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Affi'IRACT

The research described in this thesis involved the chemistry of

borane-species which contain one or more halide or pseudohalide groups.

Both monoboron species e.g. [BH
3
X]- and "cluster" borane species e.g.

[B
IO

H
9

X]2- OP6J-Se BllHIO were studied.

The first chapter is a review of' the syntheses, properti~s and reactions

of' halide and pseudohalide species containing from one to ten boron atoms.

Chapter Two is a theoretical investigation of' the electronic and molec

ular structures of two series of boranes i. e. [BH
3
X]- and [B

IO
H

9
X]2- where

X = H, CI, CN, NCS, SCN and N3. The calculational method used was the

Modified Neglect of Differential Overlap (MNDO) method of Dewar et at.

The results were compared where possible with experimental results such as

the X-ray crystallographica.lly determined structures of [BH
3
CI]- and

[B
IO

H
lO

]2-.

Chapter Three concerns halogenated selenaborane clusters and reports

an improved synthesis of 12-Br-8e BIIHIO and the first structural data for

a simple non-metal containing selenaborane cage with the X-ray crystallo-

graphically determined structure of 12-1-8e BIIHIO• Finally, an indepth

n.m.r. study of Se2B
9

H
9

is also reported together with attempts to halogenate

this compound.

The last two chapters are based on single boron systems. Chapter Four

concerns the synthetic routes to amine-boranes and -cyanoboranes from [BH4 l

and [BH
3

CN] substrates. This chapter discusses some difficulties encotmter

ed when polyamines were used in these reactions. The characterisation of

an unusual ketone isolated fran some of these reactions, the X-ray crystal-

lographically determned structure of 4-dimethylamino-pyridine-cyanoborane

and a new route to pyrazabole dimeric species are also discussed.



The final chapter reports on work carried out at producing BH2X

(X = H, CN) adducts of aminophosphines. Three routes were attempted to

generate P-B and N-B bonded species with varying degrees of success. Some

unusual products of these reactions are discussed including [Ph2 (O) PPPh2 ]

[Ph2NH]2' the- structure of which was determined by X-ray crystallography.
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A REVIEW OF HALIDE AND PSElJIXEALIIE R:EANE9

WI'lH mE 'IO TEN ~ ATOtfS



1.1 INTRCOOCTIOO

In 1912 Alfred Stock and his collaboratorsl initiated the systematic

study of borane chemistry and in so doing exposed an area of chemistry in

which unprecedented problems of structure and bonding became apparent.

Over a period of twenty four years this group isolated, identified and

studied the chemistry of six boron hydrides (B2H6 , B4H
10

' B
5
H

9
, B

5
H
ll

,

B6H10 and B1oH14). Their work represented a remarkable achievement at that

time (1912-1936) since it was first necessary to develop techniques for

handling, separating and physically characterising materials which

frequently were isolated in less than millimolar quantities and often

exploded on contact with air. 2

Although this field has expanded considerably3 and there is a rich and

varied chemistry of boranes and their derivatives, several drawbacks to

their development still remained such as the absence of synthetic procedures

to furnish many of these materials in reasonable yields and quantities. In

earlier years the syntheses of boranes were heavily dependent upon pyrolytic

techniques. In recent years more rational' syntheses of several boron

hydrides have been achieved, sometimes using halogenated borane species. 3

The discussion here will deal with the chemistry of halogenated and

pseudohalogenated boron hydrides. Compounds will be dealt with sequentially

from monoboro.Q species to those with ten boron atoms. For cluster systems,

n-z):ro and arachno compounds will be dealt with together but (J'LoBO compounds

are discussed separately (Section 1.1.1.1) •. Emphasis will be placed on those

compounds which are chemically stable species. Highly reactive 'free' mono-

boron species such as BH~ and BHX2 , which have been characterised only in

the gas phase, are not included. Chapter 3 does, however, deal with some of

the stable coordination complexes of these species.

- 1 -



The monoboron species discussed here are of the type [XnBH(4_n)]-'

where X may be F, Cl. Br. I. CN and SCN and n may be 1. 2. 3. The halide

derivatives are dealt with first in group order of the periodic table

followed by the pseudohalide compounds [BH
3
CN]-. [BH3NC]-, [BH2(CN)2]- and

[BH
3
SCN]-.

1.2.1 Synth68is and Properties of Monoboron HaZ,i,de compounds

Prior to a report in 1985 by Shore and co-workers4 the only [BH
3
X)

species iso1ated were [BH3Fr5 and [BH
3
Ir6• a1though [BH

3
C1]- and [BH

3
Brr

were reported to have been observed in solution in the presence of other

borohydride derivatives.

Muetterties and co-workers5 reported that an ethereal solution of

borane reacted almost quantitatively with potassium fluoride (1).
R

2
0

R20 • BH3+ K[F) R.T.> K[BH3F) + R20 (1)

R20 =1.2-dimethoxyethane

These authors noted that the hydrolytic stability of [BH
3
F]- was poor in

neutral solution. The infrared spectrum exhibited B-B stretching as a

strong 2330, 2400 em-1 doublet with a shoulder at about 2380 em-1 •

In a study carried out using ion cyclotron resonance spectroscopy1 the sa

phase species [BH
3
X]- were observed from the ion-molecule reactions of a

number of anions, [X]-, with diborane (2)

- 2 -



Ab initio calculations were carried out to determine the importance

of the relative thermodynamic stabilities of the two sets of products

(2(a) and 2(b» on the product distribution. The reactions of the anions

with diborane could be divided into three broad categories (i) those

producing [BH4]- only, (ii) those producing both [BH4]- and [BH3X]- in

varying proportions and (iii) those producing [BH
3
X]- only. The authors

claimed that reactions of anions with B2H6 could be interpreted as occur

ring through a common intermediate, [B2H6X]- complex (Scheme 1).

Scheme 1 - Pathway of Reaction of [X]- with B
2
H6

*H H" /H-B-H-B-X
I ,

H H

The decomposition path depended upon the position of the central hydrogen

atom in the B-H-B linkage, which in turn is dictated by the electronic

properties of the X-substituent. When X is strongly electron donating

the central hydrogen atom is displaced towards the boron to which X is

not bound (Figure 1) thus facilitating decomposition to [BH4]- and BH
2

X.

Conversely, when X is an electron withdrawing group the central hydrogen

atom is displaced towards the boron to which X is bonded (Figure 2) thus

favouring dissociation to [BH
3
X]- and BH

3

H
/'

H---B--X
\H

-H

Figure 1 Figure 2

Finally, substituents which are neither intrinsically good electron with-

drawing nor electron donating groups yield intermediates in which the

central hydrogen atom remains close to the centre of the bond giving rise

- 3 -



to a mixture of products. According to this classification. fluorine must

be regarded as a more electron donating than withdrawing substituent on

boron since 95% of the products of [F]- and diborane are [BH4]- and BH2F.

During attempts to grow crystals of [PPN] [B2H
7

] from dichloromethane

solutions. Shore and co-workers4 isolated crystals of [PPN][BH
3
Cl].CH2C12,

This product was apparently the result of prolonged reaction between

[B2H1)- anion and the solvent, resulting in the replacement of some of the

[BH4]- of [B2H
7
)- by chloride. Tensimetric titration of [PPN][Cl).

[Bu4N][Cl) and [Et4N)[Cl] with B2H6 at -78°C indicated the reaction

stoichiometry (3)

In each case a plot of vapour pressure versus the mole ratio of B2H6 to

[E][Cl) gave a break in the curve at (mmol of B2H6)/(mmol of [E][Cl]) • 0.5·

Corresponding tensimetric titrations of [Me4N][Cl], [PPN][Br), [Bu4N][Br]

and [PPN)[F] with diborane showed no evidence for reaction.

As solids, [BH
3
Cl]- salts were stable under inert atmosphere at room

temperature but decomposed rapidly on exposure to air. Solutions of

[BH
3
Cl]- salts were generalJ.y handled at low temperatures to avoid anion

dissociation. The disproportionation of [BH
3
C1]- in solution as a function

of temperature was followed by 1~ n.m.r. spectroscopy. Disproportiona

tion was c1earJ.y evident above -500 C and became more pronounced at higher

temperatures. Bo intermediate species were detected but [BH
2

C1
2
)- and

[B2H1]- were observed in a 1:1 reaction. The overall disproportionation

reaction is (4).

- 4 -



11The B n.m.r. spectra of samples allowed to stand at room temperature for

over 24 hours also showed the presence of [B
3
H8]-, probably formed by the

decomposition of [B2H
7
]-.8,9 The infrared spectrum of [BH

3
CI]- exhibited

absorptions at 2210 em), 2299 (s) and 2340 (s) cm-l

The ~-ray crystallographically determined structure of [PPN] [BH
3
CI]

is illustrated in Figure 3.

Figure 3: Molecular Plot of [PPN] [BH3Cl]

Gavrilova et allO studied the interaction of tetrabutylammonium borohydride

with iodine (5).

The authors noted that these compounds dissociated in benzene solution and

that the degree of dissociation increased in the series [Bu4N][BI4] < [Bu4N]

[BHI
3

] < [Bu
4

N] [BH
2

1
2

] < [BU
4

N] [BH
3
I]. The latter was found to dissociate

completely to diborane and [Bu4N] [I] •

- 5 ..



1.2.2.1. Introduction and Synthesis

The remarkable hydrolytic stability of cyanoborohydride compared to

boro hydride has established it as one of the more important hydride

° 0 d to 11,12,13 H d t °t tOOt thOreagents 1n organ1c re uc 1ons. owever, ue 0 1 S OX1C1 Y 18

potential14 was not realised until recently.15

The first reported synthesis of a cyanoborobydride was in 1951 when

Wittig and Ratt prepared the lithium salt by the reaction of Li[BH4] and

excess HCN under pressure (6).

Li[BH4] + HCN (excess)
1000C

> Li[BH
3

CN] + H
2Et20

pressure

(6)

The relative commercial inaccessibility ot lithium cyanoborohydride by an

inconvenient literature synthesis and the economic disadvantages inherent

to all lithium compounds, led to the preparation of the corresponding sodill

salt by Wade et at16 in 1970 by a somewhat similar reaction. This method,

which turni.shed the product in 91% yield, involved the dropwise addition of

a 16.7% HCB solution to Na[BH4] in THF at room temperature. Huill reported

that excellent yields of sodium cyanoborohydride were obtained by stirring

equimolar quantities of borane-THF complex with sodium cyanide at roaD
temperature (7)

+ NaU:~

- 6 -
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Sodium cyanoborohydride has also been prepared by Gyori and Emri11 by

a method which avoids the use of HCN (8).

2 Na[BH4] + Hg(CN)2 THF > 2Na[BH
3

CN] + HgO + H
2

t (8)
3 hour
reflux

Due to the much greater solubility of Na[BH
3

CN] over Na[BH
4

] in THF, the

product is easily isolated from the reaction solution. Similar redox

reactions have been suggested to take place with other mercury (II)

compounds such as Hg[Cl]2' Hg[F]2' Hg[AC]2 and Hg[SCN]2 etc., but details

have not yet appeared.

In 12M HC1, potassium cyanoborohydride is rapidly hydrolysed to

boric acid (9).

In initially neutral solution, cyanoborohydride hydrolysis is very slow

(0.5% in 24 hours). Addition of a small amount of acid (0.016 mmol of

[H]+ to 4.1 mmol of [BH
3

CN]- in H20) will induce decomposition. However,

if the aqueous solution is cooled to OOC, the addition of the same amount

of acid will cause no immediate decomposition.

The isocyanide isomer' [BH
3

(NC)]- is prepared in the same manner as

the cyanide analogue,16 but the reaction solution is never heated above

room temperature. Examination of this reaction solution showed that it

contained both [BH
3

CN]- and [BH
3
NC]- isomers. Removal of the THF solvent

at room temperature, under vacuum, allowed the isomer mixture to be

separated. The ratio of [BH
3

CN]-: [BH
3
NC]- was deduced by infrared spectro

scopy and by'aqueous decomposition experiments. to be 4:1. In normal reaction

conditions, i.e. prolonged reflux in THF there is no evidence for the

presence of isocyanide in the isolated product.

- 1 -



The existence of isomeric forms of cyanoborohydride is explained

by the reaction sequence outlined in Scheme 2.

Scheme 2

HCN + [CN]-

+

Further replacement of hydride by cyanide to synthesise [BH
2

(CN)2]

vas reported in 1984 by Spielvogel fit at.18 The disubstituted anion

vas prepared as the sodium (9) and tetrabutylammonium salts.

- 8 -



These very hygroscopic salts were characterised by elemental analysis,

llB n.m.r. and infrared spectroscopy. Huill reported the synthesis and

properties of the thiocyanate derivative Na[BH
3
SCN]. This was prepared

by passing diborane into a solution of anhydrous sodium thiocyanide (10).

(10)

Addition or dioxane to the filtered solution precipitated the product as

Na[BH
3
SCN1.(C4Ha02 )2. Evidence for the isomeric isothiocyanate isomer

was also detected in the infrared spectrum.

1.2.2.2. Spectral Propenies

A comprehensive infrared and Raman spectroscopic analysis of cyano

borohydride anion was reported by Berschied and Purcell.19 This stu~

assigned thirteen bands as stretching, bending or rocking modes. Table 1

lists the major B-H, cyanide, isocyanide, thiocyanate and isothiocyanate

stretching bands for the substituted borohydride anions. In this table

- 9 -



it is seen that the isocyanide absorption at 2010 ~-1 in Na[BH
3

NC] is

significantly lower than those for mono- ( 2119 em-I) and di- (2200 cm-1)

substituted cyanoborohydride anions. The presence of both isomeric forms

for thiocyanate derivative is indicated by bands at 2180 (SCN) and 2080

(NCS) em-I in the infrared spectrum.

Table 1

X
~H '\Ix

CN 2390 2180

2350

2320

2240

NC 2350 2010

2290

(CN)2 2380 2200

2250

SCN 2380 2180

2330

2290

NCB 2080

a F .-1requency 1n em

- 10 -



1.2.2. 3 Reductions 7A1i th Na [BH~] and Na [BH2X2] x = CN t SCN

Considerable attention has been devoted to the application of

modified boron hydrides as selective reducing agents for organic

. 20-22functl.onal groups. However t since this area of research is not of

major interest in this thesis t only brief reference will be made to it

here. Sodium cyanoborohydride readily reduces aldehydes t ketones and

carboxylic acids such as sUbstituted pyruvic acids (to a-amino acids) e.g.

3-indolylpyruvic acid to tryptophan (11).

o 0

II II
~--....--CHzC-C-OH --••

In general the order of increasing reducing ability in pseudohaloboro-

hydrides is [BH
2

(CN)2]- < [BH
3

CN1- < [BH
3
SCN]-. The greater electron

withdrawing ability of cyanide relative to thiocyanate makes Na[BH3SCNl

a stronger reducing agent than Na[BH3CN1.

-11-



To date no halogenated compounds of the type [B2H6X]- have been

isolated. However. calculations by Sapse and Osoris23 on the [B2H6F]

anion indicated a bent structure with a bridging fluorine atom would be

the preferred form. A cyanide analogue. [BH
3

CNBH
3
]-. was' first prepared

by Muetterties and co-workers in 19615•24
by the room temperature

reaction of sodium cyanide with borane -THF in a 1:2 stoichiometry (12).

2 Q + Na[CNJ
HI ~ Ni 1iJH3CNBHJ + 20 ~5hr

0

I
BH,

Wade st at,6 later reported that unless a considerable excess of borane-

THF complex or longer (75 ~Our8) reaction times were used. significant

amounts of [BH
3

CN]- and [BH
3

NC]- are isolated with the product. The

presence of these impurities is readily detected by ~ n.m.r. and infra-

red spectroscopy of the THF reaction solution or by the infrared spectrum

of the isolated product.

The ~ n.m.r. spectrum of [BH
3

CNBH
3
]- consists of two quartets, one

well defined and the other broadened.5•l6 at -62.3 and -41.8 ppm

respectively (leT (~-~) • 94Hz). The integrated intensities of the two

quartets are in the ratio 3:2 (BC:BN). Wade st az.16 claimed that the

disagreement between this intensity ratio and that expected for the borOn

atoms (1:1) was probably a result of different relaxation times for the

two boron ai tea.

-12-



(13)

- -1The B-H vibrations for [BH
3

CNBH
3

] at 2210 and 2225 cm are

compatible with both [BH
3

CN]- (2240 cm-l ) and [BH
3

NC]- (2290 cm-l ) but

the cyanide absorption is shifted to a higher frequency (2260 cm-l ) than

either of the monoboron species, (2180 and 2010 ~-l respectively). This

strong sharp band at 2260 cm-l is characteristic of a bridging cyanide

group.

Terminally substituted diborane derivatives are well known. In 1933

Stock
2

prepared B2H
5
Br by direct bromination of diborane at lOOoC (13).

100oC> B2H
5
Br + HBr

The bromo derivative was also prepared by Schlesinger et at25 by the equil-

ibration of BBr3 with diborane in an exchange reaction. A similar

equilibration using Be1
3

prepared chlorodiborane. An alternative prepara

tion is the reaction of hydrogen iodide or hydrogen bromide with diborane

Both the bromo- and the chloro- derivative are rapidly hydrolysed (14).

(14)

In a Wurtz-like coupling reaction between B2H
5
1 and sodium amalgam, tetra

. borane (10) has been prepared (15).26

The terminal nature of the bromine atom in B2H
5
Br was confirmed by Gaines

and Schaeffer who used ~ n.m.r. techniques. 27 Table 2 lists the l~

n.m.r. signals for the chloro-. bromo- and iodo- derivatives.

- 13 -



Table 2

~B
1 AssignmentX J(~ ~)

ppm Hz

C1 23.0 161 BH2

1.1 139 BHX

Br 18.9 163 BH2

12.2 141 BHX

I 1.8 112 BH

18.1 144 BHX

- 14 -



1.4 TRIBORrn a:JdPaJNDS

1.4.1 Synthesis of [Bfi~]

The first reported synthesis of a [B
3
H

7
X]- species was in 1961 by

Aftandillan and co-workers 5 who prepared [B
3
H

7
CN]-. The authors claimed

the cleavage of tetraborane (10) by cyanide ion (16) led to the cyano-

haptahydrotriborate anion but no supporting spectroscopic data was

reported.

(16)

Halogenated analogues, [B
3
H

7
X]- (X = Cl, Br, I), were first reported by

Ryschkewitsch and Miller in 1975 (17). 2a

x = Cl, Br, I.

Later, Jacobsen and Morris,29 found that reaction of [Bu4N]+ or

[(Ph
3
P)2N]+ salts of [B

3
Ha]- with mercurous chloride, in noncoordinating

solvents such as dichloromethane, generated the [B
3
H

7
Cl]- anion (la).

CH
2

C1
2

2[Bu4N][B3Ha] + H~C12 ---------~~ 2[BU4N][B3H7Cl] + Hg + H2R.T.
(18)

The reaction mixture also contained a second species, [B
3
H6C12]-, present

&8 an impurity. This anion is also the result of a reaction of [B3ILrCl]

with mercurous chloride (19).

Previously a 25% yield of [B
3
H6C12]- had been achieved by.the reaction

of [Bu
4

N] [B
3
Ha ] and hydrochloric acid in dichloromethane. 29

- 15 -



The brominated analogue, [B
3
H
1

Br]-, was obtained from the reaction

between [B3Har and mercurous bromide. However. dichloromethane solutions I
of the tetrabutylammonium salt quickly decomposed to give tetraborane (10).

There was no evidence for the dibrominated product. The reaction between

mercurous iodide and the octahydrotriborate anion in dichloromethane

yielded tetraborane (10) as the major product, with no evidence for the

presence of an iodinated borane salt. The treatment of dichloromethane

solutions of [(Ph3P)2N] [B3Ha] with mercurous fluoride was thought to produce

[B
3
H
1
F]- as the major product along with a number of uncharacterised

impurities but attempts to isolate pure samples of this product were

unsuccesstul. 29

Jacobsen and MOrris,29 observed that the chloride substituent of

[B
3

H.rCl]- was very labile and could be readily substituted by ions such as

[SCN]-, (20).

R.T.
~ [B,H~CS]- + Ag[Cl]

45%

(20)

The isoselenocyanate analogue, [B3H~CSe]-, was similarly prepared. The

reaction of [B
3
H
1
Cl]- with silver cyanide which originally bad been thought:

t

to generate [B
3
H
1

CN]-, has recently been shown by ~-ray diffraction methods,'

to afford the substituted silver complex, [Ag{B
3

H.r(NC)}2]-. The reaction of!
~_ f

the dichlorinated' anion. [B
3
H6C12 ], • with silver cyanide also yielded a I

cyanide substituted triborane derivative, which had properties similar to I
!
l

Solutions of both [Ag{B
3
lLr(NC)}2]- and [Ag{B

3
H6Cl(NC)}2]- decomposed on

standing at room temperature, depositing silver.

- 16 -



1.4.2 Spectroscopic Properties

The infrared spectra of [B
3
H1Cl]-, [B

3
H6C12]- and [B

3
H
7
Br]- are very

similar. A larger, higher energy shift, relative to the B-H stretching

modes in [B3Ha]- was observed for bromine substitution than for chlorine

substitution (Figure 4). Dichlorination (Figure 5) affected a further

shift of these absorptions to a still higher energy.

Table 3 lists the B-H frequencies for Cl, Br and C12 substituted octahydro-

borate anions.

A strong band at 2160 cm-l in the infrared spectrum of [B3YCS]- is

assigned to NCB assymetric stretch and is indicative. ot nitrogen coordinated

thiocyanate. X-ray diffraction studies have shown that, like both

H3N. BH2NCS31 and BIO~3(NCS )32 which are B-B bonded isothiocyanates,

[B3HTNCS]- is also B-N coordinated. 33

- 17 -



Table 3

x = H, Cl, Br

H Cl Br C12
2450 (s) 2480 (s) 2490 (s) 2515 (s)

2400 (s) 2425 (s) 2430 (s). 2455 (s)

2300 (ah) 2300 (ah) 2300 (sh)

2130 (m)

2080 (m)

a Fr .. -1equenc1es 1n em

~ n.m.r. data tor mono- and disubstituted halide and pseudohalide

heptahydrotriborate anions were reported by Arunchaiya and MOrris. 34 The

~{llB} n.m.r. spectra of [B3H.rClr in CD3C1'l and CDC1.3 • recorded with broad I
band irradiation or continuous wave specif'ic frequency irradiation of' the I

~ resonances are shown in Figures 6 and 1. I
i

In CD
3

CN, the ~{~, broad band} spectrum showed a single proton

resonance at a • 1.46 ppm. The spectrum resulting trom irradiation ot the

unsubstituted B (1) and B (2) (Figure 6(c» shoved a coupling pattern com-

prising ot a partly relaxed 1:1:1:1 quartet which results tram the remaini~

coupling of' the seven equivalent by'drogens to the boron atom, B (3) with an

apparent coupling constant, IJ(~_llB(3» of' 180 Hz. In CDC1
3

, the

~{~} n.ll.r. spectrum showed more extensive quadrupolar relaxation.

- 18 -



Figure 6: 360 MHz IH{llB} NMR spectra of [B
3
H7(Cl)]- in CD

3
CN;

(a) Broad band irradiated; (b) Irradiation of the substituted
boron, B(3); (c) Irradiation of the unsubsti~uted barons,
B(l, 2).

u

o
u·

1
PPM

~ a :_-=_- _
2

I
\

1---A-
I
i
I

I

I
·1,
I
I

i
I

Figure 1: 360 MHz IH{llB} NMR spectra of [B
3
H7(Cl)]- ~n CDC13; (a) Broad

band irradiated; (b) Irradiation of the substituted boron, B(3);

(c) Irradiation of the unsubstituted barons, B(l, 2).

- 19 -



obtained with off-resonance or continuous wave specific frequency irradia

tion of the 1~ resonances are shown in Figures 8 (a-c).

(.)

ij

I

\-A~)

1 11 ) ]-Figure 8: 360 MHz H{ B} NMR spectra of [B
3
H6(Cl 2 in CDCl3

The IH{~, off~resonance} spectrum exhibited a broad band (~ :II 2.57 ppm).

The proton spectrum resulting from irradiation of the unique unsubstituted

borQl atom, B (1), (Figure 8(b» showed a signal with fine structure corret

ponding to coupling to the two remaining boron atoms, B (2) and B (3). The

~ n.m.r. data recorded at 360 MHz for the derivatives and other substitut~

triborate, anions such as [B3YCS]- (Figure 9(a» and [B
3
H

6
Cl(BCS)]-'(Figure

9(b» are listed in Table 4.
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Table 4

~ n.m.r. Data for Octahydrotriborate (1-) Derivatives

Anion 6H/ppm J(lH_llB) (Hz) Solvent

[B
3
Ha]- +0.175 ~_1~ = 32.17 CD

3
CN

~-~ = 10.96

[B
3
H

7
C1]- +1.46 H-B(3) = 18.0 CD3CN'

H-B(l,2) = 25.0

[B3H.rC1]- +1.63 CDC13

[B
3
YCS]-a +1.4 CD

3
CN

[B
3
H6C1

2
]- +2.57 H-B(l) = 65 CDC13

[B
3
H6C1(NCS) ]- +2.30 CDC13

[Ag{B3H6C1(NCS)}2]- +2.24 CDC13

a at 3031{ and 220K
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The ~ n.m.r. spectrum of [B
3
H

7
Cl]- at 32.08 MHz consisted of two

multiplets with unresolved fine structure due to ~_lH and ~_l~

couplings. The two unsubstituted boron atoms (B(l) and B(2» have low

tield resonances at 6 - 16.3 ppm with the substituted boron atom having

a high tield resonance at 6'- 22.2 ppm. This is in keeping with

. 11 35 36preVJ.ously reported B n.m.r. spectra tor neutral B3H7L a~ducts. •

The ~ n.m.r. spectrum ot [B
3
H6C12]- displ~ed a low tield reson

ance due to B(l) and a high tield resonance tor B(2) and B(3). Jacobsen

and Morris,29 initially suggested that this shift ot the B(l) resonance

supports the contention that both chlorines are substituted on B(l),

because the shift was similar to that observed in BH2Cl and BHC12

adducts. 37 However, in a later paper, the chlorines are depicted as

being trans-substituted on B(2) and B(3). The l~ n.m.r. data tor the

octabydrotriborate derivatives are listed in Table 5.

Table 5

32.08 MHz l~ n.m.r. Data for [B
3
H
7
X]- and [B

3
H6X2]-

Compound 6 (ppm) B(2), B(3)a 6 (ppm) B(l)a J l~_~ (Hz)d

[B3~Cl]- c -16.3 -22.2 42.0

[B
3
H

6
C1

2
]- c -13.4 - 5.3 35.4

[B3~]- b -12.2 -28.9

[B
3
¥'C]- e - 9.6 -36.6 41.0

[B
3
¥'CS]- c -13.2 -33.5 38.0

[B
3
¥]- c -17.6 -15.4 38.5

a Shirts expressed relative to BF
3b c

Solvent, CD
2
Cl

2
• Solvent, CDC1

3
•

e Solvent, CD
3

CB.

Negative shifts are high field.

d 115.5 MHz line narrowed data.



The use of 2D boron-boron coordination n.m.r. spectroscopy

(l~_l~ COSY) has been shown to give valuable information relating to

t t o "to 38-42 MOt ? "198642 dboron a om connec 1V1 1es. e1na e a~ 1n reporte an

~_l~ COSY study on halogenated and pseudohalogenated octahydrotriborate

compounds. 43-45 All the monosubstituted triborane derivatives had l~

n.m.r. spectra which comprised two s'ignals of relative intensities 2:1,

and correlations occurred between these in all cases. In the disubstituted

triboranes, the symmetrical [B
3
H6C12]- anion showed a correlation between

the resonances of the unsubstituted boron and the two substituted boron

atoms (Figure 10). Each of the unsymmetrical disubstituted anions

exhibited ~ n.m.r. spectra which comprised of three resonances of rela-

tive intensities l~l:l (Figure 11) •

." .. . -~..

o

d
PPM

-10
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Solid State Studies

Andrews et a'L initially published an X-ray crystallographically

determined structure of [(Ph
3
P)2N] [B

3
H
1

(NCS)] (Figure 12) with a '''''.3-~

bridge. But in a later paper,33 the structure was amended to that in

Figure 13, using data collected at low temperature (185K).

The strongly bridging J"'2-H (13) between B(l) and B(3) and weakly

linked to B(2) (Figure 12) is changed to a weak, semibridging interaction

between B(2) and B(3). The different interpretations of the )A -H position

were related to the fact that the X-ray data were collected at different

temperatures, which affected the data especially for the I"-H position.

The latter type structure is also observed for [B3Vcse]-.
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Figure 12

Figure 13

S(1)

U
H'(23)

Projection of the structure of the (B:aH,NCS)- anion.
Molecular parameters include B(1)-B(2) 1.802(9), B(Il-BC3)
1.780(9). B(2)-B(3) 1.758(8), B(l)-H'(l3) 1.151(15), B(3)-H'(I3)
1.182(20), B(2)-H'(l3) 1.639(13), B(2)-H'e23) 1.367(20). B(3)-·
H'(23) 1.419(13). and B(1)-N(2) 1.510(1) A.

HC'23)

Perspective Yiew of the anions of J and 2, with atomic
Dumbering scheme. Thermal ellipsoids ue constructed at the
30S' probability le~1 (using data from 1 (LT), except for
H atoms which have an artificial radius of 0.1 A for clarity.
For 1 E • S. for 2 E • Se. .
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In both structures, the BNCS and BNCSe fragments are nearly linear

with bond distances, B(1)-B(2), 1.802 i, B(1)-B(3), 1.180 i; and B(2)

B( 3), 1.158i. All terminal B-H bonds are of expected length (mean

1.10 R). The B-N, N-C and 'C-S bonds are 1.51, 1.11 and 1.54 i respectivelJ,

1.4.3 Chemical Stability and Reactions

The halogen substituted salts, [B
3
H

1
X]-, are thermally and hydro

lytically rather unstable. However, the isothiocyanate, [B3YCS]- is

stable and the [Bu4N]+ or [(Ph3P)2N]+ salts show negligible decomposition

when stored at room temperature in air for a period of months. Solutions

of [B
3
B1CN]- in chlorinated hydrocarbons quickly decomposed, depositing

a black solid, whereas solutions in acetonitrile appeared to be stable.

Salts of [B
3
H6C12]- and [B

3
H6Cl(NCS)]- deteriorated slowly and survived

several days exposure to air.

Substituted [B
3
H.f]- (X • Cl, Br) ions have been used to synthesise

higher boranes, such as pentaborane (9) by a thermal decomposition route

(22).5

(22)

Shore3 isolated tetraborane (10) and the monobrominated analogue (10-15% '

each) from the reaction of [Bu4N][B31lrBr] and boron tribromide.

Ryschkevitsch and Miller28 reportedly prepared pentaborane (9) (36.8%)

from a reaction of [Bu4N] [B3H~r] under vacuum. No evidence for penta

borane (ll) was detected in the products.
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1.5 TEI'RAOORANE SP~IES

The reaction o-r dichloromethane solutions o-r [B3H
1
CI]- with [Bu4N]

[BH3CN] yielded the bridged-cyanide ion [BH
3

CN B
3
H

1
]- as the major

product, along with small amounts 'of [BH
3

CNBH
3
]- and [BH

3
CNBH

2
CN]- which

were identified by their l~ n.m.r. spectra (23).5,40

The formation of [BH
3

CNBH2CN]-, which is also an oxidation product of

[BH
3

CN]-, was claimed to arise from a reaction involving a small amount

of dissolved mercury salts in the solution of [B3H1CI]-. The presence

of [BH
3

CNBH
3
]- was rationalised by the fact that some B

3
H

7
L adducts

41-43 . .undergo cleavage by excess l1gand to y1eld BH
3
L and B2H4L2 as

decomposition products (24).

(24)

A similar reaction using [(Ph3P)2N][B3H7X] (X = Cl, CN) yielded the

[(Ph3P)2N]+ salt of [BH3CNB3~]-. The structure of this species appeared

to consist of separate B
3

- and B- units linked by the CN- ion in a similar

manner to [BH
3

CNBH
3
]-.

The l~ n.m.r. spectrum of [BH
3

CNB
3

H
7
]- showed the usual low field

resonance due to B(l) and B(2) (~ - 9.9 ppm) and a high field resonance

due to B(3) (~ - 36.1 ppm), along with a well defined quartet at <S - 43.8

ppm [IJ(~_~) =- 93Hz] consistent with the BH
3

CN moiety. The latter

comPares with the chemical shift of <S - 41.8 ppm [IJ(l~~) = 90Hz] in

free cyanoborohydride.18 The infrared spectrum of [BH
3

CNB
3
H.r]- showed

B-H stretching modes due to the B
3
H.r moiety along with bands at 2375 and
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-12345 cm due to the B-H stretching of the BH3- group. The strong sharp

band at 2255 cm-l is characteristic of a bridging cyanide and is also

similar to that reported for [BH
3

CNBH
3
]- (2260 cm-l ).l6 The [BH

3
CNB

3
H

7
]

salts were of comparable stability to those of [B3HTNCS]-.

Jacobsen and Morris46 examined the hydrolytic stabilities of [B
3
H

7
NCS]

and [BH
3

CNB
3
H

7
]-. The [(Ph3P)2N]+ salt of [B

3
HTNCS]- was found to be

stable to pH 4, at which point free thiocyanate ion could be detected by

infrared spectroscopy. In contrast, [(Ph3P)2N][BH3CNB3H7] was found to be

stable to pH 1 but hydrolysis occurred when solutions of the salt in aceto-

nitrile were treated with 12M HCl.

In 1982 Tort et at47 reported that when the butylammonium salt of

[B3HTBr)- is reacted with BBr3 (25) the principal products are 2-BrB4H
9

,

B4HIO ' 2-BrB5H8 and B2H6 (each in 10-15% yields).

CH2Cl2
[Bu4NHB3Hr'rl + BBr3 _laCe l> 2-BrB4H9 + B4!1.0 + 2-BrB5Ha + B2H6 12l!

Other volatile products, B2H
5
Br, l-BrB5H8 and B

5
H

9
, were obtained in smaller ~

I
amounts (1-5%). The reaction described above is an alternative to that ot f

I

B4~0 with Br2 over an 18 hour period at _150
C.

48
The ~ (Figure 14) and !

t
1 .

H n.m.r. (Figure 15) spectra for 2-BrB4H
9

were recorded at 96.2 and 300 MHs

respectively.

The ~ spectra (Figure 14) are consistent with the previously assigned

19.3 MHz spectra,48 with the exception that the resonances due to B(2) and

B(4) no longer overlap in the coupled spectrum and that those tor B(3) are

found at -39.4 ppm instead of -34.7 ppm.
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o. J...'H' e9HI
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I I
-1.8ppm -1O.4ppm

I
-394PCJ"1

Figure 14:- 96.21-MHz boron-ll NMR spectra of2-BrB..H, in CD~2
.1-20 oC: (a) proton coupled; (b) proton dccoupled.

I
365
HZ

I I
231 168 a
H. H••HI

I
-.92

Hta'

Figure 15": .;0; 300-MHz proton NMR spectrum of 2-BrB..H, in CD2Cl2
at -20 ·C. with the boron-ll broad band decoupled.
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1.6 PENTABllANE <XldPOONDS

1.6.1 Synthesis

Figgis and Williams49 prepared the first chloro- and bromo- mono-

substituted pentaborane derivatives t 1-XB
5
Hat (Figure 16) in 1959 (26).

. X

I

p~
H--B ~l--H
l~l/ .
~ 8 ~

I
H

(26)

Figure 16 x = Cl t Br

. 50
Onakand Dunks isolated 2-C1B

5
Hat in S.2% yield, from a halogen

exchange reaction between l-BrB
5
HS and AlC1

3
(21)

AlC13l-BrB
5
Ha

Side products of this reaction included B
5
H

9
, BC1

3
, HBC12t B2H6 and HC1.

Several attempts to synthesise 2-BrB
5
Ha via l-BrB

5
Ha and AlC1

3
or from

reaction of BC13 and I-BrB
5
Ha resulted only in the recovery of starting
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materials. Gaines5l reported on alternative synthesis of l-C1B
5
Ha in

1966 using a catalysed reaction. Prior to this, attempts to produce

l-chloropentaborane, in carbon disulphide, in the presence of aluminium

chloride fUrnished only microquantities of a chloropentaborane contamin

ated with carbon tetrachloride. 52 Duplication of this reaction on a

larger scale resulted in explosions .53 When no catalyst is used in Gaines'

synthesis 2-ClB
5
Ha is the predominant'isomer produced but the yields never

exceed 30%.

Very high yields of bromo- and iodo- pentaborane were obtained without

either catalyst or solvent by Hall et at. 54 The optimum reaction conditions

for the iodo-derivative (1 9~% yield) were 14 days at 150C with 25% excess

pentaborane (9), for the bromo derivative complete reaction occurs in 6-a

hours at room temperature with a 10% molar excess of pentaborane (9). If

an excess of halogen is present polyhaloboranes are usually formed.

Burg and Sandhu55 studied the reversible conversion of l-BrB
5
Ha to

2-BrB
5
Ha catalysed by hexamethylenetriamine. A:rter 20 hours at 350C in a

sealed tube, 48.5% conversion had taken place.

In 1985, Taylor and Wallbridge56 reported the synthesis of Na[B
5
H

9
CN]

from the reaction ot pentaborane (4) with sodium cyanide (21).

monoglyne ~ Na[B
5
H

9
CN]

_300 to 100C

The product is isolated in the form of a dioxanate. When excess penta-

borane (9) is used, another reaction occurs which yields predominantly the

[B9~4]- anion. When sodium cyanoborohydride is used instead of [CN]-

no intermediates ot the type Na[B
5
H

9
CN] are detected and the major product

is again (B9H14]-.
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1.6.2 SpectraZ Properties

llB n.m.r. spectra have been recorded by Dnak et aZ 57 for both 1- and

2- chloro- and bromo- substituted and 1- iodopentaboranes. Table 6 lists

the chemical shift values for these compounds.

Substitution of a hydrogen by a halogen at the apex (1-XB
5
H8) or at

the base (2-XB
5
H8 ) of pentaborane generally results in a downfield chemical

shift for the so attached boron. The only' known exception is l-iodopenta

borane. 58 The magnitude of the shift for various directly attached

. . 58-63subst1tuents 1S not unusual when compared to other boron systems.

However, the unique boron diagonally opposite the B-X substituent is

located at an unusually high field. 58 ,64 Onak and Dunks 50 at first

attributed this to a long range effect similar to that found in substituted

benzenes. 65 The same authors revised this theory in a later publication57

in which they claimed that considering the complexities inherent in ration-

alis ing chemical shifts in boron compounds t other factors could contribute

to the observed shift.

The ~ n .m.r. spectra of substituted pentaboranes reveal the following

trends: (i) the signal for the proton bonded to the apical boron is

shifted upfield upon basal substitution (alltyl groups are more effective

in this than the known halogen derivatives ) ; (ii) upon, halogen substitution !
I
I

Iat the apex the signal for the basal protons is shifted to a slightly lower

field. Double resonance of the ~ nuclei resolved the two types of bridge

hydrogens in 2-chloro- and 2-bromopentaborane t but because the number of

each kind is identical an absolute assignment was not possible.

Mass spectral data for l-BrB
5
H8 and l-IB

5
Ha were reported by Hall et

~66. 1 di th . .. .a" 1nc u ng e 10D1Sat10n potent1als of the parent molecules and appear-

ance potentials ot [B5Ha]+ ions. The ionisation potentials of the iodo-
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Table 6

l~ n.m.r. Chemical Shifts Values and Coupling Constants

~b
1

Compound Boron J(l~_lH)

Environment

1-C1B
5
H8 B(l) 30.6

B(2,3,4,5) 14.5 ca 160

2-ClB
5
H8 B(l) 51 174

B(2) -0.5
B(3,5) 12.5 177
B(4) 22.0 178

1-Br B
5
H8 B(l) 36.4

B(2,3,4,5) 12.5 161

~-Br B5H8 B(1) 53.5 180
B(2) llc

B(3,5) l5
c ca 170

B(4) 20c ca 170

1 I-B
5
H8 B(l) 55.0

B(2,4,5) 11.8 160

a all spectra were recorded at 12.8 MHz

b &ppm relative to BF
3

0Et2

C represents an approximate value for the designated types
of boron atoms. Overlapping of resonances make individual
assignments difficult.
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and bromo-substituted pentaboranes are more than 1 e.v. lower than

1.6.3 Mechanism of Reanaangement and Substitution

It is recognised that 2-substituted pentaboranes (Figure 11) are

thermoQynamically more stable than the corresponding l-substituted

derivatives. 63 ,61-12

H

Br

Gaines has suggested that in the absence of a strong Lewis acid the

chlorination of' pentaborane lending to 2-CIB
5
Ha is a radical reaction.

This assumption on the uncatalysed chlorination of' pentaborane is

supported by the following observations. First, when the bromination of'

pentaborane is carried out in the presence of' strong ultraviolet

irradiation, the reaction proceeds about one hundred times f'aster than

USual,1l and the ratio of 2-BrB
5
Ha:l-BrB

5
Ha increases from the value (0.049)

reported by Burg and Saudhu~9 to 1.2 (although the total yield of' bromo-

pentaboranes decreases to about 45% based on bromine). Second, attempts

to chlorinate pentaborane with ICI and IC1
3

resulted in the formation of'

l-IB
5
Ha in yields greater than 90% in both cases.
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In contrast to these results, halogenations with bromine and

iodine, under the same conditions, furnish l-halopentaboranes almost

exclusively and in high yields. These reactions can be envisaged as

occurring via heterolytic cleavage of the halogen followed by electro

philic displacement of a proton from the I-position in pentaborane, by

the positive halogen. This concept is similar,to the chlorination

reaction in the presence of aluminium chloride, a strong heterolytic

Fri,edel-Crafts catalyst.

The reaction between aluminium chloride and l-bromopentaborane to

give 2-chloropentaborane was the first observed halogen exchange

rearrangement reaction in a borane cluster. Onak and Dunks50 initially

suggested that the mechanism for exchange involved a bridged intermediate

or transition state analogous to the structure of the aluminium chloride

dimer, but the low yield of product near the decomposition temperature

(ca 158-160oC) of I-BrB
5
Ha suggested a tragmentation-exchange-recombina

tion sequence.
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1. 7 IJEXAIlEANE~

Chlorohexaborane (Figure 18) was synthesised by the reaction of

K [B6H
9

] and chlorine gas (28)

(CH3 )20
>

_8ooC

CI

I

(28)

Figure 18

Bromohexaborane was isolated in 71% yield from the room temperature

reaction of hexaborane (lO) and BBr3. Previous to this, BrB6H
9

had been

prepared in 10% yield by the reaction of hexaborane (10) with bromine. 73

Iodohexaborane was isolated in 78% yield tram the condensation of excess

B6H10 into a tube containing BI
3

• A side product of this reaction was

B13H19 and upto 40% yield of this compound was achieved by increasing

the reaction time. Heating the reaction mixture yielded trace amounts of

B13H18I, which was detected by mass spectrometry.
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Reactions of hexaborane (10) with either BF
3

or BC1
3

failed to

produce any halogenated cluster compounds. 74- 76 Cooling the reaction

to -950 C or heating to 600 c for one week yielded either starting

materials or caused decomposition of hexaborane. 77 ,78

1.7.1 Reactions

Lewis basicity decreases through the series B6HIO > B6H
9
1 > B6H

9
Br >

B6H9Cl as determined by the rate and extent of reaction of these compounds

with boron trihalides. This agrees with the predicted availability of

electron density at the unbridged basal B-B bond in these compounds.
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1.8 OCTAIOWffi CD.iPClJNL6

One interesting side product formed in low yield from the reaction

of B
9
H13 (SMe2) with [(Ph3P)2N][NCS] (29) was the eight boron cluster

[(Ph3P)2N][B8H12NCSl.19

This compound represents the first example of a stable anionic eight

boron cluster and may be regarded as a derivative of the unknown [B8H13]

. 80aIll.on.

1.8.1 SpectNt Analysis

The ~ spectrum of [B8H12(NCS)]- (Figure 19) comprises five

doublets of relative area 1, one doublet of relative area 2 and a triplet

of area 1.

I

\
\

101 J~

)
(b)

o -10 -Le·

Figure 19 n.m.r. spectra
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1The H spectrum showed a complex pattern of overlapping 1:1:1:1

quartets due to terminal hydrogens on boron t and in addition t two

resonances of relative area 2:1 at -2.1 and 3.0 ppm which may be assigned

to bridging hydrogens. 1H n.m.r. spectra with specific frequency boron

decoup1ing confirmed the assignements of the l~ spectrum. The n.m.r.

data are consistent with the structure (Figure 20) with no plane of

symmetry.

Figure 20

Jacobsen et aZ19 suggested that the compound is also structurally

similar to the neutral derivatives Ba~2(NMe3) and BaH12 (NCCH3) tal

whose 1~ n .m. r. spectra have been recorded at 19.3 MHzaO and is also

structurally related to the known derivative, [(Et2NH)BaHll(H2NEt)].82
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1. 9 ~ CXIdPCl.JNIl)

1.9.1 Synthesis

The first halogenated B
9

- clusters were prepared in 1969.84

Treatment of B
9
H13 (SMe2) with bromine generated 56.2% of B

9
Hl2Br(SMe2)

and 2.9% of the dibrominated derivative, B9HllBr2(SMe2). Subsequently,

Nelson85 reported that the [B
9
H12]- anion reacted with mercury halides

to give the halogenated nidO anions, [B
9

B10C12]-, [B
9
Bll Cl]- and

[ ]- 86B
9
HllBr as well as neutral B18H22 • Jacobsen et at reported the

preparation of ~chno [B
9
H

13
Cl]- in 34% yield by an unusual addition

reaction of [(Ph3P)2N][B9H12] and HCl (30)

The authors noted that the successful synthesis of [B
9
Hl3Cl]- was

dependent on the choice of counter ions; [(Ph
3
P)2N]+ gave [B

9
Hl3Cl]

but with [Bu4N]+ only anti- B18H22 was isolated. Possible reasons for

this difference in reactivity were discussed. 85

Muetterties and Knoth83 prepared [B
9
H
l3

NCS]- in 1965. On recry

stallisation of a sample of [B10Hl2NCS]- from water vigorous hydrogen

evolution occurred,5 and the only anionic species isolated from this

aqueous solution was [B
9
H
13

NCS]-. Muetterties and Knoth5 reported that

this anion could also be prepared in high yield by the reaction of

decaborane with an aqueous dioxane solution of potassium thiocyanate. An

alternative preparation in 1984 by Jacobsen tit aZ79 involved the use of

(31)

The iso selenocyanate and cyBnoborohydride derivatives have also been

83prepared.
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1.9.2 SpectraZ Properties

Jacobsen et aZ19 reported high field l~ and lH n.m.r. spectra

for [B
9

H
13

NCS]- (previously reported low field spectra had failed to

resolve some of the boron signals). In the l~ n.m.r. spectrum five

doublets were observed, similar to the corresponding signals in neutral

B
9

H13L species, with the exception that the resonance ass?ciated with

the substituted boron atom, B(4), was a singlet. Selective irradiation

at the ~ resonance of the bridged hydrogens resulted in sharp~ning of

resonances due to B(6) and B(8), B(5) and B(9), and B(4) in

[B
9

H
13

(NCS)]-•. The suggested cage structure is shown in Figure 21 and

has been confirmed by a single crystal ~-ray diffraction study.

The l~ data was interpreted as suggesting that the ion was fluxional

and further evidence was obtained from ~ spectra. A variable temperature

~ n.m.r. study of the fluxional process was reported.
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At room temperature the presence of a single signal for five

bridging hydrogens (6 - 1.4 ppm) was observed. Thus rapid intra-

molecular exchange of the two bridging hydrogens with two endO-hydrogens

from B(6) and B(8) and the single terminal hydrogen was occurring. At

temperatures below 233K the appearance of a bridging hydrogen resonance

(6 - 3.3 ppm) showed the presence of only two bridging hydrogens. In

addition a new resonance of relative intensity 2 appeared' at -0.41 ppm,

indicating two hydrogens in an endO-terminal environment. At 203K

another terminal hydrogen signal was observed (tS - 0.6 ppm). The intra-

molecular exchange between the bridging hydrogens, the two endO-

terminal hydrogens, and the terminal hydrogen at B( 4) was sufficiently

slowed to indicate a coalescence temperature near 243K, but the static

structure was not fully achieved above 203K.

lL ~
The 13 n.m.r. spectrum of [BgH

13
Cl]' is fUlly consistent with an

anion that is fluxional at room temperature and parallels the results

t
I

The cage structure of the [Bg11.3NCS]- anion, inferred from high field!
I·

and variable temperature n.m.r. was similar to that ot Bg~3(NCCH3)'

proposed by Wang st al,~ 81 in which there were ,.11-- 4, 7 and p. - 5, 6

hydrogen atoms, in contrast to the parent species [BgH
14

]-88 which has

II- - 3, 6 and ,. - 3, 7 hydrogen atoms. The solid state structure ot

[Bg~i'CS]- was determined as its [(Ph3P)2N]+ salt. 89 Andrews and Walsh

initially determined the structure from a data set collected at roam

temperature (a-form) but this study failed to locate all the borane

hydrogen atoms. On repeating the experiment with a different crystal at

low temperature (185K) a second crystalline modification (S-torm) was
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unexpectedly encountered. Solution and refinement of this structure

allowed all the borane hydrogens to be located. The cage of the

[B
9

H
13

NCS]- anion (S-form) has an araahno architecture with hydrogen

atoms bridging the 4,1; 4, 8; and 5, 6 B-B connectivities and a BH2

group at position 5. B( 3) also carries two terminal functions, exo-

polyhedral NCS and endo-polyhedral HB( 3) (Figure 22).

