
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Modular smoothed analysis of median-of-three Quicksort

Author(s) Hennessy, Aoife; Schellekens, Michel P.

Publication date 2014

Original citation HENNESSY, A. & SCHELLEKENS, M. P. 2014. Modular smoothed
analysis of median-of-three Quicksort. Submitted to: Discrete
Mathematics. [Preprint]

Type of publication Article (preprint)

Link to publisher's
version

http://www.sciencedirect.com/science/journal/0012365X
Access to the full text of the published version may require a
subscription.

Item downloaded
from

http://hdl.handle.net/10468/1367

Downloaded on 2022-01-20T20:00:51Z

https://libguides.ucc.ie/openaccess/impact?suffix=1367&title=Modular smoothed analysis of median-of-three Quicksort
http://www.sciencedirect.com/science/journal/0012365X
http://hdl.handle.net/10468/1367

Modular Smoothed Analysis of

Median-of-three Quicksort1

Aoife Hennessy2, M. Schellekens3

Abstract

Spielman’s smoothed complexity - a hybrid between worst and average
case complexity measures - relies on perturbations of input instances to de-
termine where average-case behavior turns to worst-case. This approach
simplifies the smoothed analysis and achieves greater precession in the ex-
pression of the smoothed complexity, where a recurrence equation is obtained
as opposed to bounds. Moreover, the approach addresses, in this context,
the formation of input instances–an open problem in smoothed complexity.
In [23], we proposed a method supporting modular smoothed analysis and
illustrated the method by determining the modular smoothed complexity of
Quicksort. Here, we use the modular approach to calculate the median of
three variant and compare these results with those in [23].

Keywords: Modular Smoothed analysis,MOQA, Median-of-three
Quicksort

1. Introduction

Smoothed Analysis is a framework for analyzing algorithms and heuris-
tics, partially motivated by the observation that input parameters in prac-
tice often are subject to a small degree of random noise [17]. In smoothed

1This grant was supported by SFI grant SFI 07/IN.1/I977. The authors are grateful
for fruitful discussions with D. Early that have improved the presentation of the paper
and support by Ang Gao in preparing the diagrams.

2Centre for Efficiency Oriented Languages(CEOL), University College Cork, Ireland,
a.hennessy@cs.ucc.ie

3Centre for Efficiency Oriented Languages(CEOL), University College Cork, Ireland,
m.schellekens@cs.ucc.ie

Preprint submitted to Discrete Mathematics January 23, 2014

analysis, one assumes that an input to an algorithm is subject to a slight
random perturbation. The smoothed measure of an algorithm on an input
instance is its expected performance over the perturbations of that instance.
The smoothed complexity of an algorithm is the maximum smoothed mea-
sure over its inputs. The area has been widely studied, following up on the
ground breaking work by Spielman and Teng on the smoothed analysis of the
simplex method [16]. For an overview of the literature, we refer the reader
to the survey paper [17].

In this paper we extend the modular approach of smoothed analysis that
was presented in [23] to median-of-three Quicksort. Modularity is a property
of systems (hardware or software), which reflects the extent to which it is
decomposable into parts, from the properties of which one is able to predict
the properties of the whole[12]. Modularity brings a strong advantage. The
capacity to combine parts of code, where the complexity is simply the sum of
the complexities of the parts, is a very helpful advantage in static analysis.

We obtain the following recurrence4 for the modular smoothed complexity
f(n, k) of median-of-three Quicksort:

f(n, k) = (n− 1) + 1 +

n−1
∑

j=2

βn−1
n+1−jf(j − 1, k) +

n−1
∑

j=2

βn−1
j f(j − 1, k) (1)

where βn−1
j for 2 ≤ j ≤ n− 2 is

2!(j − 1)

k(n− 2)
(

n

k

)

(

2

(

n− 4

k − 2

)

+ 2
(k + 1)

(k − 1)

(

n− 4

k − 3

)

+
3(n− j)

(k − 1)

(

n− 4

k − 4

)

)

,

4Where, as discussed in the paper, we work with a perturbation probability σ approx-
imated by k/n, for a partial permutation of k elements out of n, in order to express the
smoothed complexity as a recurrence.

2

and βn−1
n−1 is

{

k!

(

n− 3

k

)

+ (k − 1)!

(

n− 3

k − 1

)

(2 + k)

+ 2!(k − 2)!

(

n− 3

k − 2

)

(2k − 1) + 3!(k − 2)!

(

n− 3

k − 3

)

}

(n− k)!

n!
.

(2)

As highlighted in [23] since the argument of [4] cannot rely on subproblems
generated in recursive calls being again random permutations (for the case of
partial permutations), the authors presented an alternative argument based
on randomized incremental constructions [11]. This problem is overcome
with our modular approach which allows us to form a recursive argument
[23]. In [23] we illustrated our model with Quicksort. Here, we extend the
modular approach to Quicksort’s median-of-three variant, where as in [23]
we will yield a traditional recurrence equation. We refer the reader to [23]
for further details. We will contrast our results to our previous analysis of
Quicksort. As in [23], in our model, the data will be represented as finite
labelled partial orders, or LPOs, and random structures.

A labelled partial order, or LPO, is a triple (A,⊑, l), where A is a set,
⊑ is a partial order on A (that is, a binary relation which is reflexive, anti-
symmetric, and transitive), and the labeling l is a bijection from A to some
totally ordered set C which is increasing with respect to the order ⊑.

