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Abstract Thanks to their flexibility and scalability, collaborative embedding-
based models are widely employed for the top-N recommendation task. Their goal
is to jointly represent users and items in a common low-dimensional embedding
space where users are represented close to items for which they expressed a positive
preference.

The training procedure of these techniques is influenced by several sources of
randomness, that can have a strong impact on the embeddings learned by the
models. In this paper we analyze this impact on Matrix Factorization (MF). In
particular, we focus on the effects of training the same model on the same data,
but with different initial values for the latent representations of users and items.
We perform several experiments employing three well known MF implementations
over five datasets. We show that different random initializations lead the same
MF technique to generate very different latent representations and recommenda-
tion lists. We refer to these inconsistencies as instability of representations and
instability of recommendations, respectively. We report that stability of item rep-
resentations is positively correlated to the accuracy of the model. We show that
the stability issues affect also the items for which the recommender correctly pre-
dicts positive preferences. Moreover, we highlight that the effect is stronger for
less popular items.

To overcome these drawbacks, we present a generalization of MF called Nearest
Neighbors Matrix Factorization (NNMF). The new framework learns the embed-
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ding of each user and item as a weighted linear combination of the representations
of the respective nearest neighbors. This strategy has the effect to propagate the
information about items and users also to their neighbors and allows the embed-
dings of users and items with few interactions to be supported by a higher amount
of information. To empirically demonstrate the advantages of the new framework,
we provide a detailed description of the NNMF variants of three common MF
techniques. We show that NNMF models, compared to their MF counterparts,
largely improve the stability of both representations and recommendations, ob-
tain a higher and more stable accuracy performance, especially on long-tail items,
and reach convergence in a fraction of epochs.

Keywords Matrix Factorization · Nearest Neighbors · Stability · Popularity Bias

1 Introduction

Embedding-based models for collaborative filtering represent a wide family of ap-
proaches for top-N recommendation [12, 22, 49]. Their goal is to jointly represent
users and items in a common, low-dimensional latent factor space, also called em-
bedding space, so that users or items with similar profiles have matching latent
representations, also called embeddings [32]. In order to learn these representa-
tions, various techniques have been proposed in literature, ranging from Matrix
Factorization (MF) [29, 33, 17] to Deep Learning [22, 50, 49].

The training procedures of these approaches are influenced by several sources
of randomness, such as the initial values of the embeddings and the order followed
in the exploration of the available interactions. Using different random seeds or
random generators might induce the models to learn different representations for
users and items at convergence (instability of representations), and, consequently,
lead to the generation of different recommendation lists (instability of recommen-
dations). The magnitude of these differences determines whether an algorithm can
be considered stable or not [43].

While several definitions of stability have been proposed in the recommender
systems literature [41, 35, 4, 3], in this work we focus our analysis on one specific
definition of stability: the same recommendation model is trained on the same
dataset and in exactly the same experimental conditions (i.e., exploring the data
points in the same order and using the same hyper-parameters configuration), but
with a different random sequence used in the initialization of the latent factors,
due to a different random seed. In other words, we vary only the initial values
assigned to the latent factors that compose the representations of users and items,
excluding all the other sources of randomness.

Instability of representations and recommendations strongly impacts several
aspects of a recommender. First, the fact that different initializations converge to
different local optimal solutions suggests that the learned model overfits the train-
ing data, reducing its ability to generalize [20, 9]. This also has an impact on the
accuracy of a recommender, especially on niche items that have few interactions
(i.e., long-tail items), where generalization plays a fundamental role. Second, the
reliability of its recommendations becomes questionable, since the same technique
trained on the same data would provide different predictions for the same user-item
pair [34]. Third, the quality and the reliability of the explanations provided for
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recommendations is compromised. Indeed, most approaches that face the explain-
ability problem in embedding-based models rely on the similarities between the
latent representations learned by the model [45, 1]. Fourth, an algorithm affected
by this type of instability is not repeatable1, since even in the same experimental
setup it can provide different results.

Different techniques exist to improve the generalization capabilities of a model
by leveraging or controlling the randomness of the training procedure. Bagging
[44] is an ensemble method that trains different models from boostrap replica of
the same dataset and average their predictions. However, it requires to retrain the
model several times and it is designed to improve the generalization and not to
stabilize the model. Stochastic Weight Averaging is another ensemble technique
that averages the weights of the same model at different epochs of the training
process [34, 25]. All these approaches are model agnostic and do not take into
account the neighborhood properties of user and item embeddings: similar items
and users have similar embeddings.

In literature, it is well know that that same MF algorithm, trained on the
same data, can converge to different local optimal solutions during the training
as the result of different initializations of the embeddings [52, 19]. However, the
study of the consequences of converging to different local optima, in terms of the
generalization capability of the model (as related to its stability) and, therefore,
in terms of reduced accuracy, is unprecedented. Indeed, there are several works
that define and measure the stability of recommendations, but no study that (i)
measures the impact of stability on the quality of recommendations, (ii) defines
and measures the stability of representations, (iii) suggests how to improve the
stability and the ability of the learned representations to generalize and to provide
more accurate recommendations.

The goal of our work is to fill this gap with a twofold contribution. First, we
analyze the stability of Matrix Factorization, one of the most successful families of
embedding-based models for top-N recommendation. In particular, we study the
differences in the embeddings and the recommendations produced by the same
model under different initializations of latent factors. Moreover, we analyze the
correlation between stability and accuracy of MF models since, as already outlined
in previous works [3], stability and accuracy are usually positively correlated. Sec-
ond, we propose a new framework called Nearest Neighbors Matrix Factorization
(NNMF) as a generalization of classic matrix factorization. In NNMF the embed-
ding of each user, or item, is obtained as a weighted linear combination of the latent
representations of its closest neighbors. This property allows exploiting the existing
relationships, under the form of similarities, in the original interaction space, and
to transduce them in the embedding space learned by the MF model. We provide
the NNMF implementation of three well known MF approaches, namely BPR-
MF [39], Funk-MF [15] and P-MF [42]. Beyond the stability, we also analyze
the accuracy of the proposed models at different levels of popularity, comparing
them with their MF counterparts. With an extensive set of experiments over five
datasets, we show that:

– the stability of item representations is directly correlated with the accuracy of
common MF instances;

1 The definition of repeatability is reported in the ACM Artifact Review and Badging guide-
lines: acm.org/publications/policies/artifact-review-and-badging-current

acm.org/publications/policies/artifact-review-and-badging-current
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– long-tail items are more affected by the stability issues outlined in this paper;
– the NNMF framework greatly improves stability over traditional MF, and it is

particularly effective on less popular items;
– the NNMF variants achieve better accuracy, especially on the long-tail, with

lower variance with respect to the original MF methods in almost all measures
and datasets;

– propagating information in the neighborhood allows NNMF models to reach
convergence in a fraction of the number of epochs required by MF.

For the sake of reproducibility, we also provide the source code used to perform
all the experiments2.

This work is an extension of [16]. Compared to the previous version, we pro-
vide more details on the new NNMF models we propose and a broader set of
experiments. The rest of the paper is organized as follows. In Section 2 we report
the most important works related to the main arguments treated in this paper. In
Section 3 we introduce Matrix Factorization and the related stability issue. Then
we present our new framework called Nearest Neighbor Matrix Factorization and
we describe in detail three practical implementations based on three well known
MF algorithms. In Section 4 we show and discuss the results of the stability and
accuracy analyses. Finally, we conclude our paper with some remarks and future
directions in Section 5.

2 Related Work

In the following two sections, we report relevant publications related to our work.
The first section defines the concept of stability for a recommendation system
algorithm and presents which are the techniques currently adopted to improve it.
The second one report previous works that have tried to develop models inspired
from both MF and Nearest Neighbors algorithms.

2.1 Stability

There exist different definitions of stability of a recommender system in the liter-
ature, and different ways to improve each of these definitions. Most works define
the stability of a recommender system as the ’consistent agreement of predic-
tions’ made to the same user by the same algorithm, when new incoming interac-
tions are added to the system in complete agreement to system’s prior predictions
[3, 37]. A refinement of this definition of stability has been addressed in [4], where
the authors adopt bagging and iterative smoothing in conjunction with different
traditional recommendation algorithms to improve their consistency. Specifically
targeting matrix factorization algorithms, in [31] authors introduce a dynamic
weighting strategy for negative samples. In [30], a new optimization process is
proposed based on clustering data identifying harder set of samples in the training
set.