~.~~
~;ii --ry.

NI21

A perspective view of the anion.

Figure 22

The discovery of the third hydrogen bridge [between B(4) and B(8)]

in the 8-form was unexpected; although such an arrangement had been

observed90 ,9l in commo- B
15

H
23

which contains a similar B
9
H13 fragment.

Bridging p.- 4, 1 and, p. - 5, 6 are also found in B
9

H13 (NCCH
3

)81 and

6 ]- 88p.- 3, and p. - 3, 1 in [B
9

H14 • It appears then that the n.m.r.

data report~d, where only two bridging hydrogens were observed, do not

coincide with the solid state structural data in which three bridging

hydrogens are noted. No explanation for this was given by the authors.
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1.9.4 Reactions

Meina and Morris92 have reported ion exchange reactions between

the isothiocyanate [B9H13NCX]- anion (~ = S, Se) and [Cu(PPh3)2][BH4]

which produce [Cu(PPh3)2][BgH13NCX] salts in high yield.

- 44 -



1.10.1 Synthesis

Of all the boron hydrides, decaborane stands out as the most

2widely studied in terms of its reaction chemistry. Stock, reported

the isolation of two dihalo-decaboranes from the reaction of the

halogen and decaborane in a sealed tube. These compounds analysed

as a dibromodecaborane and a diiododecaborane. 3 By means of a

preliminary X-ray crystal structure determination, SChaeffer93 showed

that the iodine atoms were in the 2- and 4- positions in agreement with

Lipscomb's predictions8l from molecular orbital theory for the electro-

philic sUbstitution preferences of decaborane.

Two patents94 ,95 were pUblished concerning the properties of a

dichlorodecaborane (m.p. 115-122oC) and a monochlorodecaborane (m.p. 40

55
0

C). The preparation in both cases involved the use of chloroform or

l,l-dichloroethane· in the presence of aluminium chloride. The structure

of neither compound was reported. A bromodecaborane and a dibromo-

decaborane were also prepared by a similar reaction using ethylene

bromide or bromoform (32).

(32)

In an attempt to prepare fiuorodecaboranes, Hillman and MangOld96

reacted l,l-difiuoroethane with aluminium chloride and decaborane. How-

ever, the product of the reaction was a mixture of 1- and 2-chlorodeca-

borane. Fluorodecaboranes were subsequently prepared by a sealed tube

reaction of decaborane and hexafluorobenzene at 100
0 a '.
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Alternative approaches to halodecaboranes using the conditions of

o 0 0 (34)91 (0 di to 98-104 b 0 to 90,92,105-1Fr1edel-Crafts subst1tut10n 10 na 10n, romana 10n,

chlorination94 ,96) had been reported by 1968 and gave rise to mixtures of

1- and 2- isomers.

(34)

x = C1, Br, I

Another route was that of Hermanek and co-workers by the reaction of

6,9-bis(dimethy1sulphide)decaborane with hydrogen halides (35) furnishing

5- and 6- halOdecaboranes. l04 ,101,108

(x = F, Br, I)

Whereas the separation of mixtures 1- and 2- isomers was easily achieved

by fractional recrystal1isation from organic solvents the separation by

recrystallisation of mixtures of 5- and 6- isomers was very difficult.

Hence, for a pure sample of 6-bromodecaborane, Hermanek and co-workers

had to use chromatographic separation techniques. In general, the f'ollow-

ing order of descending R, values was noted:

6-XB10~3 > 5-XB10H13 > l-XBlOH13 > 2-XBlOH13

In 1914, Sprecher et az,109 reported the synthesis of' all the monohalo-

decaborane isomers (X =- Cl, Br, I) in high yields by a convenient room

temperature reaction (36)

(36)

~ n.m.r. analysis showed that the 94% yield of monobromodecaboranes

consisted of 80% 2-BrBlO~3 and 20% I-BrB
10

H
13

•
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The 5,10-dihalodecaboranes (X = Br, I) were synthesised by Dupont

et aZ from Me2SnBlOH12 (37).110

-78°C
3>

The bromination reaction was very efficient (70-80% yields) but the

iodination reaction was less clean and also afforded BlOH14 , BlOH131

and BlOHllI3. The analogous chlorine reaction requires much more forcing

conditions and leads mainly to decaborane with only traces of chlorinated

products.

Two syntheses of mono-isothiothiocyanatodecaborane, (NCS) BlOH13 ,

have been published. The firstl17 involved the reaction of 6,9-bis

(dimethylsulphide)decaborane'with mercuric thiocyanate (38)

It was suggested, on the basis of infrared structural data, that the liCS

ligand bonded to the borOn cage at B(6).

An alternative approach was reported by Lipscomb and Kendall in

1913 (39) .112

Monoglyme () [ ]----""'....R-.-T-.---!» NCS "'Bio~3 + Na Cl + H2

Sublimation of the crude product furnished the isothiocyanate in 27% yield.

Again. preference was expressed for SUbstitution at B(8) .113,114 In a

later notel15 the reaction of decaborane with metal thiocyanate in

ethereal medium was described as (40)

(40)
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The behaviour of thiocyanate ion in this reaction contrasts sharply with

that of aqueous [BH
4
]-, NH

3
, [OH]- and [CN]- which react with decaborane

2- [ ]- [ ]2- [ ]2-to give [BlOHI4 ] , BIOHl3NH3 ' BIOHl30H and BIOHl3CN ,

respectively.1l4-116 Moreover, it was found that the addition of [BIO
H
I3

]-!

salts to aqueous solutions of [CN]-, [BH4]- and [OH]- gave [BIOH
I3

CN]-,

]2- [ ]2-[B
IO

HI4 and BlOH
l3

0H , respectively.

1.10.2 Spec~Z Properties

Using ~ n.m.r. spectroscopy, Williams and Onak,ll7 established the

monoiodecaborane isomers as l-IB10H13 and 2-IB10H13 • Other early work

118 6]was reported by Sedmera et aZ [5-XB10~3 (X = F, Br, I) and -ClB10H13

and Williams and Pierl19 [all the 1- and 2- XB10H
13

(X = Cl, Br, I)

isomers] •

In 1914, using ~_l~ double resonance techniques, Sprecher et aZ109

assigned chemical shift values for all the possible isomers of monohalogen-

ated decaboranes (Cl, Br, I). These authors found a trend of increasing

shielding at the substituted atom in the order of a (B-Cl) < a (B-Br) <

a (B-I). This trend was explicable in terms of the anisotropic

susceptibility of the halogen atom and an induced paramagnetic shielding

at the substituted boron atom. Sprecher and Aufderheide,120 showed that

the changes in the ~ n.m.r. chemical shifts of decaborane on halogen

substitution are additive parameters which can be used to predict chemical

shirt values in dihalogenated decaboranes. The authors recorded the

chemical shifts for dichloro- and diiododecaborane isomers as well &8 for

some mixed dihalodecaboranes such as 2-chloro; 9-bromo decaborane and

1-chloro; 6-bromodecaborane.
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1.10.3 Sol,id State Structural, Data

X-ray crystallographically determined structures have been reported

112for a number of halodecaboranes and also for 6-(NCS)B
IO

H
13

• Sequiera

and Hamilton
12l

pUblished the structure of l-rBlOH
13

in 1967. Figure 23

illustrates this structure.

I

,....

N

Figure 23 Structure and Bond Distances for 1-rB10H13

A • •• B H 122,123 d B H (C H ) 124comparJ.son with the bond distances 1n 10 14' an 10 13 2 5 '

suggested that there are no important differences in B-B bond lengths among

these structures except perhaps for the long ~5-B10 (1.96: )~, B10~3 (C2H5 );

and (2.011/~, B10~4; and B
7
-B8 bonds (2.01~·. B10H14 and (1.98)' ~.

B10H13 (C2H
5

>·

The structure of B10~3(NCS > is illustrated in Figure 24.

- 49 -



Figure 24 Structure of B10Hi3 (NCS)

110 ( )Dupont et at reported the structure of 5,lO-Br2B10H12 Figure 25 •

Figure 25
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Spalding and co-workers125 obtained anisotropic mass spectra of

2-ClBlOH13 • 6-ClBlOH13 and 2-IBlOH13 using high resolution measurements.

The parent molecular ion appeared to be more stable with the 2-chloro-

substituent than with the 6-chloro- but for both compounds the base peak

was [M-3H2]+. In contrast. the base peak for the iodo- compound was [M+].

+though [M-3H2] was almost as abundant.

1.10.4 Reactions of Halodecaboran8S

Plesek and co_workers126 found a marked difference in the reactivity

of the 5- and 6- halodecaborane isomers to dialkylsulphides. The

6-ClBlOH
13

compound reacted extremely slowly with the evolution of HCl

and formation of 6.9-(SR3)2BlOH12 (R =Me. Et) (40)

(40)

However, the 5-halo-derivatives reacted smoothly with evolution of

hydrogen (41)

5-XBlOH13 + 2R2S ~ H2 + 5-X. 6,9-(SR2 )2BlOHll (41)

a-d

a, X =F, R = CH ; b. X =Br. R = CH ;
3 3

c, X =I, R = CH3; d, X =Br, R = CH2CH3

This difference in reactivity is due to the fact that disubstitution at

the 6-position is not possible for 6-ClBlOH13•

Heying and Naar_Colinl27 reacted 2-BrBl0H13 with various donor

ligands (Scheme 3)
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Scheme 3 Reactions of 2-BrB10H13

[(C2H5)3NH]2B10HllBr

r(C2H5)3N

> [(C2H5)2S]2B10HllBr

Acetonitrile reacted readily in benzene to give compound I in 61% yield.

Subsequent ligand displacement reactions are exemplified by the conversion

of bis (dietbylsulphide )-2-bromodecaborane to the bis (triphenylphosphine)

derivative by treatment with triphenylphosphine at room temperature. This

compound is also prepared, in 61% yield, by the spontaneous and rapid

reaction ot 2-BrB10~3 with the phosphine in ether.
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1.11 HAI.roENA'IED AND PSEUIXJIAI.ffiE1.ID CLOSO OORANES DERIVED

FfOd [B H ]2- (n = 6 to 12)
n n

1.11.1 Synthesis

In 1964, Muetterties and co-workers128 reported that the reactions

[ ]2- [ 2-.of B10H10 and B12H12] w~th elemental halogens (X = Cl, Br, I)

proceeded readily in the dark and usually lead to multiple substitutions.

If more forcing conditions are used complete halogenation to [B10XIo]2

and [Bl~12]~- was observed (Figure 26)

Figure 26

The use of elemental fluorine, even when diluted in aqueous media, resulted

. [ ]2- .1n extensive decomposition. However, B12FU OH has been 1solated from

the reaction of [Bl~12]2- with fluorine in water. The order of

] 2
reactivity for both halogens and boranes is C12 > Br2 > I 2 and [B10H10 >

[B12H12]~-. This is the expected order if it is assumed that reactions

occur by an electrophilic substitution mechanism. Conversely in a reaction
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that has been described as an acid-catalysed nucleophilic substitution

reaction, salts of [BI2HI2]2- were treated with anhydrous HF or HCl to

[ ]2- [ ]2- l2a .'generate B12H6_aF6_4 and B12HllCl. S1lver salts of polychlor-

inated BIO and B12 anions are soluble in water and in a variety of other

solvents. Heating these solutions, even to reflux temperatures, does not

cause precipitation of silver chloride. Also, the fully halogenated BIO

and B12 01,080 anions are more stable to attack by acids and bases than

the unsubstituted anions. Very few reactions have been reported which

involve cleavage of the boron halogen bonds in these systems. Chlorine

. [ ]2- . [ ]2- [ ]2-reacts W1th BlOIlO to g1ve BlOClaI 2 but B12I 12 does not

exchange under the same conditions.129 The boron-halogen bonds of

[ ]2- [ ]2- []2- . .Bl2Cl12 ' B12Br12 and BlOCllO are, however, lab111sed by ultra-

violet irradiation. Trofimenko130,13l achieved the replacement of upto

nine hydrogens by cyanide and one or two hydrogens by cyanide or azide

groups, in aqueous solutions irradiated with 235.1 n .m. light.

Reactions (42) and (43) demonstrate that under free radical

conditions (u.v. irradiation or elevated temperatures) the boron-carbon

l2abonds of B-COOH groups can be replaced by B-Cl bonds.

:~v.~ [B
lO

Cl
lO

]2

l50
0 C

__h_~_;_.~~ [B12BrlOC12]2

l50
0

C

(42)

[ ]2- 132 [ ]2- 133 [ ]2- [ ]2-Brominations of B6H6 , BaHa , B
9
H

9
and B

ll
Hll have

been carried out using sodium hypobromite. The method avoids acidic

conditions which cause hydrolytic degradations. From these reactions,

products having the anion compositions [B6Br6]2-. [BaH2Br6]2-. [B9H3Br6]2

and [B12H
3
Br

9
]2- have been isolated.
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More recent preparations include the work of Wong and Kabbanil34

. []2-where tetrabutylammon1um salts of B
9
H

9
were fully halogenated by

reaction with a variety of reagents in dichloromethane under nitrogen

atmosphere (Scheme 4). The ai r and hydrolytic instability of [B
9

H
9

]2-

precludes per halogenation under protic conditions.

Scheme 4 Halogenation of [B
9
H

9
]2-

S02C12 2-'
(30-60%)[ [B

9
C1

9
]

NCS [B
9

C1
9

]2- (80-90%)

[ 2-B
9
H

9
]

NBS [B
9
Br

9
]2- (90-95%)

12 [B
9

1
9

]2- (10-80%)

The same authors reported135 that the addition of a large excess (20

equivalents) of sulphuryl chloride afforded the neutral B
9

C1
9

cluster in

30-40% yield in addition to [B
9

C1
9

]2-. The neutral products were easily

isolated by extraction with hexane or by sublimation to give pure B
9

C19

without contammination from other perchlorinated boron clusters. (B
9

C19

had been first prepared by Lanthies and Massey in 1910136 ).

Muetterties and co-workers137 prepared octachlorenonaborane-9.

B9C18H by degradation of the acid form of [B10CllO]2-• The crystalline

acid (H30)2B10CllO.5H20 undergoes a reversible dehydration under vacuum

to a dihydrate at l500 C (44).

(44)
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oAn irreversible decomposition occurs at 200 and red crystals of B
9

C18H

sublime from the reaction zone.

In 1923. Morrison and co-workers.138 re-examined the thermal

decomposition of (H30)2B10Clio under dynamic vacuum. The major nine

vertex products were found to be H2B
9

C1
7

• HB
9

C12 and B
9

C1
9

• At ambient

temperature any differences in the ~ n.m.r. chemical shifts of the

halogen-substituted boron atoms in HB
9

Cla were unresolved at 28.9 MHz.

The decomposition reaction also led to a variety of other products. e.g.

B10CllO ' BU Clll and B12Cl12• Mass spectrometric evidence indicated the

existence of boron halides, B Cl where n = 13-20. In aqueous solution,n n

B
9

C18H is reduced to the dianion. [B
9

ClaH]2-.

The thermal decomposition of [Et3NH]2[B10BrlO] was also studied by

Saulys and Morrison.139 as an alternative to the oxidative decomposition

reaction of [(H30)]2 [B10CllO]' to determine if it would prove a viable

synthetic route for the preparation of substituted boron subhalides. At

temperatures near 4300 C the trialkylammonium salt was found to decompose

yielding predominantly the neutral compound. CH3B9Bra. The decomposition

was radical in nature. By varying the reaction conditions. the authors

also isolated other alkylated boron sub bromide, C2H5B9Bra' (CH3)2B9Br7'

and CH3(C2H5)B9Br7' along with B9Br9 , but in smaller amounts than the

chloro-analogue. Curtis (It aZ140 reported some by-products of oxidative

coupling of [B10H10]2- using FeC1
3

and KC10
3

(Scheme 5).

Scheme 5
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The reactions take place by a radical mechanism and none of the by-

products were ever isolated in greater than 8% yield, irrespective of

the experimental conditions. A protonated species, such as [B10Hll]

was postulated as a key intermediate. Such an intermediate has also

been considered in the nucleophilic halogenation of polyhedral boranes. 5

Salts of the polyhalogenated cZoso ions are generallY,more stable,

thermally and hydrolytically, than the Wlsubstituted analogues. This

particularly is obvious in the cases of [B6Br6]2- and [B8Br6H2]2- which

are stable towards aqueous acid, whereas [B
6
H

6
]2- and [B

8
H

8
]2- are not.135-l37

The following order of stability to oxidation was established by volt-

[ ]2- 2- [ ]2- [ ]2- 138,139ammetry: B12Cl12 ' [B12Brl2] > Bl2Br6H6 > B12HllI •

1.11.2 Mechanistic Studies

Mechanistic studies of the rates of iodination of [BlOH10]2- and

[B12H12]2- ions have been reported.' The first three iodi ations of

[ ]2-.B10Hlo w1th elemental iodine are kinetically indistinguishable.

However, [B
10

H
7

1
3
]2- reacts more slowly. For the less reactive [Bl2Hl2]2

it is possible to kinetically distinguish the first two iodinations;

with [B
l2

H
ll

I]2- reacting 69 times slower than [Bl2Hl2]2-. Comparison of

the rates of reaction of iodine with deuterated analogues resulted in a

kinetic isotope effect of 2.9 for [Bl2Hl2]2- versus [Bl2Dl2]2- and 2.3 for

[B1hI]2- versus [B
l2

D
ll

I]2-. The reaction is not apparently slowed by

the substitution of D20 for H20 as solvent.
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ClIAP'lER '!WO

A THEORETICAL ASSESSMENT OF [BHcf]- AND [B
J

rJ19X ]2-

SERIES (X =H" Cl" CN" SG.N, NCS" N3)



2.1 Introduction

Modified Neglect of Differential Overlap (MNDO) calculations

were used to provide insight into the electronic structure and bonding of

[BH
3
xl- and [BlOH9X]2- species for which X = H, Cl, CN, SCN, NCS, and N

3
.

Where possible the calculated results are compared with experimentally

determined data e. g. X-ray crystallographically determined structures of

[BH
3
Cl]-, [B

lO
H

lO
]2- and [B

10
H

1
C1

3
]2-.

The choice of M.N .D.O. calculations d~sed by Dewar and Thiel,1,2

for this study is a logical one. M.N.D.O. has been shown to produce geo-

metries and heats of formation in good agreement with experiment. For many

b d ab - -t· . 3,4oranes an carbaboranes numerous 1,n1, 1,0 calculatl.ons have suffered

from a neglect of electron correlation wliich is effectively built in to

the M.N.D.O. calculation through. its parameterisation and ab initio calcul-

ations with a reasonable basis set (e.g. 4-3lG etc. )could not be performed

on such large molecules as the BIO - species studied here. The experi

mental chemist usually approaches the bonding of boranes and related

compotmds from the rules developed by Wade5 which accounts for the corres-

pondence between clUster bonding units.

are a theoretical basis for these rules.

The calculational methods here

6The M.N.D.O. program accepts an

approximate geometry and calculates an optimised minimum-energy geometry

from it,provided certain. precautions are taken to avoid initial pseudo or

minima geometri.E=.s. A facility exists for maintaining certain aspects of

the symmetry of the molecule during the calculation. If ·totally tmsymmet-

rica! variation is allowed the calculation generally converges on slightly

assymetric geometries.

The effect on the molecular and electronic character of the species

.{BH4]- and [B
10

H
10

]2- of halogen and ps~udO halogen sUbstitution is discus-
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sed. In the case o~ the closo cluster systems the possible sites ~or

electrophilic substi tution o~ the cage are also analysed. In all non

ab initio studies it is advantageous to compare results ~rom a series o~

related compounds. This has been the approach adopted here ~or the

series [BH
3
X]- and [B

IO
H

9
X]2-.
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2.2 ResuZts and Discussion

2.2.1 [BB~]- Species

2.2.1.1. Mo ZecuZar StrtUctures

To date, of the [BH
3
X]- compounds for which calculations were performed,

only [BH
3
Cl]- has been structurally characterised (by X-ray crystallographic

techniques) • However, the structures of many metal -BH4 compounds have been

published as well as structures of neutral ammonia-pseudo-haloborane adducts

e.g. H
3

N.BH2CN7 and H
3

N.BH2NCS8 • Eisentein et aZ9 in 1985 reported ab

initio calculations for [BH
3
X]- species with X = H, F and CN using a 4-31G

basis set. Both the M.N.D.O. and 4-31G calculations produce the expected

tetrahedral geometry a round boron (C
3
V symmetry) for all the [BH:f]

amines. The calculated and where available, experimental bondlengths are

shown in Figures 1 to 6. In all cases the angles around boron are very

close to the tetrahedral ~gle (lOgO1.' In all six compounds the B-H bond-
. 0

lengths are approximately the same; the shortest is 1.17 A in [BH
3
Cl]- and

the longes~ 1.19 Xin [- BH
3

CN ] - • These B-H bondlengths compare vell with

X-ray crystallographically determined bondle.ngths e.•g. [H Ga CBH412l which

~ terminal B-H bondlengths of 1.20 X (Figure 7 )10 •

2.2.1.2. The [BH;Je7,]- Anion

-

The experimentally deternu.ued B-Cl bondle.ngth in [BlLCll- vas· 2.003
11 -~ .

(5} i. However, Shore et a7, reported that some of this "long" B-Cl

bond distance can be ascribed to problems with the crystallographic determin

ation since there was incorporation of approximately 19% [B2~]- into the

[BH
3
Cl]- site, which led to unusual difficulties in the structural refine

ment. CAs discussed in Chapter One, during attempts to grOY a single crystal

of [PPN] [Y-r] ,prolonged exposure of the [B~7]- anion to the mother liquor

[(C~5)20/CH2Cl2] resulted in the formation of crystals of [PPN][BH3Cl]

CH2C12 • Crystallisation of the [BH
3
Cl]- salt from solutions containing the

precursor, [B2~]-' resulted in the presence of the impurity). Two of the
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Bondlengths·

Figure 4: [B~CN]-
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experimentally determined B-H bondlengths in [BH
3
Cl]- are comparable to

th~se calculated by M.N.D.O. but one is longer at 1.380 i. This may be

due to-the incorporation of [B2!Lr]- and could be associated with the

bridging hydrogen bond (Figure 8). Single crystal structural determination

[ ]-. 8 12ot B21Lr 1n 19 2 by Shore and Lawrence reported the ~-Hl bridged bond-

length as 1.27(5) i. More recently calculations bY' Sapse and Osario13

using 6-31G14 and 6-31G** 15 basis sets reported the bridging bond distance

as 1.33 and 1.34 X respectively. These values are very similar to the long

B-H bondlengths in [BH
3
Cl]. The experimentally determined terminal B-H

bondlengths tor [B~]- are 1.03(5) i while the calculated values are 1.21 X;

the latter correspond more closely with the B-H values in the [BH
3
X]- series

above.

Figure 8:

2.2.1.3. Comparison of Calculations on [BH3CN]-, BB
2

CN and ErperimentaZ1,y

Determined Results for Bli. BB2CN

The structure ot Hi' .BH2CN has been reported by Spielv:ogel and coworkers
1

(Figure 9). Ab initio calculations have been reported "tor [BH
3

CN]- and

the unknown species, ~CN. The relevant bondlengths and bondangles ~or

these compounds are listed in Table 1.
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TABIE 1. BondZengths and Bond AngZes

MNDO 4-31G X-Ray 4-31G
[BH

3
CN) [BH

3
CN1- H

3
N.BH2CN BH2CN

B-Ca
1.517 1.613 1.589(3) 1.533

B-Ha 1.182 1.229 1.15 (3) 1.177

S-N
a

1.171 1.155 1.141(3) 1.147

<:HBCb
109.5 108.8 108(1) 119.0

a bondlengths in Angstroms; b bond angles in degrees.

The results in Table 1 show good agreement between both the MNoo and 4-31G

calculations and the experimental measurements. With the exception of the

B-C bondlengths from· the MNDO calculations, there is a slight overestimation

in the calculated values relative to the experimentally determined results.

However, these differences are not significant and are typical of the differ-

ences found between MNoo calculated and X-r~ crystallographical1y determined

d t
1,2a a.

On comparison of the 4-31G calculations for [BH
3

CN]- and BH2CN all the

B-H, B-C and C-N bonds in the latter are shorter. The order of shortening

is B-C (0.08 R) > C-N(0.o08 i) > B-H (0.052 i). The HBC bond angles for

the four coordinate boron species are all within one degree of 109
0

• The

o
unknown BH2CN species adopts a planar geometry with a HBC angle of 119

(Figure 10).
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The B-CN moiety in [BH
3
CN]- was calculated by MNDO to be linear « BCN

1800
). This was also the case with the ab initio calculations and found in

the experimentally determined structures of cyanoborane adducts such as

ammonia-cyanoborane7 and 4-dimethylaminopyridine-cyanoborane (Chapter Four,

vide infra) •

2.2.1.4. Comparison of [BH;1] (X = NCS, SCN, N3) Speaies bYith Avail-

able Experimental Results

The structure of ammonia-isothiocyan:>toborane has been detp.rmined by
. ·8

X-ray crystallographic techniques (Figure 11). The prepara.tion of [BH
3
SCN]-

has been reported by Hui, 17. but to date azidoborohydrid.e has not been

reported in the chemical literature. Ab initio calculations have not been

reported for any of the above three species. The experimentally determined

bond-lengths and bond angles for H! .BH2NCS and the MNDO calculated values

for [BH
3
NCS]- [BH

3
SCN]- and [BH

3
N

3
]- are listed in Table 2.

TABlE 2. Bondlengths and Bond Anrles

. MNDO ..

a Bondlengths in Angstroms; b Bond Angles in Degrees; c X=N, d X=s
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Overall, the experimental and calculated data are comparable. The

largest difference is 0.07 i in the carbon-sulphur bonds, with the longer

bondlength in H2N.BH2NCS. However, since this is reversed for the carbon

nitrogen bondlengths it appears to be a feat1lre of the bonding in the

isothipcyanate groups rather than a calculational one. The C-S bondlength
o

in [BH
3
NCS]- is shorter (1.554 R) than in [BH

3
SCN]- (1.613 A) reflecting great-

er double bond-character in the former. Complete B-X-Y-Z linearity does

not occur in any of the three pseudohalide species here according to the

MNOO calculations. In [BH
3
NCS]- the B-N-C angle is 1800 but the N-C-S

angle is 300 giving a slightly bent geometry as depicted in Figure 12.

Figure 12: B-N-C-S

This is in contrast with the experimentally determined structures of

8 11 · (6 0isothiocyanates such as H
3
N. BH2NCS ,.BlOH

13
NCS where B-N-C 1S 111.5 )

and 111.06(6)0 respectively. Furthermore, in more recently' an~sed iso

thi~cyanates such as [B3H~CS]- 18,19 (Figure 13) the B-N-C-S moiety is

linear with angles B-N-C of 113.7(3)0 and N-C-S of 118.1(3)0. The structure

of [B
9
H13NCS] - was reported in 1985 (Figure 14)20 and the B-N-C-S moiety

also attains linearity. However, the isoe1ectronically related metbyl

isothi.ocyanate is also bent,21 such that the CH
3

-N-C angle is 1420 and the

N-C-S angle is 1800 •

The boron-sulphur bonded compound [BH
3
SCN]- is more distorted. The

B-S-C angle is 146
0

and the S-C-N angle 1680 thereby achieving the geometry

depicted in Figure 15.

- 7S -
_____srrr1
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Figure 15: B-SCN

Finally, azidoborohydride is also distorted both at B-N-N (163.50
) and

N-N-N (28°) Figure 16).

Figure 16: B-N3

2.2.1.; • Bonding in [BH:1] Series

2.2.1.6· • Molecular Orbital Correlation Diagram

From the results of the molecular oroital calculations on the [BH
3
X]

series a correlation diagram showing the eigenvector energy values can be

drawn. The molecular orbitals which are predominantly B-H or B-X bonding

are correlated in Figure 17. The energies of the lone pair orbitals on the

halide and pseudo-halide groups and the essentially non-boron containing

molecular orbitals are illustrated in this diagram by dashed lines.

The bonding in [BH4]- is most straightforward and will be discussed

first. The four B-H bonding molecular orbitals, ~g and t l u, are at -14.94

and -5.41 e. v. respectively, in the tetrahedral symmetry. Replacement of

hydride by halide or pseudohalide reduces the local symmetry around the boral

atom to C3v. For the chloride and cyanide derivatives the "1 u molecular

orbitals of [BH4]- become an a and e set. The e molecular orbital pair is

at a lower energy th~ a symmetry molecular orbital in [BH
3
Cl]- but this is

reversed in [BH3CN]-. For the thio"cyanate, isthipvy~ate . and azide aeri'f-
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atives the 'S. u set is split into three singly degenerate levels. In all

cases replacement of hydride results in the B-H and B-X molecular orbitals

being at a lower energy level than their equivalents in the borohydride

anion. The other molecular orbitals present are either lone pair in char

acter ([BH
3
ClJ-) or for the pseudohalide derivatives they can be ascribed

to lone pairs on either nitrogen or sulphur or o· and 11' bonds between carbon.

nitrogen and sulphur atoms.

2.2.1.1. Localised Bonding Schemes

The results of the MNDO localised honding calculations show that all

terminal boron-hydrogen bonds in the series are twocentre-two electron

bonds in which boron supplies approximately 40% of the orbital composition

and hydrogen the remaining 60% (Table 3). Moreover. this not affected by

replacement of hydride by either halide or pseudohalide for B-X bonding.

All the B-X bonds are approximately twocentre-two electron bonds.

However t the number of centres does vary fran 2.01 for the boron-nitrogen

bond in [BH!3]- to 1.58 for the boron-nitrogen bond in [BH
3
NCS]-. The

X-Y and Y-Z bonding in the pseudohalid.e groups is interesting. The carbon-

nitrogen bond in [BH
3

CN]- consists of three (0 and 211') bonds with bond

indices of 2.03 (0 ) and 1.94 (11') respectively. There is also a lone pair

molecular orbital on nitrogen (Figure 18). All of the other bonds in the

pseudo· halide groups are essentially between two centres (Table 3). There

are lone pair orbitals on nitrogen atans in [BH
3
N

3
J- (the nitrogen attached

to boron and the terminal nitrogen atom of the azide group, ~Figure 19) and

[BH3SCN]- but none in [BH!CS]-. There are three sulphur lone pair orbit

als in the B-N-C-S derivative and two in the B-8-C-N isomer (Figures 20 and

21) •
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TABLE 3. Nwriber of Centres and Orbital, Composition in [BB3X]- Species

No. o-r Centres Compound Atom %Composition Atom %Composition

1.96 [BH4]- B 41 H 59

1.62 [BH
3
Cl]- B 25 Cl 15

1.98 B 44 H 56

1.00 C1 100

1.82 [BH
3
CN]- B 34 C 66

2.0 B 44 H 56

2.03 C 50 N 50

1.94 C 40 N 60

1.00 N 100

1.58 [BH!CS]- B 24 N 16

2.01 B 44 H 56

2.09 C 45 N 53
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TABIE 3 (Contd.)

No. of Centres Compound Atom % Composition Atom % Composition

1.85 C 64 S 36

1.19 s 92

1.90 [BH
3
SCN]- B 34 S 66

2.0 B 44 H 56
..

1.86 s 36 C 64

2.03 C 52 N 48
..

1.97 C 45 N 55
..

1.0 N 100

1.0 S 100

2.01 [BH!3]- B 31 N 64

2.00 B 44 H 56

1.91 N 60 N 40

1.75 N 72 N 24

1.00 N 100
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2.2.1.8. Atom Charges

The atom charges in [BH4]- are -0.32 on boron and -0.17 on hydrogen.

In [BH
3
Cl]- the polarity of the B-X bond is reversed with -0.47 on chlorine

and -0.11 on boron. The polarity of the B-H bond is also altered in

[BH
3
Cl]- with the hydrogen atoms having a charge of -0.11. In cyanoboro

hydride the charge on boron is -0.3 while carbon is slightly positively

charged (+ 0.04) (Figure 18). As expected nitrogen is the most negative

atom in [BH ..CN]- (-0.38). In the other pseudohalides there is one posit
3

ively charged atom in each (Figures 19 t.O 21); the middle nitrogen in

[BH
3
N

3
]- (-.0.24); the carbon atom in .[BHfCS]- which has the same charge as

. the carbon atom in [BH
3

CN]- (+0.4) and the sulphur atom [BH
3
SCN]- (-.0.09).

The boron sulphur bond in [BH
3

SCN]- is the most polar of the six B-X bonds

in the [BH
3
X] - series.

2.2.1·9· Heats of Forrrntion

M. N. D. o. calculations provide Heat of Formation data for the [BH
3
X]

compounds (Table 4). Chloroborohydride is apparently the most thermodynamic

11ally stable of the series. However, Shore and coworkers reported that

the [BH
3
Cl]- salts were stable under inert atmosphere at room temperature

but decomposed rapidly on exposure to air. Heating [PPN][BH
3
Cl] to 2000 C

with continuous removal ot volatiles resulted in the recovery of B
2

H6.CH2C12

and a small amount of hydrogen. The stability of [BH
3
C1]- in solution is

temperature dependent with higher temperatures promoting both anion dispro

portionation and diborane eVOlution. Both [BH4] - and [BH3CN] - appear to be

chemically lOOre stable and survive periods of longer exposure to air and

moisture than [BH
3
Cl]-. Due to the electron withdrawing character of

"d 1 t" t h dr"de 22,23 b hydride" .cyan1 e re a 1ve 0 Y 1, cyano oro 1S stable 1n aqueous

acid down to pRJ.. Borobydride does not have this pronomlced acid stability.

'!he calculations also predict that [BH
3
SCN]- (AlioF -44.13 KCal mol-I)

is slightly more stable than [BH
3
NCS]- (~HoF -38.45 KCal mol-I). A review

by Lappert and Pyszora24 of the known pseudohalides of group III and IV
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TABlE 4. Heats of Formation for [BH;1]

HB-X l:J. HOF
3

-1-X KCalmo1

-H -35.9

-C1 -85.6

-CN -40.8

-NCS -38.45

-SCN -44.13

-N3
+12.6
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elements (excluding carbon) found that only isothiocyanates (X-NCS) occur-

red. In most cases the isothiocyanate was thermally more stable and could

25 26 27be formed from the thiocyanate. Lappert and Pyszora ' prepared and

examined a number of boron derivatives and concluded on the basis of infra-

red stretching frequencies that they were indeed isothiocyanates. Further

more, compounds such as 6:'-BlOH13NCS28,29 and (t-BuNBNCS)4 30 are known to

be isothiocyanates, as are more recently prepared compounds su~h as

[ ] - 18 19 [ ]-20
B3H~CS ' and B

9
Hl !CS , whose structures have been resolved by

single crystal X-rq analysis. Thus it would appear that, in general,

under camoonly encountered chemical conditions the B-NCS bond is preferred

to B-SCN. However, the calculations refer to isolated anions and do not take

into account e.g. preparative methods, counter ion effects· etc. Bearing

this in mind and the relatively small ~.H°F difference for B-NCS compared to

B-8CN it is perhaps not surprising that Hui16 has reported the synthesis

and characterisation of [BH
3
SCN]- as the sodium salt. Sodium thiocyanate

borohydride was obtained in high yield by passing diborane into a solution

of anhydrous sodium thiocyanate (1).

monog1yme
~B2H6 + Na[SCN] ~ Na[BH

3
SCN]

The product was identified as the thiocyanate by the infrared stretching

frequency at 2180 em-I (SClI). However, Hui also reports an absorption at

2080 em-1 which corresponds to an isothiocyanate absorption, but does not

give the relative concentration of each.

Azidoborohydride is the only member of' the [BH
3
X]- to have a positive

heat of formation (+12.2 KCal mol-I). To date

not been isolated.

- 85 -
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2.2.2 [Blcl9x]2-series

[ ]2 - . .Only the parent compound of" the BlOH
9

X ser1es 1. e. X=H, has been

structurally characterised experimentally. 32 However, the structures of"

the related molecules 1, 10-B10H8(N2)233 and [(CH3)4NJ[BlOH7Cl3]34 have

also been reported.

2.2.2.1.

The M.N.D.O. (:free variation) calculation for [B
10

H
10

]2-

converged on a geometry of almost exactly D4d symmetry. The calculated bond

lengths and the experimental values are listed in Table 5. The calculation

tends to slightly overestimate the boron-boron bondlengths between the two

B4 squares and also the B-H bondlengths, but all other bondlengths agree

within 0.05 ~ with the X-ray crystallographically. determined values. The

slight asymmetry (deviation from D4d symmetry) is typical of" free varied

M.N.D.O. calculations and is not significant. The B-H and B-B bondlengths

for 1, lO-B10H8 (N2 )2 (Figure 22) and [( CH3)4N]2 [BlOH
7

C1
3

] (Figure 23) are

also. listed in Table ; together with B-N and B-Cl 'values. In Table 5,

Ba-Be refers to bonds between apical boron Ba and equatorial (ring) boron-

atoms Be; likewise Be-Be and B ring-B ring ref'er to the inter (B4 )-B ring

bonds. Apart from the slight overestimation in the calculated values agree-

ment between the theoretical and experimental results is very good.

Further comparisons with expe·rimental data from C~ [BlOHlO] (Be-Be

1.82; Ba-Be 1.73; B ring-B ring 1.86 X)35; the photoisomer of [B
20

H
12

]2

(Be-Be 1.79; Ba-Be 1.68; Bring-Bring 1.83 ,R);36 the normal isomer of

[B20H18]2- (Be-Be 1.81; Ba-Be 1.70; Bring-Bring 1.84 j)37 and [B20Hl~O]3

(Be-Be 1.82; Ba-Be 1.12; Bring-Bring 1.87 j)38 may be made and conf"irm the

validity of the results obtained from the MNoo calculations.

The bonding in [B
10

H
10

]2- consists of ten terminal twocentre-tw:o

electron B-H bonds and eleven cluster bonds (as determined in a less sophis-
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TABIE 5. B-H and B-B Bondlengths a

Bond [B
10

H
10

]2- fB
10

H
10

]2- 1.10-B10H8~2)2
b [ ]2- cB10H

7
C13

calc. Expt. Expt. Expt.

Be-Be 1.90 1.81(3) 1.881( 3) 1. 875( 3)
i

Ba-Be 1.72 1.68(3) 1.668(3) 1.707(3)

~Bring-Bring 1.82 1.815(5) 1.799(3) 1.775(3)

B-H 1.17 1.11(7} 1.075(2)

a
Bondlengths in Angstroms
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Figure 22:



ticated way by Wade"fs Rules 5 ). The calculated molecular orbital energies ~

their symmetries and assignements are given in Figure 24. The eleven

cluster bonding molecular orbitals are divided into four "radial"

(S ~ putrrfrom -35 to -15 e.v.) and seven "tangential" (n1T and F1T from -10 to

-1 e.v.) type orbitals2~39~4? The calculations place ten orbitals between

-20 and -13 e.v. and these correspond to the terminal B-H bonds. The four

radial orbitals are assigned as al ~ b2 and el ~ the former rel~tes to Su

.u. ,. f. . 41 Thand the latter three to P according to Stones classl. l.catl.on. e

seven tangential orbitals are assigned as e3~ al ,· ~2 and e l with the lower

energy five orbitals classified as n1T
and the higher energy pair (-0.89

e.v.) as F'II'.

2.2.2.1.1
2

Localised Bonding in [B1cfI10]

Boron-hydrogen bonding in [BlOHlO]2- consists of two-centre two-electron

bonds. As expected in systems such as [BlOHlO]2- where delocalisation occurs,

the boron-boron cluster bonds are more eomplex and are basically three centre

bonds. The three boron atoms directly involved in the bonding supply

approximately 30% each of the orbital composition.

2.2.2.1.2. Atom Cfuztges: Electroi;>hilic Substitution

Electrophilic substitution reactions of boranes have been previously

analysed by Lipscomb and coworkers42 in terms of the atomic charges in the

molecule in their ground state. For the [B
lO

H
lO

]2- cluster there is a

correlation between the B- site of electrophilic sUbstitution and the neg-

ative char~ carried ~ that site. The negative charge at the apical boron

atoms (-0.32) is greater than twice that at the equatorial positions (-0.12)

(Figure 25) and the apical positions are substituted first, thereafter

substitution could occur in anyone of the eight equatorial positions. '!his

prediction is borne out by the experimental results for example in the prep-
•

aration of 1, 1Q-B10H8(N2)233 which involves "N2+" attack (Figure 22).
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Figure 25: Atomic Charp;es in [BIOHIO]
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However, for electrophilic halogenation of' [BlOHlOJ2- the results cannot

be easill correlated with the above predictions because fast sequential

SUbstitution occurs which obscures information on the site(s) of attack.

Kinetic data43 have shown that it is impossible to distinguish between the

[ ]2- .rates of the first three iodinations of BlOHlO • According to the

MNDO predictions, SUbstitution to give [BlOH
7

C1
3
]2- should occur at the l

and 10- apical positions f'irst,with the third chlorine bonded-to anyone of

the eight equatorial boron' atoms. However, Scarborough and Lips comb 34

have reported that the structure of the trichloro derivative [B
lO

H
7

C1
3
]2

is the 1,6,8 -C1
3

-isomer (Figure 23) with C2V symmetry. This apparent

[ 2-contradiction can be resolved since the reaction leading to B
lO

H
7

C1
3

]

(2)44.

most probably proceeds by a free radical mechanism.

2.2.2.2.

In general the bonding picture in [BlO~Cl]2- is very similar to that

in [B
lO

H
10

]2-. The eleven cluster bonding molecular orbitals are retained,

there are ten two centre-two electron bonds (nine B-H and one B-Cl) and in

addition there are three chlorine lone pair orbitals. The orbital energies

tor [BIO~C1]2- are shown in Figure 26. With the exception bf' the chlorine

~' lone pair orbital (at -16.5 e.v., shown by a dashed line in Figure 26)

the four orbitals of lowest energy are the radial cluster orbitals (gO,

P U./1f'). []2-Just as in BIOH
IO

the seven orbitals of highest energy are the

tangential cluster orbitals. Replacement of' hydrogen by chlorine reduces

the symmetry from I\d in [B
lO

H
10

]2- to C4V. Hence the e2 pair of cluster

molecular orbitals are split in [B
lO

H9Cl]2-• The chlorine 3J>t, 3pz lone
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pairs are :found at an energy below the seven highest cluster orbitals

( -5 . 2 e. v.) and among the B-H bonding orbitals.

The B-H bondlengths in [B
lO

H
9

Cl]2- are approximately the same as those

in [B
lO

H
lO

]2-, with a slight reduction in the apical B-H bondlength (1.158 ~)

opposite the chlorine atom. The calculated B-Cl bondlength at 1.85 ~

corresponds exactly with the apical B-Cl bondlength in [B
lO

H
7

C1
3

]2- (1.85(2)

~). The equatorial boron-chlorine bondlengths are longer (B6-C16, 1.93(2)~;

B8-Cla, 1.95 (2}~). Table 6 lists the relevant bondlengths in [B
lO

H
9

Cl]2-.

There is very little evidence from the MNDO calculations :for any

chlorine-cluster 11' type interaction (1-2%)in the e pair o:f orbitals of

~11' 11'P type. There is, however, evidence in orbitals of D type for some 11'

B-Cl antibonding character (approximately 8%) and also in the H.O.M.O.e

pair at -1.1 e.v. (approximately 7%).

2.2.2.2.1. Loca7,ised Bonding in [B1rflaC1,]2-

The localised bonding picture of [BlOH
9

Cl]2- is very similar to that

in [B
lO

H
lO

]2-.

2.2.2.2.2. Atom Charges: Electrophi7,ic Substitution

R

The distribution of atomic charges in [B
lO

H
9

Cl]2- is depicted in Figure

27. The charges on the apical Doron-hydrogen bond and the equatorial boron

~drogen bonds are very similar to those in [B
lO

H
lO

]2-. In the boron

chlorine bond the negative charge on the boron atom is only -0.18, with

chlorine charged at -0.30. Thus according to the moo calculations, electro

phi1ic substitution at boron in [B
lO

H
9

Cl]2- is most likely to occur at the

apical site opposite the chlorine atom. However, no data on the substitution

of [B
10

H
9

Cl]2- exists.

- 94 -



TABLE 6.

Bond [B10F"9 C1] 2-

Be - Be 1.90

Ba - Be 1.72

Bring- Bring 1.82

B - H 1.17

B - C1 1.85

a
Bondlengths in Angstroms
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2.2.2.3.

The boron-hydrogen and cluster bonding in [BlOH
9

( CN) ]2- are very

{ ]2- [ ]2- .. 1similar to both . BlOHlO and BlOH
9

Cl and reqUJ.re 11.tt e further com-

ment. The boron-carbon bondlength (1.486 ~) is significantly shorter than

that in both ammonia-cyanoborane (1.589(3)~) and aycZ.O(hexacyanoborane)

(1.559(6)~). The C-N bondlength of 1.111 i is, however, ionger than in both

of the latter compounds. Although this tends to suggest that there is some

extra (possibly.,.. type) bonding interaction between the cy~ogroup and the

cluster cage at the expense of the carbon-nitrogen bonding but analysis of,

the molecular orbitals reveals that apart from a slight interaction in the

e pair of orbitals of p~/"" type, [B
lO

Hg (CN)]2- is essentially a B
IO

cluster

cage with a non-interacting cyanide substituent.

A correlation diagram showing the relationship of the cluster bonding

molecular orbitals in the group of [BlOH
9

X]2- series reported here is illus

trated in Figure 28. Apart trom a slight stabilisation in energy, the four

radial cluster orbitais of [B
10

H
9

(CN)J 2- are equivalent to those in [B
lO

H
10

]2-.

With the exception of the orbitals equivalent to the e
2

pair in [B10H
10

]2- ,

Which in [B10H9(CN) ]2- are split. and a ~verseJ. in the energies of ~he ~

2and e 3 pair, the tangential orbitals are equivalent to those in [BIOHIO] •

The carbon-nitrogen P bonding and .,.. bonding orbitals are shown by dashed ~

lines in Figure 28.

An analysis of the bond angles reveals that theB-C-N group is linear,

Figure 29.

B-C-N
'-../
1800

.figUre' 29: B-C-N Bond Angle'.-
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2.2.2.3.1. Loaalised Bonding

As with [B
IO

H
9

Cl]2- replacement of hydrogen in [B
IO

H
IO

]2- by a cyanide

group does not. affect the localised BlOH
9

X- bonding picture significantly.

The boron-carbon bond is a two centre-two electron bond and the three

carbon-nitrogen bonds «(1 and 2n) are also two centre-two electron systems.

The remaining filled molecular orbital in [BlOH
9

( CN) ]2- is a nitrogen lone

pair orbital.

2.2.2.3.2. Atom Charges: Eleatrophilia Substitution

The atomic charge distribution in [BIOH
9

( CN) ]2-· is illustrated in

Figure 30. The apical boron to which the cyanide group is bonded is the most

negative boron atom (-0.32) but the other apical boron is very similarly

charged (-0.30). Th1.lS on the basis of charges, electrophilic SUbstitution

at boron could take place at either of the apical sites. However, the presence

of the cyanide group introduces another factor and it is possible that the

positively charged carbon atom C+ 0.141 of the cyanide group could repel an

attacking electrophile. Therefore, it seems likely that electrophilic sub

stitution at boron in [BIOH
9

(CN) ]2- would occur preferentially at the apical

boron atom opposite the cyanide group.

The B-C-N system is quite planar and although. the charge distribution

• + - •suggests a more correct representat~onmay De B-C =N , the bonding analys1S

indicates that the former is the better description.

2.2.2.4.