Given a finite partial order (A,⊑) and a totally ordered set C with |C| =
|A|, the random structure RC(A,⊑) is the set of all LPOs (A,⊑, l) with
l(A) = C.

As the algorithms we consider are comparison-based, the choice of the set
C is unimportant, and we will generally write a random structure as R(A,⊑),
without the subscript5.

The algorithms we consider have the property of “randomness preserva-
tion”, which means that applying any operation to each LPO in a random
structure results in an output isomorphic to one or more random structures,
which is the key to systematic timing.

5More formally, we can consider the random structure to be the quotient of the set of
all LPOs on the partial order (A,⊑) with respect to a natural isomorphism. See [18, 22]
for a full discussion.

3

Formally: a random bag is a multiset6 of random structures. We represent
random bags using the multiplicity notation for multisets, so that, for each i,
the random bag {(Ri, Ki)}i=1,...,n contains Ki copies of the random structure
Ri. A function which takes a random structure as argument is random bag
preserving if its output is a random bag {(Ri, Ki)}i=1,...,n.

In this context, any sorting algorithm transforms the random structure
with underlying discrete order of size n, i.e. a random bag containing a single
random structure R1 with multiplicity one, into the random bag containing
a single random structure R2 with underlying linear order with multiplicity
n!. Here, R1 comprises of exactly n! labelings, representing the traditional n!
input lists used in the analysis of sorting algorithms. The random structure
R2 has exactly one labeling, representing the sorted list, of which n! copies
will be produced by any sorting algorithm.

As computations proceed in our model, the partial orders underlying the
random structures will become more refined (i.e. more order is introduced)7.
For instance, any sorting algorithm will start its computation from a random
structure with underlying order the discrete partial order. It will transform
this into the sorted output, hence into the random structure with underlying
partial order the linear partial order, a refinement of the discrete partial
order.

To set the stage for the analysis of median-of-three Quicksort, we briefly
discuss the split operation, recursively called to order the data. In the tra-
ditional version of Quicksort, a fixed pivot is chosen. In the median-of-three
variant, the pivot is chosen as the middle element in three randomly cho-
sen elements. The split operation reorders a given list, placing all elements
smaller than the pivot before the pivot (in the same order as encountered
in the original list) and all elements greater than the pivot after the pivot
(again in the same order as encountered in the original list). The usual rep-
resentation of the output list is a list in which the pivot element sits in its
“correct” position. I.e. if the pivot has relative rank i among the elements
in the list, the pivot will be placed in the i-th position in the output list, all
elements smaller than the pivot will occur to its left and all pivots greater
than the pivot will occur to its right.

6I.e. a set which allows elements to occur with any integer multiplicity, rather than
only zero or one.

7Formally: A poset (X1,⊑1) is a refinement of another poset (X2,⊑2) if for all x, y ∈
X1. x ⊑2 y ⇒ x ⊑1 y.

4

The underlying partial order for which this output list is a labeling is the
“star-shaped order” containing a central element (to store the pivot label),
with n− i− 1 elements placed above it (to store the labels greater than the
pivot) and n− i elements below it (to store the labels less than the pivot).

n− i− 1 elements

i elements

Split is a random bag preserving operation. The random bag presentation
of the outputs of split corresponds to representing the “order-information”
gathered during the execution of the split operation. The elements placed by
split to the left of the pivot, will be represented as “smaller” than the pivot,
i.e. below the pivot as labels on the above Hasse diagram. The elements
placed by split to the right of the pivot, will be represented as greater than
the pivot, i.e. above the pivot as labels on the Hasse diagram.

As in [23] the model here can be viewed as a new step to explore the
discrete case: the points in our space are the random structures (or more
generally random bags). The perturbations happening throughout the com-
putation, and acting on random structures, will become proportionally less in
relation to the amount that our data is already sorted. The sorting computa-
tion gradually “refines” (= introduce more order on) the random bags after
each operation. The perturbations will never affect already sorted elements
(in this case the pivots placed in their correct position after each split) and
ultimately, in the last step of the recursion, will not affect the sorted output.
Formally, our perturbations on a given LPO can only act on “free pairs” of
labels, i.e. labels that, when swapped result in a new LPO. For this to occur,
the swapped labels need to respect the underlying partial order.

We note, in [23] sample-fair smoothed(SFS) was defined as

T SFS
A (n, k) = maxP∈P,P={P1,...,Pm}[T

S
A (P, k)]. (3)

and it was shown that

T SFS
A (n, k) = T S

A (n, k). (4)

5

where P = Partitions(
∑

n),
∑

n being the collection of permutations of
the first n integers and P ∈ P is denoted by P = {P1, . . . Pm} and i ≤ m ≤ n!.
We define the smoothed complexity of a partition P, P = {P1, . . . , Pm} of
∑

n as T S
A (P, k) = maxi∈{1,...,m}TA(Pertk,n(Pi)), where Pertk,n(Pi) is the

set of outputs from permutations of Pi after perturbation of k element of
the permutation of size n. Smoothed complexity is the restriction of the fair
smoothed complexity to a single partition P of

∑

n consisting of all singletons,
i.e. P = {{s1}, . . . , {sn!}}, which we refer to as the singleton base.

As in [23] and given eq. 4 we will compute the smoothed complexity
relying on a different base than the singleton base which we refer to as a
modular base. Any random bag preserving operation has a modular base,
consisting of the partition of it’s input data that consists of inverse images of
the random structures in its output random bag. For the split operation of
median-of-three Quicksort, the modular base will consist exactly of partitions
for which the elements consist of the lists which share the same pivot element.

