
Title Secure architectures for pairing based public key cryptography

Authors Pan, Weibo

Publication date 2013

Original Citation Pan, W. 2013. Secure architectures for pairing based public key
cryptography. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2013. Weibo Pan - http://creativecommons.org/licenses/by-nc-
nd/3.0/

Download date 2024-04-27 09:24:09

Item downloaded
from

https://hdl.handle.net/10468/1336

https://hdl.handle.net/10468/1336


Secure Architectures for Pairing

Based Public Key Cryptography

Weibo Pan

September 2013

A Thesis Submitted to the

National University of Ireland

in Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

Supervisor: Dr. Liam Marnane

Head of Department: Prof. Nabeel A. Riza

Department of Electrical and Electronic Engineering,

University College, Cork



ABSTRACT

Along with the growing demand for cryptosystems in systems ranging from large

servers to mobile devices, suitable cryptogrophic protocols for use under certain

constraints are becoming more and more important. Constraints such as calculation

time, area, efficiency and security, must be considered by the designer.

Elliptic curves, since their introduction to public key cryptography in 1985 have

challenged established public key and signature generation schemes such as RSA,

offering more security per bit. Amongst Elliptic curve based systems, pairing based

cryptographies are thoroughly researched and can be used in many public key pro-

tocols such as identity based schemes. For hardware implementions of pairing based

protocols, all components which calculate operations over Elliptic curves can be

considered. Designers of the pairing algorithms must choose calculation blocks and

arrange the basic operations carefully so that the implementation can meet the con-

straints of time and hardware resource area. This thesis deals with different hardware

architectures to accelerate the pairing based cryptosystems in the field of character-

istic two. Using different top-level architectures the hardware efficiency of operations

that run at different times is first considered in this thesis.

Security is another important aspect of pairing based cryptography to be con-

sidered in practically Side Channel Analysis (SCA) attacks. The naively imple-

mented hardware accelerators for pairing based cryptographies can be vulnerable

when taking the physical analysis attacks into consideration. This thesis considered

the weaknesses in pairing based public key cryptography and addresses the particular

calculations in the systems that are insecure.

In this case, countermeasures should be applied to protect the weak link of the

implementation to improve and perfect the pairing based algorithms. Some impor-

tant rules that the designers must obey to improve the security of the cryptosystems

are proposed. According to these rules, three countermeasures that protect the pair-

ing based cryptosystems against SCA attacks are applied. The implementations of

the countermeasures are presented and their performances are investigated.



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Aim of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Private and Public Key Cryptography . . . . . . . . . . . . . . . . . 15

2.3.1 Private Key Cryptography . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Identity Based Encryption . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Attribute Based Encryption . . . . . . . . . . . . . . . . . . . 19

2.3.5 ABE structure . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Elliptic Curves over Finite Fields . . . . . . . . . . . . . . . . 23

2.4.4 Point Operations over Elliptic Curves . . . . . . . . . . . . . . 24

2.4.5 Elliptic Curve Discrete Logarithm Problem . . . . . . . . . . . 26

2.5 Pairing Based cryptography . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Tate pairing over supersingular curves . . . . . . . . . . . . . 29

2.5.2 Implementing the Pairings . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Bilinear Pairings applied in IBE . . . . . . . . . . . . . . . . . 31

2.5.4 Bilinear Pairings applied in ABE . . . . . . . . . . . . . . . . 34

2.5.5 Security of Pairing based cryptosystem . . . . . . . . . . . . . 36

2.6 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Side Channel Analysis Attacks . . . . . . . . . . . . . . . . . . 38

2.6.2 Hardware Power consumption . . . . . . . . . . . . . . . . . . 39



Contents

2.6.3 Weakness in pairing based protocols to side channel attacks. . 41

2.6.4 Countermeasures against power analysis attacks . . . . . . . . 42

2.7 Hardware Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.1 Field Programmable Gate Arrays . . . . . . . . . . . . . . . . 43

2.7.2 SASEBO-GII board . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7.3 Efficiency Evaluation of Hardware Designs . . . . . . . . . . . 45

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3. Arithmetic Architectures over the Field GF (2m) . . . . . . . . . . . . . . . 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Choice of Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Choice of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Addition over GF (2m) . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Multiplication over GF (2m) . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Bit parallel multiplier and Bit serial multiplier . . . . . . . . . 54

3.5.2 Digit serial multiplier . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 Karatsuba Multiplier . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Squaring over GF (2m) . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Inversion/Division over GF (2m) . . . . . . . . . . . . . . . . . . . . . 65

3.8 Dedicated Inversion and Division architecture over GF (2m) . . . . . . 67

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4. Implementation of the Tate Pairing over extension field GF (24m) . . . . . 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Architecture for computations over GF (24m) . . . . . . . . . . . . . . 73

4.2.1 GF (24m) Multiplication . . . . . . . . . . . . . . . . . . . . . 75

4.2.2 GF (24m) Squaring . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 GF (24m) Inversion . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.4 GF (24m) Frobenius Map . . . . . . . . . . . . . . . . . . . . . 81

4.3 Implementing the ηT algorithm for calculating Tate pairing . . . . . . 82

4.3.1 Top level architecture design of ηT algorithm . . . . . . . . . . 82

4.3.2 Reconfiguration of the multiplications in Bus type design . . . 86

4.3.3 Implementation results of Bus type top-level architecture . . . 89

4.3.4 Implementation results of mixed type top-level architecture . . 91

4.4 Analysis of implementation result . . . . . . . . . . . . . . . . . . . . 93

4.4.1 Time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.2 Area analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4



Contents

4.4.3 A*T product analysis . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.4 Comparison with earlier work . . . . . . . . . . . . . . . . . . 98

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5. Side Channel Attacks against Implementations of Tate Pairing algorithms . 102

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Side Channel Analysis Attacks . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Correlation Power Analysis Attacks . . . . . . . . . . . . . . . 103

5.2.2 Relationship between intermediate variables and power con-

sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.3 CPA attack setup . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Side-channel security analysis of the ηT Pairings . . . . . . . . . . . . 107

5.3.1 Weakness of ηT pairing based IBE scheme . . . . . . . . . . . 107

5.3.2 Weakness in addition . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.3 Weakness in multiplication . . . . . . . . . . . . . . . . . . . . 110

5.4 CPA attack against the GF (2m) operations . . . . . . . . . . . . . . . 111

5.4.1 CPA against addition: Condition 1) P (α, β) public, attacking

Q(x, y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.2 CPA against addition: Condition 2) Q(x, y) public, attacking

P (α, β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.3 CPA against digit-serial multiplier(DSM): Condition 1) P (α, β)

public, attacking Q(x, y) . . . . . . . . . . . . . . . . . . . . . 115

5.4.4 CPA against digit-serial multiplier(DSM): Condition 2)Q(x, y)

public, attacking P (α, β) . . . . . . . . . . . . . . . . . . . . 122

5.4.5 CPA against Karatsuba multiplier . . . . . . . . . . . . . . . . 125

5.4.6 CPA against register inserted Karatsuba multiplier: Condition

1) P (α, β) public, attacking Q(x, y) . . . . . . . . . . . . . . . 125

5.4.7 CPA against register inserted Karatsuba multiplier: Condition

2) Q(x, y) public, attacking P (α, β) . . . . . . . . . . . . . . . 128

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6. Countermeasures against CPA attacks . . . . . . . . . . . . . . . . . . . . 130

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Weakness in the ηT pairing . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Countermeasures to protect the ηT pairing . . . . . . . . . . . . . . . 131

6.3.1 Exploiting bilinearity to protect the GF (2m) Adder . . . . . . 132

6.3.2 Randomized Miller variable to protect the GF (2m) Adder . . 134

5



Contents

6.3.3 Using projective coordinates to protect the GF (2m) Adder . . 135

6.3.4 Cost comparison between countermeasures . . . . . . . . . . . 137

6.4 Security discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.1 Security of exploiting bilinearity method . . . . . . . . . . . . 138

6.4.2 Security of randomized Miller variable method . . . . . . . . . 139

6.4.3 Security of using projective coordinates method . . . . . . . . 140

6.4.4 Security operations in common . . . . . . . . . . . . . . . . . 140

6.5 Bus type top-level architecture implementation result of the counter-

measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Mixed Type Implementation results of the countermeasures . . . . . . 144

6.7 Analysis of implementation result of the proposed countermeasures . 145

6.7.1 Time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7.2 Time ratio analysis . . . . . . . . . . . . . . . . . . . . . . . . 147

6.7.3 A*T product analysis . . . . . . . . . . . . . . . . . . . . . . . 149

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.1 Contributions to the Field . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Appendix 157

A. Schedule of “for” loop operations . . . . . . . . . . . . . . . . . . . . . . . 159

B. Implementation Results of Tate pairing . . . . . . . . . . . . . . . . . . . . 162

C. Features of Virtex Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

D. Countermeasures Algorithms Using Projective Coordinates . . . . . . . . . 167

E. Calculation Time of Countermeasures Against CPA Attack . . . . . . . . . 169

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6



1. INTRODUCTION

1.1 Motivation

Throughout the development of human civilization, people all over the world have

developed their own methods to protect their information in communications. In

modern society, cryptosystems use secret keys to transform plaintext into ciphertext

[1]. Both the encryptor and the decryptor need these secret key system to communi-

cate. However, once the key is exposed, this system can be solved easily. The study

of trying to break an encryption system without previously knowing the secret key

is called cryptanalysis. The idea of cryptanalysis has existed since cryptography was

first developed. Throughout history, cryptanalysis and cryptography have spurred

on the development of the other. It always happens that in a war or a commercial

war, breaking encrypted information of an opponent can lead to decisive events or

even victory. Advanced cryptanalysis technology forces people to develop newer and

stronger methods for securely encrypting and transmitting information.

Cryptography was initially used to protect secret information by governments

and the military. With the development of the modern society, the demand for

information security comes from many fields, such as commerces, client information

protection, or personal e-mails. Since secure cryptographic systems are required in

many applications, this thesis analyses and implements a highly effecient and secure

public-key cryptographic scheme.

In the 1970s, cryptography became a widespread tool for securing communica-

tions. The security of modern public key cryptography relies on some mathematical

problems. These problems include integer factorization [2] and the discrete logarithm

problem (DLP) [3]. Among modern cryptosystems, Identity Based Encryption (IBE)

[4, 5] and Attribute Based Encryption (ABE) [6] based on pairings [4] are popular

public key schemes.

Pairing based IBE and ABE systems can be implemented on hardware accelera-

tors on FPGAs. Different implementations of the cryptosystem can meet the demand

for information security in many devices ranging from large servers, to mobile de-



1.2. Aim of thesis

vices, to smart cards. Flexible platforms provide a variety of solutions for different

constraints for certain demands. For example, a large server will use more hardware

in exchange for a faster operation speed, while a smart card can use less hardware

and a restricted operation speed. In most previous pairing based algorithm imple-

mentations, timing efficiency were considered as the first priority [7, 8, 9, 10, 11].

However, such designs do not satisfy the various demands of different applications.

Thus, this work not only focuses on the the calculation speed, but also considers

the hardware efficiency of the designs. In this work, different schedules of arranging

the calculation modules are used, similar to those investigated in [12]. In addition,

examing the calculation loop in the pairing based algorithm allows the differences

between operations that happen only once and those that iterate many times to be

considered for the first time. Thus in this work, different top-level architectures are

implemented and their effeciency is investigated.

However, people who take such cryptosystem as a method to protect their infor-

mation would always ask: “Are these schemes secure?” Thus in this work the security

aspect of the chosen cryptographic algorithm implementation will be examined and

perfected.

“The greatest enemy is the greatest teacher.” The improvement and perfection

of a cryptogarphic algorithm will not happen without the input of cryptanalysis.

To examine the security aspect from point of view of an attacker helps a designer

overcome the defects existing in the original cryptosystem. Side channel information

leaked from the operating hardware is often related to the secret information [13, 14,

15]. A cryptosystem designer should consider all the assumptions under which the

attackers may find weaknesses in the proposed cryptosystem.

If there is any weakness identified in the cryptosystem, a designer should try to

overcome such defects by applying countermeasures accordingly. Countermeasures

must be carefully applied so that the including hard mathematical problem still exists

while the weakness is perfectly masked. Although introducing countermeasures to

the original algorithm can lead to the lowering of the efficiency of the design by

increasing the operation time and hardware used, it still is necessary.

1.2 Aim of thesis

The primary aim of this work is to investigate and improve the secure implementation

of a public key cryptographic processor. Elliptic curve cryptography (ECC) [3, 19]

was introduced by Miller and Koblitz in 1985 [20, 21]. It is based on a mathematical

8



1.2. Aim of thesis

entity known as an elliptic curve [22] and provides a good security level making use of

only small hardware resources [23]. Pairing based cryptography (PBC) is used in new

forms of public key cryptography known as IBE and ABE. Among PBCs, the Tate

Pairings is proved to be the most efficient one [24, 25]. In this work, the performance

and security aspects of the Tate pairing, more specifically the ηT algorithm [26] for

calculating the Tate pairing, will be investigated.

There are two main options for implementing the Tate pairing: software on a gen-

eral purpose processor and dedicated hardware. The general purpose processors are

in general electronic devices whose functions are based on the software programmes

implemented, such as computers, PDAs and cell phones. However, as these proces-

sors are not optimized for implementing cryptography, a software implementation on

a general purpose processor may lead to low performance [27, 28, 29, 30], and more-

over, security aspects of the secret information in the general purpose processors is

not guaranteed. A dedicated hardware processor for the cryptosystems can provide

much better performance, not only accelerating the operation time, but also promis-

ing better security and can be tamper proof to prevent attackers compromising the

cryptosystem. Thus, dedicated hardware accelerators are widely used in implement-

ing practical cryptosystems. In this work, the algorithms are implemented on Field

Programmable Gate Arrays.

There are several parameters to show the efficiency of a hardware processor.

Since dedicated hardware processors are initially developed to accelerate the op-

eration speed of the cryptography, operation time is considered as an important

parameter. Area efficiency is another factor that has been considered. This is be-

cause in hardware implementations, taking more silicon resource leads to more cost.

Thus, in this thesis, both time and area are taken as performance parameters.

By scheduling the architecture and the operations of the cryptographic algo-

rithms, the flexibility of the algorithms is also considered in this thesis. In the

architecture for the Tate pairing, there are arithmetic units over GF (24m) such as

additions, squarings, multiplications and divisions. These units can be implemented

as operations over GF (2m). In practical implementation of the Tate pairing algo-

rithm, the architectures can be reconfigured for different design constraints, such as

the number of multipliers used in the design and the size of multipliers. This results

in trade-offs between calculation time and area. In this thesis, the architectures for

the Tate pairing algorithm are described using VHDL, and then synthesized for a

particular FPGA technology. A software program is used to automatically generate

the VHDL implementation of the architectures for different constraints. This soft-

9



1.3. Thesis outline

ware along with the use of FPGAs, allows the implementation of different designs to

be quickly analyzed.

Apart from cost and efficiency, security is another important aspect of a cryp-

tosystem. A new class of attack on cryptography known as side channel analysis

(SCA) attacks [14], which monitors the side channel information (electromagnetic

radiation, timing, power [13, 14, 15]) of a cryptosystem, has been developed to reveal

the knowledge of the secret key. In this thesis, the security of the Tate pairing is

considered. Several different attacks are applied on the Tate pairing designs to test

their resistance against SCA attacks. For different kinds of protocols, the security is

discussed. Against SCA attacks, several countermeasures are studied, including uti-

lizing the bilinear property of the Tate pairing [16, 17], randomizing Miller variables

in the algorithm [17], and using projective coordinates to mask the operations [18].

The proposed countermeasures are implemented in this work and the operation time

and area costs of their implementations are evaluated, along with the consideration

of the security aspects of the countermeasures.

1.3 Thesis outline

In this thesis, ηT algorithm, a fast approach to calculate the Tate pairing is studied.

Considering the constraints of time and area, the scheduling methods of implement-

ing the ηT pairing algorithm will be discussed. For security aspect of the ηT pairing

algorithm, the important applications, the pairing based IBE system [5, 4] and ABE

system [6] will be considered in this work. In the IBE or ABE cryptosystem, how

the ηT pairing algorithm can be attacked under certain conditions is discussed. With

all these possible attacks available to an opponent, countermeasures must be consid-

ered by the cryptosystem designer. Three countermeasures are studied and applied

to protect the ηT pairing algorithm.

Chapter 2 introduces the theoretical material behind private and public key cryp-

tography. In particular, the pairing based cryptosystems and the elliptic curve on

which pairings are based and their underlying fields arithmetic are covered. The

details of some applications of the pairing based cryptography, for example the IBE

and ABE schemes are introduced. Cryptanalysis is the ever present force finding

weaknesses and spurring the development of cryptography. To improve and perfect

the cryptosystem, this thesis applies correlation power analysis (CPA) attacks on

the hardware implemented pairing based cryptosystems. Introduction of the mathe-

matical theory of CPA and the FPGA platform on which the proposed cryptosystem

10



1.3. Thesis outline

is implemented is also given in this chapter.

In Chapter 3, the size of the Galois Field where the Elliptic curve lies on is deter-

mined. All calculations in the pairing based algorithms are operated over the chosen

Elliptic curve. The basic operation blocks of Addition and Squaring are introduced.

Two popular methods of implementing field Multiplication, the digit-serial multipli-

cation and the Karatsuba Multiplier are discussed. For the implementation of field

Division/Inversion, an Itoh-Tsujii algorithm which makes use of the squaring and the

multiplication to implement an inversion operation over GF (2m), and a dedicated

algorithm for Division over GF (2m), the Extended Euclidean Algorithm (EEA) are

introduced. These operations form the basic calculation units of a pairing based

algorithm.

Chapter 4 introduces the structure and design flow of the ηT pairing over select

Elliptic curve. As the operation field of the ηT pairing is raised to an extended field

GF (24m), the operations for addition, squaring, multiplication and division are in-

troduced. The top level architectures of the implementation of the ηT pairing are

presented. Since there are 7 multiplications in the main loop in the ηT pairing cal-

culation, when using the digit-serial multiplier, these multiplications dominate the

calculation time. Different schedules for arranging these 7 multiplications are ap-

plied. The implementation results of ηT pairing using both the digit-serial multiplier

and the Karatsuba multiplier are shown in this chapter.

In Chapter 5 the detailed calculation steps of CPA attacks are introduced. To

examine the security aspect of the ηT pairing algorithm in a more practical and

more general way, the important applications, the pairing based IBE scheme and

ABE scheme, are chosen as the targets of the CPA attack. The weaknesses of the ηT

pairing algorithm in the IBE system are discussed in this chapter. The CPA attacks

are applied against every weakness of the algorithm, including the adder and the two

multipliers. With the power traces of these operations collected using an oscilloscope,

this chapter presents how an attacker tries to attack such components making use of

the side channel information leaked during the operations. The target components of

each proposed attack, the operation steps, and the mathematical calculation results

of the attacks applied are described.

Chapter 6 introduces the precautions that must be used to implement a pairing

based IBE system according to the weaknesses exposed by the attacks proposed in

chapter 5. These precautions can be applied through carefully arranging the inter-

mediate variables and the operation blocks by the hardware designers. However,

applying such precautions does not provide perfect security to the Tate pairing algo-

11



1.3. Thesis outline

rithm. Some defects of the pairing based IBE and ABE cryptosystems must be fixed

through additional operations. For this reason, several countermeasures to protect

the pairing algorithm from CPA attacks are introduced and applied to the original

ηT pairing. The implementation results of such countermeasures using the same

top-level architectures are shown.

12



2. BACKGROUND THEORY

2.1 Introduction

This chapter presents the mathematical background and some of the theories related

to the topics covered in this thesis. Section 2.2 briefly introduces cryptography. Sec-

tion 2.3 explains the difference between private and public key cryptography. Some

popular public key schemes, the IBE scheme and the ABE scheme, are introduced

in this section.

In section 2.4, the basic mathematical concepts of groups, finite fields, elliptic

curves and point operations over elliptic curves are introduced. In section 2.5, the

basic theory of Tate pairing and an example of pairing based IBE and ABE schemes,

are presented. Discrete logarithm problems (DLPs), serving as the main security

challenge in each case, are discussed.

Section 2.6 introduces some popular cryptanalysis measures of attacking public

key cryptography. Mathematical analysis methods and their complexity are consid-

ered in this section. As a popular method to attack hardware implemented cryp-

tosystems, side channel analysis attacks are introduced. The security of pairing

based IBE and ABE schemes, as examples of pairing based public key schemes, is

discussed in this section.

Section 2.7 introduces some dedicated hardware accelerators used to implement

the pairing based cryptographic algorithms and the reason why they are used. Two

different types of FPGA platforms used in the thesis are introduced in this section.

The method of evaluating the power consumption of a hardware accelerator is also

explained.

2.2 Cryptography

Cryptography protects information and information systems from unauthorized ac-

cess or from being modified [1]. Thousands of years ago people realized that it was

necessary to protect the confidentiality of important information. Secrets should



2.2. Cryptography

always be kept secure from being accessed and tampered with by unintended recip-

ients. Julius Caesar, the Roman Emperor [34] was credited with the invention of

the Caesar cipher in approximately 50 B.C., which was created for the protection of

the secret and important messages being transmitted between Caesar and his mili-

tary. This Caeser Cipher encrypts a message by substituting letters in the message

with letters a fixed number of positions down the alphabet. The number of places

the letters were shifted along the alphabet is called the secret key. Over the years,

novel ciphers were invented and used in cryptography to make cryptosystems more

and more secure. World War II resulted in significant improvements in information

security and marked the beginning of the professional field of modern cryptography.

As modern electronics develops, the development of the internet and personal

computers calls for cryptographic protocols that are suitable for daily communica-

tions. In many applications, keeping the information transferred between public

communication platforms secret can be critical to politics, business and personal

interests. Digital cryptography has developed in order to meet these security needs

[35].

Cryptography, as a system of protecting information, is of course not just about

keeping private information from being read by an unintended recipient. As a safe-

guard of the modern communication via electronic media, modern cryptography

encompasses Confidentiality, Integrity and Availability. Other principles, such as

Authenticity and Non-Repudiation, are also considered to be very important [36].

• Confidentiality: A message should not be disclosed to unauthorized individuals

or systems.

• Integrity: It is always possible to check the message has not been altered while

in transit.

• Availability: A cryptosystem must remain available at all times.

• Authenticity: The identities of the sender and recipient, and the data being

transmitted, are genuine.

• Non-Repudiation: The sender cannot deny having sent a particular message.

The recipient cannot deny having received a particular message.

14



2.3. Private and Public Key Cryptography

2.3 Private and Public Key Cryptography

To provide the properties mentioned above in section 2.2, different protocols have

been developed. There are two different types of cryptography nowadays: private

key cryptography and public key cryptography.

Private key cryptography, also called symmetric key cryptography, uses a single

secret key k which is shared by both the sender and the receiver. This key is used

both to encrypt and decrypt the information. Both sender and receiver need the key

and the key must be kept secret from anyone else. The security of the transmission

depends on how well the key is protected.

Public key cryptography uses two different keys to encrypt and decrypt: a public

and a private key, respectively. Each user has its own key set and while the private

key must be kept secret the public key is publicly available to everyone. Both keys

are mathematically related.

2.3.1 Private Key Cryptography

A communication between Alice and Bob using the private key cryptosystem is

illustrated in Fig. 2.1. In the transmission, Alice first encrypts the plaintext m

using the encryption function E and the secret key k. The encrypted text is called

the ciphertext c. Then Alice sends c to Bob through the insecure channel. The cipher

text c is of no use to anyone except Bob because Bob holds the same shared secret key

k and can recover the message from ciphertext c to plaintext m using a decryption

function D. For security reasons, the primary requirement of this cryptosystem is

that it must be constructed so as to prevent an eavesdropper from simply trying

every possible key (known as brute force attack [37]).

Private key cryptosystems are considered very fast and, thus, are suitable for the

transmissions of a large throughput of data. However, there are two problems to

consider: the key distribution problem and the key management problem. The key

distribution problem is how Alice and Bob agree the value of their shared secret key.

A third party key generator over some secure channel is necessary to distribute the

key. The key management problem is that for each pair of users in the communication

network, there must be a unique key. Therefore, for a network of n users, at least
n(n−1)

2
unique keys are required [38]. For a large network, the number of unique keys

becomes difficult to manage.

15



2.3. Private and Public Key Cryptography

Private Key: k

Decryption:
m = D(c,k)

insecure channel

c

secure channel

k

Message: m
Secret Key: k

Encryption:
c = E(m,k)

Alice Bob

Fig. 2.1: Private key scheme communication

c
Alice Bob

Public Key: PBob
Private Key: K

Message: m
Encryption:

Decryption:

insecure channel

Bob

c = E(m,P      )Bob

m = D(c,K      )Bob

Fig. 2.2: Public key scheme communication

2.3.2 Public Key Cryptography

Consider the communication between Alice and Bob again, as shown in Fig. 2.2. In

a Public key cryptosystem, Alice has a public and private key pair: (PAlice, KAlice),

respectively. Similarly, Bob has (PBob,KBob). If Alice wants to send Bob a message

m, she firstly encrypts the message with Bob’s public key, PBob. The encrypted

message is then sent to Bob and can only be decrypted using Bob’s private key,

KBob. Similarly, anyone who knows Alice’s public key can send her a message by

encrypting it with her public key PAlice. Alice will then decrypt the message with

her private key KAlice.

In this scheme, the key distribution problem is solved because the public key

is available to everyone. Alice and Bob do not need to agree a shared secret key.

Similarly, anyone who wants to communicate with Bob can encrypt their message

with the same public key PBob. Thus, key management is no longer a problem.

The British government claimed that James H. Ellis, Clifford Cocks and Malcolm

Williamson, members of the British Government Communicationis Headquarters

(GCHQ), first developed the public key algorithms in 1973. The reader may refer to

[39] for the story. However, the most famous public key scheme is RSA which was

16



2.3. Private and Public Key Cryptography

developed in 1977 by Rivest, Shamir and Adleman in the US [40].

The disadvantage of public key cryptography is that it is much more computa-

tionally complex than private key cryptography. Although public key cryptography

eliminates the key distribution and key management problems, it brings some prob-

lems of its own. The main problem is the confirmation of the authenticity of the

public key. In the communication model, Alice has to consider whether the public

key of Bob, received from an insecure channel, is the real one or a value sent by an

attacker.

In a public key cryptosystem, since Alice cannot confirm whether the public key

is authentic or not, a Public Key Infrastructure (PKI) can be introduced [41]. The

PKI includes a trusted third party that provides the service of a Certificate Authority

(CA) [42]. CA certifies Bob’s public key as belonging to him. Before Alice sends

Bob a message, she has to validate the public key of Bob by contacting the CA.

This adds an additional step in the communication between Alice and Bob. It is

very important that the CA is trustworthy, otherwise Alice may receive false keys

disguised by some attackers and any message Alice encrypted using the false keys

may be easily decrypted by the attacker.

2.3.3 Identity Based Encryption

In 1984 Shamir [5] proposed a public key scheme in which the public key can be an

arbitrary string. This scheme is called IBE. The first practical IBE implementation

was applied by Boneh and Franklin in 2001 [4]. IBE was originally developed to

simplify the certification process. It eliminates the need for the CA. Thus, a PKI

is no longer necessary in the scheme. Instead, a trusted third party Public Key

Generator (PKG) is introduced which is used to distribute the private key of a

receiver.

The structure of an IBE scheme is shown in Fig. 2.3. In the figure, PBob and KBob

represent the keys to encrypt and to decrypt respectively. An encrypted message ‘m’

can be readily decrypted by the intended recepient Bob only.

In an IBE system, each user is identified by a unique identity string, for example

a user name or an e-mail address. The identity of Bob in Fig. 2.3 is IDBob . The

IBE system can be described in 4 steps: setup, key generation, encryption and de-

cryption.

Setup A trusted third party, the PKG, publishes the algorithm E for encryption

and D for decryption, a random generator g and some related rules such as how the

user’s public key can be generated. All elements used in this cryptosystem are a

17



2.3. Private and Public Key Cryptography

IDBob

message
m m

message

random generator g

Insecure Channel

Public Key Generator

Alice Bob

gAlice =g*rAlice

PBob

c,g

Bob

Alice

Alicec=E(P      ,r       ,m)

Bob
Bobm=D(K     ,g       ,c)Alice

PBob

M.KBob

g

KBob

Fig. 2.3: Identity-Based Encryption scheme structure

multiple of the generator g.

Key generation The PKG randomly picks a master key M.KBob for Bob. With

this master key, the PKG generates a pair of keys, a public key PBob and a private

key KBob, for user Bob and publishes the public key PBob of IDBob to the insecure

channel.

Encryption Sender Alice in this IBE scheme can get the public key PBob according

to the information published by the PKG (without certificates). Alice then picks

a random number rAlice and generates an identity number gAlice using generator g:

gAlice = g ∗ rAlice. This gAlice helps Bob recognize the sender of the received message.

The rules published by the PKG must ensure that the decryptor can remove rAlice

using gAlice. With the elements above, Alice can encrypt a message ‘m’ by calcula-

tion c = E(m,PBob, rAlice). Alice sends Bob the message pair {c, gAlice}.
Decryption The PKG is responsible for delivering the private key KBob to the au-

thorised recipient Bob according to his ID. When Bob wants to decrypt the message,

he has to contact the PKG and ask for his corresponding private key. On confirma-

tion of IDBob, the PKG sends Bob his private key KBob through some secure channel.

With the received message pair {c, gAlice} and the private key KBob, Bob is able to

decrypt the message by calculation: m = D(c,KBob, gAlice).

In this scheme, it is no longer necessary that the message sender contact a third

party to validate the public key of a receiver. It is easier to send a message as the

onus is on the receiver to contact the PKG and verify his identity to obtain the

private key. This scheme also allows the PKG to control the validity of a customer’s

identity. If the PKG finds that the identity of Bob is no longer valid, it can change

the master key and thus, the private key that Bob received before no longer works.

18



2.3. Private and Public Key Cryptography

A1

Attributes
Recipient’s
Publish

BobD31DBob Bill
4

A

A
A

2
A

Insecure Channel

c

Attributes necessary =2
Recipient’s 

Alice

grandom generator

 : gender = m

3 : age = 19
4 : age = 20
5 : age = 21

 : gender = f

A1A 41A 31 A A3 4A A1 3 4T

Bill
3

Public Key Generator

message: m

Bob Bill

m m
cc

T T T

D D D D

Fig. 2.4: Attribute-Based Encryption scheme structure

2.3.4 Attribute Based Encryption

ABE [6] is a new kind of public key encryption which is based on IBE [5]. In contrast

to the IBE schemes, ABE is a scheme in which each user is identified by a set of

attributes, for example age, gender, college, etc. Some function of those attributes

is used to determine decryption ability for each ciphertext.

Sahai and Waters introduced a single authority attribute encryption scheme in

[6] and named this scheme a ‘Fuzzy identity-based encryption’. In this scheme, a

trusted third party is needed to monitor all the attributes of the users. This authority

is in charge of delivering the secret keys corresponding to each of the attributes to

the intended recepients.

There are two kinds of ABE systems, Key-Policy ABE (KP-ABE) and Ciphertext-

Policy ABE (CP-ABE). In KP-ABE [6, 43], every ciphertext is associated with a

set of attributes and the secret key of every user is associated with a threshold

access structure based on attributes. Decryption is enabled if and only if the cipher-

text attribute set satisfies the access structure of the user secret key. In CP-ABE,

[44, 45, 46, 47, 48], the situation is reversed: each ciphertext is associated with an

access structure.

2.3.5 ABE structure

The structure of a basic ABE scheme is shown in Fig. 2.4. In the figure, Ai represents

different attribute parameters. In this scheme, a sender can designate the recepient to

19



2.3. Private and Public Key Cryptography

be a set of elements holding the same specific attributes. For example, a boys’ soccer

team recruiting e-mail may be sent to all boys between 19 - 20 years old. In an ABE

system, all members with attributes age = 19 or 20 and attribute gender = male

will be qualified to decrypt such an e-mail. In this case, Bob and Bill, respectively

19 and 20 years of age, are able to read such an e-mail whilst the girl Eva does not

get access to such information.

Similar to IBE systems, an ABE system can be described using the following

steps: setup, encryption, key generation and decryption [43]. Suppose there are 5

attributes in the ABE system shown in Fig. 2.4, i.e. Ai, where i ∈ Z5. Taking Bob

as an example, the operations in the ABE scheme are described as follows:

Setup This is a randomized algorithm that takes no input other than the implicit

security parameter. In the ABE scheme shown in Fig. 2.4, the Key Generator

publishes the attribute set γtotal={Ai} and a public key set PK={Ti}. It keeps

the master key MK which was used to generate the public key and will be used to

generate the secret key SK.

Encryption This is a randomized algorithm that takes as input a message m, a

set of attributes γe with ne attributes and the public parameters PK. It outputs

the ciphertext c and a number d. In Fig. 2.4, Sender Alice picks 3 attributes

γe = {A1, A3, A4} out of the 5 attributes and uses the corresponding public key

{T1, T3, T4} to encrypt the message m, into ciphertext c and defines a number d = 2

which means that any decryptor should hold at least 2 of the attributes in γe to

decrypt the message.

Key Generation This is a randomized algorithm that takes as input an access

structure γ1, the master key MK and the public parameters PK. It outputs a de-

cryption key SK={Di}. In Fig. 2.4, this step shows the communications between

Bob and the Key Generation algorithm. On trying to get the access to the message,

Bob has to contact the Key Generator with the attributes, γBob={A1, A3}, he holds

and ask for the corresponding secret key. The Key Generator generates a secret

key set SKBob = {DBob
1 , DBob

3 } according to the master key and the attribute set

input by Bob and sends SKBob back to the decryptor. In SKBob = {DBob
1 , DBob

3 }
the superscript ‘Bob’ implies that the secret key set is randomly generated for Bob.

Decryption This algorithm takes as input the ciphertext c that was encrypted under

the set γe of attributes, the decryption key SK={Di} for access control structure γBob

and the public parameters PK. It outputs the correct message m if |γe ∩ γBob|≥ d,

where ‘||’ represents the number of elements. In Fig. 2.4, on receiving the secret key

set SKBob = {DBob
1 , DBob

3 }, Bob is able to compute the plain text of the message.

20



2.4. Mathematical Background

No matter how many attributes Bob holds, provided at least 2 of the attributes in

γBob match with those in γe, the message will be correctly decrypted. Otherwise,

Bob will not have the access to the plain text.

For Bill, the same steps are performed and Bill will get a secret key set SKBill =

{DBill
1 , DBill

4 } for decryption. Thus, this system enables an encryptor to send a mes-

sage to a group of recepients who match the requirements he sets up. Note that

the secret key sets, SKBob and SKBill, are randomly generated for specific decryp-

tors. Although Decryptor1 and Decryptor2 hold 3 attributes in total ({A1, A3, A4}),
merging the information from Decryptor1 and Decryptor2 generates the secret key

set {DBob
1 , DBob

3 , DBill
1 , DBill

4 } rather than {DBob
1 , DBob

3 , DBob
4 } or {DBill

1 , DBill
3 , DBill

4 }.
This means that unqualified decryptors cannot forge secret keys, even by colluding.

2.4 Mathematical Background

In this section the necessary mathematical background is introduced. The concepts

of groups, fields and elliptic curves are necessary for building the cryptosystem pre-

sented in this thesis.

2.4.1 Groups

In mathematics, a group is an algebraic structure which consists of a set of elements

and an operation [49]. Such an operation is called the group operation. The group

operation operates on any two of its elements to form a third element. For example,

the set of integers is a group and addition and multiplications are both group oper-

ations of the integer group. A group must satisfy the following properties under the

‘+’ operation:

• Closure: the result of the operation is still in the group, c = a+ b, if a, b ∈ G,

then c ∈ G,

• Associativity: the group operation order does not affect the operation result,

(a+ b) + c = a+ (b+ c) for any a, b, c ∈ G.

• Identity element: There exists an identity element e ∈ G, such that for every

element a ∈ G, the equation e+ a = a+ e = a holds.

• Inverse element: For each a ∈ G, there exists an element b ∈ G such that

a+ b = b+ a = e.

21



2.4. Mathematical Background

A group G is said to be Abelian or commutative if a+ b = b+ a, a, b ∈ G. A group

G is said to be finite if there is a finite number of elements in the group. The order

of this group is defined as the number of elements in the group, denoted #G. For

example, the integer Z with addition as its group operation, is an infinite group, its

order is infinity. A group made up of integers modulo p is a finite group, denoted

Zp, where p is the order of this group.

A group G is said to be cyclic if there exists an element g such that for any

element a ∈ G, there exists integer k such that [k]g = a. Here the operation [k]g = a

is the k times addition chain of g, as shown in equation 2.1.

a = [k]g = g + g + ...+ g︸ ︷︷ ︸
‘+′ k−1 times

(2.1)

Here the element g is called the generator of this cyclic group G. The cyclic group

generated by g is denoted < g >. The smallest integer n that satisfies [n]g = e is

the order of this group.

2.4.2 Finite Fields

Mathematically, a field is a cyclic group of elements in which nonzero elements form

a group under multiplication [50]. In a field, notions of addition, subtraction, mul-

tiplication and division satisfy certain axioms. A field F must satisfy the following

properties:

• Closure: c = a+ b, d = a ∗ b, if a, b ∈ G, then c, d ∈ F .

• Associativity: (a+b)+c = a+(b+c) and (a∗b)∗c = a∗(b∗c) for all a, b, c ∈ F .

• Commutative: a+ b = b+ a and a ∗ b = b ∗ a for all a and b ∈ F .

• Distributive: a ∗ (b+ c) = a ∗ b+ a ∗ c for all a, b, c ∈ G.

• Inverse: for all a ∈ F , there always exists an element a−1 ∈ F such that

a ∗ a−1 = 1.

The most commonly used fields are the field of real numbers and the field of complex

numbers which are infinite.

The Galois Field is a finite field named after Èvariste Galois. The order of a

Galois Field must be equal to the positive integer power of a prime p. Èvariste

Galois showed that for any prime p and positive integer m, there exists a finite field

22



2.4. Mathematical Background

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

a=−1,b=1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

a=−1,b=0

 

 

yy

x x

a=−1,b=1a=−1,b=0

Fig. 2.5: Example of Elliptic Curve y2 = x3 + ax+ b

with q = pm elements [52]. The prime p is known as the characteristic of the field

GF (pm) = GF (q). In cryptographic applications the characteristics of p = 2, p = 3

and p some large prime are often used. Fields with characteristic two show better

performance in area, runtime, power and energy than prime fields [53]. Page showed

that finite fields of characteristic two and three result in similar performance [54]. In

this work, fields of characteristic 2 with power m ≥ 163 are used, denoted GF (2m).

2.4.3 Elliptic Curves over Finite Fields

An elliptic curve E(GF (q)) over GF (q) can be represented in equation 2.2 [51].

E(GF (q)) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

where a1, a2, a3, a4, a6 ∈ GF (q). Any point P over this curve consists of two co-

ordinates x and y, which satisfy equation 2.2 as a pair, i.e. P (x, y) ∈ E(GF (q)),

x, y ∈ GF (q). An example of an elliptic curve over the field of real numbers is shown

in Fig. 2.5. The two curves in Fig. 2.5 are described by equation 2.3. For simplicity,

let a and b represent a4 and a6 in equation 2.2, respectively.

E(GF (q)) : y2 = x3 + ax+ b, (2.3)

Restricting the elliptic curve over some special finite fields, for example GF (2m),

simplifies the curve equation 2.2. Equation 2.4 describes an elliptic curve over

GF (2m).

E(GF (2m)) : y2 + xy = x3 + ax+ b, (2.4)

23



2.4. Mathematical Background

The number of points on the curve, denoted #E(GF (2m)), is the order of the curve.

In Hasse’s Theorem [52], the number of points can be calculated as #E(GF (2m)) =

2m + 1 − Tr where Tr is called the Trace of Frobenius. Hasse pointed out that

Tr ≤ 2
√

2m. The calculation of Tr is introduced in [55]. For elliptic curves used

in cryptographic schemes, 2m is usually very large. Thus, 2
√

2m is relatively small

compare to 2m and the order of the curve can be represented by #E(GF (2m)) ≈
2m. In Elliptic Curve Cryptography (ECC), the order of the curve represents the

number of possible values that can be used in the cryptosystem. If 2m is divisible

by Tr, the curve is supersingular. Otherwise, it is non-supersingular or ordinary.

Supersingular and non-supersingular elliptic curves behave fundamentally differently

in many aspects. For some certain supersingular elliptic curves, the operations can

be optimized. Consequently, the calculation time of the cryptographic algorithms

based on such curves can be reduced.

2.4.4 Point Operations over Elliptic Curves

There is a specified point O which represents the point at infinite. This point is also

the identity element of this elliptic curve. The point at infinity, O, together with the

curve itself, form a group which provides some useful properties for cryptography.

The group operation of Elliptic Curve is point addition, given by P2 = P0 + P1

for Pi ∈ GF (2m). It operates on two input points P0 and P1 and forms a third

point P2. For the point at infinity O there exists P + O = O + P = P , where P ∈
GF (2m). The geometrical explanation of this point addition operation is given by Ian

Blake in [51]. Let P0 and P1 be two distinct rational points on curve E(GF (2m)).

The E(GF (2m)) is a cubic curve, thus, the straight line d(x, y) joining P0 and

P1 must intersect the curve at a third point, called P2′ which is a rational point

on E(GF (2m)). Reflecting P2′ with the x-axis, one obtains another rational point

P2 = P0 + P1. Fig. 2.6(a) shows a visualization of the point addition over elliptic

curve E(GF (2m)) : y2 = x3 − x+ 1.

In point addition, the special case P0 = P1, i.e. P2 = P0 + P0 = [2]P0, is

called point doubling. In this case, the tangent to the curve at point P0, d(x, y),

must intersect the curve at exactly one other point P2′, as E(GF (2m)) is a cubic

curve. Again, reflecting P2′ about the x-axis, one obtains another rational point

P2 = P0 +P0 = [2]P0. Fig. 2.6(b) shows a visualization of point doubling over the

reals.

For an elliptic curve E(GF (2m)) defined by equation 2.4, let P0(x0, y0) and

P1(x1, y1) be the points on the curve given in affine coordinates. Assume P0, P1 6= O

24



2.4. Mathematical Background

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3y y

x x

(a) P2=P0+P1 (b) P2=P0+P0=[2]P0

P1

P2 P2

P2’ P2’

P0

P0

Fig. 2.6: Point Addition and Point Doubling over Elliptic curves

and P0 6= −P1. The arithmetic operations for point addition P2 = P0 + P1 and

point doubling P2 = P0 + P0 over the field GF (2m) are given as follows.

P2 = P0 + P1

λ = y0+y1
x0+x1

x2 = λ2 + λ+ x0 + x1 + a

y2 = (x0 + x2)λ+ x2 + y0

Cost = 2M + 1I + 1S + 8A

(2.5)

P2 = P0 + P0 = [2]P0

λ = y0
x0

+ x0

x2 = λ2 + λ+ a

y2 = (x0 + x2)λ+ x2 + y0

Cost = 2M + 1I + 1S + 6A

(2.6)

In equations 2.5 and 2.6, λ represents the slope of the straight line d(x, y) used

in the chord and tangent illustrated in Fig. 2.6(a) and 2.6(b), respectively. M, I, S

and A represent the operations of multiplication, inversion, squaring and addition

over field GF (2m), respectively. For an elliptic curve over a finite field GF (2m), the

group of points E(GF (2m)) is always either a cyclic group or the product of two

cyclic groups [56]. Based on point addition and point doubling, and recalling the

successive additions for cyclic groups in equation 2.1, a Point Scalar Multiplication

is defined as per equation 2.7:

Q = [k]P = P + P + ...+ P︸ ︷︷ ︸
‘+′ k−1 times

(2.7)

where P and Q are points on curve E(GF (2m)) and k is an integer. Let ` be the

order of point P and k can be an arbitrary integer in the range 1 ≤ k ≤ `. Equation

2.7 can be simply carried out by repeated point additions. But, for large k, this

can be slow in practice. A simple method to speed up Point Scalar Multiplication

25



2.4. Mathematical Background

Algorithm 2.1 Binary Method for Point Scalar Multiplication

Input: P ∈ E(GF (2m)), n-bit integer k =
n−1∑
j=0

kj2
j, kj ∈ {0, 1}

Output: Q = [k]P ∈ E(GF (2m)))

1: Q← O
2: for j = n− 1 downto 0
3: Q← [2]Q
4: if kj = 1
5: Q← Q+ P
6: end if
7: end for
8: return Q

is to make use of both point addition and point doubling operations. The binary

method used to calculate equation 2.7 relies on the binary expansion of k, as given

in Algorithm 2.1.

