
Title User experience of mobile cloud applications - current state and
future directions

Authors O'Sullivan, Michael J.;Grigoras, Dan

Publication date 2013-06

Original Citation O'SULLIVAN, M. J. & GRIGORAS, D. 2013. User Experience of
Mobile Cloud Applications - Current State and Future Directions.
In: ȚĂPUȘ, N., GRIGORAS, D., POTOLEA, R. & POP, F., eds. 2013
IEEE 12th International Symposium on Parallel and Distributed
Computing (ISPDC), 27-30 June 2013, Bucharest, Romania. Los
Alamitos, California: IEEE Computer Society, pp. 85-92. http://
dx.doi.org/10.1109/ISPDC.2013.20

Type of publication Conference item

Link to publisher's
version

http://ispdc.hpc.pub.ro/ - 10.1109/ISPDC.2013.20

Rights © 2013 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

Download date 2024-09-07 21:05:36

Item downloaded
from

https://hdl.handle.net/10468/1686

https://hdl.handle.net/10468/1686

User Experience of Mobile Cloud
Applications – Current State and Future

Directions

Michael J. O’Sullivan, Dan Grigoras
Department of Computer Science

University College Cork, Cork, Ireland
{m.osullivan, grigoras}@cs.ucc.ie

Abstract – The increasing penetration rate of feature rich
mobile devices such as smartphones and tablets in the
global population has resulted in a large number of
applications and services being created or modified to
support mobile devices. Mobile cloud computing is a
proposed paradigm to address the resource scarcity of
mobile devices in the face of demand for more computing
intensive tasks. Several approaches have been proposed to
confront the challenges of mobile cloud computing, but
none has used the user experience as the primary focus
point. In this paper we evaluate these approaches in
respect of the user experience, propose what future
research directions in this area require to provide for this
crucial aspect, and introduce our own solution.

Keywords: mobile cloud, applications, services, user
experience

I. INTRODUCTION

The rate of penetration of mobile devices is growing
in the worldwide population. Smartphones and tablets
are capable of providing much richer functionality to
the user than traditional devices. They are equipped
with multiple networking cards which allow the user to
carry out tasks such as browsing the web and accessing
online services while on the move. For many users, the
mobile device has become their primary platform for
browsing the web. Mobile devices can also download
from stores and run third party applications, which can
be used for tasks such as word processing, music
playing, image editing, and playing games. Sensors now
also commonly found on smartphones can include a
location sensor, accelerometer, gyroscope, camera and
microphone. They allow the applications to benefit
from context awareness, by getting input about the
context of the user and surrounding environment [1].
The combination of these new features has resulted in a
demand for mobile devices to execute more complex
tasks, including ones that may once have been
performed on a desktop computer. Still, limited
processing power, memory, and energy supply from the

battery prohibit them from executing highly demanding
tasks.

Mobile cloud computing is a new mobile computing
paradigm that enables mobile devices to be used for
more computation intensive work. By using the
resources of cloud computing infrastructure [22], the
resource scarcity of the mobile device can be addressed.
Work can be moved from the mobile device to the
cloud, executed there, and results returned to the device
when complete.

Unfortunately, many factors combine to make this
paradigm difficult to implement and therefore have a
detrimental impact on the user experience. The varying
quality and availability of network coverage, possibly
resulting in disconnection, can inhibit communication
between the cloud and the mobile device. The time and
energy cost for communication of data over the network
is also not negligible. Network operators charge a fee
for transfer of data over their wide-area cellular
networks, and if the energy used for communication is
large, a drained battery will naturally render the device
useless. Various approaches to solve some of these
problems have been proposed, yet these solutions only
tend to focus on one or few of the previously described
problems, while the unaddressed problems still
dominate. Unlike our work, none considered the user
experience as a primary motivation.

Our research interest is in providing an integrated
user experience for mobile cloud applications. This is
an essential consideration, as demanding and mobile
end-users with limited technical background are the
consumers of mobile cloud applications and services.
The aim of such an experience is to make the
interaction between the user and the mobile cloud as
seamless as possible, while rich new functionality and
models of interaction are enabled by the mobile cloud.
Such an experience must also confront all the
aforementioned challenges. Client software of the
mobile cloud embracing this experience observes the
status and condition of the user and device, and
intelligently caters its execution to the situation. Such
an approach can foster better mobile applications

running in the cloud, all optimised for the user
experience, and benefiting from the device sensors for
context awareness.

