<table>
<thead>
<tr>
<th>Title</th>
<th>On the robustness of R-2R ladder DACs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kennedy, Michael Peter</td>
</tr>
<tr>
<td>Publication date</td>
<td>2000-02</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1109/81.828565</td>
</tr>
<tr>
<td>Access to the full text of the published version may require a subscription.</td>
<td></td>
</tr>
<tr>
<td>Rights</td>
<td>©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/170</td>
</tr>
</tbody>
</table>

Downloaded on 2020-12-27T12:07:12Z
On the Robustness of R-$2R$ Ladder DAC’s

Michael Peter Kennedy, Fellow, IEEE

Abstract—A model of the linear R-$2R$ ladder digital-to-analog converter (DAC) is developed in terms of the ratios of the effective resistances at the nodes of the ladder. This formulation demonstrates clearly why an infinite number of different sets of resistors can produce the same linearity error and shows how this error can be reduced by trimming. The relationship between the weights of the bits and the resistor ratios suggests appropriate trimming, design, and test strategies.

Index Terms—Data converters, digital-to-analog conversion, mixed-signal circuits, resistive ladders.

I. INTRODUCTION

MUCH theoretical work in recent years has been devoted to the problem of testing analog and mixed-signal integrated circuits [1]–[8]. In particular, the element-value solvability problem [8] is concerned with determining whether or not it is possible to find the values of (possibly faulty) parameters of a circuit from a set of measurements. This is related to the problem of selecting a limited number of testpoints to perform a test efficiently using a minimum number of measurements [8].

The majority of the circuit theoretic studies of fault location and element solvability assume that a test engineer has access to a sufficiently large number of nodes in the circuit under test. While this may be a valid assumption for board-level work, it does not hold for many integrated circuits, where a limited number of variables may be accessible. An extreme case is a data converter where a single input or output is available. Here, a nonunique relationship between element values and linearity error can produce robustness of the functionality against variations in internal parameter values.

It is well known that the linearity error of an R-$2R$ ladder DAC may be reduced by trimming the resistors appropriately. What may appear surprising is that a given trimming procedure can improve the linearity of the device by moving the resistors away from their nominal values. This property results from the structural robustness of the ladder.

In this work, we derive a simplified model, in terms of resistance ratios, of a digital-to-analog converter (DAC) based on a resistive ladder [9] which consists of linear resistors and ideal open/short switches. We study the connection between the weights of the bits and the resistance ratios in order to gain insight into the robustness of the resistive ladder architecture.

In particular, we show that given access to all digital inputs of the DAC, and to only one output node, it is impossible to determine the values of the resistors in the ladder. Only resistor ratios are important in determining the transfer characteristic of the DAC, and these ratios can be determined in principle from a limited set of measurements. This observation can be exploited in defining model-based trim, design, and test strategies [10] for R-$2R$ ladder DAC’s.

II. THE MODEL

Throughout this work, we consider the N-bit R-$2R$ ladder shown in Fig. 1. We extend our analysis in Section V to include also a segmented resistive ladder architecture.

Associated with each node k of the ladder is a pair of linear resistors, $R_{k,1}$ and $R_{k,2}$, which connect it to nodes $k-1$ and k', respectively. An ideal open/short switch connects node k' to the OUT₀ or OUT₁ node, depending on whether the corresponding input bit b_k is 0 or 1.

For notational convenience, we denote by $R_{k,3}$ the effective resistance at node k seen looking into the left-hand end of $R_{k,1}$. In addition, we define the ratios

$$r_k = \frac{R_{k,3}}{R_{k,2}}, \quad k = 1, 2, \ldots.$$ (1)

The R-$2R$ ladder is typically used in one of two ways to construct a DAC. Current mode exploits current division along the ladder while voltage mode is based on voltage division [11]. In this work, we treat only voltage-mode operation.
Fig. 3. (a) Equivalent circuit for calculating the contribution E_{N_i,N_i-1} of $V_{N_i-1'}$ to V_{OUT}. (b) Its simplified Thévenin equivalent.

III. VOLTAGE-MODE OPERATION

A DAC exploiting an R-$2R$ ladder in voltage mode is shown in Fig. 2. In this case, bit k_i of the input word causes node k_i' to be connected to ground or to V_{IN} if $k_i = 0$ or 1, respectively.

