Evaluating the performance of nanostructured materials as lithium-ion battery electrodes.

Mark J. Armstrong¹, Colm O’Dwyer¹, William J. Macklin³, and Justin. D. Holmes¹,²
¹University College Cork, Ireland
²Trinity College Dublin, Ireland
³Nexeon Limited, UK.

Nanostructured materials have received tremendous attention as potential Li-ion electrodes due to their unique size-dependent properties. In this review, we highlight a number of significant recent examples of nanostructured architectures as potential drivers of next-generation Li-ion batteries.

http://publish.ucc.ie/researchprofiles/D004/jholmes
Evaluating the performance of nanostructured materials as lithium-ion battery electrodes

Mark J. Armstrong¹, Colm O’Dwyer², William J. Macklin⁴, and Justin. D. Holmes¹,²,³

¹Materials Chemistry & Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland
²Applied Nanoscience Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland
³Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
⁴Nexeon Limited, Abingdon, Oxfordshire, UK.

Received: day month year / Revised: day month year / Accepted: day month year (automatically inserted by the publisher)
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

ABSTRACT
The performance of the lithium-ion cell is heavily dependent on the ability of the host electrodes to accommodate and release Li⁺ ions from the local structure. While the choice of electrode materials may define parameters such as cell potential and capacity, the process of intercalation may be physically limited by the rate of solid-state Li⁺ diffusion. Increased diffusion rates in lithium-ion electrodes may be achieved through a reduction in the diffusion path, accomplished by a scaling of the respective electrode dimensions. In addition, some electrodes may undergo large volume changes associated with charging and discharging, the strain of which, may be better accommodated through nanostructuring. Failure of the host to accommodate such volume changes may lead to pulverisation of the local structure and a rapid loss of capacity. In this review article, we seek to highlight a number of significant gains in the development of nanostructured lithium-ion battery architectures (both anode and cathode), as drivers of potential next-generation electrochemical energy storage devices.

KEYWORDS
Lithium ion batteries, nanostructuring, anodes, cathodes.

Introduction
Lithium-ion (Li-ion) batteries have been at the forefront of powering a host of modern consumer electronic devices since their commercial introduction in the early 1990s [1–5]. In more recent times, the requirement for alternative energy systems aiding a move away from our reliance on fossil-fuels, has seen Li-ion and other emerging technologies attract considerable attention to power an array of increasingly popular electric and hybrid-electric vehicle classes. Given the extreme popularity of Li-ion batteries, the research effort focused on improving their performance and design has been extensive. If Li-ion technology is to continue to flourish in the near future, of great importance are designs which offer both higher specific energy (W h kg⁻¹) and energy densities (W h L⁻¹). Current Li-ion batteries typically share three
common features: an anode, typically comprising a layered graphitic carbon, a cathode consisting of either LiCoO$_2$, LiMn$_2$O$_4$ or LiFePO$_4$, and an ionically conducting electrolyte which provides a means of transporting Li$^+$ to and from the component electrodes. Improvement in the design of one or more of these features may lead to Li-ion batteries with improved performance, delivering higher energy densities and characteristics such as increased capacity, charge/discharge rates and cycle lifetime. As the requirement for batteries powering ever-more demanding applications continues, such features have become increasingly important.

The role of nanostructuring

It is well known that scaling of material dimensions to that of the nanoscale may afford significantly altered material properties, which range from variances in charge and mass transport, to an increase in surface free energy arising through their high surface-to-volume ratios and increased robustness [6,7]. In terms of Li-ion battery chemistry, the solid-state diffusion of Li$^+$ ions in to and out of the component electrodes is fundamental to its operation; here, the diffusion of guest species (Li$^+$ in this instance), is commonly referred to as ‘intercalation’: By application of Fick’s second law of diffusion within appropriate boundary conditions we obtain an approximate time constraint of species intercalation, as indicated in equation 1.01:

$$\tau = \frac{L^2}{D}$$ \hspace{1cm} (1.01)

where τ is the intercalation time, L is the diffusion length and D is the diffusion coefficient.

Thus, it is readily seen that the rate of intercalation is scaled respectively with the square of the diffusion length (L). Congruently, through nanostructuring we may facilitate an increase in the available rate of charge and discharge of the battery: Such rate increases have obvious implications on battery performance, offering the possibility of faster-charging batteries and batteries which are suitable for rate-demanding applications, such as is required for the emerging electric vehicle/hybrid electric vehicle (EV/HEV) classes. In addition to shortened diffusion lengths, Li$^+$ diffusion is also facilitated in nanoscale architectures through their high surface-to-volume ratios, which enables a high degree of electrolyte contact through the enhanced electrode–electrolyte interface, where Li$^+$ intercalation is entertained. The increased surface interactions may also result in enhanced solid–electrolyte interphase (SEI) layers, which allows passivation of the surface sites to the electrolyte solution, necessary for electrode stability. In addition, control of morphology through careful synthetic design, may also result in crystallographically tailored nanoarchitectures which are conducive to Li$^+$ transport mechanisms; such mechanisms may be difficult to attain in the bulk state. Of further benefit, the vast volume changes and associated strain effects which may result as a consequence of the (de)intercalation process (particularly expressed by alloying-type anodes), may be accommodated by the unique structural robustness afforded at the nanoscale. Given these host of benefits, numerous studies have demonstrated a marked improvement in the electrochemical performance of the nanostructured form versus the bulk counterpart.

While nanostructured electrodes may offer a range of improved performance features over existing bulk design, a consideration of any potential negative effects of their application must also be made. The first potential drawback is that an augmentation of unwarranted and poisonous side-reactions occurring at the electrode surface is possible, given the increased surface interactions expressed by nanoscale architectures; such instances may result in the formation of insulating and Li$^+$-impeding layers, which may severely influence the corresponding electrode operation. Secondly, any effects relating to the potential toxicity of nanoscale materials must be considered from a safety viewpoint, while in terms of
commercial viability, the complexity and increased production costs of their design must be heavily considered, where electrode preparation and associated costs are pivotal to potential industry application.

In this review article, we seek to highlight a number of significant recent examples of nanostructured Li-ion battery electrode architectures, both anode and cathode, which have been reported as potential drivers of next-generation electrochemical energy storage devices.

1 Recent developments in nanostructured anode architectures

One of the major focuses of Li-ion research over the last two decades has been in the development and discovery of novel anode architectures with enhanced Li-ion properties such as increased capacity, cycle life and rate performance, together with a consideration of production cost and environmental impact. Today’s secondary Li-ion batteries commonly feature graphitic carbon as the anode material of choice, owing in part to its largely reversible Li+ storage property, good electrical conductivity, stable SEI and ease of production. Graphitic carbon anodes, however, suffer from relatively low capacity (372 mA h g⁻¹) and sluggish rate performance. With the advent of the EV/HEV classes, future Li-ion batteries must meet the challenges of this emerging sector, necessitating a move to alternative materials with improved Li-ion capabilities [1,8,9]. A number of potential alternatives to carbon have emerged in recent times and is the focus of much research effort. The scope of this section is to familiarise the reader with some of the important recent advances which have been made towards anode architectures with improved characteristics for next-generation Li-ion batteries.