In this paper, we evaluate several of the current
approaches to solving the problems in integrating the
device with the mobile cloud with respect to the user
experience. From this, we determine what desirable
properties future work in this area should focus on. We
then present our own conceptual approach which can
solve these problems.

The remainder of the paper is organised as follows.
Section II evaluates the current work for mobile cloud
integration with respect to user experience. Section III
outlines future requirements for the user experience,
and introduces our proposed conceptual work for these
requirements. In section IV, we evaluate our solution in
respect of the requirements. New mobile cloud
application and service scenarios enabled by our
approach are presented in section V, followed by our
conclusions in section VI.

II. STATE OF MOBILE CLOUD

The mobile cloud model will be largely adopted and

therefore successful if mobile users will have a positive
experience in all respects. Considering our research
interest in the user experience, we examine in this
section the current work in solving some of the
outstanding difficulties of mobile cloud computing.

A. Cloudlets

Cloudlets are a form of minimal cloud computing

infrastructure proposed by Satyanarayanan et al [2] that
is targeted at solving the latency and bandwidth
concerns for mobile cloud applications. Cloudlets are
deployed in an area near where mobile users gather
such as a coffee shop or an airport. The user is then
only one Wi-Fi hop away from the Cloudlet, thereby
reducing the latency. The Wi-Fi network should have
higher bandwidth than a WAN. Latency is an important
factor for the user experience, specifically perception
[21]. Cloudlets run a base virtual machine, which
contains the core functionality of a desktop operating
system like Windows. It is combined with an overlay
VM, located on the user’s mobile device. This contains
the user’s personal applications and settings. When
combined, the full operating system can be used.
Latency sensitive functionality can run on the Cloudlet,
while other tasks are sent to the remote cloud
infrastructure.

Cloudlets may not be appropriate for the user
experience. Desktop operating systems are not designed
with the mobile user in mind. Input and output required
may be difficult to handle, such as displaying the visual
elements on the small screen, and providing touch input
from large fingers to small point and click elements.
Such operating systems are not optimised to receive the
unique input afforded by mobile devices, such as

context data from the sensors. The time required to
actually move the VM-overlay to the Cloudlet and
synthesize with the base VM is not negligible. The
overhead of this approach may be too demanding for
simple tasks. A study by Clinch et al [3] showed that
latency for less demanding applications did not
adversely affect performance to a large degree. We
believe that bandwidth will in fact be a concern as the
number of users of the Cloudlet grows.

B. Application Partitioning

An application is partitioned into distributable

components. These components are then deployed onto
various nearby devices, where they execute. The
distribution is decided with the aim of application
performance meeting certain requirements.

An example of such an approach is Alfredo [4]. The
Alfredo system uses a graph representation of an
application’s components to find a cut to maximize or
minimize an objective function. Based on the cut, some
components are then distributed in the cloud. Another
example of this approach is the Dynamic Cloudlet by
Verbelen et al [5]. They modify Satyanarans Cloudlet
concept, so that a Cloudlet is made up of a collection of
nearby computing devices. Their software splits an
application up into components on a constraint basis.
The constraints specify that execution of a component
must have completed by a certain time. Distribution is
based on the probability that constraints will be met.

The authors of Alfredo [4] suggest that components
that make up the user interface be left on the mobile
device, while the other computationally intensive
components are distributed. The role of the device is a
viewer, to simply display output on the screen, and take
input from touch events to interact with the interface.
As with Cloudlets, applications built for such an
approach cannot utilise any context information. A
partition of components may optimise one objective
function, and render another sub-optimised; for
example, it maximises throughput, but may increase
energy usage. For the user experience, all objectives
need to be optimised to as large an extent as possible.
They also found the deployment time not negligible.
For the Dynamic Cloudlet implementation, constraints
were often not met.

C. Remote Display Using Thin Protocols

Remote viewing approaches are similar in some

sense to Alfredo. Using a thin client protocol, the
mobile device is used as a thin client viewer. It displays
the visual output of virtual machines running on cloud
servers. Users then use the device to run and interact
with desktop applications running on the cloud, as
described by Simoens et al [6]. An example
implementation of the concept is described by
Deboosere et al [7].