The eleven cluster bonding molecular orbitals in [B
lO

H
9

(NCS) ]2- have

the same pattern as in [BIOH9(CN)]2~, albeit with a very slight stabilis

ation in energy (Figure 28). The orbitals are readily identified and mixing

with NCS -based orbitals is not a significant factor. Also, boron-hydrOgen

in [BlOH9 (NCS)]- is unaffected by isothiocyanate SUbstitution. The calcul-
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Figure 30:

N - 0-38

.1
C .0-14

r
Ha .- 0-30

~
-0·" r-- H

-o-n Be--H

/i -0·30

H

Charge Distribution in [B H (CN) ]2
10 9
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ated boron nitrogen bondlength (1.461 ~) is quite similar to that in

o 33B
lO

H
13

NCS (1.43 A) but short in comparison with that in ammonia-isothio-

cyanatoborane (1. 534 (8» 8• The shortened bond in [BlOH
13

(NCS ) ]2-

suggests the possibility of some n interaction between the BIO-cage and the

isothiocyanate group and this is partly substantiated on analysis of the

molecular orbitals. There is a slight (2-3%) boron-nitrogen n bonding

interaction in the pu/n molecular orbital.

Both the calculated N-C (1.172 ~) and e-s (1.560 ~) bond distances are

shorter than the corresponding ones in B
10

H
13

NCS {1.615 (5) ~)14 and

H! .BH2NCS (1. 627( 6)~)8
• On comparison with [~1I13 (NCS)] ~~o the bond

lengths in [B
9
H
13

(NCS)]- are, B-N, 1.531(19); N-C, 1.182 (15) and C-S,

1.568 (12) i. One of the more interesting f'eatures of' the molecular struc

ture of' [B
10

H
9

(NCS)]2- is that the B-NCS moiety is linear. This is consistent

with experimental results for B
10

H
13

NCS (B(6)-N-C, 171.0(6)°; N-e-S, 178.1(6)°)

H
3
N.BH2NCS (B-N-C, 177.5 (6)0~ N-C-S, 179.2 (5)0 and is also' consistent with

the B-NCS bond angles in both [B
3
H

7
(NCS)]- and [B9~3(NCS)]-. However, the

result for [B
10

H
9

(NCS) ]2- is 'at variance with the calculated findings for

[BH
3

NCS]- which showed a slight (300 ) deviation from linearity at N-C-S.

2.2.2.4.1. wcalised Bonding

The localised bonding in B-H and the BIO-cage unit in [B
lO

H
9

(NCS) ]2

is the same as for all the previous molecules in the [B
lO

H
9
X]2- series.

The MNOO calculation shows that all bonds in the B-NCS moiety are two centre

two electron bonds. The localised bonding picture also shows that there

are three lone pair orbitals on sulphur and none on nitrogen which gives

the bonding in the linear B-NCS group as in Figure 31.

B--N'" C--S:

Figure .31 : Bonding in B-NCS
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2.2.2.4.2. Atom Charges: Electrophilic Substitution

The charge distribution in [BlOH
9

{NCS)]2- is depicted in Figure 32.

The sulphur atom is the most negatively charged atom {-0.50} in the molecule

and cculd possi'bly l:,e susceptible to some electrophilic attack t however t as

far as the boron atoms are concerned t the apical boron atom opposite the

heteroatamic group is the most likely site for further electrophilic substit-

ution.

2.2.2.5. [B1Jl9(SCN)]2-

The overall bonding picture in [BlOH9{SCN)']21s very similar to that

in the isothiocyanate derivative. Unlike [B, H
9

{NCS) ]2- t the thiocyanate

derivative is bent at the boron-sulphur bond, but the SCN group itself is

linear (Figure 33).
146-8 0

B ~
'S-C-N

'--'
1800

Bond Angles in BSCN

The structure is less synnnetrical and the molecular orbitals are more

complicated because of mixing. (This was not a significant feature in

IBlOH
9

(NCS)]2- whi.Ch had symmetry: C4V }.The orbitals which are essentially

cluster orbitals are shown in the molecular orbital correlation diagram

(Figure 28).

The pattern of these orbitals is slightly altered from that for

[BlOH
9

(NCS) ]2-• The highest energy pair of both the four radial and seven

tangential orbitals are slightly split, although the energy gap is less than

0.5 e.v. Also, the pattern of the tangential orbitals with e
3

and a

parentage (from [BlOHlO]21 is the same as the chloride and the parent [BlO~0]2

species (i~e. a above e in energy).

The bondlengths in the B-SCN group are shown in Figure 34.
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1-7"

Figure 34:

1·-6t1

B-S-C-N
1-167

Bondlengths in B-SCN

On comparison with the isothiocyanate group in [B]()H
9

(NCS) ]2-, the

carbon-sulphur bond in that compound (1.560 ~) is 0.006 ~ shorter than in

the. NCS group. As against that, however, the carbon-nitrogen bond in SCN

(1.172 ~) is 0.005 ~ longer than in the isothiocyanate group (vide infra).

2.2.2.5.1. Localised Bonding

The localised bonding picture of the BSCN group (Figure 35) indicates

the presence of two sulphur and one nitrogen lone pairs. The boron-sulphur

bond is a two centre-two electron bond but the carbon-sulphur bond is more

of a single bond than in [B
10

H
9

(NCS) ]2- and the three carbon-nitrogen bonds

are more readily identifiable as one (j and two 11' bonds. This aCC01.mts for

the longer carbon-sulphur and shorter carbon-nitrogen bondlengths than in

B
'5 -C-N:

figUre 35: Bonding in BSCN

The presence of 'lone pair orbitals on the sulphur atom bonded to boron

results in a non-linear B-SCN moiety « BSC 146.2
0

).

2.2.2.5.2. Atom Charge: Electrophilic Substitution

The charge distribution in [B
10

H
9

(SCN) ]2- is illustrated in Figure 36.

'!he boron atom bonded to the sulphur atom is the most negative atom in the

Compound and hence may ,be the site of electrophilic attack. However, it is

possible that the positive sulphur atom would repel such an attack in which
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case the next most negative boron atom is that in the apical position

opposite the thiocyanate group.

2.2.2.6.

-

The cluster cage bonding in [B
IO

H
9

(N
3

) ]2- is similar to those in the

rest of the [BIOH
9

X]2- series. However, like the thiocyanate derivative

above the azido group is bent (Figure 37) giving an assymmetry: to the mol-

ecule (el ) and causing a mixing of the components in the molecular orbitals.

This makes all assignements more difficult than for the previous members of

the series. Of the eleven cluster bonding molecular orbitals it is possible

to identify the radial cluster orbitals but the seven higher energy clus-

ter orbitals are very mi.xed and split by the assynnnetry. Since there are

no experimental results to compare with the predicted structure of

[BIOH
9

(N3) ]2- thus calculated cannot De tested. The bondlengths in the B-N3

miety are also illustrated in Figure 37.
1.50A 1.22A

B-N
'-'~ N 1.148A

132.4 '""""-N
163.23 0

Fi~e' 37: Bondlengths and Bond Angles in BN
3

The boron-nitrogen bondlength is approximately 0.04 j longer than that

in [BIOH
9

(NCS) ]2- (l.46 ~). In hydrazoic acid, lIN
3

and methylazide, CH
3
N

3
,

the endo . nitrogen-nitrogen bondlengths are longer (1.24 and 1.26 ~, respec

tively) while the exo nitrogen-nitrogen bondlengths are shorter (1.13 and

1.10 ~ respectively). These species are also bent at the R-N-N moiety

(R = H, CH
3

) (Figures 38 and 39)

H CH 3
/ 0135°N)110

0

1.24A I I 1. 26A

Figure 38:
N N Fitmre 39: CH!3~~3 .,
I I 1. 1O~1 .13A
N N
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2.2.2.6.1. Localised Bonding

As in the case of the thiocyanate derivative the presence of a lone

pair on the' nitrogen atom bonded to boron results in the B-N3 pDrtion being

bent. There is also a lone pair on the terminal nitrogen of the azido group.

The boron-nitrogen bond is a two centre-two electron bond.

Localised bonding in the azido group consists of a (J and 'If bond in each of

the two nitrogen-nitrogen bonds.

2.2.2.6.2. Atom Charges: Electrophilic Substitution

The charge distribution in [B
10

H
9

(N
3

) ]2- is depicted in Figure 40.

Just as in the previous five members of the [B
IO

H
9
X]2- series the most

likely position of electrophilic substitution at the [BIOH9(N3)]~~ cage is

at the apical atom apposite the azido-substituent.

The fUrthest nitrogen from the boron cluster in the azido group is the

most negative atom in the molecule (-0.34). The possibility exists of some

electrophilic attack here but there would also be repulsion by the po~it

ively charged (+0.25) ~djacent nitrogen atan. The charge separation in the

azido group agrees with the localised bonding and leads to the bonding

description illustrated in Figure 41 •

..
B-N (f) e

~N =N:

" 'Figur', "e "41: B di . BN_ on ng 1n 3

This coincides with the conventional description of azide substituents
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2.2.2.7. Heats of Formation

series is. []2-The MNOO calculated Heats of Fonnat1.on for the BlOH
9

X

listed in Table 7. As with the previous series, the chloride derivative

appears to be the most stable. Also, the cyanide derivative is very

similar to the parent molecule. However, the stabilities of the thiocyan-

ate and isothiocyanate derivatives are reversed from the monoboron series,

with [B
lO

H
9

(NCS) J2- more stable than [B
lO

H
9

(SCN) ]2-.

2.2.3. Conclusions

The MNDO calculations reported here are the first for the series

[BH~]- and [B
lO

H
9

X]2- (X = H, Cl, CN, SCN, NCS, N
3
). The validity and

accuracy of the calculations is supported by the favourable comparisons with

experimental data such as the solid state structures of [BH
3
Cl]- and

[BlOHlO]2- , etc. Thus the calculations would appear to provide a sound theor

etical assessment of hitherto unknown compounds such as [BH
3

(N
3
)]-, [B

lO
H

9
N

3
]2-, and [B

lO
H

9
(SCN)]2-.

In the monoboron series, [BH~]-, all six molecules are tetrahedral.

Replacement of hydride by halide or pseudohalide causes very little variation

-in boron-hydrogen bonding. For the pseudohalide derivatives, B-CN is linear

but the other three (B-SCN, B-NCS, B-N3) are not.

In the [BlOH
9

X]2- series the cluster cage bonding remains very consis

tent with that in the parent [B
lO

H
lO

]2-. The rest of the bonds are basically

two centre-two electron bonds.. The variations in the X substituents are not

very significant to cluster cage bonding in this series.

Only B-NCS is linear of the pseudohalide derivatives with the others

all distorted.

During the course of the present research it was envisaged that the

synthesis of members of the [B10H
9

X]2- series would be attempted via

[B10H9Cl]2-. However, reactions of [B
10

H
10

]2- with various . -chlorinating

agents afforded polyhalogenated products and further reactions could not be

attempted. - 109 - ---__d



TABlE 7.

-

X A HO F

K Cal mo1-1

H -58.44

C1 -94.46

CN -59.16

NCS -64.18

SCN -53.57

N3 -2.85

- 110 -



2.3 EXPERIMENTAL

The MNOO program was used as supplied by Quantum Chemistry Program

Exchange without alteration. All MNDO calculations were rtm with complete

free variation of all geometry parameters (AI 70 parameters).
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0iAP1ER 'llIREE

HALOGENATED SELENABORANE CLUSTERS



3.1 INTRODUCTION

The work reported in this chapter relates to halogenated clusters

containing eleven or twelve cluster atoms, at least one o~ which is a

selenium atom. . The ~irst report o~ a Group VI element inserted into a

polyhedral borane ~ramework was in 1967 when Muetterties and coworkers pre-

pared the [8 B9H12]- by the quantitative reaction of' decaborane with ammon

ium polysulphide in aqueous solution (1)1.

2The preparation o~ [Se B10Hll]- by Todd and coworkers in 1976 was the first

insertion of' a selenium atom into a borane cluster (2).

(2)

The present chapter deals mainly with the chemistry o~ halogenated selena-

boranes which were prepared either by initial halogenation of' decaborane

A1C1
3

B10H14 + X2 CS
2

R.T.

followed by insertion of' a selenium atom into the borane cage. (4) •

(4)

or by direct halogenation of the selenaborane l-Se BllH
ll

(5).

Some chemistry of' c1,080 systems based on the l-8e BllHl1 cluster are dealt

with first f'ollowed by nido Se B10H12 and 8e iB9H9 compounds.
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3.1.1. Closo Systems based on 1-Se B11H11

Friesen and Todd3 reported the preparation of Se BllHll (18%) by

reaction of [BllH14]- with soditun bi-selenite in a water-heptane

mixture (6) ..

(6)

Be BllHll has been halogenated under conditions whi ch are commonly used

for Friedel-Crafts electrophilic substitution to furnish the l2-substituted
4

Be BllHlOX (X = Cl, Br, I) (7).

AlC1
3Be BllHll + X2 > 12 - X - Be BllHlO + HX (7)

x = Cl, (50%); Br (22%); I (40%).

The chlorine derivative was prepared by the addition of chlorine to

Se BllHll in dichloromethane, with AlC1
3

present as a catalyst. '!be mixture

was initially reacted at -450 C and then allowed to warm to room temperature.

Both the bromine and iodine derivatives were prepared by the addition of

Be BllHll to a mixture of dichloromethane, AlC1
3

and halogen and then

refiuxed f'or 14 and 6 hours respectively. The bromo-derivative' was isol-

ated in a yield which was notably lower than either the chloro- or iodo-

compound. Part of the present 'work involved an attempt to improve the

yield of' Br-Se BllHIO by varying the reaction conditions.. Substitution was

shown to have taken place at the 12- position by liB n.m.r. spectroscopy

(Figure 1).

The spectra consisted of' three signals with relative intensities and

multiplicities of 1(8) : 5 (d) : 5(d). An analogous pattern had previously

been observed in the ''B n.m.r. spectrum of' 12 - Br-S B11. H
IO

~ The unique

12-boron atoms in halogenated selenaboranes had chemical shifts of' 24.o( Cl),

20.2 (Br} and 4.9 (I) ppm. Compared to the chemical shift of 24.1 (H)

p.p.m. in Se BUHll there is a noticeable shift to a higher field on going

from Cl to I. This trend with. changing halogen substitution has also been
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· .."Figure. 1:

12-X-SeB11H10 (proposed structure).
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observed for BX
3

and [BX4]- comp<;mnds for X = Cl, Br, I. As part of the

characterisation of these compounds the photoelectron spectra (p.e.s.) of

Se BllHll (Figure 2) and 12- Br Se BllH10 (Figure 3) were recorded

The spectra were rather featureless and hence difficult to interpret

even with the aid of MNDO molecular orbital calculations performed on the

analogous sulphur compounds. The spectrum of the bromoselenaborane was

very similar to that of 10- Br - S B
9

H'8 (Figure 4). In particular, the

first band, which was assignable to ionisation from orbitals with large

bromine p character, was split by spin-orbit coupling.

In 1985 Ng et al6 reported halogen exchange between B-haloderivatives

of clo8o -2, 4- C2B
5
H7 and tetra-alkylammonium halides, e.g. (8).

5-Br C2B
5
H6 + [Bu4N] F 0

1 (B)

5-F C~5H6 + [Bu4N] Br

The authors reported that these exchanges occurred when the reagent "halide"

ion is smaller than the "leaving" halide. In the present work the use ot

this exchange reaction with l2-I-Se BIIHIO and [Bu4N] F was envisaged in

order to prepare the fluorinated species, laF -1-8e B
Il

H
lO

• A study of

further halogenation to produce ~-8e oB11H
9

t etc. ~ species was also envisaged.

There is a notable lack of structural data for Group VI heteroboranes

including selenaboranes. The previously reported data for Be B
ll

H
II

showed

the JOOlecu1e to have crystallographic 3'. symmetry with the one selenium

atom and the eleven BH sites scrambled over the twelve positions of an

icosahedron (Figure 5). Also t the X-ray crystallographic analysis of

[Et4N] [7-8e ~OHll] showed the anion to be disordered. 5 Thus no bond

length and bond angle data for simple selenaboranes had been reported in the

literature to data. It was hoped that the presence of the iodine atom in

- 117 -
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Structure of SeB11H11

The molecule has .crystallo9raphi~3 symmetry with the ~

Se and eleven B-H sites scrambled over twelve apical

positions.
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Nido Systems Based on 7 -Se B1cJf12 and Se2 Bf!l9

2Todd and coworkers reported that Na2 [Se4] reacts in aqueous ammonia

with decaborane to form the [Se BlOHll ]- anion (7).

Na2 [Se4]
B

lO
H14 NH

3
(aq)

12-I- Se B
ll

HIO would "order" the system such that an X-ray

analysis would furnish the required data.

3·1.2

The anion was isolated as the tetra.methyl-ammonium salt (70%). Based on

~ and l~ n.m.r. spectra the structure of [Se BlOHll]- was proposed to

contain selenium in an open face position (Figure 6).

\
\
\

• I,,

Figure 6: Proposed structure of [SeBlOHll]-

An X-r8\Y crystallographic study of [Et4N] [SeBlOHll ] showed both the cation

and the anion to be disordered. 7 . The non-hydrogen atoms of the [SeBlOHll]

cage were scrambled over twelve "sites" with the selenium atom scrambled

unequally (Figure 7). However~ from an analysis of the l~_llB COSY

spectrum of the [SeBlOHll]- anion it was concluded that the structure was

indeed that of the [7-8eBlOHll]- anion. 7 In order to obtain detailed struc

tural data it was envisaged that the preparation of a halogenated derivative

[X-7-8e BlOH10]- possibly by a reaction analogous to (7), might produce a

more ordered system and allow a complete structural analysis.

Specific positional labelling of the [X-SeB10HlO]- species could also

be achieved by degradation of the. X-SeBllHlO compounds.

sodium ethoxide would possibly generate [X-Se BlO~O]-.

Degradation using

Stereospecific
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Figure 7: X - ray Crystallographic StructUre of {Et'4N] [Se B10 Hli ]



8 1
degradation has been reported for carboranes C2BlOH12 for PhSBllHlO

and also for a sample of l-S~BllHll which was specifically deuterated

in the six sites, B(7)-B(l2) only 7 (Scheme 1). The degradation thus

appeared to be stereospecific and involved the removal of a boron atom

which had been attached to selenium i.e. one of B(2) to B(6).

3 .1.3

2
Todd and coworkers reported the formation of Se2B

9
H

9
as an une~-

pected minor product during the synthesis of [SeBlO~ll]-. The authors

suggested that during the synthesis of [SeBlOHll]-in strong aqueous base

some of the decaborane was converted to [B
9

H14]- (8).

[OH]-
(8)

which then reacted with the polyselenide reagent to give Se2B
9

H
9

• In a

later paper, Todd and coworkers9 , outlined a synthesis of Se2B
9

H
9

from

decaborane by the in situ generation of the [B
9
Hl4]- anion followed by

reaction with potassium polyselenide solution (9).

KOO KOO
H

2
0 > K [B9Hl4] Se

Base and StibrlO also reported the synthesis of Se2B
9

H
9

from the reaction

between decaborane and N~[seo3].5H20 in tetrahydrofuran. The proposed

structures of this species contained both selenium atoms in an open face

(Figures 8 and 9) with the selenium atoms either bonded to each other or

separated by boron atoms. However, it was not possible tc? differentiate

these on the basis of ire and l~ n.m.r. spectroscopy. Hence, it was envis-

aged that a halogenated derivative (e.g. Br-Se B
9

H8) which mq be prepared

either by a reaction involving degradation of X-B
lO

H
l3

via (9), or by

direct halogenation of Se2B9H
9
~uld facilitate :further structural study'.
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O=BH

Figure 8: Proposed structure of Se2 B9 H9 (i)

Figure 9: Proposed Structure of Se2 B
9

H
9

(ii)
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3.2. FESULTS AND DlSOJSSlOO

3.2.1. ·Clo80 SeB
11

-Cluster Systems

3.2.1.1. Structural StudY of i2-I-Se B11H10

It was hoped that the replacement of a hydrogen atom by halogen to

give a l2-X-Se BllHlO derivative of Se BllHll would result in a crystal

lographically ordered system which would be susceptible to structural

analysis. Thus l2-I-Se BllHlO was prepared according to the literature

4 .
method and crystals suitable for an X-ray diffraction study were grown from

a dichloromethane: hexane mixture (70:30) and sent to Professor G. Ferguson,

University of Guelph, Canada. The results of the analysis are reported

below. The structure of 12-I-Se BllH10 was determined as P~1ftl (No i4)

(Figure 10). The only reported structural data for a cl080 -selenaborane

is that· for the metallo species [2, 2-(PPh
3

)2-1 , 2-8ePt BlOHlO].

- however, comparisons IIlS¥-obe made with cl080 [2, 2-{1-8B
9

H8)2] 13

[ ]2-. . 14
Se3Bl:1H9 wh1~;.)!rf£ST an e:co. polyhedral Se3 cha1n.

12CH2C12 ,

and closo-

The Se-B bond distances in l2-I-Se BllH10 range from 2.1l2(9) .R

( Se-B(5) to 2.144(10) X {Se -B (3». Spalding and coworkers14 reported tw·o

Se-B bond distances in the clo8o p1atinose1ena-borane system (Figure 11) of

2.210(6) and 2.198(7) i for Se-B(l) and Se-B(4) respectively whereas for

bonds to B(8) and B(9) the Se-B distances are 2.098(9) and 2.101(7) i-

respectively. However. B(l) and B(4) are also attached to Pt. The e~

polyhedral Se-B bonddistances in [Se
3
B
l1

H
9

]2- are 2.016(15) and 2.023 (16).R

which are slightly' shorter than in the iodose1enaborane. If the difference

in co'V'aIent radii of Se and S which is generally taken to be 0.11-0.1.3 ~,

is borne in mind the Se-B distances in 12-I-8e B11H10 are comparable with

the S-B distance of 1.930(8) i in clo8o - [2, 2
1

(1-SB
9

H8)21•

'!he range of boron-boron bond distances in l2-I-SeB11H10 is 1.715(12)

to 1.934(13) i. Ttiis is quite comparable to the ranges in claso -[SeBllH
9

]2

and the thiaborane 'di.mer which are in the ranges 1.738( 20)-2.091(21) and .

- 12h -



B11

I

. .. ..- ..

Figure lOs Structure of 12':" I - Be' ~i ~O

- 127 -

81

82

87

d



z . - 128 -



1.689(8) to 1.940(4)~. The B-B bond distance range in [2, 2-(PPh
3

)2

-1, 2- SePtBlOH10]~ CH2C12 is 1.702-1.965 ~ while in nidb- [7- (~5_C5H5)

-7, 8, 12 - CoSe
2

- B
9

H
9

]9 the range is 1.708(7)- 2.007(7) ~.

The B-I bond distance of 2.167(7) ~ in l2-I- Se BllH10 is comparable

to that in I B
lO

H
13

(2.152 (13) ~) the structure of which was reported by

Sequeira and Hamilton in 1967.15

3.2.1.2. Preparation of 12-Br-Se B11H10

(12)

One objective in the present work on claso se1enabbranes was to improve

the yield of 12-Br-Se B
1l

H
10

since the previously reported yield was only

22%. Scheme 2 outlines the general pathw~ to l2-Br-Se BllH10 from boro

hydride. Tetraethylammonium-tetradecahydroborate was prepared according to

16 ]-the literature synthesis of Dunks and Ordonez. The conversion of [B11H14

anion to Se B
1l

H
ll

was carried out using the procedure of Todd and Friesen

(Equation 4)3. However, benzene was used as the extracting solvent instead

of heptane and the yield was improved (25% c.t. 18%) ~ The SeBllRn was

characterised by its infrared and mass spectra. The original preparation

4
of 12-Br-Se Bn H

IO
(reflux tor 14 hours) (12) was modified as tollows.

AlC1
3Se BURll + Br2 ~ l2-Br-Se BU H10 + H3r

CH
2

C12

First, bromine was solidified by cooling to -150
C then one equivalent of

Se B1lH11 and powdered aluminium chloride catalyst were added. The reaction

mixture was allowed to W8rJll. slowly to oOe and maintained at this temperature

for 2 hrs before being warmed to ambient temperature ~ The crude product

was isolated by evaporation of the dich1oromethane 1:n vacuo (85% yield).

The mass spectrum of the crude product indicated the presence of both mono-

and di-brominated SeBn products. T.1.c. analysis (eluent dichloromethane.:

hexane, 2: 1) suggested approximate ratios 6:1 respectively. In a second

modification of the above reaction dichloromethane was added when the
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mixture reached room temperature and the mixture refluxed for 14 hours.

T.l.c. analysis indicated 80% conversion to 12-Br-Se BIIHIO with less

than 10~ of the dibrominated product. From this reaction 12-Br-Se B11HIO

was isolated by sublimation onto a water cooled probe in 63.4% yield and

characterised by its infrared spectrum and melting point.

Attempted Synthesis of 12-F-Se B11810

As discussed in the introduction to this Chapter, Ng et al6 reported
~

that halogen exchange can take place in closo carboranes when the "reagent"

halide is smaller than the "leaving" halide. (Reaction 8, Section 3.1).

However, it should be noted that the evidence for these reactions was

obtained from "B n°.m. r. studies and that the isolation of the fluorinated

species was not reported. An exchange reaction was attempted in the

present work using 12-I-Se BllHIO and a solution of tetrabuty1ammonium

fluoride in THF (10).

THF

After 5 days stirring equimolar quantities of the reagents at room temper-

ature there was no evidence (t.l.c., eluent, dichloromethane: hexane; 2:1)

for reaction (10). 1be addition of excess [Bu4N] F resulted in a distinct

colour change froiD yellow to dark green and the appearance of two new spots

on the t.l.c. plate. However, attempts at isolation of a product by dis-

solution of the crude material in water and extraction with either dichloro-

methane or benzene proved unsuccessfUl. A mass spectrum of the residual

solid indicated that no volatile borane containing material was present.

3.2.1.4. Forrmtion of Polychlorinated Derivatives of Be B
l1

8
11

. The polychlorination of SeBllH11 using the conditions of Friedel

Crarts electrophilic substitution was attempted (11).

CH2C12
SeB11Hll + nC12 > Be BllHCll_X). C1X + X HCl

AlC1
3
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n

wi th a SeBllHll : C12 ratio .of 1: 5. After the usual work-up procedures

the chlorinated selenaboranes were separated by preparative t.l.c. (eluent t

dichloromethane: cyclohexane t 70: 30). Three mnds were separated of which

two provided analysable quantities.

The lower band which was the dichlorinated product was isolated in

4.3% and melted at l17-1190 C. The infrared spectrum showed B-.H stretching

frequencies at 2655 and 2555 dm-l. The" 115 MHz "B n.m.r. Spectrum (Fi~re "12)

exhibited two singlets at 5.2 and + 25.6 ppm which are ascribable to

B-Cl bonds. However t the spectrum shows that this species is in fact a

mixture of two dichlorinated isomers which were not separable on the chroma-

tographic plate. It is not possible to completely assign these signals.

However t the previously recorded "B n.m.r. spectrum of 12-CI-Se BllH10

exhibited a B-Cl resonance at + 24.0 ppm. Taking the expected shift to a

higher field into account for the presence of a second chlorine atom it

appears likely that one of the chlorine atoms is substituted at position 12.

The upper band was isolated as a white crystalline solid (19.37%) and

melted at 248-2500 C. The infrared spectrum of this species showed B-H

stretching frequencies at 2645 and 2530 cm-l • The ~15· MHz liB n.m.r. spectrum

consisted of just five signals (Figure 13). ,Four of these were doublets

which collapsed to singlets on proton decoupling (Figure 14). The remain-

ing signal at -4 p.p.m. was a singlet in both spectra and is assigned to

the B-Cl bond. The liB - liB COSY n.m.r. spectrum (Figure 15) was also

recorded. However t these spectra indicate that degradation had taken place

and that the product was in fact [5-Cl-7-8e BlOHlO]-.

In an attempt to achieve a more convenient synthesis of l2-Cl-SeBllH10'

a reaction between SeB
ll

Hll and N-chlorosuccinimide was attempted (12).

d~C'
!l

Sea...... + CCI.
~ 12 -CI-SeB....... + CN-H (12)

OoC

\ ~ ~
0 0
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However, on completion of" the reaction, only Se BllH
11

(85% recovery)

was isolated.

3.2.2 Nido Bi5 Cluster Systems

3. 2 .2. I Attempted Synthesis of" [Br-Se BlOHlO]

['he method of synthesis of the [Br-Se BlOH
lO

]- anion whi~h was attemp

ted was similar to that reported for the non-halogenated analogue (reaction

1). Bromodecaborane (the 1- and 2- isomers were used in separate experiments)

was reacted with sodium polyselenide in aqueous ammonia t during workup

the product was isolated as the tetralkylammonium salt. The reaction

sequence is outlined in Scheme 2.

Na [Br-Se BlOHlO]

1 [Et4N] Cl

[Et4N] [Br-Se BlOH
lO

] + Na [Cl]

Synthesis

Na2 [Se4]
Br-BlOHll liq. NH

3
~

Scheme 3.:

The yellow crystalline solid which resulted w~stable to air and water,

insoluble in hydrocarbons but soluble in methanol. The infrared spectrum

exhibited strong alkyl C-H absorptions at 2960 and 2810 cm-1 as well as

strong B-H stretching absorption at 2530 cm-1 • The 115.5 MHz 1'13 n.m.r.

spectrum was recorded in methanol (Figure 16) and showed fourteen signals

(when l-Br B
10

H
13

was used). The relative ratios and numbers of signals

indicated the presence of three or possibly four products. A comparison

of the chemical shifts for the non-halogenated anion t [1-Se BlOHl1 ]

suggested the presence of this species as well as brominated derivatives.

'!bus some loss of bromine appeared to have occurred during the reaction

with the polyselenide.

A comparison of the ~ co:upled and decoupled "B n. m. r. spectra suggested

the presence of at least two brominated products { two signals at -20~,1 and

> - 136 .:..



- 1

Figure 16: 115.5 MMz "B n.m.r. spectrum of
I - Br B10 H13 product.
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+ 19.8 p.p.m. were singlets in both spectra}. The chemical shift of

the B-Br atoms at + 19.8 p.p.m. is very close to the B-Br signal for 12

4
Br-Se BllH10 (+.20.2 p.p.m.). When 2-Br B10H13 was reacted with the

polyselenide, the "B n.m.r. spectrum of the product (Figure 17) was simil-

arly complex. However, unlike the spectrum for the product of the

l-Br B10H
13

reaction, this spectrum did not contain any signals above

-3.0 p.p.m. Sprecher et aZ16
assigned the B-Br resonances in .l-Br B10H

13

and 2-Br B10H13 as + 2.0 and + 45.6 p.p. m. respectively. The absence of

these signals in the products obtained here indicate that the starting

bromodecaboranes are not present in the final products.

It appears that although the react.ion of decaborane with sodium

po1yse1enide generated high yields of the single isomer, [7-8e B
10

H
l1

]-,7

the reaction with bromodecaborane afforded a mixture of products which

3.2.2 Attempted Synthesis of Br-Se B10#12

In an attempt to obtain a pure Br-Se BlOHl2 isomer the crude product

from the reaction between 1-Br BlOH
13

and sodium po1yse1enide was proto

nated (13).

HCl
-CH-3-CN-~~ Br-8e B10Hl2 + [Et4N] C1

-

The product of this reaction was initially purified by sublimation and

then recrystal1ised from hexane. The infrared spectrum of the purified

-1
material showed a strong B-H stretching frequency centred at 2520 cm •

'lbere were no alkyl C-H absorptions present in the spectrum. Both the

~ and liB { ~} n.m.r. spectra (Figures 18 and 19) exhibited sharp we11-

resolved signals but once again there was a mixture of products, 1ut the

n.m.r. spectral evidence showed that SeB
10

H12 was not one of them.
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The .~ n.m.r. spectrum of the brominated product consisted of twelve

signals including two B-Br signals at -19.9 and + 18 p.p.m. It therefore

appears that the product of the protonation reaction (13) .is a mixture of

at least two neutral brominated species.

As noted earlier in the introduction to this Chapter, several authors

have reported syntheses of se2B
9

H
9

9 ,10. However, to date its structure has

not been established in detail although it is isoe1ectronic With the known

nidb [B11H13]2-. Since a stu~ of the structure of l2-I-Se BllHlO had

proved successful a similar experiment was envisaged with Se2B
9

H
9

• Two

routes to Br-Se2B
9
Htl were attempted.

In a separate experiment to solve the structure of Se2B
9
H

9
detailed

''B- liB COSY 2D n.m.r. spectra were obtained by Dr. J.D. Kennedy, (University

of Leeds) and are discussed here.

-

Se2 B
9
H

9
was prepared in 23.5% yield by the reaction between decaborane

and KOH and potassium po1yse1enide, (9), characterisation was by melting

point (339-340oC), infrared (2595, 2555 em-1 , both B-H) and mass spectroscopy

(M/Z cut off at 272, 82se2 "B
9

IH
9

= 272).. Further evidence for the molec

ular composition was obtained from both ·'ID. and 2D "B n.m.r. spectroscopy.

Todd and coworkers2 originally proposed an ll-atom cage structure from

"B n.m.r. evidence (Figure 8) in which the selenium atoms were bonded to

each other. However, the same authors3 proposed a different structure for

the analogous S Se B9H
9
(Fi~e 9) in which the heteroatoms were separated

by boron atoms. Moreover, either structure could be assigned the XY B
9

H
9

molecules based on the infrared and n .m. r. data presented by Todd and co-

workers. In an attempt to elucidate the structure of Se2 B
9
H
9

further n.m.r.

studies were undertaken. The liB {'H} n.m.r. spectrum of Se2B
9
H

9
recorded
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at 115.5 MHz (Figure 20) is comparable to that recorded at 70.6 MHz by

Todd and coworkers. Table 1 lists the chemical shifts for Se2 B
9

H
9

(115.5

and 70.6 MHz) and S Se B
9

H
9

• There is a shift of 1.1 p.p.m. to a lower

field in each of the signals reported here compared to those reported by

Todd and coworkers. 3 The intensities of the three spectra are in the

ratios 3:4:1:1 due to accidental overlap of the.. signals of some of the boron

atoms. Even the line narrowed "B spectrum of Se2 B
9
H

9
(Figure,2l) failed

to fully resolve the signals appearing at 1.1 p.p.m. but succeeded in split

ting the signal at -1.5 p:;p.m. into two signals at -1.4 and -1.7 p.p.m. in

the ratio 2:2. The 2D COSY n.m.r. spectrum (Figure 22) was somewhat more

informative and allows some tentative assignements of the n.m.r. signals

to be made.

The low .frequency signal at -35.2 p.p.m. is the easiest to assign and

in the signal for Bf (in both Figure 8 and 9) not only on the basis of the

shift value but also on the number of COSY correlations. From the COSY

spectrum it is seen that this boron atom is not bonding with that giving

the signal at -8.9 p.p.m. Since the signal at -8.9 p.p.m. is of intensity

1 it can be assigned to Bb in either Figure 8 or 9. The signal. at +1.1 p.p.m.

of intensity 3 is bonded to Bf and could be assigned Bd and Be, whose sig

nals may overlap. Fina.1ly, the signal of intensity 4 at -1.5 p.p.m. may

be assigned to the four boron atoms Ba and Bc. The COSY spectrum coUld be

interpreted to suggest that Bf is bonded to some atoms which give this

signal. (Bc) but not to the others (Ba) but this is not certain. Interestingly

this signal is the only one which was split in the line narrowed spectrum

(Figure 21) showing the slightly different environment of the' two pairs ot

boron atoms. It is clear that although the COSY n.m.r. spectrum allows

some assignements to be made it does not distinguish between the possible

structures for Se2 B
9
H
9

.
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Figure ~ 20: liB {, H} n .m. r. spectrum of Se2 B9 H9
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Figure 21: -B {lH} n.m.r. spectrum of Se2 B9 H9 (line narrowed)
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3.2 .3. 2 Attempted Synthesis of Br-Se2 B9BS

The bromination of' Se2 BgHg was attempted by three routes; (i) using

Friedel-Crafts conditions t (ii) using N-bromo succinimide as the halogenating

agent and (iii) via degradation of 2-bromodecaborane (14).

H
2

0
~R-.-T-.~> Br-Se2BgH8 + B(OH)3 (14)

However both methods (i) and (ii ) resulted in the recovery of. unchanged

Se2 BgHg t but method (iii ) resulted in generation of the product. Proof

of this was obtained from the mass spectrum which showed M/Z cut off' at

80 82 II I
352 ( Br Se Bg H8 = 352). However t the relative conversion was too

small ( 3 %) to make this a synthetically viable route to Br-Se2 BgH8•

TABlE 1 • "B N•m. It. Data" folt 8
9

Clusten a

.
&.S~2BgHg 6 Se2 BgHg 6 S Se BgHg Intensities

115.5 MHz 10.6 MHz 10.6 MHz
. . ..

-35.2 -36.3 -36.2 1

-8.95 - 9.1 -10.5 1

-1.5 - 2.6 - 2.6 4

+1.1 - 0.1 - 1.1 3... .... .... .... .. .. .. .. . .
. . . . . . . . .. . . . ...... . . . . . ..

a S1.-gnals 1.-n p m.p. •
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3.2.4. Conclusions

-

The results in this chapter are significant in that they provide the

first accurate data on the boron-selenium bond length from the X-ray crystal

lographically determined structure of 12-I-Se BIIHIO • Other work on nidb

BII systems includes an improved synthesis of 12-Br-Se BIIHIO and the poly

chlorination of Se BIIHII •

This chapter also includes the attempted synthesis of [Br-Se BlOHlO]-.

The preparation of the non-halogenated analogue [Se BIOHll]- is straight

forward but it is reported here· that the presence of the halogen atom leads

to the formation of a complex mixture of isomeric species inseparable by

chromatography.

Finally, an indepth n.m.r. study using 2D ''B- "B COSY spectroscopy

on Se2BgHg is reported in an attempt to elucidate the structure of this

species.
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3. 3. EXPERIMENTAL

Tetramethylarrmonium-tetro.deoahydroundecaborate11

A solution o'f predried sodium borohydride (60g, 1.59 mol) was prepared

in a 2 litre 'flask, 'fitted with a mechanical stirrer, .c0ntaining 500 ml

diglyme. Two acetone filled scrubbers to remove gaseous boranes were

also attached to the 'flask. The contents o'f the fiask were heated and at

1050e boron-trifluoride etherate (250 ml, ·204 mol) was added at the rate

o'f 40 ml/hour 'from a pressure equalised dropping tunnel • .on completion o'f

the addition (26 hours), the reaction mixture was allowed to attain ambient

temperature. The solution was 'filtered through a bed of celite in a sintered

glass tunnel and the resulting Na [BF4] solid material washed twice with

50 ml portions o'f diglyme. The combined diglyme filtrates were evaporated

to an oil by heating under vacuum. The oil was taken up in 500 ml of H20

and added in one portion to a solution o'f tetraethylammoniurn iodide (lOOg,

0.415 mol) in 200 ml H20. The resulting solution was allowed to stand tor

15 mins and filtered by suction. The 'filter cake was then dissolved, with

slight degassing in 300 ml acetone and heated to re'flux temperature. Water

was added until cloudiness was apparent and the solution allowed to cool

slowly to room temperature and then further cooled to 100e overnight. The

pale yellow crystals were 'tiltered to furnish tetraethylammonium-tetradeca

, bydroundecaborate (14.lg, 28.56%). The mother liquid was evaporated to half

the original volume and water added until the solution vas cloudy. The

solution vas cooled as above and filtration isolated a. further 1.8g (3.7%)

of [Et4N] [BllH14]. Total percentage yield was 32.• 3%. v max (KBr):

2940 (VB); 2850 (VB); 2500 (br, vs); 1450 (br, S); 1380 (v); 1350 (v);

1245 (w); 1190 (v); 1080 (8); 1010 (m); 940 (m); 860 (m); 840 (m); 140 (wJ

-1
em • Analysis: calcd. 'for e8H34 NEll: e, 36.50; H, 12.93; N. 5.32; B,

45.25J. Found: C, 36.36; H, 12.88; N, 5.11; B, 44.63%.
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Tetraethylammonium-tetradecahydroundecaborate (~4g, 9 "lO-3mol ) and

sodium biselenite (2. Og, 1.4x l02mol ) were reacted in a water-heptane

mixture (250 ml, 3: 2) by s ti rring at room temperature for 24 hrs. The

product was isolated from the heptane layer which was changed four times

during the course of' the reaction. Recrystallisation of the crude solid,

from evaporation of the combined heptane layers, in dichloromethane yielded
/

Se BIIHll (0.36g, 22.4%) as large crystals. m.p. >360°. (lit. 390-395

(decomp»3 '"max (KBr): 2585; 2565; 2530; 2515 (all s, B-H) cm-l • Mass

82 t. .
spectrum cut-off at M/Z 214 ( Se Bll Hll = 214)

Method fi)

Bromine (0.20g, 1.26 x 10-3 mole) was solidified by cooling to -150 C

in an ice-salt bath. B
li

HllSe (0.27g, 1.26 X.103 mol) and 5 mg of powdered

aluminium were added at this temperature. The mixture was aJ.owly allowed

to reach OOC and maintained at this temperature for 2 hours and then warmed

to ambient temperature. Mass spectral analysis of the product showed it to

be a mixture of about 30% unreacted Se BllHll ~ 60% l2-Br-Se BllH10 and 10%

of a dibrominated product. Preparative" chromatography (hexane: benzene

eluent (3:1» isolated l2-Br-Se B11H10 (0.155g, 41.6% mol) m.p. 284-286°c

(lit. 284-257)4 -"max (KBr) 2615; 2570; (both St B-H) em-I. Mass spectrum

cut off at M/Z 294 (80Br82se lIB ~11 = 294).

Method fii)

The reaction was repeated using the same quantities except that when

the mixture had reached room temperature dichloromethane was added and the

reaction mixture refluxed for 14 hrs. Mass spectral and chromatographic

analysis indicated about 80% conversion to l2-Br,se BUHlO with less than

1"0% each of the lmreacted Se B11Hri" and the dibrominated species.

P 1 1 d . b at 900
• .c. separation followed by sublimation onto a water coo e pro e

afforded 12-Br-8e-B H (0.236g, 63.4%) which analysed as above.
11 10
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To a solution of iodine (1.5g, 6X,103 mol), dichloromethane (15.0

cm3) and aluminium trichloride (0.5g, 3.7JC10-3 mol). Se BllHll (lg, 4.8 ~ 10-'

mol) was added and the resulting solution refluxed for 20 hours. The

dichloromethane was evaporated in vacuo and ensuing solid sublimed at

1100C under vacuum to afford pale, purple crystals of l2-1-8e .BllHlO (0.17g,

10.73%). Benzene extraction of remaining solid furnished a turther

(0.24g, 15.15%) of solid which analysed chromatographically (t.l.c., eluent:

C
6

H14 : CH2C12 , 70:30) as the sublimed material. Recrystallisation of the

combined product afforded l2-1-8e BllHlO (0.34g, 21.89%) as colourless

crystals; a sample of which were sent for X-ray crystallographic structural

analysis m.p. 213-215 (lit. 2l3-2150C) 4. v max (KBr) 2600 (s); 2570(s);

2555(s); 1020 (w); 990 (w); 965 (w); 932 (m); 928 (sh); 902 (m); 860 (m);

"'I815 (s); 795 (s); 770 (w); 740 (sh); 725 (m); 690 (w) cm- •

Crystallography

A colourless small block crystal of r-Se BllHlO having approximate

dimensions of 0.36: X 0.44 X 0.51 m. m. was mounted on a glass fiber in a

random orientation. Data collection was performed on an Enraf-Nonius CAD4

computer controlled kappa axis diffractometer equipped with a graphite

crystal, incident beam monochromator.

Cell constants and an orientation matrix for data collection were

obtained f'rom least squares refinement, using the setting angles of 25

reflections in the range 8 < e < 160
, measured by the computer controlled

diagonal slit method of centering. The monoclinic cell parameters. The

space group was determined to be P2l/n (No. 14). A total of 2848 refiections

were collected of which 2493 were unique and most systematically absent.

As a check on crystal and electronic stability three representative reflec

tions were measured every 240 min. The intensities of these standards

remained constant within experimental error, throughout the data collection.
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Lorentz and polarisation corrections were applied to the data.

The linear absorption coefficient is 58.71 cm-l for Mo-K radiation.

Relative transmission coefficients ranged from 0.10732 to 0.19201 with

an average value of 0.15974.

The structure was solved using the Patterson heavy-atom method which

revealed the position of two atoms. The remaining atoms were located in

succeeding difference Fourier syntheses. Hydrogen atoms were included

in the refinement but restrained to ride on the atom to which they are

bonded.
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TABIE 1. MoLecuZar Dimensions Bond Lengths ~)

I B11 2.167(7) B4 B5 1.902(13)

Se B1 2.118(8) B4 B9 1.742(12)

Se B2 2.132(9) B4 B10 1.772(12)

Se B3 2.144(10) B5 B6 1.780(12)

Se B4 2.119(10) B5 B10 1.785(13)

Se B5 2.112(9) B6 B7 1.781(11)

B1 B2 1.894(12) B6 B10 1.796(ll)

B1 B5 1.911(12) B6 B11 1.763(11)

B1. B6 1.763(11) B7 B8 1.114(11)

Bl B7 1.762(11) B7 B11 1.757(11)

B2 B3 1.934(13) B8 B9 1.787(10)

B2 B7 1.743(11) B8 B11 1.760(11)

B2 B8 1.769(12) B9 B10 1.774(11)

B3 B4 1.862(12) B9 B11 1.174(11)

B3 B8 1.741(11) B10 B11 1.167(10)

B3 B9 1.715(12)
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TABLE 2. Bond Angles f)

-

B1 Se B2 52.9(3) Se B2 B3 63.4(5)

B1 Se B3 92.5(3) Se B2 B7 111.6(5)

B1 Se B4 93.1(3) Se B2 B8 111.1(5)

B1 Se B5 53.7(3) B1 B2 B3 107.0(5)

B2 Se B3 53.8(3) B1 B2 B7 57.8(4)

B2 Se B4 92.8(3) B1 B2 B8 106.3(6)

B2 Se B5 92.3(3) B3 B2 B7 104.4(6)

B3 Se B4 51.8(3) B3 B2 B8 55.9(5)

B3 Se B5 91.9(3) B7 B2 B8 60.7(5)

B4 Se B5 53.4(4) Se B3 B2 62.8(4)

Se B1 B2 63.9(4) Se B3 B4 63.4(4 )

Se B1 B5 63.0(4) Se B3 B8 111.7(5)

Se B1 B6 111.8(5) Se B3 B9 112.5(5)

Se B1 B7 111.5(5) B2 B3 B4 108.3(6)

B2 B1 B5 108.3(6) B2 B3 B8 57.3(5)

B2 B1 B6 106.2(6) B2 B3 B9 107.4(6)

B2 B1 B7 56.8(4) . B4 B3 B8 108.0(5)

B5 Bl B6 57.8(5) B4 B3 B9 58.1(5)

B5 B1 B7 106.2(6) B8 B3 B9 62.3(5)

B6 B1 B7 60.7(5) Se B4 B3 64.8(4)

Be B2 B1 63.2(4) Se B4 B5 63.1(4)
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TABLE 2. (Continued)

Se B4 B9 112.5(5) B1 B6 Bl1 109.0(5)

Se B4 B10 112.1(5) B5 B6 B7 111.2(5)

B3 B4 B5 108.8(6) B5 B6 B10 59.9(5)

B3 B4 B9 56.7(5) B5 B6 B11 108.9(6)

B3 B4 B10 105.8(5) B7 B6 B10 107.7(5)

B5 B4 B9 106.8(6) B7 B6 Bll 5,.4(4)

B5 B4 B10 58.0(5) B10 B6 B11 59.5(4)

B9 B4 B10 60.6(5) B1 B7 B2 65.4(5)

Be B5 B1 63.3(4) B1 B7 B6 59.7(4)

Se B5 B4 63.5(4) B1 B7 B8 112.0(5)

Be B5 B6 111.4(5) B1 B7 B11 109.3(5)

Se B5 B10 112.0(5) B2 B7 B6 112.2(6)

Bl B5 B4 107.5(5) B2 B7 B8 60.4(5)

Bl B5 B6 56.9(4) B2 B7 B11 110.0(6)

B1 B5 B10 105.8(5} B6 B7 B8 108.3(5)

B4 B5 B6 105.6(6) B6 B7 . B11 59.8(4)

B4 B5 B10 57.4(5) B8 B7 B11 59.8(4)

B6 B5 B10 60.5(5) B2 B8 B3 66.9(5)

B1 B6 B5 65.3(5) B2 B8 B1 59.0(5')

Bl B6 B7 59.6(4) B2 B8 B9 111.7(6)

B1 B6 B10 111.8(6) B2 B8 B11 108.7(6)
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TABlE 2. (Continued)

B3 B8 B7 111.7(6) B5 BI0 B9 110.7(6)

B3 B8 B9 58.1(4) B5 BI0 Bll 108.6(5)

B3 B8 Bll 10tl.2(5) B6 BI0 B9 107.9(5)

B7 B8 B9 108.0(5) B6 BI0 Bll 59.3(4)

B7 B8 Bll 59.6(4) B9 BI0 Bll 60".1(4 )

B9 B8 Bll 60.0(4) I Bll B6 119.8(5)

B3 B9 B4 65.2(5) I Bll B7 120.9(5)

B3 B9 B8 59.6(5) I Bll B8 121.6(5)

B3 B9 BlO 112.4(6) I Bll B9 121.6(5)

B3 B9 Bll 108.7(6) I Bll BI0 119.9(5)

B4 B9 B8 111.4(6) B6 Bll B7 60.8(4)

B4 B9 BI0 60.5(5) B6 Bll B8 109.7(5)

B4 B9 Bll 109.3(6) B6 Bll B9 109.3(5)

B8 B9 BI0 168.1(6) B6 Bll BI0 61.1(5)

B8 B9 Bll 59.2(4) B7 Bll B8 60.6(4)

BI0 B9 Bll 59.7(4) B7 Bll B9 109.3(5 )

B4 BI0 B5 64.6(5) B7 Bll BI0 110.1(5)

B4 BI0 B6 110.6(6) B8 Bll B9 60.1(4)

B4 BIO B9 58.8(5) B8 Bll BI0 109.7(5)

B4 BIO Bll 108.3(5) B9 Bll BI0 60.1(4)

B5 mo B6 59.6(5)
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12-Ct-Se B11H10 Method I

To a solution of Se BllHll (0.2g t 0.0001 mol) in 5 ml carbontetra

chloride t N-chlorosuccinimide (0.13g, 0.0001 mol) was added and the reaction

stirred at OOC. The reaction was allowed to attain ambient temperature

after 2 hrs and thus maintained for a further 16 hrs • Filtration of un-

reacted solid material t followed by evaporation of the solvent in vacuo,

afforded Se BIlHll (0.17g, 85% recovery) as a crystalline solid. There

was no evidence for reaction on infrared and chromatographic analysis.