Other works define stability as the ability of the recommender system to pro-
vide consistent recommendations when malicious perturbations are performed to

2 https://github.com/damicoedoardo/NNMF

https://github.com/damicoedoardo/NNMF
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the dataset [3]. The work in [35] suggests hybrid collaborative and content-based
filtering as the best solution to mitigate the effects of attacks on the consistency
of recommendations. Finally, other works [40] relate the stability, or confidence,
of a recommender system with the quality of a dataset, either at system level
(the magic barrier described in [40]) or at user-level [8]. Our notion of stability –
the consistency of both recommendations and latent representations of users and
items when the same model is trained on exactly the same dataset with a different
random sequence used to initialize latent factors of users and items – is different
from the definitions used in the literature.

There are also several works that try to control (or leverage) the randomness
intrinsic in machine learning algorithms in order to improve the generalization
capabilities of a model. Bagging is the most widely adopted black-box method
used to leverage randomness in the input data in order improve the classification
accuracy of a model [44]. Bagging builds an ensemble of models by (i) running the
same training algorithm on different boostrap replica of the same dataset and (ii)
by aggregating their predictions. Training multiple model for prediction averaging,
as with bagging, is computationally expensive. Therefore, other works train a single
model and save the model parameters (snapshots) along the optimization path.
The predictions of the snapshot models are later combined to produce the final
prediction [24]. Differently from bagging and snapshots, that build ensambles in
the model space, other works build ensembles in the weights space. For instance,
the works in [34] and [25] use two variants of the same technique, Stochastic Weight
Averaging (SWA), to compute a running average of the model weights during the
last epochs of the training process.

2.2 Matrix Factorization and Nearest Neighbors

There is a family of algorithms which mixes ideas from MF and from Nearest-
Neighbors (NN) techniques. The models belonging to this category embed infor-
mation from both the two sub families and provide predictions which are, at least
ideally, different from the simple union of the recommendations coming from a
NN and from a MF. As reported in [27], MF and NN methods perform well in
complementary scenarios. Experimentally, the author observes that NN techniques
are able to grasp strong associations among a small set of closely related items,
while they are weak when it comes to estimate the overall structure that relates
simultaneously to most of or all items. MF, instead, works the other way around.
This observation justifies the existence of the hybrid category of models introduced
in this section. In the following, we cite notable attempts of MF models extended
with Neighbors information.

Koren [27] introduces a modified version of an item based NN model where the
similarity among items is learned solving an optimization problem. Then, he in-
troduces SVD++, which is a MF extension able to handle implicit feedback. Last,
he sums the prediction rules of those two techniques, formulating a new model and
an associated objective function, which is then optimized by gradient descent. In
[28, 46], the authors introduce NN models in which the similarity matrix is learned
from data. In order to lower the number of model parameters, they propose to learn
a factorized similarity, i.e. two low-dimensional matrices that, through a multipli-
cation, reconstruct the complete |I|×|I| similarity matrix. Bell et. al [7] introduce
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a similarity model inspired by [27] and a novel procedure for learning latent fac-
tors in MF. Then, they combine the predictions trying to exploit the strengths of
both the NN and MF models by means of a confidence coefficient. Paterek [38]
proposes a NN variation which computes the similarity matrix as the dot product
between the rows of the latent factors learned by Funk SVD [15]. Lastly, Zhang
[51] proposes a modified version of matrix factorization where information about
similar users is used to create new regularization terms to be considered during
the latent factor optimization process. Besides the many attempts done in the
direction of formulating a unique model that takes advantage of both the MF and
NN approaches, in the literature we can find many examples of the increments on
the perfomance that can be achieved by combining the recommendations provided
by independent MF and NN models [6].

Combining the benefits of MF and NN is at the basis of NNMF. As shown
in this section, the idea to merge MF and NN is not new, and it has proved to
be effective in improving accuracy and quality of recommendations [27]. However,
differently from all previous approaches, NNMF is not a unique model that com-
bines MF and NN. It is, instead, a framework that can be applied to any shallow
or deep model based on the factorization of users and items, with the aim to im-
prove the final accuracy of standard factorization models, enhancing their stability
and generalization capability. As such, our goal is to compare traditional matrix
factorization methods with the respective NNMF variants, to assess the improve-
ments brought by NNMF over the traditional approaches. Such a comparison is
not possible with the other methods in the literature.

3 Models

In this section, we provide the basics of matrix factorization and we discuss about
the stability issues that affect it. We propose the Nearest Neighbors Matrix Fac-
torization framework and we argue about its advantages over traditional MF.
Finally, we provide a detailed description of the NNMF variant of three widely
known collaborative MF approaches for top-N recommendation.

3.1 Preliminaries

In this paper, we denote the sets of users and items as U and I respectively. We use
lower case letters to refer to single entities that belong to these sets. In particular,
u, v are used to indicate users, while i, j, k indicate items.

Lower case, bold letters denote vectors in column format, unless differently
specified, while uppercase bold letters denote matrices. The User Rating Matrix
(URM) is represented with letter R and each cell rui contains the value of the
preference, either explicit or implicit, that a user provided for an item. If no feed-
back is available, rui is set to 0. Symbol ru indicates the user profile, intended as
the u-th row of matrix R, while ri indicates the item profile, intended as the i-th
column of R. We finally define κ as the set of user-item couples (u, i) for which
rui is known.
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3.2 Matrix Factorization

The main goal of Matrix Factorization is to decompose the original User Rating
Matrix into the product of two dimensionally lower matrices. These two matrices
contain the representations of users and items, also called embeddings, in a com-
mon, low-dimensional latent factor space. In this space, users are represented close
to items for which they expressed a positive preference, using the dot product as
proximity measure.

Formally, given a latent space of dimension f , users and items are represented
respectively in matrices P ∈ R|U|×f and Q ∈ R|I|×f . Each row pu of P contains
the representation of user u in the latent factor space. Each row qi of Q handles
the representation of item i in the same space. The dot product between a user and
an item vectors provides an estimation of the rating for the respective user-item
couple:

rui = pu·qTi R = PQT (1)

Over the years, researchers proposed several implementations of MF, varying
how matrices P and Q are learned [15, 39, 42], in order to improve the quality of
recommendations under different aspects. Most of them learn the parameters of
the model optimizing an objective function through stochastic gradient descent,
iterating over the available data. The training phases of such algorithms share a
common schema, which is partially altered from case to case. Firstly the two latent
factor matrices P and Q are initialized with random values, then an iterative
learning procedure begins. Within each iteration, one or more interactions are
selected among the available ones, and the objective function is computed alongside
its respective gradient. Finally, the latent factors of the sampled items and users
are updated accordingly.

The iterative exploration of the available interactions leads classic MF ap-
proaches to follow their distribution during the training procedure. A well known
issue that affects common recommender system datasets is the popularity bias:
most interactions are referred to a small set of popular items. As a consequence,
factors belonging to popular items are updated far more often than niche ones dur-
ing the training procedure of an algorithm. The same holds for the users with long
profiles. Due to the low number of updates performed on the latent representations
of unpopular items and short-profile users, we expect that the initial values of the
latent factors, that are randomly assigned at the beginning of the training process,
have a strong impact on their final representations at convergence. In other words,
the scarcity of interactions available for items (e.g., for unpopular items) or users
can lead MF techniques to learn very different representations for the same item
or user, just depending on their initial values. We refer to this issue as instability
of representations. The same problem directly affects also the recommendation
lists generated by the algorithms, as they are strictly connected to the mutual
representations of users and items. Indeed, a Matrix Factorization algorithm rec-
ommends the nearest items to a user, according to the respective representations
in the latent factor space learned. If the representation of a user is unstable, the
same holds also for the closest items in the latent space, leading to the generation
of different recommendation lists for the same user, based on different random
initial conditions. We refer to this issue as instability of recommendations.
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Table 1: Stability of Top-10 recommendation lists generated by three MF tech-
niques expressed with Jaccard index. Higher values indicate a better stability.
Datasets names abbreviations are reported in Section 4.1.

Algorithm LFM M1M BCR PIN CUL

BPR-MF 0.72 0.80 0.31 0.53 0.51
Funk-MF 0.75 0.65 0.06 0.33 0.33
P-MF 0.64 0.65 0.24 0.44 0.39

As an example, in Table 1 we show the stability of the top-10 recommendations
for three common MF techniques, expressed with the Jaccard index, that indicates
how much the generated lists overlap. We compare the recommendations provided
by 10 instances of the same model. All the instances are trained on the same data,
explored in the same order, and with the same configuration. The only difference
we allowed between the training procedures of different instances was in the initial
values of the latent factors. We obtained this difference by changing the random
seed used at the beginning of the initialization3. The results show a worrying
trend, since the recommendation lists of all the three algorithms overlap by less
than 50% on three datasets out of five. From another perspective, this means that
more than half of the items recommended by the same algorithm, trained on the
same data, vary by only modifying the initial random seed, i.e. by simply altering
the initial values of the latent factors. For the BookCrossing dataset the instability
is even more dramatic, since lists overlap by less than 30%. More details about the
experimental procedure and a wider range of experiments are reported in Section
4.