This concept suffers from the same drawbacks as
Cloudlets and partitioning approaches. As described in

[6], the current state of remote viewing is not optimal
for mobile devices. Authors point to solutions for some
of these problems, such as caching, buffering, and NIC
wake/sleep intervals [8-9].

D. Code Offload

Computation heavy and resource intensive

application code is offloaded to the cloud infrastructure,
executed there, with the results then returned to the
device. Mobile device energy is not used up by such
code, and the greater computation power on the cloud
could execute the code faster. This requires a consistent
connection to the cloud infrastructure. Typically, an
optimization solver makes the decision for code to be
either executed locally on the mobile device, or
remotely on the cloud infrastructure. Examples of code
offload solutions include MAUI [10], CloneCloud [11],
MACS [12], and exCloud [13].

Applications must first be profiled to discover what
code is suitable for offload. These approaches work on
user code at the virtual machine level. Some code, such
as native code and code that accesses resources on the
device, cannot be offloaded. In addition, code should
only be offloaded if it actually results in some time or
energy gain. With variable quality network connections,
it may take more energy or time to offload the code
than to execute it locally, therefore profiling of the state
of the network also occurs. Both profiles are given as
inputs to the optimization solver to make the decision.
When offload occurs, all object state that the offloaded
code accesses must also be serialized and offloaded,
which can be costly.

Profiling has an adverse effect on the user
experience, requiring time and energy. Code offload
also depends on the quality of the network. If the
network connection drops while code has been
offloaded, then the code that was being executed
remotely must now be re-executed on the device,
wasting time and resources (MAUI). Network quality
on 3G networks tends to be lower due to high latency
and low bandwidth. For MAUI, the optimization solver
always refused to offload on a 3G network. Users
constantly move and change between networks of
differing quality. Applications that could not run on the
device due to resource constraints have been shown to
be executable with code offload in tests for MAUI, but
the user experience still suffers.

E. Cloud-Based Middleware

Middleware approaches can bring advantages for

the user experience. Many companies provide cloud-
based services accessed by different APIs. These
libraries are incompatible with each other. Developers
are facing the difficulty of programming applications
with each API individually. Users may want to use
cloud services from different companies for different
tasks. For example, users may wish to store photos on a
cloud storage service such as Amazon S3, link them

onto a social network such as Facebook, and apply
some facial recognition from Face.com. This scenario is
recognized by Flores et al [14]. The authors developed a
cloud-based middleware, which can be used to access
different cloud provider APIs with ease. Requests for a
service go to the middleware, and an appropriate
adapter is substituted for each request to each cloud
provider respectively. The middleware waits for the
response, freeing up the device to carry out other tasks.
When the middleware receives the result from the
service, it will relay it back to the device.

The holding of the result in the middleware until the
device is ready to receive it will ensure the result is safe
if the device is disconnected. The APIs for cloud
providers are often in the form of web services such as
SOAP or REST that can take context information from
the device.

Another cloud-based middleware is that of a web-
service mash-up approach by Wang & Deters [15].
Several web service APIs provide services to clients,
such as SOAP based services, normally XML based. It
is not optimal for mobile devices. REST based services
can use the efficient JSON format, resulting in reduced
data transfer and lowering charges for the user. This can
be parsed faster on the device. The middleware takes
REST based requests to access web services, converting
the request to SOAP if required. It invokes the service,
saves the result, and returns it to the device using
REST. This approach can also use context information
from the device, and store the result until the device is
ready to receive it. The implementation requires the
user to input the WSDL URL, and to indicate if it is a
SOAP or REST service they wish to call [16]. With a
broad range of people, most users will not know what
WSDL, SOAP and REST are.

F. Context Awareness

Various projects have been undertaken to bring

context awareness to the mobile device. They often
involve middleware to collect, process, categorise, and
infer the context, before taking appropriate action. Chen
& Kotz [1] define two types of context aware
application, active and passive. Active applications
actively alter their behaviour based on the context,
passive applications may or may not provide some
additional features from context awareness. Gu et al
[17] designed a middleware approach that could take
context data from sensors, process it, and provide it to
context consuming applications. It uses a rules based
system to infer context, which is represented as
ontologies. Work by Hong et al [18] aimed to build on
this approach by using context history, enhancing the
quality of context. Beach et al [19] uses social
networking sites to collect data for context awareness,
and provides enhanced context to friends with similar
interests found on the social networks.