2. Background

2.1. Compositionality of timing measures

Let A;B represent the sequential execution of algorithm A followed by
algorithm B, where A operates on the input multiset I and produces the
output multiset A(I).

The worst-case time satisfies the following compositionality inequality:

(∗) TW
A;B(I) ≤ TW

A (I) + TW
B (A(I))

The average-case time satisfies the following compositionality equality
[18, 22].

(∗∗) TA;B(I) = TA(I) + TB(A(I))

For the average-case time measure, we focus on finite input sets. This
corresponds to conventions of traditional average-case analysis. Indeed, for
the discrete case, inputs are identified up to order isomorphism yielding a
finite amount of “states” used during the analysis. For the case of lists of size
n, the analysis is reduced to considering the n! cases of input lists as opposed
to the potentially infinite collection inputs. The argument, as usual, relies
on the assumption that the algorithm under consideration runs in the same

6

time on lists that satisfy the same relative order between elements. This will
be the case for the algorithms we consider.

We recall the proof from [18] (where the multiset I is finite):

TA;B(I) =

∑

I∈I TA;B(I)

|I|

=

∑

I∈I TA(I) +
∑

J∈OA(I) TB(J)

|I|

= TA(I) + TB(OA(I)),

where the last equality follows from the fact that |I| = |OA(I)| (where
the collections involved are multisets).

For randomness preserving algorithms it is possible to represent the mul-
tiset OA(I) as a random bag. For such randomness preserving algorithms,
the following compositionality theorem holds.

Theorem 1. (Compositionality Theorem, [18, 22]) Consider random bag
preserving programs/operations P and Q, where we execute P on a random
bag R, producing random bag R′.

• The average-case time of the sequential execution of P followed by Q
is:

T P ;Q(R) = T P (R) + TQ(R
′).

• Consider random bag R = {(R1, K1), . . . , (Rn, Kn)}, then:

T P (R) =

n
∑

i=1

Probi × TP (Ri)

where

Probi = Prob[F ∈ Ri] =
Ki|Ri|

∑n

i=1Ki|Ri|
=

Ki|Ri|

|R|

where F is any labeling belonging to the random structure Ri.

• For the particular case where R = {(R1, K1)}, the previous equality
reduces to:

T P (R) = T P (R1).

7

The compositionality theorem will be used to derive the modular smoothed
complexity of median-of-three Quicksort.

The compositionality theorem has been fruitfully applied to design new
static average-case timing tools. We refer the interested reader to [18].

Here, we focus on exploring modular smoothed analysis, applied to the
median-of-three Quicksort algorithm.

2.2. Smoothed complexity and the partial permutation model

Smoothed analysis considers inputs that are subject to some random per-
mutation. The smoothed measure of an algorithm acting on a given input is
the average running time of the algorithm over the perturbations of that in-
stance, while the smoothed complexity of the algorithm is the worst smoothed
measure of the algorithm on any input instance. The degree of perturbation
is measured by a parameter σ. As σ becomes very small, the perturbations
on the input become insignificant, and the smoothed complexity tends to-
wards the worst-case running time. As σ becomes large, the perturbations
become more significant than the original instance and the smoothed com-
plexity tends towards the average-case running time.

In general, the smoothed complexity is a function of σ which interpolates
between the worst case and average case running times. The dependance on σ
gives a sense of how improbable an occurrence of the worst case input actually
is. Formally, we have the following definition for smoothed complexity:

Definition 1. [16] Given a problem P with input domain D = UnDn where
Dn represents all instances whose input size is n. Let R =

⋃

n,σRn,σ be a
family of perturbations where Rn,σ defines for each x ∈ Dn a perturbation
distribution of x with magnitude σ. Let A be an algorithm for solving P. Let
TA(x) be the complexity for solving an instance x ∈ Dn.

8

The smoothed complexity: T S
A (n) of the algorithm A is defined by:

T S
A(n, σ) = maxx∈Dn

(

Ey←Rn,σ(x)[TA(y)]
)

,

where y ←Rn,σ(x) means y is chosen according to distribution Rn,σ(x). The
smoothed complexity is the worst of smoothed measures of A on inputs of

8In our context: The algorithms will be comparison based and TA(x) will be the running
time of A input x,measured in the number of comparisonsA will carry out when computing
the output on input x.

8

size n of the expected value (average time) of algorithm A on the family of
perturbations of x, namely the set Rn,σ(x) = smoothed complexity measure.

The method of partial permutations to study the smoothed complexity
of discrete data was first proposed in [4], who defined it as follows:

Definition 2. [4] Partial Permutations: This model applies to problems
defined on sequences. It is parameterized by a real parameter σ with 0 ≤
σ ≤ 1 and is defined as follows. Given a sequence s1, s2, . . . sn each element is
selected (independently) with probability σ. Let k be the number of selected
elements (on average k = σn). Choose one of the m! permutations of m
elements (uniformly at random) and let it act on the selected elements.

Example 1. [4] For σ = 1/2 and n = 7, one might select m = 3 ele-
ments(namely s2, s3 and s7) out of an input sequence (s1, s2, s3, s4, s5, s7s7).
Applying the permutation (312) to the selected elements yields

(s1, s7, s3, s4, s5, s6s4).

