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On-off intermittency in an optically injected semiconductor laser
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We report on the observation of on-off intermittency in an optically injected dual-mode semiconductor laser.
It is shown that quasi-single-mode chaotic dynamics of the injected mode are accompanied by intermittent
and irregular bursts of the intensity of the uninjected mode. We define a threshold intensity of the uninjected
mode to distinguish laminar and bursting states of the system. For small values of the threshold parameter we
observe excellent agreement with the predictions of theory for the distribution of the laminar phase durations. For
larger values of the threshold parameter, a gap appears in the distribution of laminar phase durations. Numerical
simulations demonstrate that this gap is a consequence of the fact that in this case the on states of the system
define large intensity spikes, which can belong either to the same or to distinct bursts away from the single-mode
manifold.
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I. INTRODUCTION

On-off intermittency describes a particularly striking ex-
ample of dynamical behavior. In the laminar or “off” state,
an observable of a dynamical system takes on small values
and can remain almost constant for long periods. These
laminar phases are punctuated at irregular intervals by periods
of bursting dynamics, which define the “on” states of the
observable [1–3].

In recent years, a wide variety of physical systems have
been shown to exhibit this type of intermittent behavior. These
include electrical circuits [4,5], a gas discharge plasma [6],
spin-wave and liquid crystal systems [7–9], and synthetic
dynamos [10]. Mathematically, on-off intermittency is asso-
ciated with the onset of transverse instability of a chaotic
attractor which is embedded in an invariant submanifold of
a dynamical system [11,12]. On-off intermittency can also
be understood as resulting from the dynamical forcing of a
parameter through a bifurcation point [4,13,14]. Following
from this, many experimental studies of the phenomenon
included a stochastic forcing near the point of instability in
order to drive the intermittent dynamics [4,8].

Here we provide an experimental and numerical study
of on-off intermittency in an optically injected dual-mode
semiconductor laser. It is well known that the single-mode
semiconductor laser with injection exhibits a variety of
complex dynamical behaviors including chaos [15]. The single
mode injected system is accurately modeled in a three-
dimensional phase space that describes the dynamics of the
injected mode and the carrier density. With the addition of the
second primary mode to the model equations, the single-mode
injected system becomes an invariant submanifold of the larger
dual-mode system, with the carrier density variable providing
the coupling to the intensity of the uninjected primary mode.
Such a system has precisely the required structure to exhibit
on-off intermittency when the dynamics of the injected mode
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are chaotic. This is what we observe experimentally and in
numerical simulations.

This paper is organized as follows. In Sec. II, we describe
our device and experimental setup and provide intensity time
traces characterizing the intermittent dynamics. We present a
statistical analysis of the experimental results based on the
distribution of time intervals between periods of bursting dy-
namics. Significant departures from ideal scaling are observed
for large values of the threshold parameter that define the
on states of the system. In Sec. III, we introduce our model
equations that describe the dual-mode injected system, and we
demonstrate that intermittent bursting dynamics are found in
a region where the dynamics of the injected mode are chaotic.
We present a statistical analysis of the dynamics, showing
how the results of numerical simulations are in very good
agreement with measurements. Consideration of the grouping
of large intensity spikes enables us to explain the origin of the
departures from ideal scaling that are observed in measured
data and in numerical simulations.

II. EXPERIMENTAL RESULTS

The device we consider is a multiquantum-well
InP/InGaAlAs FP laser of length 350 μm with a peak
emission near 1.3 μm. It incorporates slotted regions etched
into the laser ridge waveguide that determine the lasing mode
spectrum. For our experiment, we adjust the device current so
that the time-averaged optical power in both primary modes
of the free-running laser is approximately equal. In this case
the free-running device supports these two primary modes
with almost 40 dB intensity contrast and a frequency detuning
of 480 GHz [16]. Choosing a fixed injected power level, we
vary the detuning, �ω, of the injected field from the long
wavelength mode of the device. The optical spectra of the
two primary modes are shown as a function of the frequency
detuning of the injected signal in Fig. 1. If we begin in the
single-mode injection locking region of the phase space at
negative detuning, and move toward positive values, the device
makes a transition to unstable locking, while the dynamics
remain single mode. As the detuning is increased further, the
device undergoes a period doubling route to chaotic dynamics.
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FIG. 1. (Color online) Experimental optical spectra of the dual-
mode device as the frequency detuning, �ω, is varied at a fixed
injection. Upper panel: uninjected mode. Lower panel: injected mode.