Context awareness allows applications to provide a
better user experience. The ability of context to be
shared among others or inferred from history will be

useful in the event that new context is difficult to
gather. Only the middleware approaches we described
can use context, depending on the web service.

III. FUTURE APPROACHES TO MOBILE
CLOUD INTEGRATION

The evaluation of the current results of mobile cloud

integration shows that user experience is not the
primary goal. In particular, each design focuses on one
or a few aspects that are important to the user
experience. Some of these solutions may contradict
others. Aside from the user experience perspective,
several of the works highlight challenges that will not
be easy to resolve, such as the time and energy cost of
profiling, offloading, and distributing of code and
application components in the partition and code
offload approaches. The Cloudlet approach is very
dependant on the users position relative to the Cloudlet,
along with the network state, and current technologies
used in VM synthesis. In order to be adopted on a large
scale, any future approach to mobile cloud computing
has to be centered on the user experience. As such, a
given integration solution will have to overcome all of
the problems that were discussed in the previous
section, not just one or a few, otherwise the user
experience cannot be optimal.

Our approach to realising this vision and solving
these problems focuses on the cloud carrying out more
intelligent work for the mobile user. By using more
cloud based applications, services and computing
resources, rather than mobile based, we can relieve the
device of the burden of having to carry out extra work
as in the previous projects. More applications and
services are now developed and deployed in the cloud,
taking advantage of the resources available.

A. Requirements for User Experience

For the mobile user, the question is how to achieve

this goal, while optimizing the experience. By analysing
the previous research work, we can identify a set of
core requirements for a user experience oriented design.

1. The approach has to address the latency between
the device and the cloud infrastructure

As mobile devices are used more for applications

and services that require real time data and actions, the
latency between the cloud and the mobile device must
be minimal. In the event that minimal latency cannot be
guaranteed, approaches must be optimised and
lightweight.

2. The approach has to minimise bandwidth
utilisation

The time and energy cost over networks such as

cellular 3G, is typically high due to the low bandwidth.

Furthermore, cellular network operators often charge
per kilobyte of data transferred. The rate is even higher
if the user is roaming. Therefore the utilisation of
unnecessary bandwidth must be minimised, especially
if the user regularly carries out tasks such as uploading
of photos to social networks.

3. Device workload overhead must be minimized

The actual workload the device carries out to enable

such operations must also be minimal. An example is
the profiling activities we have seen in other
approaches. The energy drain required by such tasks
runs contrary to the idea of the user experience.

4. The approach must gracefully handle mobility
aspects such as disconnection

As the user is mobile, they will switch between

networks of differing quality, and will at times be
disconnected. Applications and services used must be
able to handle such occurrences, by safeguarding any
tasks the user was working on and associated data.

5. Provisioning for context awareness must play a
central role

The unique ability of mobile devices to provide

information about the users context such as physical,
social, work and environment will be central to the
development of future mobile applications and services,
as their operation can be personalised to provide a
greater user experience.

6. The solution must uniquely cater for the mobile
user, rather than the desktop user

Existing applications and services may not be

optimised for the mobile user. They provide services
that are costly to the user on a mobile network, and may
be costly for the device to work on. They are designed
with the desktop computer in mind. New approaches
must consider the requirements of the mobile user, and
the different input and output capabilities mobile
devices provide to the user.

7. The thin client on the mobile must provide an
adaptive UI and services

The thin client of the mobile cloud must provide

seamless access to applications and services on the
cloud through a UI that adapts to the current state of the
mobile and user. The client may also provide services to
other local applications through an API (see section V).

8. A standards-based solution must be used

Currently there are many different kinds of
applications and services that can be used, all
heterogeneous. They differ in regards to input, output
and APIs. A common interface adhering to a standard

defining how to describe different types of services and
their utilisation must be developed and implemented in
an automatic discovery service solution.