As stated in the introduction, the natural model of permutation on a
sequence for recursive algorithms applies partial permutations at each call
of the recursive algorithm. The input partitions and their perturbations are
tracked throughout the computation and the newly produced outputs will
be perturbed yet again, and passed on to the next basic operation involved
in the algorithm. For this reason, we modify the partial permutation model
defined in [4] and define a new model. We refer to our model as the recursive
partial permutation model, and define it as follows:

Definition 3. Recursive Partial Permutations: This model applies partial
permutations at each successive call of the recursive algorithm.

InMOQA we typically assume that all data (LPO = labelled partial or-
der) has been created from the atomic random structures An(n ≥ 1) These
random structures can be represented (after identification up to label iso-
morphism) as the collection of permutations of the first n integers, denoted
by
∑

n
9

9Note: MOQA programs can operate on arbitrary random structures or random bags,
provided certain rules are respected. We consider in first instance An =

∑

n
in particular

since we analyze quicksort whose inputs stem from
∑

n
.

9

For the case of
∑

n we can carry out the following simplification. Defini-
tion 2 can be simplified to a random selection of k elements among an input
permutation of size n, where for sufficiently large n the number of selected
elements k will be close to nσ, i.e. n

k
≈ σ.

In essence, this simplification amounts to focusing on the expected out-
come of selecting the elements with probability σ, which in case of an outcome
of k elements is k

n
, where the expected outcome is a selection of k elements

(and other outcomes become negligible in chance.) The formalization can
be based on a similar argument as is presented in [13] relying on Chernoff
bounds. The motivation for relying in our arguments on this simplification
is that considering σ to be of the form k

n
allows for the expression of the

smoothed complexity via a recurrence equation in terms of n and k.
Taking account of the above, from here on we focus, for inputs of size n

from
∑

n, on probabilities σ = k
n
(k ≥ 0, k ≤ n) and on partial permutations

(perturbations of magnitude σ). Our definition of partial permutations now
becomes:

Definition 4. A σ-partial permutation of s is a random sequence s′ =
(s′1, s

′
2, . . . s

′
n) obtained from s = (s1, s2, . . . sn) in two steps.

1. k elements of s are selected at random, where k ≥ 0, k ≤ n.

2. Choose one of the k! permutations of these elements (uniformly at
random)and rearrange then in that order, leaving the positions of all
the other elements fixed.

We now adapt our notation in definition 1 according to our new definition
above:

For σ = k
n
, Rn,σ can be denoted as Rk,n, the collection of partial permu-

tations of size n that permute k out of n elements and leave the others fixed.
If s ∈

∑

n and t ∈ Rk,n(Rk,n will also be denoted as
∑

k,n) then t ◦ s denotes
the effect of carrying out the partial permutations t on the permutation s.

The average time T of an algorithm A on an input collection I ⊂ Dn (in
our case Dn =

∑

n) is

TA(I) =

∑

i∈I TA(i)

|I|
.

TA(n) = TA(Dn) =

∑

s∈
∑

n
TA(s)

n!
(5)

10

The definition of the smoothed complexity now simplifies:

T S
A (n, k) = maxs∈

∑
n
(TA(Pertk,n(A))) (6)

where Pertk,n(A) = {t ◦ s|s ∈ A, t ∈
∑

k,n} is a multiset.

Lemma 2. Pertk,n(
∑

n) =

{(

∑

n,
(

n

k

)

k!n!

)}

Proof. The proof is left as an exercise.

The result shows that the traditional smoothed measure is sample-fair
in the above sense. The singleton base has been shown to suffice for a fair
representation of all smoothed measures. In other words, the collection of all
partitions can be replaced by the singleton base in practice.

As in [23], the notion of a base will play a central role in our approach to
modular smoothed complexity. The modular smoothed complexity has been
formulated to reflect “modular-fairness”, where perturbations are systemat-
ically applied to all inputs of each basic operation of an algorithm, rather
than to the algorithm’s original inputs only.

In the following we will illustrate how the choice of a different base can
be used to define the notion of a modular smoothed complexity TMS

A (n, k).
Intuitively, the modular smoothed complexity is defined similarly to the

traditional smoothed complexity, for the case of recursive algorithms, with
the distinction:

• the definition uses an alternative partition, referred to as the modular
base.

We will formalize the approach below.

3. Modular smoothed analysis of Median-of-three Quicksort

In [23] we analysed the smoothed complexity of Quicksort, where the
pivot chosen was the first element of the permutation/list. However, in [14],
a median-of-three modification of Quicksort is analysed. It was first suggested
by Hoare [5], however Sedgewick shows in [14] the percentage saving using
a median-of-three modification. In [14], the first, middle and last elements
were chosen as the three elements, and the median of those three elements
as the pivot. We differ from this for reasons of randomness preservation. We

11

look at median-of-three Quicksort with all possible choices of the three pivot
elements. We note that as with Quicksort, partial permutations on individual
inputs do not have the property that recursive calls result in subproblems
that are random permutations. Thus, again for this reason we focus on
identifying collections of inputs on which partial permutations lead to random
subproblems on which split can be called. For Quicksort, we considered
partitions of inputs

∑

n, P1, . . . Pl =
∑

n ∀i, j i 6= j =⇒ Pi ∩ Pj = φ. We
referred to {P1, . . . Pl} as the base of the operation. For Quicksort, the base
of the split is the partition

(
∑n

i=1
)i={1,...n} = {s ∈

∑

n
|s1 = i}.