This algorithm takes point P over the elliptic curve and an arbitrary integer k,

consisting of n bits, as inputs. It iterates through the n bits of k. For each bit of k,

a point doubling operation is performed. If the present bit of k equals ‘1’, a point

addition operation is also performed. Let W represent the number of bits that equal

to ‘1’ in the binary expansion of k, i.e. W =
∑n−1

j=0 kj, kj ∈ {0, 1} . The Point Scalar

Multiplication requires n− 1 point doublings and W − 1 point additions.

2.4.5 Elliptic Curve Discrete Logarithm Problem

In a cyclic group G with a generator g and a multiplicative group operation ‘×’,

exponentiation is defined as

h = gx mod n (2.8)

where the generated element h is an element in group G, n is the order of the group

and x is some positive integer. The discrete logarithm of h is x, i.e. logg h = x. The

problem of determining the smallest positive integer x that satisfies equation 2.8 for

given elements h and g in group G, is defined as a Discrete Logarithm Problem

(DLP). In public key schemes, the group G should be sufficiently large so that

the computation of gx can be efficiently performed. However, solving the DLP is

generally intractable in such a group. If there is a fast way to solve the DLP in

group G, then this group G is insecure for a public key cryptography.

26



2.5. Pairing Based cryptography

The operations over an elliptic curve offer a property suitable for DLP. i.e., over

an elliptic curve E(GF (q)), it takes polynomial time to calculate a point scalar

multiplication Q = [k]P given k an integer and P a point over E(GF (q)). However,

it takes exponential time to find out the smallest k such that Q = [k]P , given P and

Q. The problem of solving for k under this circumstance is called the Elliptic Curve

Discrete Logarithm Problem (ECDLP).

The Diffie-Hellman key exchange protocol for sending messages was applied over

elliptic curves by ElGamal [57]. With the operation over elliptic curves, when Alice

wants to send a message m to Bob, the communication changed as follows:

• Public Key Generator posts a generator: point P ∈ E(GF (q)).

• Alice generates a random integer kA ∈ 1 ∼ ` and sends Bob:[kA]P .

• Bob generates a random integer kB ∈ 1 ∼ ` and sends Alice:[kB]P .

• Alice can compute [kAkB]P = [kA]([kB]P )

• Bob can compute [kAkB]P = [kB]([kA]P )

In this communication, generator P is posted by the Public Key Generator, which

must be a trusted third party. NIST presented some of the recommended elliptic

curves and their generators P [58]. A mathematical theorem promises that in ECC,

if a curve is of a prime order #E, then each of its elements, other than the identity,

is of order #E and, therefore, a generator of such curve [59].

In the communications between Alice and Bob above, the information exposed

to an eavesdropper is the chosen elliptic curve E(GF (2m)), a point over this curve

P and the multiples, [kA]P and [kB]P , of the point. The underlying operation in

the Diffie-Hellman protocol over elliptic curves is point scalar multiplication. An

attacker can try to solve for kA or kB, namely ECDLP. Other attackers may try

to solve [kAkB]P , namely elliptic curve Diffie-Hellman problem (ECDHP). These

two problems are considered to be of the same computational complexity [60]. The

efficiency of the protocol depends on the implementation efficiency of the point scalar

multiplication. The security of the protocol depends on how strong the ECDLP is.

2.5 Pairing Based cryptography

Pairing based cryptography is a relatively new type of public key cryptographic

scheme based on Elliptic Curves. It was first used to attack elliptic curve cryptosys-

tems. Menezes et al. [61] proposed the MOV attack, also known as the Weil Descent

27



2.5. Pairing Based cryptography

attacks, which uses Weil pairing to reduce the ECDLP on the elliptic curve over

finite field GF (ql). In this attack the integer l must be carefully selected [62, 61] so

that the ECDLP on E(GF (q)) can be mapped to a DLP in GF (ql). A Similar attack

was proposed by Frey and Ruck [63] using a Tate pairing. In these pairing attacks,

an ECDLP in < P > can be mapped to the DLP over GF (qk) (see Extension field in

section 2.5.1), which can be solved using one of the known sub-exponential methods

[51].

As an efficient public key cryptographic scheme, pairings have been applied in

IBE and ABE schemes [4, 6]. A pairing operates on two points in an additive group

and maps them to a point in a multiplicative group. Let G1 be an Abelian group

with point addition as a group operation and 0 as its identity element. let G2 be a

cyclic group with multiplication as a group operation and 1 as its identity element.

The pairing is described as:

el : e(G1;G1) = G1 ×G1 → G2 (2.9)

Pairings have properties such as bilinearity and non-degeneracy which are of in-

terest for many applications [64, 25, 65, 26]. All pairings considered in cryptosystems

have the following properties:

• Bilinearity: ∀P, P ′ ∈ G1 and ∀Q,Q′ ∈ G2, there exists e(P + P ′;Q) =

e(P ;Q)e(P ′;Q) and e(P ;Q+Q′) = e(P ;Q)e(P ;Q′), consequently e([k]P ;Q) =

e(P ; [k]Q) = e(P ;Q)k.

• Non-degeneracy: ∀P ∈ G1, with P 6= 0, there is some Q ∈ G2 such that

e(P ;Q) 6= 1. ∀Q ∈ G2, with Q 6= 0, there is some P ∈ G1 such that e(P ;Q) 6=
1.

• Computability: ∀P ∈ G1 and Q ∈ G2, e(P ;Q) can be computed efficiently.

There are several pairing based algorithms, such as the Weil pairing, the modified

Weil and the Tate pairing [66, 63, 67]. Among them, the Tate pairing has proved to

be the most efficient in all fields for frequently used key sizes. For a security level

from 80 to 256 bits, the Tate pairing requires less calculations than the Weil pairing

[25]. The Tate pairing on supersingular elliptic curves described by Kwon [68] is the

focus of this work.

28



2.5. Pairing Based cryptography

2.5.1 Tate pairing over supersingular curves

Now some basic definitions used in the pairings are presented. Suppose E is an

elliptic curve defined over GF (q) and n is a positive integer which is coprime to the

characteristic of field GF (q), i.e. coprime to q. Suppose n divides #E(GF (q)).

• Embedding degree kdeg: The embedding degree of an elliptic curve E is the

smallest positive integer kdeg such that n divides (qkdeg − 1).

• Extension field: The field GF (qkext) is a kext extension of GF (q). Conversely,

GF (q) is a subfield of GF (qkext).

• Distortion map φ: The rule that maps a point P over GF (q) to another point

P ′ over the kext extension field GF (qkext) is a Distortion map φ [69], denoted

P ′ = φ(P ).

• l-torsion: All the points of order l on E(GF (q)) form an l-torsion subgroup,

denoted (GF (q))[l] = {P ∈ E(GF (q)) : [l]P = O}.

From the definitions above, it can be seen that by picking the same degree k, i.e.

k = kdeg = kext, an elliptic curve E(GF (q)) can be mapped to its extension field

E(GF (qk)) through some distortion map.

As the point operations over supersingular elliptic curves are simpler than the

common curves over finite fields [68, 70], designers generally like to pick suitable

supersingular elliptic curves for implementing the pairing algorithms. Let Ess be a

supersingular elliptic curve over GF (q), the mathematical calculation of Tate pairing

is a map of two points over supersingular curves:

el : e(P ;Q) = ψ(P,Q)ζ , (2.10)

where ζ = qk−1
l

. This mathematical expression shows a non-degenerate bilinear

pairing. That is, for any P 6= O ∈ E(GF (q))[l], there exists a point Q ∈ E(GF (q))[l]

such that e(P,Q) 6= 1. Also, there exist e(P1 + P2, Q) = e(P1, Q)e(P2, Q) and

e(P,Q1 + Q2) = e(P,Q1)e(P,Q2). In equation 2.10, ψ(P,Q) is a rational function

with two input points P and Q ∈ GF (q).

In 1986, Miller described the calculation of a pairing in his algorithm [64], pro-

viding an efficient way of finding ψ given points P and Q. This algorithm, known as

Miller’s algorithm, makes use of point addition and point doubling to calculate ψ.

This algorithm was improved by many researchers since pairing based cryptosystems

have been proposed [25, 65, 66].

29



2.5. Pairing Based cryptography

The elliptic curve E(GF (q)) has point addition as its group operation. The

elliptic curve E(GF (qk))∗ indicates the multiplicative group of GF (qk), with point

scalar multiplication as its group operation and 1 as its identity element. Consider

the definition of pairing introduced in equation 2.9. Choose the l-torsion subgroup of

E(GF (q)), denoted E(GF (q))[l], to be G1, the degree k extension field E(GF (qk))∗

to be G2. The pairing described in equation 2.9 is refined here to equation 2.11. This

pairing takes as input two elliptic curve points of order l and gives a third point over

the degree k extension field, namely the l-th order Tate pairing.

el : E(GF (q))[l]× E(GF (q))[l]→ E(GF (qk))∗ (2.11)

In 2002, Barreto, Kim, Lynn and Scott [65] showed that for some specific curves,

there exists a fast way of calculating the Tate pairing. They proposed an algorithm

called the BKLS algorithm for the Tate pairing over supersingular curves with em-

bedding degree k = 2, 4, 6. Menezes [70] pointed out that the embedding degree

k = 6 is attained for GF (3m) and the embedding degree k = 4 is attained for

GF (2m). For cryptographic purpose, elliptic curves over finite fields of characteristic

2, i.e. over GF (2m) where m is odd or more strongly a prime, are considered. The

recommended values of the binary field size m are listed in [58].

Duursma and Lee [26] proposed a closed formula for the Tate pairing which is

a faster algorithm, called the ηT pairing algorithm and Kwon [68] further improved

upon it. The ηT pairing algorithm simplifies the main loop and the final exponen-

tiation of the BKLS algorithm. This algorithm omits the denominators in Miller’s

algorithm. This greatly simplifies Miller’s algorithm because the costly division is

no longer necessary. It chooses the specific elliptic curve Eb described in equation

2.12.

Eb : y2 + y = x3 + x+ b, (2.12)

where b=0,1. Curves Eb have embedding degree k = 4. In [68] Kwon proved that

on supersingular elliptic curve Eb over binary fields, the Tate pairing and the ηT

pairing calculate the same result, i.e. e(P ;Q) = ηT (P ;Q). The ηT pairing algorithm

is a fast calculation of Tate pairing, and so this work continues to use the notation

el : e(P ;Q) to represent an ηT pairing calculation. The Tate pairing calculation over

Eb can be described as:

el : Eb(GF (2m))× Eb(GF (2m))→ E(GF (24m)) (2.13)

30



2.5. Pairing Based cryptography

Algorithm 2.2 ηT Algorithm for computing Tate pairing

Input: P = (α, β), Q = (x, y)
Output: C = η(P ;Q)

1: C(t)← 1
2: u← x2 + y2 + g + m−1

2
, v ← x2 + 1, α← α4, β ← β4, γ ← αv

3: for i = 0 to m− 1
4: A(t)← γ + u+ β + (α + v)t+ (α + v + 1)t2

5: C(t)← C(t)2 × A(t)
6: u← u+ v, v ← v + 1, α← α4, β ← β4, γ ← αv
7: endfor
8: C(t)← C(t)22m−1

9: return C(t)

This indicates that the Tate pairing maps two points over the same supersingular

curve over GF (2m) to an element over GF (24m).

2.5.2 Implementing the Pairings

The ηT algorithm [68] for calculating the Tate pairing is shown in Algorithm 2.2.

This algorithm takes as inputs two points P (α, β) and Q(x, y) over E(GF (2m)) and

results in an element C(t) in the extension field GF (24m).

In Algorithm 2.2, the coordinates of input points P (α, β) and Q(x, y) are pro-

cessed in step 2 to generate intermediate variables u, v, α, β and γ which are used

to calculate A(t) in every iteration of the ‘for’ loop in step 3, m times. A(t) is re-

generated in each iteration in step 4 by the basic operations over GF (2m) between

the intermediate variables, namely the Miller variables. It should be noted that A3

always equals 0. In step 5, symbols ‘×’ and ‘2’ here represent a multiplication and

a squaring over GF (24m) [77] which can be decomposed into operations in GF (2m)

and will be discussed in Chapter 4. This step updates C(t) in every iteration of the

‘for’ loop. After the ‘for’ loop, a final exponentiation operation of C(t) over GF (24m)

is applied in step 8. This is because the value of C(t) returned at the end of the ‘for’

loop is in the l-th roots of unity. The final exponentiation to the power of (22m − 1)

provides a unique value. This algorithm returns the Tate pairing result C(t).

2.5.3 Bilinear Pairings applied in IBE

Pairing based cryptography can be used in many public key protocols, for example

key distribution protocols [78, 79] and IBE [4]. Interested readers are referred to the

survey in [80]. In this section the IBE scheme of Fig. 2.3 is described using pairings

31



2.5. Pairing Based cryptography

insecure channel

Bob: IDBobAlice: IDAlice

Message: m
random number: r

BobQ      = H  (ID     )Bob

Bob

1

rP   = [r]P
Decryption:
m = c      H  (h)2

r{c, P  } r

Bobg = e(Q     ;P     ) 
r

Bob
r

r
2

g = e(Q     ;[M.K     ]P)

Encryption: c = m      H  (g  )

Bobh = e(K     ;P  ) = e([M.K     ]Q     ;[r]P)

Secure channel

Public: Private:

Master key: M.K
G  , G 

Private Key Generator

Bob

Bob

BobP, P     =[M.K     ]P
1 2

1

1 1

Q     =H  (ID     )1 Bob

2
e(G ;G  ), H  , H

K

Bob

K     =[M.K    ]QBob

Bob

Bob.

.
Bob

. Bob

. Bob

. Bob

Fig. 2.7: Pairing based IBE scheme

and is illustrated in Fig. 2.7.

The main steps in the IBE scheme considered here can be summarized as follows:

Setup In this system, PKG picks a master key M.KBob for user Bob and publishes

system parameters set <G1, G2, e, P , H1, H2, PBob, QBob>:

• Group G1 - an elliptic curve from which the initial points are picked.

• Group G2 - the extended field to which the two points are mapped.

• Bilinear map e : G1 × G1 → G2 - the rule governing how initial points are

mapped to the extended field.

• Group generator P - which generates the l-torsion group G1.

• Cryptographic hash functions [37] H1 : {0, 1}∗ → G1 - maps a string of any

length to an element in group G1, i.e. transform any string to a point over

curve G1. For example, Bob’s ID can be transformed to an elliptic curve point

over G1.

• Hash functions H2 : G2 → {0, 1}n - maps an element of group G2 to a string

of n bits, where n is the bit-length of the plaintext message m.

• Master key M.KBob ∈ Z∗ - this master key can be a random number. It is

used to generate the public key and the private key and must be kept secret.

• Point PBob = [M.KBob]P - Bob’s public key, generated by the PKG.

32



2.5. Pairing Based cryptography

• Point QBob = H1(IDBob) - an element in group G1, calculated using IDBob and

hash function H1.

The identity number of each entity is public (IDAlice, IDBob). Thus, any party can

generate QBob of entity Bob using hash function H1. Note that, in this system, the

master key M.KBob chosen by PKG is used to generate both the public key and the

private key.

Key Generation Bob’s private key KBob = [M.KBob]QBob = [M.KBob]H1(IDBob) is

also generated by PKG, but should be kept secret and given to Bob through some

secure channel.

Encryption When Alice wants to send Bob an n-bit plaintext message m, she

first computes QBob = H1(IDBob) with Bob’s identity information IDBob and public

system parameter H1. Alice picks a random integer r ∈ Z∗ and encrypts m into a

ciphertext pair {Pr, c}:

{Pr, c}, where

{
Pr = [r]P ∈ G1

c = m⊕H2(e(QBob;PBob)
r) ∈ {0, 1}n

(2.14)

This ciphertext pair is then transmitted to Bob, through an insecure channel.

Decryption On receiving the ciphertext, Bob decrypts the message as:

m′ = c⊕H2(e(KBob;Pr)) (2.15)

Expanding all elements in equation 2.15, Bob gets:

M ′ = m⊕H2(e(QBob; [M.KBob]P )r)⊕H2(e([M.KBob]QBob; [r]P )) (2.16)

Note that the bilinearity property of pairings ensures:

e(QBob; [M.KBob]P )r = e([M.KBob]QBob; [r]P

The hash function H2 is published by the PKG. The value H2(e([M.KBob]QBob; [r]P ))

computed by Bob is the same as that computed by Alice. Thus, with the correct

private key KBob, Bob can decrypt the plaintext message m from Alice.

Compared to the original IBE scheme illustrated in Fig. 2.3, the pairing based

IBE scheme in Fig. 2.7 employs the pairing algorithm as the specific encryption

and decryption algorithm. Moreover, for calculation convenience, two cryptographic

hash functions, H1 and H2, are used to change the user’s identity information into

strings of suitable length.

33



2.5. Pairing Based cryptography

i    Si    S

Bobγ    :

BobSK     ={D     ,D     }Bob
1 3

Bob BillSK     ={D     ,D     }Bill
1 3

Bill

A1

totalγ     :

A

A
A

2
A

 : gender = m

3 : age = 19
4 : age = 20
5 : age = 21

 : gender = f

s
2E’=m     H  (Y  )

γeE  = T  , ii i
s

γe :{A  ,A  ,A  }1 3 4

d=2

1 21 2g, e: G    G     G  , H
Y=e(g;g)y

i,S(0)∆ i,S(0)∆

2H  (h) 2H  (h)

Alice

E Π ih=    (e(D     ;E  )Bill
E

Bill

1A 4A
Billγ    :

E
Π ih=    (e(D     ;E  )Bob

Bob

1 3AA

Public Key Generator

Attributes necessary =2
Recipient’s 

1 A A3 4A 1 3 4T TT

public:

message: m
random s

E

private:

T  = g
T  = g

T  = g
T  = gt 5

t 4

t 3

t 2

1t

y , t  , t  ,.., t  1 2 5

T  = g3

2

1

4

5

Insecure Channel

i i

m= E’ m= E’

Fig. 2.8: Pairing based ABE scheme

An eavesdropper Eva may hold the public system parameters published by PKG

and the ciphertext transmitted in the insecure channel. However, to solve for m,

Eva needs to solve e(QBob; [M.KBob]P )r or e([M.KBob]QBob; [r]P ) from the system

parameter set < G1, G2, e, P,H1, H2, PBob, QBob > and [r]P . This task is related to

solving an ECDLP [4].

2.5.4 Bilinear Pairings applied in ABE

ABE scheme of Fig. 2.3 can be implemented as illustrated in Fig. 2.8 using bilinear

pairings [6].

The construction of this ABE system follows:

Setup This algorithm initiates:

• Select a bilinear group G1 of prime order p, with bilinear map e : G1×G1 → G2.

• Let Zp represent the set of positive integers. Define the Lagrange coefficient

∆i,S for i ∈ Zp and a set, S, of elements in Zp:

34



2.5. Pairing Based cryptography

∆i,S(x) =
∏

j∈S,j 6=i

x− j
i− j

.

The polynomial interpolation operation of this Lagrange polynomial can be

used to simplify the exponent in the decryption step.

• Let γtotal represent the set of all attributes. Define the universe, U , of N ele-

ments. For simplicity, take the first N elements of Zp to be the universe, i.e. the

integers 1,...,N(mod p). Each integer in U associates with an attribute in γtotal.

• Choose random elements y, t1, ..., tN in Zp and a random generator g of G1.

• Hash function H2 : G2 → {0, 1}n - maps an element of group G2 to a string of

n bits, where n is the bit-length of the plaintext message m.

To set up this scheme, the PKG computes: T1 = gt1 , ..., TN = gtN , Y = e(g, g)y. The

public key is PK =< e, g, Y, T1, ..., TN >. The master key is MK =< y, t1, ..., tN >.

Encryption Encryptor processes the message m with the public identity γe as fol-

lows. Pick a random value s ∈ Zp, then publish the ciphertext as:

E = (d, γe, E
′ = m⊕H2(Y s), {Ei = T si }i∈γe)

Note that the identity, γe, is included in the ciphertext.

In the case of this ABE system, Alice has γe = {A1, A3, A4} and calculates

Ei = {E1, E3, E4} = {T s1 , T s3 , T s4 }. Alice sets the attribute requirement number

d = 2 and publishes (d, γe, E
′, {E1, E3, E4}) to the insecure channel.

Key Generation To generate a private key for identity γ1 ⊆ U , the following steps

are taken by the PKG. A d − 1 degree polynomial q is randomly chosen such that

q(0) = y. Compute Di = g
q(i)
ti for every i ∈ γ1. The private key SK = (Di)i∈γ1 .

Decryption Suppose that a ciphertext, E, is encrypted with a key for identity γe

and the decryptor has a private key for identity γ1, where |γe ∩ γ1|≥ d. Choose an

35



2.5. Pairing Based cryptography

arbitrary d-element subset, S, of γe ∩ γ1, then the ciphertext can be decrypted as:

E ′ ⊕ (
∏
i∈S

(e(Di, Ei))
∆i,S(0))

= m⊕H2(e(g, g)sy)⊕H2((
∏
i∈S

(e(g
q(i)
ti , gsti))∆i,S(0)))

= m⊕H2(e(g, g)sy)⊕H2((
∏
i∈S

(e(g, g)sq(i))∆i,S(0)))

= m⊕H2(e(g, g)sy)⊕H2((e(g, g)
s
∑
i∈S

q(i)∆i,S(0)

)) (1)bilinearity

= m⊕H2(e(g, g)sy)⊕H2(e(g, g)sq(0)) (2)polynomial interpolation

= m.

(2.17)

In equality (1) of equation 2.17, the bilinearity property of the pairing calculation

transforms the successive multiplication into the exponent of a sum. Equality (2) is

derived using polynomial interpolation in the exponents. Since the polynomial sq(x)

is of degree d− 1, it can be interpolated using d points.

In the case of this ABE system, Bob holds attribute set γ1 = γBob = {A1, A3}.
Bob asks the PKG for the corresponding secret set. PKG confirms Bob’s identity and

generates a polynomial qBob specifically and calculates and sends Bob {DBob
1 , DBob

3 }
accordingly. Bob picks E1 and E3 from the information published by Alice and

calculates equation 2.17 and gets plaintext m.

Note that in the original ABE scheme introduced by Sahai and Waters in [6],

cryptographic hash functions are not used. Adding hash functions improves the

flexibility of ABE schemes, but on the other hand, makes the security of the entire

scheme rest not only on the security of the pairing based ABE scheme but, also on

the security of the cryptographic hash function used.

2.5.5 Security of Pairing based cryptosystem

In addition to brute force attack, researchers have developed various attacks to solve

the mathematical problems in elliptic curve based cryptosystems [96, 92, 93]. How-

ever, none of these methods would be effective for a carefully chosen elliptic curve

[51]. The ECDLP and other equivalent problems provide very good security. The

field sizes of Elliptic Curve cryptography over GF (2m) and the equivalent security

levels of symmetric key cryptography are listed in Table 2.1.

In Table 2.1, the required key length for a symmetric-key cryptosystem of equiva-

lent security is chosen as a standard [93]. For security at 80 bit level, Iyama et al has

proved that the ηT pairing algorithm provides the fastest calculation [86] amongst

36



2.5. Pairing Based cryptography

Symmetric ηT
key size over field

66 GF (2233)
72 GF (2283)
80 GF (2409)
88 GF (2457)
96 GF (2571)
128 GF (21223)

Tab. 2.1: Equivalent security level of ηT pairing algorithm

RSA [23], ECC over non-supersingular [81] and other pairing algorithms. For higher

security level, for example 128 bit, ηT pairing is considered inefficient because the

field size it requires is too large and the hardware resources and time required for its

calculation no longer outperform the other cryptographic schemes [87].

The security of the pairing based cryptographies relies on how hard it is to solve

the Bilinear Diffie-Hellman Problem (BDHP) [4]. This problem is considered as hard

as an ECDLP because the pairing computation part of the BDHP can be done in

polynomial time. The detail of BDHP is described here. In the l-torsion group of

points < P > the designer picked which is generated by P ∈ E(GF (2m))[l], given

P , [a]P , [b]P ,[c]P ∈ E(GF (2m))[l], solve e(P ;P )abc ∈ E(GF (24m))∗ is a BDHP in

this case. An attacker may try to solve a from P and [a]P and then compute [ab]P

followed by e([ab]P ; [c]P ) = e(P ;P )abc.

Certicom, the ECC cryptography provider, stated that ECDLP over finite fields

of size larger than 163-bit is believed computationally infeasible [75]. Thus, m = 163

will be the minimum size of a pairing based cryptography to implement. Different

group order l gives different security level of ECDLP. Recommended by NIST [23],

a pairing based cryptosystem should have a security level equivalent to an 80-bit

symmetric key encryption. Also, Koblitz and Menezes [88] suggested that under this

security level, a group E(GF (2m))[l] helps prevent the Pollard-ρ attack [92] on the

DLP in the group.

Another factor that affects the system security is the size of the finite fieldGF (2m)

on which the elliptic curve E(GF (2m))[l] is picked, i.e. m affects the security. The

extension field GF (24m) is always expected to be large enough to prevent an index

calculus [89] attack on the DLP in the field. As stated by Thome in [76], under MOV

reduction, for an extended field GF (24m), the discrete logarithm is considered very

hard when 4m exceeds 1000. For security equivalent to, or better than, 1024 bit

RSA, 4m should go above 1200. Furthermore, an odd m or, more strongly, a prime

37



2.6. Cryptanalysis

m, can make sure that the DLP on the chosen elliptic curve cannot be reduced [90].

Thus, for a security cryptosystem, the field size m should be chosen to be a prime

larger than 250. For a cryptosystem of better security than 80-bit symmetric key

encryption, m should be a prime larger than 300.

Thus, in this thesis, the basic field size m = 163 is used, with results up to

m = 571 to show the structure and implementation of the pairing algorithm.

2.6 Cryptanalysis

Cryptanalysis is the study of methods to reveal the concealed message in a ciphertext

without knowing the secret key an intended receiver used to decrypt it. For any form

of ciphertext, the simplest method of attack is the brute force attack, also known as

exhaustive key search. To perform such an attack, the attacker tries every possible

value of the secret key to decrypt the ciphertext until the plaintext is revealed. In

attacking a pairing computation over an elliptic curve E(GF (2m)), where m > 160,

this method becomes computationally infeasible.

2.6.1 Side Channel Analysis Attacks

Mathematically, choosing a large finite field provides good security for a crypto-

graphic scheme. However, in implementing a cryptosystem, the hardware may show

physical weakness that an attacker can make use of. Side channel analysis (SCA)

attacks make use of the leaked information from a hardware device in which a cryp-

tographic algorithm is operating. The attacker needs physical access to the hardware

device. Any side channel information that can be measured, such as power consump-

tion [13], timing information [14] and electro-magnetic radiation [15], can be used in

such SCA attacks. These can be performed on different types of hardware devices

such as FPGA [93, 16, 94] and smartcards [95]. This thesis focuses on power analysis

attacks against FPGAs.

Power analysis attacks can be divided into simple power analysis (SPA), dif-

ferential power analysis (DPA) and correlation power analysis (CPA). Several SCA

attacks have been proposed against hardware implemented cryptographic algorithms.

In 1999, Kocher et al. [18] successfully performed a SPA attack and a DPA attack on

a DES implementation and revealed the secret key. In 2005, Page and Vercauteren

[16] presented a theoretical DPA attack against Duursma and Lee’s algorithm [26]

for characteristic three. In 2004, Brier et al. [96] performed a CPA attack against

FPGA implementations of DES and AES.

38



2.6. Cryptanalysis

Here it is assumed that an attacker has access to a hardware device in which a

cryptographic algorithm is operating and the power traces can be measured by the

attacker. The SPA attacks determine what operations are executed by the comparing

the profiles and shapes of the measured power traces. This attack can be prevented

by introducing redundant operations and making the operations always the same for

any secret key. For elliptic curves, several algorithms [97, 98, 99] have been proposed

as countermeasures to SPA.

More advanced DPA and CPA attacks apply statistical analysis to the measured

power traces to determine the secret key. DPA attack makes use of the difference of

mean values of different sets of power traces [18]. CPA takes advantage of the linear

correlation between hamming distance and power consumption [96]. In this work,

statistical analysis using a CPA attack method is assumed.

2.6.2 Hardware Power consumption

To analyze the relationship between the intermediate variables operated upon in

the FPGA and the power consumption of the related operations, the correct power

consumption model that links the two aspects must be considered.

Complementary metal-oxide-semiconductor (CMOS) technology is widely used

in modern ICs. The power consumption of a CMOS circuit consists of two parts,

the static part and the dynamic part. CMOS circuits have very low static power

consumption.

Take a CMOS inverter as a simple example, shown in Fig. 2.9. When the input

is at logic 0, the n-MOS device is OFF and the p-MOS device is ON. The output is

at logic 1, connected to supply voltage VCC . On the contrary, when the input is at

logic 1, the n-MOS is ON and the p-MOS is OFF. The Output voltage is at logic 0

and connected to GND.

There are no appreciable current flows into the gate terminal and no significant

dc current path from VCC to GND. However, a leakage current exists due to reverse-

bias leakage between diffused regions and the substrate. Thus, the static power

consumption PS can be calculated as in equation 2.18 [100]:

PS = VCC × ICC (2.18)

where:

VCC = supply voltage

ICC = current into a device (sum of leakage currents)

39



2.6. Cryptanalysis

Fig. 2.9: A general CMOS inverter

This power exists in all CMOS components in an FPGA device. When a CMOS

device stays static and does not switch, this power contributes to the system noise

in power measurement and power analysis.

When a CMOS device switches from one logic state to another, one of the MOS

transistors turns on while the other turns off at the same time. During this brief

transition, there exists a switching current. This current causes a transient power

consumption PT which dominates the dynamic power consumption of a CMOS de-

vice. In addition, when a CMOS device switches, the external capacitance is charged.

This causes current and capacitive-load power consumption PL which adds to the

dynamic power consumption as well. The dynamic power consumption PD can be

calculated as in equation 2.19 [100]:

PD = PT + PL = (Cpd ×NSW +
∑

CL)× V 2
CC × f (2.19)

where:

Cpd = power-consumption capacitance

f = system frequency

VCC = supply voltage

NSW = total number of bits switching.

CL = load capacitances at each output.

It can be abstracted from equation 2.19 that in the case when there is no output,

during a single clock period, the dynamic power consumption of a CMOS IC caused

by bits switching can be calculated as in equation 2.20:

PSW = Cpd × V 2
CC ×NSW × f (2.20)

40



2.6. Cryptanalysis

Equation 2.21 gives a general idea of the relationship between power consumption

of digital circuits and the data being operated upon inside such circuits, i.e.: under

certain technology (Cpd is constant) and stable power supply (VCC is constant), the

power dynamic consumption is linearly related with, NSW , the total number of bits

switching on the board.

PSW ∝ NSW (2.21)

The more bits switching at a time, the more power consumed at that time. This is

a weak point of practical digital IC design and provides the power analysis attackers

with an opportunity to reveal the secrets in hardware cryptosystems.

2.6.3 Weakness in pairing based protocols to side channel attacks.

The pairing based systems were designed for use in public key cryptography, for

example the pairing based IBE schemes described in section 2.5.3. Any protocol

applied on an insecure channel will have to face a problem: an ill-intentioned attacker

may intercept the message and forward the altered message to the intended receiver.

Take the pairing based public key schemes, sender Alice has to send the cypher

text and some useful information for decryption, namely a {U, V } pair. This {U, V }
pair can have specific names in different public key schemes and will be addressed in

IBE and ABE schemes in detailed discussions in section 5.3. Assume Eva is a side

channel attacker who can get physical access to Bob’s hardware devices. Thus, Eva

can intercept {U, V }, the public value exposed in the insecure channel and forward

the altered values {U ′, V ′} to Bob. Also, Eva can monitor and obtain the power traces

of Bob’s decryption process in the hardware devices. Originally, for decryption, Bob

computes e(KBob;U) when he receives a ciphertext {U, V } from Alice. When the

cipertext was distorted to {U ′, V ′} by Eva, Bob computes e(KBob;U
′). This will

result in an incorrect plaintext which will be abandoned by Bob’s end automatically.

However, by doing the same operation a number of times using different {U ′, V ′}
(usually N times, where 500 ≤ N ≤ 10000 [13, 101, 102]), Eva can collect the power

consumption traces of Bob’s ‘no sense’ operations. Under this condition, Eva knows

the structure of the pairing algorithm e, the value of U ′ and the power consumption

of the N calculations. Eva is then able to perform a power analysis attack trying to

reveal the secret operator KBob according to the above information. The details of

how Eva can perform a CPA attack and get Bob’s private key KBob can be found in

Chapter 5.

41



2.7. Hardware Accelerators

2.6.4 Countermeasures against power analysis attacks

Because SCA attacks can be applied on hardware implementations of cryptosystems

to reveal the secret information, designers of the cryptographic algorithms have put

forward some countermeasures. The weakness mentioned above exists because in

the operation e(KBob;U
′), operand U ′ is known by attacker Eva. Designers should

try to make it impossible for Eva to use the knowledge she holds to perform an SCA

attack.

Several countermeasures to SCA attacks have been suggested for affected cryp-

tosystems. [16, 17, 18, 103, 104, 105] The architecture level countermeasures can be

implemented by noise insertion [18], random clock frequency [103], or randomization

of the instruction streams [104]. Although these methods succeed in changing the

implementation’s power consumption pattern, it is still possible for an attacker to

reconstruct the original pattern [18, 105].

The algorithm level countermeasures operate on the intermediate variables in

the calculation flow. Page and Vercauteren [16] pointed out that the bilinearity

property of the pairing algorithms can be used. Scott [17] proposed a countermea-

sure which multiplies a randomly picked variable with the input point to mask it.

Coron [18] pointed out that using projective coordinate rather than the conventional

affine coordinates helps hide the secret information. However, projective coordinate

solutions to the ηT pairing algorithm requires additional operations. Thus, in imple-

menting the original ηT pairing algorithm, such solutions are not included. Instead,

these methods are considered as countermeasures against SCAs to help improve the

security of the ηT pairing and their implementations are investigated in Chapter 6.

As the algorithm level countermeasures all introduce additional operations based

on the original algorithm, area and calculation time overheads follow. The extra

security should not come at the expense of excessively increasing the hardware re-

sources required. Therefore, apart from the enhanced security aspect, the overhead

cost of the countermeasures must be considered.

2.7 Hardware Accelerators

As can be seen in the pairing based IBE scheme and ABE scheme in section 2.5.3,

there are pairing operations in the encryption step and corresponding pairing oper-

ations in the decryption step. This makes the cryptosystem very computationally

intensive because a pairing requires many finite field operations. Such schemes can

be applied by implementing software on a general purpose processor. However, gen-

42



2.7. Hardware Accelerators

eral purpose processors perform operations serially. This does not suit the finite field

operations required in pairings. Moreover, a general purpose processor processes a

word length of 32 or 64 bits, while the word length of an element in the pairing is

suggested to be at least 160 bits [23].

A dedicated hardware accelerator can easily solve the problems a general pur-

pose processor meets [37]. The word length of a dedicated hardware accelerator is

assigned by the designer. Dedicated hardware accelerators can be designed to ex-

ploit the parallelism and improve the system performance substantially. By carefully

arranging the hardware, techniques such as loop unrolling and pipelining can help

speed up the operations in a pairing calculation. Take the ηT pairing algorithm as

an example. The ηT design over the finite field GF (2307) on a Pentium IV processor

with an operating frequency of 3000 MHz computes the algorithm in 3500 µs [106],

while a similar design on a Xilinx FPGA Virtex-II Pro with an operating frequency

156 MHz computes the pairing algorithm over GF (2313) within only 213 µs [107].

The hardware processor accelerates the calculation by 16 times which is a significant

improvement.

2.7.1 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is an integrated circuit that can be

programmed and reconfigured by the customers to carry out some specific logic

functions. What makes the FPGA ‘field programmable’ are the individual Con-

figurable Logic Blocks (CLBs) and a hierarchy of reconfigurable interconnects that

allow the CLBs to be ‘wired together’. The function of the blocks can be specified

by the customers using a Hardware Description Language (HDL). Software synthesis

tools allow a designer to take a high level design description and transform it into a

programming file for the FPGA.

The leading FPGA manufacturers are Xilinx [108] and Altera [109]. In this work,

the designs are implemented on Xilinx Virtex-V [84] FPGAs. An FPGA consists of

the following components:

• Input/Output Blocks (IOBs): the simplest block that provides interconnec-

tion between the FPGA and other devices on the board. Each IOB supports

bidirectional data flow and 3-state operation.

• Configurable Logic Blocks (CLBs): basic functional part of an FPGA which

contains flexible look-up tables (LUTs) that can implement logic. Each CLB

43



2.7. Hardware Accelerators

Model IOBs CLBs(row × col) Slices Registers LUTs BRAM(Kbits)
xc5vlx50 560 120×30 7,200 28,800 28,800 1,728
xc3s400A 311 40×24 3,584 7,168 7,168 360

Tab. 2.2: Xilinx Virtex-V xc5vlx50 and Spartan-3A xc3s400A product specifications

contains several interconnected slices. Within each slice, there are LUTs and

flip flops (FFs).

• Block RAM: provides data storage in the form of dual-port blocks. These block

RAMs can be used to synchronously store large amounts of data.

In the design of dedicated hardware accelerators, a reduction in computation time

is always the aim. In the meantime, using less circuit area is also a goal. To speed up

the calculation of a hardware accelerator, new technology can bring higher operation

frequency and faster calculation speed. Other than using different technologies, a

designer can minimize the number of clock cycles required using appropriately opti-

mized algorithms. Also, using more hardware resources to increase parallelism can

decrease calculation time, at the cost of greater resources used. When implementing

an algorithm on a hardware accelerator, usually there are many different methods of

parallelizing the operations, resulting in different operation times and circuit areas.

Typically, there exists a trade-off between area and speed of a hardware design.

2.7.2 SASEBO-GII board

The SASEBO-GII evaluation board [110] was designed and developed specifically for

side-channel attack experiments. The board has two Xilinx FPGAs: the Virtex-5

xc5vlx50 as a cryptographic FPGA and a Spartan-3A XC3S400A [111] as a control

FPGA. These two FPGAs are connected using a 38-bit general purpose input/output

common bus. In this work, the hardware accelerators are mounted on the Virtex-5

FPGA. The Spartan-3A acts as a connector between the Virtex-5 FPGA and the

PC. The main specifications of the FPGAs are shown in Table 2.2. There is a shunt

resistor of only 1Ω inserted between the VDD side of the cryptographic FPGA and

the power supply for measuring power traces. Fig. 2.10 shows a block diagram of

the SASEBO-GII board and the experimental setup.

In power analysis experiments, the control FPGA communicates with the host PC

through a USB connector. The cryptosystem is implemented on the crypto FPGA.

All input and output operations between the host computer and the crypto FPGA

are transferred through the control FPGA. This prevents direct communications

44



2.7. Hardware Accelerators

Control
FPGA

Sasebo−GII board

USB
38

GND GND

VDD

VDD

shunt resistor

Crypto
FPGA

Virtex−V

Com1

Computer

Oscilloscope

Spartan 3A

Fig. 2.10: SASEBO-GII board block diagram

between the host computer and the crypto FPGA (which is always the target of the

power analysis attack) and reduces the environmental noise in the power analysis

attacks.

The board has an external power source which supplies the on-board power reg-

ulators and the FPGAs with 5.0V. The on-board oscillator provides a clock signal of

24MHz and there is a port which supports external clock input of different frequen-

cies. Different operations in the cryptographic algorithm lead to different numbers

of transistors switching. According to equation 2.20 the difference in the number

of switching transistors can cause different dynamic power consumption values. A

differential probe of the oscilloscope, connected to the two ends of the shunt resis-

tor, records the voltage difference values. These values are linearly related to the

dynamic current through the shunt resistor and can be used for a power analysis of

the cryptosystem.

2.7.3 Efficiency Evaluation of Hardware Designs

The most common aspect of a hardware accelerator of concern to the designer is the

computation time or speed. Generally, this can be calculated using the total num-

ber of clock cycles needed per computation and the maximum clock frequency. The

calculation flow of a cryptographic algorithm is decided by the algorithm mathemat-

ically. Once an algorithm is chosen, the computation flow is fixed. The designer’s

work is to minimize the clock cycles required for each sub-operation and to optimize

the hardware architecture for a higher operating frequency. To minimize the clock

cycles required, a popular method is to make operations run in parallel with more

hardware resources. For example, two multiplications, where each calculates the re-

45



2.7. Hardware Accelerators

11

write readmultiplication write readmultiplication

1

write readmultiplication
write readmultiplication

1 1

multiplier1

1time:

1 1time:

multiplier1

multiplier2

n−1

(a) one multiplier: serial

(b) two multipliers: parallel

nn

Fig. 2.11: Time scheduling for different number of multipliers

sult in n clock cycles, can be operated in 2n+4 clock cycles using only one multiplier,

as shown in Fig. 2.11. Using a parallel method, by adding one more multiplier and

some control units in hardware, the multiplication can be calculated in n + 3 clock

cycles. This method reduced the calculation time by n + 1 clock cycles. Another

useful method to speed up a hardware accelerator is to shorten the critical path.

In FPGA design, a critical path indicates the longest path a signal encounters

from one register to another. This usually happens where complicated logic cells are

required. A popular way to optimize such a case is called pipelining and is achieved

by inserting registers between the logic cells and split the original ‘one clock cycle

operation’ into two clock cycles. Fig. 2.12 shows the logical path of a calculation

x = (a× b) + (c× d). The longest path here is from a (Flip-Flop 1) to x (Flip-Flop

5), i.e. route1 + gate1 + route2 + gate2 + route3. By adding intermediate registers,

the longest path in this block should be either route4 + gate1 + route5 or route6 +

gate2 + route7. This method does not precisely half the original critical path, but

shortens it. The operation x = (a × b) + (c × d) is then divided into two stages,

the ‘×’ stage and the ‘+’ stage and requires 2 clock cycles for calculation. This can

lead to more clock cycles and may require more hardware resource, but will increase

the maximum frequency at which the entire system can be operated. However, by

applying the pipeline method, when the ‘×’ stage is finished, the system can put

the next operation, x2 = (a2 × b2) + (c2 × d2), into the structure rather than wait

until the calculation of x is finished. This pipeline method can save clock cycles and

improve the hardware efficiency.

The area of the architecture is also important. For FPGAs the area is usually

measured in terms of slices or look-up tables (LUTs). The tristate buffers, block

46



2.8. Conclusions

route1
route2

route3
route4

route5

route6

route7

gate3

gate1

gate2

(a)

route1
route2

route3
route4

route5

route6

gate1

gate2

route7

gate3

route9

route8

(b)

Flip-Flop 1

Flip-Flop 2

Flip-Flop 3

Flip-Flop 4

Flip-Flop 5

Flip-Flop 1

Flip-Flop 2

Flip-Flop 3

Flip-Flop 4

Flip-Flop 5

Flip-Flop 6

Flip-Flop 7

a

b

c

d

x

b

c

d

x

a
a*b

c*d

Fig. 2.12: Cutting down the critical path

RAMs and ROMs etc. are also important parts of an FPGA. Basically, the more

such resources are required the larger the area an FPGA design takes. Slices are

the underlying units in a Xilinx FPGA. Each slice contains a number of LUTs and

several flip-flops. For example, in the Xilinx Virtex-V FPGA [84], each slice contains

4 LUTs and 4 flip-flops. Thus, when listing the implementation result, it is important

to attach the FPGA type. Comparison between different type of FPGA chips is

meaningless.

As can be seen from the methods to optimize the calculation speed, most ways to

decrease the calculation time will increase the area taken by the architecture. In such

a case a trade-off is desired. In this work the area-time (A*T) product is introduced

as a parameter to compare designs. This is the product of the computation time and

the required area. Increasing the parallelism in the design decreases the computation

time but simultaneously requires more area. The A*T product judges whether the

increase in area outweighs the decrease in computation time. The design with the

minimum A*T product is said to provide the best trade-off between area and speed.

2.8 Conclusions

In this chapter, the background information required for the rest of the thesis has

been provided. The IBE and ABE schemes are two popular public key schemes that

47



2.8. Conclusions

satisfy the demands of security nowadays. The IBE scheme provides an approach

to peer to peer communication and the ABE scheme provides a peer to multi-peer

solution to the morden communication. Elliptic curve cryptography and, in partic-

ular, pairing based cryptography can be used in both the IBE and ABE schemes in

practical applications. The pairing based cryptography is chosen in this work as an

efficient way of implementing the public key schemes. Considering both security and

efficiency aspects, implementations of the ηT pairing algorithm over fields of size m

between 163 and 571 will be investigated.

SCA attacks are considered in this thesis to investigate and improve the security of

the proposed public key cryptosystem. Using cryptanalysis methods to test and find

the weaknesses existing in the cryptosystem and applying countermeasures to protect

the system is an efficient way to improve the security aspect of the cryptosystems.