Since the R-$2R$ ladder we consider is linear, the superposition theorem [12] applies, and the voltage at the output node N may be determined by summing the contributions from each of the inputs $V_{k_i'}$ with all other sources zeroed. Thus

$$V_{\text{OUT}} = \sum_{k=1}^{N} E_{N_i,k}$$

where $E_{N_i,k}$ is the contribution to the voltage at node N due to voltage $V_{k_i'}$ applied at node k_i'.

Consider first the contribution due to $V_{N_i'}$ with all other sources zeroed. In this case, node N is connected to $V_{N_i'}$ via $R_{N_i,2}$ and to ground via the equivalent resistance $R_{N_i,3}$. By voltage division

$$E_{N_i,N_i} = \frac{R_{N_i,3}}{R_{N_i,2} + R_{N_i,3}} V_{N_i'} \left(R_{N_i,2} \right) \frac{r_N}{1 + r_N} V_{N_i'}$$

where r_N is as defined in (1).

At node $N - 1$, the equivalent circuit for calculating the contribution to V_{OUT} of $V_{N_i-1'}$ acting alone is shown in Fig. 3(a).

TABLE I

<table>
<thead>
<tr>
<th>k</th>
<th>$R_{k,1}(\Omega)$</th>
<th>$R_{k,3}(\Omega)$</th>
<th>r_k</th>
<th>w_k</th>
<th>r_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20020</td>
<td>20000</td>
<td>1.0010000000</td>
<td>0.9990885941</td>
<td>1.0010000000</td>
</tr>
<tr>
<td>2</td>
<td>9900</td>
<td>20000</td>
<td>0.9997498751</td>
<td>0.997498751</td>
<td>0.9997498751</td>
</tr>
<tr>
<td>3</td>
<td>10010</td>
<td>20000</td>
<td>0.994374069</td>
<td>0.9956314480</td>
<td>1.0004374609</td>
</tr>
<tr>
<td>4</td>
<td>9900</td>
<td>20000</td>
<td>0.9990341301</td>
<td>0.999693431</td>
<td>0.9990341301</td>
</tr>
<tr>
<td>5</td>
<td>10010</td>
<td>20000</td>
<td>0.9987525568</td>
<td>0.9980001198</td>
<td>1.0004023162</td>
</tr>
<tr>
<td>6</td>
<td>9900</td>
<td>20000</td>
<td>0.9960515588</td>
<td>0.9990100000</td>
<td>0.9960515588</td>
</tr>
<tr>
<td>7</td>
<td>10010</td>
<td>20000</td>
<td>0.9960000000</td>
<td>0.9989999825</td>
<td>0.9960000000</td>
</tr>
<tr>
<td>8</td>
<td>9900</td>
<td>20000</td>
<td>0.9999990000</td>
<td>0.9999990000</td>
<td>0.9999990000</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>k</th>
<th>$R_{k,1}(\Omega)$</th>
<th>$R_{k,3}(\Omega)$</th>
<th>r_k</th>
<th>w_k</th>
<th>r_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400400.000</td>
<td>400000</td>
<td>1.0010000000</td>
<td>0.993985941</td>
<td>1.0010000000</td>
</tr>
<tr>
<td>2</td>
<td>199800.000</td>
<td>400000</td>
<td>0.9997498751</td>
<td>0.997498751</td>
<td>0.9997498751</td>
</tr>
<tr>
<td>3</td>
<td>200200.000</td>
<td>400000</td>
<td>1.0004374609</td>
<td>0.9956314480</td>
<td>1.0004374609</td>
</tr>
<tr>
<td>4</td>
<td>199800.000</td>
<td>400000</td>
<td>0.9999993413</td>
<td>0.999693431</td>
<td>0.9999993413</td>
</tr>
<tr>
<td>5</td>
<td>200200.000</td>
<td>400000</td>
<td>0.9987525568</td>
<td>0.9980001198</td>
<td>1.0004023162</td>
</tr>
<tr>
<td>6</td>
<td>199800.000</td>
<td>400000</td>
<td>0.9990100000</td>
<td>0.9989999825</td>
<td>0.9990100000</td>
</tr>
<tr>
<td>7</td>
<td>200600.016</td>
<td>400000</td>
<td>0.9980001198</td>
<td>0.9990100000</td>
<td>0.9980001198</td>
</tr>
<tr>
<td>8</td>
<td>199959.996</td>
<td>400000</td>
<td>0.9999990000</td>
<td>0.9999990000</td>
<td>0.9999990000</td>
</tr>
</tbody>
</table>

Fig. 4. Linearity error associated with the ladders detailed in Tables I and II.