We will consider a similar base for median-of-three Quicksort, however we
note that the set of possible pivots is restricted for median-of-three Quicksort,
since for a permutation of the first n integers a pivot of 1 or n is not possible.
In order to preserve randomness properties we must consider partitions on
the set of permutations arising from k-partial perturbations on permutations
choosing all possible pivot selections. We note that the base sets that are
used for Quicksort and median-of-three Quicksort are not necessarily unique.
We introduce the notation for the base of the split of median-of-three Quick-
sort:

We consider partitions of inputs
∑

n, over all possible pivot selections.

We denote
∑(i,j,k)

n , as the set of all permutations, where (i, j, k) are the ith,
jth and kth positions of the elements (1 ≤ i < j < k ≤ n) which form the
three elements from which the median is chosen as the pivot. We partition
the multiset of all possible choices of (i, j, k) into subsets.

Definition 5. Pertmk,n(
∑(i,j,k)

n), 2 ≤ m ≤ n−1 is the multiset of permutations

with pivot m arising after k-partial permutations on the set
∑(i,j,k)

n .

Example 2. For n = 5 and k = 2 we have the following random bags under
the Split operation:

Split : Pert22,5
(

∑(i,j,k)

5

)

−→ {(R2, 960), (R3, 240), (R4, 80)}

Split : Pert32,5
(

∑(i,j,k)

5

)

−→ {(R2, 160), (R3, 1920), (R4, 160)}

Split : Pert42,5
(

∑(i,j,k)

5

)

−→ {(R2, 80), (R3, 240), (R4, 960)}

12

We will show that split is a random bag preserving operation on each base
element (ie Pertmk,n(

∑(i,j,k)
n)). As Pertmk,n(

∑(i,j,k)
n) strictly speaking yields a

set of perturbations that is not immediately representable as a random bag,
we abuse our terminology. Instead we will relax the terminology as follows:
An operation A is “random bag inducing” on a collection of inputs I when
the output multiset yields a random bag R, A : I → R. We now present the
following theorem:

Theorem 3. Split is random bag inducing on each

Pertn−1k,n (
∑(i,j,k)

n
).

More precisely

Split : Pertn−1k,n (
∑(i,j,k)

n
) −→ {(R(P [1, n−2]), Kn−1

2), . . . (R(P [n−2, 1]), Kn−1
n−1)}

for n ≥ 5, k ≥ 4, where Kn−1
j for 2 ≤ j ≤ n − 2 and for j = n − 1 are

calculated by

(

n

3

)

3!(n− 3)!2!(k − 2)!

(n− j)!(j − 2)!

{

2(k − 1)

(

n− 4

k − 2

)

+ 2(k + 1)

(

n− 4

k − 3

)

+ 3(n− j)

(

n− 4

k − 4

)

}

(7)

and Kn−1
n−1 by

(

n

3

)

3!

{

k!

(

n− 3

k

)

+ (k − 1)!

(

n− 3

k − 1

)

(2 + k)

+ 2!(k − 2)!

(

n− 3

k − 2

)

(2k − 1) + 3!(k − 2)!

(

n− 3

k − 3

)

}

(8)

Proof. See appendix A for our counting argument and the calculation of the
multiplicities.

13

Example 3. For n = 5, k = 4 we have:

K4
j =

(10)3!(2)!2!(2)!

(5− j)!(j − 2)!

(

2(5)

(

1

1

)

+ (5− j)
{

3

(

1

0

)

}

)

=
480

(5− j)!(j − 2)!
(10 + 3(5− j)), 2 ≤ j ≤ 3,

and

K4
4 = (10)3!

{

2!(2)!

(

2

2

)

(7) + 3!(1)!

(

2

1

)

(2)}

}

= 60(28 + 24)

Thus split on Pert44,5(
∑(i,j,k)

5) gives

{(R(P [1, 3]), 1520), (R(P [2, 2]), 3840), (R(P [3, 1]), 3120)}.

Now that we have established the effect on our base elements of split, the
central operation in median-of-three Quicksort, we take a similarly approach
to that in [23] where we followed the compositional analysis of Quicksort
presented in [21]. We have the following lemma from [21](pg 27)

Lemma 4. When X ranges over
∑

n, the multiset of restrictions of Split(X)
to ILower is a Random Bag

{R(∆j−1), (j − 1)!} = {
∑

j−1
, (j − 1)!}

by a labeling isomorphism. Similarly for IUpper:

{(R(∆n−j), (j − 1)!)} =

{

(
∑

n−j

, (j − 1)!)

}

.

As with MOQA Quicksort, we again take the maximum over the aver-
ages in this approach giving

TMS
QS3

(n, k) = maxm∈{2,...n−1}TQS3

(

Pertmk,n(
∑(i,j,k)

n
)
)

(9)

14

where

TQS

(

Pertmk,n(

(i,j,k)
∑

n

)
)

= T Split

(

Pertmk,n(
∑(i,j,k)

n
)
)

+ TQS3
({(R(∆0), Ni), . . . (R(∆n−1), N

i
n)})

+ TQS3
({(R(∆n), Ni), . . . (R(∆0), N

i
1)})

where N i
j = Ki

jLj and Lj = (n − j)! Recall from Theorem 25 in [21]. R =
{(R1, K1), . . . (Rp, Kp)} is a random bag. We have

T p(R) =

p
∑

i=1

probiT p(Ri) (10)

where

Probi = Prob[F ∈ Ri]