B. Context Aware Mobile Cloud Services

Our approach is a cloud-based middleware system

that is deployed in the cloud, sitting between the mobile
user and cloud applications and services. We call it the
Context Aware Mobile Cloud Services (CAMCS)
middleware system - see figure 1. Its main goal is to
provide discovery and access to cloud based
applications and services for the mobile user and
applications. Cloud services include third party
applications such as e-commerce, entertainment,
productivity, and services that enhance the device
capabilities by providing access to cloud based
resources like storage. The middleware has several
features that specifically cater for enhancing the user
experience with respect to the requirements we have
outlined. Specifically, the middleware consists of
several key components:

• The Cloud Personal Assistant

The cloud personal assistant (CPA) [23] is a service,
which runs in the cloud and can carry out tasks
asynchronously for the user on his/her behalf. The
assistant can discover and invoke services to carry out
these tasks, get a result, and save it in the event the user
has become disconnected. When subscribing, each user
of the middleware receives his/her own CPA. An
authentication and authorisation mechanism is also
provided. The existing implementation will be extended
to move between different cloud infrastructures.

• Task History

The CPA has access to task and service history that

has been utilised in the past, which it can use to
automatically make intelligent decisions about future
actions it can carry out on the users behalf, with
minimal intervention required from the user. History
data shows preferred services and providers, what
inputs are typically used, and what times invocation

Fig. 1 The main components of the Context Aware Mobile
Cloud Services (CAMCS) middleware system.

typically occurs at, enabling independent action when
disconnected from the user; therefore it can either act
alone in response to a specific event or time, guided by
the history, or the user can signal it to execute a task
with minimal data transfer from the thin client.

• The Context Processor

The context processor is another cloud service that

handles context aware information from the device.
Based on user preferences or other factors such as
current network quality, it can choose when to request
new context data from the device. It can locally infer
context from these resources of information and cater
for the responsibility of passing context data to the
applications and services that require it.

• Context History

The history of inferred context can contribute to a

new context as it is gathered. This is also useful if for
some reason new or complete context cannot be
determined. It can also be used to recommend
information to a user if they have not indicated they
should be alerted to new but relevant context, thereby
enhancing their experience of applications and services.

• Discovery Service

Our middleware incorporates a distributed discovery

service, which can be used by the CPA to discover
cloud applications and services on behalf of the user.
The discovery service uses a distributed registry of
standards based cloud applications and services, which
can provide efficient discovery, along with service
negotiation based on user preferences.

• Pluggable Modules

Plug-ins can be developed and added into the

middleware to further enhance operation with custom
functionality. More information is given in section V.

IV. EVALUATION

Our proposed middleware can address the

requirements that were set, and therefore provides a
comprehensive solution for many of the problems
outlined in previous projects, while placing user
experience as the primary motivation behind the design
and approach decisions - see table 1.

The movement of the CPA can address latency by
moving between cloud infrastructures so that it is
closest to where the user is situated, and it can handle
disconnections by storing results for the user.
Bandwidth utilisation is low, as the user only needs to
signal the CPA to carry out work and pass required
information. The CPA in the cloud carries out all the
complex work of discovering and invoking services,

Table 1: A summary of the problems that the various approaches we have examined can solve, including the problems our own
approach can solve. P indicates an approach solves a problem, * indicates dependence on the individual services.

 Cloudlets Partitioning Code Offload Remote Display Other Middleware CAMCS
Latency P P P P
Bandwidth P N/A P
Disconnection P P
Energy Aware P P P P
Context Aware * P

freeing the mobile device from continuous data transfer,
and freeing it up to run other tasks. This is made easier
by the standards based operation of the distributed
service registry.

To minimize the workload on mobiles, a thin client
application can be used to communicate with the
middleware. In addition, the added benefit of such an
approach is that applications and services are located in
the cloud. Resource intensive applications are not
executed on the device anymore, which reduces its
workload and in turn will benefit from time and energy
savings. The user does not have to spend the time
searching for and downloading specific applications for
specific services, and removes the need for users to
leave an application running and undisturbed while
waiting for a task to finish.

The ability of the middleware to include context
awareness processing will enhance the user experience.
Indeed, it can intelligently gather various new contexts
in suitable conditions, and infer context from task and
context history, all the while taking advantage of the
cloud resources such as datastores and processing
power. In addition, the middleware specifically
provides services to cater to the mobile device, such as
optimised request/response data formats,
communication architectures with REST, and utilisation
of cloud infrastructure to supplement the operation and
features of the mobile device.