1.1 Silicon

Silicon anodes have been the focus of much research effort over a number of years owing to a number of important theoretical considerations [10]. Firstly, silicon forms a stable alloy with lithium of up to 4.4 Li⁺ per formula unit Si, leading to a vast theoretical capacity of 4212 mA h g⁻¹, which is considerably higher than that of graphite (372 mA h g⁻¹). Secondly, Si anodes display long voltage plateaus at approx. 370 mV vs. Li/Li⁺, thereby providing stable operating voltages when coupled with positive electrodes such as LiCoO₂ [10]. Lastly, Si is the second most abundant element in the Earth’s crust and is thus considered a candidate for reasons of viable production cost and availability [11]. While Si anodes display potentially appealing Li-ion characteristics, it is important to note that Si suffers from two major drawbacks. The first is that Si suffers from structural changes induced on cycling, characterised by the formation of amorphous Li₂Si₄ and Li₄Si phases, leading to reduced cycling performance [12–14]. In addition, Si suffers from a large (± 400%), volume change during the (de)alloying process, the strain of which potentially leads to pulverisation of the local structure and electrical disconnect from the current collector; such an effect results in a marked loss of capacity and cycle performance [15]. Numerous examples in the literature have demonstrated the associated volume change on the local structure of the Si anode [16–18]. Nanostructured forms, however, may accommodate much of the strain associated with such alloying processes due to an increase in the surface to volume ratio associated with their reduced dimensions. One form of particular interest is the one-dimensional (1D) Si nanowire, which displays a high aspect ratio and has found numerous applications in semiconductor and other technologies [19]. Green et al. [20] were the first to propose using an arrangement of elongated silicon structures with sub-micron diameters on a substrate for the anode of a lithium-ion cell. In situ transmission electron microscopy (TEM) observations have revealed that the insertion of Li⁺ into <112> oriented Si nanowires is associated with an anisotropic swelling of the nanowires, preferentially along the <110> direction, and characterised by a dumb-bell shaped cross-section [16]. The Li⁺ diffusion–time study revealed deformation, resulting in fracture,
following a build-up of tensile stresses of the lithiated nanowires [16]. Such fracturing leads to poor cycle performance and thus requires an adequate understanding. The crystallographic orientation of the Si nanowire has been identified as one important aspect in governing the nature of anisotropic swelling [17,21]. Ab initio calculations revealed a preference for Li\(^+\) diffusion in Si nanowires with a <110> growth direction [17], where Li\(^+\) insertion occurs via layer-by-layer diffusion, originating from the surface of the nanowire (Li\(^+\) interaction at surface sites is energetically favourable), through to the core of the nanowire with increasing energy [17]. Following Li\(^+\) insertion, a core–shell structure develops consisting of crystalline Si and an amorphous Li\(_x\)Si shell, where an abrupt change in Li\(^+\) concentration at the core–shell interface induces a chemical strain [21]; the amorphous shell relaxes by plastic flow [18], while the crystalline core suffers elastic deformation, potentially leading to fracturing of the local structure [21].

A number of 1D Si nanostructures (nanowires, nanotubes, etc.), have been demonstrated recently. Chan et al. [22], reported the preparation of arrays of Si nanowires grown directly on stainless steel substrates by an Au-seeded vapour–liquid–solid (VLS) mechanism. The synthetic procedure resulted in firm electrical contact with the current collector, while providing adequate strain relief, efficient 1D transport and a large electrode–electrolyte interface. Notably, utilisation of such arrays also negates the use of electrode binders or conductive additives, which may result in an increased energy density. The arrays of Si nanowires displayed a capacity of >2100 mA h g\(^{-1}\) at C rate (1 C = 4212 mA h g\(^{-1}\), corresponding to a complete discharge in 1 h), and ~3500 mA h g\(^{-1}\) over 20 cycles at the C/5 rate, with no appreciable decline in capacity or apparent pulverisation of the nanowire structure [22]. Earlier studies of Si nanowires prepared by a VLS mechanism displayed stable cycling over 10–20 cycles [23]. Kang et al. [24], prepared single crystalline Si nanowires on stainless steel substrates by a chemical vapour deposition (CVD) method, which approached a near theoretical limit (4212 mA h g\(^{-1}\)) in the first discharge of ~4000 mA h g\(^{-1}\). Despite displaying high Coulombic efficiency, the Si nanowires suffered from cyclic degradation resulting in a discharge capacity of ~1600 mA h g\(^{-1}\) after 50 cycles, representing a capacity loss of greater than 50% [24]. Capacity fading following structural transformation and increasing impedance may account for such losses [12,25]. Further examples of Si NW electrodes include those grown by reactive ion etching [20] or metal-assisted etching, which displayed both high surface roughness and high conductivity [26], and by a plasma-enhanced CVD method which displayed a high level of interconnection, maintaining good contact with the current collector with ~100% capacity retention at a C/2 rate [27].

A novel approach by Nexeon has been to form nanoscale Si pillar arrays on micron scale (2–25 µm) particle cores by metal assisted etching (Fig. 1), and where the resulting surface structured particles are then processed via a conventional slurry method with a binder and conductive additives to form a composite electrode coated on a copper foil substrate [28].

![Figure 1 Pillared silicon particle produced by metal assisted etching. Reprinted with permission from ref. [28]. Copyright (2010) The Electrochemical Society.](image-url)
up to 500 cycles (Fig. 2). Through optimisation of the pillar to core ratio within these pillared particle structures discharge capacities up to 2000 mA h g\(^{-1}\) are achievable based on full lithiation of the Si nanoscale pillars.

![Figure 2](image1.png)

Figure 2 Cycle life performance of pillared silicon particle based composite anodes at various capacities. Reprinted with permission from ref. [28]. Copy right (2010) The Electrochemical Society.

The process of metal assisted etching on metallurgical grade silicon powders offers the prospect for low cost materials and is also readily scalable with pilot plant volumes already demonstrated. Furthermore, Nexeon has applied a similar process method of metal assisted chemical etching to much larger sized Si powders (up to 500 µm) in conjunction with the use of ultrasonic harvesting as an economic route for the production of Si fibres (nanowires), also for use as an anode material in Li-ion batteries (Fig. 3) [29]. The nanoscale dimensions of the resulting Si fibres results in a Si anode material where the full theoretical capacity of Si is accessible as reported with similar sized nanostructures produced via CVD or VLS growth methods.

![Figure 3](image2.png)

Figure 3 Si fibres produced by metal assisted chemical etching of large sized Si powders. Reprinted with permission from ref. [29]. Copy right (2010) The Electrochemical Society.

Composite Si nanowires having core–shell morphologies, or those with surface modification features, have also been proposed to enhance the cycling ability of Si nanowires, by further accommodating the strain associated with the alloying process. Carbon coated Si nanowire arrays [30, 31], mesoporous Si/C nanowires [32], Si/carbon nanotube (CNT) composites [33], crystalline/amorphous core–shell nanowires [34], nanowires with polymeric coatings [35] and surface oxides [36], have thus shown improved cycling characteristics. The adoption of amorphous carbon coatings has been shown to facilitate volume expansion and further improve electrical conductivity within the nanowire array, resulting in improved cycling performance [30]. Porous, doped Si nanowires, etched from B-doped substrates have also shown appreciable performance with capacities of 1600 mA h g\(^{-1}\) reported after 250 cycles at C rate [37]. 1D Si nanotubes have shown promise as potential Li-ion anodes, whose unique morphology allows for ease of Li\(^+\) transport through its large electrode/electrolyte interface. Volume expansion due to Li\(^+\) insertion results in significant radial expansion (120%) as opposed to axial expansion (35%) [38, 39]. As a result, the Si nanotubes are able to maintain their original morphology after several cycles while providing large capacities with relatively high retention (>85%) [43].

Two-dimensional (2D) Si nanostructures also
feature as potential candidates, although some moderation of capacity and cycle life has been experienced by pure Si nanoparticles [40]. Nest-like Si nanospheres, prepared by a solvothermal route, exhibited increased capacity, rate performance and capacity retention over their bulk Si counterparts [41], while hollow nanospheres prepared by Yao et al. [42], provided a high degree of particle interconnection, resulting in a stable cycling performance of up to 700 cycles. The stable cycle performance was attributed in part to a reduction in the available surface area of the nanospheres, thus limiting any potential inhibiting side-reactions with the electrolyte [42]. Further improvement in the anodic performance of Si nanoparticles has been displayed by composite formation [43–47], Si/CNT heterostructuring [48], or through porous arrangement [15,49–51]. The addition of alginate, a polysaccharide derived from brown algae, significantly enhanced the cycling performance of Si-based nanopowders, achieving a highly stable capacity of 1200 mA h g⁻¹ after 1300 cycles (Fig. 4) [52]. Binder interactions may therefore significantly influence the performance of Si anodes [45] and as such, must possess qualities such as minimal interaction with the electrolyte, permeability to Li⁺ and the ability to enhance the formation of a stable SEI layer [52].