$R_{N-1,3}$ denotes the total resistance seen by node $N-1$ looking into $R_{N-1,1}$.

The contribution due to $V_{N-1'}$ acting alone is

$$E_{N_i,N_i-1} = \frac{R_{N_i,3}}{R_{N_i,2} + R_{N_i,3}} \cdot \frac{r_N}{1 + r_N} \cdot V_{N_i-1'}$$

Repeating this process along the ladder, it can be shown in general that $E_{N_i,k} = w_k V_{k_i'}$ for $k = 1, 2, \ldots, N$, where

$$w_k = \begin{cases} \frac{r_N}{1 + r_N} & \text{if } k = N \\ \left(\frac{r_k}{1 + r_k} \right) \prod_{j=k+1}^{N} \left(\frac{1}{1 + r_j} \right) & \text{if } k < N. \end{cases}$$

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 25, 2010 at 07:57:24 EDT from IEEE Xplore. Restrictions apply.
The voltage applied at node k' is 0 or V_{IN}, depending on whether $b_k=0$ or 1. Thus, $V_{k'} = b_kV_{IN}$. The total output voltage is given by

$$V_{OUT} = \sum_{k=1}^{N} E_{N,k}$$

$$= \sum_{k=1}^{N} b_kw_kV_{IN}$$

$$= [b_1 \ b_2 \ \cdots \ b_k \ \cdots \ b_{N-1} \ b_N] [w_1 \ w_2 \ \cdots \ w_k \ \cdots \ w_{N-1} \ w_N] V_{IN}.$$

A. Operation of the Ideal R-$2R$ Ladder

In an ideal R-$2R$ ladder, $R_{k=1} = R_{k=2} = k = 1, 2, \cdots, N$. Hence, $r_k = 1$ for $k = 1, 2, \cdots, N$ and $w_k = 1/2^{N-k+1}$. Therefore

$$V_{OUT} = \sum_{j=1}^{N} \frac{b_j}{2^{N-k+1}} V_{IN}$$

$$= U \frac{V_{IN}}{2^N}$$

where $b_Nb_{N-1} \cdots b_2b_1$ is the binary expansion of the input word U.

B. Determination of Resistance Ratios

We ask the question: can one determine the ratios r_k, $k = 1, 2, \cdots, N$ in an R-$2R$ ladder DAC simply by measuring the output voltage V_{OUT}?

Let $V_{OUT}(U)$ be the measured output corresponding to input word U, as before. In the voltage-mode case, a judiciously chosen subset of N measurements (out of a possible 2^N) is sufficient to determine the weights w_k. In particular, we have that

$$\begin{bmatrix} V_{OUT}(1) \\ V_{OUT}(2) \\ \vdots \\ V_{OUT}(2^{N-2}) \\ V_{OUT}(2^{N-1}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_{N-1} \\ w_N \end{bmatrix}$$

(3)

where V_{OUT} is measured at $U = 1, 2, 4, 8, \cdots, 2^N$. Thus, the weights w_k of a voltage-mode DAC can in principle be determined with just N measurements, provided that V_{IN} is known. From these weights w_k, the ratios r_k may be estimated by setting

$$\hat{r}_N = \frac{w_N}{1-w_N}$$

and evaluating

$$\hat{r}_k = \frac{\rho_k}{1-\rho_k}$$

for $k = (N-1)$ to 1 in turn, where

$$\rho_k = w_k \prod_{j=k+1}^{N} (1 + \hat{r}_j).$$
Now \hat{r}_k provides an estimate of r_k. In a process monitoring role, these estimates could potentially be used to quantify the deviation of production parts from their nominal design values. From a test engineering perspective, the extracted weights w_k can be exploited in linear error mechanism modeling [8], [10].

C. Example

Consider the two voltage-mode R-2R ladder DAC’s whose resistor values are given in Tables I and II, respectively. Here, the ladders are mismatched in a similar way but the normalized resistances of the ladders are different (10 and 20 kΩ, respectively). Output measurements are simulated for $V_{IN} = 5$ V in both cases. While the values of the resistors in the 20 kΩ ladder are not quite double those in the 10 kΩ ladder, they have been chosen so that the ratios r_k and weights w_k are identical. Therefore, the normalized error plots for these devices, shown in Fig. 4, are also identical; equivalently, both devices belong to the same ambiguity group [7], [8].