This methodology is used in this thesis. Both the hardware power consumption

model and the usage of the cryptographic algorithm in the public key schemes are

considered to find out the possible weaknesses in these schemes.

A SASEBO-GII evaluation board which consists of both the FPGA components

and the power measurement ports is used for implementation and SCA attacks in this

thesis. The flexibility of FPGAs makes them highly suitable for accelerating crypto-

graphic applications as the processors can easily be reconfigured to support different

design parameters. This makes it a good platform for implementing accelerators for

the cryptosystems. The shunt resistor provides convenience for cryptanalysis. In

this thesis, the power analysis attacks are based on the power collected from this

platform.

48



3. ARITHMETIC ARCHITECTURES OVER THE FIELD GF (2M)

3.1 Introduction

As introduced in Chapter 2, pairings are basically operations on two points over an

elliptic curve. Thus, the efficiency of the reconfigurable hardware design of a pair-

ing algorithm depends on the efficiency of the basic operations, including addition,

squaring, multiplication and division, over the finite field. Hardware architectures of

these arithmetic operations over the field of characteristic 2, i.e. over GF (2m), are

presented in this chapter.

Section 3.2 discusses the targeted finite field size m. The irreducible polynomials

that generates such fields are listed. Section 3.3 introduces the basic addition opera-

tions over finite fields GF (2m). Section 3.4 presents some popular GF (2m) multipli-

cation structures, including the digit-serial multiplier and the Karatsuba multiplier.

Section 3.5 presents a parallel structure for implementing the GF (2m) squaring. In

sections 3.6 and 3.7, two methods of implementing the GF (2m) division/inversion

are introduced. For all the GF (2m) operation blocks, the details of the structures

are analyzed and simple examples are illustrated to highlight the calculation flow in

the operations.

3.2 Choice of Finite Fields

An element a(x) of the finite field GF (2m) in this work is represented using a de-

gree (m − 1) binary polynomial, a(x) =
m−1∑
i=0

aix
i, ai ∈ {0, 1} which maps well to

hardware. There are basic operations of addition, squaring, multiplication and divi-

sion/inversion over field GF (2m). If the basic operations generate a result of degree

higher than m− 1, this result must go through a reduction operation, modulo f(x),

which reduces the degree down to m− 1 or lower. This f(x) is the irreducible poly-

nomial of the corresponding finite field, of degree m. The value of f(x) depends on

the field size m. For efficient field operations, polynomials of low hamming weight

are preferred. Normally an irreducible trinomial f(x) = xm + xk + 1 will be chosen,



3.3. Choice of Basis

if one exists. A trinomial is preferred in the implementations as it requires the least

hardware resources. However, if no irreducible trinomial exists, then a pentanomial

f(x) = xm + xa + xb + xc + 1 is selected. The particular pentanomial chosen has the

following properties: the second term xa has the lowest degree among all irreducible

pentanomials of degree m; the third term xb has the lowest degree among all irre-

ducible pentanomials of degree m and second term xa; and the fourth term xc has

the lowest degree among all irreducible pentanomials of degree m, second term xa

and third term xb [1].

As introduced in chapter 2, the suggested field size m of GF (2m), where elliptic

curves are picked, varies from 163 to 571, as suggested by NIST in [93]. The curves

over binary fields are carefully chosen because the coefficients of these specific curves

and underlying field were selected to optimize the efficiency of the elliptic curve

operations. Here are the polynomials for the field sizes of interested:

m = 163 : f(x) = x163 + x7 + x6 + x3 + 1

m = 233 : f(x) = x233 + x74 + 1

m = 283 : f(x) = x283 + x12 + x7 + x5 + 1

m = 571 : f(x) = x571 + x10 + x5 + x2 + 1

Note that the coefficients of the irreducible polynomials selected for the correspond-

ing field sizes all follow the rules introduced in last paragraph. To find an irre-

ducible polynomial, or to test the irreducibility of a polynomial, designers can refer

to [112, 113, 114, 115].

3.3 Choice of Basis

In order to perform operations on elements of binary fields and their corresponding

extension fields, a basis representation must be defined first. Different bases including

polynomial basis [116], normal basis or dual basis [117] are available to represent

elements over binary fields.

In polynomial basis, let a be an element over GF (2m). The polynomial basis of

GF (2m) is:

{1, a, a2, ..., am−1} (3.1)

The set of elements over of GF (2m) in polynomial basis is:

{0, 1, a, a2, ..., a2m−2} (3.2)

Note that in binary fields, an irreducible polynomial can be used to reduce for terms

50



3.4. Addition over GF (2m)

of degree higher than m to at most m − 1. When using binary strings to represent

elements in polynomial basis, for example in GF (24), the most significant bit repre-

sents a3, the least significant bit represents a0 i.e. 1. A binary string “1011” over

GF (24) represents the element “a3 + a+ 1”.

In normal basis, let b be an element over GF (2m). The normal basis of GF (2m)

is:

{b, b2, b22 , ..., b2m−1} (3.3)

Different from polynomial basis, the most significant bit in normal basis represents

b8, the least significant bit represents b. The binary string “1011” over GF (24) in

normal basis represents the element “b8 + b2 + b”.

A dual basis is not a concrete basis like polynomial basis or normal basis. It

only provide a way to easily communicate between systems using different bases and

convert elements from one basis to another. In this work the operands are distributed

by the same PKG. Thus, only one basis is needed in the cryptosystem and dual basis

is not considered.

The IEEE standards for public key cryptography [32] recommend polynomial or

normal basis. For both types of basis, there are different architectures for field opera-

tions including addition, multiplication, squaring and division/inversion. Beth [118]

investigated the differences between the three bases mentioned above and proved

that they all show some advantages in certain conditions. Normal basis needs less

steps in calculating exponentiations, but the advantage is not obvious. When area

constraints are considered, polynomial basis shows an advantage against normal ba-

sis. Moreover, polynomial basis offers hardware multiplication with lower complexity

than normal basis [119]. Thus, polynomial basis is chosen in this thesis.

3.4 Addition over GF (2m)

Addition operation over GF (2) is the same as the logic operation exclusive-or (XOR).

Note that in binary finite field operations, as 0 + 0 = 0 and 1 + 1 = 0, there exists

−a = a for all a ∈ GF (2m) i.e. subtraction equals addition.

As the addition operation can be expressed by a logical XOR operation, in a

hardware implementation, a one bit addition is performed by a two input XOR gate,

and an addition of two m-bit elements is performed by an array of m two input XOR

gates, as shown in Fig. 3.1.

In a hardware implementation, because XOR gates do not require large area,

designers may prefer to trade operation time with area. For time efficiency, an m-

51



3.5. Multiplication over GF (2m)

XOR

α + ν

ν

α
mm

m

m

Fig. 3.1: Architecture of an adder

XOR-gate chain can be used to perform an m-bit addition operation in parallel.

Typically, in a hardware implementation of an adder, each XOR gate is mapped to

a LUT in FPGA. Thus, for field size m, a GF (2m) Adder requires m LUTs. When

the field size m increases, the area taken by the adder increases as well.

The calculation time is equal to the delay through one XOR gate because all m

XOR gates operate in parallel. In the Virtex-5 FPGA, 65 nm technology is applied.

The time for a signal to propagate through an XOR gate, plus the time for the target

register to setup and hold, is 1.249 ns. The maximum operation frequency is 800

MHz. When implementing the GF (2m) operation blocks, one would find that an

Adder takes least area and calculation time. The critical path of a crypto processor

with many units will generally not include an adder.

3.5 Multiplication over GF (2m)

Over the basic binary field GF (2m), a multiplication of two elements a(x) =
m−1∑
i=0

aix
i

and b(x) =
m−1∑
i=0

bix
i can be represented as per equation 3.4. The multiplication

operation can be divided into two stages: the polynomial multiplication and the re-

duction stage modulo the irreducible polynomial f(x), i.e. mod f(x) in the following

sections.

z(x) = a(x) · b(x) = a(x) ·
m−1∑
i=0

bix
i

= a(x)bm−1x
m−1 + · · ·+ a(x)b2x

2 + a(x)b1x+ a(x)b0 =
2m−2∑
i=0

zix
i

c(x) = a(x) · b(x) mod f(x) = z(x) mod f(x)

(3.4)

52



3.5. Multiplication over GF (2m)

The maximum degree of the multiplication result z(x) is (2m − 2). It must be

mapped to an element of GF (2m) through the reduction operation modf(x). The

reduction process repeatedly adds the irreducible polynomial and its transforms to

z(x) until the result is reduced to degree (m− 1) or less.

To illustrate the process of the multiplication operation and how the modulo

stage mod f(x) works, consider the field GF (24) with irreducible polynomial f(x) =

x4 + x + 1. The multiplication of elements a(x) = x3 + 1 and b(x) = x3 + x + 1 is

computed. The polynomial multiplication stage is performed as per equation 3.5.

z(x) = a(x) · b(x)

= (x3 + 1) · (x3 + x+ 1)

= x6 + x3 + x4 + x+ x3 + 1

= x6 + x4 + x+ 1

(3.5)

Note that x3 + x3 = 0, thus, only 4 terms remain in the result of the degree 6

polynomial z(x). Since f(x) = 0 over GF (2m), terms of degree higher than 3 can be

reduced using the transforms of the irreducible polynomial f(x) = 0 as per equation

3.6.

f(x) = x4 + x+ 1 = 0

→ x4 = x+ 1

→ x5 = x2 + x

→ x6 = x3 + x2

(3.6)

c(x) = z(x) mod f(x)

= x6 + x4 + x+ 1 mod f(x)

= (x3 + x2)︸ ︷︷ ︸
x6

+ (x+ 1)︸ ︷︷ ︸
x4

+x+ 1

= x3 + x2

(3.7)

Using these transforms of f(x), z(x) can be reduced to c(x) of degree less than

(m−1), as per equation 3.7. This maps the degree 6 element z(x) back to an element

over GF (2m). From equation 3.7 it also can be seen that the reduction of terms x6

and x4 can be done at the same time. Thus, in a hardware implementation over

FPGA platforms, all terms of degree higher than (m− 1) can be reduced in parallel

using XOR gates, i.e. addition operations in binary fields, as shown in line 3 of

equation 3.7. Also, the reduction result can be output after the delay of the XOR

gates in the same clock cycle.

53



3.5. Multiplication over GF (2m)

Algorithm 3.1 Right-to-Left Shift-and-add field multiplication over GF (2m)

Input: binary polynomials a(x) =
m−1∑
i=0

aix
i and b(x) =

m−1∑
i=0

bix
i

Output: c(x) = a(x) · b(x) mod f(x)

1: If b0 = 1 then c← a; else c← 0;
2: for i from 0 to m− 1 loop
3: a = a · x mod f(x)
4: if bi = 1 then c← c+ a
5: end for
6: return c(x)

3.5.1 Bit parallel multiplier and Bit serial multiplier

As mentioned in previous sections, the range of field sizes chosen in this work is

163 ≤ m ≤ 571. For large finite fields, there are many different architectures suitable

for implementing GF (2m) multiplications.

A bit-parallel multiplier architecture, introduced in [120, 121, 107, 122, 123],

performs the multiplication in one clock cycle. It multiplies a(x) by all the bits of

b(x) in the same clock cycle and produces a (2m− 2) degree polynomial z(x), which

then goes through the reduction block modulo f(x) and transforms into the (m− 1)

degree polynomial c(x), namely the product. This bit-parallel multiplier produces

the product in only one clock cycle. It is a very fast method, but requires large

circuit area to perform the calculation of a(x) · b(x) = z(x) in one clock cycle for

field sizes required in this thesis. For an m-bit multiplication, the number of gates

required for this architecture is proportional to m2. This bit-parallel architecture

is not suitable for use in area constrained applications because of the its large area

requirement.

A smaller sized multiplier, the original Right-to-left shift-and-add method [52] for

field multiplication, is described as in Algorithm 3.1. This method was mentioned

in [124, 120, 125] and was named Bit Serial Multiplication.

This algorithm takes as inputs a(x) and b(x) and returns the product c(x) modulo

the irreducible polynomial f(x). This architecture is based on the observation of

equation 3.4 that a(x) is multiplied by each bit of b(x). As can be seen in Algorithm

3.1, element a(x) is shifted one bit in every iteration. It takes (m− 1) iterations to

complete this multiplication. A reduction modulo f(x) is performed in each of the

iterations to make sure that a(x) is of, at most, degree (m − 1). In the hardware

architecture of Algorithm 3.1, as the Hamming weight of f(x) is always small, only

at most 5 XOR gates are needed to complete the process of the reduction operation.

54



3.5. Multiplication over GF (2m)

←−
B[0] b(3) b(2) b(1) b(0) ↓
B[1] b(7) b(6) b(5) b(4)
B[2] b(11) b(10) b(9) b(8)

...
...

...
...

...
B[40] 0 b(162) b(161) b(160)

Tab. 3.1: 163 bit element b(x) divided by digit d = 4

Thus, the bit-serial multiplier requires only a small amount of hardware resource.

They are suited for use in area constrained environments where long calculation time

is acceptable in order to minimize area.

3.5.2 Digit serial multiplier

Other than the two extremes of finite field multipliers, a digit-serial architecture for

calculating GF (2m) multiplications is proposed by Song and Parhi in [126]. It pro-

vides a trade-off between the min-area max-time and the max-area min-time designs.

In this digit-serial multiplier (DSM), element b(x) divided into several blocks, each

is of d bits, where d is named the digit size of the multiplier. Take m = 163 as an

example, if d = 4, element b(x) is then divided into 41 blocks (B[0]-B[40]), as shown

in Table 3.1. Note that element b(x) is divided into n = dm
d
e blocks. For the last

block B[40], the empty bits of B-blocks are filled with ‘0’.

In the DSM, element a(x) is multiplied by B[i], i.e. d bits of element b(x) from

right to left, in clock cycle i. It takes n = dm
d
e clock cycles to finish the calculation.

Choosing a larger digit size d requires more hardware resources but, at the same

time, reduces the calculation time required. Larger d brings smaller n. This is the

trade-off between area and speed. The bit-serial and the bit-parallel, multipliers

can be seen as two extreme conditions of the digit-serial multiplier (DSM): d = 1

is equivalent to a bit-serial multiplier whilst d = m is equivalent to a bit-parallel

multiplier.

The digit-serial multiplication algorithm is given in Algorithm 3.2. Similar to

Algorithm 3.1, this algorithm takes as input a(x) and b(x) and computes the product

c(x). As mentioned in Table 3.1, if the field size m is not an integer multiple of the

digit size d, it is necessary to fill the extra bits with ‘0’ and form a new element b′(x)

of m′ bits, as shown in definition 1 of Algorithm 3.2. Then this new element b′(x) is

divided into n B-blocks (B[0]∼B[n-1]), each B-block is of d bits.

In Algorithm 3.2, c′(x) is initiated as 0 ∈ GF (2m), followed by n = dm
d
e iterations.

55



3.5. Multiplication over GF (2m)

Algorithm 3.2 Digit-Serial multiplication over GF (2m)

Input: binary polynomials a(x) =
m−1∑
i=0

aix
i and b(x) =

m−1∑
i=0

bix
i

Output: c(x) = a(x) · b(x) mod f(x)

Define1: m′ = m+ (m mod d), b′(x) =
m′−1∑
i=0

b′ix
i, b′i =

{
0, i > m− 1
bi, i ≤ m− 1

Define2: n = dm
d
e, B[i] =

d−1∑
k=0

b′(i ∗ d+ k)

1: c′(x)← 0
2: for i from n− 1 downto 0 loop
3: c(x)← c′(x) + a(x) ·B[i] mod f(x)
4: if i > 0 then
5: c′(x)← c(x) · xd mod f(x)
6: end if
7: end for
8: return c(x)

Within each of the iterations i of the ‘for’ loop in steps 2-7, the element a(x) is

multiplied by a B-block . The products of a(x) and B-blocks are degree (m+ d− 2)

polynomials. These polynomials then go through a reduction block modulo f(x) and

return as a degree (m−1) polynomial c(x). Except for the last iteration, this c(x) is

then extended by appending d zero bits from the least-significant end and becomes

a degree (m+ d− 1) polynomial (c(x) · xd), i.e. in step-5,

c′(x) = c(x) · xd mod f(x) =
m+d−1∑
i=0

c′ix
i mod f(x), c′i =

{
0, c < d

ci, i ≤ d

Another reduction is applied here to reduce c′(x) to a degree (m − 1) polynomial.

Note that this reduction is different from the one in step-3, which is a (m + d − 2)

to (m− 1) reduction. After n iterations each B-block is processed and the result is

returned in c(x).

To illustrate the mechanism of Algorithm 3.2, consider again the example in

equation 3.5, the calculation of a(x) · b(x) = (x3 + 1) · (x3 + x + 1) over GF (24)

with f(x) = x4 + x + 1. Assume d = 2 and n = 2. As m = 4 and (m mod d = 0),

there exists b′(x) = b(x). b′(x) here can be divided into 2 B-blocks and each of them

contains 2 bits: B[1] = x+ 0, B[0] = x+ 1.

Table 3.2 shows the calculation flow and the values of the multiplication over

GF (24). After 2 iterations, the correct result (x3 + x2) is contained in c(x). In a

hardware implementation, the corresponding architecture of Algorithm 3.2 is shown

56



3.5. Multiplication over GF (2m)

a(x) x3 + 1
b(x) x3 + x+ 1
b′(x) x3 + x+ 1
B[1] x
B[0] x+ 1

Iteration number i i = 1 i = 0
a(x) ·B[i] x4 + x x4 + x3 + x+ 1

a(x) ·B[i] mod f(x) 1 x3

c(x)← c′(x) + a(x) ·B[i] mod f(x) 1 x3 + x2

c(x) · xd x2 n/a
c(x)← c(x) · xd mod f(x) x2 n/a

Tab. 3.2: Calculation flow of Digit-Serial Multiplication example over GF (24)

reduction
block a shifted z

XOR

z

...
...

0

z

reduction
block b

a mod f

z Register
...... 0m−1

m−2
m−1

m+dm+d−1
m

d

mmm m m

m−2b

c = a*b

Fig. 3.2: Architecture of a Digit-Serial multiplier

in Fig. 3.2.

In Fig. 3.2, ⊗ represents a multiplication block over a binary field, takes as inputs

the m-bit element a and d-bits of operand b and returns c(x) consisting of (m+d−1)

bits. The multiplication block requires m ∗ d AND gates and (m− 1) ∗ (d− 1) XOR

gates in total, no matter how the field polynomial is picked. The two extreme cases,

the bit-serial (d = 1) and the bit-parallel (d = m), require m AND gates and m2 AND

gates + (m − 1)2 XOR gates respectively. Note that in a real bit-serial multiplier,

unlike in the digit-serial structure, the multiplication block is not necessary and a

multiplexor is applied instead.

This c(x) output from the multiplication block then goes through the first re-

duction block and is reduced to m bits. The reduction blocks are XOR networks

based on the irreducible polynomial f(x). For the input polynomial, each term of

degree higher than (m − 1) is mapped to 3 (for trinomial) or 5 (for pentanomial)

lower degree terms and XORed with the lower bits of the input polynomial. Thus,

the hardware resources taken by the reduction blocks depend on the field size and

the digit size.

The result output from ‘reduction block a’ is then accumulated with previous

57



3.5. Multiplication over GF (2m)

result from the last iteration through an XOR chain, where an array of m XOR

gates are used. A finite state machine controls the execution of Algorithm 3.2, the

architecture being illustrated in Fig. 3.2. Except for the last iteration, the output

of the XOR chain is extended by d ‘0’ bits from the least significant side and sent

through another reduction block, the ‘reduction block b’, which reduces the extended

result back to degree of, at most, (m− 1). The multiplication result is stored in an

m-bit register and is accumulated with the output of ‘reduction block a’ in every

iteration. After n clock cycles, the calculation is finished and the correct result is

stored in the ‘z Register’. The multiplier then sets a ‘done’ signal to inform the

system controller that the calculation is completed. For different field size and digit

size pairs, the calculation time varies. Thus, in hardware designs where this ‘done’

signal is applied, the system always takes the ‘done’ signal as permission to read the

result from the ‘z Register’.

Theoretically the digit size d can be chosen between 1 and m. It is obvious that

when using larger digit size d, the number of clock cycles required for the DSM

is reduced. In [52] digit size d=4 and 32 are discussed for DSM calculation over

GF (2163). In [127] digit size d ranging from 4 to 16 was discussed for its area and

timing performance. In addition, in different Tate pairing implementations using

DSMs [8, 7, 12, 128], digit sizes of d = 1, 2, 4, 8, 16 and 32 were used for different

field sizes. To show the trends of how the calculation performances of the DSMs

change when digit size d changes, in this work the digit sizes d = 1, 2, 4, 8, 16 and

32 are all applied.

The implementation results of DSM with different field size m and digital size

d are shown in Table 3.3. As can be seen, for the same field size m, the DSMs

require almost the same number of registers, which is about 3 times the field size

m. However, the size of the multiplication block a × B[i] is determined by both

the field size and the digit size. Along with the increase of the digit size d, the

number of LUTs required increases too. This results in a complicated critical path

and, thus, decreases the maximum frequency of the DSM. The calculation times of

the DSMs are listed. A*T represents the Area*Time product, which is a parameter

chosen to show the total resource required for the implementations. As can be seen,

when digit size d doubles, the number of clock cycles halves. However, in the same

time, the clock frequency of the DSM reduces as a general trend. Note that, due to

the look-up table structures in the FPGAs, there can be exceptions in such trend

(m=163, d=2 and m=233, d=2). The increase of d helps decrease the A*T product

because the multiplication block ‘⊗’ in the DSM structure does not dominate the

58



3.5. Multiplication over GF (2m)

m d n LUTs Regs
Freq. Time A*T

(MHz) (ns) (LUT*µs)

163

1 163 345 500 397.3 410 141.5
2 82 512 502 506.5 162 82.9
4 41 691 502 398.3 103 71.1
8 21 880 502 336.2 62 55.0
16 11 1587 509 302.8 36 57.7
32 6 2940 543 263.5 23 66.9

233

1 233 485 710 455.0 512 248.4
2 117 721 710 528.4 221 159.6
4 59 964 711 438.4 135 129.7
8 30 1208 714 387.3 77 93.6
16 15 2185 713 358.2 42 91.5
32 8 4084 728 295.2 27 110.7

283

1 283 591 861 446.7 634 374.4
2 142 874 861 445.8 319 278.4
4 71 1162 860 368.8 193 223.7
8 36 1482 863 334.8 108 159.4
16 18 2659 863 308.4 58 155.2
32 9 5138 861 254.4 35 181.8

571

1 571 1170 1726 427.2 1337 1563.8
2 286 1744 1726 440.7 649 1131.8
4 143 2325 1726 396.7 360 838.1
8 72 2914 1728 336.0 214 624.4
16 36 5252 1727 307.3 117 615.3
32 18 9937 1726 269.8 67 663.0

Tab. 3.3: GF (2m) Digit Serial Multiplier implementation Results on Virtex-V FPGA

area when d is small. However, when d is large enough (d=8 for GF (2163) and

d=16 for GF (2233), GF (2283) and GF (2571)), the A*T product reaches a minimum

value. In this circumstance the ‘⊗’ block dominates the area of the DSM. The

calculation time reduction accrued by increase of d over 16 does not compensate for

the corresponding area increment. Using d = 32 does not give a better resource

efficiency (A*T product) than using d = 16.

3.5.3 Karatsuba Multiplier

Another popular multiplier, the Karatsuba multiplier, was proposed by Karatsuba

et al in 1963 [77]. This multiplier was used in many Pairing designs [129, 130].

Let A and B be 2n-bit integers. Split A and B into halves as A = a12n + a0 and

B = b12n + b0. The product P of A and B, using polynomial multiplication, is given

59



3.5. Multiplication over GF (2m)

n x n n x n
n x n

XOR

XOR

XOR XOR

XOR XOR

2n A=a1*2 +a0

4n P=A*B

a1 a0 b1 b0 a1 b1 a0 b0

2n nn B=b1*2 +b0

P P P P4n−1~3n 3n−1~2n 2n−1~n n−1~0

A:[2n−1~0]
B:[2n−1~0]
P:[4n−1~0]

a0:[n−1~0]
a1:[n−1~0]
b0:[n−1~0]
b1:[n−1~0]

2n x 2n

Fig. 3.3: Karatsuba multiplier of 2n-bit×2n-bit

by

P = A ·B = (a12n + a0) · (b12n + b0)

= a1b122n + (a1 · b0 + a0 · b1)2n + a0 · b0.
(3.8)

The Karatsuba method makes use of the relationship between the most and least

significant digits, that is (a1 · b0 + a0 · b1) = (a1 + a0) · (b1 + b0) − (a1 · b1 + a0 · b0)

and product P can be calculated as per equation 3.9. The calculation of an m-bit

multiplication consists of 3 m
2

-bit multiplications and 6 additions. Examining one of

the three m
2

-bit multiplications reveals that it consists of three m
4

-bit multiplications

and 6 additions etc..

P = a1b122n + ((a1 + a0) · (b1 + b0)− (a1 · b1 + a0 · b0))2n + a0 · b0. (3.9)

The original Karatsuba multiplier computes the multiplication of any bitwidth

in only one clock cycle. A one level Karatsuba multiplier is shown in Fig. 3.3.

This structure calculates a 2n × 2n multiplication. Both inputs are of 2n bits and

the output is a 4n-bit array. There are 6 XOR chains and 3 sub-multipliers which,

together calculate the multiplication of n×n size. The n×n sub-multiplication blocks

in Fig. 3.3 are of the same structure as the 2n × 2n multiplier, but the bitwidth

of the buses is halved. This structure makes use of equation 3.9 by replacing an

n × n sub-multiplier by 6 XOR chains. This reduces the hardware resources used.

60



3.5. Multiplication over GF (2m)

m n× n # of sub-mults sub-mult for MSBs
163 22×22 27 9×9
233 15×15 81 8×8
283 18×18 81 13×13
571 18×18 243 13×13

Tab. 3.4: Sub-mult stratagy of Karatsuba multiplier over GF (2m)

The Karatsuba multiplier can be successively split into smaller sub-units until the

bitwidth is sufficiently small and the cost of an n×n sub-multiplier is equal to or less

than the 6 XOR chains. In this case, an n × n will not be split using a Karatsuba

structure again, but will use the bit-parallel multiplier structure. This smallest

bitwidth equals 9 in Xilinx Virtex 5 FPGAs, i.e. implementing an 18× 18 multiplier

using the Karatsuba multiplier structure, or using the bit-parallel structure described

in section 3.5.1, consumes equal area. However, considering the complicated critical

path brought by the Karatsuba structure, as suggested by Rebeiro [130], a sub-

multiplier bitwidth of approximately 20 gives the best hardware efficiency. The

trade off between sub-multiplier level and size is discussed in Rebeiro’s work.

By calculating all inputs in the same clock cycle, the Karatsuba method requires

substantial hardware resources. Let n be the number of input bits of a sub-multiplier

block and thus, for field size m, rather than consuming hardware resources propor-

tional to m2 (as a bit-parallel multiplier does), the hardware resources required for a

Karatsuba multiplier is proportional to n2 × 3log2
m
n . In most implementations using

Karatsuba multipliers [129, 130, 9] n is the smallest sub-multiplier size. i.e. if the

n × n sub-multiplier is replaced by another Karatsuba structure which uses three
n
2
× n

2
sub-multipliers and some XOR chains, the hardware efficiency will be lower.

Normally n is a constant or varies within a constant range for specific technologies.

For example, 4 levels of sub-multipliers of size n = 18 shows the best efficiency for

Virtex-V technology in this work. In the case of field size m = 283 and sub-multiplier

block size n = 18, 81 such sub-multiplier blocks are required. However, the 81 18×18

sub-multiplier blocks provide a multiplication of 288 × 288. The most significant 5

bits are not necessary. In this case, the size of the sub-multiplier block which cal-

culates the most significant bits (MSBs) of the input array is given by n = 13, i.e.

80 18 × 18 sub-multiplier blocks and one 13 × 13 sub-multiplier block. For other

field sizes m, the sub-multiplier block for the MSBs are treated alike. The size and

number of sub-multiplier blocks used in this work are listed in Table 3.4

In addition to the large area required, this Karatsuba structure results in a long

61



3.5. Multiplication over GF (2m)

Input XOR Chain

Pre−mult Reg Bank

Sub−m2 Sub−m1

Output Reg Bank

Output XOR Chain

post2 post1

Sub−m81

post81

Fig. 3.4: Top level architecture of Karatsuba Multiplier with Registers inserted

critical path. In the worst case, a signal goes through 3 XOR chains in each level

down from m to n. A popular method of solving this problem is to insert registers

into the Karatsuba multiplier to shorten the critical path. Beuchat et al in [9]

proposed a general method which improves the operation speed of this Karatsuba

multiplier by inserting registers before and after the sub-multiplier blocks. The top-

level architecture of the improved Karatsuba multiplier is shown in Fig. 3.4. In the

figure, ‘Sub-m1∼Sub-m81’ represents the sub-multiplier blocks. The ‘Pre-mult Reg

Bank’ represents the registers inserted before the sub-multiplier blocks. The results

of the sub-multiplier blocks go directly into another set of registers, called the post

multiplication registers, represented as ‘post1∼post81’. This method improves the

critical path of the Karatsuba multiplier. Since this multiplier usually contains the

most complex critical path in a design, which leads to the lowest frequency of the

Pairing system, this method improves the whole Pairing calculation.

The implementation results of the Karatsuba multiplier are shown in Table 3.5.

As can be seen, inserting registers increases the maximum frequency by about 70%.

Both methods of inserting and not inserting registers require large amounts of LUTs.

The number of registers required for the register insertion method is almost triple

that of the original Karatsuba multiplier. However, because there are equal numbers

of LUTs and registers in a slice of a Virtex-V FPGA, this makes use of the unused

62



3.5. Multiplication over GF (2m)

m
Regs

LUTs Regs
Freq. Single Run Pipeline A*T

Inserted? (MHz) (ns) (ns) (µ*LUT)

163
N 7151 1247 201.8 5.0 n/a 35.4
Y 6937 3923 338.9 8.9 3.0 20.5(p)

233
N 12049 1797 206.2 4.8 n/a 58.4
Y 12269 5662 345.6 8.7 2.9 35.5(p)

283
N 16269 2187 188.9 5.3 n/a 86.1
Y 16316 6884 328.1 9.1 3.0 49.7(p)

571
N 53441 6353 174.3 5.7 n/a 305
Y 49873 20544 292.7 10.2 3.4 170(p)

2nd-level N 18345 4593 175.1 28.5 n/a 524
571 Y 18702 10344 359.2 19.5 n/a 364

Tab. 3.5: FPGA implementation result of Karatsuba multipliers, over Xilinx Virtex-V

registers in the slices and does not consume extra slices.

As can be seen from Table 3.5, when registers are inserted into the Karatsuba

multiplier structures, the number of clock cycles required for a single Karatsuba mul-

tiplication increases from one to three. However, by applying the pipeline method, at

most three multiplications can share the same Karatsuba multiplier. The first mul-

tiplication operation requires 3 clock cycles. After that each multiplication requires

only one additional clock cycle for its calculation. If there are n multiplications,

a total of n + 2 clock cycles will be required for their calculation. In Table 3.5,

superscript ‘(p)’ indicates that the A*T product corresponds to the pipelined design.

In a Xilinx Virtex-V LX50 FPGA, there are only 28800 LUTs. For design over

a field size m = 571, larger FPGA chips or smaller multipliers should be chosen.

In pairing systems, the Karatsuba multiplier is usually around 300-bit size because

the Karatsuba multiplier requires too many hardware resources. Making use of

equation 3.9, a 571-bit multiplication can be achieved by performing three 286-

bit multiplications (80 18 × 18 sub-multiplier blocks and one 16×16 sub-multiplier

block) and 4 field additions (which simply require XOR-chains). This structure is

called a 2nd-level 571-bit Karatsuba multiplier. The implementation results of such

a multiplier are also listed Table 3.5. In the structure of a 2nd-level Karatsuba

multiplier, the operations before and after the three 286-bit multiplications each

require one clock cycle for the calculation. Thus, a 2nd-level Karatsuba multiplier

requires 5 clock cycles for its calculation if there are no registers inserted, or 7 clock

cycles with registers inserted (with the pipeline method applied on the three 286-

bit multiplication). This 2nd-level Karatsuba multiplier structure reduces the area

requirement of the large size Karatsuba multiplier at the cost of more clock cycles.

63



3.6. Squaring over GF (2m)

3.6 Squaring over GF (2m)

The squaring operation over GF (2m), c(x) = a2(x) mod f(x), can be performed by

simply assigning the two inputs to the same value using the multipliers described in

the previous section and calculating a multiplication. However, there are dedicated

squarer architectures that provide significantly greater efficiency when calculating

c(x) = a2(x) mod f(x) over a binary field.

The squaring operation over binary fields is a linear operation [52]. The operation

of squaring a binary polynomial can be calculated in a very short time with little

cost when compared with performing a binary multiplication. The squaring over

GF (2m) can be described as: if a(x) =
m−1∑
i=0

aix
i, then a2(x) =

m−1∑
i=0

aix
2i. In binary

representation, a2(x) is obtained by simply inserting ‘0’ bits between consecutive bits

of the binary representation of a(x). Fig. 3.5 shows how the m-bit polynomial is

extended into a (2m− 1)-bit polynomial. In a hardware implementation, this step is

wiring, in which no logical operation is performed. To form an individual operation

block over GF (2m), after ‘0’ bits are inserted, the extended result must go through

a reduction block modulo irreducible polynomial f(x). The output of the reduction

block, an m bits polynomial, is the result of the squaring operation.

To illustrate this bit parallel squaring structure, consider the following example.

Let a(x) = x3 + x2 + x + 1 = ‘1111′ be a 4-bit polynomial over GF (24) and the

irreducible polynomial f(x) be f(x) = x4 + x + 1. The calculation flow of c(x) =

a2(x) mod f(x) is given in equation 3.10. Firstly, ‘0’ bits are inserted into the input

a(x), forming array ‘1010101’, represented in binary polynomial form as given in

equation 3.10. a2(x) then goes through the reduction modular block. Considering

the transforms of the field polynomial f(x) in equation 3.6, the output c(x) can be

calculated as per equation 3.11.

a2(x) = x6 + x4 + x2 + 1 (3.10)

c(x) = a2(x) mod f(x)

= x6 + x4 + x2 + 1 mod f(x)

= (x3 + x2)︸ ︷︷ ︸
x6

+ (x+ 1)︸ ︷︷ ︸
x4

+x2 + 1

= x3 + x

(3.11)

The implementation results of the bit-parallel squarer architecture on FPGA are

64



3.7. Inversion/Division over GF (2m)

a0

a0

a2 a1am−1

am−1 a2 a1

4 3 2 1 0c c c c c2m−2 2m−1c c

......

’0’’0’’0’ ......

a

c = a2

Fig. 3.5: Calculating a2(x) is achieved by inserting ‘0’ bits into a(x)

m LUTs Freq.(MHz) Time(ns) A*T(LUT*µs)
163 163 253.2 3.95 0.64
233 153 277.8 3.60 0.84
283 283 248.1 4.03 1.14
571 571 264.4 3.78 2.16

Tab. 3.6: FPGA implementation result of bit-parallel squarer, over Xilinx Virtex-V

presented in Table 3.6. When implementing the squarer, because the reduction block

takes up most of the area, the complexity of the irreducible polynomial decides the

hardware consumption. As can be seen in Table 3.6, for field size of m = 163, 283

and 571, the field polynomials are all pentanomial. The larger the field size is, the

more hardware resources are required. However, for field size of m = 233, because

the field polynomial is a trinomial, the squarer takes less area than that of m = 163.

3.7 Inversion/Division over GF (2m)

In this section, the binary polynomial a(x) is denoted by a for simplicity. Recall

that in section 2.4.2, the inverse of a nonzero element a ∈ GF (2m) is the unique

element g such that a · g = 1 ∈ GF (2m), i.e. a · g mod f ≡ 1. This element g is

denoted a−1 mod f or a−1 for simplicity. Division in GF (2m) can be described as c =
a
b

mod f . The division operation is equivalent to an inversion 1
b

mod f followed by

a multiplication c = a.1
b

mod f . Or, on the contrary, the inversion can be performed

using a division operation whose first operand is set equal to 1 ∈ GF (2m). Therefore,

division and inversion are interchangeable.

Based on the observation that for element a over field GF (2m), there exists

a = a1 = a2m (see Fermat’s Little Theorem [131]), there exists a−1 = a2m−2. This

relationship shows that the inversion operation can be equivalently performed using

only multiplications and squarings rather than a dedicated inversion operation. An

65



3.7. Inversion/Division over GF (2m)

Algorithm 3.3 Itoh-Tsujii Inversion over GF (2m)

Input: binary polynomials a(x) =
m−1∑
i=0

aix
i and b(x) = m− 1 =

i=r−1∑
i=0

bi2
i

Output: a(x)−1 ∈ GF (2m)

1: Initialize :χ = a; k = 1
2: for i← r − 2 to 0 do
3: µ = χ
4: for j ← 1 to k do
5: µ = µ2

6: endfor
7: χ = µ · χ
8: k = 2 · k
9: if bi = 1 then

10: χ = χ2 · a
11: k = k + 1
12: endif
13: endfor
14: return a−1 = χ2

algorithm was developed by Itoh and Tsujii [132] as shown in Algorithm 3.3. This

algorithm allows the calculation of the inverse of an element over binary field GF (2m)

using the existing operation blocks for multiplication and squaring.

It can be seen from Algorithm 3.3 that the calculation requires (m−1) squarings

and at least r − 1 + s − 1 multiplications, where r is the bit length of the binary

representation of (m− 1) and s is the Hamming weight of the binary representation

of (m − 1). Performing the squarings and multiplications in parallel is not possible

because their results are used in the next iteration. In FPGA implementations, at

least 2 clock cycles are necessary to operate a squaring operation, one clock cycle to

load the operand into the squaring block and the other to calculate the result. As

discussed in previous subsection 3.3.2, it takes n = dm
d
e clock cycles to calculate a

GF (2m) multiplication. Thus, at least 2 ∗ (m− 1) + n ∗ (r + s− 2) clock cycles are

needed to perform an inverse operation using Algorithm 3.3. Table 3.7 shows the

cost of the Itoh-Tsujii (IT) Inversion for different field sizes. As can be seen, the

calculation time of this IT Inversion depends on the scheme of multipliers used in

the algorithm.

66



3.8. Dedicated Inversion and Division architecture over GF (2m)

m GF (2m) Mults GF (2m) Sq
163 9 162
233 10 232
283 11 282
571 13 570

Tab. 3.7: Operational cost of Itoh-Tsujii Inversion

3.8 Dedicated Inversion and Division architecture over GF (2m)

Apart from the Itoh-Tsujii algorithm which utilizes existing operations, there are

dedicated architecture for calculating c = a
b

mod f over finite fields. In [133, 134,

135], the classical Euclidean algorithm was introduced. This algorithm can calculate

field division and inversion (by setting input a to 1 ∈ GF (2m)). However, a disad-

vantage of the classical Euclidean algorithm is that it does not involve a fixed number

of iterations for computing c in a given field. This makes it difficult to implement on

hardware platforms. To overcome this disadvantage, the Extended Euclidean Algo-

rithm (EEA) [134, 135, 136, 137, 138, 139] was developed. The EEA can calculate

the inversion [134, 135, 136, 137] and division [138, 139] directly. The EEA division

algorithm is based on the extended expression of division below. Let a and b be two

elements in GF (2m) defined by the primitive polynomial f and c = a
b

mod f , then

there exists:

b · c+ f · d = a (3.12)

for some element d in GF (2m) and c is the inverse of b when a = 1. In [140]

both an inverter and divider based on the EEA were prototyped on an FPGA.

Both architectures compute the results in 2m clock cycles. It was found that the

divider requires less hardware resources and gives a higher maximum clock frequency.

Consider that, as mentioned before, a divider can perform inversion simply by setting

operand a to 1 ∈ GF (2m), while an inverter needs to perform an inversion followed

by a multiplication to calculate a division. Thus, in a hardware implementation, a

divider gives better performance.

A clarified version of the EEA algorithm described in [138] is given as in Algorithm

3.4. This algorithm is also presented in [140]. It efficiently makes use of properties

of the binary field. There are two pairs of polynomials, (r, s) and (u, v). Note that

(u, v) are degree (m− 1) polynomials and (r, s) are of degree m. A ‘for’ loop which

runs 2m times makes up the main body of the algorithm. In each iteration the two

67



3.8. Dedicated Inversion and Division architecture over GF (2m)

Algorithm 3.4 EEA division over GF (2m)

Input: a(x), b(x) ∈ GF (2m)

Output: c(x) = a(x)
b(x)

mod f(x) ∈ GF (2m)

1: Init: s(0) = f, r(0) = b, u(0) = a, v(0) = 0, δ(0) = 1
2: for i← 1 to 2m do
3: if r

(i−1)
0 = 0 then

4: r(i) = (r(i−1))/x
5: s(i) = s(i−1)

6: u(i) = (u(i−1))/x mod f(x)
7: v(i) = v(i−1)

8: δ(i) = δ(i−1) + 1
9: else

10: if δ(i−1) > 0 then
11: r(i) = (r(i−1) + s(i−1))/x
12: s(i) = r(i−1)

13: u(i) = (u(i−1) + v(i−1))/x mod f(x)
14: v(i) = u(i−1)

15: δ(i) = −δ(i−1) + 1
16: else
17: r(i) = (r(i−1) + s(i−1))/x
18: s(i) = s(i−1)

19: u(i) = (u(i−1) + v(i−1))/x mod f(x)
20: v(i) = v(i−1)

21: δ(i) = δ(i−1) + 1
22: endif
23: endif
24: endfor
25: return c(x) = a(x)

b(x)
= v

polynomial pairs are updated independently of each other.

In Algorithm 3.4 superscripts are used to indicate which iteration the polynomial

is from, i.e. r(i−1) indicates the value of polynomial r from the previous iteration.

In Algorithm 3.4, division by x is sometimes required. For terms of degree higher

than 1, a division is simply a one bit right shift in hardware. However, for a degree

1 term, i.e. 1, a division by x requires a modulo f(x) operation in addition. For

example, in step 6 the operation u(i−1)/x can create a polynomial with term 1
x
. This

term must be mapped back to GF (2m) modulo f(x) as follows. Let f(x) =
m∑
i=0

fix
i.

Recall that f(x) = 0 and f0 ≡ 1 ∈ GF (2m). Therefore, f0 = 1 =
m∑
i=0

fix
i. This

yields:

68



3.8. Dedicated Inversion and Division architecture over GF (2m)

i δ r(x) s(x) u(x) v(x)
0 1 x3 + x+ 1 x4 + x+ 1 x3 + x2 0
1 0 x3 + x2 x3 + x+ 1 x2 + x x3 + x2

2 1 x2 + x x3 + x+ 1 x+ 1 x3 + x2

3 2 x+ 1 x3 + x+ 1 x3 x3 + x2

4 -1 x2 x+ 1 x x3

5 0 x x+ 1 1 x3

6 1 1 x+ 1 x3 + 1 x3

7 0 1 1 x3 + 1 x3 + 1
8 1 0 1 0 x3 + 1

Tab. 3.8: Calculation flow of an EEA Division over GF (24)

1

x
=

m−1∑
i=0

fi+1x
i (3.13)

For example, in GF (24) generated by f(x) = x4 + x+ 1, there exists:

f(x) = x4 + x+ 1 = 0

1 = x4 + x
1
x

= x3 + 1

(3.14)

Table 3.8 the operations over GF (24) with primitive polynomial f(x) = x4 +x+1

are taken as an example to illustrate how the division algorithm works. The division

being calculated here is c(x) = a(x)
b(x)

mod f(x), where a(x) = x3 + x2 and b(x) =

x3 + x + 1. The values of the variables in every iteration are shown in Table 3.8.

The correct result c(x) = x3 + 1 can be derived from v(x) after 2m clock cycles, i.e.

8 iterations are required in the division over GF (24).