3.3 Nearest Neighbors Matrix Factorization

As discussed in Section 3.2, MF learns users and items representations, also called
embeddings, in a new latent space where users are mapped close to items they have
expressed positive preference for. One of the main drawbacks of MF algorithms
is that they treat individual users and items as independent entities. However,
relationships among users and among items do exist in the original interaction
space and transduce them in the new latent space would be beneficial. We hence
propose a new framework called Nearest Neighbors Matrix Factorization (NNMF),
which is able to let Matrix Factorization algorithms leverage knowledge about
users and items relationships, under the form of similarities, during the algorithm
learning procedure. Given the two latent factor matrices P and Q presented in
Section 3.1, we define the new neighborhood-aware latent representations for users
P∗ and items Q∗ as:

P∗ = SUP Q∗ = SIQ

where SU and SI are a user similarity matrix of size |U|×|U| and an item similarity
matrix of size |I| × |I|, respectively. Each element sxy stores the value of the
similarity between entity x and y, being them either users or items (i.e. x, y ∈ U

3 Note that instances that use the same random seed for the initialization would converge
to the exact same results.
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or x, y ∈ I). In the implementation of NNMF that we propose, these similarity
matrices are constant matrices that can be pre-computed by using any traditional
nearest-neighbor collaborative-filtering approach. As such, NNMF can be easily
applied to almost any MF algorithm. Notice that if both similarity matrices SU

and SI are identity matrices, NNMF collapses to classic MF. It follows that the
new NNMF framework is a generalization of MF.

An important characteristic of the new technique can be highlighted by ex-
ploding the neighborhood-aware representations:

p∗u =
U∑
v

sUuvpv = sUuupu +

U\{u}∑
v

sUuvpv (2)

q∗i =
I∑
j

sIijqj = sIiiqi +

I\{i}∑
j

sIijqj (3)

Clearly, every user/item embedding is composed by an independent component
that directly refers to the user/item being represented, and a second component
defined by a weighted representation of the neighbors. The magnitude of the con-
tribution of each neighbor is proportional to the similarity with the user or the
item we are considering: the more similar they are, the stronger the contribution
will be. Moreover, note that, with the proposed formulation, P and Q do not
directly contain users and items embeddings. They contain, instead, vectors that
form a generating set, not necessarily a basis, for the vector space where users
and items representations are projected. Embeddings for users and items are now
contained in P∗ and Q∗, respectively.

Finally, we can modify Equation (1), used to estimate the preferences and
provide recommendations, with the new formulation of the latent representations,
rewriting it as:

R = P∗Q∗T = SUPQTSI
T

(4)

rui = p∗u·q∗Ti =

( U∑
v

sUuvpv

)
·
( I∑

j

sIijqj

)
(5)

The main advantage of NNMF over traditional MF is that the knowledge we
have concerning a user or an item is also spread to the respective closest neighbors.
This translates into two important benefits. First, it allows having a larger amount
of information supporting the latent representations of items and users. This aspect
is particularly important for users and items that have scarce data available, and it
leads to a globally higher stability of recommendations and representations, as the
empirical experiments in Section 4 demonstrate. The second benefit can be easily
highlighted looking at the differences between Algorithm 1 and 2. In Algorithm 1
we report the pseudocode that implements the training procedure of a classic MF
approach. In Algorithm 2 we show the pseudocode of the training process referred
to a NNMF implementation. In the latter, the updates made to the embeddings
during the learning procedure are not restricted to the user and the item associated
to the sampled interaction, but they are also propagated to the representations of
users and items in the neighborhoods of u and i. This allows disseminating the
information learned on a user or an item also to the neighbors, resulting in a faster
convergence of the model.
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Algorithm 1 MF

1: Randomly initialize P and Q
2: while not converged do
3: Extract a training sample randomly
4: Compute gradients
5: Update embedding of user u
6: Update embedding of item i

Algorithm 2 NNMF

1: Randomly initialize P∗ and Q∗

2: while not converged do
3: Extract a training sample randomly
4: Compute gradients
5: for v ∈ U do
6: Update embedding of user v

according to sUuv
7: for j ∈ I do
8: Update embedding of item j

according to sIij

3.4 Similarity

In the NNMF algorithm, relationships among users and items are modeled in
the form of similarity matrices SU and SI . Even though in the definition of the
framework we did not make any assumption on how these matrices are obtained,
for the NNMF instances proposed in this paper we assume that the similarity
values are calculated using the shrinked cosine similarity function:

suv =
ru · rv

||ru|| · ||rv||+ hU
sij =

ri · rj
||ri|| · ||rj ||+ hI

(6)

where ru and rv are user profiles, ri and rj are item profiles and hU and hI are the
shrink terms. Moreover, for every item and user we kept only a small number of the
nearest neighbors, since we noticed that this approach led to the best performance.

Note that the choice of the cosine has two main advantages. The first is that it is
simple and fast to compute. The second is that it allows a fairer comparison, since
the NNMF model has the same complexity and the same number of parameters
to learn compared to the original MF variant.

3.5 Instances

We implement three NNMF algorithms as generalizations of three common MF
algorithms: Funk-MF [15], BPR-MF [39] and P-MF [42].

3.5.1 Funk-NNMF

Simon Funk [15] proposed one of the earliest implementations of MF as a simpli-
fied version of Singular Value Decomposition. Users and items are represented in
a common, low-dimensional latent space, and the rating prediction for a user-item
couple is performed through the dot product between the respective latent repre-
sentations, as described in Equation 1. The optimization procedure minimizes the
following regularized MSE loss function:

J =

κ∑
(u,i)

(rui − rui)2 + λp||P||2 + λq||Q||2 (7)
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where λp and λq are the variables that control the regularization.

The NNMF version of Funk-MF can be obtained replacing the original predic-
tion rule, using the variant proposed in Equation (5). The loss function to minimize
consequently becomes:

J =
κ∑

(u,i)

(
rui −

( U∑
v

sUuvpv

)
·
( I∑

k

sIikqk

))
+ λp||P||2 + λq||Q||2 (8)

Algorithm 3 Funk-NNMF

1: Randomly initialize matrices P∗ and Q∗

2: κ = {(u, i)|rui is known }
3: while not converged do
4: Randomly sample (u, i) ∈ κ
5: for v ∈ U do
6: pv ← pv + α[(rui − rui)sUuv

∑I
k s

I
ikqk − λppv ]

7: for k ∈ I do
8: qk ← qk + α[(rui − rui)sIik

∑U
v s

U
uvpv − λqqk]

3.5.2 BPR-NNMF

Bayesian Personalized Ranking (BPR) is a generic optimization criterion for user
personalized ranking of items [39]. This approach learns to rank couples of items
correctly, according to the user preferences, instead of scoring them singularly.
Each couple is composed by an item that belongs to the set of items for which
the user u provided a positive feedback (I+u ), and an item that does not belong to
that set. Defining the training data as DS = {(u, i, j)|u ∈ U ∧ i ∈ I+u ∧ j ∈ I \I+u },
the generic optimization criterion is to maximize:

BPR-Opt =

DS∑
(u,i,j)

lnσ(xuij(Θ))− λΘ ‖Θ‖2 (9)

The term xuij(Θ) represents an arbitrary real valued function of the model pa-
rameters Θ. It captures a specific relationship between user u and items i and j,
so that σ(xuij(Θ)) estimates the probability that user u prefers item i over j. In
the case of BPR-MF, xuij(Θ) is defined as the difference between the preference
values that a Matrix Factorization model predicts for user u on items i and j. In
particular:

xuij(Θ) = rui − ruj (10)

The NNMF version can be derived redefining the estimator xuij according to
the prediction rule reported in Equation (5):

xuij(Θ) =

( U∑
v

sUuvpv

)
·
( I∑

k

sIikqk

)
−
( U∑

v

sUuvpv

)
·
( I∑

k

sIjkqk

)
(11)
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Algorithm 4 BPR-NNMF

1: Randomly initialize matrices P∗ and Q∗

2: DS = {(u, i, j)|i ∈ I+u ∧ j ∈ I \ I+u ∧ u ∈ U}
3: while not converged do
4: Randomly sample (u, i, j) ∈ DS
5: Aij =