Consider the following example to demonstrate the
operation of the middleware and the interactions
between components. An employee of a goods supplier
company is making a site visit to a client’s store. The
client wishes to stock up on sold out goods, but is also
interested in selling new ranges of products from the
supplier. Having discussed the details with the client,
the employee uses his/her mobile device, which runs a
thin client to communicate with the middleware, to
instruct his CPA to carry out the required work.

The thin client sends a signal of small data size to
the CPA for this task, which has been undertaken
before. Also sent with the request are the details of the
new product ranges the client will stock, which were
provided by the CPA previously to show the client.
Once the request has reached the cloud, the employee is
authenticated to their CPA by the user
management/authentication module. The CPA consults
the context processor to discover the latest location
information. The context processor knows the location
of the user and can infer what client they are with, and
from the context history, knows why they are there (re-
supply). The task history of the CPA is then consulted

to get the details of the previous orders the employee
has placed for this client. This information, along with
details of the new products, is passed to the task
handler. Here, the CPA is in the domain of the
company, and knows how to instruct the task handler to
call the service to put in an order for a re-supply. If it is
unaware of the correct company service, the discovery
service module could consult a company specific
service registry, accessible within the company domain.

The service is invoked, with details of the order
stored with the CPA in the task history. The task history
is updated with the new products the client will be
stocking for future reference. The CPA then notifies the
employee on their mobile device of a successful order
placement. This can even contain a price for the
customer. The calculation of the price and placing of
the order may have required some time due to having to
consult multiple database tables for product
information, and updating client records. The
asynchronous approach of the CPA in the middleware
frees the mobile device from having to wait for these
operations to complete, wasting time and energy.

Several challenges must be overcome in developing
the CAMCS middleware:

• The gathering and inferring of context is a
complex process not well defined.

• No standards currently exist for applications
and services at the cloud level. Work is being
carried out in standardisation in the form of the
Open Cloud Computing Interface (OCCI),
which has an aim of providing standards for
cloud services at the IaaS, PaaS, and SaaS
levels.

• Security and privacy concerns, unaddressed in
the other approaches evaluated, will need to be
addressed aside from the basic user
authentication and authorisation proposed by
this middleware, to protect user and data
privacy and security. This is something that will
be addressed in a future work.

V. NEW MOBILE CLOUD USAGE
SCENARIOS AND ENABLED FEATURES

Several new kinds of applications and services can

be enabled by our middleware approach to mobile cloud
integration for the user experience.

A. Real-Time Context Aware Services

Real-time services, which can respond to the users
current and inferred context, possibly from context
history, can be enabled by CAMCS. Such applications
and services can actively or passively recommend
activities or a course of action to users based on context
like location, such as reminders or information about
tasks they have to carry out such as the purchase of
items from a shopping list, or if in an unfamiliar
location, can suggest places of interest based on past
activities. In the case of the shopping list reminder
scenario, the CPA could actively check store stock for
the user, and if unavailable, direct to a new store nearby
that has the desired item(s) in stock, without user
intervention. As another example, based on the current
time of day or even year, such as during the day during
school-term, it can notify parents to a routing of least
traffic congestion to a school. This would stop
occurring out of school term. The CPA can actively
consult with traffic services, and perhaps could even
make the information available to other applications or
devices in the car such as a SatNav.

• Collaborative Services

Each user of CAMCS has a corresponding CPA in the
cloud for their mobile device. Each will have invoked
and discovered different services. In a vision of the next
generation of mobile applications by Sankaranarayanan
et al [20], they propose collaborative applications and
services that share information to provide a seamless
user experience, rather than the current generation of
applications and services that work in isolation. An
example the authors used was a traveller attending a
conference. A calendar application with details of the
conference such as location and time/date, could share
this information automatically with airline and hotel
services to find the best flights and accommodation to a
location near the conference venue. CAMCS could
enable such an approach, if the CPA can share details of
discovered services with each other. This could be
further enhanced if the CPA’s users who share some
relationship such as friends or work colleagues are
made known to each other, in which case they share
similar interests and context. Any collaboration
scenario would be subject to strict privacy control.