The chaotic state is reached around zero detuning and is at first
a single-mode state of the device.

However, as we increase the detuning, moving further into
the chaotic region, we observe that the dynamics become two
mode, with the uninjected mode experiencing irregular and
intermittent bursts of intensity. Frequency-resolved measure-
ments of the power spectral densities corresponding to Fig. 1
are shown in Fig. 2. In the lower panel of this figure one can
see that the transition to unstable locking at a detuning value
of −2 GHz is associated with undamping of the relaxation
oscillations, with a frequency of approximately 5.5 GHz.
Following this region, the weak and broadened signal at half
the relaxation oscillation frequency is evidence for a period
doubling bifurcation. Near zero detuning the dynamics become
chaotic and are characterized by broadband spectra.

The region where we find on-off intermittent dynamics is
found at small positive values of the detuning. At the onset of
these dyanmics, where the intensity of the uninjected mode first
becomes nonzero, the power spectrum of the uninjected mode
is characteristic of a low-frequency and noiselike signal. Time
traces which illustrate the dynamics in this region are shown
in Fig. 3. These time traces were measured near the boundary
of the region of intermittent dynamics, with the detuning in
this case equal to approximately 0.5 GHz. One can see that
for this value of the detuning the intensity in the uninjected
mode can be dominated by spontaneous emission noise for
long periods of order 100 ns. At irregular intervals, however,
large-amplitude bursts of intensity are observed. These bursts
can comprise single or multiple peaks or spikes of the intensity
within a single bursting event. In the inset of the upper panel
a bursting event which includes a single large intensity spike
is shown.

On-off intermittency can be distinguished from other
varieties of intermittent dynamics by considering the scaling
behavior of the probability distribution of the laminar phase
durations. The laminar phase duration is in our case the time
between two bursts of the intensity away from the single-mode
manifold. Using simple one-dimensional models, it was shown
that a fundamental scaling law for the distribution of the
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FIG. 2. (Color online) Frequency-resolved power spectral mea-
surements of the device as the frequency detuning, �ω, is varied at a
fixed injection. Upper panel: uninjected mode. Lower panel: injected
mode.

laminar phase durations τL exists. This ideal scaling law
is given by P (τL) ∼ τ

−3/2
L , where P (τL) is the probability

density function for the laminar phase durations [11,17]. In
the presence of additive noise, a distinct shoulder appears in
the distribution, which is followed by an exponential falloff
for large laminar phase durations [13,14].

In the one-dimensional models of Refs. [13,14,17], scaling
laws were derived by assuming a multiplicative stochastic
forcing of the dynamical variable near a stability boundary.
The dynamical variable in these models then represents the
direction transverse to the single-mode submanifold of our
system. In our case, however, the dynamics of the uninjected
mode are driven chaotically, and on-off intermittency occurs
where chaotic orbits in the single mode submanifold obtain
a positive Lyapunov exponent for perturbations transverse to
the submanifold.

In order to study the distribution of laminar phase durations
we introduce a threshold parameter IT , which the intensity
of the uninjected mode must exceed in order to define the on
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FIG. 3. Experimental time trace of the intensity of the uninjected
mode of the device. An individual bursting event is shown in the inset.
The frequency detuning is approximately 0.5 GHz.
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FIG. 4. Histograms of the laminar phase duration for increasing
values of the threshold parameter IT . The frequency detuning is
approximately 0.5 GHz. In (a) and (b) the solid line is the −3/2
scaling law predicted by theory.

state of the system. For an appropriate choice of the threshold
value IT we face the following trade-off: A low IT will lead
us to record many distinct peaks of the intensity, which are
actually part of the same burst away from the single-mode
manifold. On the other hand, a large value of IT will lead
to the on states of the system defining large intensity spikes.
In this limit we expect to encounter bursting events which
do not trigger an intensity spike. For large threshold values
we define τ as the time between successive events where the
intensity of the uninjected mode crosses the value IT from
below. Experimentally determined histograms of the intervals
τ for various threshold values IT are shown in Fig. 4.