=
Ki|Ri|

|R|

Split takes n− 1 comparisons on every permutations of size n, so:

T Split

(

Pertk,n(

(i,j,k)
∑

n

)
)

= n− 1 (11)

Lemma 5.

maxm∈{2,...n−1}TQS3

(

Pertmk,n(

(i,j,k)
∑

n

)
)

= TQS3

(

Pertn−1k,n (

(i,j,k)
∑

n

)
)

Proof. The proof is left as an exercise

Thus TMS
QS3

(n, k)

maxm∈{2,...n−1}

[

(n− 1) + 110

+
n−1
∑

j=2

βm
n+1−jT

MS
QS3

(

Pertmk,n(

(i,j,k)
∑

n

)
)

+
n−1
∑

j=2

βm
j TMS

QS3

(

Pertmk,n(

(i,j,k)
∑

n

)
)

]

,

(12)

15

simplifies to

(n− 1) + 1

+
n−1
∑

j=2

βn−1
n+1−jT

MS
QS3

(

Pertn−1k,n (

(i,j,k)
∑

n

)
)

+
n
∑

j=1

βn−1
j TMS

QS3

(

Pertn−1k,n (

(i,j,k)
∑

n

)
)

.

(13)

Let f(n, k) = TMS
QS3

(n, k). We now have the following equation

f(n, k) =

[

(n− 1) + 1 +
n−1
∑

j=2

βn−1
n+1−jf(j − 1, k) +

n−1
∑

j=2

βn−1
j f(j − 1, k)

]

(14)

Definition 6. The recurrence equation for median-of-three quicksort is:

f(n, k) = (n− 1) + 1 +

n−1
∑

j=2

βn−1
n+1−jf(j − 1, k) +

n−1
∑

j=2

βn−1
j f(j − 1, k) (15)

where

βi
n−1 =

N i
n−1|

∑

j−1 |

|Pertn−1k,n (
∑(i,j,k)

n)|
,

is the probability that a labeling belongs to R(∆j−1) in the random bag
{(R(∆2), N

n−1
2), . . . (R(∆n−1), N

n−1
n−1)}.

βn−1
j =

2!(j − 1)

k(n− 2)
(

n
k

)

(

2

(

n− 4

k − 2

)

+ 2
(k + 1)

(k − 1)

(

n− 4

k − 3

)

+
3(n − j)

(k − 1)

(

n− 4

k − 4

)

)

, (16)

for 2 ≤ j ≤ n− 2 and βn−1
n−1 is

{

k!

(

n− 3

k

)

+ (k − 1)!

(

n− 3

k − 1

)

(2 + k)

+ 2!(k − 2)!

(

n− 3

k − 2

)

(2k − 1) + 3!(k − 2)!

(

n− 3

k − 3

)

}

(n− k)!

n!

(17)

16

Proof. The recurrence formula for median-of-three Quicksort is calculated
similarly to that for Quicksort which we saw in the last section. However,
we make a cost allowance for comparing the three elements from which we
choose our pivot. Firstly, let us calculate |Pertn−1k,n (

∑(i,j,k)
n)|

Definition 7.

|Pertn−1k,n (

(i,j,k)
∑

n

)| =

(

n

3

)

3!(n− 2)!n!

(n− k)!
(18)

Proof. The total number of permutations after k-partial permutations on
permutations of length n is

n!

(

n

k

)

k!.

The proportion of total permutations with the (n− 1)th pivot can be calcu-
lated as

3!(n− 3)!(n− 2)

n!
.

Thus, the total permutations after k partial permutations with pivot (n−1),
over all possible pivot choices is

|Pertn−1k,n (

(i,j,k)
∑

n

)| =

(

n

3

)

3!(n− 3)!(n− 2)

n!
n!

(

n

k

)

k!

=

(

n

3

)

3!(n− 2)!n!

(n− k)!

Secondly, the calculations for the beta values are shown below:
Calculating βn−1

j for 2 ≤ j ≤ n− 2

βn−1
j =

Nn−1
j |

∑

j−1 |

|Pertk,n(
∑(i,j,k)

n)|

=
2!(j − 1)

k(n− 2)
(

n
k

)

(

2

(

n− 4

k − 2

)

+ 2
(k + 1)

(k − 1)

(

n− 4

k − 3

)

+ (n − j)
3

(k − 1)

(

n− 4

k − 4

)

)

For βn−1
n−1 we have the following:

17

βn−1
n−1 =

Nn−1
n−1 |

∑

j−1 |

|Pertk,n(
∑(i,j,k)

n)|

=

(

k!

(

n− 3

k

)

+ (k − 1)!

(

n− 3

k − 1

)

(2 + k) +

2!(k − 2)!

(

n− 3

k − 2

)

(2k − 1) + 3!(k − 2)!

(

n− 3

k − 3

)

)

(n− k)!

n!

The modular smoothed complexity of Median-of-three Quicksort, f(n, k), is
summarised below,

f(n, k) = (n− 1)+ 1+
n−1
∑

j=2

βn−1
n+1−jf(j− 1, k)+

n−1
∑

j=2

βn−1
j f(j− 1, k) (19)

where βn−1
j for 2 ≤ j ≤ n− 2 is

2!(j − 1)

k(n− 2)
(

n
k

)

(

2

(

n− 4

k − 2

)

+ 2
(k + 1)

(k − 1)

(

n− 4

k − 3

)

+
3(n− j)

(k − 1)

(

n− 4

k − 4

)

)

,

and βn−1
n−1 is

{

k!