Si–C nanocomposites prepared by a bottom-up approach also displayed enhanced anodic performance [44], where the internal porosity allowed for both rapid access of electrolyte and accommodation of volume induced stress, resulting in stable capacities of 1950 mA h g⁻¹ following 100 cycles at C rate (Fig. 5).

The potential utilisation of Si as a Li-ion anode depends on the ability of the electrode structure to maintain structural robustness over successive cycling, while maintaining efficient electron transport through the structures to the current collector. Nanostructuring of Si electrodes is vital since bulk Si electrodes suffer from pulverisation over just a few cycles [11]. While capacity retention still remains for the most part somewhat problematic, Si displays significantly higher capacity and rate capability over today’s conventional graphite anodes, even after hundreds of cycles.

Figure 5 Cycling performance of Si–C nanocomposites prepared by a bottom-up approach. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials [44] copyright (2010).

1.2 Germanium

Interest in Ge architectures stems from its ability to reversibly alloy with Li, thus forming Li₄Ge (0 ≤ x ≤ 4.4) resulting in a theoretical capacity of ~1600 mA h g⁻¹. Much like its Si neighbour, Ge undergoes a large (± 370%) volume change on (de)alloying which may also lead to pulverisation of the local structure and a rapid decline in electrode performance [53]. In contrast, however, Li⁺ diffusion in Ge is 400 times higher than in Si [54,55], while Ge also possesses higher (10⁴) electrical conductivity, leading to the potential adoption of Ge in future high-rate Li-ion batteries. For example, Graetz et al. [54], demonstrated a rate capability of their Ge thin films to current rates as high as 1000 C.

High capacity Ge nanowires grown directly on stainless steel foils provided one of the first insights into Ge utilization as a Li-ion anode [53]. The sub-100 nm wires offered stable cycle performance
and remained structurally intact after successive cycling. In situ TEM analysis has since provided a further understanding of the structural changes which evolve during lithiation and delithiation of Ge nanowires [56]. The microscopy study revealed a two-stage transformation process, beginning with the formation of an amorphous Li₄Ge phase, and followed by the formation of crystalline Li₁₅Ge₄. The resultant stress was partially alleviated through the formation of nanopores during delithiation (Fig. 6), outlining the structural robustness of the Ge nanowires [56]. Recently, Ge/C nanocomposites revealed a large performance increase over their pure Ge nanowire counterparts, suggesting a carbon buffer matrix may also be beneficial in restricting much of the volume-induced strain [57,58].

Figure 6 Reversible nanopore formation during lithiation-delithiation cycles of VLS-grown Ge nanowires. Adapted with permission from [56]. Copyright 2011 American Chemical Society.

Ge nanowires, however, invariably possess a non-uniform and unstable surface oxide, GeOₓ, which is ultimately poisonous to both electronic and battery application. The surface oxide readily reacts with Li⁺ to form Li₂O, thus detrimentally affecting electrode performance. Ge nanowires grown by a Sn-assisted CVD mechanism displayed a Coulombic efficiency of just ~50% in the first cycle, which was attributed in part to the existence of the GeOₓ sheath [59]. Restricting the size of GeOₓ layer is therefore crucial to the utilisation of Ge in future battery designs. Treatments may include etching GeOₓ with HF, followed by the addition of protective organic layers, which was shown to prevent surface re-oxidation [60]. Ge nanowires surrounded by an amorphous carbon sheath offered high capacity and Coulombic efficiencies exceeding 90%, even at a high C-rate [61]. Carbon coating is suggested as a means to restrict surface re-oxidation, in addition to providing a buffer matrix for the volumetric changes induced on alloying. Other 1D nanostructures displaying enhanced anodic performance include Ge/CNT composites [62,63], dual-layer Si/Ge nanotube arrays [64] and solution-grown Ge nanotubes prepared from Ge–Sn nanowires [65]. The Ge nanotubes displayed high charge capacities (965 mA h g⁻¹ at C/2 rate) and good rate performance, owing to their unique morphology [65], while Si/Ge nanotube arrays displayed excellent cycling characteristics as a result of minimal hoop strain [64].

Other candidates of note include porous Ge nanostructures [66–68] and GeOₓ hierarchical structures [69], which have displayed enhanced performance owing to their porous structuring. The 3D porous nanoparticles prepared by Park et al. (Fig. 7) [66], displayed excellent capacity retention and structural stability over 100 cycles at C rate, compared to their non-porous, 0D counterparts. The zero-dimensional (0D) Ge nanoparticles did not sustain their structure on alloying, resulting in marked loss of capacity over successive cycles.

Figure 7 Porous 3D Ge nanoparticles and their performance as Li-ion anode (C-rate). Adapted from Ref. [66]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Although efforts have shown Ge to be a promising candidate for future Li-ion cells, further work is envisioned for this material candidate in
order to fully realise its potential. Much like Si, Ge candidates must sustain the structural changes which evolve as a result of alloying, while methods such as organic functionalisation may be utilised to limit the influence of GeO layers and thus, improve its performance.

1.3 Tin

A third metal which reversibly alloys with lithium is tin (Li\textsubscript{3}Sn, 0 \leq x \leq 4.4), and has therefore garnered considerable interest as a result of its theoretical capacity of 993 mA h g−1 [70–72]. The Li–Sn alloying process again results in considerable volume change (up to 300%) which, unless accommodated, results in rapid degradation in electrode performance. Relatively few recent studies have reported the synthesis of pure Sn architectures [73], and rather more commonly obtained is SnO\textsubscript{2}, which irreversibly reacts with Li+ to form Sn (SnO\textsubscript{2} + 4Li+ + 4e− \rightarrow Sn + 2Li\textsubscript{2}O). The conversion of SnO\textsubscript{2} to pure Sn architectures results in significant capacity loss in the first cycle, which may subsequently stabilise as a result of a reversible alloying process.

In situ TEM analysis of the charging process on a single SnO\textsubscript{2} nanowire [74], revealed that volume expansion was accommodated through a 90% elongation in the axial direction, as opposed to 35% radially (Fig. 8). The formation of Li\textsubscript{3}Sn and Li\textsubscript{2}O was responsible for the 250% total volume increase, while the resultant strain resulted in a significant twisting and bending of the nanowire. A Li+-driven reaction front propagated along the nanowire length, resulting in a high-density dislocation zone separating crystalline SnO\textsubscript{2} from amorphous Li\textsubscript{3}Sn [74]. The de-alloying process, resulting in the formation of metallic Sn, was observed on discharge. Self-supported SnO\textsubscript{2} nanowires [75] and hybrid Sn/SnO\textsubscript{2} nanowires [76] have demonstrated high capacity and stable cycling as a result, and are determined to be important classes of Sn-based electrodes [77]. Other examples of 1D nanostructures include nanorod arrays which were grown hydrothermally on flexible substrates and displayed significantly increased cycling performance compared to 0D structures [78].

![Figure 8](image_url) In-situ TEM observations of the Li+-driven transformation of SnO\textsubscript{2} nanowires on charging. Dislocations result as a consequence of a Li+ driven transformation of crystalline SnO\textsubscript{2} to an amorphous Li\textsubscript{3}Sn phase. From [74]. Adapted with permission from AAAS.

Sn/C or SnO\textsubscript{2}/C composites have perhaps received the most attention, due to the volumetric buffering and electrical qualities of carbon. Carbon coated SnO\textsubscript{2} particles offer an insight into the effectiveness of the carbon additive, displaying enhanced cycling characteristics [79–84], while Sn/C composites have shown high performance with stable capacities reported over hundreds of cycles [85], and considerable performance increase over bulk Sn [86]. Carbon-coated Sn particles encapsulated in hollow nanofibres, for example, displayed high capacity with minimal capacity fade (Fig. 9), outlining the practical importance of the carbon additive [87].