The data in Fig. 4(a) were obtained for a threshold value
of IT given by 10% of the time-averaged intensity in the
uninjected mode. In this case, agreement with the predictions
of the theory for the distribution of the laminar phases with
the measured distribution is reasonably good, and we attribute
this to the fact that the threshold parameter is relatively small
and also because these data were obtained near the onset of the
intermittent dynamics. For shorter intervals τ up to about 2 ns,
we have close to −3/2 power-law scaling as indicated by the
solid line in the figure. As τ increases, a clear shoulder region
is observed where the probability distribution is in excess of
the power law behavior. For τ > 10 ns, an exponential falloff is
observed. Departures from ideal scaling for very short intervals
are also observed in this figure. As we increase the threshold
value IT in Fig. 4(b) and 4(c), the departures from ideal scaling
become more significant, and for the largest threshold value a
gap appears in the distribution between approximately 0.2 and
0.7 ns.

III. MODELING OF THE DEVICE RESPONSE

The rate equations that describe the dual-mode semicon-
ductor laser with optical injection can be written in normalized
units as follows:

Ė1 = 1
2 (1 + iα)[g1(2n + 1) − 1]E1 + η1, (1)

Ė2 = 1
2 (1 + iα)[g2(2n + 1) − 1]E2 + K exp(i�ωt) + η2,

(2)

T ṅ = P − n − (1 + 2n)
∑
m

gm|Em|2, (3)

where the nonlinear modal gain is

gm = g(0)
m

(
1 + ε

∑
n

βmn|En|2
)−1

. (4)

Here |E1| is the normalized amplitude of the electric field of
the uninjected mode, E2 is the normalized complex electric
field of the injected mode, and n is the normalized excess
carrier density. The bifurcation parameters are the normalized
injected field strength K and the angular frequency detuning
�ω. Further parameters are the phase-amplitude coupling α,
the product of the carrier lifetime and the cavity decay rate
T , the normalized pump current P , and the linear modal gain
g(0)

m . In our numerical simulations we used the values α = 2.6,
T −1 = 0.00125, P = 0.5 (twice threshold), and g(0)

m = 1. The
cross- and self-saturation are determined by εβmn, and we
use the values ε = 0.01, β12 = β21 = 2/3, and β11 = β22 = 1,
which allow for a stable two-mode state of the free-running
device. To account for spontaneous emission noise we have
added Gaussian white noise terms η1(t) and η2(t) to the
dynamical equations for the fields. These equations provide
excellent agreement with experimentally observed dynamics
over a wide range of parameter values [18,19]. Note that
although they are written symmetrically, with complex fields
defined for both primary modes of the device, the phase of the
uninjected mode is decoupled in these equations leading to an
effectively four-dimensional system.

One can see immediately that the single-mode dynamics
are contained within an invariant submanifold (E1 = 0) in
these equations. The system with E1 = 0 is three-dimensional,
describing the dynamics of the complex amplitude of the
injected mode and the carrier density variable. In Fig. 5
(left panels) we plot the local extrema of the numerically
calculated field intensities, |E1|2 and |E2|2, as a function of
the frequency detuning. The value of the normalized injected
field strength is K = 0.008. To locate this region of dynamics
in the global bifurcation picture, see Refs. [18] and [19]. On
the left of the diagram at negative frequency detuning we
find an equilibrium region of stable injection locking where
the uninjected mode is off. As the detuning is increased
toward zero, a Hopf bifurcation occurs, and we enter the
unstable locking region. Further increasing the detuning, a
series of period doubling bifurcations are encountered before
the dynamics of the injected mode become chaotic [15,20].
Over this detuning range the uninjected mode remains off.
However, at a point inside the chaotic region, we find that
the uninjected mode turns on and that its intensity envelope
increases smoothly at first.