Method 2

A mixture of Se BllH11 (0.8g, 4xlO-3 mol), AlCl
3
(~.36g, 2.7 X 10-3

mol) and 9 ml dichloromethane were frozen to -190oC. Chlorine gas (1.4g,

0.02 mol) was added. The reaction was allowed to proceed at -450 C with

stirring for 4 hrs. Subs~.quently the mixture was brought to ambient temp

erature and maintained thus for a' further 16 hrs. Evaporation of' the

solvent followed by recrystallisation of the crude solid f'rom benzene

afforded O. 32gt of' a mixture of' products. These were initially identified

by a mass spectrum of the solid as 12-Cl-Se ~1IH10' C12-8e BllH
9

and Cl3

-8e BllH8. Preparative chromatography (eluent, dichloromethane: cyclohexane,

70: 30) separated the three products. However, the amount of the trichlor-

inated species obtained was too little for analytical purposes. The lower

of t~e other two bLnds was isolated as a white solid (o.04g, 4.3%) and

identified as a mixture of' CI2-Se BllH
9

.isomers. m.p. 117-ll90 C. vmax

(KBr) 2655 (s) 2555 (s); (B-H) em-I. The remaining band was isolated as a

white crystalline solid (O.18g, 19.37%) and identified as £5-Cl-7-Se BlOHlO·f.

m.p. 248-250oC. V max (KBr). 2645 (s); 2520 (s) (B-H) cm-1.



Attempted Synthesis of 12-F-Se B11H10

A solution of tetrabutylammoniurn fluoride (0.66 ml ~ 6 X 10-4 mol)

in THF vas added to a solution of l2-1 Se BllHlO (0.22g~ 6 xlO-4 mol) in

10 ml THF and reaction mixture stirred at room temperature. After 5 days

there vas no evidence that reaction had taken place. Addition of excess

[Bu4N] [F] resulted in a distinct colour change from yellow to dark green.

Chromatographic analysis '(t.l.c.: eluent~ 100% CH2C12 ) shoved the presence

of nev products; extractions vith either benzene/vater or dichloromethane/

vater did not,hovever, afford any borane containing material. Mass spectral

analysis of the residual solid found no evidence for the presence of borane.

Bromodecaborane

A solution of bromine (2. 5g. 0.031 mol) in 5 ml carbon disulphide

was added dropwise from a pressure equalised droppin~ funnel to a solution

of decaborane (2.0g, 0.016 mol) and AlC13 (0.lg'7.5xlO-4 mol) in 25 ~ carbon

disulphide at ~lOoC. The reaction was alloved to attain ambient temperature

and stirred for a further 30 minutes. The carbon disulphide vas evaporated

and the residue extracted three times vith refluxing hexane. (3 X 30 ml

portions). The combined hexane portions vere kept at 4°c to promote

precipitation of the brominated species. The 2-Br isomer (2.23g, 67.7%)14

separated, first from the solution as colourless crystals. m.p. 105-l06°c

(lit 106-l07°C). v max (KBr) 2590 (v.s.); 1850 (w); 1560 (v); 1510 (w);

1495 (w); 1460 (w)\J 1400 (w); 1040 (w); 995 (m); 945 (m); 920 (m); 880 (m);

865 (m); 820 (m); 790 (5); 755 (m); 110 (m); 660 (w)

80 II ,
cut-off at M/Z 203 ( Br B

IO
H
13

= 203).

-1
cm Mass spectrum

Continued fractional recrystallisation of the mother liquor resulted in

the isolation of l-Br B
lO

H
13

(0.75g, 22.9%) as colourless crystals. m.p.

9O-92
0

C (lit. 92-930C)15 • Infrared and mass spectra were as above.
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Tetraethylarrmoniwn bromoselenadBaaborane [Et tv] [Br-Se B1 cJI10]

Ammonia (60 ml) was condensed into a reaction :flask which was maintained

at -78°C by an acetone-liquid nitrogen bath. Sodium metal (0.3g, 0.013g.

atom) was added in small chips :followed by elemental selenium (2. Og,

0.025g, atom) :from a solid addition tube over a 15 minute period. The

addition of the selenium resulted in sputtering due to the vigorous reaction

caused by formation of sodium polyselenide. The reaction was stirred for

2 hours while warming slowly until the ammonia. was evaporated to a volume

of approximately 25 ml. Deoxygenated water (60 ml) was added and the

reaction solution stirred for 10 minutes be:fore 2-bromodecaborane (1.17g,

0.005 D:>l) was added gradually' over 15 minutes :from the addition tube.

The reaction mixture was fUrther stirred for 22 hours at room temperature.

An insoluble material, containing Se2B
9
H

9
,was removed :from the solution by

filtration. Excess sa.turated aqueous tetraethylammonium iodide solution

was added to the filtrate and the ensuing precipitate collected by filtration

and thoroughly washed with water. Extraction of' the crude solid with three

50 ml portions of acetone, followed by evaporation of the combined solvent,

afforded a mixture of products containing tetraethylammonium bromo

selenadecaborane (1.9g, 80.55%) as a yellowish crystalline solid. v ma'x

(KBr) 2960 (s); 2870 (m); 2530 (br, s); l380(m); 1165 em); 1105 (w); 1050 (y);

1030 (m); 990 (w); 920 (w); 900 (w); 880 (w); 840 (s); 790 (m); 740 (s);

570 ({m) em-l • 6B" {'H} (Me OD, 115 MHz) -35.5; -34.9; -20.1; -17.5; 16.1;

-14.87; -14.46; -13.63; ~10.45; -9.32; -5.30; -3.35; -2.3; + 19.8 p.p.m.

Brom?se ZenadBcabol'ane Br-8e B1.rJlll

Crude tetraethylammonium bromoselenadecaborane (1.9g, 0.0046 JOO~)

was dissolved in a·Jiii.~iri.um of acetonitrile and filtered to remove impUrities.

The filtrate was poured into a 250 ml separating fiask followed by 20 ml

concentrated hydrochloric acid. The 'resulting solution was extracted with

150 ml portions of a diethylether : hexane (1:2) mixture until no f'urther
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solid was obtained on evaporation of the extract. The solutions were

combined and evaporated to dryness. Sublimation of the crude solid onto

a water cooled probe followed by recrysta1lisation from hexane afforded

a mixture of products containing bromoselenadecaborane (O.74g, 55%).

~ max (KBr) 2550 (s); 1440 (s); 1190 (m); 1070 (w); 1000 (m); 975 (m);

930 (w); 910 (w); 880 (m); 830 (w); 810 (m); 765 (w); 750 (v); 730 (w);

635 (m) cm-l • 6 B {'H} (Silanon-C, 115 MHz) -26.12; -25.22; -19.98; -17.38;

-16.44; -10.34; -8.94; -6.38; -3.03; -1.76; + 17.90; + 19.18; ppm. Mass

An82lLl
spe~trum cut-off atM /Z 284 (~~r Se -B

lO
H

lO
= 284).

A solution containing the [B
9

H14] anion was prepared by the addition

of decaborane (0.75g, 0.006 1001) and potassium hydroxide (l.lg, 0.018 mol)

to 16.5 mls H20 and the mixture was stirred until completely colourless.

Concentrated hydrochloric acid was added drepwise until a neutral solution

was formed.

A polyselenide solution was prepared by the addition of powdered

selenium (l.5lg, 0.009 mol) and potassium hydroxide (l.13g, 0.02 mol) to

7 mi. H20. The resulting solution was renuxed for 20 minutes. When the

polyselenide solution had cooled to ambient temperature ,-.the solution

containing the [B9Hi4]- was added as rapidly as possible resulting in the

immediate precipitation of a white solid. B
9

H
9

Se2 was isolated by succes

sive extractions with,25 ml portions of hexane until no further solid was

obtained on evaporation of the hexane. Se
2

E
9
H

9
(O.38g, 23.4%) was obtained

as a white crystalline solid.m.p. 339-3400 C (lit 340-342
0

C). Analysis:

Calcd: H, 3.43%. Found: H, 3.50% v Max (KBr) 2595 (vs); 2555 (vs); 1400 (w);

990 (s); 965 (m); 895 (m); 880 (v); 855 (v); 820 (w); 785 (m); 760 (m);

730 (m); 695 (w) cm-l 6 UB {IH} ( 115 MHz); 1.1 (s); -1.52 (s); -8.85(s);

-35.2 (s) p.p.m. An "B- "B COSY D.m.r. vas also obtained for Se2B
9

H
9

Mass.
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82 II I
spec. cut off at M/Z 272 ( Se2 B

9
H

9
= 272).

(i) A solution containing the [Br BlOH13 ] ion was similarly

prepared by the addition of 2-bromodecaborane (0.23g, 0.001 mol) and

potassium hydroxide (0.2lg, 0.003 mol) to 3 m1 H20. In accordance with the

above procedure, concentrated hydrochloric acid was added lmtil the solution

was neutral. This solution was then added to a polyselenide solution prep-

ared from powdered selenium (0.28g, 0.003 mol) potassium hydroxide (0.2lg,

0.003 mol) and 1.28 ml H20 and reacted as above. Mass spectral analysis

of the solid from hexane extractions showed that Br-8e2B
9
H8 (M/Z = 352,

80 82 11 L 80 lL L_
Br- Se2 B

9
!i8 = 352) t was present as was Se2B

9
H

9
(M/Z 272, Se2 -:8

9
119

= 272). The ratio of the brominated to the non-brominated species was

determined from peak intensities to be ~ 1:10. However, the ratio of con-

version was too small for the product to be isolated.

(ii) A solution of bromine (0.'12g, 1.6 x 10~~ mol) in 2 ml dichloro-

methane was added dropwise from a pressure equalised dropping funnel to 8

-4
stirring solution of Se2B

9
H

9
(0.18, 3.8 x 10' mol) and AlC1

3
(O.lg, 7.5 x

10-
4

mol) in 10 ml dichloromethane, cooled to 100e by an ice:"water bath.

When the addition was completed the reaction was allowed to attain ambient

temperature and further 'stirred for 1 hour. The dichloromethane was removed

in vacuo and the solid residue extracted three times with refluxing hexane.

The combined hexane extracts were evaporated to dryness lmder reduced pres-

sure. Chromatographic (t.l.c. eluent C6H14: C6H6, 3:1) and mass spectral

analysis revealed that the product was > 95% Se
2

B
9

H
9

•

(iii) Attempts to brominate B
9

H
9

Se2 using N-bromosuccinimide also

resulted in recovery of the starting material.
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REACTIONS·· OF BORANE AND CYANOBORANE

WITH AMINES AND PHOSPHINES



4. 1 INTR(DUcrlOO

4.1.1 Synthesis of Arrrine-Boranes [(RnNH3-n) • BH31

There have been a large number of amine-boranes of the general

formula RnNH(3_n) .BH3 reported in th~ chemical literature. l -4 Several

synthetic methods have been developed for reactions in both the gas and

liquid phases. Although reactions in non-aqueous solvents are usually

preferred nowadays, the first reported amine-bor~e, Me
3

N.BH
3

, was

prepared by the gas phase reaction of Me
3
N and BH

3
.CO, (1).1

(1)

This reaction involved high vacuum techniques which imposed limitations

on the quantities of amine-boranes available.

An investigation of the reaction of lithium borohydride and the

methylammonium chlorides, [Me NH4 lCl, in 1948 by Schaeffer and
n -n

Anderson2 first led to the synthesis of gramme quantities of amine-

boranes in reasonable yields. Trimethylammonium chloride and lithium

borohydride reacted rapidly and smoothly at room temperature in diethyl

ether to produce trimethylamine-borane (I) in 86% yield, (2).

Another high yield method developed for the synthesis of wne-

boranes was the transamination reaction (3).

Trimethylamine-borane was specifically chosen since trimethylamine

may be periodically pumped away or readily distilled from a reaction
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mixture. Using an excess of R
3
N produced the required amine in almost

quantitative yields.

An alternative synthetic method involved the reduction of an

appropriate boron compound using hydrogen or borohydride. (4).5.6.7

> (4)

Possibly the most convenient synthesis to date was that devised by

Nainan and Ryschkewitsch.
8

in 1969. In a general synthesis. borane

adducts were prepared in yields usually ranging from 85% to 95% by the

reaction of sodium borohydride, an appropriate donor molecule and iodine

in an ether solvent. typically 1.2-dimethoxyethane (glyme). (5).

This method has been used to synthesise ammonia-borane. borane adducts

of aliphatic amines (RNH2 • R2NH, R
3

N, di- and tri-amines). aromatic

amines and substituted pyridines. It has also been extended to synthesise

phosphine-boranes. In a typical experiment t iodine in l,2-dimethoxyethane

is added dropwise to a 15-20% excess of sodium borohydride and a 7-10%

excess of amine in the same solvent. The most likely reaction pathway is

initial hydride abstraction followed by the trapping of the liberated

borane by the amine t (6 ) •

(6)

BH
3

+ IL NR
·3-n n !> H

3
NR .BH

3-n n

Whether HI reacts directly with an additional mole of [BH
4
]- or whether

it is temporarily trapped by the amine does not affect the eventual result

since ammonium salts react with borohydrides to form amine-boranes. see

equation (2).

- 165 -



As expected, organic diamines formed 1:2 adducts with most boranes

and, in general, the ami.ne-borane structure is preferred to an ionic

[L2BH2][BH4] formulation. For example, the reaction of ethylenediamine

with diborane in ether solvent yielded H3B.H2N(CH2)2NH2.BH39 rather than

[H2N(CH2)2NH2BH2][BH4] as evidenced from the lIB n.m.r~ spectrumlO which

showed a single boron signal split into a 1:3:3:1 quartet characteristic

of BH
3

groups.

It is known that the reactions of mixed aromatic-aliphatic diamines

with boranes occur through the aromatic nitrogen rather than the NR2_

SUbstituent. This is exemplified in the displacement of borane from

dimethylsulphide-borane by 2-, 3-, and 4- aminopyridines (7) .11

NH z

6 + (CH 3) 2 S. BH3

1 (1)

NHz

6·BH3 +. (CH3)zS
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It has been claimed that intramolecular hydrogen bonding between the

borane and the amino sUbstituent in the 2- and 4- substituted species

(Fig. 1) causes a stronger diamagnetic field around the boron atom,

which in turn shifts the lIB signal further upfield compared to that for

pyridine-borane. The structure of 3-aminopyridine-borane precludes the

possibility of hydrogen bonding and so the lIB spectrum of this species

is approximately the same as that of pyridine-borane.

H

H,,,J ,/ ~~
B l
I ~. __H

:;/ N N'H

Figure 1: Intramolecular Hydrogen Bonding in
2-Aminopyridine-borane

4.1.2 St~tures of Amine-Boranes

It is rather surprising that although solid state structures of

adducts such as bis (borane) aminophosphane adducts are known t 12 none have
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been reported for simple amine-borane adducts. However, accurate

measurements of the boron-nitrogen bond distance and the dipole moment

have been made in the gas phase by Cassoux and co-workers13 on 15N_

enriched trimethylamine-borane in a microwave spectroscopic study. The

adducts previously studied in the gas phase, each containing a normal

isotopic distribution, were (CH3)2NH.BH3,14 (CH3)3N.BF315.and

16
(CH3 )3N•BH3• The bond lengths calculated for each of these were not

very precise. Three gas-phase structure studies had been reported for

. 0 16 0 18(CH3)3N.BH3 w1th bond lengths reported as 1.62 ± 0.01 A, 1.65 ± 0.02 A,

and a study by Odom and co-workers19 who reported the bond length as

either 1.609 ~ or 1.631 ~, with preference expressed for the 1.609 i

value. Using the double substitution procedure,11 Cassoux and co-workers

calculated the B - N bond distance to be 1.63 ± 0.01 i.

other B - N bond distances have been calculated including that in

borazine. B
3
N

3
H6 • the bond length of which was reported as 1.435 ± 0.002 i.

from an electron diffraction stUdy.20 For amino boranes, B - N bond

lengths vary from 1.319 ± 0.06 ~ in C12BNMe2 (electron diffraction)21 to

1.485 ± 0.022 i in F2BN(SiH
3

)2 (electron diffraction).22 However, these

are extreme values and the remainder fall in the range 1.41-1.45 i. 23

It is evident from these values that no n bonding is present in amine-

boranes. However. in the aminoboranes for which the B - N bond distance

is typically 0.2 i shorter than in amine-boranes. there is a substantial.

degree of n bonding in the B - N bond.

4.1.3 Reactions of Amine-Boranes

The reactions of amine-boranes dealt with here are divided into two

main sections. The first of these deals with reactions in which the N - B

is retained and the second in which the N - B bond is broken.
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4.1.3.1. Retention of the N - B bond

Although it has been shown that amine-boranes are thermally and

hydrolytically reasonably stable.24 intramolecular decomposition as

depicted in (8) was reported in early studies of amine-borane chemistry25

and is one of the best known reactions of these compounds.

(8)

(10)

In some instances. amine-boranes have been known to polymerise

thermally. Heating 2-a.mi.nopyridine-borane causes cyclisation to a bora

zine structure (9).11 It is claimed by Martin and co-workers that the

juxtaposition of NH
2

and the BH
3

groups allow the borane molecule to easily

migrate to the amine position and sUbsequently form the borazine ring.

Muetterties and Miller26 found that the most versatile preparation of

[H2BD2]+ cations is the reaction at elevated temperatures of base-borane

adducts. D.BH3• with onium salts. [DH][X]. (10).

[ ][ 100-180oc~
D.BH

3
+ DH X] .... [~BD2] [X] + Hz

In one. rather complicated. example of this type of reaction. the amine.

R3N. is heated with [(C2~ )3NH ]2B12H12 and triethylamine-borane (11) and

the displaced triethylamine is removed by distillation.

(11)

Borane cations of amines. phosphines. arsines and sulphides have all been
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4.1.3.2. Halogenation Reactions

Amine-boranes can be halogenated at the boron atom. These reactions

are discussed in detail in section 4.2.

4.1.3.3. Cleavage of B - N bond

Many important reactions of amine-boranes involve cleavage of the

boron-nitrogen bond. An example of this is the reaction with certain

Lewis bases (12).27

(12)

Bis(pyridine) boronium salts have been g,ynthesised in quantitative

yields from the reaction of pyridine, iodine and trimethy1amine-borane,
I

(13).28,29

J

+

I -
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It was shown that with borane as the reference acid, the base

strength of trimethylphosphine was greater than the base strength of

trimethylamine. Removal of a volatile amine, such as trimethylamine,

therefore provides a convenient method for the essentially quantitative

preparation of a variety or phosphine- and amine-boranes (15).30

4.1.4.1. Amine-boranes as reducing agents

Amine-boranes are versatile reducing agents. Greatly overshadowed

in the past by their more popular relatives (e. g. borane-THF,31 borane

methyl sulphide,32 sodium borohydride,33 and sodium cyanoborOhydride34),

amine-boranes are currently receiving greater attention. 35 These

reagents, which may be.used under PTotic and aprotic conditions, show a

vide range of reactivity and diversity, examples of which are shown below,

(16-20).
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o

HOAc Q-NH ( )
970/0

OHMe 0

NH 3·BH 3 ~ 98: 2

1

00 MeOH

-- 0° 3 28:12
THF.BH 3 0
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C~Ho H
~

CIlItItI..P----......11I1I1I H
Me/ iPr2NH. BH 3

Mg(O,CCF3)z •

Ph

I. BH3

o
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4.1. 4~ ~. Reduction of Imines

The effect of Me2NH.BH
3

on the imine linkage as in compound II and

derivatives thereof with X and Y = chloro, nitro, hydroxy, methoxy,

carboxy. carbalkoxy and sulfanamido, was studied in .1961 by Billman and

MCDowell. 4l

x~ ~yJ-CH=N- V
1.1

These compounds were readily converted to the corresponding amines (21).

I
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Yields of these secondary amines were generally good, typically

around 90%. The ease and speed of such reductions are comparable to, or

better than, similar reactions with sodium borohydride or lithium

aluminium hydride. An interesting advantage in the use of amine-boranes

is their ability to reduce in acidic media which is not possible with the

anionic hydrides •

. 4.1.5 Surrmary

The most convenient laboratory synthesis of amine-boranes appears

to be the method of Nainan and Ryschkewitsch (5). In this preparation.

the reaction is carried out in a single step and does not require the

synthesis of amine-hydrochlorides as in the method of Schaeffer and

Anderson (2).

Amine-boranes. though first synthesised over thirty years ago, are

undergoing a revival of current interest because of their reducing

abilities. In recent years, chemical suppliers, such as the Aldrich

Chemical Company, have been promoting the use of amine.,..boranes as selec

tive and effective reducing agents in organic synthesis.
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4.2 AMlNE-lJAI.£J3OO.ANES

4.2.1 Introduction

The adduct of trifluoroborane with ammonia. H
3
N.BF3' was one of

the first boron-nitrogen compounds to be recognised.
42

The heat of the

43gas phase reaction was experimentally determined by Bauer end co-workers

6 -1
to be 175.5 1tJ mol •

Niedenzu and Dawson.
44

questioned the validity of early reports

of the formation of addition compounds of ammonia with trihalogeno-

boranes other than BF3 • In contrast to BF3' the heavier halogeno-boranes

are readily susceptible to aminolysis of the boron-halogen bonds and the

resulting triaminoborane. B(NH2 )3' readily decomposes with the elimination

of ammonia and the formation of polymeric materials.45 However. a wide

range of &mines have been found to yield isolable addition compounds of

the amine-borane type with trihalogenoboranes.

Like the amine-boranes. these have been synthesised by a variety of

methods. Compounds of the general formula RnH(3_n)N.I:EY~(3_Y) have been

prepared for y = 1 or 2 with X = F. Cl. Br or I. Some examples of mixed

46
halo-compounds. such as Me

3
N. BHFI are known also.

4.2.2.1. Halogenation of Amine-bomnes with Halogens or Hydrogen BaZid88
. 4 48

Geanangel and co-workers. 7. have investigated the halogenation of

amine-boranes using carefully controlled addition of halogens or hydrogen

halides. These reactions were monitored by proton nmr since the chemical

shirt of the amine alkyl protons changes significant~ywith B_halogenation.

- 177. -



The bromination of trimethylamine-borane (22) and the fluorination and

chlorination of t-butylamine-borane (23) qy these methods produce yields

greater than 50% in each step.

(22)

+HX
-H

2
> (CH3)3CNH2· BX3

(X = F. Cl) (X = F)

This halogenation method was most successful for relatively large

scale reactions (20 mmol) in somewhat dilute solutions, since these

conditions reduce the number of alternative products formed.

B-halogenation of N,NtN'tN'-Tetramethylethylenediamine-bisborane

has been carried out qy Hu and Geanangel49 also using hydrogen halides

or halogens. Successive halogenation was considered to proceed via (24)

rather than (25) on electronic grounds. It is clear from this that the

inductive effect caused by halogens on boron makes the remaining hydrogens

less sesceptible towards electrophilic attack.

In a further study on the reactions of diamines. Geanangel and Van

Paaschen50 reacted ethylenediamine, piperazine and triethylenediamine

with (CH3)3NBH2F, (CH3)3N •BHF2 and (CH3)3'•BF3• All the products from

the diamines t which could be characteri sed, were found to contain only

one BH
3

group. Ethylenediamine was found to displace less trimethylamine

than either of the other diamines, making isolation and purification of

the products more difficult.
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+HX

+HX

4.2.2.2. Reaction b1ith Alkyl-Halides

The general equation for the reaction of amine-boranes with alkyl

halides is (26).

(amine). BH
3

+ RX (26)

The ease with Which these reactions proceed depends on both the amine

borane and the halide. Evidence has been presented by Ryschkewitsch and
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Miller5l that the substitution of hydrogen by halogen may proceed by

either a polar or free-radical pathway. Polar reactions are observed

with organic halides such as chlorotriphenylmethane. It is claimed that

reactivity increases with increasing stability of the carbonium ion. The

proposed reaction pathw~ is hydride abstraction from the borane adduct

Qy a carbonium ion paired with halogen ion. followed by formation of the

boron-halogen bond to yield the neutral halogenated boron adduct (21).

Supporting evidence for this mechanism came from a study of the solvent

and the way the structure of the reactants influenced the reaction rate

and by the isolation of the intermediates.

In contrast to the reaction with chlorotriphenylmethane. amine-

boranes react with alkyl halides such as 1.2-C12C2H4 or CCl4 or CCl3Br

bJ a tree radical chain mechanism which can be initiated Qy benzoylper

oxide (28).51

R· + ( amine) .BH
3

(28)

R· is a radical derived by abstraction of halogen from the halocarbon.

The yields of such reactions are generally high. for example the chlorina

tion of dimethylsulphide-borane by CC14 (29).52 gives dimetbylsulphide

chloroborane in quantitative yield.
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4.2.2.3. ChZorination with Sodium HypochZorite

Kelly and coworkers5~ave found that numerous tertiary-alkylamine-

boranes undergo successive B-chlorination on treatment with aqueous sodium

hypochlorite. The trend in the second-order rate constants in the tri-

The activity of tertiary amine-boranes towards hypochlorite c~ntrasts with

that of some secondary amine-boranes 54which have been proposed to undergo

quantitative hydride oxidation followed by chlorination of the free amine.

4.2.2.4. . .Reaction of JJC1,3b)ith .Amine~bQran.e8

Ratajczak55 has shown that direct reaction of BC13 with amine-boranes

is a convenient synthesis of mono, di and trihalogenoborane adducts, (30),

+ (30)

+ (31 )

(32)

The exact outcome of the reaction depends on the stoiChiometric

quantities of triethylamine-borane and boron trichloride used in the reactioo.

Triethylamine-monochloroborane may also be prepared by reaction of triethyl-

amine-borane and triethylamine-dichloroborane (33).

(33)

Triethylamine-dichloroborane is also prepared qy a 3 ,: 1 reaction of

triethy1amine-monochloroborane with boron trichloride (34).

+
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4.2.2.5. Reaation of N-halosucainimide bJi th Amine-Boranes

The reaction of N-bromo- or N-chlorosuccinimide with amine-boranes

in benzene (35).56

/)0
C'l

R3N.BH3 + c~-x/
~

0

R.T.!CIHI (35)

0
1/

R3N.BH2X + CC'N-H
C/
~
0

affords a convenient method for preparing amine-haloboranes under relatively

mild conditions. Typical yields of product are 60-151 • Although allylic

and ben~lic bromination is wel1 established as a free-radical chain reaction57

in which the bromine atom functions as the chain carrier,58 it is unlikely

that this is the case for amine-boranes. The reasons are (i) there is no

detectable induction time and (ii) the reaction proceeds rapidly without

irradiation or added peroxide. An ionic mechanism has been proposed instead,

(36) and (37). The N-halosuccinimide serves as a source of a low steady-

state concentration of halogen.

I,

~J

(36)
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4.2.2.6. Halogenation with Metal Halides

Metal salts, such as mercury (II) and silver (I) compolmds t are

important reagents for the synthesis of B-monosubstituted amine-boranes

(38),59 (X=CI, Br),

Average yields were of the order of approximately 901 using Hg[Br2 ]". All

of the available data are consistent with the hypothesis that mercury (II)

halides react with amine-boranes by a polar mechanism involving hydride

transfer via a transition state. 60 Gyori and Emri6l have postulated that,

in view of the above results and others described for Hg[ Cl2 l,62 similar

redox reactions may also take place with other Hg (II) compounds [e.g. Hg

[F2], Hg[OAc]2' Hg[SCN]2, etc.], although to date, no evidence for this

has been reported.

4.2.3

From the synthesis described above it is apparent that B~ogenation

of amine-boranes and diamine-bis boranes generally 'gives good yields

irrespective of the methods employed. The use of alkyl halides, mercury

(II) halides and N-halogens reduces the inherent difficulties fiSsociated

with the use of anhydrous hydrogen halides and halogens.' Chlorination using

aqueous sodium hypoch1orite offers an alternative synthetic pathway wi.thout

the need for dry conditions.

4.2.11. . 'Structures of ATl'line-Haloboranes

To date no structural data have been reported for RnH(3~)N.

~(3-Y) compounds from either solid state or gas phase studies. Gas phase

data for (CH3)jf .BF3 were reported. 63 This compound which is undissociated

at room temperature was calcul.ated to have a boron-nitrogen bond length ot

1.636 :I: 0.04 i.
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4.2.5 Reactions of Arrrine-Haloboranes

RySChkewitsch46 has claimed that the most versatile route to boron

cations is the displacement of halide from a haloborane by a neutral

donor (39).

D·' + :(39)

-

This reaction was first formally developed by Noth and coworkers for

displacement of chloride64 ,65 for instances where D' .and D are amines.

Subsequent extensions of the technique were made by Ryschkewitsch66 ,67

and Miller68 ,69 who applied the displacement reaction to amine-iodoboranes

and to introduce a large variety of donors D' into the coordination sphere

of the cations.

Halide di splacement from the adduct follows the expected order

.. [1] - > [Br] - > [CI] -, [~]-. Since the rate' of ~reaction with a given

haloborane adduct does depend on the nature of the displacing donor, the

reaction appears to be of ~2 type, at least in noncoordinating solvents

like benzene or carbon tetrachloride and in instances where electronic

stabilisation of a trigonal cationic66 ,67 intermediate is not possible.

Adducts of tertiary alkyl wnes are less reactive than those of primary

or secondary &mines, or of pyridine derivatives, especially when chloride

or bromide are displaced, or when the displacing donor has itself a large

steric requirement. 71 Finally, the readiness with which sUbstitution of

halide occurs on neutral adducts of haloboranes is. also influenced by other

electronegative sUbstituents on boron. Progressive sUbstitution of hydrogen

by halogen tends to deactivate the molecule toward displacement of halide.

Thus trimethylamine-diiodoborane is. practically inert toward trimethylamine

Whereas the monoiodo adduct reacts readily with cation formation. 72 This

decrease in reactivity makes it difficult to prepare ions of the type

DD'BIOC by the displacement route, since the more drastic reaction conditiona

required to promote the competitive displacement of one neutral donor by the
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other. 73 An exception is the reaction of (CH3)JN.BHFI with 4-methylpyridine

(40), which takes place under mild conditions and leads to the assymetric

cation. 74

+

I
6,.

+

{4o)

I -

Loss of the donor originally attached to boron is a possible complic-

ation even under mild reaction conditions when two different neutral donors

are to be attached. It is then advisable to start with t~e stronger donor

already attached to boron and displace halide with the weaker one. Thus,

mixed amine-phosphine cations are best prepared from amine-haloboranes

rather than from phosphine-haloboranes (41),

1
R3N\ I H

B

/ \
R3~ H
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the reverse procedure generally leading to mixtures. This problem is

particularly awkward when dealing with polydentate amines or phosphines. 75

Here favourable ring closure by the chelating donor leads to displacement

of the original donor, as, for e:x:ample, of trimethylamine in the reaction

of (CH3)!.BHBr2 with tetramethylethylenediamine,76 or in the reaction of

(CH3)jf.BH21 with N-dimethylpiperazine, which even gives the strained

bicyclic norbornane homorph. 77
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4.3 AMINE-CYAIDOORANES

4.3.1 Introduation

The known chemistry of amine-boranes and the convenient synthesis

of sodium cyanoborohydride (42)62

THF
2Na[BH

4
] + Hg[CN]2 -~ 2Na[BH

3
CN]

4 3 hrs

(42)

led to the synthesis of a series ot amine-cyanoboranes. These adducts

have been used as intermediates in the synthesis ot boron analogues ot the

a-amino acids. They are also biologically active species in their own

right and the result ot such st~dies is tiscussed later.

Synthesis ·of Amine~~boM1ies

Many ot the reactions leading to amine-eyanoborane synthesis are

analogous with those previously discussed for amine-boranes. Spielvogel

and coworkers18 have prepared primarY, secondary and tertiary aliphatic

and aromatic amine-cyanoboranes by the reaction of sodium cyanoborohydride

and amine-hydrochlorides in refluxing THF (43)

Na[BH3CN] + amine.HCl
THF

amine.BH2CN + H2 + Ba[el]
III - VIII

(43)

(amine • lite! ~; Me~ (IV); MeNH2 (V); C5H5N (VI); PhNH2 (VII);

pMeC6H4NH (VIII).)

Yields ot products ranged from 48% (MeNH2 ) to 90% (p-MeC6H4NH2)' with the

exception ot VI, which could not be solidified, all of the above are white,

crystalline solids, readily purified by either recrystallisation or sublimation.
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In a similar reaction Kelly et 8179 have prepared morpholine-

cyanoborane~ IX~ in 29% yield by the reaction of sodium cyanoborohydride

wi th Hel and morpholine (44).

r-'\
o N-H + NaBH~N + HCI
'---.J

IX

1

+ NaCI +

(44)

The reaction of I2 with sodium cyanoborohydride in the presence

of a donor L would be expected'to generate LBH2CN addition compounds.

Martin and coworkersOO have investigated such reactions (45) and (46).

nL + (46)

(L = Lewis-base)

The addition of the Lewis base is delayed until the halogen has fully

reacted with the cyanoborohydride. Typical yields are in the region of 25%,

with no appreciable difference if chlorine or bromine are used in lieu of

iOdine.
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Displacement reactions which are a feature of amine-borane chemdstry

may also be used in the synthesis of amine-cyanoboranes. The displacement

of trimethylamine from trimethylamine-cyanoborane has been utilised by

Geanangel et az,81 in their synthesis of quinuclidine-cyanoborane, X, (41).

G +

x

(41)

The yield of white crystalline solid was 81%. The pronounced donor ability

and favourable steric disposition of quinuclidine render it an excellent

displacing agent, moreover, the triethylamine can be periodically pumped away

from the reaction mixture.
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4.3.3 Amine-Aminocyanoboranes

Gyori and Emri82 have synthesised several amino-cyano (pyrrolyl)

borane complexes containing a chiral boron, from the reaction of sodium

cyanohydridopyrrolyl borate - dioxanate, NaBH (NC4H4)2CN • 3C4H802 , XI,

with amine jhydrochloride, (48).

A.HCI

(48)

XI

/H:J
A.B-N" -CN

,
T.H.F R.T.

)

o
N

I
H

NaCI

Base displacement reactions from the 4-cyanopyridine complex 4 -CNC5H4N. BH

(NC4H4 )CN, XII, were also reported (49). They concluded that the cyano-:

Pyrroly1-borane is, like borane,83 a soft (or borderline) Lewis Acid.
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4.3.4 Reactions of Amine-Cyanoboranes

Kelly and coworkers53 have described the mechanism of hydrolysis of

amine-cyanoboranes in alkaline solution, (50).

It was found that cyanoborane adducts of (CH
3

) 3N and N-methy~-morpholine

reacted very slowly and at rates independent of alkali up to 0.09 M [OR] •

In oxidation studies wi.th iodine only 2% of the cyanoborane was oxidised

in 10 minutes at 200 C. This contrasts with the rapid oxidation of analogous

borane adducts. A similar decrease in reactivity has also been observed on

sUbstitution by chloride for hydride in borane adducts.
84

Although amine-boranes and sodium cyanoborohydride are known to be

effective and selective reducing agents, they have not as of yet been util-

ised in that field. Thus, reactions of amine-cyanoboranes have been limited

to their use in the synthesis of amine-carbaxyboranes and the corresponding

ester and amide derivatives.

The conversion of amine-cyanoboranes to amine-carboxyboranes via an

N-ethylnitrilium intermediate is shown in (51).

[Et 30 ] [ BF4]

----~> [(CH3)/.BH2CNEtl [BF41

XIV

o
n HCl

(CH3)/·BH2-C-OH <-----

XVI xv
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This reaction sequence was first reported by Spielvogel et al. 85

Compotmd XVI, is the protonated boron analogue of the dipolar amino acid

betaine. ( CH3) j - ~ - 0-. The use of triethyloxonium tetrafiuoroborate.

[Et30][BF4]~86 is critical to the synthesis. The N-ethylnitrilium salt,

XIV, was not isolated but instead converted in situ to the N-ethylami:de, XV.

87
Ammonia-carbo3cyborane, H

3
NBH2C02H, XVII which is the B· analogue

of glycine, H
3

NCH2C02H, was the first of the borane-analogues to contain

hydrogen bonded directly to nitrogen. Amrnonia-carboxyborane ~ be prepared

by an amine exchange reaction, (52).

(CH3 )jN·BH2C02H + NH3(liq)

XVI

----;» H3N•BH2C02H + ( CH3 )3N

XVII

(52)

Typical yields of XVII were 50-55%. Longer reaction periods did not

increase the amounts of product.

Ammonia-carboxyborane, which may be considered the parent of the class

of boron analogues of the a-amino acids, has like its glycine counterpart,

the ability to form peptide linkages and to be incorporated into proteins.

The structure of ammonia-carboxyborane (Fig. 2) has been established by

single crystal.X-ray analysis. 87

Figure 2.: . "A1tIJtKYft:ia Ct1:.t'boxyborane
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Spielvogel et aZ88
have also synthesised a series of esters derived

from boron analogues of amino acids, having the general formulation,

amine.BH2COOR. Trimethylamine-carbethoxyborane,

(CH3)!· BH2COOCH2CH
3

,

XVIII is isolated in 34% yield from reaction (12). Trimethylamine

89
carbomethoxyborane, XIX, was prepared in 52% yield by condensing

XIX

DCC
-----:>

XVI

(CH
3
)/.BH2COOH and methanol with .dicyclohexylcarbodiimide (.DCC) at room

temperature for 1 week, (53).
o
II

(CH3)/.BH2 - C - OH + CH30H
CH2C12

DCU

An extension of the reaction period to two weeks led to an increase in the

yield of XIX to 98%.

The trimethylsily1 derivative, (CH
3

)!.BH2COO Si(CH3 )3:'. XX, was

prepared via lithiation of (CH3)3N .BH2COOH and subsequent reaction of the

lithium salt, XXI with trimethylsilylchloride, (54).
o 0
II n C4H9Li II

(CH3)!.B~- C - OH > (CH3)3N.BH2 - C - .OLi
Et20

XVI

/
xx

(54 )

XXI
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The silyl ester was isolated in 58% yield as a clear moisture sensitive

liquid that solidifies on standing. Ammonia-carbomethoxyborane t

reaction

NH3(liq)+

H!.BH2COOCH3t XXII t was prepared in 49% yield by an amine exchange

involving (CH
3
)!.BH2COOCH

3
and excess liquid ammonia t (55).

o
II

( CH3 )! ·BH2 - C - 0 CH3

XXI

2 weeks R.T.

XXII
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4.3.5. Biological Activity of the Borane-Adducts

Both amine- and phosphine-cyanoboranes and carboxyboranes have

been shown to possess interesting biological properties. For example

they are known to be hyperlipidemic agents in mice, i.e. they lowered

serum cholestrol and triglyceride levels significantly.90 These compounds

appear to inhibit lipid synthesis in the early stages. The ability to lower

serum cholestrol levels appears to correlate with the suppression of the

regulatory enzyme of cholestrol synthesis, a-hydroxy - a-methyl glutaryl -

CoA reductase activity. The reduction of serum triglycerides correlates

with the ability of the borane to suppress liver fatty acid synthetase

activity. It was noted by Spielvogel and coworkers9l while studying the

effects of the a-aminoboron analogues on tumor cell metabolism, that these

agents interfered with oxidative phosphorylation processes of mitochondria,

inhibited lysosomal enzymatic hydrolytic activities and elevated cyclic

adenosine monophosphate levels. Since. commercially available anti-

inflammatory agents, phenylbutazone salicylates and indomethacin have

similar effects on cellular metabolism, the boron analogues were tested for

anti-inflammatory activity in rodents. Initial. studies showed that these

boron analogues can be used at safe therapeutic doses. Administration of

(CH3)~.BH2CN resulted in at least 50% inhibition of carrageenan-induced

edema in mouse footpads. Administration of (CH
3

)!.BH2CN caused 80%

inhibition of the writhing reflex, which is similar to inflammation pain.

In the induced arthritic screen in rats, three weeks dosing of C5H
5
N.BH2CN

c~used >80% inhibition, with (CH3)3N •BH2CN causing 96% inhibition. A

positive correlation with in vivo anti-arthritic activity is seen in the

ability of these boron analogues to elevate levels of cyclic adenosine

monophosphate, which account for the ability of these agents to block

lysosomal enzyme release and prostaglandin synthesis and release. The

exact mechanism by which these boron analogues cause elevation in cyclic
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adenosine monophosphate levels is not fully understood and requires further

study. Toxicity ani side-effects do not appear to be problems using boron

analogues at the required therapeutic dose.
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4.4 PHOSPHlNE-OORANES

4.4.1 Introduction

As early as 1890, Besson synthesised H
3
P.BC1

3
, the first compound

to contain a discrete P - B bond. 92 In 194~ Gamble and Gilmont93 reported

the preparation of H!. BH
3

• However the first systematic studies of

phosphine-boranes were not until 1953. 94 The unexpected thermal and

chemical stability of (CH3)3P.BH3 and its homologues, as well as the

formation of unusual cyclic and polymeric phosphine-boranes were of

particular interest. . 95-101 .Structural studies have shown that phosphl.ne-

boranes are similar to their nitrogen analogues. However, their compar-

ative1y peculiar properties such as inertness to oxygen and moisture and

sometimes even to strong acid and base, are claimed to result from. the.

low polarities and po1arisibi1ities of the P - B and B - H bonds rather

than from structural consequences.102-107

4.4.2. synthesis of P~~phine-Bo~es

4.4.~ .1. Arrrine-Di~ptac~ment

Most o-r the synthetic routes for the preparation of amine-boranes are

applicable to the synthesis of phosphine-boranes. Indeed, since phosphorus

is a much stronger base towards borane than nitrogen, the displacement of

a volatile amine from an amine-borane is a viable synthetic pathway to

phosphine-boranes, (56)

+ +

With an excess of phosphine, quantitative yields may be obtained.
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4.4.2.2. Iodine Method

The reaction of (C6H5)3P~ Na[BH4) and iodine in monoglyme (57)

reflux

inonoglyme
>

XXIII

yields triphenylphosphine-borane (XXIII) almost quantitatively.108 Mixed

phosphine-boranes may be prepared similarly. For example, dimethyl-

phenylphosphine-borane is prepared in 92% yield from (C6H
5

) (CH
3

)2P with

the above synthetic procedure.

4.4.2.3

In 1985, Imamoto et aZ~l09 reported a novel synthesis of phosphine-

boranes from phosphine-oxides. This one-pot synthesis employed a novel

reagent system, Li[AlH4] - Na{BH4] - Ce[CI]3. In THF at room temperature,

under N2 , various phosphine oxides reacted smoothly (58)

o

o-~ ~-RZ
- I

R.

o-~ ~~R_ I 2

H.
to produce phosphine-boranes in yields of 75-95%.

(58)

4.4.3. Bonding in Phosphine-Boztanes

It has been shown in a large number of physical and preparative

studies on phosphine-boranes, with a great variety of substituents of
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phosphorus and boron;3,94 that the P - BX3 group is greatly influenced

by the electronic effect of those substituents. In a study on adduct

stability Mente and Mills,110 reported that Me 3P. BH
3

is less stable

than the corresponding tribromo adduct but more stable than the trichloro

and trin uoro adducts.

Generally, species containing aromatic R groups, such as triphenyl-

phosphine borane have been found to be particularly stable. In fact,

(C6HS)3P. BH3 was unchanged after six months in air and was recovered un

changed from attempted oxidation with alkaline hydrogen peroxide. It was

. 0 . IIIalso reported to res1st 3MHCl at ISO for three hours.

Earlier studies on the bonding properties of phosphine-boranes have

included valence_bondl12 ,113 and molecular orbital descriptions.92-10l

It was suggested from these studies that the reduced polarity of the B-H

bond and the apparent non-hydridic character of BH3 are due to the contrib

utions of phosphorus d-orbitals and the BH3 group orbitals. An increase

in P-B bond order and a transfer of negative charge from hydrogen to boron

and phosphorus was also postulated.110 Experimental evidence such as the

comparatively high P-B rotational barriers,l08,l09 slightly reduced P-B

bond lengths and compressed C-P-C'bond ang1es,~08,109 has been noted.

However, dipole moment studiesl14-1l7 leave no doubt that phosphine-boranes

are molecules of high overall polarity and this also becomes obvious from

other gross physical properties; such as low solubilities in organic

solvents and high melting points.

4.4.4. Reactions of Phosphine-Ebranes

Like their nitrogen counterparts, phosphine-boranes undergo reactions

which involve retention of, or cleavage of, the phosphorus-boron bond. These

reactions, as well as the use of phosphine-boranes as hydroborating ~nts

are discussed below.
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4.4.4.1. Phosphorus-boron bond retention

In 1980, Schnadbaur et aZl18
reported the synthesis of forty-five

compounds from trimethyl phosphine-borane and dimethylchlorophosphine-

borane. Use of (CH
3

)2PC1. BH
3

allowed further substitution and reaction

to take place at the P-Cl bond.

The metalation of (CH3)3P.BH3' XXIV in the presence of ~etramethyl

ethylenediamine (59)

CH~
I.

CH3 - P .BH3I
CH3

XXIV

tC4H
9

Li

T.M.E.D.

CH3
I

:> CH3 - P. BH3I
CH2Li

XXV

formed XXV which undergoes a coupling reaction with (CH
3

)2PCl •BH
3

to

produce XXVI, (60) •

+

(60)

I

XXVI
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The introduction of a second trialky1phosphine moiety at the boron atom

in phosphine-boranes leads to the unsymmetrical cation XXVII, (61).

+

XXVII

- 202 -
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Metalation of XXVII yields the lithium complex, XXVIII, (62).

ICH3h\ /H

B

/ \
(CH3)3P H

. -2RHI ~LiR
-4Br

+

Br'":.

(62)

H. H

\ /
B

" / \ ,?H!
P P

CH; I I 'bt,
H........... C. C ---H

1\ /\
H 'Li ~ H

XXVIII

- 203 -

srt1



Further reaction of XXVII with metal halides leads to the synthesis of

the crystalline sublimable solids, XXIX and XXX, (63).

MCl t +

H H
\ /

B
C~, / \ /CH,

P . P

2 CH./ I I'c~
C C __

~ \ I H
H I 'L" \

H I tt
(THFh

-THF

-2LiCI

-

M =Mg or So

The reaction of other metals,o such as Au, with XXVIII were also reported.
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The reactivity o~ phosphine-boranes has also been studied in some

detail by Inamoto et aZ. 109 Metalation o~ the methyl group in

diphenylmethylphosphine-borane XXXI by sec-butyllithium in THF at -78°C,

(64)115 produce~ the lithium salt, XXXII.