As mentioned above, in Algorithm 3.4 the intermediate polynomial pairs (r, s)

and (u, v) update independently of each other. A slice-wise architecture described

in [140] is applied here for the EEA divisor. In this architecture, a calculation slice

chain of (m+ 1) slices, the RS slice chain, is used to update each bit of the r and s

polynomials. Another chain of m slices, the uv slice chain, updates each bit of the u

and v polynomials. The structures of the rs slice and the uv slice are illustrated in

Fig. 3.6 and Fig. 3.7 respectively. The bit of the irreducible polynomial f(x) being

‘0’ or ‘1’ affects the output of the corresponding slice. To optimize the hardware

consumption, f(x) can be hard coded into the design of the architecture. The input

bit ‘d’ in Fig. 3.6 and 3.7 represents the δ signal and the input bit q is generated by

69



3.8. Dedicated Inversion and Division architecture over GF (2m)

XOR

b i

ri+1

s i+1if  = 1

f  = 0i

10
0

1

r d0

r

s

i

1

0

1

0 i

i

Fig. 3.6: rs slice of EEA divider

ia

XOR

i+1v

XOR

XOR

XOR

i+1v

f  = 0i

if  = 1

i+1v

i+1v

i+1v

i+1v

10
0

1

r d0

u

v

i

i

i

q

q

1

0

1

0

u

u

q

u 0

0

0

Fig. 3.7: uv slice of EEA divider

q = u0 XOR v0 (3.15)

The architecture of the GF (2m) EEA divisor is shown in Fig. 3.8. The hardware

resources required by this architecture depends on the field size m. The larger the

field size the more rs slices and uv slices are needed. A 2m bit counter is required

in the controller to indicate when the calculation of the divisor is completed. The

divider requires (2m+ 2) clock cycles to perform the division.

The implementation results for the EEA divisor architecture on the Virtex-V

FPGA are shown in Table 3.9. Since in the rs slices and the uv slices, the bits of the

polynomials are updated independently, the adjacent bits don’t affect each other.

Thus, the EEA divider architecture results in a high operating frequency.

70



3.9. Conclusions

Chain
uv Slice

v Register

u Register

Chain
rs Slice

s Register

r Register

r0

v0

u0

Control
Logic

v0

u0

v

q
d
i

i
d

c Register c

i
q
d

done

a

b

ld
rst

Fig. 3.8: GF (2m) EEA Divisor architecture

m LUTs Regs Freq.(Mhz) Time(µs) A*T(LUT*µs)
163 836 991 429.7 0.76 638
233 1184 1411 430.0 1.09 1288
283 1438 1712 398.3 1.43 2051
571 2880 3441 308.7 3.71 10673

Tab. 3.9: GF (2m) EEA divider implementation Results, over Xilinx Virtex-V

3.9 Conclusions

In this chapter hardware architectures for performing GF (2m) arithmetic were dis-

cussed. The particular architectures required for operations in the ηT pairing algo-

rithm include adders, multipliers, squarers and dividers/inverters. Among them the

adder is basically an m-bit XOR chain. Similar to the adder, the squarer consists

of a wiring part and a reduction block. These adder and squarer architectures are

simple and require only one clock cycle for calculation.

TheGF (2m) Multiplier is much more complicated than the adder and the squarer.

A digit-serial multiplier was presented for calculating GF (2m) multiplication. This

architecture provides a trade-off between area and speed for it has a variable digit

size. This is advantageous as it allows processors based on such a multiplier to be

71



3.9. Conclusions

tailored to resource constrained systems. Contrary to the reconfigurable DSM, a fully

parallel Karatsuba multiplier was introduced. This multiplier is fast, but requires

substantial hardware resource, suitable for large cryptosystems which take speed as

their first priority.

The algorithm for an IT inversion over GF (2m) using existing squarer and mul-

tiplier operations was introduced. The performance of this inversion algorithm de-

pends on the squarer and the chosen multiplier in the designs. Another method,

the dedicated EEA divider architecture, was also discussed. Either method can be

used to implement a GF (2m) division. In the Tate pairing implementation in this

work, the EEA divider architecture is chosen because this architecture requires ex-

tra hardware resources and introduces more noise into the power analysis. From

the attacker’s point of view, the more complicated the cryptosystem that can be

successfully attacked, the stronger the attack method is.

Implementation results including calculation time, area and A*T products of

the dedicated architectures of the GF (2m) operations are presented in this chapter.

Among them the divider consumes the longest calculation time and the highest A*T

product, i.e. the most hardware resources. The multiplier architectures require

less hardware resources than the divider does. However, a digit-serial structure

still requires several clock cycles for its calculation. On the contrary, a Karatsuba

multiplier of fully parallel structure can perform a GF (2m) multiplication in a very

short time but requires extra area. The adder and squarer structures require the

least hardware resources and calculation time for their calculations.

72



4. IMPLEMENTATION OF THE TATE PAIRING OVER

EXTENSION FIELD GF (24M)

4.1 Introduction

Chapter 3 introduced the architectures of the arithmetic operation blocks over the

fieldGF (2m). The Tate pairing requires Multiplication, Squaring and Division/Inversion

over the extension field GF (24m). These operations over the extension field consist

of the basic operations over GF (2m). There have been many designs presented in

the literature that consider extension field arithmetic. This chapter introduces the

architecture of the GF (24m) operations and how they can be composed using the ba-

sic operation blocks. For simplicity, in this chapter the basic operations of addition,

multiplication, squaring and division/inversion over GF (2m) are represented as A,

M, S and D/I respectively.

Section 4.2 introduces the calculation flows of the GF (24m) operations. The

schemes for managing the basic GF (2m) operations in the calculations are described.

Section 4.3 analyzes the top-level architecture of the pairing based algorithms and

two architectures are chosen for the implementation of the Tate pairing algorithm

in this work. Implementation results of reconfigurable designs for different field

size m, different number of multipliers and choice of multipliers are listed. Section

4.4 analyzes the implementation results and compares the results with earlier Tate

pairing implementations. How the changes in architectures, components and other

parameters affect the performances of the implementations are discussed.

4.2 Architecture for computations over GF (24m)

In polynomial basis, an element over field GF (24m) consists of 4m bits. The most

straight forward representation would be to consider the field GF (2n) where n =

4m. In this case, the arithmetic over GF (24m) can be implemented on the same

architecture as over GF (2m). However, the resource requirement would differ a lot.

For example, a multiplication over GF (24m) will be 16 times larger than that over



4.2. Architecture for computations over GF (24m)

GF (2m).

As suggested by Blake et al [71], in this work the field GF (24m) will be represented

as GF (2m)4 which is an isomorphism of GF (24m). The only difference between them

is that the elements are represented in a different way. From now on GF (24m) can

be considered as shorthand for GF ((2m)4). Elements of GF (24m) are represented in

the form of polynomials of degree 3 with coefficients in GF (2m):

a(t) =
3∑
i=0

ait
i ∈ GF (24m), (4.1)

where ai ∈ GF (2m).Arithmetic operations over GF (24m) are defined modulo a degree

4 irreducible polynomial p(t) whose coefficients are in GF (2m). However, if 4 does

not divide m, the coefficients pi of the irreducible polynomial can be chosen from

{0, 1} [72]. This greatly simplifies the modular reduction process.

In the ηT pairing algorithm shown in Algorithm 2.2, the intermediate variable

C(t) ∈ GF (24m) is represented as

C(t) = C0 + C1t+ C2t
2 + C3t

3,

where Ci ∈ GF (2m) and t4+t+1 = 0. C(t) is initiated as C(t) = 1+0t+0t2+0t3 = 1

in step 1 of Algorithm 2.2. Similarly, A(t) can be expressed as

A(t) = A0 + A1t+ A2t
2 + A3t

3,

where Ai ∈ GF (2m). In this work the irreducible polynomial p(t) = t4 + t + 1 is

chosen as is used in works [74, 8, 119].

To map an element in GF (2m) to the extension field GF (24m), a distortion map

must be applied, shown in equation 4.2.

Q∗ = R(Q(x, y)) = (x+ t2 + t+ 1, y + (t2 + t)x+ t), where t4 + t+ 1 = 0 (4.2)

This equation indicates that with the polynomial p(t) = t4 + t + 1, a point Q(x, y)

with coordinates x and y in GF (2m) can be mapped to a point Q∗, whose coordinates

are in GF (24m). In equation 4.2, t is the generator which generates the cyclic group

GF (24m) of order 15. The mapping operations in equation 4.2 extends two coordi-

nates on the elliptic curve over field GF (2m) to two coordinates over field GF (24m).

operations over the extension field GF (24m) can be seen as the operations between

polynomials as shown in equation 4.1.

74



4.2. Architecture for computations over GF (24m)

The computation of the pairings involves multiplications over field GF (24m). The

ηT algorithm transforms such multiplications into several multiplications over field

GF (2m). Moreover, the ηT algorithm integrates the operations in the distortion map

into the point operations. This makes it possible for the distortion map operations

to be calculated together with the other operations in the algorithm in parallel and

improves the efficiency.

4.2.1 GF (24m) Multiplication

The multiplication of two GF (24m) elements can be performed using polynomial

multiplication, c(t) = a(t) · b(t) = (a3t
3 + a2t

2 + a1t + a0) · (b3t
3 + b2t

3 + b1t + b0),

where ai and bi ∈ GF (2m). Naively expanding the polynomial multiplication and

computing the result modulo the irreducible polynomial p(t) above would cost 16M

and 9A. The Karatsuba-Ofman algorithm [77] provides a less resource consuming

method because addition and squaring require less hardware resources than multi-

plications. As introduced in section 3.5.3, a Karatsuba multiplier can calculate a

2n×2n multiplication at the cost of 3 n× n multiplications and 6 additions. By the

same method, a 4n×4n multiplication requires 3 2n×2n multiplications and thus, 9

n× n multiplications instead of 16 when the naive approach is used.

For the GF (24m) extension field, there are 4 coefficients in each element in

GF (24m). Rewriting the multiplication as in equation 4.3

c(t) = a(t) · b(t) mod p(t)

=
3∑
i=0

ait
i ·

3∑
j=0

bjt
j mod p(t)

=
6∑
i=0

zit
i mod p(t)

=
3∑
i=0

cit
i

(4.3)

The polynomial multiplication consists of two parts, a multiplication part followed

by a reduction operation modulo p(t). Using the Karatruba method, the partial

75



4.2. Architecture for computations over GF (24m)

products and the coefficients of ci are shown in equation 4.4.

q0 = a0b0 z0 = q0

q1 = a1b1 z1 = q0 + q1 + q4

q2 = a2b2 z2 = q0 + q1 + q2 + q5

q3 = a3b3 z3 =
∑8

i=0 qi

q4 = (a0 + a1)(b0 + b1) z4 = q1 + q2 + q3 + q6

q5 = (a0 + a2)(b0 + b2) z5 = q2 + q3 + q7

q6 = (a1 + a3)(b1 + b3) z6 = q3

q7 = (a2 + a3)(b2 + b3)

q8 = (
∑3

i=0 ai)(
∑3

i=0 bi)

(4.4)

With intermediate product z(t) generated, the next step is to perform the reduction

modulo p(t) operation, where p(t) = t4 + t + 1. Similar to equation 3.6 in section

3.5, the irreducible polynomial p(t) can be extended to terms greater than 4:

p(t) = t4 + t+ 1 = 0

t4 = t+ 1

t5 = t2 + t

t6 = t3 + t2

(4.5)

This operation gives the coefficients of the final result c(t), as shown in equation 4.6.

The total cost of a multiplication over field GF (24m) is 9M and 22A.

c0 = q0 + q1 + q2 + q3 + q6

c1 = q0 + q4 + q6 + q7

c2 = q0 + q1 + q5 + q7

c3 = q0 + q1 + q2 + q4 + q5 + q6 + q7 + q8

(4.6)

The architecture for multiplication in extension fieldGF (24m), designed by Shantz

et al [77] and presented in [141], is shown in Fig. 4.1. Using 9 multipliers achieves the

highest computation speed at the cost of largest area. Reducing the area (number

of multipliers) will result in an increase in computation time.

4.2.2 GF (24m) Squaring

Similar to the GF (2m) Squarer, although a squaring can be performed using a mul-

tiplier by setting both inputs the same, a dedicated GF (24m) squaring is much

more efficient in both timing and area. To compute a GF (24m) squaring c(t) =

76



4.2. Architecture for computations over GF (24m)

MM MM MM

A A A A

a0 3b

M

A

M
AA

M

A A A A A A A A

a0 0a2 b b2b2 b30 1b b a a0 1 a a2 31b b3a a1 3

AA

AA AA

A

3c

m= GF(2 )AdditionA

m= GF(2 )MultiplicationM

a ab0 a1 1 2 2 3b b

c c c0 1 2

Fig. 4.1: GF (24m) Multiplier

SS S

A A

S

S

1

aa1aa3 2 0

c c c c23 0

m= GF(2 )Squarer

Fig. 4.2: GF (24m) Squarer

z(t) mod p(t) = a2(t) mod p(t), first compute the squaring stage as per equation 4.7.

The result z(t) is then reduced modulo p(t), as shown in equation 4.5. The final

result is given in equation 4.8.

z(t) = a2(t) = (a3t
3 + a2t

2 + a1t+ a0)2

= a2
3t

6 + a2
2t

4 + a2
1t

2 + a2
0

(4.7)

C(t) = z(t) mod p(t) = a2
3t

3 + (a2
3 + a2

1)t2 + a2
2t+ (a2

2 + a2
0) (4.8)

Fig. 4.2 shows the architecture of a GF (24m) squarer which computes c(t) = a2(t)

mod p(t). Both GF (2m) squaring and addition require only 1 clock cycle. When

compared with the GF (24m) multiplication architecture, the squarer is much more

efficient in both timing and area.

77



4.2. Architecture for computations over GF (24m)

Algorithm 4.1 GF (pn) Inversion Algorithm

Input: a(t), p(t) such that deg(a(t)) < deg(p(t))
Output: c(t) = a(t)−1 mod p(t)
Initialize: b = 0; c = 1; p = p(t); g = a(t)

1: while deg(p) 6= 0 do
2: if deg(p) < deg(g) then
3: exchange p, b with g, c respectively
4: end
5: j = deg(p)− deg(g)
6: α = g2

deg(g)

7: β = pdeg(p).gdeg(g)
8: γ = gdeg(g).pdeg(p)−1 − pdeg(p).gdeg(g)−1

9: p = α.p− (β.tj + γ.tj−1).g
10: b = α.b− (β.tj + γ.tj−1).c
11: if deg(p) = deg(g) then
12: p = gdeg(p).p− pdeg(p).g
13: b = gdeg(p).b− pdeg(p).c
14: end
15: end
16: return c(t) = a(t)−1 = b = p−1

0 .b

4.2.3 GF (24m) Inversion

An inversion over GF (24m) is required in the final exponentiation step in the ηT

pairing algorithm. An algorithm for inversion over GF (pn), presented in [119, 142],

is shown as Algorithm 4.1.

This algorithm is a general purpose algorithm for inversion operations over any

base field GF (p) and any extension degree n. In the case of this work, for the field

GF (pn), p is set to 2m and n = 4. In Algorithm 4.1, function deg(p) returns the

degree of the polynomial p(t). The input polynomial p(t) is set to t4 + t + 1, i.e.

initially of degree 4. The quantity a(t) in this algorithm is considered as a degree

3 polynomial. The while loop in this algorithm reduces the degree of p by one or

more in every iteration until the degree of p reaches zero. It is obvious that only ad-

ditions, multiplications and substractions, which are treated the same as additions,

are necessary in the ‘while’ loop. At the end of this algorithm, a division and 4 mul-

tiplications are performed to get the result c(t) such that (a(t) ∗ c(t)) mod p(t) = 1,

where a(t) =
∑3

i=0 ait
i.

Examining the algorithm for the case where the field is GF (24m), this algorithm

takes as inputs 4 coefficients of a(t), where each is over GF (2m). For optimization,

the irreducible polynomial p(t) of the extension field can be pre-stored in the reg-

78



4.2. Architecture for computations over GF (24m)

isters. Rewriting p(t) here: p(t) = t4 + t + 1 =
4∑
i=0

pit
i = p4t

4 + p1t
1 + p0t

0, thus,

there exists p4 = p1 = p0 = 1 ∈ GF (2m) and p3 = p2 = 0 ∈ GF (2m) pre-stored in

the registers. The ‘while’ loop between steps 1 and 15 runs a total of 3 times in this

GF (24m) inversion. The intermediate variables are all elements over GF (2m). They

are initiated at the start of the algorithm and are updated in every iteration. In

the beginning of this computation, g is assigned to values of input a(t) =
∑3

i=0 ait
i,

b(t) =
∑3

i=0 bit
i is set to 0 and c(t) =

∑3
i=0 cit

i is set to 0t3 + 0t2 + 0t+ 1, as shown

in equation 4.9.

Initiation:
g3 = a3 p4 = 1 b3 = 0 c3 = 0

g2 = a2 p3 = 0 b2 = 0 c2 = 0

g1 = a1 p2 = 0 b1 = 0 c1 = 0

g0 = a0 p1 = 1 b0 = 0 c0 = 1

p0 = 1

(4.9)

On the first iteration, intermediate polynomials p and b will be updated as given

in equation 4.10 and c and g will remain unchanged. This iteration reduces the

degree of p by two. Thus, the computation of this inversion requires only three iter-

ations of the ‘while’ loop.

Iteration 1:

α = g2
3 p4 = 0 b3 = 0

β = g3 p3 = 0 b2 = 0

γ = g2 p2 = β · g1 + γ · g2 b1 = β

p1 = α · p1 + β.g0 + γ · g1 b0 = γ

p0 = α · p0 + γ · g0

(4.10)

The updates of the intermediate polynomials in the second and the third itera-

tion are shown as in equation 4.11 and equation 4.12. Note that, except for the first

iteration, each iteration of the ‘ while’ loop reduces the degree of p by one. At the

end of the third iteration, the function deg(p) returns 0, which indicates the end of

the ‘while’ loop.

79



4.2. Architecture for computations over GF (24m)

Iteration 2:

α = p2
2 p4 = 0 g2 = p2 b3 = 0

β = g3 · p2 p3 = 0 g1 = p1 b2 = β · b1

γ = g2 · p2 + g3 · p1 p2 = 0 g0 = p0 b1 = β · b0 + γ · b1

p1 = α · g1 + β.p0 + γ · p1 c1 = b1 b0 = α + γ · b0

p0 = α · g0 + γ · p0 c0 = b0

(4.11)

Iteration 3:

α = p2
1 p4 = 0 b3 = β · b2

β = g2 · p1 p3 = 0 b2 = β · b1 + γ · b2

γ = p1 · g1 + g2 · p0 p2 = 0 b1 = α · c+β · b0 + γ · b1

p1 = 0 b0 = α · c0 + γ · b0

p0 = α · p0 + γ · g0

(4.12)

Following the three iterations of the ‘while’ loop, finally step 16 computes:

ci = p−1
0 · bi, i = 0, 1, 2, 3 (4.13)

Note that to speed up this GF (24m) inversion computation, in the derivation of equa-

tions 4.9,4.10,4.11,4.12 and 4.13 the degree of the input polynomial a(t) is assumed

to be 3. In the case where a3 = 0, i.e. the assumption is untrue, the iterations above

will be different and the operation flow of such inversions must be re-derived. In

practical cryptosystems, the probability that this occasion happens is 1
2m

for field

size m. This value is sufficiently low that the benefit of the assumption far outweighs

its cost. When this inverter structure is used in the Tate pairing architecture, it is

possible to have the Tate pairing architecture check that the term a3 of input a(t)

equals to 0 ∈ GF (2m). If a3 = 0, then that particular Tate pairing computation can

be discarded. An alternative way is to apply detection mechanism in the division

structure. In the case of a3 = 0, input a(t) can be multiplied by t, i.e. left shift by

one digit. After the division algorithm, the result is then divided by t, i.e. right shift

by one digit.

From equations 4.9, 4.10, 4.11, 4.12 and 4.13, it can be seen that the GF (24m)

inversion is very time consuming. A total number of 16A+4S+34M+1I are required.

80



4.2. Architecture for computations over GF (24m)

c = c20 c21 c22 c23 c24 c25

c3 c2
3 c22

3 c23

3 c24

3 c25

3

c2 c2
1 + c2

3 c22

3 + c22

3 c23

1 c24

2 c25

1 + c25

3

c1 c2
2 c22

3 + c22

3 c23

2 + c23

3 c24

1 c25

2

c0 c2
0 + c2

2 c22

3 + c22

3 + c22

3 + c22

3 c23

0 + c23

1 c24

0 c25

0 + c25

2

Tab. 4.1: Successive squaring over GF (24m)

4.2.4 GF (24m) Frobenius Map

When implementing the Tate pairing, there is a final exponentiation which requires

raising an extension field element c(t) to the power of q = 2m, i.e. calculating c(t)2m .

This operation is known as the Frobenius map. It is equivalent to m successive

squarings. There are dedicated operations for efficiently computing this Frobenius

map.

In extension fields, successive squarings which raise GF (24m) elements to the

power of 2i can be optimized. Table 4.1 illustrates the results of successively squaring

a GF (24m) element c = c(t) =
∑3

i=0 cit
i, where ci ∈ GF (2m). It is noted that the

coefficients of the calculation results are equivalent for the case of c20 and c24 , likewise

for c21 and c25 , i.e. the coefficients of c(t) raised to power of 2k and 2k+4 are the

same. Thus, for all the cases considered here, the exponentiation coefficients result

in 4 cases. The coefficients of c2k depends on the value of k mod 4. Consider the

property for elements over binary fields a2m = a for field GF (2m), when k = m, the

terms c2k

i are equivalent to ci or sum of ci.

The calculation result of the frobenius map is illustrated in Table 4.2. The results

depend on the field size m mod 4. The field size is always chosen to be a prime for

security reasons (see chapter 2). The results of field sizes modulo 4 are respectively:

3, 3, 1 and 3 for the chosen field sizes 163, 233, 283 and 571 in this work. From

Table 4.2 it can be seen that this mapping operation requires only 2 additions over

GF (2m). From the hardware point of view, this operation requires only 2 ∗m XOR

gates. This is a very efficient method to raise an element over GF (24m) to the power

of 2m.

Consider the final exponentiation operation C(t)← C(t)22m−1 in step 8 of Algo-

81



4.3. Implementing the ηT algorithm for calculating Tate pairing

c = a2m m mod 4
0 1 2 3

C3 a3 a3 a3 a3

C2 a2 a1 + a3 a2 + a3 a1

C1 a1 a2 a1 + a3 a2 + a3

C0 a0 a0 + a2 a0 + a1 + a2 + a3 a0 + a1

Tab. 4.2: Computing c = a2m over GF (24m)

rithm 2.2. This operation can be expanded into:

C22m−1 = C(2m+1)(2m−1)

= (C(2m+1))(2m−1)

= (C2m × C)(2m−1)

= ((C2m×C))2
m

((C2m×C))

(4.14)

Equation 4.14 uses C to represent C(t) for simplicity. The result of equation 4.14

shows that making use of the Frobenius map, the final exponentiation step can be

simplified to severalGF (24m) operations: a frobenius map , aGF (24m) multiplication

followed by aGF (24m) division. Here theGF (24m) division can be calculated through

a GF (24m) inversion followed by a GF (24m) multiplication, introduced in section

4.2.3 and 4.2.1 respectively. Expanding them into GF (2m) operations, this final

exponentiation operation requires 64A, 4S, 52M and 1I.

4.3 Implementing the ηT algorithm for calculating Tate pairing

Implementing the Tate pairing amounts to properly managing the operation blocks

and the operation flow of the design to complete the calculation of the ηT algorithm,

as introduced in section 2.5.2. Here the implementation of the ηT algorithm is

introduced.

4.3.1 Top level architecture design of ηT algorithm

As shown in Algorithm 2.2, the ‘for’ loop in steps 3-7, which will be executed m times

in each ηT pairing calculation, consists of 24A, 8S and 7M in GF (2m). To perform

the operations in the ‘for’ loop, the operation blocks must be reused in each iteration.

Apart from the ‘for’ loop, there are other operations over GF (2m). The pre-‘for’

operations in step 2 require 1A, 6S and 1M. The final exponentiation operation in

step 8 requires 64A, 4S, 52M and 1I. The total number of GF (2m) operations for

82



4.3. Implementing the ηT algorithm for calculating Tate pairing

loop body
logic

Final
Exp.

Control busData bus

Start

Done

Interconnection Networks

Controller
7x

GF(2    ) DSMmBank
Register

FSM

Fig. 4.3: Top-level architecture of Shu’s design [7]

loop body
logic

Final
Exp.

Start

Done

Control busData bus

Interconnection Networks

ControllerKara Mult
1x

Register

Bank

Shift Register

FSM

Fig. 4.4: Top-level archigtecture of Ghosh’s design [10]

the ηT algorithm calculation is (24m+65)A, (8m+10)S, (7m+53)M and 1I. Many

accelerators of ηT algorithm over GF (2m) have been designed [7, 8, 9, 10, 11, 12].

Review of other ηT Pairing Architectures

Shu et al in [7] and Li et al in [8] proposed an ALU for the operations of the ‘for’ loop

in step 3-7 and the final exponentiation in step 8, as shown in Fig. 4.3. In this design,

all the addition and squaring operations are expanded in the combinational logic.

This requires a large amount of hardware resources, but computes all operations,

other than multiplications, in a short time. 7 digit serial multipliers are used in

this design where all the multipliers are reused by the ‘for’ loop operation in step

3-7 and the final exponentiation operation in step 8. A controller, which mainly

consists of a finite state machine (FSM) and several selector signals, controls the

interconnection networks to choose the right inputs from the register bank, input

them into the operation blocks and output the results back into the register bank

for the next iteration.

Ghosh et al in [10] and Beuchat et al in [11] proposed another type of imple-

mentation of the Tate pairing using the Karatsuba multiplier, as shown in Fig. 4.4.

Similar to Shu’s design, Ghosh and Beuchat expand the operations and used ded-

icated combinational logic to calculate the ‘for’ loop and the final exponentiation.

The difference is that Ghosh’s work uses a Karatsuba multiplier which consumes

large area but is very time efficient. Thus, only 1 multiplier is used in Ghosh’s

83



4.3. Implementing the ηT algorithm for calculating Tate pairing

Start

Done
FSM

GF(2    )m
Inverter

GF(2    )m
Adder

GF(2    )m
Squarer

Controller

Selector
Control busData busData bus

Multiplier
GF(2    )mRAM

Address

ROM

Counter

Fig. 4.5: Top-level archigtecture of Keller’s design [12]

design. This multiplier is reused by both the ‘for’ loop logic and the final exponenti-

ation logic. Selectors are used to choose the inputs of the multiplier from the register

bank. This structure considers only the fastest implementation method and requires

significantly large area. In this work, more reconfigurable and flexible methods to

implement the Tate pairing algorithm will be considered.

In [12], Keller et al designed a bus type architecture, as shown in Fig. 4.5. In

this design, all the calculations are broken down into basic operations over GF (2m).

As can be seen from Fig. 4.5, only an adder, a squarer, a multiplier and an inverter

can be found in the top-level architecture. All these blocks calculate the very basic

operations over GF (2m). A data bus connects all these blocks and the register

bank. This structure requires less hardware resources than the combinational logic

structure. In the mean time, the controller plays a major role. The operation flow is

stored in the ROM which connects to all the GF (2m) operation blocks through the

control bus. The control bus decides which block is activated, assigns the inputs of

the GF (2m) operation blocks and reads the results back when the operations finish.

In this way, all the operation blocks are reused throughout the pairing calculation.

The price of saving hardware resources is that more clock cycles are required. Since

the data bus cannot assign the inputs to two blocks at the same time, this results in

the calculation of the pairing in a serial manner. The additions and squarings each

require two clock cycles, one for the assignment and the other for reading back the

result to the register bank.

The earlier Tate pairing implementations used different top-level architectures

and different components. However, the basic components of these designs are the

same.

• Data access mechanism: A design can use register banks or block RAMs to

save the data. Register banks require extra slice flip-flops, i.e. extra hardware

resources. Block RAMs does not take up extra slice flip-flops, but only two

variables stored in the block RAM can be read at a time. Thus, the Block RAM

84



4.3. Implementing the ηT algorithm for calculating Tate pairing

suits the bus type structure better than the combinational logic structure.

• Controller: A controller usually consists of an FSM and a control bus or some

control signals. In Keller’s work [12], a ROM is used to control the Control bus

with pre-stored instructions. This helps reduce the complexity of the FSM.

• Selector: In combinational logic designs, all the registers are connected to

the corresponding operation logic. Multiplexors and enable signals (namely

interconnection networks in Fig. 4.4 and 4.3), together with the control bus,

control the operation flow of the design. In bus type designs, a Data bus

connects all the operation blocks with the block RAM. A selector controlled

by the controller chooses which operation block is to be enabled.

• Operation logic: The combinational logic structure expands all operations re-

quired in parallel. If some logic in the structure can be reused by two or more

operations, a multiplexor is usually used to select the current inputs of the

logic. This structure is fast, but results in large area. The bus type structure

uses operation blocks for each independent function. Such blocks are connected

with the block RAM through a data bus. When the block RAM presents differ-

ent data on the bus, the inputs of the blocks are chosen. Thus, the operation

blocks in the bus type structure can be reused by any input. However, the

block RAM can only present two variables on the Data bus. This increases the

calculation time of the bus type structure designs.

Top level architecture of Bus type

Fig. 4.6 shows the top level architecture for implementing the Tate pairing using the

ηT algorithm. As can be seen from the figure, the bus type top-level architecture

applied in this work is similar to Keller’s architecture in Fig. 4.5. The architecture

is based on the GF (2m) modules. A block RAM is used to store the inputs and in-

termediate variables required in the algorithm. The GF (2m) blocks and memory are

controlled by a FSM controller, which iterates through an instruction set, pre-stored

in ROM. No GF (24m) modules can be seen on the top level because the GF (2m)

function blocks are reused for each of the GF (24m) operations. The instructions for

the GF (24m) operations are stored in the ROM and all the operations have access

to all the GF (2m) blocks so that the design will reach a high utilization of all its

hardware.

85



4.3. Implementing the ηT algorithm for calculating Tate pairing

GF(2    )m
Adder

GF(2    )m
Multiplier

GF(2    )m
Squarer

GF(2    )m
Inverter

GF(2    )m
Multiplier

RAM

Address

Start

Done
GF(2    )m

Controller

Selector
Control bus

ROM

Counter

FSM
Multiplier

Data bus

Fig. 4.6: FPGA architecture of Tate pairing

In contrast with Keller’s bus type top-level architecture, there can be more than

one GF (2m) Multiplier block in the architecture of this work. Using the parallel

method introduced in section 2.7.3, the GF (2m) Multipliers can operate at the same

time. In each clock cycle, the data bus can only arrange the inputs to one operation

block, thus having one more parallel multiplier in the architecture saves n− 1 clock

cycles, at the cost of one more GF (2m) Multiplier and one more m-bit selector

array. By the same method, there can be more than one Adder, Squarer or Inverter.

The GF (2m) addition and squaring operation both require only 2 clock cycles for

their calculation in the bus-type architecture. Thus, even if the designer increases

the number of GF (2m) Adder or GF (2m) Squarer block, the data bus does not have

spare clock cycles to write to and read from the additional GF (2m) Adder or GF (2m)

Squarer block. Thus, there is only one GF (2m) Adder and one GF (2m) Squarer block

in the bus type architecture of this work. For the Inverter block, because there is

only one GF (2m) Inversion operation in the whole ηT algorithm calculation, it is not

necessary to put mores GF (2m) Inverter block in the architecture.

4.3.2 Reconfiguration of the multiplications in Bus type design

In the bus type architecture applied in this work, the steps in Algorithm 2.2 are

calculated serially. Operations in steps 1, 2 and 8 in the algorithm are executed

only once in the ηT pairing calculation, while operations in the ‘for’ loop in steps 3-7

are executed m times and dominate the calculation time of the whole design. The

arrangement of the operations in the ‘for’ loop affects the calculation time of the ηT

algorithm.

Note that in step 4 of Algorithm 2.2, the intermediate variable GF (24m) element

86



4.3. Implementing the ηT algorithm for calculating Tate pairing

A(t) contains only 3 terms, i.e. the coefficient a3 of the degree 4 term a3t
3 equals

0. This makes it possible to optimize the GF (24m) Multiplication, the operation of

C(t)← C(t)2 × A(t) in step 5 of Algorithm 2.2.

The calculation of C(t) ← C(t)2 × A(t) consists of two parts, the GF (24m)

squaring part and the GF (24m) multiplication part. Expanding the operations and

rewriting step 5 of Algorithm 2.2 results in equation 4.15:

C(t)← C(i)(t)
2

C(i+1)(t)← C(t)× A(t)
(4.15)

In equation 4.15, C(i)(t) represents the variable value for the current iteration, de-

rived from previous iteration. C(t) is an intermediate variable and C(i+1)(t) is the

calculated value of this iteration, ready for the calculation in the next iteration. The

squaring calculation in equation 4.15 can be calculated in 4 S and 2 A, as introduced

in section 4.2.2. Here the calculation of C(i+1)(t)← C(t)× A(t) is discussed. Let

A(t) = a0 + a1t+ a2t
2,

where a0 = γ + u + β, a1 = α + v, a2 = a1 + 1. C(t) and C(i+1)(t) can be written as

follows:

C(t) = c0 + c1t+ c2t
2 + c3t

3,where ci ∈ GF (2m)

C(i+1)(t) = c0(i+1) + c1(i+1)t+ c2(i+1)t
2 + c3(i+1)t

3,where cj(i+1) ∈ GF (2m).

Expand the calculation C(i+1)(t)← C(t)× A(t), yields

c0(i+1) + c1(i+1)t+ c2(i+1)t
2 + c3(i+1)t

3

= (c0 + c1t+ c2t
2 + c3t

3)× (a0 + a1t+ a2t
2)

(4.16)

where

c0(i+1) = c0a0 + (c2 + c3)a2 + c3,

c1(i+1) = c0a0 + (c1 + c2 + c3)a0 + (c0 + c2 + c3)(a0 + a2) + c3a2 + c0 + c3,

c2(i+1) = c0a0 + (c1 + c2 + c3)a0 + (c0 + c2 + c3)(a0 + a2) + (c1 + c2)(a0 + a2) + c1,

c3(i+1) = (c1 + c2 + c3)a0 + (c1 + c2)(a0 + a2) + c2.

The expressions above show the calculation of equation 4.15 in detail. In each

iteration of the ‘for’ loop in steps 3-7 of Algorithm 2.2, 6A+4S+1M operations are

required to update A(t). Also, to update C(t) in each iteration, 18A + 4S + 6M are

required. In the bus type top-level architecture, if there is more than one multiplier,

87



4.3. Implementing the ηT algorithm for calculating Tate pairing

M M

M M

M M

PRE PRE

POST

Mn+2

Mn+2

M M

M M M

M = Busy Multiplier

M = Unused Multiplier

Time
(clks)

POST

M M

M M M

PRE

POST

POST

M M M M M M

POST

PRE

PRE

# Mult = 1 # Mult = 2

n+3

n+3

n+3

n+2

n+2

n+2

n+2

n+2

M

M

M

M

M

M Mn+2

38 38

4n+96

47

M M

M

n+4

# Mult =4

n+5

7n+99

47

# Mult =3

Mn+4

n+4

M M Mn+2

38

3n+95

47

n+93

47

n+8 M

# Mult =7

47

2n+94

38

38

5

5

6

Fig. 4.7: Schedules for different numbers of Multipliers

calculation of the 7 multiplications in A(t) and C(t) can be carried out at the same

time. By using different numbers of multipliers, there can be different schedules for

computing the multiplications in steps 3-7 in Algorithm 2.2, as shown in Fig. 4.7.

In Fig. 4.7, blocks ‘PRE’ and ‘POST’ represent the pre- and post-computations

of the 7M. The pre-computations consist of 11A + 8S and require 38 clock cycles.

The post-computations consist of 13A, some RAM writing operations and some

finite state machine operations, requiring 47 clock cycles. The detail of operation

flows inside the ‘PRE’ and ‘POST’ blocks in Fig. 4.7 can be found in Fig. A.1 and

A.2 in Appendix A. The operation of a single M requires n = dm
d
e clock cycles for

the DSM, with one additional clock cycle reading the product from the output into

memory. In this work, the processor will always spend 85 clock cycles on the ‘PRE’

and ‘POST’ operations, which are performed in serial. In this case, only 1 Adder

and 1 Squarer are needed in the architecture.

With different number #Mult of multipliers, the design can deal with at most

#Mult multiplications at the same time. Numbers #Mult=1, 2, 3, 4 and 7 are

used in this work. Using 5 and 6 multipliers does not help reduce the calculation

of the 7 multiplications. Since only 7 multiplications are needed in each iteration,

putting more multipliers in the design will not speed up the operation time. As can

be seen in Fig. 4.7, adding multipliers linearly reduces the required number of clock

88



4.3. Implementing the ηT algorithm for calculating Tate pairing

cycles. Using only one DSM, which gives a minimum area design, referred to as a

minimum DSM design in later discussions, takes 7n + 99 clock cycles. While using

7 DSMs, which requires the largest area, referred to as a maximum DSM design in

later discussions, calculates the operations in the shortest time of n+93 clock cycles.

The details of the operation flow using different #Mult can be found in Fig. A.3,

A.4, A.5, A.6 and A.7 in Appendix A.

4.3.3 Implementation results of Bus type top-level architecture

In this implementation, the Tate pairing processor is written in VHDL language. The

design is simulated using ModelSim XE III 6.3c and the target FPGA technology

is Xilinx Virtex-V. The designs presented in this section use a bus type top-level

architecture. Different numbers of DSMs (#Mult = 1, 2, 3, 4 and 7) of different

digit sizes (d = 1, 2, 4, 8, 16 and 32) are used to implement the target algorithm

at the field size of m = 163, 233, 283 and 571. The Karatsuba multipliers, with

and without registers inserted, are also applied in the designs because they calculate

GF (2m) multiplications in very few clock cycles. Due to the large area required, each

Karatsuba design contains only one Karatsuba multiplier. For different parameters

the hardware designs require different area and result in different maximum clock

frequency. The implementation results are for m=571 are given in Table 4.3. For

convenience implementation results for field sizes m=163, 233 and 283 are listed in

Appendix B, Tables B.1, B.2 and B.3.

Because there are 4 registers and 4 LUTs in each slice of the Xilinx Virtex-V

xc5vlx50 FPGA and in the designs, the number of registers never exceeds that of

LUTs, the number of the LUTs represents the amount of hardware resources used. As

can be seen from the tables, the area and time required varies when using different

values of the digit size d and different numbers of multipliers. In this work the

hardware resources required (Area), the calculation time of each design (Time) and

Area*Time (A*T) product are taken as the parameters to judge the performance of

different designs. The A*T product represents the total resources used to perform

a Tate pairing algorithm. Here a lower A*T product means that less hardware and

timing resources are used.

In the design over GF (2571), because a Karatsuba multiplier of 571 bits exceeds

the area resources available, a 2nd-level Karatsuba multiplier is applied. i.e. making

use of equation 3.9, in calculating the 571-bit multiplication, 3 sub-multiplications,

each of 286 bits, are used. As introduced in section 3.5.3, each 286-bit Karatsuba

multiplier contains 80 18 × 18 sub-multiplier blocks and one 16 × 16 sub-multiplier

89



4.3. Implementing the ηT algorithm for calculating Tate pairing

Parameters Results

#Mult d n Regs LUTs
Freq. Time A*T

(MHz) (µs) (LUT*s)

1× DSM

1 571 7504 7598 232.4 10182.6 77.37
2 286 7504 8162 232.4 5215.9 42.57
4 143 7503 8745 232.4 2723.9 23.82
8 72 7506 9886 232.4 1486.6 14.70
16 36 7504 12748 232.4 859.2 10.95
32 18 7513 16441 230.0 551.2 9.06

2× DSM

1 571 9231 8766 226.9 6063.2 53.15
2 286 9233 9905 226.9 3155.4 31.25
4 143 9228 11060 226.9 1696.4 18.76
8 72 9236 13339 226.9 972.0 12.97
16 36 9233 19071 226.9 604.7 11.53
32 18 9240 25581 226.9 421.1 10.77

3× DSM

1 571 10959 11658 226.5 4609.2 53.73
2 286 10959 13365 226.5 2427.4 32.44
4 143 10955 15099 226.5 1332.6 20.12
8 72 10964 18493 226.5 789.1 14.59
16 36 10960 25400 226.5 513.5 13.04
32 18 10965 35353 226.9 375.0 13.26

4× DSM

1 571 12685 16816 214.1 3348.0 56.30
2 286 12685 17380 212.4 1817.0 31.58
4 143 12680 21402 214.1 1027.1 21.98
8 72 12692 25935 214.1 642.1 16.65
16 36 12689 37365 214.1 446.9 16.70
32 18 12692 49512 215.6 346.8 17.17

7× DSM

1 571 17864 17464 212.4 1829.0 31.94
2 286 17863 21447 213.4 1037.8 22.26
4 143 17865 28360 212.4 648.2 18.38
8 72 17876 38361 212.4 452.3 17.35
16 36 17870 52695 213.1 351.8 18.54
32 18 17867 69990 209.1 308.1 21.56

Kara. no Reg 5 8649 24808 176.6 419.7 10.41
Kara. with Reg 7 16133 25119 252.9 325.1 8.17

Tab. 4.3: Implementation results of Tate pairing, bus type, Xilinx Virtex-V, m=571

block. In this case, a 286-bit Karatsuba multiplier plus 5 clock cycles, rather than a

571-bit Karatsuba multiplier plus 1 clock cycle, are required. When the registers for

reducing the critical path are inserted, 7 clock cycles are required for this multipli-

cation. The two additional clock cycles, in this case, are required for the signals to

go through the inserted registers in the multiplier. This 2nd-level structure requires

90



4.3. Implementing the ηT algorithm for calculating Tate pairing

GF(2    )m
Inverter

GF(2    )m
Adder

GF(2    )m
Squarer

Start

Done

α α 4

4β β

1

α +2

γ + β + u
v

A  = 
A  = 

α + v + 13

A  = u u+v

Controller

Selector
Control busData bus

RAM

Data bus

sel

Multiplier
Karatsuba

for loop logic
v v+1

......

FSM
Reg Bank

FSM

Address

ROM

Counter

Fig. 4.8: Mixed type architecture of Tate pairing

more operating time than using original Karatsuba multipliers, as in designs for m

=163, 233 and 283. In the designs for m=571, the Karatsuba multiplier does not

result in a much faster calculation speed than the fastest DSM designs. However, as

a medium size, but fast multiplier, the 2nd-level Karatsuba multiplier provides the

best A*T product amongst the designs over GF (2571).

4.3.4 Implementation results of mixed type top-level architecture

For the m=163, #mult=7, d=16 and d=32 designs, the calculation time of the

multiplications halves when d increases from 16 to 32. However, the calculation

time of the whole Tate pairing does not decrease significantly. This is because the

‘small’ operations, including additions and squarings, dominate the calculation time

when the calculation times of the multiplications are reduced. The two clock cycles

required for addition and squaring in the bus type structure become the speed bottle

neck.

In Algorithm 2.2, steps 1, 2 and 8 operate only once. The addition and squaring

operations in these steps require some time, but not a significant amount. The bus-

type design with instructions pre-stored in the ROM reduces the hardware resources

requirement. In contrast, the addition and squaring operations in steps 3-7, i.e. the

85 clock cycles for addition and squaring operations in the ‘for’ loop as illustrated

in Fig. 4.7, are operated m times in the Tate pairing calculation. One may think of

reducing this calculation time of 85*m clock cycles by implementing the operations

in parallel, i.e. in the form of combinational logic, using the same structure as used

in the designs illustrated in Figs. 4.3 and 4.4.

91



4.3. Implementing the ηT algorithm for calculating Tate pairing

Parameters Results

m Type n Regs LUTs
Freq. Time A*T

(MHz) (µs) (LUT*s)

163
no Reg 1 10781 16243 153.1 13.4 0.22

with Reg 1 14003 16395 240.1 9.9 0.16

233
no Reg 1 15251 24698 153.1 18.4 0.45

with Reg 1 19916 24587 240.4 13.7 0.34

283
no Reg 1 18586 32604 146.1 23.1 0.75

with Reg 1 24256 32345 238.5 16.5 0.53

571
no Reg 5 41341 49321 176.7 128.7 6.35

with Reg 7 47094 49666 240.1 128.4 6.38

Tab. 4.4: Implementation results of Tate pairing, mixed type architecture, Xilinx Virtex-V

In the architecture illustrated in Fig. 4.8, the addition and squaring operations

in steps 3-7 are parallel implemented in the ‘for loop logic’ block. These operations

can be calculated in only one clock cycle. Since the ‘for loop logic’ block operates

on all intermediate variables in the same clock cycle, such variables are stored in

the ‘Reg Bank’ of the ‘for loop logic’ block and written back into RAM after

the ‘for’ loop calculation ends. Operations in steps 1, 2 and 8 are the same as in

the bus-type design, i.e. an adder, a squarer and a divider connected to the data

bus calculate the operations in steps 1, 2 and 8 in serial form, with instructions

pre-stored in the ROM in the controller. In controlling the multiplier, a ‘sel’ signal

selects the controller of the Karatsuba multiplier. In steps 1, 2 and 8, the inputs of

the Karatsuba multiplier can be arranged by the data bus, controlled by the ROM. In

steps 3-7, i.e. the ‘for’ loop, the inputs of the Karatsuba multiplier can be arranged

by the for loop logic block. This architecture significantly reduces the calculation

times of the designs with fast implementation such as when the Karatsuba multiplier

is used. The implementation results are shown in Table 4.4.