The value of the detuning where the uninjected mode turns
on is approximately 0.884 GHz, which we label as �ω∗. This
is slightly larger than the experimentally observed value and
reflects the fact that the extent of the region of two-mode
dynamics in the experiment of Fig. 1 is larger than that
found numerically. A numerically generated time trace of the
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FIG. 5. Left panels: Local extrema of the field intensities (a) |E1|2
and (b) |E2|2 obtained from numerical integration of Eqs. (1)–(3) as
a function of the detuning. The injected field strength is K = 0.008.
Right panel: Numerical time traces of the dynamics of the uninjected
mode. The frequency detuning is 0.89 GHz. The injected field strength
is the same as in (a).

intensity of the uninjected mode of the device is shown in the
right-hand panel of Fig. 5. The detuning here is 0.89 GHz,
slightly larger than �ω∗. One can see that the intensity is
switching on to large values in a quasirandom manner, and
these bursts of activity can be separated by long periods where
the intensity is very small. This is the characteristic behavior
associated with on-off intermittency and matches closely the
dynamics found in our experiment. From Fig. 5, one can see
that the region of on-off intermittency is followed by a region
of chaotic dynamics in both modes of the laser. This region is
exited through a series of inverse period-doubling bifurcations
until a dual-mode limit-cycle is found around a detuning value
of 2 GHz.

Numerically generated power spectral densities corre-
sponding to Fig. 5 are plotted in Fig. 6. Here we have included
the effects of spontaneous emission noise in order to enable a
comparison with experimental data. The noise level used was
equal to 0.002 in normalized units, which gave good agreement
with the modal intensity fluctuations in the free running device.
One can see that the detuning value where significant intensity
in the uninjected mode is observed is not very different from
the value observed in the noise-free simulations of Fig. 5. One
can also see that while the value of the detuning where the
uninjected mode turns on is shifted toward a larger detuning
value, the power spectrum of the uninjected mode is at first
characteristic of a low-frequency and noiselike signal as was
the case in the experiment.

We note also that the transition to a dual-mode limit cycle
near a detuning of 2 GHz was also found in the experimental
measurements of Fig. 2. As discussed in Ref. [19], the dual-
mode limit cycle undergoes a torus bifurcation, which can
be identified in Fig. 2 near a detuning of 2.5 GHz where a
pair of frequencies are generated from the feature at one-half
of the relaxation oscillation frequency. Further increasing the
detuning, one of the generated frequencies decreases toward
zero, leading to bursting dynamics with divergent period. This

FIG. 6. (Color online) Numerically generated power spectra of
the device as the frequency detuning, �ω, is varied at a fixed injection.
The noise level is 0.002 in normalized units. Upper panel: uninjected
mode. Lower panel: injected mode.

region of dynamics will be the subject of detailed study in
future work.

The transition from single-mode chaotic dyanmics to
on-off intermittency in our system can be understood by
considering the dynamics of the amplitude of the uninjected
mode explicitly. We find

|Ė1| = 1
2 [g1(2n + 1) − 1]|E1|. (5)

From this equation one can see that the factor g1(2n + 1) − 1
plays the role of the multiplicative forcing parameter for the
dynamics in the transverse direction. The average value of
this quantity is then the transverse Lyapunov exponent for
the system, which changes sign at the point where on-off
intermittency appears. In Fig. 7 we have plotted the probability
density function of the forcing parameter for two values of the
detuning. These data were generated by following trajectories
confined to the single-mode submanifold of the governing

FIG. 7. (Color online) Probability density functions of the mul-
tiplicative forcing parameter, g1(2n + 1) − 1, for the dynamics in
the transverse direction for two values of the detuning parameter. In
(a) the frequency detuning is 0.87 GHz, while in (b) the frequency
detuning is 0.89 GHz. The vertical line is the average value in each
case.
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FIG. 8. Histograms of the laminar phase duration for two values
of the threshold parameter IT including spontaneous emission noise.
The frequency detuning is 0.89 GHz, and the spontaneous emission
noise level is 0.002 in normalized units. In the upper panel the solid
line is the −3/2 scaling law predicted by theory.

equations. One can see that the average value of this quantity
changes sign near a detuning value of 0.88 GHz.