XXXI XXXII

(64)

The carbanion o~ XXXII reacted with carbonyl compounds to give the addition

product, xxxrD, in high yields where R1 = n-C:rr1 - (92%); C6H
3

(CH202 ) (96%);

and C6H4N02 f85%) and R
2 = H (65).

~ OH

~~H3 I
P-CH2-c-R.

at
XXXIII

- 205 -
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The carbanion reagent also underwent oxidative coupling promoted by copper

copper(II) saltsl19t120 without impairment of the borane functionality.

An extensive study of the chemistry of diphenylphosphine-borane t

XXXIV was also undertaken. At room temperature t in the presence of KOH t

XXXIV reacted rapidly with alkyl halides to yield the phosphine-borane

derivatives t XXXV, (66).

XXXIV

MeOH

fA BH3RX. pO_R

KOH ~

V
xxxv

(66)

b

Further replacement o'f hydrogen in XXXIII by aldehydes and a, 8 -

unsaturated carbonyl compounds is also possible.
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4.4.4.2. Cleavage of the Phosphorus-boron bond

The BH
3

group in phosphine-boranes can be removed by reaction

with an amine such as diethylamine. This reaction has been proven to

proceed in a stereospecific manner with retention of configuration. For

example (8) - (o-methoxyphenyl) methylphenylphosphine-borane, XXXVI, is

. . ... XXXVII. (61) .121converted quant1tat1vely to the opt1cally act1ve phosph1ne ,

XXXVI

BHs

I
P-CHs

XXXVII

(61)

This reaction is completely reversible by the action of THF.BH
3

at room

temperature on XXXVII,

It is particularly noteworthy that in the above reaction sequences

the BH3 group acts both as an activating group and a protecting group.

That is, it activates the adjacent methyl group as well as the P - H bond

to deprotonation with a strong base, at the same time it protects the

labile phosphine group. On the basis of these results, Minamoto et at,

have developed a route to optically pure 1, 2- ethanediyl bis

. [(o-methocyphenyl) phenylphosphine], XXXVIII (68) which is an extremely

use:ru.l ligand in catalytic assymetric hydrogenation. Typical yields of
121

XXXVIII are > 80% which compare favourably with other synthetic routes.
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F':> BH3 8113 F':>
~ -P-CHt-CHt-i>-"\-y

CH30 '/ ~ OCHJ

(68)

I

XXXVIII
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4.4.4.3. Phosphine-boranes as Hydroborating Agents

Alkenes are normally hydroborated by use of either Me2S.BH
3

or

122 123THF.BH
3

adducts. ' However, these complexes are sensitive to

oxygen and moisture and their use involves special storage and handling

teChniques.123 Triphenylphosphine-borane is a crystalline solid

(mp l890 C) which is stable in air and can be recovered unchanged after

attempted oxidation with alkaline hydrogen peroxide .115 It is unaffected

by 3M HCl at 1500 C for 3 brs., but will exchange the hydrogen atoms

attached to boron for deuterium or halOgen.
124

Pelter et aZl15 found that

(C6H
5

)P. BH
3

can hydroborate oct-l-ene but that the reaction was incomplete

(75%) even after 16 hrs. reflux in 1,2 - dimethoxyethane. However, addition

of methyliodide (3 mol. equiv.) led to efficient hydroboration to the

octylboron, (XXXIX), (69).

(C6H
5

)jP·BH3 + 3 CH3-( CH2 )5~CH = CH2 + Mel

JRenux
(69)

(CH3 - (CH2 )7)3B + [Ph
3
P Me][I]

XXXIX

The optimum conditions are 6 hr. reflux in THF or 2hr. reflux in 1,2-

dimethoxYethane (95%) yield.

A further method for activation of triphenylphosphine-borane for

hydroboration would be to oxidise the triphenylphosphine to triphenyl-

phosphine oxide. However, since oxidising conditions are incompatible with

the survival of borane, Pelter et aZ chose instead to study the formation of

triphenylphosphine sulphide. It is known,125,126 that trialkyl and triaryl-

phosphines react exothermically with elemental sulphur, at different rates

depending on the sulphur allotrope used.127 Sulphur (S8) was added in a
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stoichiometric ratio of one sulphur to one triphenylphosphine-borane (70).

-----i:>

-

This prov.~d to be even more efficient for hydroboration than (8) result-

ing in a 92% yield of product in 2 hrs. (reflux THF) or 1 hr. (glyme).

Using these conditions cyclohexene was also 97% hydroborated.
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4.5

Introduction

As previously ~ntioned H3P.BC13
92 was the first compound known to

contain a discrete phosphorus-boron bond. Since then complexes of

( ) .. . l' t . t d 128-13BX
3

X=F, Cl, Br, I W'1th phosph1nes have been extens1ve y 1nves 19a e •

In contrast, however, relatively little work has been done on complexes

t .. BH X 137-141con a1n1ng y (3-y) groups.

Synthesis of Phosphine-Haloboranes

Previously, direct combination of BX3 groups (X=F, C1, Br, I) and

phosphines, both in the gas· state and in solution, produced adducts such

142.,.143 143 144
as Ph:f.BX3' MePh2P.BX3, PhPH2.BX3 and Ph2PH.BX3, and Me:f.BX3.

However, phosphine-haloboranes of the type (CH3)3P.BHyX(3_y) (X=Cl, Br, I

and y == 0, 1, 2) were synthesised in 1977 by Sisler and Mathur. 137

Trimethy1phosphine-monobromoborane (91.4%) and trimethylphosphine-

monoiodoborane (100%) were prepared by the reaction of trimethylphosphine-

borane and excess HBr and HI (71), (X~ Br, I).

(CH3)_P .BH3 + HX( ):J excess

l-bnochlorination of trimethylphosphine-borane did not go to completion

even after prolonged reaction with He1.

Trimethylphoephine-dibromoborane (94.2%) was the only soluble

dihaloborane adduct from the direct combination of trimethylphosphine-

borane with Cl2, Br2 or I 2 (72) •

.C
6

H6
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Only the monoiodoborane adduct was formed from the reaction with

iodine, even after 12 hours at 80
oc. Attempts to prepare (CH3)3P.BHC12

resulted in a mixture of products. Direct chlorination of (CH3)3P.BH3

produces the trichloro-adduct in very high yield, while the tribromo-

adduct is likewise synthesised in 91% yield.

4.5.3 Physical Properties of Phosphine-Haloboranes

Extensive study of the proton n.m.r. data of (CH3)3P.BHnX3_n

(n = 0, 1, 2, 3) by Sisler and Mathur131 led to the following general

conclusions. (i) The order of deshielding of the methyl protons by

B X "I B B B Cl > B H ( 1." 1..) A "140 f h "al- groups 1.S B- > - r > - - • compar1.son 0 c em1C

shifts of the methyl protons in the two series (CH3)3N.BHnX3_n and

(CH3)3P.BHnX3_n shows that the methyl protons in phosphorus compounds are

considerably less deshie1ded than the methyl protons in their nitrogen

analogues. (iii) The replacement of a hydrogen atom by a halogen on .

boron in the phosphorus compound causes less deshielding of the .methyl

proton than a similar substitution in the nitrogen compound. (iv) The

value of the C-H-3~ coupling constant increases as the size or the number

of halogen atoms bonded to the boron atom is increased in the series

Odom et al 142 reported a detailed spectroscopic study of the prop-

erlies of phosphine-trifiuoroboranes and compared those findings to related

compounds such as H
3
P.BH

3
- The dipole JIl()ment was· found from Stark split

tings to be 3. 13 ± o. 30. for H
3
P. BF3. The phosphorus-boron bond length

o .
was calculated as 1.921 ± 0.01 A. This bond length is the same within

o 146
experimental error as that for H

3
P.BH

3
(l.931 ± 0.005 A), but longer

than in Fl.BH
3

(1. 836 ± 0.006 ~) .140 and approximately equal to those of

. 0 141 148
the methy1phosph1.ne-boranes (N 1.91 A) _ '
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Reactions of Phosphine-HaZoboranes

The reactions or phosphine-haloboranes are nowhere near as well

documented as those or their borane counterparts. Martin and coworkersl49

have reported reactions such as (73).

Q
+

30minjc I HI

25 •

oN/. (XS)

+

P I -

- H N
. ~ I

to compare the displacement of iodide by amines and phosphines. From a

o 01 () 0 143 diS1JD1 ar study of CH
3

3N .BH2I,. RyschkeW1tsch has concluded that s-

placement of iodide from boron was faster than displacement of amine or
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phosphine. This is due, to a large extent, to the weakness of the

boron-iodine bond relative to the boron-nitrogen or boron-phosphorus

bonds.
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4.6 PHOSPHlNE-C'YANOIDRANES

4.6.1 Synthesis

Using a synthesis similar to that for triphenylphosPhine-borane,8

142Martin and coworkers synthesised a series of phosphine-cyanoboranes.

Yields of approximately 50~ were obtained from the reaction of a concen-

trated monoglyme solution of triphenylphosphine and (BH2CN). However,
n'

an attempted synthesis of triphenylphosphine-cyanoborane by the reaction

of sodium cyanoborohydride with Ph
3
P.HBr in THF produced no detectable

quantities of product t even after ref'luxing the reaction mixture for one

week in THF.

Das and Roy150 using the synthesis outlined in (74) prepared the

following phosphine-cyanoboranes.

Monoglyme [ ] (B )
--~--~> n Na I; ... + H2CN n + !!. H2 t

2

;>

R ~ n -C4H9 (70%); ~ -C6H13 (50%); oycZo -C6Hll (65%);

n -C6H17 (55%); and R3 = (C6H5)2(4-CH3C6H4) (54%).

The reaction is slow and requires two days stirring. The authors claimed

that THF, Which was found to be a good solvent for triphenylphosphine-

cyanoborane, is inefficient here.

4.6.2 Reactions of Phosphine--Gyanoboranes

Using analogous routes to- those outlined for amine analogues t

W·• NIt Z149 . .J.SJ.8n- e son e a synthesJ.sed a serJ.es of phosphine carboxy borane

derivatives containing the triphenylphosphine unit. This series and typical

yields of products are outlined in Scheme 1.
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4.7 ARSlNE-OOHANES

4.1.1 Introduation

The discovery2 of stable boron-phosphorus compounds, e. g.

H
3
P.BC1

3
,92 Me

3
P.BH

3
,94 etc., and trimers and tetramers based on the

[(CH3)2P.BH2]n and the [(CH3)2PB(CH3)2]n units (where n = 3, 4) raised

the question as to whether analogous boron-arsenic compoundE$ could be

prepared.15l In a study of such compounds, Stone and Burg152 reported

the preparation and properties of several arsine-borane monomers and

polymers. Generally As-B compounds are similar to the corresponding

P - B compounds ,however arsenic-boron bonds are generally weaker than

those of the analogous phosphorus compounds.

4.1.2. Synthesis of Arsine-Boranes

The synthesis of trimethylarsine-borane (XXXXV, (15) is carried out

(15)

XXXXV

in the gas phase, by direct combination of the reactants, on a high vacuum

system.153 Other arsine-boranes prepared are the trihalide-adducts,

Me
3
As.BX

3
(X=Cl, Br)154 and triiodo-adduct Me

3
As.BI

3
, 155all using vacuum

line and inert atmosphere teChniques. 156

4.7.3. Physiaal Proper-ties of Arsine-Bor-anes

Mente and Mills
144

have calculated the enthalpy of reaction for

trimethylarsine and borane as -49 ~ 6 K cal mol-1 •

144
As noted for the series Me 3P •BX

3
(X = H, F, Cl. Br), Mente and Mills

found that Me~.BX3 (X = H, Cl, Br) also had small saturation vapour pres

sure at room temperature. The sequence of adduct stability for the
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Me
3
As adducts was established as Me

3
As.BBr

3
> Me 3As.BH

3
> Me

3
As.BC1

3
.

In a mass spectral analysis of these compounds it was found that most of

the ion current was carried by ions derived from the Me
3
As or BX

3
units.130

Comparison of Arsine- and Phosphine-Boranes

From experiments involving successive displacement of bases s Mente

and Mills144 obtained the following sequences of adduct stab~lity:

Me3P.BH3 > Me~s.BH3; also Me 3P.BC13 > Me3As.BC13 > Me 3Sb.BC13 ; and

Me
3
P.BBr3 P:$ Me

3
As.BBr3 > Me

3
Sb.BBr

3
• These sequences are in accord with

the order determined with gas-phase calorimetry .157 The general trend of

Lewis-base strengths s predicted by Hewitt and Holliday in 195394 on the

basis of melting points of the respective borane-adducts, was found to

correspond exactly with the results of the gas phase displacement reactions

of Mente and Mills.
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4 .8 RESULTS AND DISCUSSlOO

The work presented here is divided into two main sections tone

dealing with borane and cyanoborane derivatives of N-donor systems and the

other with some P-donor derivatives. The first section includes subsections

dealing with a comparison of some of the methods for preparing amine-boranes

and cyanoboranes t an X-ray crystallographic study of 4-Me2NPy BH2CN t a new

route to pyrazaboles and the isolation of an unexpected product, (Ph«)))

(C 6Hll) • The second section deals with the methods of preparation of

Ph
3

P.BH2CN and some of its reactions.

Section I: Subsection (i)

4.9.1.1. Comparison of Synthetic Methods for Adducts of Arrrines

The general synthetic routes to borane adducts of amines were diSCUSSed

earlier (Se'Ction '4.1.:1) .. From a study of these preparations a number of

general connnents pertaining to the present work can be made. First, the

procedure of Schaeffer and Anderson,
2

method (a) , involving the reaction

between amine-hydrochlorides and sodium borohydride, and a later version

reported by Spielvogel and coworkers77 using sodium cyanoborohydride was

found to be successful only for the synthesis of monoamine adducts (16).

[11. R2 R
3

0] [Cl];'+ Na[BH
3

X]

. Refiux 1T.R,S.

11. R2 R3N.BH2X + Na[Cl] + H2

X= H, CN

(16)

The borane adducts prepared in this way were all isolated in high yield and

in some cases were of analytical purity. The cyanoborane adducts were gener

ally achieved.in lower yields .(see Section:4.3.2. for discussion of this).

However, when either sodium borohydride or cyanoborohydride was reacted with

diamine- (LV, LVI and LVII) and triamine- (LI) hy:d~chlorides, no borane
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containing products were isolated, irrespective of reaction conditions

(See Experimental Section).

A more widely applicable rate was that devised originally by Nainan

and RySChkewitsch
8

and modified by Martin and coworkers79 for cyanoborane

derivatives. Both of these syntheses involve the reaction of amine with

iodine and either borohydride or cyanoborohydride in monoglyme (77).

Reflux 1 Monoglyme

~ ~ R3N.BH2X + Na[I] + ~H2

X=H, CN

The difference between the two methods is that the former (b (i) ), involves

the addition of an iodine solution to a mixture of the amine and borohydride

in monoglyme. Then the borane complex being generated reacts illDIlediately

with the more strongly coordinating amine to form the adduct. In the

latter method, (b(ii» the borane-monoglyme complex is prepared separately

prior to the addition of the amine. Both methods b(i) and b (ii ), produced

borane and cyanoborane adducts of simple monoamines in good yields, with

the yield of the cyanoborane adduct less than that of the borane derivative

e.g. {C6Hll)2NH.BH2X (X = H, 95.6%; eN, 87%). However, only the latter

method afforded reasonable yields of adducts of more complex amines.

Moreover, the use of method b{i) in the attempted syntheses of borane and

cyanoborane adducts of diamines (3, 5-dimethylpyrazole) triamines (1, 3

bis aminopropylamine) and tetramines {N, ~ - bis -(3- aminopropyl)

piperazine) generated an unusual product, cyclohexylphenylk etone, which is

discussed below.

4.9.1.2. Amine-boranes

The amine-boranes prepared in this work are listed in Table I. Their

empirical. formulae were confinued by C, H, N. and B chemical. analysis. Both
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adducts of tertiary amines were liquids while those of the primary and

secondary &mines were solids.

Each of the &mine-boranes has characteristically strong B-H absorp

tions in the region of 2250 to 2400 cm-l in the infrared spectrum. The

spectrum of dicyc1ohexylamine-borane is typical and also shows N-H and

C-H absorptions (Figure 3). The B-H stretching frequencies for the amine-

boranes are also listed in Table I.

TABIE I: Amine-borane Data

Compound M.P. b~p. '.~VB-H Method.
Yield/%

a t>"(i) b(ii)
..

(CH3 )3CNH2· BH3 96..98 2380(9); 2360(~h); 90.5 93.6

2340(sh); 2320(m);

2210(in) •

(C6Hll)iffi·BH3 101-102 2380(s ); 2340(w);. 98.9 95.6

2320(w); 2210(Di);

(C2H5 )3N•BH3. 42-44 2350(br,s); 2230(s)

(0.02mm)

(C4H9)2NH •BH3 25-26 2310(s'>; 2360(sh); 68.2

2330(w); 2280(m) .•

(C4H9)3N.BH3 120 238o-2320(br, v'.:s. ) 63.8
(1.5DDD) 228o(s)

-
t·

The "B chemical shi:rts for amine-boranes of the type R
3

H .BB
3

are
-n n

typically fOlmd in the region :from -5 to -24 p.p.m. and the shielding of

the boron atom increases with increasing values of n.151 This effect is

refiected in the difference of approximately 3 p.p.m. between the primary

amine adduct, t-butylamine-borane (fB-24.6 p.p.m.) and the secondary amine

adduct, dicyclohexylamine-borane 4.-e -21.6 p.p.m.). Other data foro 'II and

- 222 -



L.

c5 C are given in the experimental section below.

4.9.1.3. Amine-cyanoboranes

The cyanoborane adducts that were prepared were white, crystalline

solids which were soluble in ethanol, benzene, THF and halogenated hydro-

carbons. Each was thermally stable and had melting points as follows:

196-1910 (dicyclohexylamine-cyanoborane); 153-154
0

(aniline-cyanoborane)

and 126-128
0

C (4-dimethylamino-pyridine-cyanoborane). The infrared spectra

were characterised by LH; B-H, C-H, C s N absorption frequencies. Table

2 lists the B-H and C~ N stretching frequencies together with the prepar-

ative methods employed and the yields obtained. The infrared spectrum of

dicyclohexylaminocyanoborane is typical and is illustrated in Figure 4.

TABIE 2: Infrared Data, Preparative Methods and fie l,ds for Amine-cyanoboranes

Adduct . " B-H ...'V C;;N Method

Yield 1%

a b{i) b{ii)

(C6Hl1)~.BH
2

CN 246oCsb) ; 2430rw·) ; 2180(s) . 45.8 86.9

236o( s>; 2310~ );

2280~ ); 2230{ J.

C6H5NH2•BH
2

CN 2400('g) ; 2365~) ; 2180(M) 18.88 82.4

2305~ h).

~Me2 C5H~N.BH2CN 2400('S> ; 2360~h); 2210(M) 24.8

228o~.h); 2245~ );

---
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In a study of the isomers Me
3
N.BH2CN and Me

3
N.BH2NC, Vidal and

Ryschkewitsch158 compared the C ~ N stretching frequencies and found that

the i socyano absorption at 2 135 cm-1 was at least 50 cm-1 lower than the

cyano group frequency which ranged from 2180 to 2280 cm-1 The CN

8 -1frequency for both LXVI and LXVII is 21 0 cm while that for LXVIII is

-12210 cm which precludes the possibility of the isocyano isomer being

present. Moreover it is expected that the cyano linkage is pro1?ably formed

because of the thermodynamic preference of the boron-carbon over the boron-

nitrogen bond; demonstrated by the ease with which both Me
3

N.BH2NC and

Na[BH
3
NC]159 isomerise to Me

3
N.BH2CN and Na[BH

3
CN] respectively. Further~

more, in view of the experimental conditions used in the synthesis of

amine-cyanoboranes i.e prolonged refiuxing in either THF or monoglyme,' it

is unlikely that the isocyanoborane adduct would be isolated. 77 , 84, 86, 87, 160

Wade et aZl ?9 reported that, in the synthesis of Na[BH!C], the isocyano

borohydride isomer is only isolated if the solvent is removed from the

reaction mixture at room temperature and no heat is applied to the system

at any stage. Even then the isocyancAsomer is only the minor product as

shown by quantitative infrared analysis which gave a ratio of 4 : 1 for

cyano ;: isocyano isomers.

The U.s chemical shifts for aniline-cyanoborane (~B -13.34 p.p.m.)

and dicyc10hexylamine-cyanoborane (-40.1 p.p.m.) are somewhat disparate.

However, those values are comparable with reported signals for trimethyl

amine-eyanoborane (-; -15.1 p.p.m.) ,161 quinuc1idine-eyanoborane (t!'B -15.2

p.p.m. )38, 2-methylpyridine-eyanoborane (-36.3 p.p.m.)80 and Pyridine-eyano

borane (,6B -34.9 p.p.m. )79. The upfield shift for the eyanoborane adducts

over the borane adducts e.g. dicyc1ohexylamine-borane (i~B -21.6 p.p.m.) and

t . . (0 8 )162 . l.pr1.methylam.ne-borane ~,~ - .1 p.p.m. 1.S due to the rep acement OoL

hydride by cyanide in the borane group.
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4.9.2 Subsection (ii)

4.9. 2.1. 4- Dimethylamino-cyanoborane LXVIII

The success:rul synthesis of 4-dimethylaminopyridine-cyanoborane,

LXVIII was highly dependent on the method used. When method b (ii) was

employed the product was isolated in 24.8% yield (78).

Reflux Monoglyme ~8)

CH3

. \ ~-/~-BH~CN +
~eH/

3 LXVIII

Use of method b (i ) , involving the addition of a solution of iodine to a

mixture of 4-dimethylaminopyridine and sodium. cyanoborohydrid.e in monog1yme,

generated only a complex mixture from which no pure products could be

isolated. Furthermore, no replacement of hydride by cyanide was achieved

when 4-dimethylaminopyridine-borane was retluxed with mercuric cyanide in

THF.

Crystals of LXVIII suitabl.e for X-ray crystallographic study were

grown tram acetonitrile sol.ution and sent to Professor George Ferguson,

Chemistry Dept., University of Guelph, Canada. Professor Ferguson completed

a successful solution of the structure (See Experimental Section) The

results of this stud¥ are discussed bel.ow. Figure 5 is an ORTEP view of

canpound LXVIII.

Not surprisingly, the cyanoborane group is coordinated to the pyridine

nitrogen since this is more basic than the dimethylamino nitrogen. SUCh
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Fi(ure 5: Structure of 4-Dimethylamdnopyridine-cyanoborane

- 227 -



behaviour was suggested by Martin and coworkers
11

in their study of the

reactions of 2-,3-, and 4- aminopyridines with dimethylsulphide-borane

(79) •

I
+

+

Likewise, the coordination of 4-dimethylaminopyridine to transition metals

also occurs through the pyridine nitrogen. An example. of this was previous
1"66'

ly reported by Ferguson and coworkers in 1982 when they published the

structure of chloro(3-dimethy1amino)-1- formy-1 -2, 2-dimethylpropyl -C,

.N) '- (4-(dimethylamino )pyridine) palladium (Figure 6)

HAl

HS}
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Figure 6: Structure of Chloro-(3-dimethylamino)- .{ - formyl I -2~

2-dimethy/"propyl -C~N) - (4-(dimethyl-amino)pyridine)

Palladium (II)

The single crystal X-ray structural analysis of LXVIII not only

confirmed that the pyridine nitrogen coordinates the BH
2

CN group but

showed t also t that the aromatic character of the pyridine ring is some-

what disrupted to give an essentially planar molecule with a more localised

bonding structure which could be represented as in Figure 1. The torsional'

angle for atoms N1 -c4 -C5 -c6 is 119.1 (3)0.

Figure 7.: 4-Dimethylcuninopyridine-c!yanoborane

This may be compared to the corresponding value in 4-dimethy1amino

pyridine (Figure 8) of 111.36 (3)0 which is closer to the "expected"

RR2N - angle of 1090 in ammonia based ~tructures.

Figure 8l 4-Dimethy larrrinopyridine

In the aforementioned palladium complex the corresponding angle is

163.30
•
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In 1978, Spielvogel and coworkers
164

reported the structure of

ammonia-cyanoborane (Figure 9). Table 3 lists a comparison of these

comparable bondlengths.

i
Figure 9:' Arrmonia-cyanoborane

TABlE 3: CompaPison of BondZengths in ();XII) and Arrmonia-cyanoboranes

Bond LXII Arrmonia-cyanoborone-- --
AO AO

B - H 1.12 (3)

B-N 1.574 (3 ) 1.511(3)

B - C 1.573 (2 ) 1.589(3)

C ~ N 1.130 (2) 1.141(3)

There are slight reductions in the bond lengths ot LXVIII over those

in BJIID)nia cyanoborane, the most significant of these is the boron-carbon
o

linkage which is 0.016 A shorter in compound LXVIII. However, this could

be attributed to experimental error. In ammonia-cyanoborane the (ammonia)

N(1)-B(2)-e(3) and B(2). -C(3)-N(4) (cyano) angles are 101.6 (2) and

119.6 (3)0 respectively. In compound (LXII), the corresponding angles

N(l) -B(10)-e(11) and B(10)-C(11)-N(12) are 108.6(2) and 119.9(2)0

respectively.
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In 1975 t McPhail and MCFadden t
165 published an X-ray crystal

structure characterisation of cycZo(hexacyanoborane)t (BH2CN)6 (Figure 8).

The average B-C and B-N bond lengths were 1.561 (6) and 1.565(6)~

respectively which are shorter than the corresponding bond lengths in

both compound (LXII) and ammonia cyanoborane.

Table 4 compares the relative bond lengths of compound LXVIII and

4-dimethylaminopyridine. Comparison of bond lengths C2-C3 and C5-C6

(1.375(2) and 1.381(2) R respectively) and C3-C4 and C4-C5 (1.403(2) and

1.404 (2) i respectively) with the equivalent bonds in LXVIII t C2-C3

(1.355{3)X); C5-c6 (1.353(4) ~) and C3-C4 (1.414(2) ~); c4-C5 (l.404(3)~)

clearly shows the changed electronic character of 4-dimethy1aminopyridine

when coordinated to cyanoborane. Further proof of the localised bonding in

LXVIII is obtained from a comparison of C4-N7 bond-lengths. In 4-dimethy1-

aminopyridine this is typical of a conventional carbon-nitrogen single

bond at 1.361(3) i.166 In the adduct, LXVIII this C4-N1 bondlength is

reduced by 0.032 Rto 1.355 (3) Rwhich apprcaches a C = N linkage

(e.g. 1.l44(3) i)161. 'Furthermore, the nitrogen-boron bondlength, Nl-B10

of 1.514 (4) i in LXVIII shorter than that in trimethylamine-borane

(1.638 i)13 and other B-N bonds in amine-borane adducts of 1.65 i in

(CH
3

)3N•B( CH
3

)3 and 1.636 i in (CH3 )3N•BF3. However t the observed B-N

bond length in LXVIII does not reasonably imply that there is a signif-

icant amount of 1t " bonding present t since the B-N value in ammonia-cyano-

borane (1.511 (3) i) is very similar. On comparison of B-N bondlengths

with borazine, which is recognised as having 1T '," bond character the value

of 1.44 (3) ~ 168 in borazine is 0.13 i shorter than in LXVIII.

Table 4 also lists a comparison of the bondlengths in LXVIII with

. 1 163
the previously mentiDned aminopyridine coordinated pa.lladium comp ex.

As is evident from the data in Table 4 the bondlengths are more similar
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FigUre 8: Cyclo(hexacyanoDorane)

- 2;32 -



TABLE 4 Bond IX.tanDH -us AngetrQIII

CH" --G
• \. I

eH"'" \\. I,

4 ou.1;hfI7.anri.nD-w~

CIk =0 "",H~:. 1-I-c.I
"'" - 'HCH,

4-rxm.ihIIl4ml1lOp1l~anobol"Cl1Ul

Cit" --G ./• ~ .-P~
CH,"'" \.\. I ,

Ch 'toro- (3-di.mtlthll tanri.no) ..f-Fo"", Z-2~ 2
dimsthyZpl'opyl-C~N) - (4-(dimsthyl.arnino)
pyl'idins)-PaZZadium (II)

I
f\)
W
W

I

Ate. I Ate. 2 Dbtance. Atoa I Atoa 2 Dbtanc. AtOll I Atoa 2 Dbt8llc.
................

_I C2 1.335 HI C2 1.345 HI C2 1.353
...

HI C6 1.337 Nl C6 1.342 Nl C6 1.353
. . ..........................

N1 810 1.574
'" .

C2 C3 1.575 C2 C3 1.355 C2 C3 1.355. . .................................

C3 C4 1.403 C5 C4 1.412 C3 C4 1.412
... . ..... ,.

C4 C5 1.404 C4 C5 1.404 C4 C5 1.413
" .... . ...............................

C4 HI 1.367 C4 117 1.335 C4 N7 1.346
....... . ...............

CS C6 1.381 C5 C6 1.353 C5 C6 1.264

N7 C8 1.452 N7 C8 1.449 117 C8 1.451

N7 C9 1.452 117 C9 1.448 N7 . C9 1.468..................

810 Cll 1.573
Cll 1112 . 1.lJO ...



especially in the region of the pyridine ring system. The C2-C3 t C3-c4 t

and C4-C5 bondlengths are the same in both compounds with a difference of

0.01 i between the C5-C6 bondlengths. The C4-N7 bondlengths in the trans

i tion metal complex at 1.346 (4) i is 0.011 i longer than that in compound

LXVIII and possesses the same single bond character as 4-dimethylamino-

pyridine. However t differences are apparent in the dimethylamino to the

pyridine ring moiety. Apart from the C4-N1 disparity the N1-C9 bond

length in LXVIII (1.448 (4) R) is significantly shorter than that in the

palladium complex (1.468 (6) i). However, the difference between the

N7-C8 bondlengths in both compounds is Just 0.002 i.'

The C Ii N bondlength in both compound;'LXVIII (1.130(3) R) and

ammonia-cyanoborane (1.141(3) R) are shorter than the value listed for a

C • N bondlength (1.144 (4) ~) listed by Greenwood and·Earnshaw.161 This

may be due to greater back-bonding from the boron atom which in LXVIII has

a formal negative charge.

4.9.3 Subsection (iii)

4.9.3.1. Bomne-Pyrazole Cherrristlty

The reactions of pyrazoles with borane or cyanoborane generated by

reaction method b(i) were potentially interesting for two reasons. First,

to see if the reactions between pyrazoles and borane would f'urnish the

monomeric species (80).

ll.] Na[BH4]
I

+ + l' 12

(80)
I
H

I
JL.] + Na[l] + H2

B( I
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or whether dimerisation would occur to form pyrazaboles{ dimeric (1-

pyrazolyl) boranes} ~81).

NQ + 2N&[BH41 .f- '2

,

IH

(81)

~H, / \ /H
+ H22Na[lJ B B

H/ \ I 'H
N N

~

The second point of interest was to attempt to prepare the first B-CN

containing derivatives of (80) or (81). In the case of (80), the borane

adducts had been previously prepared by Noth and Wrackmeyer .169

Pyrazaboles such as in (81) had been prepared by Trofimenko from the

reaction of pyrazoles with trimethylamine-borane in refluxing toluene (82 )170
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reflux .toluene (82)
,

R

+

R
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4.9.3.2. Reaction of Pymzo les lUith Borane

The parent pyrazole (a) and two C-substituted derivatives were used

in the present work. The derivatives were C-substituted (b) 3, 5-dimethyl-

pyrazole and (c) 3-phenyl, .5-methylpyrazole. Both pyrazole and 3,5-di

methylpyrazole reacted readily, via method b (i), to yield pyrazabole

species in high yields (80.1 and 80.8% respectively). These compounds were

characterised by analysis, melting points, infrared and n.m.r. spectroscopy.

Both py~azabole and its tet~methyl C-substituted derivative were isolated

as colourless crystals with melting points (6'0-81 and l12-14°c) respect-

ively. They are unaffected by air and moisture and are soluble in

halogenated hydrocarbons, THF, monoglyme and benzene.

Table 5 lists the B-H stretching frequencies for both pyrazabole and

1,3,5,1-tetramethylpyrazabole. A characteristic feature of the infrared

spectra of both pyrazaboles is the B-H stretching frequency. This feature

is quite complex in pyrazabole itself where eight absorptions are present.

Th 4 -1 .e peak at 2 10·cm 1.S the strongest and the others are of gradually

decreasing intensity with the exception of the 2310, 2280 cm-l pair where

the higher frequency peak is the Weaker of the two. Trofimenkol10 has

suggested that the complexity of the B-H stretching region.is in~onsistent

with a planar model of essentially D2h symmetry and supports a puckered

structure as indicated by molecular models.

The presence of triplet signals in the 'H coupled "B n.m.r. spectra

strongly suggested that the products were dimeric, i. e. pyrazaboles.

Figures 10 and 11 illustrate the coupled and decoupled "B n.m.r. spectra~

for 1,3,5, 1-tetramethylpyrazabole. Table 6 lists the 'H, "B and l3C
,

data (including results from DEPT spectroscopy) which were obtained for

the pyrazabole products.
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(a)

-5
i

-lB -]5
PPM

-20 -2~

• t"
"Figures 10 andll: "B (8) and "B { H} (b) n.m.r. spectra of

1, 3, 5, 7- tetra.methylpyrazabole
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TABlE 5:
8

BH Stretching Frequencies For Pyrazaboles

Pyrazabole

2410

2430

2410

2310

2310

2280

2250

2240

a Fr .. -1equenCl.es l.n cm

1, 3, 5, 1 - Tetramethy1pyrazabo1e

2450

2380

2320

2280

2240

2210

- 239 -



~8: NwU""",,z.az. ••r Data to,. PvNllabo14.

I
f\)
::
o
I

c~ $1 J H.("Bl ~I £"B, 'Ill S'C t'll DIP'l'! DIP!' Jf dB J"lSf'IJ Aaeill1ement2'

Pyra&abole 3.62(.) 3.62(.) ~

6.28(",) 6.28(t) 6.28(.) C!.
· . 7.60(1"\) 7.60(4) C!-

. 105.36(.4 ) 105.31C~.) C!-

· . 134.79(.) 134.79(.)· C!. .

· . -7~65(t -7.65(.) !B2. . ., .. . .. .. . . ...

1l.3,5.7, -tetra 2.29(.) 2.29(.) Cl3..tbJ1 p)Tau.~~ .. . . ..... ' ...... . .
· .

3.'"(.) BH2. . .. .. ........ . .......... ...... . .. ..' ..

5.36(.) 5.36(.) C!... . . . . . . .......... . ....... . .....

u.84C.) U.S..(.} £113... ... .. ... . . . . ........ .. . . . .... . ....

10,.61(.) ......... .105.97(.·) £II. . " . . . " . . ....

... . 143.67(.)· ... .-..... ....... , .... .£-oB3
" . . . . .. .......... . ..... . . ..

-U.07(t) -11.07(.) .2



,
The H n.m.r. spectrum- of pyrazabole is shown in Figure 12 and the

13C spectra for both pyrazaboles is shown in Figures 13 and 14. The

spectra obtained are reasonably straight-forward and easily assignable

due to the symmetrical nature of the products. Although 'H and 13C data

had previously been reported170 "B and 'H {!'Bl had not.

The reaction between 3-phenyl, 5-methylpyrazole, sodium borohydride

and iodine in monoglyme did not lead to the expected pyrazabole derivative

(Figure 15).

N

\~
B/ 'H

..N

Figure 15.:. 1 ~ 5-diphenyl~ 3~ 7-dimethylpyrozabole

Indeed, the product which was isolated from this reaction did not

contain any nitrogen. The infrared spectrum consisted of peaks correspond-

ing to aromatic and alkyl CH stretching as well as BH stretching frequencies.

The 'H n.m.r. spectrum' (Figure 16) consisted of aromatic signals in the

region of 1.25 p.p.m. and possibly a methyl resonance at 1.41 p.p.m. The

ratio of aromatic : alkyl protons was 2 : 1. One interesting feature of

this spectrum was that on comparison with the 'H n.m.r. spectrum of the

starting 3-pheny1, 5-methylpyrazole (Figure 11) the unique heterocyclic

ring CH resonance at ~·5.2 p.p.m. was absent in the spectrum of the product.

Since this product was not a pyrazabo1e further reactions were not

pursued. However t X-ray quality crystals of this compound were sent to

Professor Ferguson of the University of Guelph for structural analysis.

At the time of writing these results were not to hand.
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,
H n.m.r. spectrum of product of 3-pnenyl, 5-methylpyrazole reaction
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Trofimenko,1 70 has commented that the geometry of pyrazole is

favourable to a cyclic five-centre transition state and suggested the

possible mechanism shown in Scheme 2.

Scheme 2ti Mechanism of PymzaboZe Forrration

• N'~
I I

I I

I I

H B, ,, ,, ,
R

-R

\
R

U1
N -N

\
B -----'R

\

This mechanism has been suggested to operate where BR3 is trialkyl- .

boranes, tri~ylboranes and weak borane-solvent complexes such as borane

-THF and borane-monoglyme.
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It is also possible for the l-dialkylborylpyrazole fragments, apart

from dimerising, to react with pyrazole itself (83).

d f)
N \ + / N

B H

", R

R

I (83)

DR, / \
B H

R/ \ /
N - N

U

It has been shown, however, that hydrogen poly(l-pyrazolyl) borates

disproportionate irreversibly at elevated temperatures to pyrazaboles and

pyrazoles. Moreover, the electrophilicity of the BH2 group surpasse~ that

of the pyrazole hydrogen, and hence the possibility of reaction (83) above

is of minor significance. The' intramolecular activation by coordination

suggested above is analogous to the reactions of boranes with carboxylic

acids, the mechanism of which was proposed by Brownl1l and confirmed by

TopoIt:.er, Deasy and Green. l12 While the transition state in borane-
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pyrazole reactions may involve a five-membered ring, electrons are

relayed along the pyrazole' s 1t system and in that sense an eight-membered

ring is involved in the transition state.

A brief comparison between the reactions reported in the present

work and the reactions employed by Trofimenko is in order. The previous

use of trimethylamine-borane means that a strong donor molecule is

involved as opposed to the weak borane-monoglyme complex used in the

present work. Trofimenko170 suggested that an equilibrium involving tri-

methylamine -1- pyrazolyl-borane is established (84).

rIl
N - N

'/
H

reflux
----~:>

toJu ene

The reaction (84) is driven to completion by removal of trimethylamine

and hydrogen from the system and irreversible dimerisation to generate the

pyrazabole. Clearly the present reaction which utilises the borane-

monoglyme complex, generated in situ by method b (i), coul.d proceed more

efficiently since the donor strength of an ether is less than an amine.

Attempted Preparations of B-CN Containing PyrazaboZes

Previously B-substituted groups in pyrazaboles have been limited to

aJ.kyl and (R2B)20 groups where R = C2H
5

, C6H5l73~ Due to the known

potential of cyano groups for further reaction in amine-adduct chemistry

the preparation of B-substituted pyrazole derivatives such as Figure 18

was attempted.

- 2li9 -



Figure 18: i, 3,5, 7-tetrart'SthyZ- 4,8-diayano pyrazabote

The reaction of pyrazole with cyanoborane-monoglyme complex by

method b(i) led to a mixture of products from which no pure products were

isolated. However, the reactions of 3, 5-dimethylpyrazole with cyano-

borane-monoglyme under the same conditions generated high yields of an

unusual product, cyclohexylphenyl-ketone. This result is discussed in

more detail in Section 4.9.4.

4.9.4 Subsection (ivJ

4.9.4.1. Isotation of an Une3:pected Product (Cyctohexytphenyt'ketdneJ
from Reactions of Potyamines by Method b (iJ

A most unusual feature of the chemistry reported here was the

isolation in high yields (80-90%. based on amine-borane reagents) of cyclO-

hexylphenyl ketone from certain reactions using mathod b (i) • This ketone

was produced from the following reactions irrespective of whether they were

carried out at room temperature or under reflux conditions; (i) S.9dium

borohydride and iodine with' (a)N,N' -bis -(3-aminopropylpiperazine) or

(b) 3, 3' - bis-aminopropylamine and (ji) the reaction of sod!um cyanoboro-
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hydride and iodine with 3, 5-dimethylpyrazole. Each of these reactions

were carried out in monoglyme. When the reaction was completed the mono-

glyme solvent was removed in Vacuo and the resulting semisolid extracted

with benzene. Evaporation of the benzene and recrystallisation from ether

solvents afforded cyclohexylphenyl ketone as colourless crystals. The

ketone was characterised by analysis, melting point, infrared, 'H and l3C

n.m.r. spectroscopy. Table 7 lists the major infrared absorptions.

TABLE 7: Infrared AbsoX1Jtions for Cyelohexylphenytketone

AbsoX1Jtion Assignement
-1cm

3040 (w)

3070 (M) kt°- CH

3010 (Sh)

2930 (br,s)

2840 (s) CH2

2790 (Sh)

1665 (8) C = 0

1580 (8) ArCH

Full characterisation was accomplished with high .field 'H and l3C n.m.r.

and DEPT experiments" Table 8 lists the 'H and l3C chemical shifts and the

DEPT data.
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TABlE 8. 'B. tiC and DEP'1 LGta fof' CVo7.0Julqlph6nytJcstoM

I

N
V1
N

I

iff.. IntBJIIsity Assignemmt ..felts] .DEPT 3.. DEP'1 .. Assigne-
pp"'f

_.
ppm ~pm ppm 2 mmt

1.19-l.54{.) 6 la,b 25.70 25.70(-ve) . a,b{l:2)

(.) .. Bo 29.26 29.26(-ve) c

3.2"(t of t) 1 B4 45.32 1&5.32(+,") 45.32(+ve) 4

7.38-7.53(.) 3 Be,t 128.02 128.02(+ve) 128.J2(+ve) •
7.90(4) 2 11& 128.3" 128.]4(otve) 128.~7(+ve) t

132.42 128.42(+Ye) 132.42(otT.) I

136.211 b

203.22 i

• ~ ca cn·f 7 Ihi.

• ~. c •, .
c"c1Obe~lpben7lk.toD.



The 13C ['H] spectrum is straightforward t consisting of just nine

signals. Four each for the cyclohexyl and phenyl rings and one for the

3" "carboxyl carbon. DEJ::>T :-J:i" and DEPT 2" spectra were also recorded which

3"aided the characterisation. In DEPT 4 spectra CH groups are seen as

positive signals and CH2 groups as negative signals. "DEPT 2" spectra

show only signals for CH2 groups. Figures 19 t 20 and 21, illustrate these

spectra.

4.9.4.2. Discussion of the Synthesis of Cyclohe:x:ylpheny~etone

CyclohexylphenyIketone was a totally unexpected product from the

reactions above. While no definitive mechanism has been established t there

are a number of pertinent observations which can be made. In contrast to

the reactions with monoamines, reactions with polyamines were less likely

to give the expected adducts using either method (a) for example the

reaction of Nt Nol' - bis(3-aminopropyl)- piperazine-dihydrochloride with

sodium borohydride (see Experimental Section) or method b(i) for example

reactions (a) and (b) above. However, method b(ii) appeared to give the

expected adducts for polyamines, for example in the preparation of

4-dimethylaminopyridine-cyanoborane.

It would be reasonable to suggest from these results that method b (i)

is less consistent for polyamines and that method b.(ii) should be used

instead in the preparation of polyamine adducts. However t the reactions of

both pyrazole and 3, 5-dimethylpyrazole leading to the dimeric pyrazabole

species were both carried out using method b (i) • Since both of these

reactions fUrnished the expected adduct and the reaction of 3 t 5-dimethyl-

pyrazole with sodium cyanoborohydride afforded the ketone it is apparent

that factors other than simply the number of amine sites may be important.
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It is also relevant to note that when the k dtone was produced it

was the sole isolable product and no nitrogen-boron species were obtained.

In some cases t.l.c. analysis of the semia:>lidresidue indicated a complex

mixture of products but this material rapidly decomposed on exposure to

air and no information was obtained as to its content. In an attempt to

clarify the importance of the extraction solvent an experiment using

toluene for reaction (a) was carried out. However, neither t~e anticipated

cyclohexyltolylketone nor any borane containing material were isolated

after work-up and purification procedures.

It is clear that, whatever mechanism is involved in the generation

of this ketone, no [BH
3
X)- or amine-borane species can be present during

the formation of the ketone fUnction since these species are known to

reduce the keto function. Furthermore, "the incorporation of the phenyl

group suggests that the benzene extraction solvent was initially involved,

possibly as a substrate for electrophilic substitution by a carbonium type

ion (90).

• (90)

However, the failure of' toluene to react similarly is inexplicable if this

reaction took place. CJ.early the .ketone producing reaction is extremely

complex and possibly of' interest to organic chemists but it was not of

primary interest to the work being undertaken here. It was decided not to

continue with further investigation of' this reaction.

One final note of' interest was found in a recent edition of' Aldrichimica

Acta (1987)174 which was dedicated to Professor H. C. Brown. The preparation

of optically pure a-chiral ketones (Figures 22 and 23) is described,based

on optically pure borane esters. l75
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Figures 22 and 23~ Optically Pure a - Chiral Ketones

" 1R

Scheme 3 outlines the ~ute to these ketones used by Bro~ et aZ. 175

While there is little obvious similarity between the reaction in Scheme

3 and those leading to cyclohexylphenyl ketone there may be comparable

reactions taking place.

Scheme 3~ Synthesis of Optically Pure a-Chiral Ketones

---:> Li[R* Rl B(OR)2]

I(1). (2).(3)

°II
C

*/
R

1) HC1
2

C=Q.CH
3

(DCME)

2) [t - Bu.O]Li

3) H
2

0
2

, PH 8~
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4.10:

4.10.1

SECITOO 2

Adducts of Triphenylphosphine

Three adducts of triphenylphosphine were prepared, namely (C6H5)3

P.BH2X, where X = H, CN and - ~ - OCH2CH
3

• The main purpose of this work

was to improve the yield of triphenylphosphine-cyanoborane from the liter

149ature value of 34%. (The Cyanoborane adduct was the precursor of the

ethocarbony1borane compound). All three compounds were white, crystalline

solids with well defined melting points (Table 9). A comparison of the

infrared spectra in the borane region shows that replacement of hydrogen

by cyanide on the ethoxy-carbonyl group shif'ts the B-H stretching treq-

uencies to higher values t. (Table 9)

TABIE 9: Melting. Points and B-H stretching Frequencies of( C6H5)3P.BH2X

. . Adducts

X Melting Point " B-H

°c -1
. . . . . . .. em

H 189-190 2360 (br,s)

2240 (m)

CN 172-174 2380 (s)

2340 (sh)

0
2250 (m)..

-C-OCH2CH
3 76-78 2410 (br, m)

2350 (m)

The P-B stretching frequency has been reported to be between 750 and

550cm-
l

with medium to strong intensity.l36 While peaks are observed

in this region for the compounds studied, proper identification is difficult

since there are a number of similarly intense peaks in this area in each

spectrum.
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The 'H n.rn.r. spectra exhibited no significant differences in

chemical shifts in the aryl region for the adducts. Triphenylphosphine-

borane was prepared in very high yield (98%) according to the literature

synthesis (method b(i» (91)8.

XXIII

However, when this method was applied to produce the cyanoborane adduct

(92) the yield of triphenylphosphine-cyanoborane was only 36% (34% liter

149ature) .

CH3 - 0 - CH2 - CH2 - 0 - CH3

I

j
BH2CN

monoglyme

The lower yield of :BH2CN add'uct compared to 111
3

adduct is also seen

in the reactions of amdnes. For example, dicyclohexylamdne-borane was

isolated in 95.6% from the reaction of dicyclohexylamine with borane-

monoglyme complex but when the synthesis was extended to the cyanoborane:'

analogue the yield was reduced to 86.9%. Similarly, Martin et aZ79

reported yields of approximately 25%· :for nine amine-cyanoborane adducts

prepared by method b(ii).

Spielvogel et aZ176 have prepared a mixture of cyanoborane polymers,

(H2BCN)n (n = 4 to 10) by addition of dry HCl to a solution of Na[BH
3

CN]
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in ether. A crystal structural determination of the hexamer showed it

t · h· l·k 1·· 165 (F· 8)to be a centrosymme r3.C c a3.n- 3. e macrocyc 3.C r3.ng. 3.gure

When Kelly and coworkers78 reacted these cyanoborane polymers with &mines

the average yield of aminecyanoborane adducts was just 30%. After

addition of the halogen (C12t Br2 , I 2 ) to the sodium cyanoborohydride

in monoglyme. evidence for the cyanoborane oligomers is seen in the

"B n.m.r. spectrum by the broad, unresolved resonance at -43.,9 to -46.9

p.p.m.176 Some unreacted cyanoborohydride is also detected by the pres-

ence of a quartet -58.·9 to -62.5 p.p.m. (from trimethylborate) in the

"B spectrum. Martin et aZ79 have reported that the addition of more

halogen does not increase the yield of product. It is clear that both

the generation of oligomeric species and the non-quantitative formation

of cyanoborane-monoglyme play a significant role in the reduced yield

of cyanoborane adducts. (These factors are not apparently significant in

the synthesis of borane adducts by this method). In an effort to improve

the yield of triphenylphosphine-cyanoborane two other synthetic routes

were tried.