∑I
k s

I
ikqk −

∑I
k s

I
jkqk

6: Bu =
∑U
v s

U
uvpv

7: xuij = Aij ·Bu
8: for v ∈ U do

9: pv ← pv + α

(
e
−xuij

1+e
−xuij

sUuvAij + λppv

)
10: for k ∈ I do

11: qk ← qk + α

(
e
−xuij

1+e
−xuij

(
sIik − s

I
jk

)
Bu + λqqk

)

3.5.3 P-NNMF

P-MF is a Probabilistic variant of Matrix Factorization introduced by Mnih et
al. [42], that aims to improve scalability and accuracy in sparse scenarios of clas-
sic collaborative filtering approaches. The authors propose to train the model
minimizing the following sum-of-squared-errors objective function with quadratic
regularization terms:

J =
κ∑

(u,i)

(rui − σ(rui))
2 + λp||P||2 + λq||Q||2 (12)

where λp and λq are the model parameters that control the regularization. Note
that the rating prediction rui is passed through the sigmoid function σ, in order to
bound the predictions to the probability range [0, 1]. The same must hold also for
all the known ratings rui. The NN version of P-MF can be derived by adapting
the prediction rule according to Equation 5. The loss consequently becomes:

J =
κ∑

(u,i)

(
rui − σ

( U∑
v

sUuvpv·
I∑
k

sIikqk

))2

+ λp||P||2 + λq||Q||2 (13)

Algorithm 5 P-NNMF

1: Randomly initialize matrices P∗ and Q∗

2: κ = {(u, i)|rui is known }
3: while not converged do
4: Randomly sample (u, i) ∈ κ
5: q∗i ←

∑I
k s

I
ikqk

6: p∗u ←
∑U
v s

U
uvpv

7: rui ← q∗i · p∗u
8: g ← (rui − σ(rui))σ(rui)(1− σ(rui))
9: for v ∈ U do

10: pv ← pv + α[gsUuvq
∗
i − λppv ]

11: for k ∈ I do
12: qk ← qk + α[gsIikp

∗
u − λqqk]
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Table 2: Statistics of the datasets used for the experiments.

Dataset Users Items Inter. Density
Avg. Inter.
per user

Avg. Inter.
per item

LFM 1859 2823 42798 0.81% 23.0 15.2
M1M 6038 3307 501114 2.51% 83.0 151.5
BCR 13975 33925 314499 0.06% 22.5 9.3
PIN 55186 9637 877796 0.16% 15.9 91.1
CUL 5536 15429 119919 0.14% 21.7 7.8

4 Experiments

It is known that a MF algorithm, even if trained on the same data, can converge to
different local optimal solutions and learn very different representations for users
and items due to different initial values of latent factors [52, 19]. In this paper,
our first goal is to study the consequences of converging to different local optima
in terms of the ability of the model to generalize (as related to the stability of
the model) and to assess the respective impact on the accuracy of the recommen-
dations. The second goal is to propose NNMF as a remediation to the stability
issues, providing empirical evidence of its benefits on both stability and accuracy
with several experiments on five research datasets.

In this section, as first we report on the stability of the studied algorithms
in both MF and NNMF variants. We focus on studying the stability of represen-
tations learned, showing its correlation with the recommendation accuracy and
highlighting how the popularity bias has an impact on it. Afterwards, we analyze
the stability of the set of items recommended with two experiments, the first tak-
ing into account the entire set of recommendations and the second one using only
relevant ones. Then we shift our focus on analyzing the accuracy performance of
the algorithms with a particular attention on the influence of the popularity bias.
We first report a comparison on the long-tail performance with respect to relevant
baselines, followed by an analysis of the performance restricted to item popularity
clusters. Finally we report on the convergence of the proposed algorithms.

4.1 Datasets

We carry out experiments employing a number of research datasets:

LastFM (LFM) Implicit interactions gathered from the music website Last.fm. In
particular, user listened artist relations expressed as listening counts. [10]

Movielens1M (M1M) Explicit interactions gathered from the website MovieLens.
In particular, user rated movie relations. [21]

BookCrossing (BCR) Explicit interactions gathered from the online book club
BookCrossing. In particular, user rated book relations. [53]

Pinterest (PIN) Implicit interactions gathered from the social network Pinterest.
In particular, user pin-to-own-board image relations. [18]

CiteULike (CUL) Implicit interactions gathered from the online scientific commu-
nity CiteULike. In particular, user saved-to-own-library paper relations. [47]
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We employ datasets with densities of interactions that range from 0.04% to 2.51%,
as we want to take into account the effect of a varying density of the datasets on
both the accuracy and stability of the models. The statistical details of the datasets
are described in Table 2.

The datasets used for the experiments have been preprocessed in two steps.
First, we brought all the interactions to either 0 or 1 by means of thresholding,
since BPR requires binary preference values. Among the implicit datasets, only
LFM needs thresholding: we use threshold value equal to 1, hence we convert
every interaction to one if the user has listened at least once to an artist. In
explicit datasets we use threshold value equal to 6 for 1 to 10 ratings and equal
to 3 for 1 to 5 ratings. Second we applied a filtering procedure keeping only users
and items with at least 5 interactions, in order to remove entities with a too scarce
amount of information.

Each dataset has been randomly partitioned performing a standard holdout
procedure in three sets: train, validation and test sets accounting for 60, 20 and
20 percent of the available interactions.

4.2 Hyper-parameter tuning

For all algorithms and datasets, we conduct a hyper-parameter tuning procedure.
We cannot resort to a grid search, due to the substantial number of parameters,
algorithms and datasets. Instead, we employ a Bayesian search, using the imple-
mentation of Scikit-Optimize4. We set the search space empirically. We let the
number of neighbors in NNMF algorithms to vary from two to 50. That is, we
constrain NNMF to use at least two neighbors for users or items, so that it is not
equivalent to MF, as elaborated in Section 3.3. We let the learning rate vary from
10−6 to 10−1, the number of latent factors from 50 to 300, the batch size from 102

to 105, and the regularization terms from 10−6 to 10−1. We run the Bayeasian
search with 100 parameters configurations and 30 initial random restarts. We mon-
itor the accuracy on the validation set every 5 epochs, as measured by MAP@5.
We also apply early stopping, useful to speed up the search. Early stopping inter-
rupts the training with a parameter configuration if continuing is not promising.
In particular, if the metric on the validation set does not improve within a certain
number of epochs, also known as patience, the training stops. We set the patience
to 10.

4.3 Stability

The main focus of our stability study, is on the representations of items (and users)
learned by the models, since they are directly related to both the instability of rep-
resentations and the instability of recommendations issues introduced in Section
3.2. Assessing the stability of representations requires to use a technique which is
invariant to transformations on the vector space, such as permutation or rotation
of coordinates. As an example, consider an arbitrary latent space and apply a per-
mutation to the order of the dimensions that compose it (i.e. permute the order

4 https://scikit-optimize.github.io/stable/

https://scikit-optimize.github.io/stable/
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of the factors that compose each embedding). Formally, the new space is radi-
cally different from the original one, but the relationships between users and items
are perfectly preserved, which is the most important aspect. Indeed, as already
discussed in Section 3.2, MF learns to represent, in a f -dimensional latent factor
space, users close to items for which they expressed a positive preference, without
any additional constraint on the shape of the space learned. For this reason, we
define that the representation of an item (user) is stable if, in every new latent
space, it is close to the same items (users) in order to assess if the relationships
among items (users) are maintained in the different embedding spaces. We check
this condition by ensuring that the neighborhoods formed in the new spaces are
composed by the same set of items (users).

We execute each algorithm ten times, using the best hyper-parameter config-
uration found on the validation set, as described in Section 4.2. In each execution
we change the latent factor initialization by simply using different seeds for the
random number generator used to assign the initial values, but we ensure that the
order in which the training data samples are explored during the different runs
of the algorithms is kept constant. Considering the latent factor representations
learned, we create a list of the closest items to every item and users to every user,
by means of a cosine similarity on the latent factor space. We compute these lists
of K nearest neighbors for the first of the ten models. Then, we measure the degree
of similarity of the K nearest neighbors of the other nine models against the first
according to the Jaccard index, a common statistic used to asses the similarity
between sets. Higher similarity of the nearest neighbors in the latent space across
different runs suggests a higher similarity of the latent factor representations. The
results show that:

– there is a strong, positive correlation between the stability of item representa-
tions and the accuracy of a MF model;

– the representations and the recommendations of MF models are noisy and
strongly impacted by the random initialization of the latent factors, since the
available information about the real user’s taste is often poor and marginally
exploited;

– NNMF models are overall more stable then their counterparts by a large
margin, especially when considering non-popular items, where classic MF ap-
proaches particularly suffer the scarcity of interactions.