In Table 4.4, the Karatsuba multipliers with and without registers inserted, are

used. Similar to using DSMs, the parameter n in this table indicates the number of

clock cycles required to calculate a multiplication. In the case without registers in-

serted, for designs with m=163, 233 and 283, the 7 multiplications are input into the

Karatsuba multiplier serially and read out one clock cycle after the input serially as

well. For example, in clock cycles {1, 2, 3, 4, 5, 6, 7} the inputs of the 7 multiplications

are read from registers in the ‘for loop logic’ block and sent into the multiplier.

After one clock cycle, i.e. in clock cycles {2, 3, 4, 5, 6, 7, 8}, the calculation results

are read and written back to the corresponding registers respectively. The number

of clock cycles required for each iteration of the ‘for’ loop is 9.

92



4.4. Analysis of implementation result

In the case with registers inserted, a single Karatsuba multiplier requires 3 clock

cycles for the calculation. However, according to its structure as illustrated in Fig.

3.4, for designs with m=163, 233 and 283, the multiplications can be pipelined in

the Karatsuba multiplier. For example, in clock cycles {1, 2, 3, 4, 5, 6, 7} the inputs

of the 7 multiplications are serially sent to the multiplier. After three clock cycles,

i.e. in clock cycle 4, the result of the first multiplication can be read from the output

register of the Karatsuba multiplier. In clock cycles {5, 6, 7, 8, 9, 10}, the results

of the rest 6 multiplications are read from the output and written back to their

corresponding registers respectively. Thus, the number of clock cycles required for

each iteration of the ‘for’ loop is 11.

Because the m=571 design uses a 2nd-level Karatsuba multiplier, in which the

286-bit multiplier is reused 3 times, the schedule for the design with m=163, 233 and

283 cannot be applied to the m=571 design. In the mixed type m=571 designs, it

requires 5 and 7 clock cycles for the Karatsuba multipliers without and with registers,

respectively.

It must be noted that the hardware resources required for designs with field size

m=283 and 571 have exceeded the constraint of Virtex-V xc5vlx50 FPGA in this

work (28800 Regs, 28800 LUTs). The area requirements of these designs are only

theoretical values after synthesis. These designs can only be implemented in larger

FPGA technologies.

4.4 Analysis of implementation result

The results of implementations using different top-level architectures and different

parameters show different performances. For each m, when the parameters (#Mult

and d) change, the trends of how the implementation results change are similar. Here

implementation results of designs over GF (2571) are discussed.

4.4.1 Time analysis

Consider now the calculation time requirement shown in Fig. 4.9. As the calculation

time varies when different multiplier schedules are applied, the slowest design requires

over 100 times the calculation time of the fastest one to complete the calculation,

the figures showing calculation time use a logarithmic scale. Fig. 4.9 shows the

calculation time required for designs using different numbers of multipliers (#Mult)

and using different digit sizes d. In this figure, each line shows a multiplier schedule

used in the designs, i.e. using #Mult ∈ {1, 2, 3, 4, 7} DSMs, or using one Karatsuba

93



4.4. Analysis of implementation result

Fig. 4.9: Calculation time of ηT algorithm implementations, m=571

multiplier. In designs using DSMs, when using the same number of multipliers,an

increase in digit size d leads to a decrease in the number n of clock cycles required

for each digit serial multiplication and, thus, decreases the calculation time required.

It can be clearly seen from Fig. 4.9 that for the same #Mult, when the digit size

d increases, the calculation time decreases. The decrease rate, i.e. the slope, of

#Mult = 7 is smaller than those of the others. This is because the calculation

times of the multiplications in the Tate pairing are already improved by increasing

the number of DSMs. Increasing the digit size d is more effective in designs with

fewer multipliers. For field GF (2571), the calculation times of designs using the

Karatsuba multiplier are also illustrated in Fig. 4.9, shown as the triangle line at

the bottom, each with their specifications by their side. The bus type Karatsuba

multiplier designs run as fast as the fastest DSM design. The mixed type designs

calculate the Tate pairing in even a shorter time.

Fig. 4.10 shows the calculation time comparison between designs of different

field size m. In this figure the minimum DSM design (#Mult = 1, d=1) and the

maximum DSM design (#Mult = 7, d=16) are presented along with the Karatsuba

designs. It can be clearly seen from Fig 4.10 that for all m, the minimum DSM design

is much slower than other designs, while the maximum DSM design has almost the

same speed level as the bus type Karatsuba designs. The mixed type Karatsuba

designs show the best performance and a significant improvement when compared to

94



4.4. Analysis of implementation result

Fig. 4.10: Calculation time of ηT algorithm implementations for different field size m

that of using bus-type architecture. Since the multiplications are calculated in fixed

time, rather than linear to field size m as the DSMs, the calculation times of the Tate

pairings over different field size m are now decided by the number of iterations in

the ‘for’ loop. i.e. the calculation times of the mixed type architecture designs grow

at a linear rate with the field size m. Among the mixed type designs, the designs

using Karatsuba multipliers with registers inserted give the best calculation speed

for field size m=163, 233 and 283. For field size m=571, the design uses a 2nd level

Karatsuba multiplier, i.e. calculating 3 286-bit Karatsuba multiplications to form a

571-bit multiplication. The two additional clock cycles from the inserted registers in

each 286-bit sub multiplication lead to 6 clock cycles in the 571-bit multiplication.

Since the mixed type top-level architecture minimizes the calculation time of the

‘small’ operations in the ‘for’ loop, these 6 clock cycles result in a significant speed

penalty, which cannot be compensated for by the increased operation frequency.

Thus, the calculation time of the design using Karatsuba multipliers with registers

inserted for field size m=571 is longer than that without registers inserted.

4.4.2 Area analysis

The areas required for designs over GF (2571) are shown in Fig. 4.11. As the area

required does not vary as much as the calculation time does, Fig. 4.11 uses linear

scale. As can be clearly seen in Fig. 4.11, in designs using DSMs, the more multipliers

95



4.4. Analysis of implementation result

Fig. 4.11: Area of ηT algorithm implementations, m=571

Fig. 4.12: Area of ηT algorithm implementations across different field size m

96



4.4. Analysis of implementation result

there are in the design, the more hardware resources are required. When using same

#Mult, using a larger digit size d leads to a larger area. Similar to the timing results,

the area of the Karatsuba designs are presented in Fig. 4.11. Using Karatsuba in the

designs requires more area than most of the DSM designs do. Among the Karatsuba

designs, the mixed type designs are the biggest, almost as large as the maximum

DSM design and twice as larger as the bus type Karatsuba designs.

Fig. 4.12 shows the comparison between designs of the same parameters over

different fields. Larger field size always requires more hardware resources to imple-

ment the operations. As in the calculation time discussion, the area requirements of

the minimum and maximum DSM designs, together with all the Karatsuba designs,

are illustrated here. As shown in Fig. 4.12, the area requirements of implementing

DSM designs are almost linear with the field size. This is because the sizes of all the

components in the DSM designs, including the adder, squarer, DSM and divider are

linearly proportional to the field size. The area requirement of the Karatsuba designs

show an exponential increase with increasing field size m. This is because the area

required for a Karatsuba multiplier is proportional to n2×3log2
m
n , where n represents

the digit size of the sub-multiplier block in the Karatsuba multiplier, as introduced

in chapter 3. In the m=571 case, rather than the original Karatsuba multiplier, a

2nd level Karatsuba multiplier is applied. This makes the bus type Karatsuba de-

signs over field GF (2571) only only slightly larger than those over the field GF (2283).

This additional area requirement comes from the 571-bit adder, squarer and divider.

Fig. 4.12 also shows that the Karatsuba designs, with and without registers inserted,

require almost the same number of LUTs.

4.4.3 A*T product analysis

The A*T trade-off performance of designs over GF (2571) is shown in Fig. 4.13.

As the product of two types of resources used in the implementations, a lower A*T

product represents a higher hardware efficiency and a better trade-off between area

and time.

For DSM designs, when the digit size d increases, the A*T products of the designs

do not show a linear trend. The trends of A*T products for different #Mult values

are not the same. For #Mult=1 and 2 when d increases, the A*T product decreases.

However, the slope decreases along with the increase of #Mult. In the design using

#Mult=3, the A*T products for digit sizes d=16 and 32 are almost the same. For

designs with #Mult=4 and 7, the A*T products decrease to a minimum at d=8 and

increase once again as d increases. i.e. in DSM designs, when #Mult increases, the

97



4.4. Analysis of implementation result

Fig. 4.13: Area*time (A*T) product of ηT algorithm implementations, m=571

effectiveness of improving the A*T product by increasing the digit size d decreases.

Fig. 4.13 also shows that all of the 4 designs using Karatsuba multipliers provide

a good A*T product, being the same or better than the best A*T performance

of DSM designs. Among all the Tate pairing implementations over GF (2571), the

‘Kara, mix, no reg’ design, i.e. the mixed type design using the Karatsuba multiplier

without registers inserted, shows the lowest A*T product, i.e. the best trade-off

between area and time.

4.4.4 Comparison with earlier work

Table 4.5 compares the implementation results of the designs described in this chap-

ter with earlier hardware based pairing accelerators. Note that in the table, the

areas of Beuchat’s work [11] are approximate values because the original area re-

quirements were calculated in slice unit. The differences between Virtex 2, 4, 5 and

6 [82, 83, 84, 85] can be found Table C.1 in Appendix C. All works in Table 4.5 were

implemented over GF (2m). The minimum DSM designs, maximum DSM designs

and the mixed type Karatsuba designs, for each similar field size, are shown in the

table.

The implementations designed by Shu et al [7] and Li et al [8] used the same

algorithm as this work, i.e. the ηT algorithm. Both designs used a combinational

logic top-level architecture and DSMs as the multiplier. Both works have their

multi-DSMs pipelined, aiming to obtain a high calculation speed. Among them Shu

acquired a better speed, faster than the maximum DSM designs in this work, but

slower than the mixed type design using Karatsuba multiplier.

The work done by Keller [143] is an implementation of the BKLS/GHS algorithm.

98



4.4. Analysis of implementation result

Ref.
Field

Mult type
VIRTEX Area Time A*T

m Plaform (LUTs) (µs) (LUT*s)
Shu [7] 239 10×DSM, d=32 4 59971 43 2.58

Beuchat [11] 239 Kara. with reg 4 32406 3.46 0.112
This work 233 1×DSM, d=1 5 3200 1717.0 5.49
This work 233 7×DSM, d=32 5 33654 107.9 3.63
This work 233 Kara. with reg 5 24587 13.7 0.34

Keller [143] 271 1×DSM, d=1 2 3716 13500 50.2
Keller [143] 271 11×DSM, d=16 2 57032 839.7 47.9

Shu [7] 283 10×DSM, d=32 4 72961 61 4.45
Li [8] 283 12×DSM, d=32 4 104860 590 61.9

This work 283 1×DSM, d=1 5 3860 2658.5 10.26
This work 283 7×DSM, d=32 5 36312 141.0 5.12
This work 283 Kara. with reg 5 32345 16.5 0.53

Keller [143] 457 1×DSM, d=16 2 12406 4769 59.2
Keller [143] 457 11×DSM, d=6 2 47749 3389 161.8

Shu [7] 557 10×DSM, d=8 4 75862 675.5 51.2
Beuchat [11] 557 Kara. with reg 4 110312 13.2 1.46
This work 571 1×DSM, d=1 5 7598 10182.6 77.37
This work 571 1×DSM, d=16 5 12748 859.2 10.95
This work 571 7×DSM, d=32 5 69990 308.1 21.56
This work 571 Kara. no reg 5 49321 128.7 6.35

Ghosh [129] 1223 Kara. no reg 6 54681 190 10.4

Tab. 4.5: Comparison with other implementations of Tate Pairing

The calculation time of Keller’s work is much longer than the maximum DSM design

in this work. This is because the implementation uses an early technology (Virtex-2)

which operate at a lower speed. In addition, the BKLS/GHS algorithm is not as

efficient as the ηT algorithm in calculating the Miller’s loop. However, the bus type

top-level architecture of Keller’s work is reconfigurable. By applying this architec-

ture, the minimum DSM designs are implemented for all fields. For designs with

strictly restricted hardware resource, such designs can accomplish the Tate pairing

calculation using minimum area, at the cost of a long calculation time.

Designs by Beuchat et al in [11] and by Ghosh et al in [129] use the reduced ηT

algorithm, which halves the ‘for’ loop in the original ηT algorithm, but introduces

some more operations in the final exponentiation step. The reduced ηT algorithm

is about 75% of the calculation time of the original ηT algorithm. Both designs in

[11] and [129] also use combinational logic top-level architectures. In contrast with

Shu’s and Li’s designs, the multiplier used in the works of Beuchat and Ghosh is

the Karatsuba multiplier. This fully parallel structure provides a very short calcu-

99



4.5. Conclusions

lation time for the GF (2m) multiplication. Together with the fully combinational

architecture, these two designs achieved a very fast calculation speed. Although the

hardware resources required for the combinational logic top-level architectures and

the Karatsuba multiplier are very large, the fast speed of these designs still makes

the A*T products of such designs outperform the other designs. Note that the de-

sign by Ghosh et al in [129] is over the field GF (21223). This design is based on a

very large finite field and provides a very high security level (128-bit security). In

his design, because the original Karatsuba multiplier is much too big, a 3rd-level

Karatsuba multiplier is applied. Similar to the 2nd-level Karatsuba structure, Ghosh

used a 306-bit Karatsuba. By calculating 9 306-bit multiplications, plus the pre-

and post- multiplication calculations, each 1223-bit multiplication requires 11 clock

cycles to calculate.

4.5 Conclusions

This chapter showed the relevant operations over extension field GF (24m), includ-

ing squaring, multiplication and inversion. How these extension operations can be

performed using basic operations over field GF (2m) was presented. The GF (2m) op-

erations required are (4A+2S), (34M+16A+4S+1I) and (9M+22A), respectively.

The ηT algorithm is implemented using different top-level architectures: the bus

type and the mixed type architectures. In bus type architecture designs, both DSMs

and Karatsuba multipliers are applied, while in mixed type architecture designs,

only the Karatsuba multiplier is used for the pursuit of a fast calculation speed.

In bus type designs, different numbers of DSMs were used along with designs of

different digit size d = 1, 2, 4, 8, 16 and 32. As the Karatsuba multiplier is a

fully parallel architecture and consumes large area, in both bus type and mixed type

architecture designs, only one such multiplier is used. The implementation results

are listed and the comparisons detween different parameters are discussed. The bus

type architecture designs are of high flexibility and reduce the area of the design

significantly. The reconfigurable designs using the bus type architecture provide

the designer with different choices in resources constrained environments. In the

mixed type designs, the operations in the ‘for’ loop are optimized for a faster speed.

Although the area required for the mixed type designs is much larger than that of

bus type designs, the calculation time of mixed type designs is much faster, even

outweighs the area cost and gives the mixed type designs of the lowest A*T product,

i.e. the best hardware efficiency.

100



4.5. Conclusions

The comparisons between different designs and with earlier works were presented.

Among designs of different architectures, the combinational logic architecture pro-

vides the best hardware efficiency. The bus type architecture provides good flexibility

in trade-offs between area and time rather than a fast calculation speed or a high

hardware efficiency. In the choice of multipliers, DSMs can be reconfigurable and are

suitable for design of different size. However, at the cost of a large area, Karatsuba

multipliers are preferred when pursuing high speed designs.

101



5. SIDE CHANNEL ATTACKS AGAINST IMPLEMENTATIONS

OF TATE PAIRING ALGORITHMS

5.1 Introduction

Attacks on hardware implementations of cryptosystems mainly focus on the math-

ematical analysis of leaked side channel information. Side Channel Analysis (SCA)

attackers exploit leaked information in order to derive secret information. Whelan et

al. [144] and Kim et al. [145] investigated the possibility of SCA attacks, including

simple, differential and correlation power analysis, respectively SPA, DPA and CPA,

against practical pairing algorithms. Former attacks making use of side channel in-

formation are introduced in Chapter 2. This work mainly focuses on practical CPA

attacks against FPGA implementations.

Section 5.2 introduces an overview of SCA attacks. The theory of CPA attacks

is specified and is used as the practical attack applied in this work. The power

consumption model applied in this work is also analyzed here. Section 5.3 analyzes

the weakness of the proposed ηT pairing algorithm. Making use of the ciphertext

exposed in the insecure channel, both in the public key protocol and in the algorith-

mic calculations, is discussed. In section 5.4, practical CPA attacks are applied on

the suspectable operation blocks, including the GF (2m) Adder block and the two

multiplier blocks. The power traces collected from the attacks performed are shown.

5.2 Side Channel Analysis Attacks

Side Channel Analysis (SCA) attacks are based on the observation that the side

channel information leaked from the cryptosystem is related to the instruction being

executed. Among side channel attacks, power analysis attacks utilize the relationship

between the data being manipulated and the power consumption leaked from the

actual cryptographic devices, such as FPGAs and ASICs [13, 89]. Power analysis

attacks typically consist of two steps. The first step is the collection phase, where the

power consumption traces of the device are recorded. The second step is the analysis



5.2. Side Channel Analysis Attacks

phase, where the power consumption traces acquired from the devices are analyzed to

reveal secret information. The analysis method varies for different types of attacks.

Successful analysis methods include simple power analysis (SPA), differential power

analysis (DPA) [13] and correlation power analysis (CPA) [96]. SPA focuses mainly

on deducing the operation being executed in the devices from the shape of the power

consumption traces. In contrast, DPA focuses on the data being manipulated, using

statistical methods to form a correlation between a number of power traces and

the secret information. CPA is a more accurate variant of DPA that estimates a

hypothetical power consumption for each possible value of the secret information and

compares them to the actual power consumption traces using a correlation test, such

as Pearson’s correlation coefficient [146]. An actual cryptosystem always includes

many components and the inherent noise of the components may hide the information

the attacker is looking for. By taking more traces and averaging out the noise, an

attacker can eliminate or reduce such effects. In SPA, an average of 1-50 traces may

reveal the secret information because it considers only the profile of the traces [13].

While in a DPA and CPA attacks, the number of measured power traces typically

varies from 500 to 10000 [13, 147, 148]. When choosing the number of power traces,

using more power traces averages out the effect of noise and helps identify the highest

correlation peak which indicates the correct hypothetical value.

5.2.1 Correlation Power Analysis Attacks

Based on the Hamming-Distance model, correlation power analysis (CPA) is a form

of SCA attack that exploits the correlation between hardware power consumption

and the intermediate values of the cryptographic algorithm in order to recover the

secret information. With recorded power traces of the Tate pairing operation, such

a power analysis attack can be successfully applied against the multiplier and adder

units.

The Hamming-Distance model is based on the Hamming-Weight model [103].

In a hardware implementation of a cryptosystem, an m-bit register state at time

t is represented as an m-bit binary data word Dt = Σm−1
j=0 dj2

j, where dj ∈ {0, 1}.
The Hamming-Weight of the register is the number of elements that are equal to 1,

i.e. H(Dt) = Σm−1
j=0 dj. The Hamming-Weight model is used as the basis for many

power analysis attacks on software implementations [149]. Since H is an integer

satisfying 0 ≤ H ≤ m, if the data words Dt are independent, Dt has an average

Hamming-Weight µH = m/2 and a variance σ2
H = m/4.

The Hamming-Distance model [96] assumes that the side channel information

103



5.2. Side Channel Analysis Attacks

leaked from a system depends on the number of bits switching from one state to the

other and is more appropriate for hardware implementations. The basic Hamming-

Distance model is:

W = aH(Dt ⊕Dt+1) + noise, (5.1)

where noise encapsulates switching and electrical noise. Dt is the current state of a

register and Dt+1 is next state The scalar a is the gain between W the power con-

sumption measured from actual cryptographic devices and H the Hamming-Weight

of (Dt ⊕Dt+1) which represents the number of bits switched between register states

Dt and Dt+1. This is called the Hamming-distance between Dt and Dt+1. In this

model, Dt is usually a state in the register targeted by the attacker.

5.2.2 Relationship between intermediate variables and power consumption

The basic principle of CPA [96] is that there exists a relationship between the

Hamming Distance of two register states and the measurable power consumption

[105, 150]. The correlation factor between the Hamming Distance and the consumed

power, named ρ(W,H), is used to tell whether the Hamming Distance model fits the

real power consumption or not [148]. It is the covariance between the two variables H

and W , normalized by the product of their standard deviations. With the Hamming

Distance model, there exists:

ρ(W,H) =
cov(W,H)

σWσH
=
aσH
σW

=
aσH√

a2σ2
H + σ2

noise

=
a
√
m√

ma2 + 4σ2
noise

[96] (5.2)

In equation 5.2, cov(W,H) represents the covariance between H and W , σH and

σW represent the standard deviation of H and W , σ2
noise represents the variance of

the noise. Let E be the mean of an array, the standard deviation of array H can be

calculated as per equation 5.3:

σH =

√√√√ 1

N

N∑
i=1

(Hi − E(H))2 (5.3)

And the covariance between H and W can be calculates as per equations 5.4.

cov(H,W ) = (
N∑
i=1

N∑
j=1

(E[(Hi − E[H])(Wj − E[W ])])) (5.4)

Assuming the noise has a Gaussian distribution, the variance of the noise σ2
noise tends

104



5.2. Side Channel Analysis Attacks

to a finite constant. In practical power consumption, this finite constant is very small

and tends to zero [96]. By applying a low pass filter or simply averaging a number

of traces, the spikes of noise can be reduced and thus, the affects of the variance

σ2
noise can be minimized. In this work, each of the power traces used in attacking the

multipiler modules are averaged from 20 raw power traces, while the power traces

used in attacking the adder are filtered by a low pass filter with a cutoff frequency

of 200MHz.

The relationship in equation 5.2 shows that ρ(W,H) can be used to determine the

next state Dt+1. If the hypothetical value of Dt+1 is correct, the value ρ(W,H) tends to

±1 at the correlated point. In this work, the coefficient a is positive. Thus, ρ(W,H) in

equation 5.2 tends to 1 in this case. In experiments, if an attacker knows the current

state Dt and predicts the correct next state Dt+1 of the target register at time t,

there will be a high correlation value at the related point, otherwise the correlation

values tend to 0, or other values, rather than 1.

If the model applies only to l independent bits amongst L, a partial correlation

still exists:

ρ(W,H)l/L =
a
√
l

ma2 + 4σ2
noise

= ρ(W,H)

√
l

L
(5.5)

This equation indicates that in the CPA attacks, the number of register bits being

targeted affects the value of the correlation factor ρ. The more bits being targeted at

a time, the larger the value of ρ the attacker gets. Theoretically, even if the ρ values

are small, according to equation 5.2, the correct one also can be recognized from the

incorrect ones, as long as the linear relationship between the power consumption and

the hamming distance exists. However, since the ρ value is small and near the noise

level, the attacker has to take more power traces and to average out the affect of the

noise. Thus, in applying CPA attacks on the hardware implemented Tate pairing

algorithm, the fewer bits being target at a time, the more power traces need to be

taken.

5.2.3 CPA attack setup

The practical setup for the CPA attack experiment is shown in Fig. 5.1. The

structure of the CPA attack setup in this work was illustrated in Fig. 2.10. In the

experiment, the Tate pairing algorithm described in Algorithm 2.2 is implemented

on a Xilinx Virtex-V xc5vlx50 technology [84] FPGA on the Sasebo-GII evaluation

board [151]. There is a shunt resistor of 1Ω inserted on the core Vdd line of the

cryptographic FPGA for measuring power traces. An oscilloscope is used to collect

105



5.2. Side Channel Analysis Attacks

Fig. 5.1: CPA attack setup

and store traces of the voltage across this resistor. The voltage across this resistor

linearly correlates with the current through the resistor, thus, it is also linearly

correlated with the power consumption of the FPGA.

To minimise noise during thee capture of the power traces it is suggested that

the following are used:

• differential probe

• stable power supply

• room with stable temperature

• control FPGA to clock the inputs to the crypto FPGA.

During the data acquisition stage when the voltage traces are recorded, Matlab

[152] is used to communicate with the FPGA and the oscilloscope. Input points

to the pairing algorithm are sent from the PC, through the control FPGA and

then to the crypto FPGA. Following the transmission of the input information, the

crypto FPGA calculates the Pairing and the oscilloscope measures and records the

corresponding voltage traces which will be used in the CPA attack. Through Matlab,

the power traces measured by the oscilloscope can be read back to and stored in the

PC for analysis.

106



5.3. Side-channel security analysis of the ηT Pairings

Alice: IDAlice

r{P  , c} Eva

Bob: IDBob

Message: m
random number: r

BobQ      = H  (ID     )Bob

Bob

1

rP   = [r]P
Decryption:

2

Eva

pubg = e(Q     ;P     ) 
r

Bob
r

r
2

g = e(Q     ;[s]P)

Encryption: c = m      H  (g  )

Bob

Public: Private:

Master key: s
G  , G 

Private Key Generator

Bob

Bob

pubP, P     =[s]P
1 2

1

1 1

Q     =H  (ID     )1 Bob

2
e(G ;G  ), H  , H

K

K     =[s]QBob

Bob

insecure channel

{P    , c}
Eva

h = e(K     ;P     ) 

Secure channel

m’= c      H  (h)

Fig. 5.2: Pairing based IBE scheme encounters eavesdropper

5.3 Side-channel security analysis of the ηT Pairings

5.3.1 Weakness of ηT pairing based IBE scheme

In the IBE system described in Fig. 2.7 and the ABE system described in Fig.

2.8, assume there is an eavesdropper and attacker Eva. Eva can record and tamper

with the information in the insecure channel and can get the power consumption

information leaked from the decryption operation of Bob. As was introduced in

Chapter 2, when the information pair {U, V } sent from Alice to Bob is exposed

to the insecure channel, there can be unexpected weaknesses in the security of the

system. In this section the information pair {U, V } and the weaknesses are addressed

for IBE and ABE schemes.

In an IBE scheme, the information pair {U, V } consists of Alice’s symbol Pr and

cypher text c, i.e. {U, V } = {Pr, c}. Eva would keep cypher text c and tamper

with element Pr to produce P ′r = PEva for the attack, as shown in Fig. 5.2. On

receiving the cypher text {PEva, c}, Bob calculates e(PEva;KBob) as the first step in

the decryption calculation. Eva monitors the power consumption information leaked

from Bob’s decryption and tries to get information about Bob’s private key KBob.

Recall the ABE system described in Fig. 2.8, there are multiple recievers. Alice

publishes cypher text E ′ and public key set {E1, E3, E4}. Except for the cypher

107



5.3. Side-channel security analysis of the ηT Pairings

i    Si    S

Bobγ    :

BobSK     ={D     ,D     }Bob
1 3

Bob BillSK     ={D     ,D     }Bill
1 3

Bill

A1

totalγ     :

A

A
A

2
A

 : gender = m

3 : age = 19
4 : age = 20
5 : age = 21

 : gender = f

s
2E’=m     H  (Y  )

γeE  = T  , ii i
s

γe :{A  ,A  ,A  }1 3 4

d=2

1 21 2g, e: G    G     G  , H
Y=e(g;g)y

2H  (h) 2H  (h)

i,S(0)∆ i,S(0)∆

Alice

E Π i
Bill

E
Bill

1A 4A
Billγ    :

Π ih=    (e(D     ;E      )Bob

Bob

1 3AA

Public Key Generator

Attributes necessary =2
Recipient’s 

1 A A3 4A 1 3 4T TT

public:

message: m
random s

E

private:

T  = g
T  = g

T  = g
T  = gt 5

t 4

t 3

t 2

1t

y , t  , t  ,.., t  1 2 5

T  = g3

2

1

4

5

Insecure Channel

i i

m= E’ m= E’

EEva

h=    (e(D     ;E      )

Eva

Eva Eva

Fig. 5.3: Pairing based ABE scheme

text E ′, receiver Bob with attributes {A1, A3} requires {E1, E3} for decryption and

Bill with attributes {A1, A4} requires {E1, E4} for decryption. In this work, Bob is

taken as an example and Alice sends the information pair {(E1, E3), E ′} to Bob, i.e.

{U, V } = {(E1, E3), E ′}. Eva would keep cypher text Ei = {E1, E3} and tamper

with it to produce EEva
i = {EEva

1 , EEva
3 } for the attack, as shown in Fig. 5.3. On

receiving the information pair {(EEva
1 , EEva

1 ), E ′}, Bob calculates e(EEva
1 ;DBob

1 ) and

e(EEva
3 ;DBob

3 ) as the first step in the decryption calculation. Eva monitors the power

consumption information leaked from Bob’s decryption and tries to get information

about Bob’s private key DBob
1 and DBob

3 .

Based on pairing algorithms, both IBE and ABE schemes can be insecure. For

simplicity, the elements associated with the ηT pairing calculation and the attack are

extracted from the IBE and ABE systems and listed as below:

1. An attacker can acquire and tamper with the information of P .

2. The attacker sends P to the hardware computing e(P ;Q).

3. The attacker observes the power consumption of the calculation e(P ;Q).

4. The attacker is trying to discover point Q.

108



5.3. Side-channel security analysis of the ηT Pairings

P and Q are two points over the Elliptic Curve E(GF (2m)), fully represented as

P (α, β) and Q(x, y). Since the elliptic curve E(GF (2m)) restricts the two coordinates

of a point Q(x, y), knowing one coordinate leads to the other. Thus, when attacking

the ηT pairing, an attacker only needs to focus on the x coordinate of the secret

input Q(x, y). In the ηT pairing described in Algorithm 2.2, there are several weak

points vulnerable to a power analysis attack.

5.3.2 Weakness in addition

Recall the ηT algorithm for calculating the Tate pairing described in Algorithm 2.2

of Chapter 2, step 4 of Algorithm 2.2 is rewriten here as equation 5.6:

step 4 : A(t)← γ + u+ β + (α + v)t+ (α + v + 1)t2 (5.6)

To indicate the difference, in this section αorig is used to represent the original coor-

dinate of input point P and α is used to represent the updated intermediate variable

α in the ‘for’ loop. In the step shown in equation 5.6, the addition operation (α+ v)

contains the intermediate variable α from point P and v which is closely related

with point Q. Assume the attacker is trying to attack operation (α + v) of the first

iteration of the ‘for’ loop. It is assumed in this attack that one of these two elements

can be controlled and known by the attacker. Two conditions may occur.

1. When point P is sent through the insecure channel as a public input, coordinate

α of point P is known by the attacker. In this case, the attacker wants to reveal

the information contained in coordinate x of point Q(x, y), i.e. reveal the value

of intermediate variable v because x =
√
v − 1.

2. When point Q is taken as the insecure input to the algorithm, value v is known

by the attacker by calculating v = x2 + 1. In this case, discovering α is the

attacker’s goal. Once the attacker acquires α, she can compute the information

of input P via αorig = 4
√
α.

Note that square root operations [153] are required to reveal the secret information. If

the attacker can break the GF (2m) Adder shown in Fig. 3.1 which calculates (α+v),

she can reveal information about the private point with the intercepted public input

information. The detail of how the private point information is revealed through the

attack on the addition operation is introduced in Section 5.4.1.

In the bus type top-level architecture designs [143] illustrated in Fig. 4.5, inputs

α and v to this addition operation are stored in the block RAM. When this addition

109



5.3. Side-channel security analysis of the ηT Pairings

is performed, the data bus presents these two values to the GF (2m) Adder. After

one clock cycle, the result array (α + v) is read from the GF (2m) Adder block and

written into the block RAM. In the combinational logic top-level architecture designs

[7, 11, 8, 129] illustrated in Fig. 4.3 and 4.4, inputs α and v and output (α + v),

are stored in three register arrays, each of m bits. In each iteration, the values of

α and v are updated. Following the update of the inputs, the GF (2m) addition is

calculated in the next clock cycle. i.e. after one clock cycle, the output (α + v)

is updated. Thus, the weakness in the addition operation does not depend on the

hardware architecture the designer chooses.

5.3.3 Weakness in multiplication

Recall step 2 and step 6 of Algorithm 2.2, rewriten here as equation 5.7 and equation

5.8 respectively:

step 2 : u← x2 + y2 + g +
m− 1

2
, v ← x2 + 1, α← α4, β ← β4, γ ← αv (5.7)

step 6 : u← u+ v, v ← v + 1, α← α4, β ← β4, γ ← αv (5.8)

In these steps, the multiplication γ ← αv contains the coordinate elements v and

α. Since the multiplications in the ‘for’ loop can be distributed in a multi-multiplier

design, as described in Fig. 4.7 in Chapter 4, γ ← αv in step 6 is a more complicated

condition and is chosen for attack in this work. The attacker can always generate the

value of α in any iteration using the information of input P or alternatively generate

the value of v in any iteration using the information of input Q. Thus, in this work,

it is assumed that the attacker tries to reveal the secret information through CPA

attacks on multiplication γ ← αv in step 6 of the first iteration of the ‘for’ loop.

Similar to the addition calculation, two conditions occur here.

1. An attacker who controls point P (α, β) wants to reveal the value of v in this

multiplication. Having acquired v in step 6, the attacker reveals the informa-

tion of the secret input Q by calculating x =
√
v.

2. An attacker who controls point Q(x, y) would calculate v first and wants to

acquire information about α in this multiplication. Having obtained α in step

6 of the first iteration, the attacker reveals the information of the secret input

P by calculating αorig = 8
√
α.

110



5.4. CPA attack against the GF (2m) operations

If the attacker can break the GF (2m) multiplication which calculates γ ← αv, he

can get the secret information of the private input. The detail of how the coordinate

x of Q(x, y) is revealed through the attack on the multiplication is introduced in

Section 5.4.3.

Similar to the weak GF (2m) addition, the multiplication γ ← αv exists indepen-

dently of the hardware architecture of the ηT pairing design. In bus type top-level

architecture designs [143], inputs α and v are stored in the block RAM and are ready

for reading by the data bus when the multiplication is underway. In combinational

logic top-level architecture designs [7, 11, 8, 129], inputs α and v are stored in the

register arrays and updated during each iteration. The register arrays are connected

to the multiplier together with some other inputs. Multiplexors select which inputs

are active for the current multiplication. When multiplication γ ← αv is performed,

values α and v will be presented to the inputs of the GF (2m) Multiplier.

5.4 CPA attack against the GF (2m) operations

Because of the weaknesses of the algorithm, some attacks are proposed against the

operation blocks applied in the FPGA implementation of the ηT pairing design. In

the proposed attacks, since each element of the algorithms are of m bits, there are

#E : #E(GF (2m)) = 2m + 1 − Tr possible values for each of the elements. It is

not possible for a hardware attacker to generate the correlation factor of all the #E

possible values. A practical way is that the attacker tries to deal with a section of

the secret information and deal with the rest in the same way if the attack works.

In this condition, an attacker does not care about how big the field size is. He is

always choosing a few bits, or even only one bit at a time, if the target element is of

163-bit size or 571-bit size.

5.4.1 CPA against addition: Condition 1) P (α, β) public, attacking Q(x, y)

As mentioned in Section 5.3.3, in step 4 of Algorithm 2.2, the operation γ ← α+v can

be attacked to reveal information about the coordinate of the private point. Firstly,

assume the input point P (α, β) is taken as the public input, known and controlled

by the attacker. In this case, coordinate x and, thus, v is the secret information the

attacker wants to reveal. The architecture of the adder is shown in Fig. 3.1 and the

recorded power trace sample of an addition in the implementation is shown in Fig.

5.4. It takes 1 clock cycle to operate the addition. In this design, the Block-RAM

structure is used. Thus, it will take another clock cycle to write the result back to

111



5.4. CPA attack against the GF (2m) operations

100 150 200 250 300 350

345

350

355

360

Time(ns)
V

o
lt
a
g
e
(m

V
)

1 clock cycle

Fig. 5.4: Measured power trace sample of an addition operation in the Tate pairing

the memory. The chosen field for this attack is GF (2571), with 7 DSMs each of digit

size d=4. This is the largest design that can be mounted on the Virtex-V xc5vlx50

technology used in this work. To apply larger digit size over GF (2571), the number

of DSMs in the design must be reduced so that there are enough hardware resources

for the implementation. Theoretically, according to equation 5.5, attacks on designs

of larger area will be more difficult. Quadrupling the area of the whole design halves

the expected correlation factor’s value. However, according to equation 5.2, this

effect can be compensated for by taking more power traces which reduces the effect

of the noise.

In the ηT pairing implementation over GF (2m), the adder contains an m-bit

XOR gate array and an m-bit register which stores the result after 1 clock cycle.

Two values, α and v, are input to the XOR gates and the value in the output

register is updated on the next clock cycle. Since an addition operation takes only

1 clock cycle, all information must be extracted during the single clock execution.

With knowledge of α, an attacker can easily generate the hypothetical value of the

secret input v. Thus, the attacker can choose how many bits of v to attack at a time.

Attacking j bits at a time implies 2j hypothetical values. In the attacks studied here,

only 1 bit is processed at a time.

Let the ith bit of the target variable v be v(i) and let α(i) represent the ith bit of

variable α. The hypothetical values of v(i) are ‘0’ and ‘1’. To reveal v(i), for each

public input α, the following calculation are performed:

1. For each addition operation, the current state Dt of the register is ‘0’.

2. Always assume the target v(i) is ‘1’.

3. For each α and v, calculate the hypothetical value of the next state of the

112



5.4. CPA attack against the GF (2m) operations

50 100 150 200 250 300 350 400
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time (ns)                     
(a) bit v(571) = 0, guessing 1

v
a
lu

e
 o

f 
c
o
rr

e
la

ti
o
n
 f
a
c
to

r 
 ρ

50 100 150 200 250 300 350 400
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time (ns)                     
(b) bit v(570) = 1, guessing 1

v
a
lu

e
 o

f 
c
o
rr

e
la

ti
o
n
 f
a
c
to

r 
 ρ

operation period
operation period

Fig. 5.5: Correlation with the v(571) and v(570) of the secret v

target bit of register Dt+1 = α(i)⊕ v(i) = α(i)⊕ 1.

4. Calculate the hypothetical Hamming Distance values H between the current

state (’0’) and next state, namely H = H(Dt ⊕Dt+1) = Dt+1.

5. Calculate the correlations between the hypothetical Hamming Distance values

H and the measured power traces W , namely ρ(W,H) = cov(W,H)
σW σH

.

Since the correlation results by guessing ‘1’ and guessing ‘0’ for the same target

bit are exactly opposite to each other, it is only necessary to generate hypothetical

values by guessing ‘1’ or ‘0’.

When attacking the adder, the attacker is generating the hypothetical value of

only 1 bit of the target m-bit ‘(α + v) Register’. According to equation 5.5, the

correct correlation value of attacking an adder tends to a very small value, which

is quite near the noise level. Thus, a large amount of power traces are taken for

the correlation calculation. In attacking the adder in this design, N=50000 public

inputs are sent to the FPGA as point P (α, β) to get a good correlation value which

helps the attacker identify the correct hypothesis.

The correlation result of v(571) and v(570) are shown in Fig. 5.5. In the figure,

the XOR operation happens between 160 ns and 200 ns. Since there are only 2

possible values for the target bit, one correct and the other incorrect, the correct

correlation value is positive while the incorrect correlation value is negative. In Fig.

5.5(a), v(571) is targeted. There is a drop in correlation at the operation period,

which shows that the hypothetical value ‘1’ of this point is incorrect, i.e. this bit

113



5.4. CPA attack against the GF (2m) operations

1 2 3 4 5

x 10
4

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

# of traces                                            
(a) bit v(571)=0, guessing 0 (correct) and 1(incorrect)

c
o

rr
e

la
ti
o

n
 f

a
c
to

r 
ρ
, 

5
7

1
th

 b
it

1 2 3 4 5

x 10
4

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

# of traces                                            
(b) bit v(570)=1, guessing 0 (incorrect) and 1(correct)

c
o

rr
e

la
ti
o

n
 f

a
c
to

r 
ρ
, 

5
7

0
th

 b
it

Incorrect Correlation

Correct Correlation
Correct Correlation

Incorrect Correlation

Fig. 5.6: Performance of Correlation factor ρ when more power traces are taken into con-
sideration. Take v(571) and v(570) of the secret v as an example.

should be a ‘0’. Correspondingly, the correlation trace in Fig. 5.5(b) rises at the

operation period, which shows the hypothetical value ‘1’ of bit v(570) is correct.

According to the CPA attack theory of equations 5.1 and 5.2 in section 5.3, by

taking more power traces, the calculated correlation factor ρ tends to a constant

value. This means that more power traces help distinguish the correct correlation

value from the incorrect values. Fig. 5.6 shows the practical trends of the correlation

factor ρ when the number of power traces taken into consideration increases.

In Fig. 5.6, the x-axis is the number of power traces taken into consideration

whilst the y-axis represents the calculated value of Correlation factor ρ. As can be

seen, in this attack, 50,000 power traces are used in the calculation of the correlation

factor ρ. When the number of power traces taken is small, the correlation factor is

very unstable. One cannot clearly recognize the correct correlation factor from the

incorrect one. However, by taking more and more power traces into the calculation

(more than 15,000 power traces in this attack), the correct correlation factor ρ (red)

tends to a steady value which is obviously different from the incorrect one (blue).

The targeted hardware design of this attack contains 17,865 registers. According

to equation 5.5, applying CPA attacks on only a 1-bit register against the noise of

the whole FPGA design leads to a small correlation factor ρ: ρ tends to a value√
l
L

=
√

1
17,865

= 0.0075. This value is not very accurate because I/O pads and

other devices on the board might affect the power traces measured, but it shows the

114



5.4. CPA attack against the GF (2m) operations

trend. This indicates that the correlation factor ρ tends to a very small value. Thus,

the large quantity of power traces is necessary to help average out the affect of the

noise. The correlation result shown in Fig. 5.6 shows that at least 15,000 power

traces are necessary to attack a 1-bit register. In this attack, 50,000 power traces

are taken to make sure that the correct correlation value can be clearly recognized

from the incorrect one.

In this attack, the mathematical analysis is calculated in Matlab. The 50,000

power traces used to attack v(571) and v(570) can also be used to attack the re-

maining bits v(569 ∼ 1). By repeating the same analysis steps mentioned 571 times

using the same set of power traces, the attacker is able to get value of v in step

4, described as in equation 5.6 and then calculate the secret information of point

Q(x, y), as described in section 5.3.2.

5.4.2 CPA against addition: Condition 2) Q(x, y) public, attacking P (α, β)

Because of the bilinearity property of the pairing algorithms (as introduced in Chap-

ter 2), the result of the calculation e(P ;Q) is equal to that of e(Q;P ). This means

that no matter which of the input points P and Q is being transferred in the insecure

channel, the designer can switch the coordinates (x, y) and (α, β). In this case, the

inputs of the operation blocks switch too.

Under this assumption, the point P is the private input and Q(x, y) is the public

input controlled by the attacker. The coordinate α of the (α + v) operation is the

target to be revealed and v can be calculated using the public input x (v ← x2 + 1).

In this case the above attack still works. The only difference is that the attacker

now holds the information of coordinate v(i), generates the hypothetical value and

calculates the correlation factor ρ of α on a bit-by-bit basis. Having acquired α, the

attacker can calculate the original coordinate αorig of point P , as described in section

5.3.2.

5.4.3 CPA against digit-serial multiplier(DSM): Condition 1) P (α, β) public,

attacking Q(x, y)

The multiplier used to implement the multiplication operation in GF (2m) is also

susceptible to power analysis attacks. Consider the first condition in which point

P (α, β) is taken as a public input and the attacker wants to reveal the value of v.

To attack the multiplication operation in the Tate pairing, pick the multiplication

γ ← αv in step 6 of Algorithm 2.2, as analyzed in section 5.3.3.

115



5.4. CPA attack against the GF (2m) operations

A DSM is used in the Tate pairing architecture, as illustrated in Fig. 4.6. The

structure of the multiplier is shown in Fig. 3.2. With two inputs a and b, the

multiplier calculates the product of a and d bits of b during every iteration. Take

d = 4 as an example, in this work the d = 4 bits of input b are referred to as a 4-bit

word of b. The target register, ‘z Register’ in Fig. 3.2, stores the product of a and a

4-bit word of b and is updated during every iteration. The multiplication c← a× b
finishes in n = dm

d
e clock cycles. In this section it is always assumed that the input

α is bound to input a of the DSM and v to input b. In Condition 1), P (α, β) is

public, i.e. input a of the DSM is public. The alternative condition, in which Q(x, y)

is public, i.e. a private and b public, will be discussed in Condition 2).