• Additional CPA Services

The CPA concept can be expanded so that the CPA

can carry out its own work, rather than simply looking
up and invoking services. The functionality of the CPA
can be extended to carry out other tasks for the user,
such as data processing and synchronisation with
multiple services that the user is interested in, such as
the synchronisation of data among social networks or
sharing of files in a workplace domain.

• Services for Environmental Context

In this age where the “internet of things” is of

growing interest, the CPA could be extended to either
read state from or give instructions to objects in the
environment either on behalf of the user over the
network, or receive this information through the mobile
device, which in turn can receive this information from
its own sensors or over a local network such as
Bluetooth.

• Extensible Middleware

The CAMCS functionality can be extended by

adding in components on a plug-in basis to carry out
other tasks on behalf of the mobile user, possibly
utilising cloud based services, and taking advantage of
the cloud infrastructure. Such functionality could
include support for computationally intensive batch
processing jobs, or a client for long running queries on
databases within a workplace or scientific domain.

• Public API for Developers

The thin client that will run on the mobile device

can present an interface to developers to enhance their
applications to easily use services provided by the
mobile cloud. A minimal interface can be published as
follows:

public void findService(Details details);

public void executeTask(TaskInfo taskInfo);

public void updateContext(Context context);

public Context getContext();

public void enterDomain(Context context);

public void store(File[] files);

public void sync(Details details);

The interface can be used to access cloud services,

and applications can use/adapt behaviour due to the
current context. The CPA can execute such work on
behalf of the client applications asynchronously.
Methods are also provided to allow applications to store
data on cloud-based storage, and to synchronise details
among different cloud networks. We foresee such
actions could even be built into the operating system
functionality of the device so native operations and
stock applications can benefit as well.

• Multi-Location Deployments

The ability of the CPA to move between various

cloud infrastructures such that it is as close to the user’s
location as possible has already been mentioned. We

believe that public and private cloud providers who
offer PaaS and SaaS services can deploy CAMCS into
their service offerings to fully enable this functionality
and compatibility for the user as they move.

VI. CONCLUSIONS

In this paper we evaluated the state of several

current approaches to providing integration between the
cloud and mobile devices, with respect to the user
experience. This is particularly relevant considering the
ever-increasing penetration rate of mobile devices as
well as their users’ expectations in terms of applications
and services.

We determined that these approaches do not place
the user experience at the centre of design and
implementation, often only focusing on few individual
aspects of mobile cloud integration such as latency or
energy savings. Any future approaches will need to
tackle several of the issues that are dominating the
current approaches. After determining a set of
requirements for future work in this area, we introduced
our middleware solution to this problem, CAMCS,
which can meet this set of requirements. We evaluated
the approach and determined new scenarios that this
middleware could enable. As the CPA is already
implemented and successfully tested in Amazon EC2,
our future work will involve implementing the other
system components introduced in this paper, including
the context processor, the task and context history, the
service discovery and negotiation mechanisms, and the
thin client mobile application. Subsequently, we will
experiment with its user experience oriented
functionality and performance.

ACKNOWLEDGMENT

The PhD research of Michael J. O’Sullivan is

funded by the Embark Initiative of the Irish Research
Council.

REFERENCES

[1] G. Chen and D. Kotz, “A survey of context-aware mobile
computing research”, Technical Report TR2000-381, Dept. of
Computer Science, Dartmouth College, 2000.
[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
Case for VM-Based Cloudlets in Mobile Computing”, IEEE
Pervasive Computing, 2009; 8(4), pp. 14-23.
[3] S. Clinch, J. Harkes, A. Friday, N. Davies and M. Satyanarayanan,
“How close is close enough? Understanding the role of cloudlets in
supporting display appropriation by mobile users”, 2012 IEEE
International Conference on Pervasive Computing and
Communications (PerCom), 2012, pp. 19-23.
[4] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud
applications”, Middleware 2009, pp. 83-102.
[5] T. Verbelen, P. Simoen, F. De Turck and B. Dhoedt, “Cloudlets:
bringing the cloud to the mobile user”, Proceedings of the third ACM