Sn/graphene nanocomposites have also shown promising results compared to their pure Sn counterparts [88–91]. Graphene composites may offer increased surface area, higher electronic conductivity and greater mechanical strength, necessary for enhanced electrochemical performance [92]. Porous structuring may also alleviate some of the strain associated with the alloying process, while providing an increased electrode/electrolyte interface; such structures have
thus shown improved Li-ion performance [93–95]. Detrimentally, however, porosity may lead to eventual trapping of Li+ ions during electrochemical operation, which leads to irreversible capacity fading [77]. Other notable nanostructured examples include solution-grown SnO\textsubscript{2} nanoflowers [96], and hydrothermally prepared hollow SnO\textsubscript{2} structures, both of which showed enhanced anodic performance [97].

Recently, Sony has commercialised its Nexelion® range of Li-ion cells containing Sn–Co–C anodes. Such alloys have shown excellent cycling abilities attributed to the active–inactive relationship between Sn and Co [98–101]. Other alloys include Sn–Ni–C [102] and Sn–Cu [103] which also utilise the inactive metal and carbon as a structural buffer, thus alleviating much of the alloyed-induced strain. The commercial utilisation of Sn has demonstrated its purposeful character as a Li-ion anode, however, next-generation batteries may ultimately adopt materials with greater capacity and higher rate capability.

1.4 Li\textsubscript{4}Ti\textsubscript{5}O\textsubscript{12} (LTO)

Li-alloying compounds offer significantly higher capacities versus their intercalation rivals due to a high accommodation of up to 4.4 Li+ per unit metal. However, the associated volume change must be accommodated if they are to be viable candidates in next generation Li-ion batteries. At present, graphite is the most common intercalation anode material owing to its relatively high capacity (372 mAh g−1), high Li+ reversibility, sound electrical conductivity and ease of production. Another important member of the intercalation family, spinel-phase Li\textsubscript{4}Ti\textsubscript{5}O\textsubscript{12} (LTO), has been proposed as a future Li-ion anode due to a number of practical considerations. The first is that LTO experiences a near zero-strain (0.2%) on intercalation, resulting in a high degree of structural integrity during electrochemical cycling [104]. Secondly, LTO displays a flat discharge profile at ~1.5 V vs. Li/Li+, which is higher than the reduction potential of most associated electrolyte solvents. As a result of its high operating voltage, LTO experiences no surface passivation due to the reduction of carbonate solvents, or the formation of dendritic lithium, which leads to long cycle-life and improved safety [104]. In addition, LTO cells have demonstrated safety at ultra-high charge potentials, resulting in minimal thermal runaway [105]. LTO can accommodate up to 3 Li+ per formula unit, resulting in an end-phase of Li\textsubscript{7}Ti\textsubscript{5}O\textsubscript{12} [106], with a theoretical capacity of 175 mA h g−1. While such capacity is lower than graphite, intercalation rates are fast and further enhanced through nanostructuring, leading to the potential application of LTO in future high-rate Li-ion batteries [105]. While LTO displays such desirable Li-ion characteristics, it suffers from poor electronic conductivity. Poor conductivity is detrimental to the performance of a high-rate Li-ion anode where efficient electron transport is paramount. Typically, carbon coatings [107–113], carbon [114,115] or graphene nanocomposites

![Figure 9](image_url)

Figure 9 (a) TEM image of Sn/C particles encapsulated in hollow nanofibres and (b) elemental mapping showing C (blue) and Sn (yellow) and (c) capacity vs. cycle number outlining the role of the carbon-buffer in cycle performance. Adapted from [87]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
[116,117], dopants [118–121] or surface modifiers [122,123], may be introduced to increase electrical conductivity. Surface modification is an effective means to shorten electronic pathways and alternatives to carbon layers are increasingly attractive [122]. To this end, solution-prepared LTO nanosheets, modified with edge-terminating rutile-TiO₂, displayed both enhanced rate capability and cycle performance (Fig. 10). Additive-free LTO anodes have also shown enhanced performance, which has been ascribed to an increase in electrical conductivity of lithiated Li⁺-TiO₂ phases formed as a result of discharge [124]. Porous [125–128] and hollow sphere [129,130] morphologies of LTO have displayed also superior performance as a result of their unique nanostructured form. Mesoporous thin-film electrodes have displayed electrical conductivity close to that of bulk LTO, resulting in appreciable performance [125]. When combined with a suitable cathode, such as lithium nickel manganese oxide (LNMO) Li[Ni₅₋ₓCoₓMnₓ]₂, LTO cells display exceptional performance over hundreds of cycles at C-rate, even at rates as high as 10 C (Fig. 11) [131]. The full cells also exhibited stable cycling performance over a wide range of temperatures (from −20 to 55 °C, Fig. 12). A reported energy density of 260 W h kg⁻¹ is also higher than any of today’s commercial cells, highlighting the commercial viability of LTO electrodes.

LTO electrodes have shown remarkable cycling ability and rate performance over a wide range of temperatures, while their operating voltage offers increased safety over other suggested anodes, which is of particular concern to the EV/HEV market. To its detriment, however, LTO suffers from relatively low capacity and poor electronic conductivity, which could potentially limit its application in future Li-ion batteries.

1.5 Carbon
Carbon in the form of three-dimensional (3D) graphite is the most common source of anode material in today’s commercial cells. Graphite has a theoretical capacity of 372 mA h g⁻¹ and intercalates...
Li$^+$ to an end-phase of LiCs. While graphite possesses useful qualities such as sound electrical conductivity and high Li$^+$ reversibility, it is lacking in total gravimetric capacity which leads to cells with potentially lower energy density. Alternative carbon architectures may boost Li$^+$ storage capacity as a result of a greater number of available Li$^+$ insertion sites. Examples of 1D carbons which have attracted attention include single-walled and multi-walled carbon nanotubes (S/MWCNTs), [132–140] carbon nanofibres [141,142] and carbon nanofibre/nanotube composites [143]. Carbon nanotubes (CNTs), consist of 2D graphene sheets rolled into single or multiple layers, which display enhanced properties such as rapid electronic conductivity and increased capacity as a result of their unique structuring. CNTs may be grown in paper-like form [135,137], or more conveniently, in free-standing form grown directly on conducting current collectors or glassy carbon [133,138]. MWCNTs grown in this fashion have displayed highly reversible cycle behaviour resulting in a capacity of 575 mA h g$^{-1}$ after 100 cycles at a current density of 0.2 mA cm$^{-2}$ (Fig. 13) [133]. Despite displaying long cycle-life, MWCNTs grown on stainless steel substrates suffer from pulverisation of their structure and surface defects, as a result of continued electrochemical cycling [138].

A comparison of MWCNTs versus their single-walled and double-walled counterparts reveals that MWCNTs are the choice anode material due to fewer irreversible losses on cycling [135]. In addition, cyclic voltammetry studies have shown only MWCNTs behave in a similar fashion to graphitic carbon, where the surface chemistry of MWCNTs is less dominant compared to single and double-walled carbon nanotubes [135]. The intercalation chemistry of CNTs is therefore highly dependent on both their internal and external structuring, where a number of defects or surface functionalities may influence properties. Indeed, this may be illustrated when considering shorter CNTs, which have displayed enhanced performance over longer CNTs as a result of an increasing number of structural (lateral) defects [139,144]. In this case, increasing the density of graphitic edges in the MWCNT results in a greater capacity, while structurally shortening may result in fewer instances of Li$^+$ trapping and thus, fewer irreversible losses [139,144]. An improved rate capability was also displayed as a result of lower electrical resistance [139]. Combining MWCNTs with high surface-area mesoporous carbon has also facilitated enhanced performance due to a synergistic relationship between the high electrical conductivity of the MWCNTs and the favourable Li$^+$ transport properties of mesoporous carbons [141].

In demonstrating the useful properties of the MWCNT as a potential electrode scaffold, tailoring the surface functionality of MWCNTs resulted in Li-ion cells (full cells), which are stable over thousands of cycles and which display extremely high power densities (~100 kW kg$^{-1}$) [136]. The increased electrochemical response is attributed to reversible Faradaic interactions of Li$^+$ with surface oxygen, originating from the carboxylic acid (–COOH) functionalised surface. Confirmation of the role of surface oxygen was sought by reducing the functionalised MWCNTs in flowing H$_2$/Ar, which resulted in a 40% reduction in gravimetric capacity. Further, the charged surface resulted in
MWCNTs with an exceptional rate capability, where approximately 50% of the total gravimetric capacity could be delivered at a current density as high as 180 A g⁻¹ (in this case, one complete discharge per ~2 s) [156]. Specifically tailored MWCNTs may therefore find potential use as positive electrodes in future high-rate, high-power Li-ion batteries.