In both of these examples, the estimates \hat{r}_k, $k = 1, 2, \cdots, 8$ of the resistance ratios determined from simulations of the two ladders are identical to ten decimal places.

IV. RELATIONSHIP BETWEEN WEIGHTS w_k AND RATIOS r_k

It is interesting to note the form of the weights in the eight-bit case

$$w_1 = \frac{r_1}{1+r_1} \frac{1}{1+r_2} \frac{1}{1+r_3} \frac{1}{1+r_4} \frac{1}{1+r_5} \frac{1}{1+r_6} \frac{1}{1+r_7} \frac{1}{1+r_8}$$

$$w_2 = \frac{r_2}{1+r_2} \frac{1}{1+r_3} \frac{1}{1+r_4} \frac{1}{1+r_5} \frac{1}{1+r_6} \frac{1}{1+r_7} \frac{1}{1+r_8}$$

$$w_3 = \frac{r_3}{1+r_3} \frac{1}{1+r_4} \frac{1}{1+r_5} \frac{1}{1+r_6} \frac{1}{1+r_7} \frac{1}{1+r_8}$$

$$w_4 = \frac{r_4}{1+r_4} \frac{1}{1+r_5} \frac{1}{1+r_6} \frac{1}{1+r_7} \frac{1}{1+r_8}$$

$$w_5 = \frac{r_5}{1+r_5} \frac{1}{1+r_6} \frac{1}{1+r_7} \frac{1}{1+r_8}$$

$$w_6 = \frac{r_6}{1+r_6} \frac{1}{1+r_7} \frac{1}{1+r_8}$$

$$w_7 = \frac{r_7}{1+r_7} \frac{1}{1+r_8}$$

$$w_8 = \frac{r_8}{1+r_8} .$$

1 $R_{x,1}$ and $R_{x,2}$ in Table II have been “trimmed” to compensate for the error in $R_{x,2}$.

A. Implications for Trimming

In an ideal binary-weighted DAC, we require that $w_{k+1} = 2w_k$ for all k. This can be achieved by ensuring that

$$r_{k+1} = \frac{2r_k}{1+r_k} .$$

In a nominal R-2R ladder, $r_k = 1$ for all k. If, due to production variations, $r_k \neq 1$ for some k, the constraint (4) can still be met, and the linearity error minimized, by adjusting r_j for $j = k + 1, k + 2, \cdots, N$. Each r_j can be set by trimming $R_{x,1}$ and/or $R_{x,2}$. Note that, during the trimming process, it may be necessary to move resistors away from their nominal values.

If the ladder is trimmed from the right end by adjusting the ratios r_1, r_2, r_3, etc., in turn, it is clear that the absolute value of each weight w_k will be affected by an adjustment of r_j for all $j > k$. However, the ratio of any pair of weights $(w_i/w_j \ i < k)$ is unaffected by trimming further up the ladder. Therefore, the trimming algorithm should try to fix the ratios of weights with the current value of the LSB rather than its final value.

B. Implications for Design

From the designer’s perspective, the goal is to ensure that $w_{k+1} = 2w_k$ in order to produce a binary-weighted DAC. Clearly, this objective can be achieved with any number of different sets of ratios r_k. In particular, it is not necessary to choose $r_k = 1$, nor is it necessary to define the absolute value of w_1.

Consider the case of an ideal R-2R ladder where we want $r_k = 1$ for all k. When switch resistances are taken into ac-
count, a dummy switch can be inserted in series with $R_{1,1}$ to compensate for the switch in series with $R_{1,2}$ and guarantee monotonicity. Alternatively, an appropriate choice of “mismatch” at the right end of the ladder when sizing the switches in series with $R_{1,1}$ and $R_{1,2}$ can yield ratios $r_k \neq 1$ but still guarantee binary weighting. The total switch area resulting from this strategy may be less than by choosing $r_k \equiv 1$ for all k.