As can be seen from Fig. 3.2, in the DSM calculation, the input signal goes

through the multiplication block (the ⊗ block), ‘reduction block a’, ‘xor’ block,

‘shifted z’ block and ‘reduction block b’ and finally arrives at the ‘z Register’. To

generate the content in the ‘z Register’ using information about input a and b, the

attacker has to generate the values of signals in each step of the DSM calculation.

i.e. the attacker must generate the m+d−1 bit array after the multiplication blocks

and then the m bit array generated by ‘reduction block a’ and so on until the m

bit content in the ‘z Register’ is determined. To make sure the generation of the

hypothetical values works correctly for each of the intermediate signals, this work

applies CPA attack on a small DSM as the first experiment. If the attack works well

for the small DSM, it will be applied on Tate pairing implementations with different

DSM parameters and for different field sizes m.

An experiment on a 32-bit DSM of digit size d = 4

To apply a CPA attack on a DSM, initially consider a 32-bit DSM of digit size d = 4

(32/4 DSM). The 32/4 DSM is implemented on the Sasebo-GII board. A sample of

the collected power traces of the DSM in operation is shown in Fig. 5.7(a). As can

be seen, between the input and output operation which generate substantial noise,

there are 8 peaks corresponding to the 8 clock cycles of the 32/4 DSM operation.

For the structure of a DSM introduced in Fig. 3.2, during each iteration of the 32/4

DSM calculation, the 32 bit input a is known by the attacker. The other input,

the 4-bit word of b, is unknown. As was introduced in section 5.3, if the Hamming

Distance of the ‘z Register’ is correctly generated by the attacker, it will match the

collected power traces and, thus, results in a high correlation factor ρ value that can

be recognized from the noise level during the targeted clock cycle.

Thus, when attacking the 32/4 DSM, on keeping the same input b, N=1000

116



5.4. CPA attack against the GF (2m) operations

public inputs are sent to the a side of the DSM and, consequently, 1000 power traces

are recorded. This number is picked based on former CPA experiments [13]. In the

multiplication the most significant bits (MSBs) are first dealt with.

When attacking the first clock cycle of the multiplication, the following steps are

taken:

1. For each of the N = 1000 public inputs, generate 24 hypothetical values of the

4 bits of input b by enumerating all possible values from ‘0000’ to ‘1111’.

2. Current state D0 of the ‘z Register’ is initialized as all ‘0’.

3. For each of the 24 hypothetical values of b, generate hypothetical values of the

35 bit array after the ‘multiplication block’ and then the 32 bits array after the

‘reduction block a’ and so on until the 32 bit array in the targeted ‘z Register’,

named as D1.

4. Calculate the hypothetical Hamming Distance of the value in ‘z Register’ be-

tween current state D0 and next states D1 for each hypothetical value of the

‘z Register’ state, namely H = H(D0 ⊕D1).

5. Calculate the correlations between the hypothetical Hamming Distance values

H and the measured power traces W , namely ρ(W,H) = cov(W,H)
σW σH

.

As all the bits in the ‘z Register’ are set to ‘0’ before the multiplication starts, there

is no need to generate the values of the ‘z Register’. The hamming distance between

current state Dt and next state Dt+1 is equal to the hamming weight of the next

state Dt+1.

The correct correlation result of the 1st clock cycle is shown in Fig. 5.7(c). A

peak can be clearly seen at the time point where the 1st clock cycle of multiplication

happens. For the incorrect hypothetical values, for example an incorrect correlation

of the 1st clock cycle shown in Fig. 5.7(b), the correlation value is constant. This

makes it easy to distinguish the correct guess from the incorrect ones.

By correctly guessing the first 4-bit word of input b, the attacker now can make

sure the status of the ‘z Register’ at the 1st clock cycle of multiplication, i.e. the

attacker now knows D1. With this knowledge, the attacks on the 2nd ∼ 8th 4-bit

words of input b can be performed. The attacks on the remaining 4-bit words of

input b are basically the same as attacking the first 4-bit word. The only difference

is the generation of Dt. When attacking the first 4-bit word, the current status Dt

of the ‘z Register’ is all ‘0’. However, when attacking the remaining 4-bit words,

117



5.4. CPA attack against the GF (2m) operations

0 200 400 600 800 1000 1200

−2

0

2

(a) collected power trace sample

0 200 400 600 800 1000 1200
−0.5

0

0.5

(b) result of incorrect correlation

0 200 400 600 800 1000 1200
−0.5

0

0.5

(c) attacking 1st clk cycle

0 200 400 600 800 1000 1200
−0.5

0

0.5

(g) attacking 5th clk cycle

0 200 400 600 800 1000 1200
−0.5

0

0.5

(h) attacking 6th clk cycle

0 200 400 600 800 1000 1200
−0.5

0

0.5

( ) attacking 8th clk cycle

8th clk cycle

6th clk cycle5th clk cycle

1st clk cycle

1st clk cycle

x labels: time(ns), y labels: correlation factor ρ

clk cycles:  1st  2nd  3rd  4th  5th  6th  7th  8th

j

0 200 400 600 800 1000 1200
−0.5

0

0.5

(d) attacking 2nd clk cycle

2nd clk cycle

0 200 400 600 800 1000 1200
−0.5

0

0.5

(i) attacking 7th clk cycle

7th clk cycle

0 200 400 600 800 1000 1200
−0.5

0

0.5

6th clk cycle

0 200 400 600 800 1000 1200
−0.5

0

0.5

(e) attacking 3rd clk cycle

0 200 400 600 800 1000 1200
−0.5

0

0.5

(f) attacking 4th clk cycle

4th clk cycle3rd clk cycle

mV

Fig. 5.7: CPA attack: Correct and incorrect correlation factors Vs. measured power traces
of a simple DSM, m = 32, d = 4, a public, attacking b

the attacker must generate the correct current status Dt according to the successful

attacks on the previous 4-bit words. Fig. 5.7 shows the correct correlation results

using 1000 power traces. As can be seen from Fig. 5.7, when attacking each clock

cycle of the DSM, the correct correlation trace shows a peak at the related timing

point. By repeating the attack described above, the value of b of the 32/4 DSM can

be revealed by the attacker.

The attack above is applied on a small DSM, which has the same structure as

the normal DSMs used. The successful attack showed that attacking a DSM can

118



5.4. CPA attack against the GF (2m) operations

440 480 520 560 600 640 680

345

350

355

360

340

Time(ns)

V
o
lt
a
g
e
(m

V
)

1 clock cycle

Fig. 5.8: Measured power trace sample of the Tate pairing when 7 digit serial multiplierare
operating in parallel

be divided into attacking the ‘z Register’ n = dm
d
e times. When attacking each

clock cycle of the digit-serial multiplication, knowledge of the previous d-bit word

is necessary. It should be noted that, the power traces used to attack the 1st d-bit

word can be reused when attacking the 2nd d-bit word, i.e. the power traces can be

reused in attacking the whole DSM.

An experiment on an ηT pairing over GF (2163), with 7×DSM of digit size d = 4

In this experiment, pick a DSM which is used inside an ηT pairing system over

GF (2163). This ηT pairing design uses 7 multipliers with all 7 multiplications per-

formed in parallel, as shown in Fig. 4.7. This makes the design a large area imple-

mentation with a large amount of routing and complex control. Using 7 multipliers

reduces the calculation time but increases the difficulty of a successful attack. In this

case, in equation 5.1, scale a is comparatively small and noise becomes very large.

This is a much harder configuration to attack than a simple 32/4 DSM. A power

trace sample of the multiplication operation is shown in Fig. 5.8.

In the design of the Tate pairing using 7 multipliers, there are 5,187 registers

in total. When attacking the multiplier, the attacker generates the hypothetical

value of all 163 bits of the target 163-bit ‘z Register’ with knowledge of input α

and all possible values of the 4-bit word v. Thus, 24 hypothetical values of the 163-

bit ‘z Register’ are generated while attacking each 4-bit word of v. Among all the

7 multipliers in this design, one is processing the multiplications γ ← αv in step

6 which is under attack, while the remaining 6 are processing the multiplications

in C(t) ← C(t)2 × A(t) in step 5 of Algorithm 2.2. All 7 multipliers and other

logic cells, which consist of the lookup tables, registers and wiring between slices,

119



5.4. CPA attack against the GF (2m) operations

consume power when operating. The power consumption of these components can

be treated as noise, as described in equation 5.1. According to equation 5.5, the

correct correlation value of attacking a multiplier tends to
√

l
L

=
√

163
5,187

= 0.18.

In the attack, N=1000 public inputs are sent to the FPGA as point P (α, β)

and, thus, 1000 power traces are recorded for the correlation calculation. As the

CPA attack using N=1000 power traces reveals the secret information, taking more

power traces is not necessary. The multiplier operates on 4 bits of the input v in all

iterations, except for the first. In the first iteration, since the targeted field size is m

= 163, the multiplier deals with one bit ‘0’ as the most significant bit and then the

first 3 bits of v.

For each clock cycle of the attack, the following steps are taken:

1. For each of the N = 1000 public inputs, generate 24 hypothetical values of the

4 bits of input v by enumerating all possible values from ‘0000’ to ‘1111’.

2. Generate hypothetical values of all 163 bits in the target register ‘z Register’

for the current state Dt and the next state Dt+1.

3. Calculate the hypothetical Hamming Distance of the value in ‘z Register’ be-

tween current state Dt and next states Dt+1 for each hypothetical value of the

‘z Register’ state, namely H = H(Dt ⊕Dt+1).

4. Calculate the correlations between the hypothetical Hamming Distance values

H and the measured power traces W , namely ρ(W,H) = cov(W,H)
σW σH

.

Fig. 5.9 shows the CPA attack against one of the 7 multipliers of the Tate pairing

algorithm design over field GF (2163). It can be clearly seen from the figure that the

correlation factor of the correct hypothetical value of the 4-bit word tends to 0.18 as

calculated above, while all the incorrect ones are much smaller and tend to zero.

For better analysis of the the attack, take the real values in the CPA attack as

an exmaple here. In this attack, the four most significant 4-bit words are ‘(0)101

0111 1000 1001’. Assuming the three most significant 4-bit words of v ‘(0)101 0111

1000’ are correctly guessed, the hypothetical value of the next 4-bit word is one

of ‘0000’, ‘0001’, ... , ‘1111’. The attacker generates the correlation values of the

next multiplication state according to the hypothetical values. Fig. 5.9 shows the

correlation of all 24 predictions of the next state. The correct prediction of ‘1001’ of

the 4-bit word results in a correlation value much higher than other incorrect guesses.

120



5.4. CPA attack against the GF (2m) operations

100 200 300 400 500 600 700 800 900 1000

−0.2

−0.1

0

0.1

0.2

0.3

0.4

# of traces

Incorrect correlations

Correct correlation

Fig. 5.9: CPA attack: Correct and incorrect correlation factors vs. # of power traces of
Tate pairing, m=163, 7×DSM design, d=4, α public, attacking v

400 600 800

0.1

0

0

0.1

0.2

Time (ns)

Target time point
Inorrect Correlation

Correct Correlation

Measured power trace

Fig. 5.10: CPA attack: Correct and incorrect correlation factors Vs. measured power
traces of Tate pairing, m=163, 7×DSM design, d=4, α public, attacking v

For better analysis, an attacker may want to see how the correlation analysis

works with other time points in the power traces. Here the traces of all time points

rather than the target state only are presented. Fig. 5.10 shows the correct correla-

tion and an incorrect correlation. In the correct correlation trace, there is a peak at

the target state, while the incorrect correlation trace corresponds to noise. The cor-

rect correlation peak doesn’t drop instantly after the clock’s rising edge but decays

in the next one to two clock cycles because of the discharge of the transistors in the

FPGA takes time. A successful CPA attack shown in Fig. 5.9 determines 4 bits of

the secret text each time. By doing the same attack n times, n = dm
d
e = d163

4
e = 41,

121



5.4. CPA attack against the GF (2m) operations

Fig. 5.11: CPA attack: Correct and incorrect correlation factors Vs. # of power traces of
Tate pairing, m=571, 4×DSM design, d=8, α public, attacking v

using the same set of collected power traces, the secret text v can be recovered and,

thus, the secret input Q(x, y) can be revealed.

An experiment on a ηT pairing over GF (2571), with 4×DSM of digit size d = 8

A more complicated pairing system is proposed here for further discussion: a pairing

over field GF (2571), with a multiplier of digit size d = 8. In this case, the input

becomes 8 bits and, consequently the number of possible values of the input digits

is 28 = 256. The same steps as the previous attack were taken and the correlation

results are shown in Fig. 5.11. As can be expected from the above attacks, increas-

ing the digit size increases the number of hypothetical values of the input digits.

The computational complexity of attacking the digit-serial multiplier is therefore in-

creased. It can be predicted that when digit size d increases to a very large value, it

can be infeasible to solve the DSM using the attack proposed in this section. How-

ever, calculating more hypothetical values of the input digits does not require more

power traces. As long as d < m, this digit-serial structure substantially decreases

the security level of the pairing computations.

5.4.4 CPA against digit-serial multiplier(DSM): Condition 2) Q(x, y) public,

attacking P (α, β)

As mentioned in section 5.4.2, in the alternative condition, the inputs alter.

Consider the multiplication γ ← αv in step 2 of Algorithm 2.2 over the field

GF (2m) once again. The attacker holds the information of v and tries to reveal α.

As introduced in the DSM structure, input v is stored in a shift-register. In each

122



5.4. CPA attack against the GF (2m) operations

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

# of traces

c
o

rr
e

la
ti
o

n
 f

a
c
to

r 
 ρ

Fig. 5.12: CPA attack: Correct and incorrect correlation factors Vs. # of power traces of
Tate pairing, m=163, 7×DSM design, d=4, v public, attacking α

200 400 600 800 1000 1200 1400

0

0.2

0

0.2

time (ns)

c
o

rr
e

la
ti
o

n
 f

a
c
to

r 
 ρ

Incorrect correlation

target state

Correct correlation

Fig. 5.13: CPA attack: Correct and incorrect correlation factors vs. real time plot of Tate
pairing, m=163, 7×DSM design, d=4, v public, attacking α

clock cycle the most significant 4 bits of v are sent to the multiplier and are multiplied

with all of the 163 bits of α. Note that here the attacker controls the information of

all 163 bits of element v. However, in the first condition, the attacker can generate

the hypothetical values of the ‘z Register’ for all possible secret inputs (24) in each

clock cycle. In the second condition the secret input is sent to the multiplier once as

m bits. It is not possible to generate all the hypothetical values of the ‘z Register’.

In a CPA attack under this condition, the least significant 4 bits of input α are

targeted. The 24 = 16 distinct values of these 4 bits are generated. All the other

123



5.4. CPA attack against the GF (2m) operations

bits of α are assumed to be ‘0’ because of the lack of information about the other

bits of the private input α. Then, 16 hypothetical states for the next state of the

‘z Register’ are generated. In this condition, the CPA attacker can only treat the

affect of all other bits of α as noise. If this assumption is true, the effect of the other

bits average out and the previous CPA attack still works under this condition.

When attacking the least significant 4 bits of input α, the following steps are

taken:

1. For each of the N = 1000 public inputs, generate 24 hypothetical values of the

least significant 4 bits of input α by enumerating all possible values from ‘0000’

to ‘1111’. Assume all other bits of α are ‘0’.

2. Make use of the first and second 4-bit word of the public input v, i.e. v(163 ∼
160) and v(159 ∼ 156) , generate hypothetical values of all 163 bits in the

target register ‘z Register’ for the state of the first clock cycle D1 and the

second clock cycle D2.

3. Calculate the hypothetical Hamming Distance of the value in ‘z Register’ be-

tween first state D1 and second states D2 for each hypothetical value of the ‘z

Register’ state, namely H = H(D1 ⊕D2).

4. Calculate the correlations between the hypothetical Hamming Distance values

H and the measured power traces W , namely ρ(W,H) = cov(W,H)
σW σH

.

The 16 resulting correlation traces are shown in Fig. 5.12 and Fig. 5.13.

Fig. 5.12 shows the correlation values at the target time point. In contrast with

the previous attack shown in Figs. 5.7, 5.9 and 5.11, all correlation values at the

time point tend to a high value rather than only the correct correlation value being

high and incorrect correlation values being low. Also, Fig. 5.13 shows that not

only the correct, but also the incorrect correlation traces, show a peak at the target

state. This is because the hypothetical values the attacker generates in this case

not only correlate with the lowest 4 bits of private input α, but also correlate with

other bits of α. For example, if the least significant 8 bits of α are ‘0110 1011’, the

power traces measured will result in a high correlation value with the hypothetical

value generated by 4 bits of ‘1011’ as well as with ‘0110’ and ‘1101’ etc. Therefore

an attacker cannot distinguish between the correlation results of the correct and

incorrect predicted values of any 4 bits of input α. The unsuccessful attack shows

124



5.4. CPA attack against the GF (2m) operations

that by carefully choosing the input to the DSM, the secret information in the

multiplication of the ηT pairing algorithm can be protected from CPA attack.

5.4.5 CPA against Karatsuba multiplier

A Karatsuba multiplier can also be used to implement the computations overGF (2m)

in the Tate pairing algorithms. The original Karatsuba multiplier is difficult to at-

tack successfully. However, a variant of the Karatsuba multiplier, mentioned in [9]

and discussed in section 3.5.3, which improves the critical path by inserting regis-

ters makes the Karatsuba multiplier insecure. Here a correlation attack against the

Karatsuba multiplier with registers inserted is proposed.

As discussed in section 3.5.3, the Tate pairing designs over different field sizes

uses different schemes of sub-multiplier blocks, as listed in Table 3.4. In this attack,

an implementation of the ηT pairing over GF (2283) is targeted. It uses a 283-bit

short-critical-path Karatsuba multiplier with n = 18 bits sub-multiplier blocks, as

described in section 3.5.3. A total of 81 sub-multiplier blocks are needed, as shown

in Fig. 3.4. Among these 81 blocks, 16 blocks are directly related to the two 283-bit

input arrays. Knowing the inputs of these 16 blocks leads to knowing the information

of the input arrays to the Karatsuba multiplier. As in the previous attacks, here the

multiplication γ ← αv in step 6 of Algorithm 2.2 is once again chosen as a target. In

these sub-multiplier blocks, ‘Sub-m1’ calculates the least significant bits of the two

inputs, i.e. α(17 ∼ 0) and v(17 ∼ 0). This multiplication results in a 35-bit array

γ∗(34 ∼ 0) which is stored in register ‘post1’ and will take part in the addition and

reduction operations in the next clock cycle.

As was the case when attacking the DSMs, here the attacker is assumed to know

one of the inputs into the Karatsuba multiplier, α or v and is trying to reveal the

other. The two conditions (P (α, β) public or Q(x, y) public) are discussed as follows.

5.4.6 CPA against register inserted Karatsuba multiplier: Condition 1) P (α, β)

public, attacking Q(x, y)

In this condition, the attacker is assumed to be controlling the input α from pub-

lic input P (α, β) and is trying to reveal the information in v. When attacking

the Karatsuba multiplier, N=1000 public inputs are sent to the FPGA as point

P (α, β) and 1000 power traces are recorded. In the Karatsuba multiplication,

all sub-multiplications operates synchronously. When attacking the current sub-

multiplication, e.g. when attacking v(17 ∼ 0), the operations in other sub-multiplier

125



5.4. CPA attack against the GF (2m) operations

Fig. 5.14: CPA against Karatsuba multiplier in ηT pairing over GF (2m)

blocks are treated as noise.

To attack the Karatsuba multiplication, the attacker does the following steps:

1. For each of the N = 1000 public inputs, generate 218 = 262144 hypothetical

values of the 18 bits of input v(17 ∼ 0) by enumerating all possible values.

2. Generate hypothetical values for each of the 35 bits in the target register ‘post1’

for the current state Dt.

3. Load the value of the last state Dt−1 in register ‘post1’, which was stored in

the previous calculation.

4. Calculate the hypothetical Hamming Distance of the value in register ‘post1’

between current state Dt and previous states Dt−1 for each hypothetical value

of the ‘post1’ state, namely H = H(Dt ⊕Dt−1).

5. Calculate the correlations between the hypothetical Hamming Distance values

H and the measured power traces W , namely ρ(W,H) = cov(W,H)
σW σH

.

6. If the hypothetical value proves to be correct, store the state Dt for the calcu-

lation of the next attack.

It can be clearly seen that the correlation of the correct hypothetical value is

higher than most of the other correlation values. But it must be noted that, in this

attack, because the result γ∗(34 ∼ 0) did not go through a reduction block, if the first

126



5.4. CPA attack against the GF (2m) operations

bit of v(17 ∼ 0) is ‘0’, i.e. if v(17) = 0 and, at the same time, the current state Dt is

all ‘0’, the correlation result of v(17 ∼ 0) will be the same as that of v(17 ∼ 0) << 1,

where << 1 indicates a one bit left shift. The same case happens when v(0) = 0,

the correlation values of v(17 ∼ 0) >> 1 results in the same as that of v(17 ∼ 0),

where >> 1 indicates a one bit right shift. This means that when guessing each

18-bit part of input v, the correlation attack locks the REAL value between several

possible values. Let x represent the possible number of bits the REAL value can

shift, where 1 ≤ x ≤ 17.

For example, in the case where the possible values are:

011111111111111111 and 11111111111111110,

these two values can result in the same Hamming-Distance in the sub-multiplication

and these two values can be seen as at most one bits shift of each other i.e. x = 1.

Similarly in the case where the possible values are:

001111111111111111, 011111111111111110 and 111111111111111100,

these three values can result in the same Hamming-Distance in the sub-multiplication

and x = 2 in this case.

There is a 25% possibility that x = 1 happens, a 12.5% possibility that x = 2

happens and etc. Thus, the mean value of x can be calculated as per equation 5.9.

x̄ =
n−1∑
x=1

1

2x+1
× x ≈ 1 (5.9)

Equation 5.9 is considered as a good approximation for n > 8. As discussed in section

3.5.3, the sub-multiplier blocks are suggested to have bitwidth n of around 20, which

fit equation 5.9. This indicates that in the Karatsuba multiplier, on average, the

Real values shift within one bit. Thus, in attacking each sub-multiplier block, the

REAL value of the secret information can be locked between two possible values.

This means that when attacking an ηT pairing system of field size m, sub-

multiplier block size n, the correlation power analysis attack will lock the REAL

information of the secret input between 2d
m
n
e values. For example, an ηT pairing sys-

tem with m = 283 and n = 18, the CPA attack locks the secret information between

216 values. This greatly decreases the security value of the Karatsuba multiplier.

It can be seen from the above attack that the CPA attacks on the Karatsuba

127



5.5. Conclusions

multiplier are basically attacks on the sub-multiplier block units in the Karatsuba

multiplier architecture. For different field size m, the bitwidth n and the number of

sub-multiplier blocks can be different. In the first condition when m increases, if the

number of sub-multiplier stays the same, the bitwidth n must increase. The larger

the bitwidth n of the sub-multiplier block, the more hypothetical values (2n values)

the attacker has to generate and, thus, the harder it is to perform CPA attacks. In

the second condition when m increases, if the number of sub-multiplier increases,

the bitwidth n can stay the same or decrease. No matter how n changes, more sub-

multiplier blocks will always lead to a wider lock range of the REAL information

an attacker can acquire. Thus, the same attack can be performed on designs of the

same architecture over different fields. The difficulty of performing such an attack

increases when the field size increases.

5.4.7 CPA against register inserted Karatsuba multiplier: Condition 2) Q(x, y)

public, attacking P (α, β)

As in previous cases, the designer can choose to alter the two input points P and

Q of the Tate pairing design. Here the attacker controls input point Q(x, y), i.e.

v and tries to reveal information about point P (α, β), i.e. α. Coordinate α of the

γ ← αv operation is the target to reveal and v can be calculated using the public

input x (calculate v ← x2). In this case, the above attack still works. Take the

‘Sub-m1’ which calculates the least significant 18 bits of v and α as an example. The

only difference from Condition 1) is that the attacker now holds the information of

coordinate v(17 ∼ 0), generates the hypothetical values and calculates the correlation

factor ρ for all possible values of α(17 ∼ 0). By applying CPA attacks, the attacker

locks the real value of α in a small range. On average, there are 216 possible values

of α. The attacker can calculate the original coordinate αorig of point P through

calculation αorig = 8
√
α, as discussed in section 5.3.3. Unlike the case of DSMs,

altering the inputs does not provide actual protection to the Karatsuba multipliers.

5.5 Conclusions

In the above sections CPA attacks were successfully applied on the insecure steps

of the ηT pairing algorithm. Both the operations of addition, α + v in step 4 and

multiplication γ ← αv in step 6 of Algorithm 2.2, are shown to be insecure.

When attacking the adder, the attacker targets only one bit of the output register

at a time. This results in a small value of ρ. To distinguish this small value from the

128



5.5. Conclusions

noise level, the attacker has to take 50,000 power traces to perform a successful CPA

attack against the adder. From Fig. 5.6 it can be clearly seen that, by taking 15,000

power traces, the correct correlation factor can be recognized. Also by taking 50,000

power traces, the attacker can be sufficiently certain which hypothetical value is

correctly generated. In the successful attack against the DSMs, the attacker guesses

8 bits of input v, but generates all 571 bits of the ‘z Register’ for each clock cycle.

This gives the attack a good correlation result, a much higher ρ value than in the

attack on the adder. In this attack, 1000 power traces are taken. The correlation

results in Fig. 5.9 and Fig. 5.11 show that, by taking only 300 power traces, the

correct correlation factor can be recognized. This indicates that the number of bits

being targeted in the CPA attack affects the number of power traces required. For

the same design, the more bits being targeted, the less power traces are required.

Finally, consider the attacks on DSMs of different field size m. The design over

GF (2571) requires much more hardware resources and generates more noise in the

operations than over GF (2163). However, when attacking both designs over GF (2571)

and GF (2163), the number of power traces required is almost the same. This is

because the ratio of target registers to total registers, i.e. in equation 5.5 the value

of
√

l
L

, did not change much. This indicates that when applying CPA attacks on

hardware implementations, when the total number of registers in the design increases,

the number register targeted also should increase.

129



6. COUNTERMEASURES AGAINST CPA ATTACKS

6.1 Introduction

Successful CPA attacks have been demonstrated in Chapter 5. The results of several

attacks against different components in the Tate pairing system showed that it is

necessary to propose useful countermeasures against them. In this chapter, three

countermeasures are considered and their implementation results are given. From

both mathematical and hardware requirement perspectives, the efficiency of these

countermeasures will be analyzsd and the security aspect of these countermeasures

will be discussed.

Section 6.2 summarizes the weakness of the Tate pairing algorithm and gives sev-

eral suggestions to improve the security of its implementation. Section 6.3 introduces

several countermeasures proposed by Page and Vercauteren [16], Scott [17], Coron

[18] and Kim [145] et al, including the bilinearity method, projective coordinate

method and randomizing miller variable method. Section 6.4 discusses the security

aspects of the proposed countermeasures. In sections 6.5 and 6.6 these countermea-

sures are implemented on FPGAs and their costs are listed. Section 6.7 analyzes the

performance of these implementation results.

6.2 Weakness in the ηT pairing

As shown in Sections 5.4.1 and 5.4.3, by taking a number of power traces (N =

1000 − 50000) and applying a correlation power analysis (CPA) attack against the

hardware implementation, the ηT pairing algorithm is shown to be vulnerable to

power analysis attacks. The DSM is weak because when P (α, β) is public and Q(x, y)

is secret, by applying the CPA attack described above, an attacker can always reveal

the intermediate value v which is tightly related to coordinate x of point Q(x, y)

[144]. The security of a Karatsuba multiplier is reduced if pipelining is applied to

improve the multiplier’s performance. The adder is even weaker since if any of the

two operands is related to the inputs known by the attacker then, by applying a



6.3. Countermeasures to protect the ηT pairing

CPA attack, an attacker can always reveal the other operand input into the adder.

Thus, countermeasures must be applied on the ηT pairing to mask the vulnerable

multiplications and additions.

6.3 Countermeasures to protect the ηT pairing

Some weakness of the operation blocks can be overcome by carefully implementing

the algorithm following some rules. These include the weaknesses in the DSM, the

Karatsuba Multiplier and the adder:

1. RULE1: A designer must make the input a of the DSM private and not

accessible to the attacker.

If DSMs are used in the structure, the input arrangement of the DSMs must

be considered. Recall the DSM structure illustrated in Fig. 3.2, as proved in

Chapter 5, the a input is safe while b might leak information. For example, in

an IBE system, a designer should carefully choose the input to the multiplier

and make sure that the coordinates of the private input point KBob are always

input from the a side of the DSM. This can be achieved by altering the input

points of the pairing system or by altering the input from the DSM’s end.

2. RULE2: In the designs where a Karatsuba multiplier is used, the designer

must not improve the critical path by pipelining.

As discussed in the attack in section 5.4.5, if the designer uses inserted registers

to improve the performance of the Karatsuba multiplier, the cryptosystem can

be vulnerable. Although increasing the bitwidth n of the sub-multipliers in the

Karatsuba multiplier structure or increasing the number of such sub-multipliers

can make the CPA attack more difficult, the existence of inserted registers

always decreases the security of the Karatsuba multiplier.

By following the rules above, a designer can protect the operations in the multi-

plication modules from side channel attacks. However, no matter how the designer

chooses to implement the Tate pairing, the GF (2m) Adder structure is not secure.

Both in combinational logic architecture designs and bus type architecture designs,

secret information can be revealed through the attack presented in section 5.4.1.

From the attacker’s point of view, for the GF (2m) addition operation, both inputs

α and v of the adder shown in Fig. 3.1 should not be accessible to the attacker.

Neither carefully arranging the inputs of the ηT pairing nor by altering the inputs of

131



6.3. Countermeasures to protect the ηT pairing

the GF (2m) Adder can prevent the attacker, or the eavesdropper in the public key

system, from revealing one of the inputs. Thus, GF (2m) Adder must be protected.

RULE3: Additional operations must be introduced into the original ηT algo-

rithms to protect the two inputs of the GF (2m) Adder from being discovered by the

attacker.

In this chapter, three algorithms that follow RULE3 and protect the weak

GF (2m) addition operation in the ηT algorithm are proposed. Note that when im-

plementing these countermeasures, RULE1 and RULE2 must be considered too,

i.e. the multiplications still need to be carefully arranged due to the weaknesses in

the DSM and the Karatsuba Multiplier.

6.3.1 Exploiting bilinearity to protect the GF (2m) Adder

Some of the natural properties of pairings can be used in order to protect the pairing

against the attacks in Chapter 5 and the addition attack, in particular. One of the

most important properties is the bilinearity property:

e(Q;P1 + P2) = e(P1 + P2;Q) = e(P1;Q)× e(P2;Q), (6.1)

where ‘×’ represents a multiplication operation over GF (24m) [77]. Several counter-

measures against SCA attacks have been proposed based on this property [16, 17].

Equation 6.1 provides a relationship e(P ;Q) = e(P ;Q + R) ÷ e(P ;R), where ‘÷’

represents a division operation over GF (24m) [154]. This means that an ηT pairing

calculation can be derived by introducing a redundant random point R and applying

another two ηT pairing calculations.

Taking advantage of bilinearity, Page and Vercauteren [16] and Scott [17] pre-

sented a countermeasure which blinds an input point. By using the relationship

e(P ;Q) = e(P ;Q + R) ÷ e(P ;R), an algorithm based on the original pairing algo-

rithm is applied and shown in algorithm 6.1.

This modified algorithm has two inputs: P and Q ∈ E(GF (2m)). A random

point R ∈ E(GF (2m)) is applied in this algorithm. Step 1 adds the two points Q

and R through the point addition operation S = Q + R over E(GF (2m)) and two

independent ηT pairing operations are subsequently applied. Moreover, a division

‘÷’ over GF (24m) is required in step 4.

This countermeasure creates a new point S over the elliptic curve through the

point addition operation over E(GF (2m)). As shown in equation 6.2, a random

number σ ∈ GF (2m) is introduced to this equation to protect the point addition. A

132



6.3. Countermeasures to protect the ηT pairing

Algorithm 6.1 Countermeasure using bilinearity

Define: e(P ;Q) is an original ηT pairing algorithm in Algorithm 2.2.
Input : P,Q.
Random Point : R
Output : c = e(P ;Q+R)÷ e(P ;R)

1: S = Q+R 9M+9A+1S+2I
2: c1 = e(P ;S) (7m+53)M+(24m+65)A+(8m+10)S+1I
3: c2 = e(P ;R) (7m+53)M+(24m+65)A+(4m+10)S+1I
4: c = c1 ÷ c2 43M+38A+4S+1I
5: return c

total cost:(14m+158)M+(48m+177)A+(12m+25)S+5I

cost of 9 M, 9 A, 1 S and 2 I is incurred to perform such a secure point addition.

S = Q+R, random number σ ∈ GF (2m)

λ =
σ∗yQ+σ∗yR
σ∗xQ+σ∗xR

x′S = σ ∗ λ2 + σ ∗ λ+ σ + σ ∗ xQ + σ ∗ xR
y′S = (σ ∗ xQ + x′S)λ+ x′S + σ ∗ yQ
yS =

y′S
σ
, xS =

x′S
σ

Cost = 9M + 9A + 1S + 2I

(6.2)

Because point R and the random number σ are generated by a random number

generator and are not dependent on the inputs P or Q, point S is consequently

private. The two independent ηT pairings in step 2 and 3 take public point P and

private points S and R as inputs.

In this countermeasure, the two ηT pairings c1 = e(P, S) and c2 = e(P,R) can be

executed in parallel. The updates of intermediate variables α and β and some of the

RAM update operations are the same and can be combined. Thus, in each iteration

of the ‘for’ loop in steps 3-7 of Algorithm 2.2, which is executed m times and domi-

nates the calculation time, there are additional operations of 24A, 4S and 7M. The

operation c = c1÷c2 in step 4 of Algorithm 6.1 can be calculated through a GF (24m)

inversion (as introduced in section 4.2.3, costing 34M+16A+4S+1I) followed by a

GF (24m) multiplication (as introduced in section 4.2.1, costing 9M+22A), together

costing 43M+38A+4S+1I. The total cost of this countermeasure is (14m+ 158)M,

(48m+ 177)A, (12m+ 25)S and 5I.

133



6.3. Countermeasures to protect the ηT pairing

6.3.2 Randomized Miller variable to protect the GF (2m) Adder

The final exponentiation in step 8 of Algorithm 2.2 is calculated by

C(t)22m−1 = (C(t)2m−1)2m+1 = (
C(t)2m

C(t)
)2m+1. (6.3)

In this equation, C(t) = {C0 + C1t + C2t
2 + C3t

3} and Ci ∈ GF (2m), i = 0, 1, 2, 3.

For the Galois Field GF (24m) of t4 = t + 1 in this work, for m = 163, 283 and 571,

there is: C(t)2m = (C2m

0 +C2m

1 ) + (C2m

2 +C2m

3 )t+C2m

1 t2 +C2m

3 t3. Since there exists

the basic Galois Field property:

a2m = a, (6.4)

where a ∈ GF (2m). For equation 6.3, and with m mod 4 = 3, C(t)22m−1 can be

expressed as

C(t)22m−1 = (C(t)2m−1)2m+1 = ( (C0+C1)+(C2+C3)t+C1t2+C3t3

C0+C1t+C2t2+C3t3
)2m+1. (6.5)

If all elements in C(t) are multiplied by some random number r ∈ GF (2m), the

results of the final exponentiation of r ∗C(t) = r ∗C0 + r ∗C1t, r ∗C2t
2, r ∗C3t

3 and

of C(t) = C0 + C1t+ C2t
2 + C3t

3 are the same because:

(r ∗ C(t))22m−1

= ( (r∗C0+r∗C1)+(r∗C2+r∗C3)t+r∗C1t2+r∗C3t3

r∗C0+r∗C1t+r∗C2t2+r∗C3t3
)2m+1

= ( r∗{(C0+C1)+(C2+C3)t+C1t2+C3t3}
r∗{C0+C1t+C2t2+C3t3} )2m+1

= C(t)22m−1

(6.6)

For m = 233, the Frobenius map is different (see section 4.2.4), however, the same

result can be derived. This means that in step 4 of Algorithm 2.2, if the intermediate

Miller variable A(t) is simply multiplied by a random constant r ∈ GF (2m), r ∗A(t),

the resulting value of C(t) in step 9 of the ηT pairing will not change. This is a useful

property in the ηT pairing.

Utilizing this property, Scott [17] introduced another countermeasure which ran-

domizes the intermediate variable in the ‘for’ loop in steps 3-7 of Algorithm 2.2 by

introducing a random number r ∈ GF (2m). To resist side channel analysis (SCA)

attacks, all intermediate variables in steps 2 and 4 of Algorithm 2.2 are multiplied

by this random number r. The pairing algorithm is modified accordingly and shown

in Algorithm 6.2.

As can be seen in step 3, all the intermediate variables are multiplied by the

134



6.3. Countermeasures to protect the ηT pairing

Algorithm 6.2 Randomizing Miller variable

Input : P (α, β), Q(x, y)
Random Number : r
Output : c = e(P ;Q)

1: C(t)← 1
2: u← x2 + y2 + g + m−1

2
, v ← x2, α← α4, β ← β4

3: u← ru, δ ← rv, α1 ← rα, β1 ← rβ, γ ← δα
4: for i = 0 : m− 1
5: A(t)← γ + u+ β1 + (α1 + δ)t+ (α1 + δ + r)t2

6: C(t)← C2(t) ∗ A(t)
7: u← u+ δ + r, δ ← δ + r, α← α4, β ← β4, γ ← δα
8: α1 ← rα, β1 ← rβ,
9: end for

10: return C(t)← C(t)22m−1

total cost:(11m+58)M+(26m+65)A+(8m+10)S+1I

random number r ∈ GF (2m). This masks all the input coordinates and protects the

inputs of multiplications and additions from being controlled by the attacker. i.e.

the Miller variable A(t) can be expressed in equation 6.7.

A(t) = γ + u+ β1 + (α1 + δ)t+ (α1 + δ + r)t2

= r ∗ [γ + u+ β + (α + v)t+ (α + v + 1)t2]
(6.7)

This multiplies intermediate variable C(t) by random number r in each iteration.

According to equation 6.6, the affect of introducing r can be eliminated in the final

exponentiation in step 10 of Algorithm 6.2. The calculation result is the same as the

original pairing calculation.

This countermeasure takes 5 more multiplications in the pre-loop operation, 4

multiplications and 2 additions more in each iteration of the ‘for’ loop, (4m + 5)M

and (2m)A more in total as the extra cost to protect the ηT pairing.

6.3.3 Using projective coordinates to protect the GF (2m) Adder

A countermeasure using projective coordinates proposed by Coron [18] was expanded

on by Kim in [145]. This countermeasure takes a random value λ 6= 0 ∈ GF (2m)

and projects an affine point Q(x, y) to standard or homogeneous projective [31]

coordinates (X, Y, Z) ← (λx, λy, λ), where x = X
Z

= X
λ

, y = Y
Z

= Y
λ

. Algorithm 6.3

presents how this method is applied to the original ηT algorithm.

The coordinate projection operation happens in step 3 of Algorithm 6.3, fol-

lowing the first squaring operations of the input coordinates. The initiation of the

135



6.3. Countermeasures to protect the ηT pairing

Algorithm 6.3 Using homogeneous projective coordinates

Input : P (α, β), Q(x, y)
Random Number : λ 6= 0 ∈ GF (2m)
Output : c = e(P ;Q)

1: C(t)← 1
2: x← x2, y ← y2, α← α4, β ← β4

3: (X, Y, Z)← (λx, λy, λ)
4: V ← X,U ← X + Y + m−1

2
Z

5: J ← α(V + Z), K ← βZ, L← αZ
6: for i = 0 : m− 1
7: A(t)← J +K + U + (L+ V )t+ (L+ V + Z)t2

8: C(t)← C(t)2 ∗ A(t)
9: U ← U + V + Z, V ← V + Z, α← α4, β ← β4

10: J ← αV,K ← βZ,L← αZ
11: end for
12: return C(t)← C(t)22m−1

total cost:(11m+58)M+(26m+65)A+(8m+10)S+1I

intermediate variables in step 2 of Algorithm 2.2 is changed into equation 6.8:

v ← X
Z
, u← X

Z
+ Y

Z
+ m−1

2

γ ← α(X
Z

+ 1), β ← β, α← α
(6.8)

However, performing GF (2m) division is time consuming. Consider the property of

the ηT pairing algorithm, as presented in equation 6.6, where multiplying an element

over GF (2m) with every element of the Miller variable does not affect the result of

the ηT pairing’s calculation. Here every element in equation 6.8 is multiplied by Z,

where Z is initiated to the random number λ in step 3 and, thus, forms steps 4 and

5 in Algorithm 6.3. Note that the names of the intermediate variables are changed

accordingly.

Step 4 of Algorithm 2.2 is changed into step 7 of Algorithm 6.3 by multiplying

every element of A(t) by Z:

A(t)← α(X
Z

+ 1) + X
Z

+ Y
Z

+ m−1
2

+ β + (α + X
Z

)t+ (α + X
Z

+ 1)t2

← 1
Z

[α(X + Z)︸ ︷︷ ︸
J

+X + Y +
m− 1

2
Z︸ ︷︷ ︸

U

+ βZ︸︷︷︸
K

+( αZ︸︷︷︸
L

+ X︸︷︷︸
V

)t+ ( αZ︸︷︷︸
L

+ X︸︷︷︸
V

+Z)t2

← J +K + U + (L+ V )t+ (L+ V + Z)t2

(6.9)

136



6.3. Countermeasures to protect the ηT pairing

Algorithm M A S I
Original ηT 7m+53 24m+65 8m+10 1
Bilinearity 14m+140 48m+123 12m+25 5

Random Miller 11m+58 26m+65 8m+10 1
Projective 11m+58 26m+65 8m+10 1

Tab. 6.1: Cost of ηT pairing and countermeasures

Removing 1
Z

can be seen as multiplying by Z and the effect can be eliminated at the

end of the algorithm by the final exponentiation, as introduced in equation 6.6.

Similar to the randomized Miller variable method, this countermeasure modifies

the intermediate Miller variable, by introducing a random number λ ∈ GF (2m). Ev-

ery intermediate variable that relates to the point Q(x, y) is masked by this random

number in step 3 of Algorithm 6.3. In step 5, both input coordinates α and β of

input point P (α, β) are multiplied by Z, which is equal to λ. Therefore, every inter-

mediate variable in Algorithm 6.3 is protected by the introduced random number λ.

This countermeasure incurs the same cost, (4m+ 5)M and (2m)A, as Algorithm

6.2 for protecting the ηT pairing.

Note that other than homogeneous projective coordinates [31], Jacobian projec-

tive coordinates recommended in [32] uses map (X, Y, Z)↔(Z2x, Z3y, Z) and Lopez-

Dahab projective coordinates proposed in [33] uses map (X, Y, Z)↔(Zx,Z2y, Z).

These two types of projective coordinates also can be applied in this countermeasure.

The countermeasure algorithms and the costs of using such projective coordinates

are listed in Algorithms D.1 and D.2. Except for some differences in operations and

some additional variables that must be stored, the countermeasures using these three

projective coordinates are achieved at almost the same cost. Thus, in the rest of this

work, the algorithm using homogeneous projective coordinate will be picked as a

representative of all projective coordinate countermeasures.

6.3.4 Cost comparison between countermeasures

The costs of the original ηT pairing and the countermeasures are shown in Table 6.1.

As can be seen from the table, the countermeasure using the bilinearity property

almost doubles the calculation cost by performing two original ηT pairings. The

countermeasures randomizing the Miller variables and using projective coordinates

cost the same number of operations. The 11 multiplications in the ‘for’ loop dominate

the calculation time.

137



6.4. Security discussion

In all of the proposed countermeasures, random variables are introduced . In the

bilinearity countermeasure, there is a random number σ ∈ GF (2m) and a random

point R(xR, yR), where xR and yR ∈ GF (2m). Countermeasures randomizing Miller

variables and using projective coordinates introduced random numbers r and λ ∈
GF (2m), respectively. In this work, these random numbers are pre-stored in the

block RAM. However, it is suggested that designers of cryptosystems use hardware

Random Number Generators (RNG) with strong seeds to generate cryptographically

secure random numbers to protect the implementations [155]. Different types of

embedded RNGs are designed for this purpose [156, 157]. Using dedicated hardware

for random number generation ensures that the random number used in the same

design changes for every calculation. In choosing RNGs, the designer must make

sure that the RNG is secure against existing the attacks [158].

6.4 Security discussion

As discussed in section 6.3, to securely implement the ηT pairing algorithm the three

RULEs must be obeyed. The following sections discuss the security aspects of the

proposed countermeasures, with the successful attacks in mind.