Graphene, the building block of the 1D CNTs, exists as a 2D layer of sp²-hybridised carbon one atom thick, and continues to attract considerable attention owing to its vast surface area (>2500 m² g⁻¹), fast electron mobility and excellent electrical conductivity [145–148]. Li⁺ diffusion in graphene is heavily influenced by edge effects [149,150] where the relative strength of Li⁺ interaction (adsorption and diffusion) varies according to the morphology of the edge [149]. Such edges, along with other structural defects, offer reversible Li⁺ storage sites and are thus responsible for additional capacities [151,152]. Graphene nanoribbons (GNRs), a quasi-1D nanostructure offering similar electrical properties to that of SWCNTs, were studied as a potential Li-ion anode having been previously identified as a potential candidate based on its edge storing capabilities [149,153]. The GNRs were prepared by unzipping MWCNTs by a solution-based oxidation process, resulting in oxygen-rich GNRs; the GNRs were subsequently reduced under a flow of H₂/Ar. The resulting electrodes displayed increased capacity versus pristine MWCNTs with a rate of loss of 2.6%, however, the GNRs displayed considerably lower capacity versus the pre-formed oxygen-rich GNRs, which achieved a discharge capacity of 820 mA h g⁻¹ versus ~290 mA h g⁻¹ for the GNRs in the first cycle [153]. The oxygen-rich GNRs displayed the highest rate of loss, however, (~3% per cycle), while the increased capacity was suggested to be the result of a more-stable, chemically bonded SEI layer.

Disordered graphene nanosheets (stacks of 2D graphene), have also displayed high reversible capacities (up to ~1000 mA h g⁻¹) as a result of increasing defect densities [151,154]. The additional Li⁺ storage sites therefore contribute to a more than two-fold increase in total gravimetric capacity, compared to 3D graphite. Although surface functionality has been shown to dramatically improve the electrochemical performance of MWCNTs, electrochemical testing of graphene oxide (GO) nanosheets revealed surface functionality (~O and ~H terminated) did not contribute to additional capacity while in fact, the GO nanosheets were found to offer lower capacity compared to their reduced counterparts [151]. In addition to utilising structural disorder, further capacity has been obtained by the addition of carbon additives such as CNTs or fullerenes to graphene nanosheets. Such additions are shown to actively increase the inter-graphene (001) layer separation from 3.6 Å to a maximum of 4.0 Å [155]. Increasing the inter-layer spacing may result in additional Li⁺ storage sites and ease of Li⁺ transport, although a definitive Li⁺ storage mechanism has not been proposed. The gravimetric capacity increased from 540 to 730 mA h g⁻¹ for CNT addition and to 784 mA h g⁻¹ for fullerene addition (at a current density of 50 mA g⁻¹), indicating the largest capacity increase is seen with the largest inter-layer separation. These results offer over twice the capacity of conventional graphite, while remaining appreciably stable. Similarly, graphene paper electrodes have also displayed increased layer separation (up to 3.79 Å) as a result of surface functionality [156], while offering properties such as high tensile strength and high electrical conductivity, while remaining suitably binder-free [156,157]. Although the capacity of such paper electrodes was shown to be lower than conventional graphite, a recent 3D configuration has shown improved Li-ion performance [158]. The 3D configuration, which was obtained by mechanically pressing a graphite oxide aerogel, displayed excellent capacity retention to as many as 5000 cycles, while offering a much improved rate performance over previous reports of graphene paper electrodes. The increased performance was attributed to the unique folded-structure of a few layers of graphene and the ease with which the electrolyte could penetrate the 3D structure [158]. Although our understanding of graphene is in a relatively infant stage, its unique electrical and
mechanical properties, together with further research, may make it an appealing candidate for future Li-ion batteries.

Other forms of nanostructured carbon materials that deserve mention include 2D carbon spheres [159] and 3D hollow carbon nanocages [160,161]. In particular, carbon nanocages (CNCs) with a nanographene shell have shown stable cycling performance with increasing graphitisation [160]. The CNCs, prepared by a supercritical fluid (SCF) method, offer capacities approaching 600 mA h g\(^{-1}\) and high rate performance as a result of their unique structuring (Fig. 14). The nanographene shell results in high inter-particle conductivity and additional Li\(^+\) storage sites, while their hollow, porous structure, offers ease of electrolyte access, facile Li\(^+\) transport and accommodation of Li\(^+\)-induced volume changes [160].

![Figure 14](image_url) (a) Cycling performance of CNCs. Increasing temperature results in higher graphitisation and improved cycling and (b) rate performance of the CNCs at current densities ranging from 0.1–10 A g\(^{-1}\) [160]. Adapted with permission of The Royal Society of Chemistry.

1.6 Transition metal oxides

Transition metal oxides (TMOs), offer a third type of Li-ion anode architecture through an electrochemically-induced conversion reaction adopting the following, generalised form (equation 1.02) [71, 162]:

\[
nano-TMO + 2\text{Li}^+ + 2e^- \leftrightarrow nano-TM + \text{Li}_2O \quad (1.02) \\
\]

The formation of metallic nanoparticles during discharge is thermodynamically favourable and is associated with multi-electron transfer, while the electrochemical decomposition of Li\(_2\)O is ostensibly realised through the unique synergy that exists between the nanosized metallic domains and the characteristically inert LiO matrix [162]. The seemingly unfavourable reverse reaction is therefore only achievable through nanostructuring and may lead to sluggish Li\(^+\) diffusion and rate capability. Although the associated multi-electron transfer allows for capacities in excess of conventional intercalation anodes, capacity fade as a result of structural degradation and volume change may still present a challenge. Nanostructuring may therefore not only enable successful conversion chemistry, but may also accommodate many of the structural strains induced as a result of electrochemical cycling.

1.6.1 Iron oxides

Iron oxides (Fe\(_2\)O\(_3\), Fe\(_3\)O\(_4\) etc.), represent a popular class of transition metal oxides and find use in numerous applications such as diagnostic imaging and other biomedical applications [163]. Large particles (~0.5 µm) of the most stable iron oxide, \(\alpha\)-Fe\(_2\)O\(_3\) (hematite), have previously demonstrated a large size-dependent effect on reaction with Li\(^+\) [164], where a structural transformation occurs from the cubic to hexagonal system after insertion of an equivalent of just 0.05 mol. Li\(^+\) [165]. Nanosized (~20 nm) Fe\(_3\)O\(_4\) particles, however, maintained their structural integrity (corundum phase), to an equivalent of 1 mol Li\(^+\) per Fe\(_3\)O\(_4\) before conversion, contributing to a final capacity of 1400 mA h g\(^{-1}\) in the first discharge cycle [165]. Although early work on Fe\(_3\)O\(_4\) anodes resulted in high initial capacities, much of the capacity was lost with extended cycling. More recently, advanced Fe\(_3\)O\(_4\) structures such as nanoflakes [166], nanocapsules [167], nanodiscs [168], hollow nanoparticles [169], nanotubes [170], and reduced-graphene/Fe\(_3\)O\(_4\) nanocomposites [171] have emerged with enhanced Li-ion performance. Liu et al. [170], prepared 1D \(\alpha\)-Fe\(_3\)O\(_4\) and C–Fe\(_3\)O\(_4\) nanotubes grown directly on conducting substrates by a so-called “sacrificial template-accelerated hydrolysis” (STAH) method, using arrays of ZnO nanowires as hard templates. The H\(^+\) generated due to hydrolysis of the Fe\(^3+\) precursor, resulted in
dissolution of the ZnO nanowire template which in turn, facilitated the hydrolysis of the Fe$^{3+}$ precursor (Fig. 15). The addition of glucose to the Fe$^{3+}$ precursor sol resulted in the formation of C/FeO$_3$ nanotubes, with a layer of carbon approximately 1.5 nm thick. The resulting α-Fe$_2$O$_3$ nanotubes delivered adequate performance reaching a capacity of ~375 mA h g$^{-1}$ after 150 cycles (C/5 rate), while the C/FeO$_3$ nanotubes displayed a much higher capacity and excellent cycling characteristics, delivering a final capacity of 659 mA h g$^{-1}$ after 150 cycles at the same rate. An initial intercalation mechanism was suggested which accounted for initial capacity gains and was associated with a transformation from cubic Fe$_2$O$_3$ to hexagonal Li$_2$Fe$_2$O$_3$ before conversion at 0.8 V (identifiable by a long plateau region in the discharge profile), resulting in the formation of Fe$_0$ and Li$_2$O species.