4.10.1.1. (i) Amine-displacement Method

Spielvogel and coworkers in 1984171 synthesised sodium dicycano-

borohydride by the displacement of aniline from the weak cyanoborane

adduct by reaction with sodium cyanide (93).

+

The hygr~scopic· [1II2 (CN)2] salt was isolated in 11% yield by the addition

of dichloromethane to the crude semisolid material..
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Spielvogel and coworkers
164

also prepared ammonia-cyanoborane in 81.4%

by this method (94).

+

R.T.

O~ -NH BH CN2· 2

IVacu=

(94)

+

The reaction between triphenylphosphine and aniline-cyanoborane in THF

(95) produced triphenyl phosphine-cyanoborane in 27.5% i.e. lower than the

previous method.

reflux
72 hr (95)

An increased reaction time did not significantly improve the yield.

4.10.1.-2. (b) Reaction 7JJi th Mercuric Cyanide

Gyori and Emri60 had reported the synthesis of sodium cyanoborohydride

by the reaction between borohydride and mercuric cyanide (96)

THF
----""i» 2 Na[BH3~]

reflux
3 hrs
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and 8lso that amine- and sulphide-boranes reacted with mercuric cyanide

to generate the corresponding amine-cyanoborane adducts (91).
ether

---:;>L.BH3 + ~ [CN]2

L: NC \ I;
oHg" + HCN

In a modification of this type of reaction, two equivalents of triphenyl

phosphine-borane were reacted with one equivalent of mercuric cyanide (98)

to afford triphenylphosphine-cyanoborane in 16.4% yield.

reflux j THF
3 hrs

In terms of yield, this route was by far the most successful one to

triphenylphosphine-cyanoborane and compares extremely favourably with both

previous syntheses (36 and 21.5%) and the literature yield (34%). An

added feature is that by using two equivalents of borane to one of mercuric

cyanide the generation of HCN as a side product is avoided in contrast to

reaction (91).

The conversion of .the cyanoborane adduct to the ethoxycarbonylborane

adduct was achieved by reaction with triethyloxonium tetraf'luoroborate.

This generated an N-ethylnitrilium salt which was not isolated but instead

it was reacted in situ with aqueous ethanol to form the borane ester

(Scheme 4). The yield of 52.9% compares favourably with the literature

yield of 41%.149
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Synthesis of Triphenylphosphine-ethoxycarbonyborane

52.9%
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4.11: EXPERlMENrAL

General Methodology

All solvents were routinely distilled prior to use. Dry solvents

. .. t .,178were obta~ned by standard procedures according to PerrJ.n e a" •

Tetrahydrofuran (THF) was dried by initial storage over KOH pellets,

followed by reflux over powdered lithium aluminium hydride. Finally,

THF was distilled from the potassium-benzophenone ketyl. All reactions

were carried out under dry nitrogen atmosphere. Melting points were

determined on a Reichert Microscope· hot stage melting pOint apparatus

and are uncorrected. Elemental analyses were perforn1ed at the

Microanalytical Laboratory, University College, Cork. Thin layer

chromatography (t.l.c.) and ·preparative chromatography (p.l.c.) were

carried out on glass s~ported silica:gel plates using Merck silica

HF254 and PF254 respectively.

Infrared (i. r.) spectra were recorded as KBr discs tor solids and

thin films between sodium chloride plates tor liquids on a Perkin-Elmer

682 infrared spectrophotomer. Intensities are designated as, ',~.strong;

nI, medium; l(, weak; and s~, shoulder. Mass spectra were recorded on an

AEI Krato DB 3074 high resolution mass spectrometer at 70 e.v. (U:C~:C.)

or from a V. G. Micromass 7070 high resolution double focussing mass

spectrometer coupled to an INooS 2400 data system ( University of Guelph,

Canada) •

'H n .m. r. were recorded at 60 MHZ on a Hitachi-Perkin Elmer R20A

(U.'C.C.), at 270 MHZ on a Jeol high field n.m.r. spectrometer in

University College, Galway ~d at 360 MHZ on a Bruker WH 360 high field

n.m.r. spectrometer in the University of Edinburgh. l3C n.m.It. spectra

were recorded at 15 MHZ on a lleol FNMFX60 Fourier transform spectrometer
o .

at 24 C and 68. 75 and 90 MIl Z respectively on the above high field instru-

31
ments. P n.m.~. spectra were recorded at 109.25 MfJ (Galway) and
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MH~ (Edinburgh). 'IB n.m.r . were recorded at 86.55 MHz (Galway) and

MHZ . (Edinburgh) •

Deuterochloroform (CDC1
3

) was used as solvent in all n.m.:r. recordings

(unless otherwise stated). Tetramethylsilane (TMS) was used as an inter

nal standard for 'H and l3C n.m.r . spectra; 85% phosphoric acid and

borontrifiuoride-etherate were used as standards for the 3~ and "B n.m.r .•

spectra respectively. Chemical shifts are expressed in parts per million

(p.p.m.); positive shifts being down field from T.M.S. Splitting patterns

are designated as; s, singlet; d, doublet; t, triplet; q, quartet;

quin, quintet and m, multiplet. Single crystal X-ray crystallographic

structural analyses were performed by Professor George Ferguson in the

University of Guelph. Data were collected on an Enra F - Nonius CAD -4

diffractometer using graphite monochromatised MoKQ raQiation.

~ne Bydroohtonde8: General Procedure

Hydrogen chloride gas {generated by the dropwise addition of concen

trated sulphuric acid}was bubbled into a solution of" amine in diethylether,

at OOC. '!he resulting white precipitate was isolated by vacuum filtration,

washed with diethylether, dried and recrystallised from 95% alcohol.

In a typical experiment: hydrogen chloride gas (0.082 lIPl) was

bubbled into a solution of t-butylamine (6.88 ml, 0.05 mol) in. 50 ml

diethylether at OOC. Isolation and purification of the white precipitate

according to the general procedure fUrnished t-butylamine-hydrochloride as

colourless plates in quantitative yield.

C, 43.83; ~, 10.95; N, 12.78; Cl, 32.42%.

N, 13.01; Cl, 32.43%.

Analysis: calcd. for C4l\2NC1:

Found: C, 43.. 77; H, 10.77;

Table 10 lists the amine-hydrochlorides thus prepared, the yields

obtained and the relevant analytical data.
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TABLE 10

AMINE-HYDROCHLORIDES--------------------

Yield Analysis
Compound Number C H N C1

%

t-buty1amine-HC1 XXXVI 100 43.77 10.77 13.01 (32.43)
(43.83) (10.95) (12.78) (32.42)

dicyc1ohexy1amine-HC1 XXXXVII 94 66.00 11.25 6.22 16.46
(66.20) (11.3) (6.43) (16.32)

diphenylamine - HC1 XXXXXVIII 92.8 70.27 6.07 6.69 17.15
(70.07) (5.83) (6.81) (17.17)

Aniline - HC1 IL 94.0 56.49 5.62 10.93 27.84
(56.47) (5.49) (10.90) (27.82)

Di-n-buty1amine-HC1 L 98.2 58.34 11.75 8.49 21.57
(58.35) (11.55) (8.51) (21.58)

Diethy1enetriamine-3HC1 LI 87.4 22.56 7.52 11.95 49.95
(22.56) (7.52) (11.76) (50.11)

Triethy1amine-HC1 LII 83.6 52.33 11.46 10.23 25.80
(52.36) (11.64) (10.23) (25.82)

Pyrazo1e-HC1 LIII 94.8 34.17 4.84 26.79 33.72
(34.64) (4.78) (26.79) (33.17)

Pyridine-HC1 LIV 77.2 49.47 10.10 11.20 29.30
(49.33) (9.86) (11.51) (29.21)

~.2-Pheny~ene diamine-2HC~ LV 89 39.95 5.69 15.61 39.07
(39.77) (5.52) (1.5.46 ) (39.22)



1.4-Pheny1enediamine-2HC1 LVI 91.2 40.01 5.58 15.34 39.16
(39.11) (5.52) (15.46) (39.22)

Ep1edrine-HC1 LVII 18.1 54.39 1.94 1.05 . 11.50
(59.48) (1.93) (6.93) (11.59)

N.N1-bis-(3-aminopropy1)- LVIII 82.5 43.82 9.19 20.15 25.68
pyerazine-2HC1 (43.19) (9.85) (20.43) (25.91)



Sodiwn cyanoborohydride LIX~ Method 1 159

A solution of HCN gas (generated in situ by the dropwise addition of

a solution of sulphuric acid (31.95 ml, 0.60 mol) in 124.5 ml water to a

solution of potassium cyanide (39.06g, 0.60 mI.) in 75 ml water) was

passed through a calcium chloride drying train and into a suspension of

sodium borohydride (20.0g, 0.526 ml ) T.H.F. (250 ml). The reaction

flask was maintained at 250
C with a water bath. uPon complete addition

of the gas, the mixture was stirred for 1 hr at ambient temperature then

gradually heated to reflux until hydrogen evolution ceased. The flask.

was allowed to cool to room temperature and the system flushed with dry'

N2 • Unreacted solids were removed by vacuum tiltration through a bed ot

celite and thoroughly washed with 3 x 30 ml portions of T. H.F ; The

combined filtrates were then evaporated to dryness to afford sodium cyano

borohydride (15.8g, 47.1%) as a white powdery, hygroscopic solid. v max
(KBr) 2330, 2240 (br, s); 2l80(s); 1620 (s); 1200 (sh); 1120 (s); 885 (m);

840 (w); 145 (w); 125 (w); 100 (w)~cm-l.

Method 260

Mercuric cyanide (24.8 g,0~{)98 mol) was added quiCkly to a suspension

ot sodium cyanoborohydride (1.48 g,O.l96 .mo~) in 250 ml tetrahydrofUran.

The ensuing vigorous reaction was stirred at room temperature until hydrogen

evolution had subsided and subsequently refluxed for 3 hrs. Mercury and

a grey solid material separated from the cooled solution and were removed

by suction filtration through a bed of celite and washed with tetrahydro

:ruran, under a blanket of N2 • Evaporation of the combined filtrates and

drying mder dynamic vacuum :furnished sodium cyanoborohydride (11.21 g,

91%) whose appearance and infrared spectrum were identical to above.
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TriethyZoxonium tetra~uoroborate LX

Triethyloxonium tetrafluoroborate, [(C2a5)30] [BF4 ] was prepared

from borontrifluoride-etherate and epichlorohydrin according to the

procedure of Meerwein. 85

Epichlorohydrin (18.8 ml,0~024 mol) in 20 ml diethyl ether was

added from a pressure equalised dropping funnel to a magnetically stirred

solution of borontrifiuoride etherate (40 ml,O.3l 1 mol) in 80 ml diethyl

ether. The rate of addition was chosen to maintain the reaction mixture

at reflux temperature. The initially formed oil was converted into a white

precipitate during rapid stirring over a 2 hr period. After the reaction

had stood overnight under dry nitrogen, the diethyl ether was removed and

the white solid washed three times with 50 ml portions of diethyl ether.

Finally, the product was dried for 48 hrs under dynamic vacuum to furnish

trietbyloxonium tetrafiuoroborate (45.0 g, 14.8%) as a white crystalline

solid.

Triethyloxonium tetrafluoroborate is best when used immediately but may

be stored in a treez~~ compartment or under dry nitrogen.

Amine-boranes and cyanoboranes.· General Method (a)2, 11

A stoichiometric quantity of sodiurn borohydride or sodium cyano

borohydride was added to a solution of amine-hydrochloride in tetrahydro-

fUran. This addition resulted in vigorous hydrogen evolution and immed-

iate precipitation of sodium chloride. After the gaseous evolution had

subsided t the 'reaction mixture was refiuxed for approx. 20 hrs typically.

The sodium chloride was removed from the cooled solution by vacuum fil-

tration through a bed of celite and thoroughly washed with 3 x 20 ml

portions of T.H.F. The clear filtrates were combined and evaporated.

Purification of the resulting solid typically invelved precipitation from

a benzene solution by the addition of hexane or recrystallisation from

ethanol.
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Amine and Phosphine-Boranes/Cyanoboranes: General Method (b) (i )8

A suspension of sodium borohydride or a solution of sodium cyano-

borohydride in monoglyme was prepared. To this amine or phosphine was

added followed typically by a further portion (10-23 m1) of monoglyme.

The resulting solution was stirred at ambient temperature for 10 minutes.

A solution of iodine in monoglyme was added dropwise from a pressure

equalised dropping funnel over a period of time (usually 30-60 minutes).

The subsequent reaction mixture was stirred at room temperature until the

iodine colour had disappeared and then refluxed overnight. On cooling

the monoglyme was removed under reduced pressure and the solid produced

extracted three times with benzene portions. The crude solid from evapor-

ation of the benzene extractions was recrystallised typically from ethanol

or ethanol: glyme ( 2 : 1).

Method b (ii )19

A variation of the above synthetic method was to react sodium boro-

hydride or sodium cyanoborohydride with iodine in monoglyme initially and

then, after the iodine colour had dissipated, the amine or phosphine was

added with 10-20 ml. of monoglyme and the resulting mixture refiuxed over-'

night. The WOrkup and purification processes were as above.

The following amine and phosphine-boranes/cyanoboranes were thus

prepared:

t-Butytanrine-borane~ LXI : Procedure (a)

Sodium borohydride (1.21g,O.033 mol) was added to a solution of

t-butylamine-hydrochloride (3.1g,0.03 mol.) in 40 ml THF. The slow addit-

ion of hexane to a benzene solution of the crude solid turnished t-butyl-

amine-borane (1.85g, 90.5%) as a wite, crystalline. solid. o
m. p. 96-98 c.

Analysis: calcd. for C4H14NB : C, 55.11; H, 16.09; N, 16.09; B, 12.64%

Found: C, 54.91; H, 15.94; N, 16.20; B, 12.48% ,\) max (KBr): 3250 (s);
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3320 (s); 2990 (sh); 2970 (m); 2870 (sh); 2400 (sh); 2300 (br~s);

1590 (s); 1470 (m); 1400 (m); 1370 (s); 1335 (s); 1225 (m); 1200 (sh);

1185 (sh); 1160 (s); 1050 (m); 975 (m); 955 (vw); 930 (w); 885 (s);

795 (w); 690 (w) cm-1 '0 ..tI(270 MHz) 1.39 (8, 9H (CH3)3) p.p.m. o13lH}

(86.55 MHz) - 24.6 (8, BH3) p.p.m.

Procedure (b) (i)

t-Buty1amine (18.4 ml,0~0~Y6 mol.) was added to a suspension of sodium

borohydride (8.0g,0.~211-_mo1) in 60 ml monoglyme. A solution of iodine

(22. 33g~0 .• 086 )001) in 80m! monog1yme was subsequently added. Recrystal

1isation afforded LXI (19.68g~ 93.61%) as a white crystalline solid.

Microanalytical and spectroscopic analyses were as for procedure (a).

Dicyclohexy larrrine-borane LXII: Procedure (a)

Sodium borohydride (1.lg~0..0265. mol) was added toa solution of dicyc1o

hexy1 ·amine-hydrochloride (6.40g~0~9265 mo~) in 80 ml THF. Recrystallis-

ation of the crude product from 95% ethanol afforded dicy.c1ohexy1amine-

borane (3.35g, 98.9%) as a white crystalline solid. om.p. 101-102 c.

Analysis: calcd. for C12H16BN: C~ 13.84; H~ 13.23; N~ 7.18; B, 5.64%

Found: C, 73.78~ H, 12~92; N~ 6.97; B, 5.14%. v max (KBr) 3240 (m), 2930 (s);

2850 (s); 2650 (v.w); 2380 (s); 2340 (sh); 2320 (sh); 2210 (s); 1600 (w);

1510 (w); 1480 (sh); 1460 (sh); 1450 (s); 1380 (w); 1090 (w); 1055 (m);

1025 (w); 955 ( m); 910 (w); 890 (v.w.); 810 (w); 840 (m); 800 (w);

190 (v.v.) ~m-1 ~ K (210 MHZ) 1.38-1.51 (br, m); 2.01 (br, s); 2.11 (br, d);

2.81-2.91 (br, m); 3.49 (br, s) p.p.m. &q" (67.80 MHZ) 26.41 (s); 26.18 (s);

27.08 (d); 21.24 (s); 30.51 (s); 31.68 (s); 54.47 (s); 61.72 (s) p.p.m.
~. .

B {IH.} (86.55 MHZ) -21.6 (s) p.p.m.
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'Procedure (b):

Dicyclohexylamine (9.2 ml,0.046 mol) was added to a suspension Of'

sodium borohydride (2. 09 g,0 .0055 mol.) in 80 ml monoglyme. A solution of

liodine (5.88 g, 0.023 ml) in 80ml monoglyme was subsequently added. Re-

crystallisation of the crude product from 95% ethanol afforded LXII

(11.30, 95.6%) spectroscopically and analytically identical to that from

procedure (a).

Triethy lamine-bopane LXIII: Procedure (a)

Sodium borohydride (lo.4g,O.-28°mol)was added to a solution of

triethylamine-hydrochloride (19.2g,O;14'mol)in 300ml THF. Glass beads

were added to increase the vigour of the stirring. After filtration

through a bed of celite to remove the precipitated sodium chloride and

unreacted solids the THF was removed from the filtrate in vacuo. The

residual liquid was distilled at 42-44°c/0.02 mmHg (lit 42oC/0.OOl mmHg)17
4

to produce triethylamine-borane (lo.63g, 66.1%) as a clear, camphor-

smelling liquid. \) max (Thin Film) 3610 (w), 3537 (m), 3430 (w), 3218 (m),

3005-2880 (br,s); 2738 (w), 2630 (w); 2350 (br,s); 2230 (s); 2030 (m);

1931 (w); 1818 (w), 1775 (w), 1720 (w); 1619 (m); 1463 (s), 1447 (s);

1385 (s); 1352 (w); 1332 (w); 1304 (m); 1259 (w); 1115 (s); 1220 (sb);

1109 (w); 1095 (m); 1065 (v); 1040 (m); 1028 (w); 1017 (v); 968 (m); 922 (w);

-1
900 (v), 863 (m); 853 (sh); 808 (w); 790 (v); 769 (s); 709 (v); 680 (w)cm ·

~H 1.15 (t, 9H, C!!3-CH2) 2.70 (q, 6H, CH
3

-C.!!2) ppm.

Di-n-butylamine-boran6°LXIV Procedure (b):

Di-n-butylamine (14.98ml,O.088·mol)vas added to a suspension of

sodium borohydride (4.0g,O.105
o
mol)in 80m1 monoglyme. A solution of iodine

(11.16g,0.04lt. °mol) in 80ml monoglyme was sUbsequently added. Benzene

extraction led to a vhite semisolid which vas further extracted with water

/diethylether. The combined organic layers vere dried over magnesium

sulphate and cooled in an ice-bath.. Large, needle crystals of di-n-
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buty1amine-borane (8.58g, 68.2%) were formed and readily liquefied

above room temperature. mp 24-25
0

C. Analysis: calcd. forC8H22NB:

C, 67.13; H, 15.38; N, 9.79; B, 7.69%. Found: C, 67.25; H, 15.36;

N, 9.79; B, 7.45%. v max (Thin Film) 3200 (s); 2950 (m); 2920 (w);

2860 (m); 2370 (s); 2360 (sh); 2320 (w); 2280 (m); 146Q (m); 1380 (m);

1160 (s); 1115 (m); 1070 (m); 880 (s); 730 (m) cm-1 • ~H 0.97 (t, 6H c.!!3);

1.5 (m, 8H, c.!!2-C1!2); 2.65 (m; 4H C!!2-N) ppm.

Tri-n-butylamine-borane LXV Procedure (b) (ii)

A solution of iodine (8.7g, 0.034 mol) in 60ml monoglyme was added to

a suspension of sodium borohydride (3.0g, 0.079 mol) in 30ml monoglyme and

the mixture ref1uxed until colourless. A solution of tri-n-buty1amine

(18.7 ml, 0.079 mol)in 60ml monoglyme was added dropwise. Tri-n-butylamine

borane (10.05g, 63.8%) w~s obtained as a clear, colourless liquid by

vacuum distillation b.p. 1200 (1.5 mm ~g). Analysis: calcd. for C12H30NB:

C, 72.36; H, 15.07; N, 7.03% Found: C, 72.56; H, 14.195; N, 7.09% .

vmax (Thin Fi1m) 2960-2860 (br, vs); 2380-2320 (br, vs); 2280 (s); 1465 (vs);

1375 (s); 1260 (w); 1235 (w); 1170 (vs); 1115 (m); 1070 (m); 1040 (m);

930 (w); 350 (s); 740 (m); 685 (m) em-I.

Diayclohexylamine-ayanoborane LXVI . .P~ocedure (a)

80diurn cyanoborohydride (1. 5g,o: 0~3·moi) was added to a solution of

dicyc10hexy1amine-hydrochloride (7. 74g,0:0356 -m(1) in 80 ml THF. Recrystal

1isation f'rom 95% ethanol furnished dicyclohexylamine-cyanoborane (2.4g,

45.8%) as a wite crystalline solid. mp 196-l97
o

C. Analysis: cued. for

C13H25N2B:C, 70.90; H, 11.36; N, 12.72; B, 5.00%. Found: C, 70.74;

H, 11.56; N, 12.62; B, 5.23% v max (KBr) 3100 (s); 3060 (sh); 3000 (w);

2930 (s); 2850 (s); 2765 (w); 2740 (sh); 2705 (sh); 2665 (w); 2560 (w);

2530 (w); 2505 (sh); 2460 (sh); ·2430 (v); 2360 (s); 2320 (br, s); 2280 (w);

2230 (w); 2180 (s); 1620 (w); 1600 (s); 1570 (m); 1433 (w); 1465 (sh);
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1450 (s); 1385 (m); 1310 (w); 1360 (sh); 1350 (w); 1325 (w); 1310 (m);

1265 (w); 1250 (w); 1185 (m); 1150 (sh); 1125 (s); 1110 (w); 1045 (sh);

1040 (m); 1030 (m); 910 (m); 945 (w); 920 (w); 895 (m); 865 (m); 850 (w);

110 (w) em-I. 0 E (210 MHZ) 3.1 (br, d); 3.20-3.38 (br, q); 3.63 (br, s);

3.19 (br, d); 4.0 (br, d); 5.05 (br, q); 8.99 (br,s) ppm. 0 C(61.80 HZ)

25.35 (d); 29.75 (s) ppm. 813 {tH) (86.55 MHZ) -40.0 ppm

Procedure (b):

Dicyclohexylamine (1. 81F, 0.0396 mol) was added to a solution of

sodium cyanoborohydride (3.0g, 0.0415 mol) in 70 m1 monoglyme. A solution

of iodine (5.0g,0.0198 'mol)' in 50m1 monoglyme was subsequently added.

Recrystallisation of the crude solid from 95% ethanol afforded LXVI

(1.51g, 86.9%) which analysed microanalytically and spectroscopically as

above.

Ani line-cyanoborane LXVII Procedure (a)

Sodium cyanoborohydride (1.88g,0.125 mol) was added to a solution of

aniline-hydrochloride (22. Og, 0.169 mol) in 250ml THF. Recrystalli sation

from 95% ethanol afforded ani1ine-cyanoborane (16.54g, 78.88%) as colour

less plates. mp l53-154°C (lit 152_154°C)84. Analysis: calcd, for

C~9N2B: C, 63.71; H, 6.87; N, 21.23; B, 8.19% Found: ¢:, 63.63; H, 6.74;

N, 21.18; B, 8.07%. ~ ~ (KBr.) 3180 (br,s); 3100 (sh); 2400 (s);

2365 (m); 2305 (sh); 2180 (m); 1575 (s); 1480 (m); 1460 (m); 1290 (s);

1212 (m); 1170 (m); 1140 (w); 1100 (s); 1655 (m); 1010 (sb); 990 (m);

l(' 905 (sh); 885 (m); 830 (s); 740 (s); 680 (s); 655 (sh)cm-1 • o~ 7.4 (m);

8.0 (m) ppm 6~ I rHl , (86.55 MHZ) -13.3 (s) ppm.

Procedure (b):

A solution of iodine (4.02g,0:0lb-mol) in 20 ml monoglyme was added to

a solution of aniline (2.45g,0.026 ~mol) and sodium cyanoborohydride (2.0g,

0:032 'mol) in 25 ml monog1yme. Recrystal1isation from 95% ethanol afforded

LXVII (2~87g, 82.4%) which analysed as above.



4-Dimethy Zaminopyridine-ayanoborane LXVIII Procedure (b) (ii):

A solution of iodine (5.28g t o.023 mol) in 40ml monoglyme was added

dropwise to a solution of sodium cyanoborohydride (4.0g t 0.063 001) in

40ml monoglyme and the solution refluxed until colourless. A solution

of 4-dimethylaminopyridine (3.85g t O.031 mol) in 35ml monoglyme was

sUbsequently added. Evaporation of the benzene extract resulted in a

mixture of products. Preparati ve chromatography in dichloromethane:

hexane (4 : 1) eluent, followed by recrystallisation from acetonitrile

afforded 4-dimethylaminopyridine-cyanoborane (126g, 24.8%) as colourless

crystals mp 126-l28°C. Analysis: calcd, for C8H12N
3
B : C, 59.56, H, 7. 45;

N, 26.08; B, 6.83%. Found: C, 59.42; H, 7.52; N, 26.12; B, 6.94%

"max (KBr) 3060 (sh); 2990 (m); 2910 (br t s); 2820 (s); 2400 (s); 2360 (sh);

2280 (sh); 2245 (s); 2210 (m); 2100 ( w); 2040 (w); 1640 (s); 1560 (br t s);

1540 (sh); 1500 (br, s); 1400 (w); 1370 (m); 1340 (m); 1300 (w); 1280 (m);

1245 (m); 1230 (m); 1210 (w); 1195 (m); 1100 (br,s); 1030 (s); 1000 (sh);

985 (m); 950 (m); 920 (sh); 860 (s); 845 (sh); 825 (w); 700 (w); 670 (w);

625 (w) em-I.

Crystals suitable for X-ray analysis were obtained from the acetoni-

trile mother l1Q..uor and sent to Professor Ferguson for structural

analysis.

PyrazaboZe LXIX Procedure (b) (i):

Pyrazo1e (7.28g,0;107 m61)Was added to a suspension of sodium

borohydride (4.85g,0~128 mol) in 90ml monoglyme. A solution of iodine

(12.76g, 0.05 mol) in 120ml monoglyme was subsequently added. Recrystal

1isation from monoglyme: ethanol (1 : 1) furnished pyrazabo1e (7.63g,

8 0 ) 170 .80.1%) as colourless cubes. m.p. 78-80 (lit. 80- 1 C • AnalyS1S:

calcd. for C
6

R1oN
4
B

2
: C, 45.00; H, 6.25; N, 35.00; B, 13.75%. Found:

C, 45.26; H, 6.16; N, 35.27; B, 13.82%. v max (KBr) 3140 (m); 3060 (m);

2980 (w); 2380 (s); 2340 (s); 1570 (a); 1400 (a); 1330 (a); 1220 (a);

. - 274 -



1180 (s); 1135 (s); 1050 (m); 950 (w); 870 (br, s); 845 (w); 750 (s);

690 (w) cm-1 • 6H (360 MHz) 6.21 (t); 7.60 (d) ppm 6H {liB} 3.62 (s);

6.21 (t); 7.60 (d) ppm. 6C (90 MHz) 105.36 (d); 134.79 (s); ppm. 6B

(86.55 MHz) -7.7 (t, BH2) ppm 6B {'H} -7.7 (s, BH2) ppm.

1, 3, 5, 7- Tetramethylpymzabole LXX Procedure (b):

3, 5-dimethy1pyrazo1e (3. 35g, 0.034 mol) was added to a suspension of

sodium borohydride (1.58g, 0.041 mol) in 55 ml monoglyme. A solution of

iodine (4.42g, 0.011 mol) in 45 ml monoglyme was added dropwise. Recrystal-

lisation of the crude solid from monoglyme: ethanol (2:1) afforded 1, 3,

5, 7-tetramethy1pyrazabo1e (3.1g, 80.8%) as a white, crystalline solid

m.p. 172-174°C (lit. 172_174oc)110. Analysis: calcd. for C10H18N4B2

C 55.55; H, 8.33; N, 25.92; B, 10.18%. Found: C, 55.35, H, 8.43;

N, 25.91; B, 10.22%; ~ max (KBr) 3120 (m); 2980 (sh); 2960 (m); 2920 (m);

2450 (s); 2380 (s); 2320 (s); 2280 (sh); 2240 (sh); 2280 (sh); 1545 (v.s.);

1500 (w); 1455 (m); 1410 (br, s); 1375 (w); 1150 (br, s); 1095 (w); 1085 (w);

1030 (w); 985 (m); 920 (s); 810 (s); 810 (a); 190 (a); 610 (m); 645 (m) cm-
l

.

6H (360 MHz) 2.29 (s, 12H, °CH
3
); 5.26 (s, 2H, OCR) ppm. 6H {liB} 2.29

(s, 12B, "CH
3
); 3.44 (s, 4H, 'B~); 5.86 (s, 2H, CH) ppm. 6C {IB} (90 MHz)

11.85 (s, 4C~ "£H3'; 105~61 (s, 2C; CH};·143~67.(a,~2C~C)·PP$6C. {'H}
" 3n . . .

DEPT ~ (90 MHz) 11.85 (s, 4c; 0[3); 105.61 (s, 2C; ca) ppm. 6B (86.55 MHz)

-11.1 (t; BH2) ppm 6B {IR} -11.72 (s~ BH21 ppm.

cyalohexylphenylketone LXXI

(i) From .Attempted Synthesis of 4,. 8-dicyano ':"1, 3, 5, 1-tetramethy1pyrazabo1e

Method b (i):

3, 5-dimethy1pyrazo1e (3.80g, 0.039 mol) was added to a solution of

sodium cyanoborohydride (3.oog, 0.047 1001) i~ 10m! monog1yme. A solution

of iodine (5. Og, 0.019 mol) in 50 ml monoglyme was added dropwise according

to procedure (b). Recrystal1isation from diethy1ether f'urnished cyc1obexyl

pheny1ketone (6.81g, 91.5%) as colourless crystals. m.p. 51°C. (lit. 55-

- 275 -



57
o

C). Analysis: calcd. for C
13

H160 : C, 82.97; H, 8.51; 0, 8.51%.

Found: C, 82.75; H, 8.35% v max (KBr) 3310 (m); 3120 (w); 3080 (w);

3050 (m); 2930 (br, s); 2840 (s); 1980 (sh); 1975 (m); 1920 (m); 1830 (w);

1780 (w); 1670 (br, v.s.); 1585 (v.s.); 1445 (v.s.); 1370 (s); 1330 (m);

1315 (m); 1290 (m); 1250 (br, m); 1205 (m); 1170 (m); 1130 (s); 1070 (s);

1025 (sh); 10 20 (s); 1000 (s); 970 (s); 935 (m); 920 (m); 890 (s); 855 (s);

'1
810 (s); 795 (s); 765 (s); 700 (s); 660 (s) cm-. oH (270 MHz) 1.19-1.54

(m, 6H, C!!.2); 1.69-1.88 (m, 4H, C!!e) 7.38-1.53 (m, 3H, Ar); 1.95 (q, 2H,

Ar) ppm. OC {'H} (90 MHz) 25.73 (d, CH2 ); 29.26 (s, CH
2

); 45.32 (s, CH);

128.11 (d, Ar~); 132.42 (s, Ar-C ); 136.24 (s, Ar-C = 0) ppm.

,
(iiJ From Attempted Synthesis of N, N -bis- (3-aminopropyZJ-piperazine-bis

borane

Method b(i):

N, N" -bis - (3 .amino-propyl)-piperazine (7.86g, 0.039 mol) was added

to a suspension of sodi~ borohydride (3.0g, 0.039 mol) in 70ml monoglyme.

A solution of iodine (8.7g, 0.034 mol) in 50 ml monog1yme waa added drop-

wise and the resulting solution stirred at room temperature overnight.

The precipitated solid was removed by vacutun filtration through a bed of

ce1ite and washed with 30 lD1 monoglyme. The filtrates were combined and

evaporated to dryness. The resulting so;lid was extracted with 3 x 30 ml

portions of benzene. Evaporation of the benzene extractions followed by

recrystallisation from diethylether yielded cyclohexylphenylketone (4.42g)

as colourless crystals. m.p. 56-51°C. All analyses were as above.

In a separate experiment, the reaction mixture was refluxed for 20 hrs.

The only product isolated and characterised was cyclohexy1phenylketone.

(iiiJ From Atterrpted Synthesis of 3, 37
- Bis-aminopropyZamine-triborane

. 'Method b( i):

3, 3' bis-a.mi.nopropylamine (1.53g, 0.013 mol) was added to a suspen

sion of sodium borohydride (1.5g, 0.039 mol) in 30 ml monoglyme. A solution
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of iodine (4.35gJ).011 mol) in 30ml monoglyme was added dropwise and the

solution stirred at room temperature for 20 hrs. CyclohexylphenyJk-etone

(1.86g) was the only product from a similar work-up to (ii). All analyses

were as above.

Refluxing the reaction mixture for 20 hrs :t\1rnished the same product.

Attempted Synthesis of Diphenylamine-borane LXXII Procedure (a):

Sodium borohydride (1.5g, 0.039 mol) was added to a solution of

diphenylaminehydrochloride (8.l5g, 0.039 mol) in lOOml THF. After 60 hrs

reflux and standard work-up procedures, diphenylamine was recorded unchanged.

Procedure (b) i:

Diphenylamine (14.98, 0.088 mol)was added to a stirred suspension of

sodium borohydride (4.0g, 0.105 mol) in 100ml monoglyme. A solution of

iodine (11.16g 0.105 mol) was subsequently added. Recrystallisation from

monoglyme:·diethylether (1 : 1) :t\1rnished diphenylamine (10.93g, 15%

recovery) as colourless crystals.

,
Attempted Synthesis of N~ N -bis-{3-aminopropyZ) piperazine-bis-borane

Method (a):

Sodium borohydride (1.. ;tr:,O.099 mol)was added to a solution of N,

N
l

- bis - (3-aminopropyl) piperazine-dihydrochloride (10.51, 0 •.03) mol)

in 100ml THF. After standard work-up procedures no borane-containing

material was isolated. T.l.C. (eluent acetone: pet. ether, 2 : 1) analysis

showed that the product was a complex mixture.

,
Attempted Synthesis of 3~ 3 - bis - (amino propyl) amine-triayanoborane

Method (a):

Sodium cyanoborohydride (1.Og,0;016 mol) was added to a solution of
,

3, 3 -(aminopropyl)amine-trihydrochloride (3.8g,0.016 mol) in 50ml. Althoutb

infrared analysis of the crude product indicated the presence of both B-H
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and C=N absorption frequencies no such pure product could be isolated

from this mixture.

Attempted Synthesis of 1 ~ 2- Phenylenediarrrine - bis-ayanobomne

Method (a):

Sodium cyanoborohydride (l.5g,O.024 mdl) was added to a solution of

1, 2-phenylenediamine dihydrochloride (6.0g, 0.03 mol) in 70 ml THF. A

purple precipitate separated fl'ODl the reaction solution immediately.

Evaporation of the THF in vacuo from the filtrate afforded an off-white

solid which did not contain any cyanoborane. The purple precipitate was

generally insoluble in most organic solvents. Infrared and analysis were

not useful for identification purposes.

Attempted Synthesis of l~ 4-Pbenylenediarrrine - bis ayanoborane

Method (b):

Sodium cyanoborohydride (1.5g, 0.024 mol)was added to a solution of

1, 4-diphenylamine-dihydrochloride (6.0g, 0.033 mol) in 70 ml THF. As with

above, a purple precipitate resulted. No cyanoborane-containing material

was isolated after work-up and purification procedures.

Attempted Synthesis of Histamine - bis ayanoborane

Method (a):

Sodium cyanoborohydride (1.98g, 0.032 mol) was added to a solution of

histamine - dihydrochloride (2.9Qg, 0.016 mol) in 50 ml THF. Removal of

the THF from the filtrate afforded a colourless oil. T.I.c. (CH·2C12 :

hexane, 4 : 1) analysis suggested a complex mixture of products. Thin Film

infrared indicated the presence of both B-H and C=N peaks. No solid material

was isolated from this oil.
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Attempted Synthesis of Ephedrine-borane Method (a):

Sodium borohydride (2.0g, 0.032 mol) was added to a solution of

ephedrine-hydrochloride (5.28g, 0.032 mol) in 10 ml THF. No bC'rane

containing pure solid was isolated after standard work-up and purification

procedures.

Attempted Synthesis of 4-DimethylaminopyPidine-ayanoborane Method b(i):

4-Dimethylaminopyridine (3.87g t 0.032 mol) was added to a solution

of sodium cyanoborohydride (2.0g t 0.032 mol) in 60ml monoglyme. A

solution of iodine (4.02g t 0.016 mol) in ~Oml monoglyme was added drop

wise. Evaporation of the filtrat'e under reduced pressure :f\1rnished 2.19g

of crude solid. No pure cyanoborane containing product' was separable

from this material.

Reaction 'lJri th Mercuric Cyanide

Mercuric cyanide (3.18g t 0.015 mol) was added quickly to a solution

of 4-dimethylaminopyridine-borane (4g t 0.029 mol) in 80m! THF. The

ensuing vigorous reaction was stirred at room temperature until it had

subsided. A grey solid precipitated from the THF and the mixture was

refluxed for l2hrs. The solid was removed by filtration through a bed

of celite and washed thoroughly with THF. However t no replacement of

hydride by cyanide was detected in either the chemical analysis or the

infrared spectrum of the product.

Attempted Synthesis of 4-Dirnethylarrrinopyridine-bi8-~anoborane

Method b (i):

Sodium cyanoborohydride (4.0g, 0.063 mol) was added to a solution of

4-dimethylaminopyridine (3.8g, 0.032 mol) in 80m! lOOnoglyme. A solution of
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iodine ,(8.04g,0.032 mol) in 60ml monoglyme was added dropwise from a

pressure equalised dropping fUnnel. Although there was evidence for

reaction (t.l.c. and infrared spectroscopy) no pure cyanoborane-contain-

ing material was isolable from the products.

Triphenylphosphine-borane XXIII ·Procedure (b) (ii):

A solution of iodine (12.6g, 0.048 mol) in 14Qml monoglyme was

added to a suspension of sodium borohydride (4.36g,0.1l6 mol) in 9Qml

monoglyme and refluxed until the iodine colour had disappeared. Triphenyl-

phosphine (25. Og, 0.095 mol) was added folloved by a further 40ml of

monoglyme. Recrystallisation of' the crude solid (f'ound to be analytically

pure) from 95% ethanol afforded triphenylphosphine-borane (25.52g, 97.9%)

as a crystalline solid, m.p. 188-1890 C (lit. 1890 C).36 Analysis: calcd.

for C18H15BP: C, 76.72; H, 6.49, B, 3.97%. Found: C, 76.76; H, 6.32;

B, 4.09%. v·max (KBr) 305 (s); 2350 (br, s); 2240 (m); 1930 (v); 1845 (w);

1820 (v); 1570 (s); 1540 (sh); 1475 (s); 1430 (s); 1385 (sh); 1325 (sh);

1305 (m); 1270 (sh); 1180 (s); 1155 (sh); 1120 (m); 1100 (s); 1055 (s);

1025 (m); 995 (m); 850 (v); 735 (s); 695 (s); 625 (v) em-I.

Triphenylphosphine-cyanoborane XXXX Procedure (b) (ii)

A solution of' iodine (6.02g, 0.023 mol) in 70ml monoglyme vas

added dropwise to a stirred solution of sodium cyanoborohydride (3. Og,

0.047 ml) in 60ml monoglyme. Triphenylphosphine (10.37g, 0.039 mol) and a

further 20m! monoglyme were added when the iodine colour had dissipated

(".1 .hr~. Recrystallisation of' the crude solid from 95% ethanol furnished

triphenylphosphine-cyanoborane (5.2g, 36.34%) as colourless plates m.p.

l12-174°c (lit. l72_l14oc).149 Analysis: calcd. for C19H1~ : C, 15.74;

H, 5.64; N, 4.65; B, 3.65%. Found: C, 75.70; H, 5.47; N, 4.65; B, 3.71%.

v max (KBr) : 3070 (v); 3050 (s); 3030 (sh)"; 3010 (v); 2970 (m); 2380 (s);
I

2340 (sh); 2250 (m); 2200 (v); 1965 (m); 1900 (m); 1820 (m); 1770 (v);

1585 (s); 1570 (m); 1475 (s); 1430 (s); 1395 (v); 1380 (sh); 1330 (v);
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1310 (m); 1210 (v.w); 1180 (m); 1160 (m); 1115 (sh); 1095 (s); 1010 (s);

1055 (s); 1025 (sh); 995 (s); 925 (~ .. w); 905 (s); 850 (m); 185 (m);

145 (s); 120 ( w); 110 (sh); 690 (s); 625 (w) cm-l • ~E 1.42 (s, l5H, Ar-[)

ppm.

Alternative Synthesis (iJ Arrrine Displacement

Triphenylphosphine (3.96g, 0.015 mol) was added to a solution of

aniline-cyanoborane (2.0g, 0.015 mol) in 60ml 'IHF. The reaction was

refluxed for 20hrs with vigorous stirring. . Filtration of the cooled

solution, under reduced pressure, removed O.34g, of unreacted solid.

The THF was evaporated from the filtrate and the crude solid washed three

times with 30ml portions of diethylether to remove any remaining, unreacted

triphenylphosphine. Recrystallisation from 95% ethanol afforded triphenyl

phosphine-cyanoborane (1.25g, 21.48%).

(iiJ Reaction bJith Hg (CNJ2

Mercuric cyanide (2.28g, 0.009 mol) was added to a solution of tri

phenylphosphine-borane (5.0g, 0.018 mol) in 60ml THF resulting in vigorous

gas evolution and the formation of a dark grey reaction mixture. When the

hydrogen evolution had subsided the solution was refluxed for 3 hrs.

Liquid mercury and precipitated grey solid were removed :t'rom" the cooled

solution by vacuum tiltration through a bed of celite and thoroughly

washed with THF. Evaporation of the combined tiltrates and recrystal

lisation from 95% ethanol f'urnished triphenylphosphine-cyanoborane (4 .15g,

76.4%) •

Tri.~.......,.,,:ylphosphine-ethoXJJcarbonylborone XXXXIII

Triphenylphosphine-cyanoborane (0.57g, 0.001& mol) was added to an

appropriate excess of triethyloxonium tetrafluoroborate in 20m! dichloro

methane and the reaction mixture refluxed for 24 hrs. When the solution
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had cooled the dichloromethane was removed under reduced pressure. The

residue was treated with 10m! degassed H20 and the resulting slurry

stirred at room temperature for 44 brs. Dichloromethane (4 x 25 ml port-

ions) was used to extract the aqueous solution. The organic layers were

combined, dried over magnesium sulphate and filtered to give a clear

solution. Removal of the solvent produced a gummy solid which was dis-

solved in hot ethanol and precipitated with cooling by the addition of

water. Tripheny1phosphine-ethoxycarbonyl-borane (0.35g, 52.88%) was

obtained as a white, crystalline solid. m.p. 16-18°C (lit. 11_19)149.

Analysis: calcd. for C2~2~0~ : C, 12.45; H, 6.31%. Found: C, 12.51;

H, 6.50% v ~ CKBr) 3015 em); 2980 (~); 2940 (sh); 2880 Csh); 2410 (br,

ml; 2350 Csh); 1980 Gm}; 1920 (m); 1820 (y); 1180 (m); 1680 (m); 1580 (8);

1480 '-al; 1450 Usl; 1420 (shl; 1350 (vI; 1320 (w); 1280 (w); 1200 (m);
" . "

1110 (Y};11~5 (sl; 1010 Cbr,sl; 1000 (y); 950 (sh); 850 (w); 150 (8);

735 (w1; "100 Cal cm-l • ~.~·1,0 Ct, 31f, 'C~l; 3.85 (q, 2H, ·c~l; 1.40

Ca, 15H, Ar-Hl ppm,
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Crystallography for 4-Dimethylaminopyridine-cyanoborane

A colourless regular prism crystal of c8 Hl2 B N3 having approximate

dimensions of 0.38 x 0.38 x 0.25 mm was chosen.

Cell constants and an orientation matrix for data collection were

obtained from least-squares refinement. using the setting angles of 21

reflections in the range 8 < e < 14 f
• measured by the computer controlled

diagonal slit method of centering. The monoclinic cell parameters and

calculated volume are: a =l3.113( 4). b =9.635( 3). c =14.430( 3) Xt

B =99.61( 2)i. v =l881.88A.3. For Z =8 and F.W. = 161.02 the

calculated density is 1.13 g/cniA. From the systematic absences of:

hkl h+k+l=2n+l and hOI h=2n+l and from subsequent least-squares refine

ment. the space group was determined to be a./a (No. 15).

A total of 2126 reflections were collected. of which 2052 were unique

and not systematically absent.

Lorentz and polarization corrections were applied to the data. The

linear absorption coeffic~ent is 0.1 cm-l for Mo-Ka radiation. No

absorption correction was made.

The structure was solved byt direct methods. Hydrogen atoms were

included in the refinement but restrained to ride on the atom to which

they are bonded.

Only the 809 reflections having intensities greater than 3.0 times

their standard deviation were used in the refinements. The final cycle

of refinement included 109 variable parameters and converged (largest

parameter shift was 0.01 times is esd) with UDweighted and weighted agree

ment factors of; R = 4.1% and R := 6.4%. The final difference Fourier map
v
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shoved no significant residual electron density. The highest peak in

the final difference Fourier had a height of 0.10 e/ ~3 with an

estimated error based on wF of 0.03.



Molecular Dimensions

(a) Bond lengths (i) (b) Bond angles (0)

Nl C2 1.345(3) C2 Nl c6 116.5(2)

Nl c6 1.342(4) C2 Nl BI0 122.0(2)

Nl BI0 1.575(4) c6 Nl BlO 12~.4(2)

C2 c3 1.355(4) Nl C2 C3 123.9(3)

C3 c4 1.412(4) C2 C3 c4 120.3(2)

c4 C5 1.404(4) C3 c4 C5 114.9(2)

c4 N7 1.335(3) C3 c4 NT 123.0(2)

C5 c6 1.353(4) C5 c4 N7 122.2(2)

N7 c8 1.449(4) c4 c5 c6 121.2(3)

N7 C9 1.448(4) Nl c6 C5 123.3(3)

B10 Cl1 1.573(5) c4 N7 c8 121.4(2)

Cl1 N12 1.130(4) c4 NT C9 121.6(2)

c8 NT C9 116.9(2)

Nl BIO Cll 109.4(3)

BID C11 N12 178.2(3)
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Torsional Angles

c6 Nl C2 C3 0.6

BIO Nl C2 c3 -179.4

C2 Nl c6 C5 -0.8

BIO Nl c6 C5 179.2

C2 Nl BIO Cll -74.4

c6 Nl BIO Cll 105.6

Nl C2 C3 c4 0.1

C2 C3 c4 C5 -0.6

C2 C3 c4 N7 179.4

C3 c4 C5 c6 0.3

N7 c4 C5 c6 -179.7

C3 c4 N7 c8 0.5

C3 c4 N7 C9 -177.6

C5 c4 N7 c8 -179.5

C5 c4 N7 C9 2.4

c4 C5 c6 HI 0.4

Nl BIO Cll N12 -178.7
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<lIAP1ER FIVE

FORMATION OF BH
2

X ADDUCTS

OF

AMINOPHOSPHINES



5.1 INTRaJJCI'ICIi

The basicity of the nitrogen atom adjacent to phosphorus in amino

phosphines has been the subject of much discussion. 1- 7 Until recently,8

the consensus was that in acyclic amino~phosphines the tricoordinate

nitrogen atom assumed a planar configuration with respect to its substit-

uents and thus demonstrates diminished basicity due to enhanced N(pll')

P(dll') bonding. 2 , 4, 7, 9. Previous studies indicated that acyclic

amino-phosphines behaved as tIP-donors only" in their reactions with

di 10-13 b • ( )borane. On the other hand, 1,.8 borane adducts are known to form

with amino-phosphines of the type p(o CH
2

CH
2

)2 N (R, =H, Me)9,14,15.