C. Implications for Production Monitoring

Finally, from the production monitoring viewpoint, we note that although w_k, $k = 1, 2, \ldots, N$, can in principle be determined with just N measurements using (3), a better estimate of the w_k’s may be obtained in the case of limited measurement resolution by solving a larger subset of the overdetermined system of equations

$$\begin{bmatrix} V_{\text{OUT}(0)} \\ V_{\text{OUT}(1)} \\ V_{\text{OUT}(2)} \\ \vdots \\ V_{\text{OUT}(2^N-2)} \\ V_{\text{OUT}(2^N-1)} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_N-1 \\ w_N \end{bmatrix}$$

V. Voltage-Mode Operation: Segmented Architecture

In an $R\cdot 2R$ ladder, it is necessary to have tight matching between each bit and the sum of all lesser bits in order to ensure monotonic operation [13]. Segmented architectures allow this requirement to be relaxed and permit the construction of high-resolution converters.

An $(M + N)$-bit segmented design provides a coarse/fine structure. The most significant M bits define 2^M segments which are further subdivided by an N-bit $R\cdot 2R$ ladder. Provided that the N-bit ladder is monotonic and that its full-scale output is less than that of the next segment, monotonicity is guaranteed. This is called the next-segment approach.

A. Operation of the Voltage-Mode Segmented $(M + N)$-Bit DAC

A commonly-used next-segment DAC architecture is shown in Fig. 5. The coarse DAC consists of $2^M - 1$ identical resistors ($R_{N+1\cdot 2^M-1,1}$, $R_{N+2\cdot 2^M-1,1}$) which are selected by a thermometer code. The fine DAC is an N-bit $R\cdot 2R$ ladder.

The least significant bits are applied directly to the switches in the $R\cdot 2R$ ladder. Bit b_k, $k = 1, 2, \ldots, N$, of the input word causes node k' to be connected to ground or to V_{IN} if $b_k = 0$ or 1, respectively. The most significant M bits are decoded to produce $a_1, a_2, \ldots, a_{2^M-1}$ which select the segments. Bit a_k, $k = 1, 2, \ldots, 2^M - 1$ causes node $N + k'$ to be connected to ground or to V_{IN} if $a_k = 0$ or 1, respectively.

Since this network is linear, the superposition theorem [12] applies, and the voltage at the output node $N + 2^M - 1$ may be determined by summing the contributions from each of the inputs V_k with all other sources zeroed. Thus

$$V_{\text{OUT}} = \sum_{k=1}^{N+2^M-1} E_{N+2^M-1,k}$$

where $E_{N+2^M-1,k}$ is the contribution to the voltage at node $N + 2^M - 1$ due to voltage V_k applied at node k'.

Consider first the contribution due to V_{N+2^M-1} with all other sources zeroed. In this case, node $N + 2^M - 1$ is connected to V_{N+2^M-1} via $R_{N+2^M-1,2}$ and to ground via the equivalent resistance $R_{N+2^M-1,2}$.

By voltage division

$$E_{N+2^M-1} = \frac{R_{N+2^M-1,3}}{R_{N+2^M-1,2} + R_{N+2^M-1,3}} V_{N+2^M-1}$$

$$= \frac{\tau_{N+2^M-1} V_{N+2^M-1}}{1 + \tau_{N+2^M-1}}$$

where τ_{N+2^M-1} is as defined in (1).
The contributions to \(V_{\text{OUT}} \) due to the other inputs may be calculated by determining the Thévenin equivalent to the right of each node in turn, as in the case of the voltage-mode ladder without segmentation. The contribution due to the input \(V_{k'} \) at node \(k' \) is given by

\[
E_{N+2^M-1,k} = w_k V_{k'}
\]

where \(w_k \) is defined by

\[
w_k = \begin{cases} \frac{\tau_N+2^M-1}{1 + \tau_N+2^M-1}, & \text{if } k = N + 2^M - 1 \\ \frac{\tau_k}{1 + \tau_k} \prod_{j=k+1}^{N+2^M-1} \left(\frac{1}{1 + \tau_j} \right), & \text{if } k < N + 2^M - 1. \end{cases}
\]

(5)

The total output voltage is given by (5a) at the bottom of this page.