6.4.1 Security of exploiting bilinearity method

The countermeasure using the bilinearity property introduced in Algorithm 6.1 does

not change the pairing operation itself, but masks the initial point and performs an

additional pairing calculation.

In an IBE (or ABE) system, decryptor Bob recieves point KBob (or DBob
i ) from

the PKG through a secure channel. By carefully arranging the inputs, the designer

can make sure that only the public point Pr (or Ei) can be tampered with by the

attacker. To apply an SCA attack, the attacker can only manipulate point Pr (or

Ei). Consider Algorithm 6.1 where the multiplications in step 1 mask the input point

Q(x, y) by multiplying the coordinates x and y by the coordinates of the random

point R(xR, yR). These coordinates of point R are not known by the attacker and

their effect cannot be removed. Even if the attacker knows and can tamper with the

information in point Q, the masked point S = (Q + R) is secure because of the use

of the random number σ ∈ GF (2m).

As in previous discussions, firstly consider the case in which point P is secret,

i.e. KBob or DBob
i and point Q is public, i.e. Pr or Ei. In this case, by introducing

the random number σ and carefully arranging the inputs of the multipliers, the

138



6.4. Security discussion

attacker cannot know any of the information contained in R and S in step 1 of

Algorithm 6.1. Since the inputs of calculations e(P ;S) and e(P ;R) are secure, this

countermeasure protects the ηT algorithm from CPA attacks. Consider the other

case in which point P , i.e. Pr or Ei, is public and point Q, i.e. KBob or DBob
i , is

secret. In this case, the attacker still controls the knowledge, in point P , of the

calculations e(P ;S) and e(P ;R). The CPA attacks proposed in chapter 5 still work.

By applying a CPA attack, the attacker can reveal the information in points S and

R. A point substraction operation Q = S−R can help the attacker reveal the secret

information in point Q.

This means that the designer must ensure that point P in Algorithm 6.1 is secure

against the attacker. For security reasons, the designer must apply KBob or DBob
i to

input P of the pairing calculation e(P ;Q) and let public point Pr or Ei enter from

input Q.

6.4.2 Security of randomized Miller variable method

Randomizing the Miller variable and using projective coordinates results in a similar

increase in point operations for both countermeasures. In both instances, the Miller

variable is affected by randomisation and the increase in the algorithm complexity is

the same. Consider the security of randomizing the Miller variable. Firstly, assume

the attacker knows the public point P (α, β). By inputting different values for P

and running the algorithm several times, the attacker controls the values of α and

β of Algorithm 6.2. In step 3 of Algorithm 6.2, the random value r is introduced

into every intermediate variable which will be used in the ‘for’ loop. To ensure that

u, δ, α1, β1 and γ are securely masked, random value r must be applied to the a

input of the DSM at this step. This will prevent the CPA attacks on the DSMs and,

therefore, prevent an attacker from determining the value of any of the variables in

step 5.

Now assume that the point Q(x, y) is the public point that can be manipulated

by the attacker and, therefore, the attacker can manipulate u and v in step 2. The

random value r masks the values u and δ in step 3. In DSM designs, as long as r is

applied to the secure input a of the multiplier, the attacker will never reveal u and v.

As a result, no matter which input is set to be public, this countermeasure is secure

against CPA attacks. The coordinates of the public input will always be masked by

the random value r, which is beyond the control of the attacker.

139



6.4. Security discussion

6.4.3 Security of using projective coordinates method

The countermeasure described in Algorithm 6.3 uses a similar approach to protect

against CPA attacks. In this countermeasure the pre-stored random value λ is in-

troduced. Assume the attacker knows the public point P (α, β) and tries to reveal

information in point Q(x, y). Intermediate values J , K and L are masked in step 5,

while value V and Z are unknown to the attacker. By carefully arranging the inputs

to the DSMs, an attacker will not be able to reveal any of the intermediate values

J , K and L. Consider K as an example. In the multiplication K ← βZ in step 5

of Algorithm 6.3, Z is applied to the a input of the DSM while β is applied to the

b input of the DSM. In this way, the countermeasure protects information relating

to the secret point Q(x, y) from the attackers. Alternatively, assume the attacker

knows the public point Q(x, y) and, thus, P (α, β) is private. Values x and y are

masked in step 3 of Algorithm 6.3 by the pre-stored random value λ. The attacker

cannot get variables X, Y and Z. Thus, J , K and L are secured in step 5. The

attacker has no chance of revealing information related to the secret point P (α, β)

in this case. In this way, the countermeasure using projective coordinates protects

the ηT algorithm against CPA attacks.

6.4.4 Security operations in common

In both countermeasures using the randomized Miller variable and projective coor-

dinates, no matter how the inputs are assigned, RULE1 is satisfied. However, in

the bilinearity countermeasure in Algorithm 6.1, the designer must be careful. Only

when the public input (KBob in IBE or DBob
i in ABE) is set to Q and the private

information (Pr in IBE or Ei in ABE) is set to P can this countermeasure follow

RULE1 and thus, protect the ηT algorithm against CPA attacks.

RULE2 can be satisfied by not inserting registers into the Karatsuba multipliers.

All the three countermeasures proposed above provide different approaches to

mask the weak addition operation in Algorithm 2.2, i.e. RULE3. The bilinearity

method in Algorithm 6.1 adds a point addition operation before the pairing calcula-

tions and masks the public input point Q to an unknown point S and, thus, masks

the input of the weak addition operation in the original ηT algorithm. Both counter-

measures using randomized Miller variable and projective coordinates in Algorithms

6.2 and 6.3 introduced a random variable (r and λ) into the original ηT algorithm.

By multiplying both inputs of the weak addition operation with the random vari-

able, these two countermeasures ensure that the addition operation no longer leaks

140



6.5. Bus type top-level architecture implementation result of the countermeasures

information.

6.5 Bus type top-level architecture implementation result of the

countermeasures

Since no more operations other than addition, squaring, multiplication and division

are needed in the proposed countermeasures, the bus type top-level architecture, as

introduced in chapter 4, can be used to implement the countermeasures. In a bus

type top-level architecture, as shown in Fig. 4.6, for the same field size m, the same

number of multipliers #Mult and the same digit size d, the same design structure can

be reused for the new algorithms. Thus, the area required for the countermeasures

is the same as those of the naively implemented Tate pairing, the area results of

the designs is not listed in this chapter. However, the newly added operations in

the countermeasures require additional calculation time. The time increment of the

countermeasure in different schedules of the Tate pairing designs is shown in Table

E.1, E.2, E.3 and 6.2. For better comparison, the calculation time of the original

design is also given as Algorithm 2.2. Note that, because the method of inserting

registers to improve the Karatsuba multiplier is proven to be insecure, such method

is not applied in the implementations of this chapter.

In Tables E.1, E.2, E.3 and 6.2, Algorithm 6.1 represents the operation time

of the Tate pairing protected by the bilinearity countermeasure. The operation

times for the randomised Miller variable (section 6.3.2) and projective coordinate

(section 6.3.3) countermeasures are represented by Algorithm 6.2 & 6.3 respectively.

Countermeasures in Algorithm 6.2 and Algorithm 6.3 have different motivations and

different names for their intermediate variables, but result in the same cost and

calculation flow. The schedules of the operations are the same and, thus, incur the

same time penalty for each configuration. The column labelled ‘Ratio’ in Tables E.1,

E.2, E.3 and 6.2 shows the ratio of calculation time for the countermeasures to the

original algorithm under the same design parameters.

Since there are 14 multiplications in the ‘for’ loop of Algorithm 6.1 and 11 mul-

tiplications in the ‘for’ loop of Algorithms 6.2 and 6.3, for fastest designs, 14 and 11

multipliers are used to implement the countermeasures, respectively. As in previous

chapters, area, time and A*T product are taken as the parameters to show the per-

formance of the designs. The implementation results are shown in Tables 6.3 and

6.4.

It should be noted, the bus type implementations of Algorithm 6.1 using 11

141



6.5. Bus type top-level architecture implementation result of the countermeasures

Parameters Alg.2.2 Alg. 6.1 Alg. 6.2 & 6.3

#Mult d n
Time Time

Ratio
Time

Ratio
(µs) (µs) (µs)

1× DSM

1 571 10182.6 20451.0 200.8 % 15831.2 155.5 %
2 286 5215.9 10476.0 200.8 % 8057.4 154.5 %
4 143 2723.9 5471.0 200.9 % 4156.9 152.6 %
8 72 1486.6 2986.0 200.9 % 2220.3 149.4 %
16 36 859.2 1726.0 200.9 % 1238.4 144.1 %
32 18 545.5 1096.0 200.9 % 747.4 137.0 %

2× DSM

1 571 6063.2 10832.8 178.7 % 8974.9 148.0 %
2 286 3155.4 5664.2 179.5 % 4626.4 146.6 %
4 143 1696.4 3070.7 181.0 % 2444.5 144.1 %
8 72 972.0 1783.1 183.4 % 1361.2 140.0 %
16 36 604.7 1130.2 186.9 % 811.9 134.3 %
32 18 421.1 803.8 190.9 % 537.3 127.6 %

3× DSM

1 571 4609.2 7947.8 172.4 % 6086.5 132.1 %
2 286 2427.4 4219.5 173.8 % 3179.9 131.0 %
4 143 1332.6 2348.9 176.3 % 1721.5 129.2 %
8 72 789.1 1420.1 180.0 % 997.4 126.4 %
16 36 513.5 949.1 184.8 % 630.3 122.7 %
32 18 375.7 713.6 190.0 % 446.7 118.9 %

4× DSM

1 571 3348.0 6879.9 205.5 % 4910.9 146.7 %
2 286 1817.0 3728.1 205.2 % 2619.5 144.2 %
4 143 1027.1 2102.2 204.7 % 1438.5 140.1 %
8 72 642.1 1309.6 204.0 % 862.5 134.3 %
16 36 446.9 907.7 203.1 % 570.4 127.6 %
32 18 349.3 706.8 202.4 % 424.4 121.5 %

7× DSM

1 571 1829.0 3854.2 210.7 % 3404.4 186.1 %
2 286 1037.8 2174.7 209.5 % 1836.6 177.0 %
4 143 648.2 1347.4 207.9 % 1062.9 164.0 %
8 72 452.3 931.6 206.0 % 674.5 149.1 %
16 36 351.8 718.4 204.2 % 476.0 135.3 %
32 18 302.3 613.3 202.9 % 377.8 125.0 %

Kara. no Reg 5 419.7 843.6 201.0 % 516.9 123.2 %

Tab. 6.2: Calculation time (µs) of proposed countermeasures, m = 571

multipliers of digit size d=32 and Algorithm 6.2 and 6.3 using 14 multipliers of digit

size d=16 and 32, are too complicated and cannot be implemented with the software

tools. Several implementations in the table above exceed the area constraint of the

Virtex-V xc5vlx50 technology [84]. The hardware resources required (in the form of

registers and LUTs) can be calculated, but to implement such designs, a larger FPGA

device must be used. In addition, the operation times of these implementations are

142



6.5. Bus type top-level architecture implementation result of the countermeasures

Parameters Results

m d n Regs LUTs
Freq. Time Area*Time

(MHz) (µs) (LUT*s)

163

1 163 8721 10445 190.2 389.4 4.07
2 82 8720 13053 180.6 184.8 2.41
4 41 8705 13388 195.5 164.9 2.21
8 21 8746 18103 195.5 140.9 2.55
16 14 8843 29681 195.5 132.5 3.93
32 14 9039 44746 185.3 139.8 6.25

233

1 233 12359 15330 183.2 557.5 8.55
2 117 12360 18813 183.2 364.4 6.86
4 59 12373 21378 185.4 264.7 5.66
8 30 12414 28053 185.4 217.0 6.09
16 15 12399 40848 184.5 193.2 7.89
32 14 12595 61360 187.8 188.2 11.55

283

1 283 14977 14121 179.2 767.8 10.84
2 142 14978 18334 179.9 486.6 8.92
4 71 14962 22879 190.1 327.9 7.50
8 36 15002 30969 188.0 265.5 8.22
16 18 14990 50114 181.4 239.9 12.02
32 14 14962 69814 183.9 228.9 15.98

571

1 571 29970 27978 178.1 2465.6 68.98
2 286 29969 35943 178.1 1436.7 51.64
4 143 29940 43420 193.4 847.6 36.80
8 72 29983 51686 193.4 611.5 31.61
16 36 Out of memory
32 18 Out of memory

Tab. 6.3: Performance of the countermeasures applied on ηT algorithm, Algorithm 6.1,
#Mult=14, bus type top-level architecture

estimated values.

Having all multiplications in the ‘for’ loop of the Tate pairing operated in parallel

speeds up the calculation. By using more multipliers, the calculation time of the ‘for’

loop can be reduced even further. However, considering the pipeline schedule of the

DSMs, as illustrated in Fig. 2.11, the bus type architecture can arrange the input

pair of only one DSM in one clock cycle. Thus, to pipeline all 14 (or 11) DSMs in the

‘for’ loop, at least 14 (or 11) clock cycles are required. In this case, even though it

only takes 6 clock cycles to calculate a GF (2163) digit-serial multiplication, or 8 and

9 clock cycles for fields GF (2233) and GF (2283), respectively, the DSM will still have

to wait for 14 clock cycles until the data bus is free from arranging the inputs of the

13 other multiplications. This makes using digit size d=32 on these comparatively

143



6.6. Mixed Type Implementation results of the countermeasures

Parameters Results

m d n Regs LUTs
Freq. Time Area*Time

(MHz) (µs) (LUT*s)

163

1 163 7197 6719 211.1 221.1 1.49
2 82 7196 8490 211.1 151.6 1.29
4 41 7184 10368 211.1 116.4 1.21
8 21 7217 12033 209.7 100.0 1.20
16 11 7293 19800 211.1 90.7 1.80
32 11 7458 33656 211.1 90.7 3.05

233

1 233 10206 9145 210.0 394.9 3.61
2 117 10207 11834 216.4 248.7 2.94
4 59 10217 14295 210.0 186.9 2.67
8 30 10249 17065 210.0 152.2 2.60
16 15 10237 27547 210.8 133.8 3.69
32 11 10402 46281 210.8 129.0 5.97

283

1 283 12371 11868 217.8 527.2 6.26
2 142 12369 15109 217.8 332.3 5.02
4 71 12359 21249 210.4 242.5 5.15
8 36 12392 24642 210.4 192.4 4.74
16 18 12380 37236 210.4 166.6 6.20
32 11 12369 55866 212.8 154.8 8.65

571

1 571 24769 23516 222.9 1776.2 41.77
2 286 24767 29785 222.9 1023.1 30.47
4 143 24756 25071 219.8 654.3 16.40
8 72 24790 41569 219.8 464.1 19.29
16 36 24779 66833 219.8 367.6 24.57
32 18 Out of memory

Tab. 6.4: Performance of the countermeasures applied on ηT algorithm, Algorithm 6.2 &
6.3, #Mult=11, bus type top-level architecture

small fields inefficient.

6.6 Mixed Type Implementation results of the countermeasures

As illustrated in Fig. 4.8 of section 4.3.4, the mixed type top-level architecture can

be applied to speed up the hardware accelerator of the Tate pairing algorithm. In

this section the implementation results of the countermeasures proposed using the

mixed type top-level architecture are presented. As in designing the original ηT

algorithm, the mixed type design of Algorithms 6.2 and 6.3 expands all the addition

and squaring operations in the ‘for loop logic’ block. All these operations require

only one clock cycle. Together with the 7 multiplications which require 8 clock cycles,

144



6.7. Analysis of implementation result of the proposed countermeasures

Parameters Results

m Algorithm n Regs LUTs
Freq. Time

Ratio
Area*Time

(MHz) (us) (LUT*s)

163
Alg. 6.1 1 14043 29257 149.1 34.1 254.8 % 1.00

Alg. 6.2 & 6.3 1 11604 20735 148.9 18.2 135.9 % 0.38

233
Alg. 6.1 1 30747 42094 149.6 47.1 256.2 % 1.98

Alg. 6.2 & 6.3 1 16424 30831 148.6 25.3 137.6 % 0.78

283
Alg. 6.1 1 37592 53758 145.5 58.1 251.4 % 3.12

Alg. 6.2 & 6.3 1 20009 39727 140.6 32.1 138.9 % 1.27

571
Alg. 6.1 5 79648 93390 171.9 285.3 221.7 % 26.65

Alg. 6.2 & 6.3 5 44203 64867 171.9 198.9 154.5 % 12.90

Tab. 6.5: Performance of the countermeasures applied on ηT algorithm, mixed type top-
level architecture, no registers inserted

each iteration of the ‘for’ loop in Algorithms 6.2 and 6.3 requires 9 clock cycles. In

the Karatsuba design of Algorithm 6.1, there is only one original ‘for loop logic’

block. The two Tate pairing operations share the same block. A 2:1 multiplexor

array selects the input to the ‘for loop logic’ block. The multiplixor array requires

additional hardware resources, but less than a ‘for loop logic’ block.

Area, time and A*T product are taken as parameters for analysis of the per-

formance of the implementations. The experimental results over Xilinx Virtex-V

xc5vlx50 technology [84] are shown in Table 6.5. Note that, except for the design

of Algorithms 6.2 and 6.3 over GF (2163), all the designs, as listed in Table 6.5, ex-

ceed the area constraint of Xilinx Virtex-V xc5vlx50 technology [84]. Larger FPGA

technology must be chosen to implement these larger designs.

6.7 Analysis of implementation result of the proposed

countermeasures

This section compares the performance of the designs according to the implemen-

tation results in the tables in the previous sections. As in the analysis in section

4.4, because for each m, when the parameters (#Mult and d) change, the trends of

how the implementation results change are similar. Here, implementation results for

proposed countermeasures over GF (2571) are taken as an example.

145



6.7. Analysis of implementation result of the proposed countermeasures

Fig. 6.1: Time requirement of the countermeasures, bus type, DSM designs, d=1, 2 and 3,
m=571

6.7.1 Time analysis

Figs. 6.1 and 6.2 show the calculation time of the original ηT algorithm (Algorithm

2.2), the countermeasure in Algorithm 6.1 and the countermeasures in Algorithms

6.2 and 6.3, over GF (2571). Each sub-figure shows the case for different #Mult.

Fig. 6.3 shows the calculation time of the maximum DSM designs of the counter-

measures, i.e. 14×DSM for Algorithm 6.1 and 11×DSM for Algorithms 6.2 and

6.3. The Karatsuba design timing results are also illustrated in Fig. 6.3. As can

be seen from these figures, when #Mult increases or when digit size d increases,

the calculation time of the designs decreases. Optimizing the multiplications speeds

up the countermeasures in the same way as it speeds up the original ηT algorithm.

However, when using the same multiplier schedule, Algorithm 6.1 always requires

more time for the calculation than Algorithms 6.2 and 6.3 due to the time penalty

in the additional operations. In Figs. 6.1 and 6.2, when using the same number of

multipliers, the calculation time required for Algorithms 6.2 and 6.3 is always more

than that for the original ηT algorithm. However, the ‘Max DSM Designs’ sub-figure

of Fig. 6.3 shows that by adding more DSMs into the design and having all the addi-

tional 4 multiplications pipelined with the original 7 multiplications, the calculation

of Algorithms 6.2 and 6.3 can be speeded up to same level as that of the original ηT

algorithm. Algorithm 6.1 doesn’t show this feature because apart from additional

multiplications, when compared to Algorithm 2.2, the additions and squarings in Al-

gorithm 6.1 are doubled. Optimizing the multiplications in Algorithm 6.1 does not

146



6.7. Analysis of implementation result of the proposed countermeasures

Fig. 6.2: Time requirement of the countermeasures, bus type, DSM designs, d=4 and 7,
m=571

help reduce the calculation time of the other operations. The ‘Karatsuba Designs’

sub-figure shows the calculation time of designs using Karatsuba multipliers over

field GF (2571). ‘BN’ and ‘MN’ represent bus type design without registers inserted

and mixed type design with registers inserted, respectively. Similar to the maximum

DSM designs, the bus type Karatsuba design results of Algorithms 6.2 and 6.3 and

Algorithm 2.2 are almost the same. However, in mixed type designs over GF (2571),

the ‘for’ loop takes 36 clock cycles for Algorithm 2.2, 72 clock cycles for Algorithm

6.1 and 56 clock cycles for Algorithms 6.2 and 6.3, respectively. This enlarges the

difference between the calculation time for each algorithm.

6.7.2 Time ratio analysis

Fig. 6.4 and 6.5 show the time increment ratio of the proposed countermeasures

compared to the original ηT of Algorithm 2.2. In Fig. 6.4 it can be clearly seen

that the calculation time ratio for designs implementing Algorithm 6.1 is over 200%

when using 1, 4 and 7 DSMs and Karatsuba multiplier of both types of top-level

architecture. However, when using 2 and 3 DSMs, the designs of Algorithm 6.1

exhibit a time ratio of less time than 200%. This is because the unused DSMs

in these two cases of the original ηT algorithm, as shown in the schedule in Fig.

4.7, are utilized to perform the additional operations in Algorithm 6.1. When digit

size d increases, the proportion of calculation time consumed by the multiplications

147



6.7. Analysis of implementation result of the proposed countermeasures

Fig. 6.3: Time requirement of the countermeasures, bus type, maximum DSM designs and
Karatsuba designs, m=571

Fig. 6.4: Time Ratio of the countermea-
sure in Algorithm 6.1, m=571

Fig. 6.5: Time Ratio of the countermea-
sures in Algorithms 6.2 & 6.3,
m=571

decreases. The time ratio does not vary significantly, but shows a trend towards

200%. When the calculation time of the multiplications is reduced to the extreme

case, i.e. in only 1 clock cycle, the ratio should be 200%, as in the case of bus type

Karatsuba designs. As in Fig. 6.4, in the calculation time increment ratio shown

in Fig. 6.5, different numbers of DSMs provide different utilizations of the unused

DSMs in the original ηT algorithm. In bus type designs, increasing the digit size d

of the DSMs makes the time ratio tend to the same level as the bus type Karatsuba

design. In both Figs. 6.4 and 6.5, mixed type Karatsuba designs exhibit higher

time ratios than bus type Karatsuba designs. This is because the ‘for loop logic’

block optimized the calculation time of the additions and squarings to a very short

time and consequently multiplications once again dominate the calculation time and,

thus, dominate the time increment ratio: about 14
7

= 200% for Algorithm 6.1 and

148



6.7. Analysis of implementation result of the proposed countermeasures

11
7

= 157% for Algorithms 6.2 and 6.3.

Fig. 6.6: Area requirement of countermeasure implementations across different field size
m, mixed type top-level architecture

As the countermeasure designs using DSMs has the same structure as the original

ηT algorithm, the bus type designs’ area performances are not discussed further here.

Fig. 6.6 shows the area performance of the mixed type designs of the countermea-

sures. As can be seen from the algorithms, the countermeasures require additional

operations to protect the pairing algorithm. To implement the additional multiplica-

tions in the ‘for’ loop, more multiplexors are required. Also, to implement additional

additions and squarings in the ‘for’ loop, more XOR chains are required. These all

make the hardware resources requirement of the countermeasures larger than that of

the original ηT algorithm. When field size m increases from 163 to 283, the Karatsuba

multiplier in the mixed type designs increases proportional to n2 × 3log2
m
n . When

m increases from 283 to 571, although the Karatsuba multiplier does not change

significantly, all the addition and squaring components in the designs grow linearly

with m and, thus, the area of the designs still increases.

6.7.3 A*T product analysis

Fig. 6.7 shows the A*T product comparison of bus type and mixed type Karatsuba

designs. Since the bus type designs of the same parameters are of the same area as the

original ηT algorithm, the A*T product of such designs are of the same ratio as their

timing performance as seen in Fig. 6.7. However, the A*T product performances of

the mixed type Karatsuba designs shows a difference. The A*T product of Algorithm

2.2 is smaller than its bus type design. In the countermeasure designs, because of

the additional operations, both the calculation time and the hardware resources

149



6.8. Conclusions

Fig. 6.7: Area*Time product of the countermeasures, Karatsuba designs, m=571

requirements increased. This makes the A*T product of mixed type Karatsuba

designs larger than that of bus type Karatsuba designs.

6.8 Conclusions

This chapter investigated the FPGA implementation of three countermeasures ap-

plied to the ηT algorithm, to protect it against CPA attacks. All the three coun-

termeasures proposed in this chapter ensure the security of ηT pairing in IBE and

ABE systems. As discussed in section 6.4, the countermeasures Randomizing Miller

variable in Algorithm 6.2 and using projective coordinates in Algorithm 6.3 provide

the security of the ηT pairing algorithm, irrespective of which input is exposed to

the insecure channel. However, the designers using the bilinearity method shown in

Algorithm 6.1 still have to carefully arrange the inputs by connecting the information

from an insecure channel to input Q of the pairing based cryptosystem.

The operations required for the countermeasures, when compared to original ηT

algorithm, were analyzed. The implementation results of these three countermea-

sures for bus type and mixed type architectures were shown. Similar to the imple-

mentation results of the original ηT algorithm, the mixed type architecture shows the

best performance in calculation time. However, the cost of fast calculation speed is

a large hardware resources requirement. Most of the designs of the countermeasures

using the mixed type architecture exceed the area constraint of the proposed FPGA

device in this work (Xilinx Virtex-V xc5vlx50 technology [84]).

The time increments of the countermeasures under different multiplier schedules

were listed. The results show that the bilinearity countermeasure takes 200% of

150



6.8. Conclusions

the calculation time of the original ηT algorithm when using the same amount of

hardware resources. The time ratio of countermeasures Randomizing Miller variable

and using projective coordinates is about 157%, which is smaller.

This chapter showed the implementation results of the proposed three counter-

measures. Unlike previous works [16, 17, 18, 145], this work presented the cost

overheads of the countermeasures from the hardware designer’s point of view.

151



7. CONCLUSIONS

7.1 Contributions to the Field

The main contributions of this thesis are summarized in this Chapter. In Chapter 3

the basic architecture for operations on elliptic curves over finite field GF (2m) was

introduced. The adder and the bit-parallel squarer are commonly used in Elliptic

curve based cryptosystems. Among the two multipliers introduced, the DSM calcu-

lates a multiplication in n = dm
d
e clock cycles. The original Karatsuba multiplier

calculates a GF (2m) multiplication in only 1 clock cycle. With registers inserted to

improve the critical path performance, the Karatsuba multiplier calculates a GF (2m)

multiplication in 3 clock cycles. For the two structures of divider/inverter, the EEA

divider calculates in a fixed time of 2m+1 clock cycles, the IT inverter reuses the

multiplier and the squarer and the calculation time depends on the multiplier struc-

ture used in the design. These different operation blocks provides the designer with

various ways of configuring the hardware resources in implementing Elliptic curve

based cryptosystems.

Chapter 4 studies the common used top-level structures of the pairing based

cryptosystems. With all the operation blocks introduced in Chapter 3, the designer

is able to build up his own cryptosystem. A bus type top-level architecture for

the ηT algorithm of Tate pairing is implemented and the results are given. In this

architecture a bus connect all the GF (2m) components and memory control units.

This type of structure can be flexible. With more hardware resource connected to

the bus, the system can calculate the algorithm faster. In this work, time, area,

and A*T product (area × time) are used to analyse the efficiency of the hardware

implementations. As was to be expected, for the same architecture, the more area

used, the faster speed achieved. Fore designs over GF (2571), among the designs of

bus type architecture using DSMs, the design with one DSM of digit size d=32 shows

the lowest A*T product, i.e. the best efficiency between area and time. However,

the design using Karatsuba multiplier with registers inserted shows the lowest A*T

product amongst all bus type architecture designs.



7.1. Contributions to the Field

In Chapter 4, the reconfigurable designs of bus type top-level architecture are

introduced. As there are 7 multiplications in the main loop of the proposed ηT al-

gorithm, using different number of multipliers requires different scheduling of the

operations. With different digit sizes of the DSMs, this work presents the implemen-

tation results of the reconfigurable structure. Both DSM and Karatsuba multiplier

are used as the GF (2m) multiplier unit. The implementation results with both area

and timing performance are shown. This work was presented in the 6th International

Symposium on Applied Reconfigurable Computing 2010 (ARC 2010) [159].

The bus type architecture is reconfigurable, but adds in only multipliers to speed

up the multiplications of the ηT pairing algorithms. It does not perform the addition

and squaring operations in the “for” loop efficiently. Thus a mixed type top-level

architecture which speeds up the other operations in the “for” loop is proposed. This

method further compresses the calculation time of the “for” loop by calculating all

addition and squaring operations in the loop in parallel. It results in an excellent

calculation time. Among all the designs over the mixed type architecture design

using Karatsuba multiplier without registers inserted shows the lowest A*T product.

However, a large area is required to implement such method.

Chapter 5 considers the side channel analysis (SCA) attacks which make use of

the side channel information leaked during the operation of target cryptosystem.

A Correlation power analysis attack is applied to the FPGA implemented cryp-

tosystems in this work. The commonly used power consumption models to fit the

hardware implementations, the Hamming Weight model and the Hamming Distance

model, are studied. This work chose the Hamming Distance model because this

model fits the side channel information better.

For the ηT algorithm implementation in this work, the attacks applied are based

upon the assumption that the ηT algorithm is to be used in an IBE or an ABE

system which works allows two parties to communicate through an insecurity chan-

nel. In the insecure channel, it is assumed that an attacker can get access to and

can alter the ciphertext sent between the sender and the intended receiver. This

assumption is a common condition in public key cryptosystem attacks. This chapter

fully analyzes the ηT algorithm in the IBE and ABE schemes and identifies several

possible weaknesses in the addition operation and the multiplication operations of

the ηT algorithm. The detailed steps for attacking each possible weakness are intro-

duced. The power traces collected from the operating hardware and the calculated

correlation results are illustrated. Successful attack results shows that the power

consumption model selected in this work fits well the hardware power consumption.

153



7.2. Future work

As long as the attacker finds a suitable target and build the computable power con-

sumption model, the correlation power analysis attack can work well with the side

channel information collected.

The results of attacks on the pairing implementation with different number of

multipliers are presented. The successful attack shows that increasing the amount

of hardware resource taken does not help the security aspect of the cryptosystem.

Whether with one multiplier or with 7 multipliers in parallel, the side channel attacks

will reveal the private information. This CPA attack against the multipliers in the

ηT algorithm implementation of bus type top level structure was presented in the

7th International Symposium on Applied Reconfigurable Computing in 2011 (ARC

2011) [160].

In Chapter 6, several important weaknesses when implementing the multiplica-

tions in a pairing based cryptosystem are listed from the attacker’s point of view.

The security analysis in this chapter pointed out that by carefully arranging the

multipliers in the ηT pairing algorithm, weaknesses in the GF (2m) multiplications

can be eliminated. However, additional operations must be applied on the original

algorithm to protect the GF (2m) addition. For this reason, this chapter introduced

three countermeasures which protect the GF (2m) operation in the ηT algorithm from

the CPA attack through mathematically methods. Along with the same top level

architecture introduced in implementing the original ηT algorithm, the implementa-

tion results of the three countermeasures are presented. The additional operations

needed and the additional operation time required for calculating a secure ηT algo-

rithm using the countermeasures are analyzed. Amongst the countermeasures the

bilinearity method requires almost 100% additional calculation time. The other two

countermeasures, randomizing the Miller variable and using projective coordinates,

incur the same cost which is about 150% of the original ηT algorithm, less than that

of the bilinearity method. The implementation results of the designs provide the

designers with different choices.

7.2 Future work

From the design and implementation of the basic operation blocks, to the top level

structure of the whole algorithm, and then to the flaws in the hardware implemented

cryptosystem and how to solve such problems, this thesis presented a full design flow

of how to securely implement an ηT pairing algorithm which is suitable for use in IBE

and ABE cryptosystems. The functional algorithms in the IBE and ABE schemes

154



7.2. Future work

are all introduced in this thesis including the point operations, the hash function,

and the pairing algorithms. One of the directions of the future work is to complete

the peripheral circuits, such as the hash functions, the random number generator and

the wrapper which fits the cryptosystem into suitable number of input and output

ports, and make the pairing based public key schemes an independent circuit.

In the implementation of GF (2m) multiplications, the DSM [126] and Karatsuba

multiplier[77] are condisered. However, a designer may try to mix these two types of

multipliers to take advantage of their properties. There are two ways of combining

them: 1) the d × m multiplication block of the DSM can be composed of several

parallel sub-multiplier blocks of the Karatsuba structure; 2) the n×n sub-multiplier

blocks of the Karatsuba multiplier can use digit-serial or bit-serial structures. How-

ever, as mentioned by Rebeiro [130], the size of the sub-multiplier blocks of the

Karatsuba multiplier should be around 20. Thus the combination of the DSM and

the Karatsuba multiplier doesn’t suit small digit sized multipliers.

The operations in the ηT algorithm are all based on Elliptic curves. In other El-

liptic curve based cryptographies, these operations are widely used as well. The CPA

attack provides a test that shows the potential risks that might exist in other cryp-

tosystems. Further work of the CPA attackers should be focused on other protocols

and algorithms that make use of the Elliptic curve operation blocks. As proved by

this work, the hamming distance model well fits the power consumption of FPGA im-

plementations. Other side channel analysis methods such as fault attacks [161, 162],

timing attacks [14], electro-magnetic ratiation [15] attacks can be applied on Elliptic

curve based cryptosystems. In power analysis attacks, there also are different ap-

proaches such as the template attack [163] and high-order DPA attacks [164]. All

these methods provide effective ways of revealing the weaknesses that exist in these

public key cryptosystems.

This work only investigated performance and the security aspect of FPGA imple-

mented pairing algorithm designed for IBE and ABE schemes. Such cryptosystems

can also be implemented over other hardware such as microprocessors or ASICs,

which are of different structures and show different features in the side channel in-

formation leaked during operation. Different hardware platforms can lead to different

power consumption models to fit the side channel information and may require dif-

ferent methods of generating the hypothetical value of the target data. This can be

another interesting direction of research.

The performances investigated in this work mainly focus on the area and timings

required for each design. Electrical power and energy are two other parameters that

155



7.3. Publications

feature in the performance of an implementation. The power P dissipated in the

implementation is calculated as per P = Re[V · I∗], where V is the supply voltage,

I is the current flow through the circuit, ∗ denotes complex conjugate and Re[]

represents the real part of the product. Energy E consumed by the implementation

is the product of power and time and can be calculated by E = Pavg · T , where T

is the time the circuit is operating and Pavg represent the average power over the

time. A fully charged battery contains only a certain amount of energy. Thus , in

battery powered system, minimising energy usage helps extend the system lifetime.

For this reason, power and energy consumption of the implementations can also be

insteresting to designers.

7.3 Publications

The following publications arose as a result of the research presented in this thesis.

• W. Pan, and W. P. Marnane, “A Correlation Power Analysis Attack against

Tate Pairing on FPGA”. ARC 2011, LNCS Vol. 6578, pp. 340-349 (2011)

• W. Pan and W. Marnane, “A Reconfigurable Implementation of the Tate Pair-

ing Computation over GF (2m)”. ARC 2010 pp. 80-91 (2010)

• W. Pan, E. Popovici, S. Lidholm, and L. Marnane, “ASIC Implementation of

a Finite Field Arithmetic Processor Core”. Signals and Systems Conference

(ISSC 2009), IET Irish, pp 1-6 (2009)

• Brian Baldwin, Andrew Byrne, Mark Hamilton, Neil Hanley, Robert P. McEvoy,

Weibo Pan, William P. Marnane, “FPGA Implementations of SHA-3 Candi-

dates: CubeHash, Grostl, LANE, Shabal and Spectral Hash.”. Digital Systems

Design, Euromicro Symposium on -DSD 2009 , pages 783-790. (2009)

156



APPENDIX





A. SCHEDULE OF “FOR” LOOP OPERATIONS

In each iteration of the “for” loop in steps 3-7 of Algorithm 2.2, the operations can

be divided into three parts: the pre-multiplication operations (“PRE” for short), the

7 multiplications, and the post-multipication operations(“POST” for short). Each

part requires 11A+8S, 7M, and 13A respectively. The operation flow of the “PRE”

and “POST” blocks are listed in Fig. A.1 and A.2. The arrangement of the 7M

using different number of multipliers are illustrated in Fig. A.3, A.4, A.5, A.6, and

A.7.

In these figures, the block signs “A”, “S”, and “M” represent the operations of

addition, squaring, and multiplication over GF (2m) respectively. The operands of

each operation are listed on the right hand side of the block signs. The intermediate

variables generated by each operation are denoted as “sum”, “sq”, and “p”. These

variables will be part of the following calculations or the calculations in the next

“for” loop iteration.

The → signs indicate that the results generated by the current operations has a

specific name in Algorithm 2.2. There are two kinds of subscription in the figures:

The numbers without brackets indicates that this variable is part of an element over

GF (24m), i.e. A(t) = a0+a1t+a2t
2 and C(t) = c0+c1t+c2t

2+c3t
3; The number with

brackets indicates the iteration this variable is going to be calculated. For example,

c0(i) was generated in iteration (i− 1), and takes part in the calculation of iteration

(i) (i is the current iteration number); c0(i+1) is generated in the current iteration

and will be an operand in iteration (i+ 1)’s calculation.



A

A

A

A

S

S

S

S

A

A

A

A

A

A

A

S

S

S

S

sum1 =

sum3 =

sum2 = sum1 + 

sum4 = sum3 + 1

sq2 = c

sq3 = c

sq4 = c

2

2

2

2

sum5 = sq1 + sq3

sum6 = sq2 + sq4

a

a

a

0

1

2

sq1 = c

sum7 = sq4 + sum6

sum8 = sum7 + sq3

sum9 = sum7 + sum5

sum10 = sum3 + sum4

sum11 = sq3 + sum6

sq5 = α

α

β

β

sq6 = 

sq7 = 

sq8 = 

2

4

2

4

0(i)

1(i)

2(i)

3(i)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

α

β

(i+1)

(i+1)

Time (clks) for PRE operations

u +

γ

α

(i) β(i)

(i)

(i) + v(i)

Fig. A.1: Schedule of “PRE”
block operations

A

A

A

A

A

A

A

A

A

A

A

A

A

sum12 = p2 + p3

sum13 = sum12 +sum5 

sum14 = p2 + p4

sum15 = p5 + sum14

sum16 = p6 + sum15

sum17 = sq4 + sum5

sum18 = sum16 + sum17

sum19 = p7 + sum15

sum20 = sum19 + sq3

sum21 = p4 + p7

sum22 = sum21 +sum6 

sum23 = v   + 1

sum24 = u   + sum23

c

c

c

c

0(i+1)

1(i+1)

2(i+1)

3(i+1)

RAM update operations

FSM operations

v

u

(i+1)

(i+1)

Time (clks) for POST operations
0

2

4

6

8

10

12

14

16

18

20

22

24

26

42

47

(i)

(i)

Fig. A.2: Schedule of “POST”
block operations

160



M

M

M

M

M

M

M

(i) (i)αp1 = v   * 

p5 = sum9 * sum10

p7 = sum10 * sum11

p2 = sum5 * sum2

p3 = sum7 * sum4 

p4 = sum8 * sum2

p6 = sq4 * sum4

38

n+40

2n+42

3n+44

4n+46

5n+48

6n+50

7n+52

PRE
0

POST
7n+99

Time (clks) for # Mult = 1

Fig. A.3: Schedule of the 7 multi-
plications, #Mult=1

M M

M M

M M

M M

POST

38
PRE

0

Time (clks) for # Mult = 2

p3 = sum7 * sum4 p4 = sum8 * sum2

p2 = sum5 * sum2

p5 = sum9 * sum10 p6 = sq4 * sum4

p7 = sum10 * sum11

n+41

2n+44

3n+47

4n+49

4n+96

p1 = v   * α(i) (i)

Fig. A.4: Schedule of the 7 multiplications,
#Mult=2

POST

MMM

M M M

M M M

38
PRE

0

Time (clks) for # Mult = 3

3n+48

3n+95

p3 = sum7 * sum4 
p4 = sum8 * sum2 p5 = sum9 * sum10

p2 = sum5 * sum2

p6 = sq4 * sum4
p7 = sum10 * sum11

n+42

2n+46

αp1 = v   * (i) (i)

Fig. A.5: Schedule of the 7 multiplications,
#Mult=3

MMM

M M

M

M M

POST

38
PRE

0

Time (clks) for # Mult = 4

n+43

2n+47

p3 = sum7 * sum4 p4 = sum8 * sum2
p2 = sum5 * sum2

p5 = sum9 * sum10 p6 = sq4 * sum4
p7 = sum10 * sum11

2n+94

p1 = v   * α(i) (i)

Fig. A.6: Schedule of the 7 multiplications,
#Mult=4

M MM M M M M

POST

38
PRE

0

Time (clks) for # Mult = 7

n+46
p4 = sum8 * sum2 p6 = sq4 * sum4p5 = sum9 * sum10

p3 = sum7 * sum4 p2 = sum5 * sum2

p7 = sum10 * sum11

n+93

p1 = v   * α(i) (i)

Fig. A.7: Schedule of the 7 multiplications,
#Mult=7

161



B. IMPLEMENTATION RESULTS OF TATE PAIRING



Parameters Results

#Mult d n Regs LUTs
Freq. Time A*T

(MHz) (µs) (LUT*s)

1× DSM

1 163 2202 2296 248.6 845.3 1.94
2 82 2202 2457 248.6 456.3 1.12
4 41 2201 2625 248.6 259.4 0.68
8 21 2204 2809 248.6 163.3 0.46
16 11 2211 3478 248.6 115.3 0.40
32 6 2231 4733 248.6 91.3 0.43

2× DSM

1 163 2701 2641 243.6 520.7 1.38
2 82 2703 2982 243.6 293.6 0.88
4 41 2700 3304 243.6 178.7 0.59
8 21 2706 3676 243.6 122.6 0.45
16 11 2719 5030 243.6 94.6 0.48
32 6 2753 7516 243.6 80.6 0.61

3× DSM

1 163 3194 3471 225.1 438.3 1.52
2 82 3194 3948 225.1 254.8 1.01
4 41 3190 4453 225.1 161.9 0.72
8 21 3199 5431 225.1 116.5 0.63
16 11 3220 7848 225.1 93.9 0.74
32 6 3273 10952 226.7 82.0 0.90

4× DSM

1 163 3694 4959 217.8 329.5 1.63
2 82 3695 5596 217.8 201.2 1.13
4 41 3689 5948 212.6 139.6 0.83
8 21 3710 7573 217.8 104.5 0.79
16 11 3729 10890 217.8 88.7 0.97
32 6 3796 14077 220.1 79.9 1.13

7× DSM

1 163 5196 6587 214.8 207.4 1.37
2 82 5196 7715 214.8 140.2 1.08
4 41 5187 8907 214.8 106.3 0.95
8 21 5208 11250 214.8 89.7 1.01
16 11 5257 17163 214.8 81.4 1.40
32 7 5366 22400 209.9 79.9 1.79

Kara. no Reg 1 1865 8938 158.8 105.3 0.94
Kara. with Reg 3 5088 8864 244.8 78.1 0.69

Tab. B.1: Implementation results of Tate pairing, bus type, Xilinx Virtex-V, m=163

163



Parameters Results

#Mult d n Regs LUTs
Freq. Time A*T

(MHz) (µs) (LUT*s)

1× DSM

1 233 3102 3200 241.4 1717.0 5.49
2 117 3102 3434 241.4 907.8 3.12
4 59 3103 3668 241.4 503.2 1.85
8 30 3106 3912 241.4 300.8 1.18
16 15 3104 5305 241.4 196.2 1.04
32 8 3129 6693 243.9 145.9 0.98

2× DSM

1 233 3347 3157 301.3 818.1 2.58
2 117 3813 4141 233.0 578.4 2.40
4 59 3815 4608 233.0 338.7 1.56
8 30 3823 5543 233.0 218.9 1.21
16 15 3818 7868 233.0 156.9 1.23
32 8 3857 10436 233.0 127.9 1.34

3× DSM

1 233 4524 4090 222.7 852.6 3.49
2 117 4524 4791 222.7 477.5 2.29
4 59 4528 5494 222.7 290.0 1.59
8 30 4537 6892 222.7 196.3 1.35
16 15 4533 10378 222.7 147.8 1.53
32 8 4586 14283 228.0 122.2 1.75

4× DSM

1 233 4535 6738 219.8 614.7 4.14
2 117 5235 7903 219.8 358.7 2.84
4 59 5240 8832 219.8 230.8 2.04
8 30 5252 10681 219.8 166.8 1.78
16 15 5247 15302 219.8 133.7 2.05
32 8 5313 19783 216.2 120.2 2.38

7× DSM

1 233 7365 9757 217.8 366.8 3.58
2 117 7367 11404 217.8 234.7 2.68
4 59 7372 10013 207.2 177.3 1.78
8 30 7393 16347 217.8 135.7 2.22
16 15 7385 24491 217.8 118.6 2.90
32 8 7494 33654 223.3 107.9 3.63