Here the nitrogen atom in the constrained bicyclic structure possesses a

pyramidal geometry, which presumably weakens the pll'-dll' interaction and

enables nitrogen to exhibit a more basic character. 8 , 13,14•

.Although Burg and Slota12 claimed in 1960 to have synthesised the

diborane adduct of Me2PNMe2 .later workers excluded the possibility of the

nitrogen atom being an active donor site in acyclic amino-phosphines. 9 ,1l,15

However, recent reports showed that both As-BH
3

and N-BH
3

adducts form

when BH
3

.THF reacts with acyclic amino_arsines,16,17 and a report in 1987

by Watkins and coworkers8
has discussed evidence for the formation of

(~) Me2(BH3)PNMe2 , (i~') Me2P N(BH3)Me2 and (iii) Me2PN Me2.2BH3 in the

reaction of Me2PN Me2 with BH
3

.THF.

5~ 1.1. Synthesis of DimethyZ (DimethyZaminoJ Phosphine

Dimethyl(dimethylamino )phosphine, I, was first synthesised by Burg

and Slota18 in 1957 by the action of CH3 MgBr on [(CH3)2N]PC12 (1)

CH3 MgBr + [(CH3)2N]PC12 ~ (CH3)2 P-N(CH3)2 (1)

I
The relatively low yield of 48% is accounted for by the fact that the

Grignard reagent attacks the nitrogen-phosphorus bond almost as effectively

as the phosphorus-chlorine bond.
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Reaction of Dimethy l (Dime thy laminoJPho8phine bYith Borane

The P-B bonded adduct, II ,. resulted from the gas phase reaction

of diborane with I, (2). 12

II

Burg and Slota claimed that the reaction of I with diborane at 220 C for

14 hra resulted in the diborane adduct (CH
3

)2 P.N{CH
3

)2.2BH
3

, III, (3).

220

II

III

However, no proof other than thermal decomposition data was offered by

authors in support of the existence of III.

11.In direct contradiction of (3), Jugie and coworkers, reported

reactions (4) and (5).

4{C2H5)3 N.BH
3

+ (CH
3

)2 PN{CH3)2

I reflux I
v

(CH3)2(BH3 ) PN(CH3)2 + EtjN + 3{C2H
5

)3 N.BH
3

II·

{CH3)2 PN(CH3 )2 + (X - 1) ~ B2H6 --!> (CH
3

)2(BH
3

)PN(CH
3

)2

+ (~-1) ~B2H6

(4)

(x = large excess)

Despite having used a large excess of both diborane and coordinated

borane[ (C2H5) 3N .BH3] no indication of the formation of an N-B adduct was

obtained. 3~, llB and" ~ nmr data provided unequivocal confirmation

that compound I I was the sole adduct from reactions (4) and (5). The

3lp .
S1gnal for the product consisted of a 1 : 1 : 1 : 1 quartet at -51

ppm as opposed to a singlet at .;..73 ppm for the free ligand. The 1~

spectrum showed a 1 : 3 : 3 : 1 quartet at -37 ppm with each member of
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the quartet ,being further split into a doublet by 3lpe The chemical

shift and splitting pattern are characteristic of four coordinate P-BH
3

compolIDds •

Recently the reaction of (CH3)2P.N(CH3)2 with BH
3

.THF was re

investigated as a function of time and for mole ratios of 1 : 0.5 and

1 : 3~0, by Watkins and coworkers. 8 In a typical experiments the approp

riate amolIDt of (CH
3

)2 PN( CH
3

)2 was condensed at -196°c onto a toluene-d8

solution of BH
3

.THF-da 16 sl7 in an nmr tube. After sealing and agitation

of the tube at -95°C it was inserted into a precooled (-900 C) probe of an

n.m~r. spectrometer. llBs 3lp and 13C spectra were then recorded (Table

1). At -.900 Cs only small amounts of (CH
3

)2PN(BH
3

) .(CH
3

)2(IV) and

f¢H3)2P.N( CH3 )2.2BH
3

(III) are observed initially, suggesting that the

formation of (CH
3

)2(BH
3

)P.N(CH
3

)2 (II) is kinetically favoured at low

temperature. On completion of a reaction from -150 to 25°C, with mole

ratios> 1 : 1, only II and (CH3~2 PeN(CH
3

)2 are observed~ Completion of

reactions with mole ratios greater than 1 :;\.1 yielded mixtures of II and

Ills with the relative amounts of each being dependent on the initial

mole ratio. of the starting materials. In a reaction' with a 1 : 2 mole

Iv (6)

(CH
3

)2(BH
3

)P.N(CH
3

)2 +

II

+

( CH3)2P •N( CH3)2 •2 BH3 + ..( CH3)2P •N(BH3 ) ( CH3)2
III IV

(CH3)2 P.N(CH3)2

at -90°C, as determined from the 31p nmr spectrum. Raising the temper-

ature increased the intensities of the peaks associated with the bis

(borane) adduct at the expense of those of lIDreacted (CH3 )2P N( CH3)2 and
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TABlE 1. Nut nnuoteazo JhIp.. Data fo1' Bozoane Adducts of ACJllotio Amlnophosphlnes (a)

CHEMICAL SHIFl', ppm

I

l\)
\0
\0

I

. .
temp °c ~ 3lp 13c Coupling HI

Compoun4 Constant.

( CH3)2P -*C - N - P 'lp_B ""7
P

_
C

(CH3 )2P N(CH3)2 25 39.7 14.2(4) 39.2(4) 18.3

(CH3)~ N(BH3 )(CH3)2 -70 -15.8 83.7 12.9(4) 46.9(4) 25.6

(CH3)2(BH3)P N(CH3)2 25 -38.3 63.7 11.8(4) 37.3(4) 68.7 40.6

(CH3)~ I(CH3)2· 2BH3 25 -11.8(B-N.) 104.4 10.3(4) 48.0(4) 49.4 36.3

-40.7(B-P)

11 13 1L. ..
(a) B.C an4 -p were recorde4 OIl a Nicolet 300 - lib IIUltinuclear , T DIU' .pectl'OMter operating at

96.3. 121.5 an4 75.4 tIIz re.pective~ 6(11B). 6(3lp) an4 6(13C) were .uure4 relative to BP3.OBt2 •

85% H~.. an4 Me.. 8i (internal) reBpective17. (b) Negative 6 values indicate uptie14 shirt troll B'30Et2'



the NBH
3

compound. At _lOoC the peaks assigned to IV and the starting

amin<;>-phosphine have disappeared and only peaks due to II and III are

observed. The authors claim that maintaining the reaction at _60oc for

24 hrs produced (CH3)2P.N(CH3)2.2 BH
3

in quantitative yields and that the

11
B nmr spectrum only contained two res'onances of equal intensity

associated with B - N and B - P coordination in III.

Al.temative Synthesis of An Aoycl.ic Amino-Phosphine-Bo~aneAdduct

An alternative synthetic route to an R2 (BH
3
)PNR~ type complex was

~ported by Scbmidbaur et al.19 in 1985. These authors synthesised dimethyl

(amino)phosphine-borane. (CH
3

)2(BH
3

)PNH2 Vasa colourless crystalline

solid melting at 290
C. The first step in the synthesis is the reaction

.Of chlorodimethylphosphine with BH
3

.THF to give the borane adduct. VI in

96% yield (1)

' ...R.T
(CH3)2P- Cl + BH3·THF ---~ (CH

3
}2P Cl.BH

3
+ THF

VI
. 20 21Subsequent reaction of VI with sodium amide or gaseous ammon1a ' results

in the formation of V (8).

(8)

VI V

The last method gives higher yields (98%) and avoids handling of the air

sensitive sodium amide.

It is interesting to note that 9 as Schmidbaur et al. have pointed out,

the Me2 (BH
3

)P- group is isoelectronic and isostructural with the versatile

Me
3

Si- group and may have an equally interesting chemistry.

5.1.4. Reactions of Me gP-NMe2 Invol.ving cz.eavage of the P-N Bond

The reaction of dimethyl(dimethylamino)phosphine with trimethyl

borane at _46°c results in the adduct (CH3)2P N(CH
3

)2. B(CH
3
)3' VII

22
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'!his adduct was not isolated but rather the authors claimed that VII

acts as an intermediate in the room temperature reaction (9) leading to

compounds VIII and IX.

C~, "",CH3

P-N
"", ,

CH3 CH 3
\.11

CH3 CH 3

I I
CH3-P -I'.-CH3

I I
CH3 CH 3

VUI

+

+

CH3,. /CH3

N-B

CH3 "'" 'CH3

IX

(9)

A second example of P-N bond cleavage was reported by Burg and

12
Slota. These authors reported that both the amino-phosphine, (CH3)2P

N(CH
3

)2 and the aminophosphine-borane adduct decompose thenna1ly to form

the diphosphine X, Figure 1.

C~, "",CH3

P-P
"", ,

CH3 CH 3

X
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More Corrp'lex P-N Systems

The majority of recent research into borane adducts of °8mi.no_

phosphines is centred on those derived from phosphoranes, e.g.

P(OCR2CH2 )2 N. Because of the constraints imposed by these cyclic

systems, the nitrogen atom is forced into a pyra.m:i:dal position, which in

turn facilitates borane absorption. The discussion below is structured

to deal with compounds in order of increasing numbers of P-N bonds.

Compounds with a single phosphorus atom are discussed before those with

two, three or more phosphorus atoms.

Compounds 7JJi th one P-N Bond

Riess and coworkers23 have studied the reactions of the bicycloamino-

phosphines, XI and XII. Figures 2 and 3,with diborane.

P-N

l\~

Me

Fi gure 2: Bi cycloaminophosphine XI

P-N

J\...-.-..
o

Fi gure 3: Bi cycloaminophosphine XII

The bicyclic structure and the pyramidal phosphorus atom force the nitrogen

atom to stay pyramidal. This hinders the p1l'-d1l' interaction and restores

the nitrogen atom's donor properties. When XI and XII were reacted with
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0.5 molar equivalent of diborane at room tempe~ture, the expected P-B

bonded borane adduct was obtained in each case and identified by n. m. r. 9

Reaction with one molar equivalent of diborane lmder the same conditions

yields bis (borane) adducts of both XI and XII. The isolation of stable

crystals of the bis (borane) adduct of XII made it possible for the first

X-ray diffraction data on a P-boimd B atom coordinated to borane to be

recorded, XIII. (Figure 4)

Figure 4 Molecular StrtuCture of XIII

The N - B bond length [1.655(8) ,Rl is comparable to that of

o
(CH3)3N. BH3 [1.638(01) A], the structure of which was determined by

. 24 0
m1crowave spectroscopy. The P - B bond length [1.873 A] is short but

comparable to those obtained for other adducts in which phosphorus has

electonegative sUbstituents. 7 The P - N bond length [1.757(4) ~] is as

expected in the absence of W .bonding.
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For compound XIV, reaction with borane involved cleavage of the

phosphorus-nitrogen bond (10).

Ph" °Il'" "" P-N

Ph/!J

XIV

(10)

Compounds of the Type -P(N-) 3

26
. Verkade and coworkers have reported several examples of borane

absorption by cyclic aminophosphines of this type.

The aminophosphine, 2,6,1- trimethyl-4-methyl -2,6,1-triaza-l-phospha

-bicyclo [2, 2, 2] octane, XVI, was prepared26 by the reaction of the tri

amine, 1, 3 bi8(methylami.no)-2-(methylaminomethyl)-2-methylpropane XV,28

with [(CH
3

)2N]3 P. (11). Derivatives29 ,30 of XV and XVI were made by

reaction of XV with C1
3
P = 0, XVII, and by the reaction of XVI with

elemental s~phur, XVIII, and seleniurn, XIX.
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/N
X-p

\,N
,\CH3

N--J
CH3

(11) ,

xv

x = lone pair, XVI; 0, XVII; S, XVIII; Se, XIX

Diborane was condensed at _1960 onto frozen solutions of compounds

XVI to XIX. These solutions were then stirred at an equilibration temper

ature until a constant pressure was obtained. The products of the reactions

are listed in Table 2.
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TABlE 2. Borane-Adducts of XVI~ XVII and XVIII

Compound Product

x y x y

XVI lp lp :xx BH
3

BH
3

XXI BH
3

lp

XVII 0 lp "XXII 0 BH
3

XVIII S lp XXIII S BH
3

..

The solid compound, XX, filtered cold from the reaction mixture of

XVI and diborane was found to lose borane readily in moist air to produce

the white, sublimable compound XXI. The adduct :xx was stable .. ihowever, on

purging a chloroform solution for 2 hrs with dry nitrogen.

concentrating the solutions from the reactions of XVII and XVIII with

diborane and cooling to _78°C y~elded the colourless adducts XXII and

XXIII, respectively. Both compounds were ·stable in halogenated hydrocarbons.

Compounds of the Type P-(N-) 4

Atkins and Richman,3~eacted.stoichio-~tricamounts of 1, 4, 7, 10

tetrazocyclodecane,32 XXIV, and hexamethylphosphorustriamide. This

reaction led to the synthesis of the cyclic phosphorane, XXV, (12), which

was isolated as a white crystalline solid. From the strong P - H stretch

in the infrared ·spectrum and P - H coupling in both the lH and 3~ n'. m. r. s ,

the authors concluded that the phosphorane tautomer, XXV, predominated

rather than the tricyclic phosphorus triamide, XXVa.
33
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H

I
IN)
N N-H

H-~N-J
I
H

XXIV

+

Ii)
N-P-N

CN-J
I
H

XXVa

Ii?!
N-P -N

CJ-J
xxv
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Riess and coworkers,23 investigated the possibility of stabilising

the open form XXVa, by displacement of the tautomeric equilibrium~ (12),

under the action of a Lewis Acid capable of coordinating both the

phosphorus and nitrogen sites. Cyc1enphosphorane, XXV, reacted readily

with diborane to add two equivalents of diborane. The reaction product

isolated, in near quantitative yield, as a white crystalline powder,

proved unexpectedly to be the bis adduct, XXVI, in which no rearrangement

of the initial structure had occurred, (Figure 5)

XXVI

Figure 5..: Cyclenphosphorane bis borane

The lIB nmr spectrum of XXVI consisted of two signals of equal

intensity at 6 + 41.2 and 50.2 ppm; consistent with the presence of two

BH
3

groups on two nitrogen atoms symmetrically located in the macrocycle.

Compounds such as fluorocyclenphosphorane 34 andblscyclenphosphorane35
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both show the tendency of pentavalent phosphorus atoms to adopt a nearly

perfect tr~agonal bipyramidal arrangement despite the constraints imposed

by the cyclic structures. Riess and coworkers23 proposed that XXVI

adopts a similar arrangement. 'nle BH
3

groups are then likely. both on

kinetic and thermodynamic grounds, to be co-ordinated to the apical

nitrogen atoms. Muetterties et aZ36 have shown that these undergo less

p1f-d1f interaction with phosphorus than those in equatorial positions.
,

Because of this the apical nitrogens are likely to manifest greater basi-

"t 21Cl. y. Thus, even if the BH
3

groups did attack the equatorial nitrogen

atoms, it is expected that the structure would rearrange itself so as to

bring the uncoordinated nitrogen atoms into the equatorial plane in which

p1f-d1f interactions are favoured and the BH
3

coordinated nitrogen atoms,

which have no electron left for back donation, into the apical positions. 23

5.1.6. Arrrinopho8phines b1ith tlHo Ph08phoPUB Atoms

Reactions with methylamine bis (dif1uorophosphine). F2PN ( CH
3

)PF2'

XXVII, have been used to prepare the mono -, XXVIII, and bi8 -, XXIX,

borane adducts (13), (14).37
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CH3., I /F
P-N-P

F/ 'F
XXVII

CH3 BH3
F, I I /F

P-N-P

F/ ~F
XXVIII

F CH 3 F, I /
P-N-P

F/ 'F

XXVII
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Compotmd XXVIII is stable but the ·bis (borane) adduct readily 'lmder-

goes irreversible decomposition.

Martin et aZ38 have reported similar borane absorption studies on

cyclic aminophosphines containing two phosphorus atoms. These authors

reported that compound, XXX, Figure 6, added one or two equivalents of

b d di th .... 39 S" "I 1 XXXI F" 1 alorane epen ng on e stoJ.chJ.omet.I'Y. J.Dll. ar y, , J.gure , so

added two equivalents of BH
3

,40 as will compound XXXII,41 (Figure 8>' In

all of these cases the borane groups were coordinated solely to phosphorus.

Su

I
N

/ \
f-P P-f

\ /
N

I
Bu

Figure 6: xxx

Fi gure 7: XXXI
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Sys·tems 7JJi th Four- PhosphoPUB Atoms

Phosphorus tri-N methy1imide, P4 (NCH
3
)6' XXXIII, reacts with

diborane in sOlution
42

to give the complexes P4 (NCH
3

)6(BH
3

)n with

n = 1 - 4. The BH
3

gr0'UPs are affixed to the phosphorus atoms without

rupture of the original symmetric cage structure. This addition occur~ed

almost at random at first, then the distribution of the molecular species

present in the solution was seen to change with time and finally reached

an equilibrium after ca. 4 days. This system of complexes is formally

treated as an exchange of borane groups versus electron p~irs around the

In P4(NCH
3

)6(BH
3

)4' XXXIV, the BH
3

groups can be displaced by trimethyl

amine, on the other hand (CH
3

)3 N.BH
3

can be used as a source of BH
3

groups

for comp1exing P4 (NCH
3
)6' (15).

XXXIII XXXIV

The relative affinity of BH
3

towards P4 (NCR
3

)6 and trimethylamine was

. measured by Riess and Van Wazer.
42

5.1.8. ReZ,ated Systems 7JJith No Direct P - N Bond

Miller and coworkers43 studied the reactions of the gem-dibasic

ligand, dimethyl phosphine methy1d.imethy1amine, [( CH
3

)2PCH2N( CH
3

)2]'

XXXVI, Figure 9.
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with 0.5 molar and 1 molar equivalents of diborane. Both the monoborane

and bis (borane) adducts were isolated as stable solids. The authors

claimed that the simple bis (borane) adduct structure t XXXVII t Figure 10

Figure 10:

was favoured for this compound as opposed to the symmetrical salt structure,

XXXVIII t Figure 11,

Figure 11: XXXVIII

$ince the infrared spectrum did not contain the strong bending absorption

of [BH41 - in the 1010-1110 cm-1 region.
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26
Verkade and coworkers studied the reaction of uIl'stable p( OCH

2
CH2 ) 3N,

XXXIX, Figure 12,

Figure 12: XXXIX

c
o~ ~C

/' /'
p·-o C-N

, 'C/ 'c
o "'"'-.c ____

(22)

with BH
3

.THF at room temperature in toluene to obtain a stable~ phosphorus

boron ·bonded, solid adduct H3B.P(OCH2CH2)3N, whose structure was confirmed

by X-ray analysis. One interesting feature of XXXIX is its increased

basicity. This is conferred by the twisting of the OCH2CH
2

bridges with

respect to the P-N axis, thus putting the largely unhybridised 2p lone pair

orbital on each oxygen in P(OCH2CH2)3N in a position to interact repulsively

wi th the phosphorus lone pair in this preferred molecular conformation.

t

To date no cyanoborane adducts of aminophosphines of the type R2PNR 2

have been reported. However the cyclic system

has been reported as well as some halogenated adducts such as (Me2N) 3P

BH2Cl and (Me2N) 3PBHC12.

Cyanoborane adducts have not been reported in 8Ddnoarsine Chemistry

either (vide infra)
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Aminoa1'sines and Their- Reactions 1J1ith Bor-ane

Borane absorption studies we~ performed on aminoarsines by

Krannich and coworkers.
44

The reaction of BH
3

.THF with diethylamine

dimethy1arsine, (CH3)2ksN( CH2CHs )2' XL Figure 13, was followed by temperature

XL

Figure 13: Dimethy1a.minodimethy1arsine

dependent 11B,13c d: 1Man _ n.m.r. spectroscopic studies. Both N - B,

XLI, and the As - B adducts, XLII, were formed by a 1 :-i 1 : 1 reaction

of XL with BH3 eTHF in THF/to1uene at _90oC, in comparable yields (Figures

14 and 15) e

.-
Figure 14: XLI
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--
Figure 15: XLII

As the reaction mixture is' -gradually allowed to warm up, canpound XLII

undergoes rearrangement to XLI with some decomposition, the disappearance

of XLII being complete at _lOoC. These findings indicated that XLI is

more stable than XLII or that boron-nitrogen bond formation is favoured

over boron-arsenic bond formation in the above system. This is consistent

with the results of previous studies which suggest that the order of

adduct stability is

(CH ) P BH (CH ) N BH (CH3) _As.BH345,46,47
3 3· 3 > 3 2· 3 > S-

Since at _lOoC the reaction mixture contained primarily XLI, with

trace amounts of (CH3)2As.BH2 and (CH3CH2)2NH.BH3 these authors suggested

that the following reactions occur (16), (17), :(18).

(16)

XLI

XLII

XLII

,.
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(18)

At 20oC, lIB signals at 6 36.2 and -19.4 ppm were noted indicating

the presence o~ (CH3}2ASBH2,46,47 (CH3CH2)2NH.BH348,49,50 and the ~~

hydrido-b~idged species, ~-[CH3CH2N]B2H548,51,52,53decomposition products

o~ XLII. The ~orma.tion of these substances is thought to .take place by

the following reactions (19), (20), (21).

(20)

Krannich and coworkers44 have also shown that the diarsine compound,

(CH3)2ASAs(CH3)2' XLIII, is ~ormed by the decomposition of (CH3)2AsN(BH3)

lCH3)2. The first step is the ~ormation of (CH3)2AsH, (22).

(22)

(CH3)2AsH then reacts with undecomposed adduct, (23),

:> (CH3}2AsAs (CH3 )2 +

XLIII

These reactions occur irreversibly and good yields of the diarsine product,

XLIII, are obtained.
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5.2 RESULTS AND DISCUSSICN

The objective of this work was the synthesis of novel BH2X (X = H, CN)

complexes of aminophosphines of the type Ph2P NR2 • The preparation of both

P-BH2X and N-BH2X compounds was attempted. Three different approaches were

employed (a) aminophosphines were reacted with BH
2

X -ether (THF or mono

glyme) complexes to generate mono- and di-BH2X adducts, (24), (25).

(24)

(b) the second approach involved the reaction of Ph
2
PCl (BH

2
X) complexes

with amines (primary or secondary) to afford phosphorus-inono-boron bonded

aminophosphine adducts (26).

Et N
Ph

2
PCl (BH

2
X) + R2NH 3 :> Ph2 (BH2X) PN~ (26)

(c) Since it was anticipated that routes (a) and (b) would generate only

phosphorus-boron bonded 81ilducts, amine-boranes and -cyanoboranes were

reacted with chlorodiphenylphosphine in an attempt to f'urnish nitrogen-boron

bonded adducts, (27).

5.2.1.

z

Firstly, the preparation and characterisation of the new aminophosphine,

'I'vo syntheses of XLVIII were utilised. Initially, chlorodiphenyl

phosphine was reacted with two equivalents of dicyclohexylamine (28), method

(i).

THF
Ph

2
P Cl + 2(C6H

ll
)2NH :> Ph2PN(C6Hll )2 + [(C6Hll )2 NH2][Cl] (28)

reflux

Diphenyl (dicyclohexylamino )phosphine was isolated in 80% yield from this

reaction. The second method (ii ) involved the reaction between equivalent
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quantities of chlorodiphenyl-phosphine, dicyclohexylamine and triethylamine

in refluxing THF (29) (91% yield).

THF
Ph2 PCl + (C6Hll )2NH + EtJN reflux ~ Ph2PN(C6Hll )2 + [Et 3NH][Cl] (29)

Compound XLVIII is thermally and hydrolytically stable and has a melting

point of l77-l78°C. It is soluble in polar, all'otic solvents and aromatic

hydrocarbons. The compound's formula was confirmed by chemical analysis

and by its mass spectrum which exhibits a molecular ion~ M/Z = 365~ and

a fragmentation pattern showing loss of both phenyl and cyclohexyl groups.

The infrared spectrum of XLVIII clearly indicates phenyl and CH2- contain

ing groups with aromatic absorptions at 3060 and 3000 cm-l and also at

1580 and 1450 cm-l , and ~liphatic CH2- absorptions at 2930 and 2840 em-I.

A sharp peak. at 1440 em-I is characteristic of phosphorus phenyl group

absorption.

AIthough halogen-exchange reactions are known to occur in systems such as

there was Do.evidence of either P-H (2440-2350 em-I) or N-Cl (805~90 cm-l )

absorptions. 54

. 13 31···
Multinuclear (~, C, PI n.m•.!'. spectra of XLVIII showed the expected H and

C signals and a phosphorus resonance at 6p = 23.8 ppm.

5.2.1.1. Reaction of XL"VIII 7JJith BH3.THF in a 1: Z Mole Ratio

In 1958, Burg IIl1d Slota
18

claimed to have s.ynthesised (CH
3
):t N( CH

3
)2

•2BH3 with borane groups bonded to both phosphorus and nitrogen ~ but af:fered

no evidence in their report for that compound '·s isolation other than that

based on the products of thermal decomposi tion. However ~ later Jugie and

cowork~rsll on attempting the same reaction reported that evidence for only

P ---+B adduct formation w8s f"olmd by using ~~ :q and 3lp D.m.r. techniques.
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Even using a large excess of borane (either gaseous B2H6 or a BH
3

-ether

adduct) addition at both nitrogen and phosphorus could not be obtained. ll

Diphenyl(dia,yclohexylamino)phosphine~XLVIII~ reacted smoothly with two

equivalents of borane-THF XLIV in refluxing THF to furnish diphenyl(dicyclo-

hexylamino )-phosphine-bis borane LIII in 42% yield (31).

.•...

XLVIII LIII

At the time of its preparation (1986) compound LIII was apparently the

first bis-borane adduct of a simple aminophosphine to be isolated at room

temperature. In a paper published in 1987, Krannich and coworkers8 reported

the preparation of dimethyl(dimethylamino)-phosphine-bis borane (III) by

the reaction of Me2PN Me 2 with gaseous diborane at -lOoC {32}.

(32)

I III

Dimethyl(dimethylamino)phosphine-bis borane melted at 117°C and was

reported to be moderately air stable. Compound, LIII (m.p. 2l7-2l8°c) was

initially characterised by its chemical analysis: C, 72.99; H, 9.74;

N, 3.72; B, 5.60%; (C24H38NB2P requires C, 73.28; H, 9.67; N, 3.56; B, 5.59%)

and was f'ound to be moderately thermally and air stable in solid f'orm.

However, compound LIII was unstable in solution and a sample recrystallised

from monoglyme solvent analysed differently from LIII giving a reduced boron

content relative to nitrogen and phosphorus i.e. changing from 2 : 1 to

1.2 : 1.' The analysis figures were suggestive of' the presence of' oxygen

in the recrystallised material. Preliminary ~ and 13C n .m. r. spectra of'

the recrystallised material did not indicate any major structural changes

.from LIII with the signals for cyclohexyl and phenyl groups being retained.

Crystals of' this new compound were sent to Professor G. Ferguson in Guelph

f'or X-ray crystallographic structural analysis but unfortunately it was
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found that the crystals were twinned and a full characterisation was not

possible.

The infrared spectrum of LIII showed typical aromatic and cyclohexyl

4 -1(CH2 ) absorptions. The B-H absorptions at 2515 and 2 20 cm are relatively

weak with others at 2365 and 2330 cm-1 even weaker. There is a strong

absorption at 1440 cm-1 which may be due to a phosphorus bonded phenyl

group but could possibly also be associated with aromatic CH vibrations.

No infrared data have been reported for previous bis borane adducts so

general comparisons are not possible.

As ~ be eXpected both thelH (Figure 16) and l3C• (Figure 17) n.m.r.

spectra for LIII were similar to those of the parent aminophosphine. A

corresponding observation was also made by Krannich and coworkers in the

case of the ~ n.m.r. spectrum of Me2PN Me2 .2BH
3

• Due to lack of facilit

ies at U.C.C. to obtain lIB and 3~ n.m.r. spectra, samples had to be

sent to either University College, Galway or EdinburRh University. The

resulting l~ and 3lp n.m.r. spectra of LIII were unsatisfactory and

contained peaks which suggested decomposition of the original compound. It

is probable that these spectra cqrrespond to the previously mentioned prod-

uct obtained on recrystallisation. Instability in solution is a feature of

aminophosphine-borane chemistry and is further emphasised in the attempted

synthesis of diphenyl (dicyclohexylamino) phosphine-borane (.vide infraJ.

5.2.2.2. Reaation of XLVIII bJith BlI3-THF in a 1: 1;'-' Mote Ratio

Diphenyl(dicyclohexylamino)phosphine reacted smoothly in refiuxing

THF, with one equivalent of borane-THF. However, although exactly the same

conditions were used as for the bis borane adduct above, the product

isolated was not the anticipated diphenyl(dicyclohexylamino)phosphine-

borane (10).

refiux

Ph2 PN(C6Hll)2 + BH3-THF THF ~ ~P N(C6Hl~)2·BH3
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During the work-up procedure oxygen was incorporated into the system

and the product which was isolated as a colourless, crystalline solid,

was a biphosphine monoxide derivative, [Ph2(0)P-p Ph2 ] complexed with two

diphenylamine molecules LTV (Figure 18). This compound was characterised

by i.r., n.m.r., mass spectroscopic and X-r~ crystallographic techniques.

QP
N

I
H

wPCz
«p-p~ ~N-H

V Vv

The infrared spectrum of LIV showed strong C-H aromatic absorptions (2960-

80 -1 , 8 -1 . ( -1 )31 em and 15 0 cm ); a P = 0 absorpt~on 1300 cm and a strong

absorption (1455 cm-l ) which is suggestive of phosphorus bonded phenyl

groups. There was no evidence in the infrared spectrum for cyclohe:xyl

methylene group absorptions. The ~ (270 MHz) n.m. r. spectrum of LTV

(Figure 19) emphasised the completely aromatic nature of the compound.

All signals were between 6.97 and 7.88 ppm in a series of complex multi

plets and no detailed assignements were made. The l3C n.m.r. spectrum of

LTV (Figure 20) showed clearly the diphenylamine species but the phosphorus-

containin~ moiety produced a more complex spectral pattern which was

difficult to analyse. Howevers the 3lp (109.25 MHz) n.m.r. spectrum of
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compound LIV (Figure 21) was much more informative and showed two doublets

centred at 631p = -21.6 and 39.2 ppm. The doublet at -21.6 ppm corres

ponded exactly with that reported by Fluck and Binder for the pIlI atom

in Ph
2

(O)P PPh
2
: 5 However, the signal for the PV atom (39.2 ppm) was

shifted upfield from 36.9 ppm in Ph2 (0)PP Ph2 • This was possibly the

result of the interaction with a diphenylamine molecule (vide infra). The

13,\ 31p_3~) coupling constant was 98 Hz. Mass spectral analys.is of LIV

confirmed the presence of diphenylamine _ The parent molecular ion [M] +

of. +and fragment ions [M-H] " and [M-2H] were observed as the most ablmdant

peaks. No ions at higher mass were observed which agrees with the sugges-

tion of weakly bOlmd diphenylamine species being present in the compound,

(vids infra).

Compound LIV was isolated from reaction (10) on seven different

occasions. In order to obtain ,some information as to how it was formed an n.m.r.

study .'.. . ' of reaction (10) in solution at room temperature was lmdertaken.

Ten minutes after the addition of the borane-THF solution to the suspension

of diphenyl ( dicyclohexylamino )phosphine, the cyclohexyl methylene group

signals had become very weak in comparison to the aromati c protons

( relative ratio of the sum of C!!e : CH signals originally 2 : 1 was reduced

to 1 : 8) _ Within thirty minutes of the addition the ~ n. 'm. r ~ spectrum' of

an aliquot of the reaction solution exhibited only aromatic signals. The

only other product of the reaction was an intractable, air-lmstable semi-

solid. No information about this material would be' obtained because of

its reactivity_ To ascertain the structure, crystals which were suitable

for X-ray diffraction stu~ were grown from a monoglyme-diethyl ether (2 : 1)

and sent to Professor G. Ferguson. The crystals were fOlmd to have mono-

clinic space group P21/n. The structure was solved using the Patterson

heavy atom method which resolved the position. of one phosphorus atom, with
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the remaining atoms being located in successive difference Fourier

syntheses. Hydrogen atoms were included in the refinement but restrained

to ride on the atom to which they . are bonded. The structure was resolved

in full matrix least squares calculations. A drawing of a single molecule

showing 25% probability ellipsoids is illustrated in Figure 22.

The crystal structure of LIV is quite unusual in that it is disordered

about the inversion centre (in the middle of the phosphorus-phosphorus bond).

The oxygen atom position is only'half occupied' and is equally disordered

over the two phosphorus atoms t which are thus identical due to this space

group induced disorder. The structure also has (a) a hydrogen bonded

diphenylamine group and (b) a second diphenylamine group which is part of

the compound but which t unlike the first t does not appear to be hydrogen

bonding in the structure."

The complete structural data for compound LIV is in the Experimental

section. Table 3 lists the principal. bond lengths and bond sn;gles.
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TABIE 3. Bondlengths and Bond Angles for [Ph2 (OJPP Ph2 ]2(Ph2NHJ
2

.
Bond Bondlength Bond Angles--

0 \ Degree)
A

P-P* 2.228. (2) p* - P - 0 120.5 ( 3)

P=O 1.345 (6) p* - p - Cll 102.2 (1)

P-Cl1 1.811 (4) p* - p - C21 102.0 (1)

P-C12 1.812 (4) o - P - C11 -116.0 (3)

N-C31 1.386 (5) o - P - C21 109.3 ( 3)

N-c41 1.396 (5) N - H(N) ••• 0 15

N•••• 0 2.690 (6)

H(N) 0 1.19

* refers to the equivalent position 1 - X, 1 - Y, 1 - Z

The P - p. bondlengths in compound LIV is quite similar to the majority

of the P - .-p bonds in black phosphorus (from 2.20 to 2.28 i )56 • It is

also quite similar to that in P2I4 (2.21 ~)51. The structure of hypo

phosphoric acid has been established (Figure 23) by X-rq diffraction studies. 57

2-

The phosphorus-phosphorus bondlength in the oxoacid is 2.11 ~, that is

8
0.

0.05 A shorter than in compound LIV. other organic species with P - B

bonds are llexa( methy1imidO) tetraphosp1'.Lorus (2. 996 ~)58, biB (cyc1enphosPhorane) .
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(2. 264 ~ ), 35 both of whi ch are longer than that in compound LIV. (The

° 59single bond covalent radius of phosphorus has been reported as 1.10 A ,

the bondlength in LIV is approximately twice that value). The P = °

H

I

bondlength at 1.345 (0) R is significantly shorter than that in hypophos

phoric acid "(1.50 and 1.57 R) and that in phosphorous acid (Figure 24)

(1.47 and 1.54 R).

,,,
H

" -/ P "'0/ 0
o

" H, , ,
Figure 24: Phosphorous Acid

The longer bondlengths in the acids are clearly due to the partial.

double bond character found among the oxygen atoms of P-oxyacids. Perhaps

a more meaningful comparison is with d(P = 0) 'in P40lO '. 1.43 R. Crystal

line phosphoric acid has a hydrogen bonded layer structure in which each

PO(OH)3 molecule is linked to six others by R-bonds which are of two lengths,

2.53 and 2.84~. The shorter bonds link OR and 0 = P groups (Figure 25a)

whereas the longer hydrogen bonds are between two OR groups on adjacent

molecules (Figure 25b).

p=o-----""
o

I
p

(a)

Fi~ .25: .R-bonds in Phosphoric Acid
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The hydrogen bond in compound LIV at 1. 79 ~ is significantly shorter than

both types in phosphoric acid.

Mode of FoPmation of LIV

The generation of compound LIV from the reaction between diphenyl

(dicyclohexylamino )phosphine and borane-THF involves (i) cleavage of the

phosphorus-nitrogen bond in LIV t (ii) reaction of two Ph2P- c~nta.ining

species followed by oxidation of the P-P compound formed and (iii) formation

of diphenylamine either via oxidation of the N-cyclohexyl groups or reaction

with another species (possibly diphenylphosphine).

(i) and (ii): Cleavage of the Phosphorus-Hitrogen Bond and Formation o~ Ph2(O)p

Ph2

The thermally induced cleavage of phosphorus-nitrogen bonds in silDPle

aminophosphines is well documented in the chemical literature. In 1960,

12 18Burg and Slotat · t reported that heating dimethyl (dimethylamino)phosphine

to l60
0 c with borane generated the pb:>sphorus-phosphorus compound, P~4 (34).

(34)

other products of the reaction included H2 , "ami~oborane", Me
2

PH, (Me
2

PBH
2

)n,

and B3H5(Me2P)2- It is noteworthy tliat the bis borane adduct (III) t did
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not furnish Me2PPMe2 on thermal decomposition. In an analogous reaction

to that reported by Burg and Slota, I<:rannich and coworkers17 , studied

the generation of' Me4As2 f'ro;m" the decomposition of' dimethyl(dimethylamino)

arsine-borane (35).

Me Me" /.
---1.~ As -As

'/ "Me Me

(35)

These authors reported that the generation of' dimethyl-arsine, Me2AsH,

from dissociation of the aminoarsine-borane complex is the crucial step in

the reaction. Using these systems as models, the generation of' the phosphine

-phosphine portion of LIV may occur as f'ollows. The initial. step of the

reaction may be the ,formation of' the phosphorus-boron 8minophosphine-borane

adduct. This could then decompose to form diphenyl-phosphine and dicyclo-

he~lamino borane (Scheme 1).
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,

Scheme 1: Generation of Dipheny1phosphine

+

THF

+

That the bis borane LtII adduct did not decompose in this fashion may be

due to the addition of the second borane group to ni trogen precluding decom-

position to the dipheny1phosphine and the amdnoborane.

Dipheny1phosphine could then react with amdnophosphine to generate the

biphosphine species and dicyc1ohexy1amine (36).
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+

(36)

+

60 61Similar reactions for Me2PH and Me2PNMe2 have been reported by Burg! '

It is envisaged that since the addition of BH
3

to Ph2P-N(Cy)2 is carried

out under inert atmosphere conditions, the oxidation to phosphine oxide

occurs during the workup procedure in air (37).

air
---~:> Ph

2
(0) p-p Ph

2
workup

Krannich and coworkers62 observed broadening of peaks assigned to

Me2AsNMe2 and Me2NH in the ~ n. m. r. of (38).

(38)

They suggested that exchange of Me2N groups between Me2AsNMe2 and Me2AsH

(what they termed "self-transamination") was occurring equation (38).
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These authors noted that thiS' was not unexpected since such reactions are

a known synthetic pathways to dialkylaminosubstituted arsines. 63 )64 Alder

and KOber65 ) have established the dimethyl-amino group exchange in the

Me2NH/Me2AsNMe2 system through n.m.r. studies using isotopic labelling.

Krannich and coworkers investigated the Me2AsNM~2/Et2AsAsEt2system as a

function of temperature (_800 e to _lOoe) and time using equimolar ratios

of the reactants in a toluene-d8 solution. From -80 to _30oe -the 13e

n.m.r. spectrum contained only peaks associated with Me2AsNMe2 and Et2As.

AsEt2 • Thus exchange of Et2As. and Me2As groups did not occur over this

temperature range. At -250 e) very low intensity peaks corresponding to

Me2AsAsEt2 and Et2AsNMe2 appeared (39).

At _lOoe the intensities of these peaks increase with time as those of the

starting materials peaks decrease. After 5 hrs at this temperature, a

peak. assignable to Me2AsAsMe2 appears and increases in intensity with time.

Thus the lmsymmetrical diarsine undergoes symmetrisation. Af'ter 5 days

at _lOoe, the reaction reached equilibrium. The ~ n.m.r. spectral data

at equilibrium indicated the presence of 18% Me~NMe2' 34~ Et2AsAsEt
2

, .

24% Et2AsNMe2 , 20% Me2AsAsEt2 and 4% Me2AsAsMe2 • This study suggested that

the following equilibria were established in solution (40), (41).

(40)

(41)

Since the line widths of all the peaks in the lH and l3e n.m.r. spectra

remained very narrow over the entire temperature range, the authors concluded

that the exchange of Me2As and Et2As moieties is very slow on the n.m.r.

time s ca.le •
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(iii): Formation of Diphenylamine

The formation of diphenylamine is not readily explicable. The reaction

conditions are apparently not conducive to oxidation of the N-cyclohexyl

groups to N-phenyl groups. Also such reactions appear to be mlknown in the

chemical literature. Moreover t since the yield of LTV is 75% based on

diphenyl( dicyclohexyla.mi.no )phosphine and thus most of the nitrogen in the

system must be retained in LTV t a possible phenyl group exchange between the

aminophosphine. or dicycZ,ohexyla.n4ne" and .diphenylphosphine (see Scheme 1 above).

-H

Since if' this were the case the maximum yield of LTV possib:'..~e by this method

would be 50%. Hence the forma~ion of diphenylandne is unexpected and cannot

be explained at this time. Clearly this reaction requires further study,

however such study would be outside the realm designated as of primary

impoir.tance in this thesis t i.e. borane and pseudohalo-borane chemistry, and

was not pursued.
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5.2.1.4. Reaction of XLVIII with Gyanoborane-rronpgLyme CompLex

Apparently no cyanoborane adducts of aminophosphines have been

previously reported. In an attempt to prepare such adducts diphenyl(dicyclo-

hexylamino)phosphine was reacted with cyanoborane-ether complexes in both

1 : 1 and 1 : 2 stoich~metry e. g. (43).

R20 = THF or monoglyme

however, the reaction of the wnophosphines with one equivalent of
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BH2CN-monoglyme ~ while not yielding the anticipated aminophosphine

cyanoborane adduct (or the biphosphine monoxide species) did~ however~

furnish high yields of a stable boron containing product (m.p. 202-2030 C)

LV. Chemical analysis of LV showed that it contained carbon t hydrogen,

boron and phosphorus but not nitrogen. The ~ (360 MHz) and l3C (90 MHz)

n.m.r. data suggested that the organic groups present were aromatic.

However, since little structural information could be derived· from both

i.r. and n.m.r. spectroscopic analyses, single crystals were grown from an

ethanol: diethylether (1 : 1) mixture and sent to Professor G. Ferguson

for an X-ray crystallographic diffraction study. At the time of writing

the results of this analysis were not available.

5.2.1.5. Syntheses of Other Aminophosphines

In anticipation of studying the reactions of other aminophosphines

with BH
3

- and BH
2
:CN- ether complexes the synthesis of several other amino

phosphines was attempted. However t these preparations were unsuccess:f\1l

(vide intra) and further work was curtailed. A brief account of these

reactions is given below.

Four amines were reacted with chlorodiphenylphosphine using procedures

(a) and (b). The wnes used were t-butylamine ~ di-n-butylamine ~ 3, 5-

dimethylpyra;ole and diphenylamine. From these reactions using general

method (ii) (compare Ph2 PN(C6Hll)2' reaction (29») both t-butylamine and

di-n-butylamine afforded novel aminophosphine oxides of the type Ph2 (O) PNR,R2

(44).

Et
3
N

------:> Ph2(0) PN Rl~ + [Et3NH] Cl
air/workup

(44)
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The reaction o~ 3, 5-dimethylpyrazole with chlorodiphenylphosphine

furnished an unusual product and diphenylamine apparently ~ailed to react.

The aminophosphine oxides, Ph
2

(0) PN (Bu n) 2 L and Ph2( 0) PNH (But) IL were

initially identified as such by their chemical analyses and infrared

( -1spectra. Both showed the presence o~ strong P = 0 absorptions 1230 cm

~or L and 1225 em-1 for I1). lH and l3C n.m. r. spectra established the

presence of the phenyl and alkyl groups. Both aminophosphine oxides were

air-stable, crystalline solids soluble in halogenated hydrocarbons.

However, since these compounds were not those required for reaction with

BH2X- adducts, further work was stopped. Chlorodiphenylphosphine was reac

ted with 3, 5-dimethylpyrazole in an attempt to synthesise diphenyl (3,5-

dime'thylpyrazolyl) phosphine (45).

G(
P-CI

/o
+

1

CH3n~I~~~
N C"J
I
H

+
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However, the product isolated LI was an aromatic( i •r. and ~ and l3C

n.m.r.) phosphorus containing species which had no nitrogen. Since this

product was not an aminophosphine further reactions were not pursued.

The synthesis of diphenyl(diphenylamino)phosphine LII was attempted

using both procedures (i) and (ii). Under refiux conditions for up to

two weeks both lH n.m.r. and chromotographic analysis (t.l.c., eluent

acetone, pet. ether, 3 : 1) indicated that only a small portion of starting

material had reacted and diphenylamine was recovered (- 13%) after workup.

(The unreactivity of diphenylamine has previously been noted in relation

to its inability to form amine-borane or·-cyanoborane adducts by the

methods outlined in Chapter 4).

5.2.2 Method (b)"f, Reactions of Ph2R:Z(BH2X) (x= H~ LIII~ X =CN~ LIV)

bJith Amines

5•2.2.1. Preparation o.f Ph?CZ fBH2X)

Both Ph
2

PCl(BH
3

) XLVI and Ph
2
PCl (BH2 CN) XLVII are apparently novel

complexes. They were prepared by the reaction of chloro.c;liphenylphosphine

with ei.ther BH
3
-THF or BH2CN-THF (prepared in situ) (46) •

. "..;.20oC
~PC1 + BH

2
X-THF :> Ph2PCl(BH2X) + THF (46)

The complexes were characterised by infrared and ~ n.m.r. spectroscopy

and used in situ. Both XLVI and XLVII are air sensitive oils. Schmidbaur

et aZ19 prepared Me
2
P (Cl) BH

3
by a reaction similar to (21) and reported

that it is highly air sensitive. To date no cyanoborane adducts of organo-

phosphine chlorides appear to have been reported.

According to Schmidbaur et aZ19 reaction of organo-phosphine chloride

boranes with water or alcohol takes place at the P-Cl function and the

evolved hydrogen chloride chlorinates the borane group generating a complex

mixture of products (41).
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--------.~> R2P(OH) BH3 + HCl

I +HClv

Mixture of products

(47)

Purity and yield of the R2P( Cl) BH
3

adducts depends critically on the ex

act reaction of stoichiometry and on the purity of the reactants used.

5.2.2.2. Reaction of Phl'(ClJBH3 lJJ'ith Diphenylamine

The reaction between chlorodiphenylphosphine-borane XLVI and diphenyl-

amine afforded diphenyl( diphenylamino )phosphine-borane LVI in 45% yield (48).

+ N-H

Cf
1

+

(48)

+

Diphenyl(diphenylamino)phosphine-borane was obtained as an analytically

pure solid which was moderately air stable when crystalline (m.p. 95-

-
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96°c). This increased stability over the ch10rophosphine-borane adduct

was also noted by Schmidbaur et at for Me2 (BH
3

)PNH2 , which is also only

moderately air and moisture sensitive compared to the highly sensitive

Me
2
P( C1 )BH

3
. Data from infrared spectroscopy and mass spectrometry were

consistent with the formulation Ph2 (BH
3

)PNPh2 • The infrared spectrum

exhibited aromatic CH absorptions at 3040~ 3010, 2940, 2850, 1580, and

-1 8 4-11490 cm • There were B-H absorptions at 23 0 and 23 0 cm .' The mass

spectrum of LVI showed a molecular ion M/Z at 367 and fragmentation pat-

terns due to loss of one and two phenyl groups. However, compound LVI

decomposes slowly in air and when recrystallised samples were sent for

high field n.m.r. spectra (University of Edinburgh) and X-ray crystallo-

graphic structural analysis (University of Guelph), they were found to
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The decomposition reaction would probably be somewhat analogous to that

which produced [Ph2 (0)PPh2 ] 2(Ph2NH) previously (Section 5.2.2.2 above)

but in this case oxidation/hydrolysis could have been responsible for

cleavage of the P-N bond. Possibly Ph2P(0)H may have been an intermediate

(50).

Ph2 (BH
3

)PNPh2

Further reaction of the secondary phosphine-oxide with compound LVI could

generate the biphosphine monoxide produce (51) e

Ph
2

P NPh
2

eBH
3

+ Ph2P(O) H

!
Ph2 (O) PPPh2 + Ph2NH + B(OH)3

Although hyrdol~sis of phosphinous-chlorides leading to dimerisation products

(52) is well documented in the chemical literature
66 ,67

no such reports of the hydrolysis of aminophosphines followed by dimeris-

ation to phosphorus-phosphorus bonded species appear to have been reported.