B. Operation of the Ideal Segmented DAC

In the \(N \)-bit DAC, \(R_{k,3} = R_{k,2} = 2R \) for \(k = 1, 2, \ldots, N \), giving \(\tau_k = 1 \) for \(k = 1, 2, \ldots, N \). The output resistance of the ladder is increased to \(2R \) by setting \(R_{N+1,2} = R \). The segment resistors have nominal value \(2R \) and are interconnected by short-circuits. Hence, \(R_{k,2} = 2R \) for \(k = N + 1, N + 2, \ldots, N + 2^M - 1 \) and \(R_{k,1} = 0 \) for \(k = N + 2, N + 3, \ldots, N + 2^M - 1 \). This gives \(\tau_{N+k,3} = 2 \tau_k \) for \(k = 1, 2, \ldots, 2^M - 1 \). Hence

\[r_{N+k} = \frac{1}{k}, \quad k = 1, 2, \ldots, 2^M - 1. \]

Substituting for each \(r_k \) yields

\[
\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_{N-1} \\ w_N \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{2^M+1} \\ \frac{1}{2^M+2} \\ \vdots \\ \frac{1}{2^M} \end{bmatrix}
\]

Therefore

\[
V_{\text{OUT}} = \left(\sum_{k=1}^{N} b_k \frac{2^M-1}{2^M-k+1} + \sum_{k=1}^{2^M} c_k \right) \frac{V_{\text{IN}}}{2^M}
\]

where \(b_N b_{N-1} \cdots b_1 b_0 \) are the LSB’s of the input word \(U \) and the upper \(M \) bits are decoded to give the \(c_k \).s.

C. Diagnosability of the Segmented Voltage-Mode DAC

Is it possible to determine the ratios \(r_k, k = 1, 2, \ldots, N + 2^M - 1 \) in a segmented voltage-mode DAC simply by measuring the output voltage \(V_{\text{OUT}} \)?

Let \(V_{\text{OUT}}(U) \) be the measured output corresponding to input word \(U \), as before. In this case, the weights \(w_k \) may be determined by making just \(N + M \) (out of a possible \(2^{N+M} \)) measurements of \(V_{\text{OUT}} \). In particular, \(N + M \) measurements of \(V_{\text{OUT}} \) with \(U = 1, 2, 4, 8, \ldots, 2^N, \ldots, 2^{N+M}, \) yield (6) at the bottom of the next page.

\[
V_{\text{OUT}} = \sum_{k=1}^{N+2^M-1} E_{N,k} = \left(\sum_{k=1}^{N} b_k w_k + \sum_{k=1}^{2^M-1} c_k w_{N+k} \right) V_{\text{IN}}
\]

\[
= \begin{bmatrix} b_1 & b_2 & \cdots & b_k & \cdots & b_{N-1} & b_N & a_1 & a_2 & \cdots & a_{2^M-1} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_k \\ \vdots \\ w_{N-1} \\ w_N \\ w_{N+1} \\ w_{N+2} \\ \vdots \\ w_{N+2^M-1} \end{bmatrix} V_{\text{IN}},
\]

(5a)
Assuming that V_{IN} is known, (6) may be rewritten to give the weights w_k explicitly in terms of the $N + M$ measured outputs shown at the bottom of this page.

From these weights w_k, the ratios r_k may be estimated by setting

$$\hat{r}_k = \frac{\rho_k}{1 - \rho_k}$$

and evaluating

$$\hat{r}_k = \frac{\rho_k}{1 - \rho_k}$$

for $k = N + 2^M - 1$ to 1 in turn, where

$$\rho_k = w_k \prod_{j=k+1}^{N+2^M-1} (1 + \hat{r}_j).$$

As before, \hat{r}_k provides an estimate of r_k.

D. Example

Consider the 14-bit segmented voltage-mode DAC whose resistor values are given in Table III. The DAC consists of an 11-bit $R-2R$ ladder and three decoded bits driving seven segment resistors. This linear network was simulated using a reference input $V_{IN} = 5$ V. The endpoint-corrected linearity error is shown in Fig. 6. Note that the estimates \hat{r}_k of the resistor ratios

$$\begin{bmatrix}
V_{OUT}(1) \\
V_{OUT}(2) \\
V_{OUT}(4) \\
\vdots \\
V_{OUT}(2^{N-2}) \\
V_{OUT}(2^{N-1}) \\
\vdots \\
V_{OUT}(2^{N+M-1})
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
w_3 \\
\vdots \\
w_{N-1} \\
w_N \\
\vdots \\
w_{N+1} \\
w_{N+2} \\
w_{N+2^M-1}
\end{bmatrix}$$