(

n− 3

k

)

+ (k − 1)!

(

n− 3

k − 1

)

(2 + k) + 2!(k − 2)!

(

n− 3

k − 2

)

(2k − 1)

+3!(k − 2)!

(

n− 3

k − 3

)

}

(n− k)!

n!
.

4. Results and conclusion

Here we have presented a closed form equation for measuring the smoothed
complexity of median-of-three Quicksort. From this equation we can find

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

20

40

60

80

100

120

140 Smoothed analysis of Median-of-three Quicksort

on permutations from size 5 to 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0

50

100

150

200

250

300

350

Smoothed analysis of Quicksort

on permutations from size 5 to 25

Figure 1: The modular smoothed complexity of Quicksort v Median-of-three for the first
25 values of n

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

50

100

150

200

250

300

n = 25

Median of 3

Quicksort

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

20

40

60

80

100

120

140

160

180

n = 20

Median of 3

Quicksort

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

20

40

60

80

100

n = 15

Median of 3

Quicksort

Figure 2: The modular smoothed complexity of Quicksort v Median-of-three, for n = 15, 20
and 25 for increasing k

20

more precise bounds for the timing of such randomness preserving algo-
rithms. Figure 1 shows the timing for n = 15, 20 and 25 for Quicksort versus
Median-of-three Quicksort. Figure 2 shows the modular smoothed complex-
ity of Quicksort and the modular smoothed complexity of median-of-three
Quicksort for permutations of length 1 ≤ n ≤ 25 for increasing values of
the k. The saving using a median-of-three modification is clearly seen with
the recursive permutation model having a greater impact on the unmodified
Quicksort. With the closed from equations for both, we can quantify this
impact for the various perturbations of k.

21

Appendix A.

Here, we calculate the input and output permutations of the random bag with
the pivot n− 1 before perturbation. We split this calculation into two parts,
the first part calculates the permutations with pivot j where 2 ≤ j ≤ n− 2
and the second part calculates the permutations with pivot n− 1.

1. To calculate the permutations arising after perturbation we need to
split the permutations into groups. After perturbation we want to
count the permutations arising with pivot j.

The total number of permutations with pivot (n− 1) is

3!(n− 3)!

(

1

1

)(

1

1

)

(n− 2).

We split into groups tracking the position of element j in the count.
This grouping enables us to count the sum of the output permutations
with pivot j after perturbation. The groups are formed as follows:

(a) Input permutations with three pivot elements n, n−1 and x where
x < j. There are

(

j−1
1

)(

1
1

)(

1
1

)

3!(n− 3)! such permutations.
(b) Input permutations with three pivot elements n, n−1 and j. There

are
(

1
1

)(

1
1

)(

1
1

)

3!(n− 3)! such permutations.
(c) Input permutations with three pivot elements n, n−1 and x where

x > j. There are
(

n−j−2
1

)(

1
1

)(

1
1

)

3!(n− 3)! such permutations.

We count the number of permutations arising with pivot j from each
of the groups above. We do this by counting the total possible ways
the pivot j can be the median of the three elements, resulting in the
equation below:
after some simplification and rearranging we have Mj for n ≥ 5, k ≥ 4,

3!(n−3)!(j−1)2!(k−2)!

(

2(k−1)

(

n− 4

k − 2

)

+2(k+1)

(

n− 4

k − 3

)

+3(n−j)

(

n− 4

k − 4

)

)

,

(A.1)

We now calculate the multiplicities of the jth random structure, where
2 ≤ j ≤ n− 2, in the random bag with pivot (n− 1) to be

Kn−1
j =

Mj

(n− j)!(j − 1)!

22

Thus, for n ≥ 5, k ≥ 4, 2 ≤ j ≤ n− 2 we have Kn−1
j as

3!(n− 3)!2!(k − 2)!

(n− j)!(j − 2)!

(

2(k−1)

(

n− 4

k − 2

)

+2(k+1)

(

n− 4

k − 3

)

+3(n−j)

(

n− 4

k − 4

)

)

(A.2)

2. We now calculate the permutations after perturbation with pivot n−1.
Thus, this group have the same pivot before and after perturbation. We
have the following result:

Mn−1 = 3!(n − 3)!(n − 2)

{

k!

(

n− 3

k

)

+ (k − 1)!

(

n− 3

k − 1

)

(2 + k)

+2!(k − 2)!

(

n− 3

k − 2

)

(2k − 1) + 3!(k − 3)!

(

n− 3

k − 3

)

(k − 2)}

}

for n ≥ 5, k ≥ 4. We now calculate the multiplicities of the (n− 1)th random
structure,

Kn−1
n−1 =

Mn−1

(n− j)!(j − 1)!

Thus, for n ≥ 5, k ≥ 4, we have Kn−1
n−1 as

3!

{

k!

(

n− 3

k

)

+(k−1)!

(

n− 3

k − 1

)

(2+k)+2!(k−2)!

(

n− 3

k − 2

)

(2k−1)+3!(k−2)!

(

n− 3

k − 3

)

}

}

(A.3)

References

[1] A.Aho, J.Hopcroft and J. Ullman, Data Structures and Algorithms,
Addison-Wesley Series in Computer Science and Information Process-
ing, Addison-Wesley, 1987.

23

[2] A. Gao. Modular Average Case Analysis: Language Implementation
and Extension, PhD thesis, University College Cork, 2013.