Similar performance has been demonstrated with porous α-Fe$_2$O$_3$ nanodiscs prepared by oxalic acid etching of single crystal Fe$_3$O$_4$ nanocrystals [168]. Preferential etching in the <001> direction was carried out using phosphate (H$_2$PO$^-$) as a biased capping agent. The phosphate anions, which selectively bind to lateral (110) planes of the Fe$_3$O$_4$ structure, coordinate the oxalic acid etching process from the exposed ends, ultimately yielding a 2D nanodisc structure. Rod-like structures could also be synthesised when starting with highly anisotropic α-Fe$_2$O$_3$ spindles (Fig. 16). Controlling the etching time and starting material resulted in nanodiscs with tunable porosities, offering improved electrochemical performance due to the accommodation of volume change stresses and increased surface area. The porous α-Fe$_2$O$_3$ nanodiscs displayed a large discharge capacity of 662 mA h g$^{-1}$ after 100 cycles at a rate of C/5. Such examples outline the impact of structural modification on the electrochemical performance of Li-ion anodes.

Hollow α-Fe$_2$O$_3$ nanocapsules [167], reduced-graphene/Fe$_3$O$_4$ nanocomposites [171] and γ-Fe$_2$O$_3$ nanoparticles [169] in particular, have also shown high capacities in the anodic region (0.01–3 V). Hematite nanocapsules, prepared by coating spindle-like β-FeCOOH with SiO$_2$ followed by the thermal treatment and wet-chemical etching of the SiO$_2$ shell, displayed capacities as high as 888 mA h g$^{-1}$ after 30 cycles [167]. In contrast, hollow γ-Fe$_2$O$_3$
nanoparticles, annealed between two layers of MWCNTs at 200 °C, exhibited initial capacities in excess of 1000 mA h g⁻¹[169]. The high capacity of the hollow γ-Fe₂O₃ nanoparticles was attributed to Fe cation vacancies in the host γ-Fe₂O₃ structure which could act as additional Li⁺ storage sites at higher voltages, while the hollow morphology enabled rapid Li⁺ transport and structural support during the electrochemically-induced phase transitions. Solid γ-Fe₂O₃ nanoparticles fared considerably worse and this delineates the effect of γ-Fe₂O₃ particle morphology on its electrochemical performance. Although extensive cycling data for the conversion of hollow γ-Fe₂O₃ nanoparticles was not reported, the work outlines the importance of structural tailoring to enhance Li-ion capacity.

Fe₃O₄ (magnetite) electrodes have also been extensively researched as potential Li-ion anodes, some reports of which are outlined in Table 1. Magnetite displays similar electrochemical properties to hematite, with a theoretical capacity of 920 mA h g⁻¹ obtainable after an 8e⁻ conversion reaction (equation 1.03). Due to the poor capacity retention of pure Fe₃O₄ electrodes and their poor electronic conductivity, the addition of carbon or graphene to Fe₃O₄ electrodes has been reported in many studies (Table 1). Stable capacities in excess of 900 mA h g⁻¹ have been reported.

Fe₃O₄ + 8Li⁺ + 8e⁻ ↔ 3Fe⁰ + 4Li₂O (1.03)

Table 1 Some reported Fe₃O₄ nanostructures with their respective capacities (mA h g⁻¹). The rate and cycle number is given in brackets.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Morphology</th>
<th>Initial Capacity</th>
<th>Final Capacity</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO/C</td>
<td>Nanospheres</td>
<td>1166 (C/5)</td>
<td>712 (60)</td>
<td>[172]</td>
</tr>
<tr>
<td>FeO/C</td>
<td>Nanospindles</td>
<td>749 (C/2)</td>
<td>600 (80)</td>
<td>[173]</td>
</tr>
<tr>
<td>FeO/C</td>
<td>Nanowires</td>
<td>~800 (C/10)</td>
<td>~800 (50)</td>
<td>[174]</td>
</tr>
<tr>
<td>FeO/C</td>
<td>Nanocrystals</td>
<td>~610 (C/10)</td>
<td>~635 (50)</td>
<td>[175]</td>
</tr>
<tr>
<td>FeO/C</td>
<td>Nanofibres</td>
<td>1551 (C/5)</td>
<td>1007 (80)</td>
<td>[176]</td>
</tr>
<tr>
<td>FeO/C</td>
<td>Spheres</td>
<td>1259 (C/5)</td>
<td>984 (70)</td>
<td>[177]</td>
</tr>
<tr>
<td>FeO/graphene</td>
<td>Nanoparticles</td>
<td>~1320 (C/10)</td>
<td>~900 (50)</td>
<td>[178]</td>
</tr>
<tr>
<td>FeO/graphene</td>
<td>Particles/sheets</td>
<td>~1450(C/20)</td>
<td>1026 (30)</td>
<td>[179]</td>
</tr>
<tr>
<td>FeO/graphene</td>
<td>Nanoparticles</td>
<td>~1080 (C/10)</td>
<td>650 (100)</td>
<td>[180]</td>
</tr>
<tr>
<td>FeO/graphene</td>
<td>Particles/sheets</td>
<td>~1450 (C/10)</td>
<td>1045 (40)</td>
<td>[181]</td>
</tr>
<tr>
<td>FeO/graphene</td>
<td>Particles/sheets</td>
<td>1623 (~C/10)</td>
<td>1112 (5)</td>
<td>[182]</td>
</tr>
<tr>
<td>FeO/graphene</td>
<td>Particles/sheets</td>
<td>1114 (C/10)</td>
<td>605 (50)</td>
<td>[183]</td>
</tr>
<tr>
<td>FeO/C/rGO</td>
<td>Particles/sheets</td>
<td>1066 (C/5)</td>
<td>531 (50)</td>
<td>[184]</td>
</tr>
<tr>
<td>FeO/C/rGO</td>
<td>Particles/sheets</td>
<td>1426 (C/5)</td>
<td>543 (100)</td>
<td>[185]</td>
</tr>
</tbody>
</table>
1.6.2 Cobalt oxides

Cobalt oxides (CoO, Co₃O₄, Co₄O₆), are another important class of 3d-metal oxides. Among them, Co₃O₄ is perhaps the most suitable candidate for Li-ion batteries and has a theoretical capacity following a complete conversion reaction (8e⁻) of 892 mA h g⁻¹. The recovered species on charging of Co₃O₄ has been identified as CoO, resulting in a reversible 6e⁻ conversion reaction facilitating capacities approaching 670 mA h g⁻¹. As with Fe₃O₄ and other Li anodes, control of composition, particle size and morphology have been identified as important aspects affecting the electrochemical performance of Co₃O₄ anodes.