4.3.1 Stability and accuracy correlation

As already outlined in previous works [3], stability and accuracy are usually pos-
itively correlated. The goal of this section is to verify if, in the MF techniques
studied in this paper, a positive correlation between the stability of item repre-
sentations and the accuracy exists, and to assess its strength. To perform this
experiment:

– We split the dataset into training and test, by using the same strategy described
in Section 4.1.

– We compute the stability of representation of each item based on the proce-
dure discussed at the beginning of Section 4.3, using lists of K = 10 nearest
neighbors.
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Table 3: Spearman correlation between the stability of item representations and
the accuracy of the algorithm expressed as the MAP@10.

Algorithms LFM M1M BCR PIN CUL

BPR-MF 0.83 0.84 0.97 0.97 0.90
Funk-MF 0.92 0.90 0.95 0.99 0.93
P-MF 0.77 0.83 0.12 0.94 0.20

(a) BPR-MF (b) Funk-MF (c) P-MF

Fig. 1: Comparison between the stability of item representations and accuracy in
terms of MAP@10 in MF approaches on the M1M dataset. The plots include the
regression lines of the data points.

– We divide the items in 30 groups with increasing stability of representations, so
that: the first group includes the items with lowest stability; the second group
includes the items with lowest stability that do not appear in the first group;
and so on.

– We compute the stability of each group as the average of the stability of the
items that compose the group.

– For each group of items, we compute the respective average accuracy as follows:
– For each user, we keep only the test interactions related to items contained

in the group; all other test interactions are discarded; all the training in-
teractions are maintained, regardless of the group.

– We train the model on the training interactions;
– We compute MAP and Recall at cutoffs 5 and 10 on the test interactions

(i.e., the ground truth contains only interactions within the group of items).
– We average the metric over all the users.

In Table 3 we show the Spearman’s rank correlation coefficient value between
stability and MAP@10 of the item groups, to assess if there’s a monotonic cor-
relation between them. For brevity, we do not report the results obtained with
other metrics and cutoffs, since they exhibit the same results. The table shows a
strong, positive correlation between stability and MAP@10. In 13 cases out of 15
the Spearman’s coefficient value is above 0.75, and in 9 of these cases it is higher
than 0.9, demonstrating the existence of a very strong correlation between the two
factors. Funk-MF in particular shows the highest correlation scores in 4 out of
5 datasets, with values always greater or equal to 0.9. The only two exceptions
are P-MF on BCR and CUL, where the correlation between MAP@10 and sta-
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Table 4: Stability of representations @10 as Jaccard index. Underline indicates the
most stable algorithm. Bold indicates the most stable between MF and NNMF.

Algorithms LFM M1M BCR PIN CUL
Item User Item User Item User Item User Item User

BPR-MF 0.73 0.67 0.70 0.70 0.47 0.32 0.45 0.30 0.57 0.58
BPR-NNMF 0.82 0.87 0.93 0.91 0.55 0.57 0.66 0.51 0.69 0.69

Funk-MF 0.66 0.61 0.36 0.33 0.17 0.13 0.34 0.19 0.48 0.48
Funk-NNMF 0.81 0.83 0.95 0.92 0.42 0.25 0.68 0.58 0.64 0.61

P-MF 0.62 0.56 0.55 0.47 0.38 0.26 0.32 0.19 0.60 0.40
P-NNMF 0.76 0.78 0.81 0.68 0.57 0.62 0.63 0.46 0.75 0.71

Table 5: Stability of representations @100 as Jaccard index. Underline indicates
the most stable algorithm. Bold indicates the most stable between MF and NNMF.

Algorithms LFM M1M BCR PIN CUL
Item User Item User Item User Item User Item User

BPR-MF 0.72 0.75 0.82 0.80 0.48 0.38 0.67 0.43 0.63 0.61
BPR-NNMF 0.85 0.91 0.96 0.95 0.53 0.54 0.81 0.63 0.71 0.72

Funk-MF 0.73 0.71 0.57 0.53 0.14 0.08 0.60 0.33 0.48 0.43
Funk-NNMF 0.87 0.88 0.97 0.95 0.26 0.17 0.84 0.70 0.63 0.50

P-MF 0.60 0.63 0.73 0.61 0.23 0.28 0.56 0.31 0.62 0.38
P-NNMF 0.78 0.84 0.87 0.76 0.57 0.53 0.80 0.60 0.75 0.74

bility is rather week. Note that, according to Table 2, BCR and CUL are the two
datasets with the lowest average number of interactions per item. It is well known
[5, 23] that accuracy of recommendations is related the the number of available
interactions. Therefore, these two datasets are the noisiest in terms of accuracy of
recommendations.

In Figure 1 we compare stability of item representations and accuracy, ex-
pressed as the MAP@10, of the item groups on the M1M dataset. We show the
stability, on the horizontal axis, and the MAP@10, on the vertical axis, of each
group of items using a scatter plot. We also include the regression line of the
data points. For brevity, we omit other datasets, since we obtained similar results
(excluding the two exceptional cases previously highlighted). The plots confirm
the results shown in Table 3, since a positive correlation between stability of item
representations and MAP@10 is quite evident for all the MF approaches employed.

4.3.2 Stability of representations

In Tables 4 and 5 we report the stability of user and item representations, ex-
pressed as the average Jaccard index, computed as described in the introduction
of Section 4.3. We use lists of nearest neighbors of length K = 10 for Table 4, and
of length K = 100 for Table 5. We compare MF and NNMF in a pairwise manner,
considering the differences in the stability of representations.

The results obtained with the two values of K are similar and show an evident
trend: applying the new NNMF technique leads to a large improvement in the
stability of the recommendations in every configuration. The stability of NNMF
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approaches is over 50% in almost all the experiments, and well above 80% on two
out of five datasets. MF approaches, on the contrary, struggle to reach 50% of
stability for both users and items on three datasets out of five.

Analyzing the results, we observe higher stability for denser datasets, while
it drops when the density of interactions is really low. Indeed lowest values of
stability on both users’ and items’ latent factors, are recorded on the three least
dense datasets, namely BookCrossing, CiteULike and Pinterest, while the highest
values are obtained on the two most dense datasets, Movielens1M and LastFM.
This is an expected behavior and confirms our statements reported in Section 3.2.
A lower density of interactions translates into a smaller amount of updates on the
representations of users and items. This effect is particularly amplified for items
with a very low popularity and users with short profiles. Consequently, the depen-
dency of their representations on the respective initial values is strong, leading to
low values of stability across different runs. We also notice how the stability tends
to be higher for small datasets. Intuitively, the neighborhoods tend to have less
variety when there are less elements in the latent factor space. Finally, among the
MF algorithms, it is interesting to highlight that the BPR-MF approach and its
NNMF variant have a higher stability than the other methods in almost all the
experiments.

Another difference raises between the stability of users and items. MF algo-
rithms tend to have more stable latent representations of items with respect to
users’ ones, especially on the three most sparse datasets that we previously men-
tioned. However, this trend is not replicated in NNMF versions, where the stability
scores of items and users are very often comparable. It follows that the stability
improvements for users representations are usually larger than the items’ counter-
parts.

4.3.3 Stability of representations per item popularity

In this experiment we want to analyze the stability of the item representations
at different levels of item popularity. Our goal is to understand if a correlation
between the popularity of an item and its stability exists. We divide the items
in 6 bins, depending on their popularity, using 1, 0.66, 0.4, 0.3, 0.2, 0.1 and 0
as thresholds. The first bin contains all the most popular items that account for
the 1 − 0.66 = 34% of the interactions in the dataset, i.e. the short-head5. The
second bin contains all the most popular items, excluding those in the first bin,
that account for the 0.66 − 0.4 = 26% of interactions. Then, all the other bins
are obtained accordingly. For each bin, we average the stability of the items that
belong to it.

In Figure 2 we show the results of the experiment performed on the LFM
dataset. For brevity, we omit the results on the other datasets, since we obtained
very similar results on all of them. Clearly, the stability of NNMF models is glob-
ally higher than the MF counterparts at all levels of popularity. However, the plots
show another evident trend: the representations of popular items are much more
stable than unpopular ones. This behavior is not surprising, and confirms our in-
tuition discussed in Section 3.2: the scarcity of interactions available for unpopular

5 The long-tail is the set of least popular items that account for the 66% of the interactions.
The short-head is defined as complementary to the long-tail: it is the set of most popular items
that account for the 34% of the interactions
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(a) BPR (b) Funk (c) P

Fig. 2: Stability of item representations for popularity ranges on the LFM dataset
expressed as Jaccard @10. Every point represents the average stability value of the
items in a bin. A bin contains all the items that belong to a range of popularity.

items impacts the stability of item representations at convergence. Higher popu-
larity determines a higher number of updates and, consequently, a more detailed
representation supported by a higher amount of information. Instead, niche items
representations are subject of few updates during the learning process, resulting
in more fuzzy representations even at model convergence, where the impact of the
initialization values used is still strong. It is also evident that MF is subject to
higher drops of stability, compared to NNMF, when passing from popular to niche
items.