$$\begin{bmatrix}
w_1 \\
w_2 \\
w_3 \\
\vdots \\
w_{N-1} \\
w_N \\
\vdots \\
w_{N+1} \\
w_{N+2} \\
w_{N+2^M-1}
\end{bmatrix} =
\frac{1}{V_{IN}}
\begin{bmatrix}
V_{OUT}(1) \\
V_{OUT}(2) \\
V_{OUT}(4) \\
\vdots \\
V_{OUT}(2^{N-2}) \\
V_{OUT}(2^{N-1}) \\
\vdots \\
V_{OUT}(2^{N}) \\
V_{OUT}(2^{N+1}) - V_{OUT}(2^{N}) \\
\vdots \\
V_{OUT}(2^{N+M-1}) - \cdots - V_{OUT}(2^{N+1}) - V_{OUT}(2^{N})
\end{bmatrix}.\]
at the node of the network extracted from the simulated data are correct to eight significant figures.

Note also that mismatch errors at the right end of the ladder are less significant than those at the left end or in the segment resistors.

Fig. 7 shows the linearity error of the (3 + 11)-bit DAC summarized in Table IV. In this case, gross errors (of up to 20%) have been introduced into the resistors at the LSB end of the ladder in order to exaggerate the relative effects of mismatches at different bit positions. Here, the large errors in the LSB resistors (and the corresponding weights) contribute proportionately less to the overall error than do the much smaller errors in the segment resistors.

Qualitatively, this is because the full-scale error due to a fractional error in an LSB is smaller than for the same fractional error in a more significant bit. Furthermore, errors in the LSB resistor ratios \(r_k \) are divided down by a factor of approximately four at each node up the ladder so that the ratios for the MSB’s are relatively insensitive to errors further to the right along the ladder.

In terms of trimming a segmented voltage-mode DAC, more effort should be devoted to matching the segment resistors and the MSB’s of the ladder than the LSB’s since the former are more likely to determine the final accuracy than the latter.

VI. CONCLUDING REMARKS

In this work, we have developed a model of the linear \(R-2R \) ladder DAC which is parameterized by the ratios of effective resistances at the nodes of the ladder. This formulation provides insight into the operation of the ladder. It explains why the ladder is insensitive to the absolute values of the constituent resistors, and suggests appropriate trimming, design, and test strategies. We have not considered the case of code-dependent resistors in the ladder [14]; this is the focus of on-going work.

ACKNOWLEDGMENT

The author wishes to thank T. O’Dwyer, Analog Devices, whose thought-provoking questions prompted this investigation and A. Wrixon, Telcordia Technologies, for his comments on current-mode ladders.

REFERENCES

Michael Peter Kennedy (F’98) received the B.E. degree in electronics from the National University of Ireland in 1984, and the M.S. and Ph.D. degrees from the University of California at Berkeley (UC Berkeley) in 1987 and 1991, respectively.

He worked as a Design Engineer with Philips Electronics, a postdoctoral Research Engineer with the Electronics Research Laboratory, UC Berkeley, and as a Professeur Invité with the EPFL, Switzerland. He returned to University College Dublin (UCD) in 1992 as a College Lecturer in the Department of Electronic and Electrical Engineering, where he taught electronic circuits, computer-aided circuit analysis, nonlinear circuits and systems, and directs the undergraduate electronics laboratory. He was appointed Senior Lecturer at UCD in 1996 and Associate Professor in 1999. In January 2000 he moved to University College Cork as Professor and Head of the Department of Microelectronic Engineering. He has published more than 150 articles in the area of nonlinear circuits and systems and has taught courses on nonlinear dynamics and chaos in England, Switzerland, Italy, and Hungary. His research interests are in the simulation, design, analysis, synchronization, and control of nonlinear dynamical systems for applications in communications and signal processing. He is also engaged in research into algorithms for mixed-signal testing.

Dr. Kennedy received the 1991 Best Paper Award from the International Journal of Circuit Theory and Applications for his paper with Leon Chua entitled “Hysteresis in Electronic Circuits: A Circuit Theorist’s Perspective” and the Best Paper Award at the European Conference on Circuit Theory and Design in 1999. He serves as a reviewer for a number of conferences, journals, and publishers, as well as national science funding agencies in Europe, Asia, and the United States. He served as an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I from 1993 to 1995, as Guest Editor of special issues on “Chaos Synchronization and Control” (1997) and “Advances in Nonlinear Electronic Circuits” (1999), was Chair of the IEEE Technical Committee on Nonlinear Circuits and Systems 1998–1999, and was appointed Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART II in 1999.