Despite earlier reports of poor capacity retention among Co₃O₄ nanowires [188], recent examples have displayed excellent Li-ion capabilities, including significant rate performance [189,190]. Initially, the poor capacity retention of the Co₃O₄ nanowires was attributed to inter-particle disconnect following complete conversion, resulting in Co nanograins electrically isolated from one-another by insulating polymeric layers [188]. Li et al. [189], prepared mesoporous Co₃O₄ nanowires having mean diameters of approx. 500 nm and a pore size of 3.3 nm, by a mild, template-free ammonia evaporation method, which could be extended to grow nanowires on a range of different substrates (Si, Ti, Cu, glass, plastic etc.), and over wide areas (up to several centimeters in length). The Co₃O₄ nanowires displayed capacities as high as 700 mA h g⁻¹ after 20 cycles at C-rate (approx. 78% of the theoretical maximum), and showed significantly enhanced performance compared to powder and broken, non-supported nanowire samples. In this case, the Co nanograins formed on discharge were suggested to remain interconnected throughout the insulating Li₂O matrix, thus forming a conductive network where electron transfer may propagate through the nanowire from root to tip. Such interconnection would facilitate efficient electron transfer and its incidence is supported by the high-rate capability displayed by the Co₃O₄ nanowires (cycling at rates of 20 C and 50 C resulted in discharge capacities of 450 and 240 mA h g⁻¹, respectively) [189]. The markedly improved performance of the Co₃O₄ nanowires revealed the importance of maintaining structural integrity during electrochemical cycling. While earlier work had additionally identified an insignificant role of porosity on the electrochemical performance of Co₃O₄ particles [188], porous Co₃O₄ nanowires prepared by hydrothermal synthesis using nitrilotriacetic acid (NTA) as a structure-directing ligand, also displayed a high capacity (up to 1366 mA h g⁻¹ in the first discharge cycle), and appreciable cycling ability [190]. The porosity of Co₃O₄ nanowire samples has been suggested to aid the structural integrity of the material by accommodating much of the volume strain associated with the early intercalation of Li⁺ (Li₂Co₃O₄), and the phase changes brought about during the electrochemical conversion sequence [189]. Other reported 1D Co₃O₄ nanostructures of note include C/Co₃O₄ nanowires [191], CNT-templated porous nanotubes [192], solution-grown needle-like nanotubes [193], nanoneedles [194], and nanobelts [195]. In particular, mesoporous Co₃O₄ nanobelts, which were prepared by the calcination of α-Co(OH)₃ nanobelts, delivered high capacity and stable early cycling. The mesopore size could be somewhat tailored by altering the calcination temperature, which ultimately impacted the electrochemical performance. The Co₃O₄ nanobelts delivered capacities of up to ~1900 mA h g⁻¹ in the first cycle (at a current density of 40 mA g⁻¹), and displayed a reversible capacity of ~1400 mA h g⁻¹ after 20 cycles. Although the unique structuring enabled high capacity at relatively low rates, the nanobelts ultimately suffered from poor rate performance, with stable capacities only obtained at C-rate [195]. Other recent examples of Co₃O₄ nanostructures

<table>
<thead>
<tr>
<th>Fe₃O₄/SWNT</th>
<th>Rods/tubes</th>
<th>1080 (C/10)</th>
<th>1100 (C, 50)</th>
<th>[186]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃O₄</td>
<td>Spheres</td>
<td>1322 (C/10)</td>
<td>890 (60)</td>
<td>[187]</td>
</tr>
</tbody>
</table>

17
demonstrated include nanosheets [196], multi-shelled hollow spheres [197] and octahedral nanocages [198]. Of these examples, the 2D nanosheet structures prepared by Zhan et al. [196], offered considerable capacity, to as much as 1450 mA h g⁻¹ at the 27th cycle (end of test). The hydrothermal treatment, resulting in the transformation of Co(OH)₂ nanosheets to Co₃O₄ nanosheets, subsequently attained porosity as a result of the structural contraction during formation. The resulting Co₃O₄ nanosheets therefore had high surface areas as a result of their mesoporosity (average pore diameter, 3.3 nm), as measured by N₂ sorption (69 m² g⁻¹). The high-surface area, combined with the unique structuring enabled the Co₃O₄ nanosheets to achieve capacities far in excess of theoretical limits (1450 vs. 892 mA h g⁻¹, respectively).

Due to the poor electronic conductivity of Co₃O₄, various attempts have been made to improve the stable capacities and rate performance of Co₃O₄ anodes [199], including the addition of highly conducting additives such as graphene [199–203] and silver nanoparticles [204]. For example, Co₃O₄ nanoparticles (10–30 nm), anchored on graphene sheets displayed a considerably improved rate performance compared to bare Co₃O₄ samples at the same rate (Fig. 17) [202]. Since graphene remains essentially intact on cycling, it may offer itself as a structural scaffold, supporting the volume and phase changes brought about during the electrochemical conversion of Co₃O₄. The Co₃O₄/graphene composites displayed capacities increasing to 935 mA h g⁻¹ after 30 cycles with a Coulombic efficiency of ~98%, while also displaying enhanced rate performance versus bare Co₃O₄ samples. Bare Co₃O₄ samples exhibited poor capacity retention while pure graphene samples displayed stable cycling, albeit at much lower capacity than Co₃O₄/graphene. These results suggest an important role of structural buffers and increasing electronic conductivity on the anodic performance of Co₃O₄ electrodes.

Figure 17 (a) Charge-discharge curves of Co₃O₄/graphene composites over 1 – 50 cycles, (b) capacity as a function of cycle number for Co₃O₄/graphene and bare graphene and Co₃O₄, (c) performance of Co₃O₄/graphene and (d) rate performance of bare Co₃O₄. Reproduced from [202]. Copyright 2010 American Chemical Society.

1.6.3 Other metal oxides

Oxides of other first-row transition (Mn, Ni, Cu, Zn), and second-row (Mo) metals are also considered as potential anodes and are electrochemically active in either conversion modes or via typical intercalation mechanisms depending on their nature.

Recent examples of note include reports of NiO nanocones [205], and MoO₃/C nanobelts [206], which display high capacity and excellent cycling ability. NiO nanocones, which were prepared by the electrodeposition of acidic NiCl₂:6H₂O solutions directly on Ni foams, offered capacities in excess of 1000 mA h g⁻¹, even after 100 cycles. NiO offers a theoretical capacity of 717 mA h g⁻¹ thus the reversible capacity delivered by the NiO nanocones was some ~50% higher than might be expected. These results also represent the highest reversible capacity reported for NiO nanostructures to-date. More encouraging still, was the high rate capability of the nanocones (rates of 20 C delivered capacities as high as 436 mA h g⁻¹), while offering capacities up to initial values on returning to relatively low current rates (C/10) [205]. In contrast, hydrothermally prepared MoO₃ nanobelts, with carbon layers in the order of 15 nm, delivered
equivalent performance, maintaining capacities greater than 1000 mA h g\(^{-1}\) after 50 cycles [206]. MoO\(_3\), a relatively inexpensive second-row transition metal oxide, has a theoretical Li\(^+\) capacity equivalent to 1120 mA h g\(^{-1}\) (via 6e\(^{-}\)) and therefore represents an appealing Li-ion candidate. MoO\(_3\), however, is a poor electronic conductor and may display poor electrochemical performance as a result. The carbon-coated MoO\(_3\) nanobelts demonstrated considerable enhancement over their bare nanobelt counterparts (Fig. 18), owing in part to the increased conductivity, structural support and volumetric buffering capabilities of the carbon layer [206]. The capacities displayed by these and other examples seen previously (Table 2) are far in excess of today’s conventional graphite anodes and thus may represent one of the major building blocks of future Li-ion batteries.

Figure 18 (a) First charge–discharge curves of MoO\(_3\) nanobelts and (b) cycling performance of MoO\(_3\)–C and bare MoO\(_3\) nanobelts outlining significant improvement of the carbon-coated nanobelts. Adapted from [206] with permission from Elsevier.