[3] A. Gao, K. Rea, and M. Schellekens, Static Average Case Analysis
Fork-Join Framework Programs Based OnMOQAMethod, 6th Inter-
national Symposium on Parallel Computing in Electrical Engineering,
accepted for publication, Luton, UK, April 2011.

[4] C. Banderier, R. Beier, and K. Mehlhorn. Smoothed analysis of
three combinatorial problems. In the 28th International Symposium on
Mathematical Foundations of Computer Science, pages 198207, 2003.

[5] Hoare, C.A.R. Partition: Algorithm 63; Quicksort: Algorithm 64 and
Find: ALgorithm 65 Comm. ACM 4, 7 (July 1961), 321–322.

[6] S. Edelkamp, Weak-Heapsort, ein schnelles sortierverfahren, Diplomar-
beit Universität Dortmund, 1996.

[7] D. Hickey, Distritrack: Automated Average-Case Analysis, in the pro-
ceedings of the Fourth International Conference on the Quantatative
Evaluation of Systems (QEST 2007), 17-19 September 2007, Edin-
burgh, Scotland, UK.

[8] D. Hickey, D. Early and M. Schellekens, A Tool for Average-Case and
Worst-Case Execution Time Analysis, in proceedings of the Worst-Case
Execution Time Workshop, satelite event of the Euromicro conference
on Real-Time Systems, Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (publisher), Germany, 2008.

[9] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, 1998.

[10] M. Li, P. Vitanyi, An introduction to Kolmogorov Complexity and its
Applications, Texts and Monographs in Computer Science, Springer
Verlag, 1993.

[11] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[12] T. Maibaum, Mathematical Foundations of Software Engineering: a
roadmap, Proceedings of the Conference on The Future of Software
Engineering, ICSE00, 161 - 172, 2000.

24

[13] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized
Algorithms and Probabilistic Analysis, Cambridge University Press,
Cambridge, 2005.

[14] R. Sedgewick, Implementing quicksort programs, Comm. ACM 21 (10),
847–857, 1978.

[15] R. Schaffer and R. Sedgewick, The Analysis of Heapsort, Journal of
Algorithms 15(1), 76–100, 1993.

[16] D. Spielman, S. Teng, Smoothed Analysis: Why The Simplex Algo-
rithm Usually Takes Polynomial Time, Journal of the ACM, Vol 51
(3), pp. 385 - 463, 2004.

[17] D. Spielman, S. Teng, Smoothed Analysis of Algorithms and Heuristics,
Foundations of Computational Mathematics Santander 2005, London
Mathematical Society Lecture Note Series, no. 331, Cambridge Univer-
sity Press, 274 - 342, 2006.

[18] M. P. Schellekens,“A Modular Calculus for the Average Cost of Data
Structuring”, Springer book, published in August, 2008.

[19] M. P. Schellekens, MOQA Unlocking the potential of compositional
average-case analysis, Journal of Logic and Algebraic Programming,
Volume 79, Issue 1, January 2010, Pages 61-83.

[20] D. Spielman, Commentary on Smoothed Analysis of
Three Combinatorial Problems, published electronically at
http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis,
2003.

[21] M. Schellekens, G. Bollella and D. Hickey. MOQA a Linearly-
Compositional Programming Language for (semi-) automated Average-
Case analysis, IEEE Real-Time Systems Symposium - WIP Session,
2004.

[22] M. Schellekens, MOQA Unlocking the potential of compositional
average-case analysis, Journal of Logic and Algebraic Programming,
Volume 79, Issue 1, January 2010, Pages 61-83.

25

http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis

[23] M. P. Schellekens, A. Hennessy and B. Shi, Modular Smoothed Anal-
ysis, Preprint.

[24] Diarmuid Early, Ang Gao and Michel Schellekens. ”Frugal encoding
in reversible MOQA a case study for Quicksort”. 4th Workshop on
Reversible Computation, Copenhagen, Denmark, 2012.

[25] Ang Gao, Aoife Hennessy, Michel Schellekens: ”MOQA Min-Max
heapify: A Randomness Preserving Algorithm”. 10th International
Conference Of Numerical Analysis And Applied Mathematics, Kos,
Greece, 2012.

[26] Kopetz, H.; Fohler, G.; Grnsteidl, G. et al.: RealTime Systems De-
velopment: The Programming Model of MARS, in Proceedings of the
International Symposium on Autonomous Decentralized Sys- tems, pp.
190 199, Kawasaki, Japan, March. 1993.

[27] Erik Yu-Shing Hu, Guillem Bernat, Andy Wellings, A Static Tim-
ing Analysis Environment Using Java Architecture for Safety Critical
Real-Time Systems, Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, p. 0077, 2002.

[28] D. Early, M. Schellekens, Running time of the Treapsort al-
gorithm, Theoretical Computer Science, in press, accepted
manuscript, available online from Springer Marh 25, 2013 at:
http://www.sciencedirect.com/science/article/pii/S0304397513002132.

[29] D. Early, A Mathematical Analysis of the MOQA language, PhD
thesis, University College Cork, 2010.

[30] D. Spielman, Smoothed Analysis Homepage,
http://www.cs.yale.edu/homes/spielman/SmoothedAnalysis/.

26

	Introduction
	Background
	Compositionality of timing measures
	Smoothed complexity and the partial permutation model

	Modular smoothed analysis of Median-of-three Quicksort
	Results and conclusion
	

