interval and provides insight 

of how LoRaWAN performs far better in the presence of 

harvested energy as compared to the evaluations drawn in the 

previous sub-section. 

1) Prolonging the battery life: Extended battery life is the 

first milestone that can be achieved taking energy harvest-   

ing into account within industrial environment. The damage 

penalty and the battery replacement cost both are significant 

but exhibiting inverse relationship. It implies that if we try     

to control one, the other may go up in plain industrial 

environment. While the potential for harvesting energy within 

an industry 4.0 can turn them around. 

a) Lifetime of LoRa motes in harvesting industrial en- 

vironment: In harvesting environment, the extra harvested 

energy is able to further prolong the lifetime of monitoring 

nodes several times as compared with plain industrial settings 

when moving along the sensing intervals, as shown in Figure 

9. The updated lifetime would significantly contribute towards 

reducing the Crepl., as shown in Figure 10. It can be observed 

that even in case of shortest  sensing  interval  of  a  minute, 

the battery life can be extended many folds when utilizing 

harvested energy without changing the sensing interval. 

b) Battery replacement cost in harvesting industrial en- 

vironment: The battery replacement cost can also be trimmed 

 

 

 

 

 

 

 

 
Fig. 6. Cumulative battery replacement cost against 
variation with respect to complexity 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Damage penalty with respect to various sensing 
intervals 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Aggregate cost summarizing damage penalty 
and battery replacement cost when Cu = £10, Rp = 
30/min 

by prolonging the lifetime of m 

industrial environment. Figure 

oring nodes in a harvesting 

clearly argues about chop- 

ping Crepl. as low as just over £13 when 6 sense approaches 

over 3 min in comparison to counterpart where it jumps over 

£80. Moreover, Crepl. keeps  rising  as  the  sensing  interval 

is reduced. As extra battery replacement cycles are required   

if the LoRa motes wake up back and forth (such as, in 1     

min interval). Whereas Crepl. maximally reaches £50 in 

energy harvesting scenario even when the 6Tsense = 1 min in 

 

 

 

 

 

 

 
Fig. 9. Average battery lifetime comparison of plain 

comparison with non-energy harvesting scenario where Crepl. 

is reported over £230 for the same interval. 

2) Contracting the sensing interval: 

a) Interval contraction rate: As mentioned in section V-

B, the flexibility in the sensing interval can be achieved as an 

added advantage in addition to prolonging the lifetime of 

LoRa devices. Figure 11 demonstrates the interval flexibility 

and energy harvesting industrial scenarios employing 
LoRaWAN 

rate (in percentage) at which 6T sense could be reduced in case 

of renewable energy. Here, it is worth mentioning that the rate 

of interval contraction ranges from 14% to 70% moving from 1 

min to 5 min sensing interval based on the amount of newly 
 

Fig. 10. Comparison of battery replacement cost when 
exploiting energy harvesting sources in industrial envi- 
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Fig. 11. Sensing interval flexibility and the rate of 
interval contraction when exploiting energy harvesting 
sources in industrial environment 

harvested energy available. The greater the sensing interval, 

the higher the relaxation in the energy quota and consequently, 

the higher the percentage of interval flexibility. It implies, a   

5 min preset sensing interval for an IIoT application can be 

reduced to as short as 1.5 min whenever needed to reduce   

the long damage interval, 6 damage, and to diminish higher 

damage penalty, damage. 

b) Damage penalty in harvesting industrial environment: 

It is even critical for the smart industries manufacturing costly 

products (i.e, higher Cu) where each damaged product causes 

far huge penalty as compared to Crepl.. Therefore, instead of 

attaining the longer battery lifetime in the Section V-B1, we 

can utilize newly harvested energy to derive a shorter sensing 

interval, 6T sense as permissible by the quota of harvested 

energy available at hand. Thanks to the interval contraction via 

harvested energy, it is possible to restrict the damage penalty 

(see Figure 12) to an upper bound of £1040 above the interval 

of 85s (120s previously i.e., up to 29% shorter), even when 

considering the most expensive product category. The damage 

penalty can be confined as low as £520 in the smart industries 

with  lower Cu. 
 
 

Fig. 12. Comparison of damage penalty against newly 
derived sensing intervals when exploiting energy har- 
vesting sources in industry 4.0 

c) Aggregate costs in harvesting industrial environment: 

Figure 13 exhibits the overall cost picture where the aggregate 

of both costs (i.e., damage and Crepl.) is compared with non-

energy harvesting scenario in Figure 8. The impact of interval 

contraction on both costs clearly argues about the non- 

linear increase in P damage and C repl. moving along higher 

intervals. With the increase in the contraction rate in harvesting 

environment, the aggregate cost tends to go significantly down 

along the higher sensing intervals. The cost reported by most 

right bar in Figure 13 on 6T sense = 360s are even lower 
 

 

 

 

 
Fig. 13. Aggregate cost within energy harvesting envi- 
ronment against rate of sensing interval contraction 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14. Annual carbon emission savings per node 
against different sensing intervals 

 
   

than the value reported on 6 sense = 60s which favors the 

selection of greater interval. 

3) Carbon footprint analysis for LoRa  devices:  Follow- 

ing the ascent in the global warming curve, serious efforts 

have been put in place by various segments of the society      

to de-carbonize the environment, fairly reducing the carbon 

footprints. The smart industries are also well on their way       

to green industrial revolution by taking several measures to 

reduce carbon footprints from different industrial processes. 

The employment of renewable energy sources not only offers 

industrial cost savings but also contributes to fairly drop the 

extent of carbon footprint caused by the conventional power 

generation. 

Despite the green energy solutions, it is important to note 

that each kind of renewable energy  source  is  associated  

with a certain amount of carbon per kWh of generation. By 

distributing these carbon emissions on the lifetime of the 

system, we can consider an amount of  carbon  associated  

with each type of renewable energy source as 15g/kWh, 

20g/kWh, and 30g/kWh for thermoelectric, photoelectric, 

and RF energy respectively [28], [29] as compared  to  the 

CO2 emission of fully battery powered monitoring devices as 
150g/kWh [30]. Let CObatt., COTE, COPE, and CORF are 

2 2 2 2 

the carbon emissions associated with fully battery-powered, 

thermoelectric, photoelectric, and RF energy respectively and 

Eyear = V I 24 365, then by multiplying the carbon footprint 

associated with a renewable energy source to Eyear yields an 
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Fig. 15. Carbon footprint analysis in presence of energy 
harvesting technologies in industrial environment 
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annual carbon emission of corresponding energy source. 

Similarly, annual carbon emission savings per LoRa node 

can also be evaluated by subtracting the annual CO2 emis- 

sion in the presence of energy harvesting sources from the 

expected carbon emission in fully battery powered solution 

(i.e., 4.58Kg/kWh). It can be expressed as: 

formulating an optimization problem where maximizing the 

lifetime is an objective function with both the costs (i.e., 

battery replacement costs and damage penalty) as constraints. 
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