4.3.4 Stability of recommendations

As further experiment, we confront MF and NNMF in order to assess the differ-
ences in the stability of recommendations. Moreover, for a more sound comparison,
we include the SVD KNN model proposed in [38], as representative of MF-based
approaches that exploit neighborhood information. According to the original def-
inition, the item factors learned through Funk-MF (called Regularized SVD in
[38]) are used to compute an item similarity matrix using cosine as similarity mea-
sure. For each item, only the k nearest neighbors are used for the prediction of
user preferences, which are computed like a common item-based model, through
the dot product between the user profile and the item similarity matrix 6. For
completeness, in our experiments we also included two variants of this model,
using different MF approaches to learn the item factors, namely BPR-MF, and
P-MF. Therefore, we obtained three different models, that we call respectively
Funk-MF-KNN (that corresponds to the original implementation of the model
proposed in [38]), BPR-MF-KNN, and P-MF-KNN, depending on the algorithm
used to generate the item factors. The goal of this experiment is to assess whether
NNMF is able to more effectively take advantage of neighborhood information, in
order to increase the stability of MF models.

The experimental procedure is similar to the one described in Section 4.3.2:
every algorithm is trained ten times, changing the random seed that controls the
latent factor initialization, but keeping constant the order in which samples are
explored during the training procedure. For each algorithm we perform a pairwise

6 In our experiments, the number k of nearest neighbors was treated as a hyperparameter
of the model, and optimized on the validation set.
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Table 6: Stability of recommendations @10 as measured by Jaccard, indicated as
J, and RBO indices. Underline indicates the most stable algorithm. Bold indicates
which is more stable among MF, MF-KNN and NNMF.

Algorithms LFM M1M BCR PIN CUL
J RBO J RBO J RBO J RBO J RBO

BPR-MF 0.72 0.80 0.80 0.85 0.31 0.39 0.53 0.62 0.51 0.62
BPR-MF-KNN 0.79 0.83 0.78 0.83 0.49 0.56 0.48 0.56 0.51 0.59
BPR-NNMF 0.86 0.91 0.95 0.97 0.54 0.65 0.71 0.79 0.66 0.76

Funk-MF 0.75 0.81 0.65 0.72 0.06 0.08 0.33 0.40 0.33 0.42
Funk-MF-KNN 0.77 0.82 0.37 0.43 0.20 0.25 0.41 0.48 0.43 0.52
Funk-NNMF 0.89 0.92 0.96 0.97 0.19 0.25 0.78 0.84 0.53 0.64

P-MF 0.64 0.74 0.65 0.72 0.24 0.34 0.44 0.52 0.39 0.50
P-MF-KNN 0.58 0.65 0.54 0.61 0.22 0.27 0.39 0.45 0.53 0.60
P-NNMF 0.81 0.87 0.79 0.85 0.63 0.72 0.79 0.86 0.68 0.76

Table 7: Stability of recommendations @100 as measured by Jaccard, indicated as
J, and RBO indices. Underline indicates the most stable algorithm. Bold indicates
which is more stable among MF, MF-KNN and NNMF.

Algorithm LFM M1M BCR PIN CUL
J RBO J RBO J RBO J RBO J RBO

BPR-MF 0.79 0.86 0.88 0.92 0.45 0.53 0.65 0.73 0.59 0.70
BPR-MF-KNN 0.85 0.90 0.89 0.91 0.48 0.65 0.61 0.71 0.64 0.73
BPR-NNMF 0.90 0.94 0.97 0.98 0.62 0.72 0.80 0.86 0.71 0.81

Funk-MF 0.82 0.88 0.80 0.84 0.10 0.14 0.57 0.61 0.38 0.51
Funk-MF-KNN 0.86 0.90 0.57 0.64 0.23 0.35 0.67 0.70 0.50 0.63
Funk-NNMF 0.92 0.95 0.98 0.98 0.22 0.31 0.87 0.90 0.56 0.70

P-MF 0.70 0.80 0.76 0.83 0.29 0.41 0.60 0.67 0.46 0.59
P-MF-KNN 0.65 0.76 0.67 0.75 0.27 0.38 0.51 0.62 0.62 0.73
P-NNMF 0.85 0.91 0.87 0.91 0.67 0.77 0.84 0.90 0.74 0.83

comparison between the first model (first random seed) with all the other nine. We
compare the top-N recommendations of the two versions of the same model, mea-
suring the degree of similarity of the recommendations retrieved. The similarity is
expressed resorting to the Jaccard index and to the Rank Biased Overlap (RBO)
[48]. Differently from the experimental setting in Section 4.3.2 we report the RBO
index to account for the ranking of the elements of the two lists, since the order in
which recommendations are retrieved can be crucial in some settings. The results
are averaged over the nine different comparisons performed. The experiment has
been repeated using two different recommendation cutoff values 10 and 100, and
the stability scores are reported in Table 6 and Table 7 respectively.

The results in the stability of recommendations are compatible with respect to
what we observed for the representations in Tables 4 and 5. The recommendation
lists generated by NNMF models are always widely more stable than their MF
counterparts from both the two different points of view of the Jaccard and RBO
indexes on the two cutoffs analyzed. Exploiting the neighborhood as proposed in
MF-KNN variants is not clearly effective for the improvement of recommendation
stability. Indeed, they obtain inconsistent results across the datasets, and they
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improve the stability of the respective MF model used to learn the item factors
in only 7 cases over 15. In the other scenarios, they obtain stability scores that
are similar or worse than the respective MF model. Finally, the MF-KNN variants
obtain comparable results with NNMF in only one single case (Funk-MF-KNN
on BCR), while NNMF proves to be largely more effective in improving stability
exploiting neighborhood information in all the other scenarios. The MF implemen-
tations fail to reach the 50% threshold for the Jaccard index in many configurations
of the recommendation cutoff @10, with a negative spike of 6% for Funk-MF on
BookCrossing. When the cutoff is shifted to 100, the values of the indexes increase
for the standard MF algorithms, but they still do not reach the 50% threshold in
multiple cases. The same holds also for the MF-KNN models. NNMF techniques
largely mitigate this issue, since they are able to outperform the respective MF
implementations and the MF-KNN variants with a wide margin.

As for the representations, also in this case the difference between dense datasets
and sparse ones is evident, with a higher stability in the first scenario. For example,
on Movielens, that is the most dense dataset, the algorithms have stability scores
which are from two to ten times higher than those obtained on BookCrossing,
which is the least dense dataset. Moreover, notice how the stability in both exper-
iments tends to be higher for small datasets. In fact, having fewer items to take
into account also reduces the different available options in the recommendation
phase. As final observation, among the MF algorithms note that the BPR-MF
approach is steadily better than the others on all the datasets, while among the
NNMF this trend is not evident anymore.

4.3.5 Stability of relevant recommendations

The stability of an algorithm is particularly important for the relevant items.
Indeed, if an algorithm is stable in selecting the top-N relevant items, we can
argue that the algorithm is confident about them, while, on the contrary, the
stability with which an algorithm ranks the less relevant items has lower value.

The experiment in Section 4.3.4 assesses the stability of the whole recom-
mendation lists generated by the different models, but it does not consider the
relevancy of the recommended items. For this reason, we perform the same exper-
iment reported in Section 4.3.4, taking into account only the relevant items. Also
in this case, every algorithm is executed ten times, changing the initial values of
the latent factors. We compare the relevant items in the top-10 recommendations
for a user generated by the first model against the relevant items in each of the
top-10 recommendation lists provided by the other nine in a pairwise manner. If
both lists in a comparison do not contain any relevant item, the comparison is not
considered. In Table 8 we report the average Jaccard index.

The results show stability scores in line with those reported in Table 6, with
a steady improvement in stability of NNMF over MF of about 10% in every con-
figuration. MF-KNN variants confirm their inconsistency in the improvement of
stability, and the results corroborate the insights discussed in Section 4.3.4. Clearly,
NNMF variants are largely more stable, and they outperform their MF counter-
parts with improvements that range from 10% to 40%. Moreover, they are able to
exceed the 75% Jaccard score threshold in 12 cases over 15. Basic MF approaches,
instead, can reach the same threshold in only 4 scenarios, while they struggle in
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Table 8: Stability of relevant recommendations @10 as measured by Jaccard index.
Underline indicates the most stable algorithm. Bold indicates which is more stable
among MF, MF-KNN and NNMF.