Histograms of the durations of the intervals between on
states of the uninjected mode intensity are shown in Fig. 8. For
these simulations we included the same level of spontaneous
emission noise as in Fig. 6 in order to more closely match
experimental results. In the upper panel the threshold value
was set to IT = 0.05 in normalized intensity units. Here the
detuning is again 0.89 GHz. For this figure 100 000 peaks of
the intensity were recorded. One can see that the distribution
is in good agreement with the predictions of theory for the
laminar phase duration. For values greater than approximately
1 ns, the distribution follows the −3/2 scaling. There is also
a distinctive shoulder region present with a clear exponential
dropoff for longer intervals. This shoulder region is centered
at a similar time interval to the experimental result of Fig. 4(a).
In the lower panel of Fig. 8, we have plotted the same data for
IT = 0.2. The time trace of Fig. 5(c) indicates that in this case
on states of the system correspond to large intensity spikes,
and we can see evidence for a region of forbidden values for
the interspike intervals. The location of this region around 1 ns
is also in qualitative agreement with experiment.

In order to illustrate more clearly the presence of the
forbidden region for large threshold values IT , in Fig. 9 we
have plotted the same histograms as in Fig. 8 but without
including the effects of spontaneous emission noise. We first
notice that the average interval is much larger as one would
expect in the absence of noise. One can also see that the data
for the smaller threshold value in the upper panel are in good
agreement with the theoretical scaling law over a wider range
of values and that the shoulder region is not apparent as was
the case for the noisy system. What is most striking is the very
large forbidden region in the lower panel for larger thresholds,
which now opens above 1 ns duration.

To obtain a better understanding of this forbidden region
observed for large threshold values, it is useful to study
the correlation between the duration τ of the time between
spikes of the intensity and the minimal value of |E2

1 | which
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FIG. 9. Histograms of the laminar phase duration for two values
of the threshold parameter IT neglecting spontaneous emission noise.
The frequency detuning is 0.89 GHz. In the upper panel the solid line
is the −3/2 scaling law predicted by theory.

is obtained between them. The corresponding scatter plot is
shown in Fig. 10. We observe that there are two clusters, one
at short interspike times, which is associated with relatively
large minimal values of |E2

1 |. The dynamics associated with
this cluster therefore do not return closely to the invariant
manifold at |E2

1 | = 0. The two intensity spikes which bound
this interval can therefore be interpreted as part of the same
bursting event. On the other hand, there exists a second cluster
in Fig. 10 located at large interspike times and small minimal
values of |E2

1 |. Events in this cluster therefore correspond to
trajectories which do return closely to the invariant manifold
leading to well-separated spikes. The spikes associated with
this cluster will therefore belong to separate bursting events,
and therefore this cluster characterizes the interburst times or
equivalently the laminar phase durations. The clear separation
between the clusters in Fig. 10 and the absence of events for
interspike times around 1.5 ns explains the forbidden region in
the numerical interspike histogram shown in the lower panel

FIG. 10. (Color online) Plot of the minimum value of the
uninjected field |E2

1 | between two successive spike events versus
the interspike interval τ . The threshold parameter is IT = 0.2. All
other parameters are chosen as in Fig. 9.
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of Fig. 9. We argue that this mechanism is also responsible for
the experimentally observed gap in the interspike histograms
which appears around 0.5 ns in Fig. 4 (c).

IV. CONCLUSIONS

In conclusion, we have experimentally studied the distri-
bution of laminar phase durations in an optically injected
dual-mode laser close to the onset of on-off intermittency. We
have shown that the characteristic features of this distribution
agree well with numerical simulations obtained from a simple

four-dimensional rate equation model. We showed in particular
that the appearance of a gap in the distribution of laminar phase
durations for large values of the threshold parameter could be
explained by considering the grouping of large intensity spikes
within single or distinct bursts of the uninjected mode intensity.
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