workshop on Mobile cloud computing and services, Low Wood Bay,
Lake District, UK. 2307858, ACM, 2012, pp. 29-36.
[6] P. Simoens, F. De Turck, B. Dhoedt, and P. Demeester, “Remote
Display Solutions for Mobile Cloud Computing”, Computer, 2011,
44(8), pp. 46-53.
[7] L. Deboosere, B. Vankeirsbilck, P. Simoens, F. De Turck, B.
Dhoedt, and P. Demeester, “Cloud-Based Desktop Services for Thin
Clients”, IEEE Internet Computing, 2012, 16(6), pp. 60-67.
[8] B. Vankeirsbilck, P. Simoens, J. De Wachter, L. Deboosere, F. De
Turck, B. Dhoedt, et al, “Bandwidth Optimization for Mobile Thin
Client Computing through Graphical Update Caching”,
Telecommunication Networks and Applications Conference, ATNAC
2008 Australasian, pp. 385-390.
[9] P. Simoens, P. Praet, B. Vankeirsbilck, J. De Wachter, L.
Deboosere, F. De Turck, et al, “Design and implementation of a
hybrid remote display protocol to optimize multimedia experience on
thin client devices”, Telecommunication Networks and Applications
Conference, ATNAC 2008 Australasian, pp. 391-396.
[10] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S.
Saroiu, R. Chandra, et al. “MAUI: making smartphones last longer
with code offload”, Proceedings of the 8th international conference on
Mobile systems, applications, and services, San Francisco, California,
USA. 1814441, ACM, 2010, pp. 49-62.
[11] B-.G. Chun, S. Ihm, P. Maniatis, M. Naik and A. Patti,
“CloneCloud: elastic execution between mobile device and cloud”,
Proceedings of the sixth conference on Computer systems, Salzburg,
Austria, 1966473, ACM, 2011, pp. 301-314.
[12] D. Kovachev, Y. Tian and R. Klamma, “Adaptive Computation
Offloading from Mobile Devices into the Cloud”, 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with
Applications (ISPA), 2012, pp. 784-791.
[13] R. K. K. Ma, L. King Tin and W. Cho-Li, “eXCloud:
Transparent runtime support for scaling mobile applications in cloud”,
2011 International Conference on Cloud and Service Computing
(CSC), 2011, pp. 103-110.
[14] H. Flores, S. N. Srirama and C. Paniagua, “A generic middleware
framework for handling process intensive hybrid cloud services from
mobiles”, Proceedings of the 9th International Conference on
Advances in Mobile Computing and Multimedia, Ho Chi Minh City,
Vietnam, 2095715, ACM, 2011, pp. 87-94.
[15] Q. Wang and R. Deters, “SOA's Last Mile-Connecting
Smartphones to the Service Cloud”, Proceedings of the 2009 IEEE
International Conference on Cloud Computing, 1632969, IEEE
Computer Society, 2009, pp. 80-87.
[16] Q. Wang, “Mobile Cloud Computing”, MSc Thesis, Department
of Computer Science, University of Saskatchewan, 2011.
[17] T. Gu, H. K. Pung and D. Q. Zhang, “A service‐oriented
middleware for building context-aware services”, Journal of Network
and Computer Applications, 2005, 1, 28(1), pp. 1-18.
[18] J. Hong, E.-H. Suh, J. Kim and S. Kim, “Context-aware system
for proactive personalized service based on context history”, Expert
Systems with Applications. 2009, 5, 36(4), pp. 7448-7457.
[19] A. Beach, M. Gartrell, X. Xing, R. Han, Q. Lv, S. Mishra, et al.
“Fusing mobile, sensor, and social data to fully enable context-aware
computing”, Proceedings of the Eleventh Workshop on Mobile
Computing Systems & Applications, Annapolis, Maryland, 1734599,
ACM, 2010, pp. 60-65.
[20] J. Sankaranarayanan, H. Hacigumus, and J. Tatemura,
“COSMOS: A Platform for Seamless Mobile Services in the Cloud”,
12th IEEE International Conference on Mobile Data Management
(MDM), 2011, pp. 303-312.
[21] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying
interactive user experience on thin clients”, Computer, 2006, 39(3),
pp. 46-52.
[22] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility”, Future Generation
Computer Systems, 2009, 6, 25(6), pp. 599-616.
[23] M. J. O’Sullivan, D. Grigoras. The Cloud Personal Assistant for
Providing Services to Mobile Clients, IEEE MobileCloud, Redwood
City, San Francisco Bay, USA, 2013, pp. 477-484.