Kara. no Reg 1 2634 14420 159.0 149.6 2.16
Kara. with Reg 3 7301 14478 254.8 106.6 1.54

Tab. B.2: Implementation results of Tate pairing, bus type, Xilinx Virtex-V, m=233

164



Parameters Results

#Mult d n Regs LUTs
Freq. Time A*T

(MHz) (µs) (LUT*s)

1× DSM

1 283 3756 3860 226.6 2658.5 10.26
2 142 3755 4137 226.6 1392.9 5.76
4 71 3755 4431 226.6 755.6 3.35
8 36 3757 4993 241.4 414.4 2.07
16 18 3756 6419 226.6 279.9 1.80
32 9 3765 8145 229.6 196.5 1.60

2× DSM

1 283 4618 4446 221.8 1604.8 7.13
2 142 4619 5276 221.8 865.4 4.57
4 71 4615 5590 221.8 493.1 2.76
8 36 4622 6988 221.8 309.6 2.16
16 18 4620 9569 221.8 215.2 2.06
32 9 4627 12523 227.3 164.0 2.05

3× DSM

1 283 5481 5893 225.4 1211.2 7.14
2 142 5480 6724 225.4 667.0 4.49
4 71 5477 7603 225.4 393.0 2.99
8 36 5485 9374 225.4 257.9 2.42
16 18 5482 12737 225.4 188.4 2.40
32 9 5487 17584 229.2 151.1 2.66

4× DSM

1 283 6342 7902 210.9 912.1 7.21
2 142 6341 9571 215.6 509.6 4.88
4 71 6337 10743 215.6 317.0 3.41
8 36 6350 12976 215.6 222.0 2.88
16 18 6345 17587 215.6 173.2 3.05
32 9 6348 21882 217.1 147.7 3.23

7× DSM

1 283 8925 11231 212.1 524.0 5.88
2 142 8925 12764 217.6 317.7 4.05
4 71 8919 15261 212.1 226.1 3.45
8 36 8939 19218 212.1 177.0 3.40
16 18 8932 29199 212.1 151.7 4.43
32 9 8929 36312 209.2 141.0 5.12

Kara. no Reg 1 3188 14420 153.7 187.6 2.71
Kara. with Reg 3 8859 14478 240.9 136.6 1.98

Tab. B.3: Implementation results of Tate pairing, bus type, Xilinx Virtex-V, m=283

165



C. FEATURES OF VIRTEX FAMILIES

Family Virtex-2 Virtex-4 Virtex-5 Virtex-6
LUTs per Slice 2 2 4 4

LUTs type 4-in,1-out 4-in,1-out 6-in,1-out
6-in,1-out or

5-in,2-out
Max Freq. 200 MHz 450 MHz 550 MHz 600 MHz

Tab. C.1: Area and Speed Features of Virtex Families 2, 4, 5 and 6 [84, 82, 83, 85]



D. COUNTERMEASURES ALGORITHMS USING PROJECTIVE

COORDINATES

Algorithm D.1 Using Jacobian projective coordinates

Input : P (α, β), Q(x, y)
Random Number : λ 6= 0 ∈ GF (2m)
Output : c = e(P ;Q)

1: C(t)← 1
2: x← x2, y ← y2, α← α4, β ← β4

3: (X, Y, Z)← (λ3x, λ2y, λ)
4: Z ← Z6

5: V ← X,U ← X + Y + m−1
2
Z

6: J ← α(V + Z), K ← βZ, L← αZ
7: for i = 0 : m− 1
8: A(t)← J +K + U + (L+ V )t+ (L+ V + Z)t2

9: C(t)← C(t)2 ∗ A(t)
10: U ← U + V + Z, V ← V + Z, α← α4, β ← β4

11: J ← αV,K ← βZ,L← αZ
12: end for
13: return C(t)← C(t)22m−1

total cost:(11m+59)M+(26m+65)A+(8m+12)S+1I



Algorithm D.2 Using Lopez-Dahab projective coordinates

Input : P (α, β), Q(x, y)
Random Number : λ 6= 0 ∈ GF (2m)
Output : c = e(P ;Q)

1: C(t)← 1
2: x← x2, y ← y2, α← α4, β ← β4

3: (X, Y, Z)← (λ2x, λy, λ)
4: Z ← Z2

5: V ← X,U ← X + Y + m−1
2
Z

6: J ← α(V + Z), K ← βZ, L← αZ
7: for i = 0 : m− 1
8: A(t)← J +K + U + (L+ V )t+ (L+ V + Z)t2

9: C(t)← C(t)2 ∗ A(t)
10: U ← U + V + Z, V ← V + Z, α← α4, β ← β4

11: J ← αV,K ← βZ,L← αZ
12: end for
13: return C(t)← C(t)22m−1

total cost:(11m+58)M+(26m+65)A+(8m+11)S+1I

168



E. CALCULATION TIME OF COUNTERMEASURES AGAINST

CPA ATTACK



Parameters Alg.2.2 Alg. 6.1 Alg. 6.2 & 6.3

#Mult d n
Time Time

Ratio
Time

Ratio
(µs) (µs) (µs)

1× DSM

1 163 845.3 1713.5 202.7 % 1282.7 151.7 %
2 82 456.3 924.4 202.6 % 679.6 148.9 %
4 41 259.4 524.9 202.4 % 374.3 144.3 %
8 21 163.3 330.1 202.1 % 225.4 138.0 %
16 11 115.3 232.6 201.8 % 150.9 130.9 %
32 6 91.3 183.9 201.5 % 113.7 124.6 %

2× DSM

1 163 520.7 970.5 186.4 % 748.9 143.8 %
2 82 293.6 551.9 187.9 % 411.8 140.2 %
4 41 178.7 340.0 190.3 % 241.1 134.9 %
8 21 122.6 236.6 193.0 % 157.9 128.7 %
16 11 94.6 184.9 195.5 % 116.2 122.9 %
32 6 80.6 159.1 197.5 % 95.4 118.5 %

3× DSM

1 163 438.3 806.9 184.1 % 567.2 129.4 %
2 82 254.8 474.8 186.4 % 323.2 126.9 %
4 41 161.9 306.7 189.5 % 199.7 123.4 %
8 21 116.5 224.7 192.8 % 139.5 119.7 %
16 11 93.9 183.7 195.6 % 109.4 116.5 %
32 6 82.6 163.2 197.6 % 94.3 114.2 %

4× DSM

1 163 329.5 710.5 215.6 % 462.7 140.4 %
2 82 201.2 428.6 213.1 % 271.9 135.2 %
4 41 139.6 292.9 209.9 % 179.7 128.7 %
8 21 104.5 216.3 206.9 % 128.3 122.7 %
16 11 88.7 181.5 204.6 % 104.7 118.0 %
32 6 80.8 164.1 203.1 % 92.9 115.0 %

7× DSM

1 163 207.4 470.0 226.7 % 342.5 165.2 %
2 82 140.2 308.6 220.1 % 212.0 151.2 %
4 41 106.3 226.9 213.6 % 145.9 137.3 %
8 21 89.7 187.1 208.6 % 113.7 126.8 %
16 11 81.4 167.1 205.4 % 97.6 119.9 %
32 7 78.1 159.2 203.9 % 91.2 116.8 %

Kara. no Reg 1 105.3 211.7 201.1 % 105.3 113.7 %

Tab. E.1: Calculation time (µs) of proposed countermeasures, m = 163

170



Parameters Alg.2.2 Alg. 6.1 Alg. 6.2 & 6.3

#Mult d n
Time Time

Ratio
Time

Ratio
(µs) (µs) (µs)

1× DSM

1 233 1717.0 3467.6 202.0 % 2631.0 153.2 %
2 117 907.8 1832.9 201.9 % 1371.6 151.1 %
4 59 503.2 1015.5 201.8 % 741.8 147.4 %
8 30 300.8 606.8 201.7 % 427.0 141.9 %
16 15 196.2 395.4 201.5 % 264.1 134.6 %
32 8 147.4 296.8 201.4 % 188.1 127.6 %

2× DSM

1 233 818.1 1500.0 183.4 % 1190.1 145.5 %
2 117 578.4 1068.9 184.8 % 825.0 142.6 %
4 59 338.7 633.5 187.0 % 468.0 138.2 %
8 30 218.9 415.9 190.0 % 289.5 132.3 %
16 15 156.9 303.3 193.3 % 197.2 125.7 %
32 8 127.9 250.7 196.0 % 154.1 120.5 %

3× DSM

1 233 852.6 1531.4 179.6 % 1112.1 130.4 %
2 117 477.5 868.3 181.8 % 613.1 128.4 %
4 59 290.0 536.7 185.1 % 363.6 125.4 %
8 30 196.3 371.0 189.0 % 238.8 121.7 %
16 15 147.8 285.2 193.0 % 174.3 117.9 %
32 8 125.1 245.2 196.0 % 144.2 115.2 %

4× DSM

1 233 614.7 1302.4 211.9 % 877.6 142.8 %
2 117 358.7 754.6 210.4 % 496.1 138.3 %
4 59 230.8 480.7 208.3 % 305.3 132.3 %
8 30 166.8 343.8 206.1 % 209.9 125.9 %
16 15 133.7 272.9 204.2 % 160.5 120.1 %
32 8 118.2 239.9 202.9 % 137.5 116.3 %

7× DSM

1 233 366.8 811.6 221.3 % 632.1 172.3 %
2 117 234.7 509.1 216.9 % 373.3 159.0 %
4 59 177.3 376.1 212.1 % 256.3 144.6 %
8 30 135.7 282.2 208.0 % 179.2 132.1 %
16 15 118.6 243.1 205.0 % 145.7 122.9 %
32 8 110.6 224.8 203.3 % 130.1 117.6 %

Kara. no Reg 1 149.6 300.8 201.0 % 149.6 113.8 %

Tab. E.2: Calculation time (µs) of proposed countermeasures, m = 233

171



Parameters Alg.2.2 Alg. 6.1 Alg. 6.2 & 6.3

#Mult d n
Time Time

Ratio
Time

Ratio
(µs) (µs) (µs)

1× DSM

1 283 2658.5 5360.7 201.6 % 4091.1 153.9 %
2 142 1392.9 2808.3 201.6 % 2117.9 152.1 %
4 71 755.6 1523.0 201.6 % 1124.4 148.8 %
8 36 414.4 834.9 201.5 % 595.7 143.8 %
16 18 279.9 563.6 201.4 % 382.7 136.7 %
32 9 199.1 400.7 201.3 % 256.8 129.0 %

2× DSM

1 283 1604.8 2921.1 182.0 % 2346.1 146.2 %
2 142 865.4 1586.7 183.3 % 1243.8 143.7 %
4 71 493.1 914.8 185.5 % 688.7 139.7 %
8 36 309.6 583.6 188.5 % 415.1 134.1 %
16 18 215.2 413.2 192.0 % 274.4 127.5 %
32 9 168.0 328.1 195.2 % 204.0 121.4 %

3× DSM

1 283 1211.2 2151.2 177.6 % 1585.4 130.9 %
2 142 667.0 1198.5 179.7 % 861.0 129.1 %
4 71 393.0 718.8 182.9 % 496.3 126.3 %
8 36 257.9 482.3 187.0 % 316.5 122.7 %
16 18 188.4 360.6 191.4 % 224.0 118.9 %
32 9 153.7 299.8 195.1 % 177.7 115.7 %

4× DSM

1 283 912.1 1916.7 210.1 % 1312.0 143.8 %
2 142 509.6 1065.3 209.0 % 712.5 139.8 %
4 71 317.0 657.6 207.5 % 425.0 134.1 %
8 36 222.0 456.6 205.7 % 283.3 127.6 %
16 18 173.2 353.2 204.0 % 210.4 121.5 %
32 9 148.7 301.6 202.7 % 173.9 116.9 %

7× DSM

1 283 524.0 1145.3 218.6 % 921.6 175.9 %
2 142 317.7 683.5 215.2 % 518.6 163.3 %
4 71 226.1 477.6 211.2 % 335.9 148.5 %
8 36 177.0 367.4 207.6 % 239.2 135.2 %
16 18 151.7 310.7 204.8 % 189.5 124.9 %
32 9 139.0 282.3 203.1 % 164.6 118.4 %

Kara. no Reg 1 187.6 377.2 201.0 % 187.6 113.8 %

Tab. E.3: Calculation time (µs) of proposed countermeasures, m = 283

172



REFERENCES

[1] U.S. Code, “COORDINATION OF FEDERAL INFORMATION POLICY”,

PUBLIC PRINTING AND DOCUMENTS, pp:3501-3549, U.S. Code, (2010)

[2] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, “Handbook of Applied

Cryptography”, CRC Press, (1996)

[3] D. Hankerson, A. Menezes, and S. Vanstone, “Guide to Elliptic Curve Cryp-

tography”, Springer, (2004)

[4] D. Boneh and M. K. Franklin, “Identity-based encryption from the Weil pair-

ing”, Advances in Cryptology - CRYPTO ’01, LNCS Vol. 2139, pp:213-229,

Springer, (2001)

[5] A. Shamir, “Identity-based cryptosystems and signature schemes”, Advances

in Cryptology - CRYPTO ’84, LNCS Vol. 196, pp:47-53, Springer, (1985)

[6] A. Sahai and B. Waters, “Fuzzy identity-based encryption”, Advances in

Cryptology - EUROCRYPT ’05, LNCS Vol. 3494, pp:457-473, Springer, (2005)

[7] C. Shu, S. Kwon, and K. Gaj, “Reconfigurable Computing Approach for Tate

Pairing Cryptosystems over Binary Fields”, IEEE Transaction on Computers,

Vol. 58(9), pp.1221-1237, IEEE, (2009)

[8] H. Li, J. Huang, P. Sweany, D. Huang, “FPGA implementations of elliptic

curve cryptography and Tate pairing over a binary field”, Journal of Systems

Architecture, Vol. 54(12), pp:1077-1088, Elsevier, (2008)

[9] J. L. Beuchat, “Hardware Architectures for the Cryptographic Tate Pairing”,

Pairing-Based Cryptography - Pairing 2012, presentation, (2012)

[10] S. Ghosh, D. Roychowdhury, A. Das, “High speed cryptoprocessor for ηT

pairingon 128-bit secure supersingular elliptic curves over characteristic two

fields”, Cryptographic Hardware and Embedded Systems - CHES ’11, LNCS

Vol. 6917, pp:442-458, Springer, (2011)



References

[11] J. L. Beuchat , J. Detrey , N. Estibals , E. Okamoto , F. Rodŕiguez-henŕiquez,

“Fast architectures for the ηT pairing over small-characteristic supersingular el-

liptic curves”, IEEE Transaction on Computers, Vol. 60(2), pp:266-281, IEEE,

(2011)

[12] M. Keller, R. Ronan, W. Marnane, C. Murphy, “Hardware architectures for

the Tate pairing over GF (2m)”, Computers and Electrical Engineering, Vol.

33(5-6), pp:392-406, Elsevier, (2007)

[13] P. C. Kocher, J. Jaffe, and B. Jun, “Diferential Power Analysis”, Advances in

Cryptology - CRYPTO ’99, LNCS Vol. 1666, pp:388-397, Springer, (1999)

[14] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and other Systems”, Advances in Cryptology - CRYPTO ’96, LNCS Vol.

1109, pp:104-113, Springer, (1996)

[15] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic Analysis: Concrete

Results”, Cryptographic Hardware and Embedded Systems - CHES ’01, LNCS

Vol. 2162, pp:251-261, Springer, (2001)

[16] D. Page and F. Vercauteren, “Fault and Side-Channel Attacks on Pairing

Based Cryptography”, IEEE Transaction on Computers, Vol. 55(9), pp:1075-

1080, IEEE, (2006)

[17] M. Scott, “Computing the Tate Pairing”, Topics in Cryptology - CT-RSA

2005, LNCS Vol. 3376, pp:293-304, Springer, (2005)

[18] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis”, Advances in

Cryptology - CRYPTO ’99, LNCS Vol. 1666, pp:388-397, Springer, (1999)

[19] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F.

Vercauteren, “Handbook of Elliptic and Hyperelliptic Curve Cryptography”,

Discrete Mathematics and Its Applications, Chapman & Hall/CRC, (2006)

[20] V. S. Miller, “Use of elliptic curves in cryptography”, Advances in Cryptogra-

phy - CRYPTO ’85, LNCS Vol. 218, pp:417-426, Springer, (1986)

[21] N. Koblitz “Elliptic curve cryptosystems”, Mathematics of Computation, Vol.

48, pp:203-209, AMS, (1987)

[22] J. H. Graff, “The Arithmetic of Elliptic Curves”, Graduate Texts in Mathe-

matic, Vol. 106, Springer, (1994)

174



References

[23] National Institute of Standards and Technology, “FIPS Publication 186: Dig-

ital Signature Standard”, NIST, (1994)

[24] J.L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. R. Henŕiquez, “A

Comparison between Hardware Accelerators for the Modified Tate Pairing over

F2m and F3m”, Pairing-Based Cryptography - Pairing 2008, LNCS Vol. 5209,

pp:297-315, Springer, (2008)

[25] R. Granger, D. Page, and N. P. Smart, “High Security Pairing-Based Cryptog-

raphy Revisited”, Algorithmic Number Theory, LNCS Vol. 4076, pp:480-494,

Springer, (2006)

[26] I. Duursma and H. Lee, “Tate pairing implementation for hyperelliptic curves

y2 = xp−x+d”, Advances in Cryptology - ASIACRYPT ’03, LNCS Vol. 2894,

pp:111-123, Springer, (2003)

[27] A. Weimerskirch, C. Paar, and S. C. Shantz, “Elliptic Curve cryptography on

a Palm OS device”, 6th Australiasian Conference on Information Security and

Privacy - ACISP ’01, LNCS Vol. 2119, pp:502-513, Springer, (2001)

[28] A. Dabholkar and K. Choong Yow, “Efficient implementation of elliptic curve

cryptography (ECC) for personal digital assistants (PDAs)”, Wireless Per-

sonal Communications, Vol. 29(3-4), pp:233-246, Kluwer Academic Publishers,

(2004)

[29] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano, J. Lopez, and R. Dahab,

“TinyTate: Computing the tate pairing in resource-constrained sensor nodes”,

Network Computing and Applications - NCA ’07, pp:318-323, IEEE, (2007)

[30] L. B. Oliveira, M. Scott, J. Lopez, and R. Dahab, “TinyPBC: Pairings for au-

thenticated identity-based non-interactive key distribution in sensor networks”,

Computer Communications, Volume 34(3), pp:485-493, Elsevier, (2007)

[31] A. Menezes, “Elliptic Curve Public Key Cryptosystems”, Kluwer Academic

Publishers, (1993)

[32] IEEE, “IEEE standard specifications for public-key cryptography, 2000”, IEEE

Standard P1363 project, IEEE, (2000)

175



References

[33] J. Lopez and R. Dahab, “Improved algorithms for elliptic curve arithmetic

in GF (2n)”, Selected Areas in Cryptography - SAC ’98, LNCS Vol. 1556, pp:

201-212, Springer, (1999)

[34] A. A. Bruen and M. A. Forcinito, “Cryptography, Information Theory and

Error-Correction”, A Handbook for the 21st Century, John Wiley & Sons, Inc.,

(2005)

[35] R. Anderson, “Security Engineering”, John Wiley & Sons, Inc.,(2001)

[36] D. B. Parker, “Toward a New Framework for Information Security”, In Com-

puter Security Handbook, John Wiley & Sons, Inc., (2002)

[37] B. Schneier, “Applied Cryptography”, John Wiley & Sons, Inc., (1996)

[38] M. Copeland, J. Grahn, D. A. Wheeler, “The GNU Privacy Handbook”, The

Free Software Foundation, (1999)

[39] J. H. Ellis, “The Story Of Non-Secret Encryption”,

http://cryptome.org/jya/ellisdoc.htm, Accessed 02/09/2013, (1997)

[40] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems”, Communications of the ACM, Vol.

21(2), pp:120-126, ACM, (1978)

[41] J. R. Vacca, “Public Key Infrastructure: Building Trusted Applications and

Web Services”, Taylor & Francis Group, (2004)

[42] L. M. Kohnfelder, “Towards a Practical Public-Key Cryptosystem”, Bache-

lor Thesis, Department of Electrical Engineering, Massachusetts Institute of

Technology, (1978)

[43] V. Goyal,O. Pandey, A. Sahai ,B. Waters, “Attribute-based encryption for

fine-grained access control of encrypted data”, Computer and Communications

Security - CCS ’06, pp:89-98, ACM, (2006)

[44] J. Bethencourt, A. Sahai, B. Waters, “Ciphertext-policy attribute-based en-

cryption”, IEEE Symposium on Security and Privacy, pp:321-334, IEEE,

(2007)

[45] L. Cheung, C. Newport, “Provably secure ciphertext policy ABE”, Computer

and communications security - CCS ’07, pp:456-465, ACM, (2007)

176



References

[46] V. Goyal, A. Jain, O. Pandey, A. Sahai, “Bounded ciphertext policy attribute

based encryption”, Automata, Languages and Programming 2008, LNCS Vol.

5126, pp:579-591. Springer, (2008)

[47] T. Nishide, K. Yoneyama, K. Ohta, “Attribute-based encryption with par-

tially hidden encryptor-specified access structures”, Applied Cryptography and

Network Security, LNCS Vol. 5037, pp:111-129, Springer, (2008)

[48] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, effi-

cient, and provably secure realization”, Public Key Cryptography - PKC 2011,

LNCS Vol. 6571, pp:53-70, Springer, (2011)

[49] J. J. Rotman, “An introduction to the Theory of Groups”, Graduate Texts in

Mathematics, Vol. 148, Springer, (1995)

[50] N. L. Biggs, “Cods: An Introduction to Information Communication and

Cryptography”, Springer, (2008)

[51] I. Blake, G. Seroussi, and N. Smart, “Elliptic Curves in Cryptography”,

London Mathematical Society, Lecture Note Series 265, Cambridge University

Press, (1999)

[52] D. Hankerson, A. Menezes, and S. Vanstone, “Guide to Elliptic Curve Cryp-

tography”, Springer, (2004)

[53] E. Wenger, M. Hutter, “Exploring the Design Space of Prime Field vs. Binary

Field ECC-Hardware Implementations”, Secure IT systems Nordic conference,

LNCS Vol. 7161, pp:256-272, Springer, (2012)

[54] D. Page and N. Smart, “Hardware implementation of Finite Fields of charac-

teristic three”, Cryptographic Hardware and Embedded Systems - CHES ’02,

LNCS Vol. 2523 pp:529-539, Springer, (2003)

[55] O. A. B. Birkedal, “Counting Points on Elliptic Curves”, Master Thesis,

Department of Mathematical Sciences, Norwegian University of Science and

Technology, (2010)

[56] J. H. Silverman, “An Introduction to the Theory of Elliptic Curves”, Summer

School on Computational Number Theory and Applications to Cryptography,

University of Wyoming, (2006)

177



References

[57] T. ElGamal, “A public-key cryptosystem and a signature scheme based on

discrete logarithms”, IEEE Transactions on Information Theory, Vol. 31(4),

pp:469-472, IEEE, (1985)

[58] National Institute of Standards and Technology, “RECOMMENDED

ELLIPTIC CURVES FOR FEDERAL GOVERNMENT USE”,

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf,

Accessed 15/12/2012, NIST, (1999)

[59] J. H. Silverman, “The arithmetic of elliptic curves”, Springer, (1995)

[60] U. Maurer and S. Wolf, “The diffie-hellman protocol”, Designs, Codes and

Cryptography, Vol. 19, pp:147-171, Springer, (2000).

[61] A. J. Menezes, T. Okamoto and S. A. Vanstone, “Reducing Elliptic Curve

Logarithms to Logarithms in a Finite Field”, IEEE Transaction on Infomation

Theory, Vol. 39(5), pp:1639-1646, IEEE, (1993)

[62] G. Frey and H. G. Rück, “A remark concerning m-divisibility and the dis-

crete logarithm problem in the divisor class group of curves”, Mathematics of

Computation, Vol. 62(206), pp:865-874, AMS, (1994)

[63] G. Frey, M. Muller and H. G. Rück, “The Tate pairing and the discrete

logarithm applied to elliptic curve cryptosystems”, IEEE Transaction on In-

formation Theory, Vol. 45(5), pp:1717-1719, IEEE, (1999)

[64] V. Miller, “Short Programs for functions on curves”, unpublished manuscript,

Available from http://crypto.stanford.edu/miller/miller.pdf, (1986)

[65] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing

based cryptosystems”, Advances in Cryptology - Crypto ’02, LNCS Vol. 2442,

pp:354-368, Springer, (2002)

[66] S. D. Galbraith, “The Weil pairing on elliptic curves over C”, IACR Cryptology

ePrint Archive, (2005)

[67] G. Frey, “Applications of arithmetical geometry to cryptographic construc-

tions”, Finite Fields and Applications, pp:128-161, Springer, (2001)

[68] S. Kwon, “Efficient Tate Pairing Computation for Elliptic Curves Over Binary

Fields”, Australasian Conference Information Security and Privacy - ACISP

’05, LNCS Vol. 3574, pp:134-145, Springer, (2005)

178



References

[69] E.R. Verheul, “Evidence that XTR is more secure than supersingular elliptic

curve cryptosystems”, Journal of Cryptology, Vol. 17(4), pp:277-296, Springer,

(2004)

[70] A. J. Menezes, “Elliptic Curve Public Key Cryptosystems”, Kluwer Academic

Publisher, (1993)

[71] I. Blake, G. Seroussi, and N. Smart, “Advances in Elliptic Curves Cryptogra-

phy”, Cambridge University Press, (2005)

[72] R. Lidl and H. Niederreiter, “Finite Fields”, Encyclopedia of Mathematics and

its Applications, Vol. 20, Addison-Wesley, (1983)

[73] N. P. Smart, “How Secure are elliptic curves over composite extension fields?”,

Advances in Cryptology - EUROCRYPT ’01, LNCS Vol. 2045, pp:30-39,

Springer, (2001)

[74] K. McCusker, N. O’Connor, and D. Diamond, “Low-energy finite field arith-

metic primitives for implementing security in wireless sensor networks”, In-

ternational Conference on Communications, Circuits And Systems - ICCCAS

’06, pp:1537-1541, IEEE, (2006)

[75] Certicom, “The Certicom ECC challenge”,

http://www.certicom.com/index.php/the-certicom-ecc-challenge , Accessed

20/03/13.

[76] E. Thomé, “Computation of discrete logarithms in F2607”, Advances in Cryp-

tology - ACRYPT ’01, LNCS Vol. 2248, pp:107-124, Springer, (2001)

[77] S. C. Shantz, A. Karatsuba, Y. Ofman, “Multiplication of many digital num-

bers by automatic computers”, Translation in Physics-Doklady 7, pp:595-596,

Doklady Akad. Nauk SSSR, (1963)

[78] A. Joux, “A one round protocol for tripartite Diffie-Hellmans”, Journal of

Cryptology, Vol. 17(4), pp:263-276, Springer, (2004)

[79] R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems based on pairing”,

Symposium on Cryptography and Information Security - SCIS ’00, (2000)

[80] R. Dutta, R. Barua, and P. Sarkar, “Pairing-based cryptographic pro-

tocols: A survey”, Cryptology ePrint Archive, Report 064/2004, 2004.

http://eprint.iacr.org/2004/064.pdf, Accessed 12/12/2012, (1996)

179



References

[81] Certicom, “STANDARDS FOR EFFICIENT CRYPTOGRAPHY”, Certicom

Research, (2000)

[82] Xilinx, “Virtex-2 Family Overview”, Available from

http://www-mtl.mit.edu/Courses/6.111/labkit/datasheets/virtex2datasheet.pdf,

accessed 07/03/2013

[83] Xilinx, “Virtex-4 Family Overview”, Available from

http://www.xilinx.com/support/documentation/data sheets/ds112.pdf, ac-

cessed 07/03/2013

[84] Xilinx, “Virtex-5 Family Overview”, Available from

http://www.xilinx.com/support/documentation/data sheets/ds100.pdf, ac-

cessed 04/03/2013

[85] Xilinx, “Virtex-6 Family Overview”, Available from

http://www.xilinx.com/support/documentation/data sheets/ds150.pdf, ac-

cessed 07/03/2013

[86] T. Iyama, S. Kiyomoto, K. Fukushima, T. Tanaka, T. Takagi, “Efficient Im-

plementation of Pairing on BREW Mobile Phones”, Advances in Information

and Computer Security, LNCS Vol. 6434, pp:326-336, Springer, (2010)

[87] D. F. Aranha, J.-L. Beuchat, J. Detrey, N. Estibals, “Optimal Eta Pairing on

Supersingular Genus-2 Binary Hyperelliptic Curves”, Topics in Cryptology -

CT-RSA ’12, LNCS Vol. 7178, pp 98-115, Springer, (2012)

[88] N. Koblitz and A. Menezes, “Pairing-based cryptography at high security

levels”, Cryptography and Coding, LNCS Vol. 3796, pp:13-36, Springer, (2005)

[89] S. C. Pohlig, “Algebraic and Combinatoric Aspects of Cryptography”, Thech-

nical report , Vol. 6602(1), Information systems laboratory, Stanford Univer-

sity, (1977)

[90] S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing

logarithms over GF(p) and its cryptographic significance”, IEEE Transaction

on Information Theory, Vol. 24(1), pp:106-110, IEEE, (1978)

[91] D. Shanks, “Class number, a theory of factorization, and genera”, Proceedings

of Symposia in Pure Mathematica 20, pp:415-440, Number Theory Institute,

(1971)

180



References

[92] J. M. Pollard, “Monte Carlo methods for index computation (mod p)”, Math-

ematics of Computation, Vol. 32(143), pp:918-924, AMS, (1978)

[93] National Institute of Standards and Technology, “Recommendation for Key

Management”, Special Publication 800-57, part 1 Rev.3, NIST, (2011)

[94] F. X. Standaert, G. Rouvroy, J. J. Quisquater, “FPGA Implementations of

the DES and Triple-DES Masked Against Power Analysis Attacks”, Field

Programmable Logic and Applications - FPL ’06, pp:1-4, IEEE, (2006)

[95] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-card

security under the threat of power analysis attacks”, IEEE Transactions on

Computers, Vol. 51(5), pp:541-552, IEEE, (2002)

[96] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leak-

age Model”, Cryptographic Hardware and Embedded Systems - CHES 2004,

LNCS Vol. 3156, pp:135-152, Springer, (2004)

[97] M. Joye, “Elliptic Curves and Side-Channel Analysis”, ST Journal of System

Research, Vol. 4(1), pp:283-306, STMicroelectronics, (2003)

[98] M. Joye and S. Yen, “The Montgomery Powering Ladder”, Cryptographic

Hardware and Embedded Systems - CHES ’02, LNCS Vol. 2523, pp:291-302,

Springer, (2003)

[99] A. Byrne, N. Meloni, A. Tisserand, E. M. Popovici, and W. P. Marnane,

“Comparison of simple power analysis attack resistant algorithms for an elliptic

curve cryptosystem”, Journal of Computers, Vol. 2(10), pp:52-62, Elsevier,

(2007)

[100] Texas Instruments, “CMOS Power Consumption and Cpd Calculation”, TI,

(1997)

[101] F. X. Standaert, S. B. Örs, J.J. Quisquater, and B. Preneel , “Power Analysis

Attacks against FPGA Implementations of the DES”, Field-Programmable

Logic and Applications - FPL ’04, LNCS Vol. 3203, pp:84-94, Springer, (2004)

[102] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of Power

Analysis Attacks on Smartcards”, Proceedings of USENIX Workshop on

Smartcard Technology, pp:151-162, The USENIX Association, (1999)

181



References

[103] M. L. Akkar, R. Bévan, P. Dischamp, and D. Moyart, “Power analysis, what is

now possible...”, Advances in Cryptology - ASIACRYPT ’00, LNCS Vol. 1976,

pp:489-502, Springer, (2000)

[104] P. Grabher, Johann Groβschädl, and D. Page, “Non-deterministic processors:

FPGA-based analysis of area, performance and security”, Workshop on Em-

bedded Systems Security Article No. 1 - WESS ’09, pp:1-10, ACM, (2009)

[105] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential power analysis in the

presence of hardware countermeasures”, Cryptographic Hardware and Embed-

ded Systems - CHES ’00, LNCS Vol. 1965, pp:252-263, Springer, (2000)

[106] P. S. L. M. Barreto, S. Galbraith, C. O’hEigeartaigh, and M. Scott, “Efficient

pairing computation on supersingular Abelian varieties”, Designs, Codes and

Cryptography, Vol. 42(3), pp:239-271, Springer, (2007)

[107] H. Fan and M. A. Hasan, “Fast bit parallel-shifted polynomial basis multipliers

in GF (2n)”, IEEE Transactions on Circuits and Systems I: Regular Papers,

Vol. 53(12), pp:2606-2615, IEEE, (2006)

[108] Xilinx, http://www.xilinx.com/, accessed 22/01/2013

[109] Altera, http://www.altera.com/, accessed 22/01/2013

[110] Research Center for Information Security, “National Institute of Advanced

Industrial Science and Technology”, Side-channel Attack Standard Evaluation

Board SASEBO-GII Specification , Version 1.01, RCIS, (2009)

[111] Xilinx, “Spartan-3E FPGA Family: Data Sheet, 2010”, Available from

http://www.xilinx.com/support/documentation/data sheets/ds529.pdf, ac-

cessed 22/01/2013

[112] S. Gao and D. Panario, “Tests and Constructions of Irreducible Polynomials

over Finite Fields”, Foundations of Computational Mathematics, pp:346-361,

Springer, (1997)

[113] M. O’Rabin, “Probabilistic algorithms in finite fields”, Foundations of Com-

puter Science - SFCS ’81, pp:394-398, IEEE, (1981)

[114] J. V. Z. Gathen and J. Gerhard, “Arithmetic and factorization of polynomials

over F2”, International Symposium on Symbolic and Algebraic Computation -

ISSAC ’96, pp:1-9, ACM, (1996)

182



References

[115] J. V. Z. Gathen and V. Shoup, “Computing Frobenius Maps and Factoring

Polynomials”, Computational Complexity, Vol. 2(3), pp:187-224, Birkhäuser,

(1992)

[116] S. Ronan, “Field Theory”, Springer, (1995)

[117] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T.

Yaghoobian, “Applications of Finite Fields”, Kluwer Academic Publishers,

(1993)

[118] T. Beth, B. M. Cook, D. Gollmann, “Architectures for Exponentiation in

GF (2n)”, Advances in Cryptology - CRYPTO ’86, LNCS Vol. 263, pp:302-

310, Springer, (1987)

[119] G. Meurice de Dormale and J.-J. Quisquater, “High-speed Hardware imple-

mentations of elliptic curve cryptography: A survey”, Journal of Systems

Architecture, Vol. 53(2-3), pp:72-84, Elsevier, (2007)

[120] E. D. Mastrovito, “VLSI Architectures for Computation in Galois Fields”, PhD

Thesis, Department of Electrical Engineering, Linkoping University, (1991)

[121] C. Paar, “Efficient VLSI Architectures for Bit-Parallel Computation in Galois

Fields”, PhD Thesis, Institute for Experimental Mathematics, Universigy of

Essen, (1994)

[122] C. Negre, “Efficient parallel multiplier in shifted polynomial basis”, Journal

of Systems Architecture, Vol. 53(2-3), pp:109-116, Elsevier, (2007)

[123] J. L. Imana and J. M. Sánchez, “Efficient reconfigurable implementation of

canonical and normal basis multipliers over Galois fields GF (2m) generated by

AOPs”, Journal of VLSI Signal Processing Systems, Vol. 42(3), pp:285-296,

Kluwer Academic Publishers, (2006)

[124] S. E. Tavares, P. A. Scott, and L. E. Peppard, “A fast VLSI multiplier for

GF (2m)”, IEEE Journal on Selected Areas in Communications, Vol. 4(1):

pp:62-66, IEEE, (1986)

[125] E. Ferrer, D. Bollman, and O. Moreno, “A fast finite field multiplier”, Recon-

figurable Computing: Architectures, Tools and Applications - ARC ’07, LNCS

Vol. 4419, pp:238-246. Springer, (2007)

183



References

[126] L. Song and K. Parhi, “Low energy digit-serial/parallel finite field multipliers”,

Journal of VLSI Signal Processing Systems, Vol. 19(2), pp:149-166, Kluwer

Academic Publishers, (2006)

[127] M. Hütter, J. Groβschädl, G. A. Kamendje, “A Versatile and Scalable Digit-

Serial/Parallel Multiplier Architecture for Finite Fields GF (2m)”, Information

Technology: Coding and Computing - ITCC ’03, pp:692-700, IEEE, (2003)

[128] J.-L. Beuchat, T. Miyoshi, Y. Oyama, and E. Okamoto, “Multiplication over

Fpm on FPGA: A Survey”, Reconfigurable Computing: Architectures, Tools

and Applications - ARC ’07, LNCS Vol. 4419, pp:214-225, Springer, (2007)

[129] S. Ghosh, D. Roychowdhury, and A. Das “High Speed Cryptoprocessor for

ηT Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic

Two Fields”, Cryptographic Hardware and Embedded Systems - CHES ’11,

LNCS Vol. 6917, pp:442-458, Springer, (2011)

[130] C. Rebeiro and D. Mukhopadhyay, “High Speed Compact Eliptic Curve Cryp-

toprocessor for FPGA Platforms”, Progress in Cryptology - INDOCRYPT ’08,

LNCS Vol. 5365, pp:367-388, Springer, (2008)

[131] S. W. Golomb, “Combinatorial proof of Fermat’s “Little” Theorem”, The

American Mathematical Monthly, Vol. 63(10), pp:718, Mathematical Associa-

tion of America, (1956)

[132] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses

in GF (2m) using normal bases”, Information and Computation, Vol. 78(3),

pp:171-177, Elsevier, (1956)

[133] J. H. Guo, “Systolic array implementation of Euclid’s algorithm for inversion

and division in GF (2m)”, IEEE Transactions on Computers, Vol. 47(10),

pp:1161-1167, IEEE, (1998)

[134] H. Brunner, A. Curgier, and M. Hofstetter, “On computing multiplicative

inverses in GF (2m)”, IEEE Transactions on Computers, Vol. 42(8), pp:1010-

1015, IEEE, (1993)

[135] E. R. Berlekamp, “Algebraic Coding Theory”, Aegean Park Press, (1968)

184



References

[136] K. Araki, I. Fujita, and M. Morisue, “Fast inverters over finite fields based on

Euclids algorithm”, Transactions of the Institute of Electronics, Information

and Communication Engineers E, Vol. E72(11), pp:1230-1234, IEICE, (1989)

[137] M. Oloffson, “VLSI Aspects on Inversion in Finite Field”, PhD Thesis, De-

partment of Electrical Engineering, Linköping University, (2002)

[138] Y. Watanabe, N. Takagi, and K. Takagi, “A VLSI algorithm for division in

GF (2m) based on the extended binary GCD algorithm”, IEICE Transactions

on fundamentals of Electronics, Communications and Computer Sciences, Vol.

E85-A(5), pp:994-999, IEICE, (2002)

[139] S. C. Shantz, “From Euclid’s GCD to Montgomery Multiplication to the Great

Divide”, Techchnical Report SMLI TR-2001-95, pp:1-10, Sun Microsystems,

(2001)

[140] T. Kerins, “Architectures for Cryptography Based on Elliptic Curves”, PhD

Thesis, Electrical & Electronic Engineering Department, University College

Cork, (2005)

[141] M. Keller, T. Kerins, W. P. Marnane, “FPGA implementation of a GF (24m)

multiplier for use in pairing based cryptosystems”, Reconfigurable Comput-

ing: Architectures and Applications - ARC ’05, LNCS Vol. 3985, pp:358-369,

Springer, (2005)

[142] C. H. Lim and H. S. Hwang, “Fast implementation of elliptic curve arithmetic

in GF (pn)”, Public Key Cryptography - PKC ’00, LNCS Vol. 1751, pp:405-421,

Springer, (2000)

[143] M. Keller, “Efficient Architectures for Elliptic Curve Based Cryptography”,

PhD Thesis, Department of Electrical and Electronic Engineering, University

College Cork, (2008)

[144] C. Whelan and M. Scott, “Side channel analysis of practical pairing implemen-

tations: Which path is more secure?”, Progress in Cryptology - VIETCRYPT

2006, LNCS Vol. 4341, pp:81-98, Springer, (2006)

[145] T. H. Kim, T. Takagi,D. G. Han, H. W. Kim, and J. Lim, “Side Channel

Attacks and Countermeasures on Pairing Based Cryptosystems over Binary

Fields”, Cryptology and Network Security - CANS 2006 LNCS Vol. 4301,

pp:168-181, Springer, (2006)

185



References

[146] D. Montgomery and G. Runger, “Applied Statictic and Probability for Engi-

neers”, John Wiley & Sons, Inc., (2002)

[147] F. X. Standaert, S. B. Örs, J. J. Quisquater, and B. Preneel , “Power Analysis

Attacks against FPGA Implementations of the DES”, Field-Programmable

Logic and Applications - FPL ’04, LNCS Vol. 3203, pp:84-94, Springer, (2004)

[148] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of Power

Analysis Attacks on Smartcards”, Proceedings of USENIX Workshop on

Smartcard Technology - WOST ’99, pp:151-162, USENIX, (1999)

[149] J. Pan, J. I. den Hartog, and E. P. de Vink, “An Operation-Based Metric

for CPA Resistance”, World Computer Congress - WCC ’08, IFIP Vol. 278,

pp:429-443, Springer, (2008)

[150] J.-S. Coron, P. Kocher, and D. Naccache, “Statistics and secret leakage.”, Fi-

nancial Cryptography - FC ’00, LNCS Vol. 1972, pp:157-173, Springer, (2001)

[151] Research Center for Information Security, National Institute of Advanced In-

dustrial Science and Technoloty, “Side-channel Attack Standard Evaluation

Board SASEBO-GII Specification”, Version 1.0, RCIS, (2009)

[152] Mathworks, “System Requirements - Release 2008a”, Available from

http://www.mathworks.co.uk/support/sysreq/release2008a/, accessed

22/03/2013, (2008)

[153] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field inversion and

point halving revisited”, IEEE Transactions on Computers 2004, Vol. 53(8),

pp:1047-1059, IEEE, (2004)

[154] C. H. Lim and H. S. Hwang, “Fast implementation of elliptic curve arithmetic

in GF (pn)”, Public Key Cryptography - PKC ’00, LNCS Vol. 1751, pp:405-421,

Springer, (2000)

[155] D. Eastlake, S. Crocker, J. Schiller, “Randomness Recommendations for Secu-

rity”, RFC Editor, (1994)

[156] S. H. M. Kwok, and E. Y. Lam, “FPGA-based High-speed True Random Num-

ber Generator for Cryptographic Applications”, IEEE Region 10 Conference

- TENCON ’06, pp:1-4, IEEE, (2006)

186



References

[157] V. Fischer, and M. Drutarovský, “True Random Number Generator Embedded

in Reconfigurable Hardware”, Cryptographic Hardware and Embedded Systems

- CHES ’02, LNCS Vol. 2523, pp:415-430 , Springer, (2003)

[158] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic Attacks on

Pseudorandom Number Generators”, Fast Software Encryption - FSE ’98,

LNCS Vol. 1372, pp:168-188 , Springer, (1998)

[159] W. Pan and W. P. Marnane, “A Reconfigurable Implementation of the Tate

Pairing Computation over GF (2m)”, Reconfigurable Computing: Architectures,

Tools and Applications - ARC ’10 LNCS Vol. 5992, pp:80-91, Springer, (2010)

[160] W. Pan, and W. P. Marnane, “A Correlation Power Analysis Attack against

Tate Pairing on FPGA”, Reconfigurable Computing: Architectures, Tools and

Applications - ARC ’11, LNCS Vol. 6578, pp:340-349, Springer, (2011)

[161] I. Biehl, B. Meyer, and V. Muller, “Differential fault analysis on elliptic curve

cryptosystems”, Advances in Cryptology - CRYPTO ’00, LNCS Vol. 1880

pp:131-146, Springer, (2000)

[162] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking

cryptographic protocols for faults”, Advances in Cryptology - EUROCRYPT

’97, LNCS Vol. 1233 pp:37-51, Springer, (1997)

[163] S. Chari, J. R. Rao, P. Rohatgi, “Template Attacks”, Cryptographic Hard-

ware and Embedded Systems - CHES ’02, LNCS Vol. 2523, pp:13-28, Springer,

(2003)

[164] T. S. Messerges, “Using Second-Order Power Analysis to Attack DPA Resistant

Software”, Cryptographic Hardware and Embedded Systems - CHES ’00, LNCS

Vol. 1965, pp:238-251, Springer, (2000)

187