Algorithms LFM M1M BCR PIN CUL

BPR-MF 0.83 0.83 0.44 0.64 0.66
BPR-MF-KNN 0.86 0.84 0.64 0.57 0.64
BPR-NNMF 0.92 0.96 0.69 0.77 0.77

Funk-MF 0.84 0.71 0.19 0.42 0.52
Funk-MF-KNN 0.85 0.43 0.44 0.49 0.59
Funk-NNMF 0.93 0.97 0.44 0.82 0.65

P-MF 0.75 0.71 0.40 0.55 0.58
P-MF-KNN 0.68 0.59 0.50 0.47 0.68
P-NNMF 0.88 0.82 0.77 0.83 0.77

all the others. In particular, on the most sparse datasets, namely BookCrossing,
Pinterest and CiteULike, they obtain stability values between 50% and 60%.

Note that relevant items directly impact the accuracy performance of the al-
gorithms. Low stability scores obtained in this experiment imply that relevant
items largely vary, just depending on the initial values of the latent factors. It
follows that the performance of the algorithms is originated by different correct
predictions, an effect that raises a non-negligible reliability issue.

4.4 Accuracy

We want to study the accuracy of MF and NNMF models, paying special attention
to the impact of item popularity. We compare the performance of the proposed
models in the top-N recommendation task at different levels of popularity. The
results show that while MF and NNMF obtain similar results on top-popular
items, NNMF variants outperform their counterparts on the long-tail.

4.4.1 Top-n Recommendation

In this section we focus on the accuracy performance on the long-tail i.e. on non-
popular items. We are particularly interested in comparing MF and NNMF on
the long-tail because it is where they differ the most on stability, as pointed out
in Section 4.3.2. Moreover, recommending non-popular items adds novelty and
serendipity to the users, and it is usually a more difficult task compared to the
recommendation of popular items [12]. The experimental design follows [12]. The
test set T has been further partitioned in Thead and Ttail such that the items in
Thead are in the short-head and the items in Ttail are in the long-tail, following
the definitions of short-head and long-tail provided in Section 4.3.3 (i.e., 34% of
the items for the short-head and 66% for the long-tail). We compute the top-n
performance using as ground truth Ttail. We evaluate the behavior of NNMF and
MF approaches, carrying out pairwise comparisons. To provide context to our
results, we additionally score other competitive collaborative baselines [13]:
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Table 9: Long-tail accuracy @5. Bold indicates the best between MF and NNMF.
Underline indicates the best performing algorithm.

Algorithm
LFM M1M BCR PIN CUL

MAP Recall MAP Recall MAP Recall MAP Recall MAP Recall

ItemKNN 0.028 0.040 0.005 0.006 0.014 0.018 0.013 0.023 0.047 0.065
UserKNN 0.020 0.032 0.005 0.007 0.007 0.010 0.010 0.019 0.047 0.071
SLIM 0.024 0.038 0.002 0.003 0.004 0.006 0.010 0.017 0.045 0.071
PureSVD 0.027 0.045 0.022 0.020 0.002 0.003 0.005 0.010 0.018 0.022

BPR-MF 0.035 0.050 0.022 0.025 0.006 0.009 0.010 0.018 0.037 0.060
BPR-NNMF 0.039 0.058 0.017 0.018 0.009 0.011 0.012 0.023 0.039 0.060

Funk-MF 0.033 0.050 0.017 0.018 0.004 0.006 0.010 0.019 0.044 0.069
Funk-NNMF 0.033 0.052 0.034 0.024 0.006 0.010 0.011 0.021 0.053 0.080

P-MF 0.019 0.030 0.008 0.010 0.001 0.002 0.009 0.016 0.033 0.052
P-NNMF 0.034 0.054 0.027 0.025 0.007 0.009 0.011 0.020 0.047 0.064

ItemKNN Nearest neighbors item-based approach for top-n recommendation.
Given a user, this technique recommends the items most similar to those in
the user profile. Proximity is computed with shrinked cosine similarity [14].

UserKNN Nearest neighbors user-based approach. For each a user, this algo-
rithm recommends the items that are more frequently present in the profiles
of users similar to the considered one. Also in this case, vicinity is computed
with shrinked cosine similarity [14].

SLIM Sparse LInear Method is a linear regression model for top-n recommenda-
tion. It learns a sparse aggregation coefficient matrix for items exploiting user
interaction profiles only. The model is trained using Bayesian Personalized
Ranking (BPR) as optimization function [36].

PureSVD It is a basic Matrix Factorization model that performs conventional
Singular Value Decomposition on the user rating matrix [12]. Differently from
the other MF methods considered in this paper, it has an exact mathematical
solution that can not include the similarity matrices introduced by NNMF.

For all the algorithms employed in this comparison, including the collaborative
baselines and all the MF and NNMF implementations, we performed a hyper-
parameter optimization procedure as described in Section 4.2.

In Tables 9 and 10 we report the performance obtained by the different algo-
rithms, expressed by the Mean Average Precision and the Recall at two cutoffs, 5
and 10. In almost 90% of the measures, the NNMF algorithms perform better than
or equal to the corresponding MF versions, and in more than 80% of the measures,
the improvement provided by NNMF is consistent. NNMF models achieve highest
accuracy on three datasets over five and in the remaining cases they try to fill
the gap between the best performing model (usually ItemKNN) and classic MF
algorithms, proving to be at least competitive against the other models across the
datasets. Indeed, notice that even when a NNMF model is not the most accurate
model on the long-tail, it is the second best performing algorithm.

The poor long-tail accuracy of MF obtained in many scenarios is quite sur-
prising, especially if we consider that MF approaches are known for being less
popularity biased than other CF approaches [2, 11, 26]. We can conclude that
these models are able to recommend niche items, but they are often noisy rec-
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Table 10: Long-tail accuracy @10. Bold indicates the best between MF and NNMF.
Underline indicates the best performing algorithm.

Algorithm
LFM M1M BCR PIN CUL

MAP Recall MAP Recall MAP Recall MAP Recall MAP Recall

ItemKNN 0.030 0.073 0.005 0.013 0.014 0.027 0.016 0.044 0.051 0.110
UserKNN 0.022 0.065 0.006 0.022 0.007 0.016 0.013 0.037 0.052 0.116
SLIM 0.026 0.068 0.003 0.010 0.005 0.010 0.012 0.035 0.050 0.114
PureSVD 0.028 0.084 0.021 0.047 0.002 0.004 0.007 0.022 0.019 0.046

BPR-MF 0.037 0.087 0.022 0.051 0.007 0.014 0.012 0.035 0.042 0.099
BPR-NNMF 0.040 0.099 0.016 0.039 0.008 0.016 0.015 0.046 0.043 0.099

Funk-MF 0.035 0.085 0.015 0.034 0.004 0.009 0.013 0.037 0.049 0.108
Funk-NNMF 0.036 0.094 0.028 0.046 0.007 0.016 0.014 0.041 0.058 0.127

P-MF 0.020 0.058 0.009 0.027 0.001 0.003 0.011 0.033 0.038 0.090
P-NNMF 0.036 0.095 0.024 0.048 0.007 0.014 0.013 0.038 0.049 0.107

ommendations, resulting from the low number of updates on the latent factors of
non-popular items, rather than a real evidence of the user’s taste. NNMF models,
instead, leverage the knowledge of the neighborhood to construct more consis-
tent item representations on the long-tail, transforming its part of non-popular
recommendations in higher quality long-tail accuracy.

4.4.2 Accuracy per item popularity

To further evaluate how the model performance is affected by the item popularity,
we analyze the accuracy of the models over different item popularity bins. We
partition items in 5 bins, based on popularity, such that each bin contains 20% of
all the interactions. The first bin contains all the most popular items that account
for 20% of the interactions in the dataset. The second bin contains all the most
popular items, excluding the ones in the first bin, accounting for another 20% of
the interactions, and so on. For each bin, we compute the accuracy performance,
expressed as the MAP@10, of all the MF and NNMF techniques. We set the
hyper-parameters as described in Section 4.2.

In Figure 3 we show the results on all the studied datasets. On the x-axis we
report the item bins ordered by decreasing popularity, so that the most popular
items are contained in the left-most bin, while the least popular in the right-most
bin. On the y-axis we report the MAP@10 (on the right, represented with lines)
and the number of items contained in each bin (on the left, represented with
bars). We indicate the MF versions with dotted lines, while with contiguous lines
we indicate the NNMF algorithms.