Diphenyl ( diphenylamino )phosphine-borane represents 'the first simple

aminophosphine-borane adduct where both nitrogen and phosphorus have

aromatic groups. Previously reported amino-phosphine-borane adducts were of

the type Me2P(BH
3

) NR2 where R = H, Me, Et. For example, in 1985,

Schmidbaur et az.19 reported the synthesis of dimethyl(dimethylamino)-phosphine
i'

-borane in 98% yield (53).
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Reaction of Ph2 PfClJBH2CN XLVII with Diayclohexylamine

The reaction between chlorodiphenylphosphine-cyanoborane and dicyclo-

hexylamine was attempted in order to synthesise the phosphorus-boron bonded

aminophosphine-cyanoborane adduct (55).

Ph2P (Cl) BH2CN + (C6Hll )2NH + Et
3
N

reflux 1THF

However, the only product isolated from this reaction was a hydrolytically

stable crystalline solid (m.p. 222-2230 C), LVII. Evidence from the infrared

spectrum suggested that this product contained B-H, alkyl and aromatic C-H

and possibly C • N absorptions (Table 4) of the type expected for the

anticipated product. However, the microanalysis was not consistent with

the expected product (Table 4).

TABIE 4. Microanalytical and Infrared Data for LVII

.Microciridlllsis . 'Pound . 'Infrared..
S (theory) -Iem

. . . . . . . . . . . . . . . . . . . . . . . ....

C " H N 'B 'p ,VC-H vB-H v. CeN- - - - - ~--

72.33 8.58 4.00 2.62 5.25 3060(sh) 2500(m) 2180(v)

304o(w) 2440(m)

(76.4) (6.09) (7.10) (2.79) (7.62) 2950(m) 2380(w)

1610(m)

1500(w)
. , .
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From these analysis figures there appears to be one nitrogen present per

boron instead of the two exPected in the aminophosphine-cyanoborane adduct.

The analysis figures give a formula of C24H34NBP compared to

C25H34N25P for the expected molecule. It is noteworthy here that these

figures suggest the loss of the cyano group. The 60 MHz ~ n. m. r.

spectrum indicated the presence of both phenyl and methylene groups and

these are confirmed in the 15: MHz l3C{'-H"}n.m.r. spectrum. Fu.rther evidence

for the absence of B-CN was seen in the l3C{. .1H} spectrum which failed to

show the expected lJ "C:-B quartet in the region p.p.m. with coupling conS

tant of the order of 100 Hz.
68 Since the structure of this compound could

not be elucidated with the data above ~ X-ray diffraction quality crystals

were sent to Professor G. Ferguson for analysis. No results were available

at the time of writing.

5.2.2.4. "Reaction of Ph2PCl (BB2CNJ 7JJi th Di.-n-buty lamine

The reaction of XLVII with di-n-butylamine in refluxing THF proceeded

in a similar manner to the previous reaction. Once more the stable~ crystal-

line solid obtained LVII was not the anticipated product i. e. diphenyl

(di-n-butylamine )phosphine-cyanoborane. As before the CHNB analysis showed

a notably reduced nitrogen content. However, the infrared spectrum was

again consistent with a cyanogroup tV C-N 2180 cml ) being present. The

microanalytical and infrared data are listed in Table 5.

TABIE 5. Microanalytical and Infrmaed Data for LVIII

Microanalysis I ""Found ""Infrared
(theory) -I

" " em

C B N B P V CB voB VCN

78.44 6.93 4.78 3.94 6.86 3040(b1) 24IO(m) 2I80(b1)

(71.54) (8.52) (7.95) (3.12) (8.82) 2950(s)

2920(s)
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The analysis figures correspond to the formulation C18.5H20 NP as opposed

to C21 H28 N2BP for the anticipated product. Proton (200.13 MHz)',llB

(64.2 MHz), 13C(15 MHz) and 3~ (81.02 MHz) n.m.r. data were obtained for

LVIII (Table 6).

TABLE 6. Multinuclear n.m.r. Data for LVIII

QI1 ,0 B .0 B {1M.} ·op-- -- -
p. p. m. p.p.m. p.p.m. p.p.r.n.

0.B3(m) -13.48(t) -13.38(s) 18.41(s)

1.29(quin) 22.10(s)

1.62(m) 31. 71(s)

2.77(m) ..
t,

7.35-7.77(m)

The ~ and 13C data show the presence of phenyl and alkyl groups.

The triplet signal in the l~ spectrum is indicative of a BH2X group and

it collapsed to a singlet on proton decoupling. However, there was no

'j (B-P) coupling indicating that any BH2X group present was not attached to

phosphorus. Also the chemical shift is more indicative of an N-BH2CN

group. The three 3lp $inglet resonances (ratios 3 : 3 : l) may suggest a

mixture of products or an unsynnnetrical single product. Suitable quality

crystals of this compound have been sent to Professor G. Ferguson for X-ray

analysis.

Method (a)'.: Reaction of Amine-boranes/ayanoboMnes 'IJ1ith

ahlorodiphenylphosphine

To date no formal routes to nitrogen-boron bonded aminophosphine

adducts have been reported. Competition between nitrogen and phosphorus

sites in simple aminophosphines for a single BH
3

moeity generates the phos-
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phorus-borane bonded adduct preferentially (56).

With this in mind a series of amine-boranes / cyanoboranes were reacted

with chlorodiphenylphosphine according to equation (57).

R2NH (BH2X) + Ph2PCl + Et 3N

1THF (51)

x = H. CN; R = H. alkyl.

However. none of the anticipated products were isolated and in each case

(regardless of the choice of amine) the products obtained were aromatic

consisting of carbon. hydrogen phosphorus, boron (and possibly oxygen).

There was no nitrogen present in any of the isolated species. The micro-

analysis results for the products and the theoretical values for the

anticipated compounds are listed in Table 7.

TABIE 7. Analysis Results for Reactions with Chlorodiphenylphosphines

Reactant %Found C H N B Product

Adduct (theory) Number

(C6Hll)2NH.BH3 71.73 5.35 0 5.15 5.31 LIX

(75.99) (9.23) (3.69 ) (2.90) 8.19 .

(C6H1l)2NH.BH2CN 65.00 5.17 0 5.29 3.26 LX

(74.25) (8.41) (6.93) (2.72) (7.69)

(CH3) 3CNH2 BH3 67.53 5.09 0 5.90 6.47 LXI

(70.85) (8.48) (5.16) (4.06) 11.45

( C4H
9

)2NH •BH3 66.49 5.11 0 5.04 12.75 LXII

(73.33) (9.48) (4.28) (3.36 ) (9.55)
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All compounds were thermally stable , had a melting range of 1_20 and

melted between 118 and 191°C. The c0lDpounds were also apparently pure.

The absence of nitrogen and the presence of B-H absorptions in the infrared

spectra (Table 8) suggests the presence of P-BH
3

or P-BH2X groups.

TABlE 8. Infrared Absorptions

- I

Compound No. ·OC-H oB-H
-1 -1cm cm

LIX 2960 (sh) 2520 (m)

2930 (s) 2410 (m)

2850 (m)

2820 (m)

LX 2940 (s) 2480 (s)

2190 (sh) 23~0 (w)

LXI 3050 (m) 2460 (s)

3010 (sh)

LXII 3040 (m) 2440 (m)

2960 (w)

2850 (m)

The aromaticity of the products was indicated by the ~ (60 MHz) and l3C

(15 MHz) n.m.r. spectra. Unfortunately, it was not possible to assign

these data in detail. Samples of compolmds LXX to LXII were sent to the

University of Edinburgh for l~ and 3~ n.m.r. However, these results were

not available at the time of writing. Suitable crystals of the products of

the dicyclohexylamine-borane and -~anoborane reactions have been sent to

Pro€essor G. Ferguson for X-ray crystallographic structural analysis.
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5.2.4. Conalusions

The results outlined in this chapter illuminate the unexpected complex-

i ty of the systems studied. Of the compounds synthesised many are apparently

novel but a lot of them were (structurally) unassignable with the available

spectroscopic data.

Method (a) successfUlly generated the bis borane adduct,' Ph2PN( C6Hll )2

.2BH
3

but when this method was used to prepare the monoborane adduct an

unusual product, [Ph2 (O)P Ph2 ] 2 (Ph2NH) ,resulted. The structure of this

compound was solved by X-ray crystallographic analysis. It is noteworthy

too that the only aminophosphine isolated was Ph2PN (C6Hll )2. Attempted

syntheses of other aminophosphines resulted in the generation of aminophos

phine oxides (B~n NH, But NH2 ), an unusual product (3, 5-dimethylpyrazole),

or failed to react (Ph2NH). The stability of Ph2PN( C6Hll )2to oxidation and

hydrolysis may be due to the stenc inhibition of such reactions by the

cyclohe:xyl groups.

Method (b) generated the novel lI'1Onoborane adduct, Ph2 (BH
3

) PNPh2 •

Unfortunately, this compound was found to decompose in solution to

[Ph2 (O)P ~Ph2]2 (Ph2NH)2' so full structural analysis could not be completed.

The reaction of chlorodiphenylphosphine-cyanoborane with dicyclohe:xyla.mine

and di-n-butyla.mine generated unusual products which were thermally and

byd.rolytically stable. Analysis of these compounds showed that they were

quite similar to the anticipated Pb.2 P(BH2CN)NR
2

type products.

. Since method (c) generated only unusual non-nitrogen containing products

it clearly did not provide a route to nitrogen-boron bonded BH
2

X adducts of

aminophosphines. The results presented here are indicative of the tendency

of nitrogen-boron bonds to cleave even under room temperature reaction

conditions.
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5. 3 EXPERI~~AL

Borane-THF XLIV

Borane-THF was prepared in accordance with the literature by the drop-

wise addition o~ a solution o~ ~reshly distilled boron trifluoride etherate

(8.2 ml) in 28 ml THF to a suspension o~ a sodium borohydride (2.0g, 0.052mol)

in 11 ml THF. The mixture was maintained at OOC by an ice-bath and stirred

~or 1 hour at room temperature. When the solution had warmed to ambient

temperature, the precipitated sodium tetr~luoroboratewas removed by vacuum

~iltration under a blanket o~ nitrogen and washed with 25 ml THF. Borane-THF

was isolated quantitatively as a colourless solution and used immediately.

V "max (Thin Film) 2380 (w,

Cyanoborane-THF XLV

) -1
B-H cm •

In a similar manner cyanoborane-THF was prepared by the dropwise addition

o~ boron tri~luoride etherate (1.49 ml) in 26 ml THF to a stirred solution o~

sodium cyanoborohydride (3.0g, 0.041 mol) in 64.2 ml THF and reacted as

above. Cyanoborane-THF was isolated as a clear colourless liquid. 'V max

(Thin Film) 2400 (s, B-H); 2210 (m, CBN)cm-l •

Chlorodiphenylphosphine-borane XLVI

A solution o~ borane-THF (0.042 mol) in 60 ml THF was added dropwise over

a 20 minute period to a solution of chlorodiphenylphosphine (1.52 ml, 0.042 mol)

in 60 ml THF at _20oC. The solution was warmed gradually to room temperature

and stirred for 1 hr. Evaporation of the THF under reduced pressure af~orded

chlorodiphenylphosphine-borane as a colourless oil which was used immediately.

~"max (Thin Film) 2980 (s, ArCH); 28tlo (m, ArCH); 2380 (br, s, B-H), 1120

(s, P_Ph)cm-l • ~H 1.6 (m, Ar-H), 1.85 (m, Ar-H) ppm.

Chlorodiphenylphosphine--cyanobomne XLVII

A solution of cyanoborane-THF <'0.041 mol) in 60 ml THF was added to a

solution of chlorodiphenylphosphine (8.11 ml, 0.041 mol) in TO ml THF and

reacted as above. Upon evaporation of the THF, chlorodiphenylphosphine-cyano-
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borane was obtained as a colourless oil which was used immediately. V max

(Thin Film) 2910 (St ArCH); 2880 (St ArCH); 2420 (St BH); 2240 (mt C-N);

1130 (St P-Ph) cm-l • ~R 1.6 (br, mt Ar C-H) ppm.

Aminophosphines/Aminophosphineoxides Gener-al Pr-oced:u:l"e (aJ

A solution of chlorodiphenylphosphine in THF was added to a stirred

solution of two equivalents of p~imary or secondary amine resulting in the

innnediate precipitation ·of amine-hydrochloride. After reflux for 16 hrs the

amine-hydrochloride was separated from the cooled solution by vacuum filtration

through a bed of celite and thoroughly washed with THF. The combined :filtrates

were evaporated to dryness in vacuo. Recrystallisation of the crude solid

from an appropriate solvent system afforded high yields of aminophosphine or

aminophosphineoxide.

Gener-al FToced'lA:fle (bJ

A solution of chlorodiphenylphosphine in THF was added to an equivalent

amount of both amine (primary or secondary) and 'triethylamine in THF. After

16 hrs reflux the precipitated triethylamine-hydrochloride was separated from

the cooled solution by vacuum filtration through a bed of celite and washed

thoroughly with THF. Evaporation of the combined tiltrates followed by re

crystallisation from an appropriate solvent system afforded high yields of

aminophosphine or aminophosphineoxide • Usually procedure (b) gave higher

yields than (a).

Diphenyl (diayalohe3:)JlaminoJphosphine XLVIII Pttocedu:l'e (a)

A solution of chlorodiphenylphosphine (3e5 ml» 0.018 mol) was added

dropwise to a stirred solution of dicyclohex;ylaridne (1.15 mlt 0.036 mol) in

80 ml THF. The precipitated dicyclohexylamine-hydrochloride was reD:>ved by

vacuum filtration. Recrystallisation of the crude product from a mixture of

monoglyme : diethylether (2 : 1) furnished diphenyl(dicyclohexylamino)

phosphine (8.2g t 19.9%) as a white crystalline solid m.p. 177-178°C. Analysis:
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calcd. ~or C24H32NP : C, 18.88; H, ~.16; N, 3.~3%. Found: C, 18.68;

H, 8.68; N, 3.96% .vmax (KBr) 3060 (sh); 3050 (m); 3010 (w); 2990 (w);

2840 (s); 1580 (m); 1415 (m); 1460 (w); 1450 (m); 1440 (m); 1435 (s); 1380

(m); 1310 (m); 1345 (w); 1330 (w); 1305 (w); 1295 (w); 1210 (w); 1250 (m);

1240 (sh); 1200 (m); 1130 (w); 1160 (m); 1155 (s); 1100 (s); 10B5 (w); 1065(sh);

1055 (s); 1025 (m); 990 (w); 910 (s); 920 (w); 890 (s); 860 (m); 810 (m);
1 .

190 (w); 150 (s); 140 (s); 120 (sh); 695 (s); 660 (s) cm- • ~ 'H (210 MHz)

1.1 (m, 16H, -~); 2.86 (m, 4H, -CH -N); 7.26 (d, 6H, Ar-H); 1.48 (t, 4H,

Ar-CH -p) ppm. 0 C (68.15 MHz) 24.32 (t, 6c, -CH2); 28.18 (t, 4c, -%); 52.43

(d, 2C, CH -N); 121.60 (d, 6c, Ar-CH); 129.39 (d, 4C, -CH); 131.34 (s, 2C, AR

+
-C-p) ppm. Mass Spec M = 3 65 (C24H32NP = 365).

Proced:u:N (b J

A solution of ch10rodipheny1phosphine (5.84 ml, 0.034 mol) in 50 ml THF

was added dropwise to a stirred solution of dicyc10hexy1amine (8.0 ml, 0.034

ml) and triethylamine (4.16 ml, 0.034 mol) in 80 ml THF. Recrystallisation

from monoglyme: methyl ether (2 : 1) afforded dipheny1 (dicyclohexylamino)

phosphine (11.41g, 91.5%) as a crystalline solid.

Dipheny 7, (t-buty tamino Jphosphineorids IL Procedure (b)

A solution of chlorodiphenylphosphine (1.00 ml, 0.041 mol) in 50 ml THF

was added to a mixture of t-butylamine (4.28 ml, 0.041 mol) and triethylamine

(5.70 ml, 0.041 mol) in 70 ml THF.. Recry.stallisation from chloroform: THF

(1 : 1) furnished diphenyl(t-butylamino)phosphineonde (10.41g, 93.6%) as

colourless crystals m.p. 126-1280•. Analysis: calcd. for CIOH20NOP: C, 70.32;

H, 7.39; N, 5.12%. Found: C, 10.37; H, 7.32, N, 4.99%. v.max (KBr) 3360

(m, N-H); 3080 (m, ArCH); 3050 (s, ArCH); 2960 (s); 2920 (sh); 2900 (sh); 2860

(s); all alkyl CH) 1950 (m); 1880 (m); 1810 (m); 1125 (m); 1660 (w); 1580 (s);

1510 (sh); 1480 (s); 1460 (sh); 1430 (s); 1360 (s); 1300 (s); 1200 (vs, P=O);

1190 (s); 1065 (m); 1025 (m); 980 (s); 910 em); 840 (s); 730 (s); 700 (s) em-l •
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o~ 1.37 (s, 9H, (CH
3

)3C); 7.25 (d, 6H, Ar-H); 7.50 (m, 4H, Ar-H) ppm.

OC 7.63 (q, 3C, (CH3)3C); 42.19 (s, lC, (CH3)3S); 127.58 (d, 6c, ArCH);

129.39 (d, 4C, Ar~); 131.34 (s, 2C, Ar-C-p) ppm.

DiphenyZ (di-n.-butyZarrrino)phosphineoxide L Procedure (b)

A solution of chlorodiphenylphosphine (8.0 ml, 0.047 mol) in 60 ml

THF was added dropwise to a stirred solution of di-n-butylamine (7.9 ml,

0.047 mol) and triethylamine (6.56 ml, 0.047 mol) in 60 ml THF. Recrystal-

lisation of the crude product from a chloroform: THF (1 : 1) mixture furnished

diphenyl(di-n-butylamino)phosphineoxide (10.58g, 69.3%) as colourless crystals

m.p. l33-l36°C. Analysis: calcd. for C20H2BNOP : C, 12.94; H, 8.51; N, 4.25%.

Found: C, 73.05; H, 8.34; N, 4.44% '''max (KBr) 3060 (s, ArCH);2940 (s);

2860 (m); (both alkyl CH); 1580 (m, ArCH). 1475 (sh); 1460 em); 1430 (m);

1360 (m); 1300 (w); 1185 (s, P=O); 1120 (m). lQ90{m); 1060 (w). 1030 (m);

990 (w); 920 (w); 740 (s); 720 (w). 695 ls) em-I. OR 0.1 (t, 6H, CH
3

); 0.92

1.46 (m, 8H, -CH2~CH2-~-CH3) 2.85 (t, 4H, ~ -N); 7.21 (d, 6H, Ar-H); 7.46

(m, 4H, Ar-H) ppm.

Procedure (a)

A solution of chlorodiphenylphosphine (3.25 ml, 0.018 mol) in 35 ml THF

was added dropwise to a solution ot di-n-butylamine (6.16 ml, 0.036 1001) in

65 ml THF. Evaporation of the combined filtrates yielded & viscous yellow-

oil :from which a white solid precipitated on washing with diethylether. The

crude solid was isolated by filtration, washed thoroughly with diethylether

and recrystallised trom a chloroform: THF (1 : 1) mixture to -afford diphenyl

(di-n-butylamino)phosphineoxide (3.30g, 55.8%) as colourless crystals.

3~ 5-DimethyZpy:razoZe Reaction b1ith ChZo:rodiphenyZphosphine LI Procedure (b)

A solution of chlorodiphenylphosphine (8.88 ml, 0.052 mol) in 60 ml THF

was added to a solution ot 3, 5-dimetbylpyrazole (5.0g, 0.052 mol) and triethyl

amine (7.23 ml, 0.052 mol) in 60 ml THF. Recrystallisation trom a chloroform
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: diethylether: THF (1 : 1 :1) mixture furnished 6.40g of colourless

crystals m.p. 160-1620 C. Analysis: Found: C~ 65.10~ H~ 5.05%. V max (KBr)

3050 (m~ ArCH); Itl40 (m); 1570 (m~ ArCH); 1550 (w); 1480 (s~ ArCH); 1430 (s);

1340 (w); 1310(m); 1230 (w); 1180 (s~ P=O); 1160 (sh); 1110 (m); 1090 (m);

1070 (m); 1040 (m); 1025 (m); 1000 (m); 920 (m); 740 (s); 715 (m); 690 (s)

cm-l . all "7.45 (m, Ar-H); 7.90 (m, Ar-H) ppm. ~ C 129.23 (s); 130.08 (s);

131.90 (s); 132.62 (s); 133.16 (s); 139.11 (s); (J\r Ar-C) ppm•. Crystals

suitable for X-ray analysis were grown and sent to Professor G. Ferguson

(University of Guelph) in Canada.

Attempted Synthesis of Diphenyl(diphenylamino)phosphine LII FToaedure (a)

A solution of chlorodiphenylphosphine (3.25 ml~ 0.018 mol) in 35 ml THF

was added to a stirred solution of diphenylamine (6.13g, 0.036 mol) in 65 ml

THF. The solution remained colourless on completion of the addition with no

evidence of precipitation of diphenylamine-hydrochloride. After 96 hrs reflux

no precipitate was present in the cooled solution. Evaporation of the THF

solvent afforded a white solid. This was extracted with chloroform. Evapor

ation of the chloroform, followed by recrystallisation from diethylether

afforded diPhenylamine (4. 48g t 13% recovery) as colourless plates. Chroma

tographic (t.l.c. eluent acetone: pet. ether 2:1) and spectral analyses

were identical with an authentic sample of diphenylamine.

(FToaedure (b)

A solution of chlorodiphenylphosphine (8.06 ml, 0.041 mol) in 60 ml THF

was added dropwise to a stirred solution of diphenylamine (8.0g, 0.047 mOl)

and triethylamine (6.51 ml, 0.041 mol) in 80ml THF. Recrystallisation from

diethylether afforded diphenylamine (5.45g~76.82%). No other product was

isolated.

•
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DiphenyZfdicycZohexyZamino)phosphine-bis borane LIII

A solution of freshly prepared borane-THF (0.022 mol) in 100 ml THF was

added dropwise to a stirred suspension of diphenyl(dicyclohexylamino)

phosphine (4.00g, 0.011 mol) in 40 ml THF and the resulting reaction mixture

refluxed for 14 hrs. Trace amounts of unreacted solid were isolated from the

THF solution by suction filtration and the solvent was evaporated. The result

ing white, semisolid was washed thoroughly with diethylether to furnish diphenyl

(dicyclohexylamino )phosphine-bis borane as an analytically pure, white crystal

line solid m.p. 217-213
0

C. Analysis: calcd. for C24H3~B2P: C, 73.28; H, 7.61;

N, 3. 56; B, 5. 59% • Found: C, 72.99; H, 9. 74; N; 3.72; B, 5.60%. \? max (KBr)

3060 (m); 3040 l m) (both ArCH); 2920 (s); 2 tl40 (s); 2800 (sh); (all

cyclohexy1 CH); 2405 (w); 2380 (s); 2250 (m); 2220 (sh); (all B-H); 1470 (m);

1955 (m); 1905 (w); 1880 (w); 1815 (w); 1765 (w); 16tlO (w); 1590 (m, ArCH);

1570 (w); 1480 (s, ArCH); 1460 (sh); 1450 (sh); 1430 (s); 1395 (w); 1380 (m);

1345 (m); 1330 (m); 1310 (w); 1200 (m); 1250 (s); 1220 (w); 1170 (w); 1155 (m);

1120 (m); 1100 (s); 1060 (w); 1045 (m); 1010 (w); 995 (w); 980 (w); 920 (w);

890 (s); 880 (s); 850 (s); 820 (m); 795 (m); 770 (sh); 760 (sh); 750 (s); 735

(sh); 700 (s); 625 cm-
1

• oH (270 MHz) 0.88 (s, 4H,C!!e); 1.34 Cd, BH, %);

1.54 (m, 8H, CH2 ); 2.85 (d, 2H, CH -N); 7.24 (d, 2H, Ar-H); 1.51-7.58 (m,

SH, Ar-H) ppm. 0 C (67.80 MHz) 25.14 (s, 2C, CH2 ); 26.42 (s, 4c, CH2 );

33.51 (s, 4c, CH2 ); 58.70 (d, 2C, CH-N); 128.11 (t, 2C, ArCH); 130.70 (t, 4c,

ArQH); 131.22 (t, 4C, ArCH); 133.29 (St 2C, Ar-C-p) ppm A sample of LIII

was recry-stal1ised from monoglyme. The colourless crystals obtained were not

LIII. Analysis: Found: C, 71.96; H, 8.20,~N, 3.45; B, 3.63; P, 5.61%

Crystals were sent to Professor Ferguson in canada for X-ray analysis.

Unfortunately, it was discovered that the crystals were twinned and thus

structural analysis could not be performed.
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A solution of f"reshly prepared borane-THF (0.011 mol) in 60 ml THF was

added dropwise to a stirred suspension of" diphenyl(dicyclohexylamino)phosphine

(4.0g, 0.011 mol) in 40 ml THF and the resulting reaction mixture refluxed

for 16 hrs. Trace amounts of" un:reacte<l solid were removed frbm·. the cooled

solution by vacuum filtration and the THF evaporated. Recrystal1isation from

a mixture of" monoglyme: diethylether (2 : 1) afforded 3.02g, of colourless

crystals. Several attempts using a variety of reaction conditions and puri-

fication procedures generated the same product. The structure and identity

of LIV vas identified by X-ray crystallography: m.p. 98-990 C.. Analysis:' calcd.

for C42H42N20P2 : C, 79.55, H, 5.80; N, 3.86%. Found: C, 79.40, H, 5.88;

N,3.90%. v:max(KBr) 3180 (vs); 3120 (m); 2935 (vs); 2860 (vs) lal1 ArCH);

1600 (s); 1455 (s); 1380 (m); 1360 (v); 1350 (v); 1335 (v); 1310 (m); 1290 (v);

1270 (v); 1250 (v); 1210 (s ~ P=O); 1050 (s); 915 (v); 850 (v); 840 (sh);

765 (v); 750 (v); 725 (m); 695 (m); 650 (m) cm-1 •. aH (270 MHz) 6.91 (t);

1.21 (t); 1.32 (d); 7.42 (t); 7.55 (m); 7.65 (t); 7.8tl (t) ppm. (All Arq[).

,~C (61.80 MHz); 118.43 (s); 121.26 (s); 124.71 (q); 130.18 (s); 131.01 (s);

131.22 (t);. 133.19 (s); 132.26 (q); 144.99 (s) ppm. (All Ar-C). 6p (109.25

MHz); -21.58 (d, P-P=O), + 39.22 (d, P-~O) ppm. Mass. Spec. M/Z cut off

169 (12C 1H l4N = 169)
12 11 •

C~8tallography

A colourless small plate crystal of C48 H42 N20 P2 having approximate

dimensions of 0.18 x 0.30 x 0.45 mm vas mounted on a glass fiber with its

long axis roughly parallel to the phi axis of the goniometer. Cell constants

and an orientation matrix for data collection vere obtained from least-squares

refinement, using the setting angles of 25 reflections in the range 10 < • <

o
14 .', measured by the computer controlled diagonal slit method of centering.

The monoclinic cell parameters and calculated volume are: a = 10.581(2) ,

o 03
. b = 18.485 (6), c = 10.026 (2) A, 13 = 90.59 (3) ._, V = 1962.0A • For Z = 2
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and F.W. = 724.83 the calculated density is 1.23 g/cm,3. From the system-

atic absences of: hOI h+l=2n+l and OkO k=2n+l and from subsequent least-

squares refinement, the space group was determined to be P2l/n (No. 14).

A total of 4824 reflections were collected, of which 4277 were unique

and not systematically absent. As a check on crystal and electronic stabil-

ity 3 representative reflections were measured every 240 min. The slope of

the least-squares line through a plot of intensity versus time was -25 .~ 2

counts/hour which corresponds to a total loss in intensity of 14.0%. A

linear decay correction was applied. The correction factors on 1 ranged from

'1~000 to 1.079 with an. average value of 1.038. Lorentz and polarisation

corrections were applied to the data. The linear absorption coefficient is

4 -1 ()..1. em for Mo-K radiat10n. No absorption correction was made.

The structure was solved using the Patterson heavy-atom method which

revealed the position of one P atom. The remaining atoms were located in

succeeding di fference Fourier syntheses. Hydrogen atoms were included in

the refinement but restrained to ride on the atom to which they are bonded.

Only the 1466 reflections having intensities greater than 9.0 times their

standard deviation were used in the refinements. The final cycle of refine-

ment included 245 variable parameters and converged (largest parameter shift

was 0.00 times is esdJ with unweighted and weighted agreement factors of

R = 4.2% and R = 7.1%. The standard deviation of an observation of mitn

weight was 1.76. '!he highest peak in the final difference .Fourier had a

height of 0.17 e/R.3 with an estimated error based on W of 0.04.
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TABLE 9 Interatomia Distanaes and Anples: fa) Interatomia Distanaes a)

p p* 2. 228(2) c24 C25 1.374(7)

p 0 1.345 (6) C25 c26 1.358(6)

p C11 1.817 (4) C31 C32 1.406(6)

P C21 1.812 (4) C31 C36 1.372(6)

N C31 1.386 (5) C32 C33 1.367(7)

N C41 1.396 (5) C33 C34 1.375(7)

C11 C12 1.385 (6) C34 C35 1.364(8)

Cll c16 1.354 (6) C35 C36 1.355(7)

C12 C13 1.383 (7) C41 C42 1.383(6)

C13 c14 1.340 (8) C41 c46 1.401(6)

c14 C15 1.367 (7) c42 c43 1.362(6)

C15 c16 1.361 (7) c43 c44 1.378(7)

C21 C22 1.396 (6) c44 c45 1.365(7)

C21 C26 .1. 368( 6) c45 c46 1.377(7)

C22 C23 1.363 (6) N••• 0 2.690(6)

C23 c24 1.367 (7) H{N) 0 1.79
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(b) Bond Angles f)

p* p 0 120.5(3) C23 c24 C25 119.3(4)

p* p C11 102.2(1) C24 C25 c26 120.5(5)

p* p C21 102.0(1) C21 C26 C25 121.2(4)

0 p C11 116.0(3) N C31 C32 124.0(4)

0 p C21 109.3(3) N C31 C36 118.3(4)

. Cl1 p C21 105.0(2) C32 C31 C36 117.7(4)

C31 N C41 128.1(3) C31 C32 C33 119.1(4)

p C11 C12 118.7(3) C32 C33 c34 121.3(5)

p C11 c16 124.1(3) C33 C34 C35 119.8(5)

C12 Cll c16 116.9(4) C34 C35 C36 119.1(5)

C11 C12 C13 120.4(4) C31 C36 C35 122.9(4)

C12 C13 c14 121.1(5) N C41 C42 119.8(4)

C13 c14 c15 118.8(4) N C41 c46 122.2(4)

c14 C15 c16 120.3(4) C42 C41 c46 117.9(4)

• ell c16 C15 122.5(4) C41 C42 c43 121.0(4)

p C21 C22 123.3(3) C42 c43 c44 121.0(5)

p C21 c26 118.7(3) c43 c44 c45 118.7(4)

: C22 C21.; c26 118.0(4) c44 c45 c46 121.0(4)

: C21 C22 C23 120.7(4) C41 c46 c45 120.3(4)

C22 C23 c24 120.3(4) N--- H(N) •• 0 157

The * refers to equivalent position I-x,· -y, 1-z.
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•
TABlE to Deposition Data: Torsional Angles

I

W
0\
f\)

I

0 P Cll C12 -65.4 P C21 C22 C23 -177.2
0 P Cll c16 109.2 c26 C21 C22 C23 -0.5
C2l p Cll C12 174.0 p C21 c26 C25 177.9
C2l p Cll c16 -11.5 C22 C21 c26 C25 1.0
p* p Cll C12 67.8 C21 C22 C23 c24 -0.9
p* p Cll c16 ~117.7 C22 C23 c24 C25 1.7
0 p C21 C22 176.2 C23 c24 C25 C26 -1.1
0 p C21 c26 -0.5 c24 c25 c26 C21 -0.3
Cl1 p C21 C22 -58.7 N C31 C32 C33 -178.3
Cll p C21 c26 124.6 C36 C31 C32 C33 -0.7

>. p* P C2l C22 47.6 N C31 C36 C35 178.0
>. p* P C21 c26 -129.1 C32 C31 C36 C35 0.2

C41 N C31 C32 -9.5 C31 C32 C33 C34 -0.7
C41 N C31 C36 172.9 : >C32 C33 C34 C35 2.6
C31 N C41 C42 140.5 C33 C34 C35 C36 -3.1
C31 N C41 c46 -42.3 . C34 C35 C36 C31 1.7
p Cll C12 C13 176.0 : N C41 C42 c43 177.8
c16 Cll C12 C13 .1.0 c46 C41 C42 c43 0.5
p Cll c16 C15 -175.0 N C41 c46 c45 -178.4
C12 Cll c16 C15 -0.4 C42 C41 c46 c45 -1.2
Cll C12 C13 c14 -1.1 c41 C42 c43 . c44 0.8
C12 C13 c14 C15 0.4 C42 c43 c44 c45 -1.4
C13 c14 C15 c16 0.3 c43 c44 c45 c46 0.8
c14 C15> C16 Cl1 -0.3 C44 c45 c46 c41 0.5



Reaction of XLVIII with BH2CN-Monoglyme Complex LV

Sodium cyanoborohydride (0.62g t 0.009 mol) was added to a stirred

solution of diphenyl(di ·cyclohexylamino)phosphine (3.0g~ 0.008 mol) in 40 ml

monoglyme and the resulting solution stirred at room temperature for 10

minutes. A solution of iodine (1.25g~ 0.005 mol) in 20 ml monoglyme was

added dropwise from a pressure equalised dropping funnel and the reaction

mixture refluxed for 16 hrs. The precipitated sodium iodide was removed

from the cooled solution by vacuum filtration through a bed of celite and

w~shed with 20 ml monoglyme. The cOmbined f'iltrates were evaporated and

the resulting semisolid washed with diethylether to yield a white crystal

line solid. The crude solid was isolated by vacuum f'iltration t dried in

Vacuo and recrystallised from an ethanol: diethylether (1 : 1) mixture.

Colourless crystals (1.89g) of an unidentified product were isolated m.p.

202-2030 C. Analysis: diphenyl(di .~clohe~lamino)phosphine-cyanoborane.

C25H24N2BP requires: Ct 76.4 t H, 6.09; N~ 7.10; B, 2.79; P, 7.62%. Found:

Ct 65.46; Ht 5.02; N, 0.0; Bt 2.71; P, 6.86%. 'V max (KBr) 3060 (sh);

3040 (w); 3000 (w); 2520 (m); 2440 (m); 2380 (w); 1610 (m); 1500 (m); 1470

(m); 1450 (s); 1430 (s); 1170 (s); 1135 (s); 1065 (s); 1040 (s); 1020 (s);

995 (w); 760 (s); "730 (s); 695 (s); em-I. 6H 7.45 (m); 7.93 (m); (both

Ar-H) p.p.m. <soC {~-} 128.4 (s); 128.83 (s); 129.62 (s); 131.88 (s);

136.19 (s) ppm.

Reactions of XLVI and XLVII tJJith Amines

Dipheny l {diphenylamino Jphosphine-borane LVI

A freshly prepared solution of' chlorodiphenylphosphine-borane (0.069 mol)

in 80 ml THF was added dropwise from a pressure equalised dropping funnel

to a stirred solution of diphenylamine (ll.72g, 0.069 mol) and triethylamine

(9. 4 ml t 0.069 mol) in 120 ml THF. The reaction mixture was refiuxed for

48 hrs with constant t.l.c. analysis (acetone: pet. ether (3 : 2) eluent).

After 45 hra approx., 70% of the diphenylamine had reacted, f'urthe~ reflux

for a second 48 hr period did not improve this percentage. When the
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solution had cooled, the precipitated triethylamine-hydrochloride

[5 E 1.54 (t, 9H, CH
3
); 3~30 (q, 6H,~) ppm] was isolated by vacuum

filtration through a bed of celite and washed thoroughly with THF. The

filtrates were combined and the THF evaporated to yield a semisolid.

Washing with diethylether precipitated a White, analytically pure, crystal

line solid, m.p. 95-96°C. Analysis: calcd. for C24H23NBP : C, 78.47, H,

6.26; N, 3.82; B, 3.60%. Found: C, 78.49; H, 5.95; N, 3.90; ~, 8.78%.

\) max (KBr) 3040 (m); 3010 (sh); 2940 (sh); 2850 (s); (all CH); 2380 (m);

2340 (m); (both B-H); l5tlO (vs,ArCH); 1560 (sh); 1490 (s, ArCH); 1455 (w);

1435 (m); 1420 (m); 1370 (w); 1310 (s); 1260 (m); 1110 (br, s); 1025 (w);

940 (w); 920 (w); 875 (m); 750 (s); 720 (sh); 690 (s); 645 (w)cm-1 • Mass.

spec. M/~ 367 (C24H23NBP = 367). A sample was recrystallised from a

diethylether: ethanol (2 : 1) mixture for both X-ray analysis and high

field nmr. The X-ray analysis showed that the compound had oxidised to

[{C6H5 )2P ]20 [(C6H5)2NH]2 m.p. 98-99
0

C.

Reaction of XLVII bYith DiaycZohexyZamine LVII

A solution of chlorodiphenylphosphine-cyanoborane XLVII. (0.063 mol)

in 60 m1 THF was added dropwise to a stirred solution of dicyclohexylamine

(12.6 ml, 0.063 mol) and triethylamine (8.99 ml, 0.063 mol) in 80 ml THF.

A white solid innnediately precipitated from the reaction solution. The

mixture was refluxed for 16 hrs on completion of the addition. The precip

itated solid was isolated from the cooled solution by yacuum filtration

through a bed of celite and washed thoroughly with THF. The combined

filtrates were evaporated yielding a sticky, white semisolid from which a

white, crystalline solid was obta.ined on washing with diethylether. Re

crystallisa.tion from a mixture of monoglyme: diethylether (2 : 1) afforded

6.14g of colourless crystals mp. 222-223
0

C. Analysis: (diphenyl(di-cyclo

hexylamino)phosphine-cyanoborane C25R24NBP requires: C, 76.4; H, 6.09;

N, 7.10; B, 2.79; P, 1.62%. Found: C, 72.33; H, 8.58; N, 4.00; B, 2.62;
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P, 5.25%. v max (KBr) 3060 (sh); 3040 (w); 2930 (s); 2850 (m); (all

ArCH); 2440 (m); 2380 (w); (both B-H); 2180 (w, CEN; 1610 (m); 1500 (m,

ArCH); 1450 (s); 1430 (s); 1310 (w); 1190 (vs', P = 0); 1120 (s); 1060 (w);

1035 (s); 1020 (m); 915 (w); 740(s); 720 (s); 690 (s) cm-1 • 0 ~ 1.06-2.0

(br, m, unresolved %); 7.43 (m); 7.32 (m); (both ArCH) ppm. '~C 24.82

(t, ~); 28.78 (t, ~); 52.43 (d, CH); 127.22 (s); 127.91 (s); 129.30 (s);

129.49 (s); 131.05 (s); 131.64 (s); 136.45 (s); 145.08 (s) pp~ (all Ar-S).

Crystals suitable for X-ray crystallographic analysis vere grown from the

solvent system and sent to Professor Ferguson in Canada.

Reaction of XLVII with Di-n-butylamine LVIII

A solution of ch1orodipheny1pnosphine-cyanoborane (0.063 mol) in

60 m1 THF vas added dropyise to a stirring solution of triethylamine (8.99

ml, 0.063 mol) and di-n-buty1amine (10.77 ml, 0.063 mol) in 120 m1 THF.

The resulting solution was ref1uxed for 24 hrs •. When the solution had

cooled the precipitated solid was removed by vacuum filtration through a

bed of ce1ite and thoroughly washed Wi.th THF. Evaporation of the combined

filtrates afforded a sticky semisolid. Repeated vashing with THF fUrnished

a wite, crystalline solid. Recrystal1isation of the crude solid from a

mixture ot monog1yme: diethy1ether (1:1) yielded 7.2got an unidentified

product mp. 188-190oC. Analysis: (dipheny1(di-n-buty1amino)phosphine-

cyanoborane; C21H30N2BP requires: C, 71.59; H, 8.52; N,.4.95; B, 3.12;

P, 8.82%. Found: C, 78.44; H, 6.93; N, 4.78; B, 3.94, P, 6.26%. ~ max

(KBr) 3040 (v); 2950 (s); 2920 (s); 2890 (s); (all CH); 2410 (m, BH);

2180 (v, C • N); 1670 (s); 1590 (ArCH); 1575 (sh); 1435 (8); 1370 (m);

1250 (v); 1200 (m, P = 0); 1170 (v); 1116 (m);"1030 (v); 995 (v); 830 (m);

-1 ..
140 (s); 695 (8); cm .0 H (CD

3
CN, 200.13 Hz) 0.83 (m, 'CHa); 1 •.29 (quin,

~); 1.62 (m, %); 2.77 (m, %); 7.35-7.88 (m, ArCH) ppm. oB (CD3CN,

6.42 MHz) -13.43 (t, B!!eCN) ppm o"B {!r"} -13.48 (8, 'B~CN) ppm. cS:'p

(CD
3

CN, 81.02 MHz) 18.41 (s); 22.10 (s); 31.71 (8) ppm.
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Reaations of Amine-borane/ ayanoboranes 7JJi th Ch lorodipheny lphosphine:

General Proaedure

A solution of chlorodiphenylphosphine in THF was added dropwise from

a pressure equalised dropping funnel to a stirring solution of an equal

quantity of amine-borane/cyanoborane in THF. The resulting mixture was

stirred at ambient temperature for 10 minutes when an equal quantity of

triethylamine solution in THF was added dropwise. The reaction mixture

was subsequently stirred at room temperature or alternatively retluxed,

both for 16 hrs. The precipitated solid was removed by vacuum filtration

and thoroughly washed with THF. The· combined tiltrates were evaporated to

dryness. Recrystallisation from various solvent mixtures consistently

furnished large yields of crystalline lllB.terial. In each reaction attemp

ted, whether amine-borane or cyanoboranes were used and irrespective of

the reaction conditions, none of the products contained nitrogen. All

were found to be aromatic compounds containing carbon, hydrogen, boron

and phosphorus. The products had high melting points and generally similar

microanalyses •

'!he following amine-boranes / cyanoboranes were thus reacted.

Diayalohexylamine-borane LIX

Dicyclohexylamine-borane (5. 30g, 0.027 mol) was added to 60ml THF

and stirred. A solution of chlorodiphenylphosphine (4.85 ml, 0.027 mol)

in 40 ml was added followed by a solution of triethylamine (3.11 ml, 0.021

mol) in 30 ml THF and the resulting mixture was stirred for 16 hrs in

accordance with the general procedure. Recrystallisation of the crude

solid from a mixture of monoglyme: ethanol: chloroform (1:1:1) furnished

4.l8g, of colourless crystals. mp. l18-l20oC. Analysis: Found: C, 11.13;

H, 5.35; B; 5.15; P, 5.3%. "max (KBr) 2960 (sh); 2930 (s); 2850 em);

2820 (m); 2140 (w); 2120 (v); 2640 (m); 2620 (w); 2520 (m); 2410 (m);

1580 (s); 1440 (s); 1380 (w); 1320 (w); 1210 (w); 1240 (w); 1160 (s);
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1130 (v); 1110 (v); 1060 (m); 1000 (v); 990 (s); 840 (m); 740 (s); 690 (s)

1 '
cm- • ofl 7.47 (br, m); 8.05 (br, m) ppm (Both Ar-!!). o'.C 127-.93 (s);

128.84 (s); 130.92 (s); 131.57 (s); 131.90 (s); 137.75 (s) ppm. (All Ar-e).

Dicyclohe:xylamine-borane (3.35g, 0.027 mol) vas added to 35 ml THF and

stirred at roam temperature. A solution of chlorodiphenylphosphine (2.9ml,

0.017 mol) in 25 ml THF vas added dropvise followed by a solution of

triethylamine (2.39 ml, 0.017 mol) in 20 m1 THF. The resulting mixture vas

refluxed for 16 hrs in accordance with the general procedure. Recrystal-

lisation of the crude solid from a 1DOnoglyme: chloroform mixture (3:l)

afforded 1.8g of colourless crystals. All analyses were identical to above.

Crystals suitable for X-ray analysis were grown and sent to Professor G.

Ferguson.

Di~alohexylamine-cyanoboraneLX

Dicyclohexyla.mine-cyanoborane (3. Og, 0.013 mol) vas added to 30 ml THF

and stirred at room temperature. A solution of chlorodiphenylphosphine

(2. 32 m1,0.01~ mol) in 20 m1 THF was. added followed by a solution of tri

ethylamine (1.89 ml, 0.013 mol) in 20 ml THF. The reaction mixture vas

refluxed for 16 hrs in accordance with the general procedure. . Recrystal-

lisation of the crude solid in a mixture of monoglyme: diethylether (2:1)

yielded 2.44g, of colourless needles m.p. l89-l9loC. Analysis: found:

C, 65.00; H, 5.11, B, 4.29; P, 1.69%. 'Y max (KBr) 2940 (s); 2190 Csh);

2160 (m); 2680 (m); 24tlo (s); 2340 (w); 1460 (s); 1460 (s); 1390 (s); 1320

(v); 1180 (v); 1180 (sh); 1165 (s); 1125 (v); 1060 (v); 1035 (s); 850 (s);

800 (s); 100 (s); em-I. 06 7.45 (br, m); 1.95 (br, m); ppm (Both Ar-C-H).

t-Buty larrrine-borane LXI

t-Butylamine-borane (2.0g, 0.023 mol) was added to 20 ml THF and

stirred at room temperature. A solution of chlorodiphenylphosphine (3.92 ml.

0.023 mol) in 30 m1 THF was added dropvise followed by a solution of triethyl-
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amine (3.19 ml, 0.023 mol) in 25 ml THF. The reaction mixture was ref-

luxed for 16 hrs in accordance with the general procedure. Recrystal-

lisation of the crude solid from a mixture of monoglyme: ethanol (2:1)
o

furnished 2.40g, of a white solid m.p. 197-198 C. Analysis: Found: C,

67.53; H, 5.09; B, 5.9; P, 6.47%. Vmax (KBr) 3050 (m); 3010 (sh); 2460

(s); 1585 (m); 1570 (sh); 1480 (s); 1430 (s); 1330 (w); 1310 (w); 1235 (m);

1200 (sh); 1175 (vs); 1110 (s); 1085 (w); 1065 (m); 1025 (~); 995 (m);

920 (ll); B55 (w); 750 (s); 735 (s); 715 (s); 690 (s) cm-1 • oH (CD
3

0D);

1.65 (m); 8.05 (m) ppm (Ar-H). oc (CD
3

0D); 129.04 (s); 129.88 (s); 131.90

(s); 132.61 (s); 132.81 (s); 134.43 (s); 140.28 (s) ppm (Ar-C). Crystals

suitable for X-ray analysis were subsequently grown and sent to J>rofessor

Ferguson.

Di~-butylamine-borane LXII

Di-n-butylamine-borane (2.43g, 0.017 mol) was added to 35 h1l THF and

stirred at room temperature. A solution of ch1orodiphenylphosphine (2.9 ml.

0.017 mol) in 25 ml THF was added dropwise followed by a solution of

triethylamine (2.39 ml, 0.017 mol) in 20 ml THF. The reaction mixture was

refluxed for 16 hrs in accordance with the general procedure. Recrystal-

lisation of the crude solid from a monoglyme: chloroform (2:1) mixture

afforded 3.3Bg, of colourless, cubic crystals. mp. 124-1250 C. Analysis:

fotmd: C, 66.54; H, 5.16; B, 5.00, P, 2.75%. ·v·max (KBr) 3040 (m); 2960

(w); 2850 (m); 2440 (m); 1585 (m); 1480 (5); 1455 (m); 1395 (m); 1330 (w);

1310 (w); 1240 (m); 1175 (vs); 1110 (s); 1080 (m); 1050 (w); 1025 (s);

990 (w); 940 (8); 885 (m); 855 (w); 110 (w); 165 (w); 110 (5); 690 (s) cm-1 •

<S"H (CD
3

0D) 1.60 (m); 8.15 (m) ppm. (both ArCH); &~C (CD
3

0D) 128.51 (s);

129.90 (s); 132.0 (5); 133.05 (s); 134.51 (s); 139.98 (5) ppm (all Ar-C).
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Analysis of the ;electronic Structures.

P. Brint, G. Ferguson, P. Hayes, J. MacCurtain, M. Myers and

T.R. Spalding; J. Chem. Soc., Dalton. (In preparation).
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