Clearly, NNMF algorithms perform better on low popularity items compared
to their MF counterparts. In the last bin, accounting for the least popular items,
NNMF algorithms perform better with respect to the corresponding MF variants
13 times over 15. The opposite happens 2 times on Movielens1M, which is the
most dense dataset. In this case, the advantage of propagating knowledge in the
neighborhoods brought by NNMF is not evident in terms of accuracy, as the sin-
gular items already have enough information to leverage during learning. Indeed,
considering the most popular bins, where more feedbacks are available for the
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Fig. 3: Performance comparison when clustering items in different popularity bins.
On the x-axis, item bins are ordered by decreasing popularity from left to right.
Bar plots show the number of items in each bin, according to the scale on the left.
Line plots show the MAP@10, according to the scale on the right.

items, it is not possible to declare a unique winner between MF and NNMF, since
the results are dataset dependent. On Movielens and CiteULike, MF approaches
obtain a slightly higher MAP score in most scenarios. On LastFM and Pinterest,
both the variants perform similarly. On Bookcrossing, NNMF outperforms MF
also in popular bins.

Overall, MF algorithms suffer a stronger performance drop in correspondence
of less popular item bins in almost any configuration. This global trend suggests
that MF algorithms benefit from the abundancy of information, but their per-
formance is strongly impacted by the density of interactions. Indeed, considering
bins composed by items with gradually lower popularity, the balance in accuracy
between NNMF and MF algorithms moves in favor of the firsts, until reaching the
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Table 11: Stability of performance as measured by the coefficient of variation
on accuracy @5. Bold indicates which is more stable between MF and NNMF.
Underline indicates the most stable algorithm.

Algorithm
LFM M1M BCR PIN CUL

MAP Recall MAP Recall MAP Recall MAP Recall MAP Recall

BPR-MF 0.012 0.013 0.013 0.016 0.029 0.036 0.008 0.009 0.017 0.012
BPR-NNMF 0.009 0.007 0.005 0.012 0.017 0.029 0.007 0.006 0.009 0.013

Funk-MF 0.014 0.018 0.088 0.106 0.085 0.058 0.008 0.012 0.012 0.017
Funk-NNMF 0.009 0.010 0.004 0.010 0.035 0.056 0.004 0.008 0.009 0.012

P-MF 0.034 0.026 0.023 0.033 0.026 0.056 0.013 0.013 0.017 0.021
P-NNMF 0.012 0.014 0.025 0.014 0.019 0.024 0.014 0.010 0.014 0.015

least popular items where NNMF techniques are able to outperform standard MF
algorithms.

4.4.3 Stability of accuracy

In Section 4.3 we show that NNMF algorithms have higher stability than MF algo-
rithms with a number of experiments. One experiment is concerned with stability
of recommendations. We expect the stability of recommendations to be associated
with the stability of accuracy, as the accuracy of an algorithm is a function of the
recommendations of an algorithm. To measure the stability of accuracy, we con-
sider an experimental procedure similar to the one described in Section 4.3.2: every
algorithm is trained ten times, changing the random seed that controls the latent
factor initialization, but keeping constant the order in which samples are explored
during the training procedure. For each random seed, we consider the accuracy
of the algorithms, and we compute the coefficient of variation. The coefficient of
variation measures the variability of accuracy while accounting for different aver-
age values of accuracy. This analysis excludes the baselines as some of them are
not based on latent factors. We compute the coefficient of variation on MAP and
Recall @5, and we report the results in Table 11. We observe similar results for
MAP and Recall @10, which we omit for brevity.

As expected, NNMF algorithms exhibit in general higher stability of perfor-
mance (i.e., lower coefficient of variantion). We observe up to one order of mag-
nitude decrease on the coefficient of variation. We do not observe a decrease in
coefficient of variation in 3 cases over 15. However, in those cases the stability of
performance of MF and NNMF is comparable.

4.5 Model training

As last experiment, we investigate the behavior of the models during the training
procedure. In particular, we evaluate the capability of the models to fit the train-
ing data and the performance on the validation set, as the epochs evolve. We set
the hyper-parameters as described in Section 4.2. For brevity, we show in Figures
4 and 5 the comparison between MF and NNMF on CUL, but we could observe
the same trend on almost all the other datasets and algorithms. Figure 4 depicts
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(a) BPR (b) Funk (c) P

Fig. 4: Comparison between the training procedures of MF and NNMF on the
CUL dataset. We report the loss, for the Funk and P variants, and the likelihood
estimator value (BPR-Opt), for the BPR, computed on the training set.

(a) BPR (b) Funk (c) P

Fig. 5: Comparison between the training procedures of MF and NNMF on the
CUL dataset. We show the MAP@5 obtained on the validation set.

the capability of the model to fit the training data, as measured by the objec-
tive function. Figure 5 shows performance on the validation set as measured by
MAP@5. Even if the starting and the convergence values of MF and NNMF are
quite similar in every comparison, NNMF variants reach convergence in a smaller
amount of epochs. As an example, BPR-NNMF converges after about 200 epochs
and the training is interrupted by the early stopping technique, while BPR-MF
version needs about 1000 epochs. To summarize the results obtained on all the
datasets, in Table 12 we report the number of epochs required to the algorithms
to converge in all the datasets, according to the best hyper-parameter configura-
tions found as described in Section 4.2. We observe that NNMF takes a fraction
of iterations to converge compared to MF in 13 cases out of 15. The only two
exceptions are Funk-MF on M1M and P-MF on BCR, where the NNMF variants
require a considerably higher number of epochs to converge. The reason of this
unexpected behavior is related to the wide accuracy gap between the MF and
the NNMF variants. As shown in Table 9, Funk-NNMF on M1M reaches twice
the MAP@5 with respect to Funk-MF, and the MAP@5 of P-NNMF on BCR
is 7 times higher than the same metric score achieved by P-MF. The accuracy of
NNMF variants continuously increases during the training procedure. Therefore,
the early stopping procedure does not interrupt the training for a high number of
epochs.

The results reported in this section prove that the propagation of the infor-
mation we have about a user or an item also to its neighbors is effective and
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Table 12: Number of epochs required for convergence.

Algorithms LFM M1M BCR PIN CUL

BPR-MF 900 4040 960 945 975
BPR-NNMF 540 525 600 555 225

Funk-MF 480 500 980 960 600
Funk-NNMF 480 1820 600 570 560

P-MF 640 2280 1670 885 2880
P-NNMF 420 500 4170 555 540

useful, allowing the model to reach the optimal performance in a lower number of
iterations over the training data in almost every scenario.

5 Conclusions and Future Work

In this work we assess the stability of widely-used Matrix Factorization recom-
menders, according to a novel notion of stability. We elaborate on how instability
can undermine real world recommender systems, such as the reliability and the
explainability of their recommendations. Moreover, we show that the accuracy of
common MF techniques is positively correlated with the stability of item repre-
sentations.

The results of extensive experiments on five different datasets show that three
common MF algorithms are particularly affected by instability. By simply chang-
ing the initial values assigned to the latent factors, the same model, trained on the
same data and with the exactly same configuration, provides very different rec-
ommendations and latent representations at convergence, two issues that we call,
respectively, instability of recommendations and instability of representations.

We present Nearest Neighbors Matrix Factorization, a generalization of clas-
sic MF. The new framework merges Nearest Neighbors and Matrix Factorization
techniques in order to exploit similarity information during the training procedure.
To promote the validity of the new technique, we propose the NNMF extensions
of three common MF algorithms.

We assess the stability of the algorithms with a variety of experiments. We
highlight that both relevant and non-relevant recommendations suffer from insta-
bility, and we show that there exists a correlation between item popularity and
stability. The results highlight that NNMF provides large improvements over MF
in terms of stability of recommendations and representations. We also measure
the accuracy of the algorithms as a function of item popularity. NNMF scores best
results, especially on the long-tail. Finally, we show that the new models are able
to reach convergence in a fraction of the epochs necessary to MF, thanks to the
propagation of the information through the neighborhood relations.

The NNFM framework described in this paper has shown promising results in
improving both stability and accuracy of classic MF algorithms. However, there
are several research directions that can be subject of future work. This paper con-
siders only three instances of matrix factorization, but there is no evidence that
other models based on user and item latent factors could benefit from the NNMF
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approach. More studies with other latent factor models should be performed to pro-
vide a stronger validation of the results presented in Section 4. In our experiments
we adopted a single type of similarity function (i.e., shrinked cosine similarity) to
model the relations between users and between items for the NNMF framework. It
would be interesting to explore different similarity functions obtained with more
powerful techniques, and to evaluate their impact on both stability and accuracy.
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