Table 2 Recently reported TMO anodes; discharge capacities are given in mA h g\(^{-1}\) while the relevant rate and cycle number is displayed in brackets.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Morphology</th>
<th>Initial Capacity</th>
<th>Final Capacity</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>Powder</td>
<td>~600 (50 mA g(^{-1}))</td>
<td>~650 (50)</td>
<td>[207]</td>
</tr>
<tr>
<td>MnO/C</td>
<td>Nanotubes</td>
<td>1129 (0.13 C)</td>
<td>763 (100)</td>
<td>[208]</td>
</tr>
<tr>
<td>α-MnO(_2)</td>
<td>Nanotubes</td>
<td>~600 (200 mA g(^{-1}))</td>
<td>618 (300)</td>
<td>[209]</td>
</tr>
<tr>
<td>MnO(_2)/CNTs</td>
<td>Coaxial (tubes)</td>
<td>2170 (50 mA g(^{-1}))</td>
<td>~500 (15)</td>
<td>[210]</td>
</tr>
<tr>
<td>MnO(_2)/CNTs</td>
<td>Nanoflakes</td>
<td>~800 (200 mA g(^{-1}))</td>
<td>620 (50)</td>
<td>[211]</td>
</tr>
<tr>
<td>MnO(_2)/CNFs</td>
<td>Particles/fibres</td>
<td>785 (50 mA g(^{-1}))</td>
<td>597 (50)</td>
<td>[212]</td>
</tr>
<tr>
<td>Mn(_2)O(_4)/rGO</td>
<td>NPs/sheets</td>
<td>810 (40 mA g(^{-1}))</td>
<td>~900 (5)</td>
<td>[213]</td>
</tr>
<tr>
<td>NiO</td>
<td>Nanowall</td>
<td>685 (895 mA g(^{-1}))</td>
<td>638 (80)</td>
<td>[214]</td>
</tr>
<tr>
<td>NiO</td>
<td>Foam</td>
<td>1020 (0.2 C)</td>
<td>746 (10)</td>
<td>[215]</td>
</tr>
<tr>
<td>NiO</td>
<td>Nanoflakes</td>
<td>~818 (50 mA g(^{-1}))</td>
<td>412 (20)</td>
<td>[216]</td>
</tr>
<tr>
<td>NiO</td>
<td>Nanocones</td>
<td>1151 (0.4 C)</td>
<td>1058 (100)</td>
<td>[205]</td>
</tr>
<tr>
<td>NiO/Co</td>
<td>Film</td>
<td>~1200 (100 mA g(^{-1}))</td>
<td>~600 (50)</td>
<td>[217]</td>
</tr>
<tr>
<td>NiO/Graphene</td>
<td>Nanosheets</td>
<td>1478 (50 mA g(^{-1}))</td>
<td>~1000 (50)</td>
<td>[218]</td>
</tr>
<tr>
<td>NiO/Graphene</td>
<td>Nanosheets</td>
<td>1398 (100 mA g(^{-1}))</td>
<td>982 (50)</td>
<td>[219]</td>
</tr>
<tr>
<td>NiO/MWCNTs</td>
<td>Tubes/chains</td>
<td>~1084 (50 mA g(^{-1}))</td>
<td>~861 (50)</td>
<td>[220]</td>
</tr>
<tr>
<td>NiO</td>
<td>Mesoporous</td>
<td>924 (0.1 C)</td>
<td>680 (50)</td>
<td>[221]</td>
</tr>
<tr>
<td>CuO</td>
<td>Pine-needles</td>
<td>~1015 (1C)</td>
<td>~626 (100)</td>
<td>[222]</td>
</tr>
<tr>
<td>CuO</td>
<td>Nanobundles</td>
<td>1179 (0.3 C)</td>
<td>666 (70)</td>
<td>[223]</td>
</tr>
<tr>
<td>CuO</td>
<td>Nanowires</td>
<td>~800 (0.1 C)</td>
<td>680 (30)</td>
<td>[224]</td>
</tr>
<tr>
<td>CuO</td>
<td>Nanowires</td>
<td>1040 (0.05 mA cm(^{-2}))</td>
<td>650 (100)</td>
<td>[225]</td>
</tr>
</tbody>
</table>
2 Recent developments in nanostructured cathode architectures

Developing improved Li-ion cathodes perhaps represents the biggest opportunity for performance gain over existing battery design. Cathodes may be considered as one of the bottlenecks of the Li-ion cell, displaying capacities far lower than potential anodes while often being poor electronic conductors. Existing cathodes, namely LiCoO$_2$ and LiMn$_2$O$_4$ have now been in widespread use for many years despite displaying relatively limited electrochemical performance. Future Li-ion cathodes must possess the necessary requisites such as increased energy density, improved rate performance, cycle life and safety, if they are to find application in next-generation devices and EV/HEVs. Careful selection of cathode materials together with an improvement over existing design through the use of nanostructuring, dopants/composites or surface coatings, may represent several avenues to enhance Li-ion battery performance. In this section, some of the recent developments in the development of nanostructured cathode materials finding application as potential candidates in next-generation Li-ion batteries are highlighted.

2.1 Lithiated metal-oxides (LiM$_x$O$_y$)

Lithium metal oxides, LiM$_x$O$_y$ (M = Co, Mn, etc.), represent an important class of Li-ion cathodes and
have found commercial application through LiCoO$_2$ extending over a number of years. Typically, LiM.O$_x$ cathodes are conventional intercalation hosts and involve redox chemistries of 1e$^-$ transfer during electrochemical cycling. While single electron processes generally yield lower specific capacity, LiM.O$_x$ cathodes may operate at relatively high voltages (3.0–4.2 V) thus achieving relatively modest energy densities.

2.1.1 LiCoO$_2$

LiCoO$_2$ has been a viable success in commercial Li-ion cells years after being identified as a potential intercalation host by Goodenough et al. in 1981 [248]. While there has been a distinct move for alternative electrode hosts (LiCoO$_2$ is both toxic and relatively expensive to produce), research has still considered a number of practical LiCoO$_2$ architectures with high voltage and good rate performance [249–257]. In the interest of capacity retention, commercial LiCoO$_2$ cells typically adopt a reversible capacity to 0.5 Li$^+$ by setting the upper-cut off potential to 4.2 V, thus yielding working capacities approaching 150 mA h g$^{-1}$ [258]. A theoretical capacity of 294 mA h g$^{-1}$ awaits full utilisation of LiCoO$_2$, although capacity fade as a result of high charging potentials has so far been restricting. Perhaps the most realistic solution for preventing capacity fade may be found through surface modification, or by the addition of protective surface layers [259–261]. Surface layers, for example, may act as nanometric barriers, potentially thwarting much of the undesirable interactions at the electrode–electrolyte interface, such as those originating through the oxidation of electrolyte solutions. Such interactions may become markedly increased as a result of high charging potentials and are explicitly indicated in nanostructured materials whose higher surface areas result in greater exposure to the electrolyte. Limiting the occurrence of potentially poisonous interactions is therefore highly advantageous to the cycle life of the electrode. Recent studies have demonstrated nanometre-scale coatings of inactive Al$_2$O$_3$ on LiCoO$_2$ nanoparticles [256,262,263]. In the first example, LiCoO$_2$ particles prepared by a molten-salt synthesis using CoO, LiOH and KNO$_3$ were subjected to consecutive ALD cycles, each depositing a thin film of Al$_2$O$_3$ ranging between 1.1–2.2 Å in thickness. The gravimetric capacity of the Al$_2$O$_3$-coated particles far surpassed that of bare nano- and bulk- sized LiCoO$_2$ particles over the potential range of 3.3–4.5 V. The nanoscale coatings also resulted in enhanced rate-capability, exhibiting a capacity of 133 mA h g$^{-1}$ at a high rate of 7 C (Fig. 19). Importantly, however, when increasing the thickness of Al$_2$O$_3$ beyond 2 successive atomic layer deposition (ALD) cycles, the cells displayed worsened rate performance, due to poor Li$^+$ conductivity. These results demonstrate the necessity for potential barrier layers to remain appreciably thin, on the order of a few nm.

Cheng et al. [263], have also demonstrated cycling performance of Al$_2$O$_3$ coatings while extending their study to include TiO$_2$-coated LiCoO$_2$ particles. Both passivating layers were deposited by an ALD process using Al(CH$_3$)$_3$ and Ti(OCH(CH$_3$)$_2$)$_4$ as Al$_2$O$_3$ and TiO$_2$ precursors, respectively. Evaluation of the electrochemical performance over a range of layer thicknesses, also tailored by adjusting the number of consecutive ALD cycles, returned similar findings to the previous report [262]. Substantially increasing layer thickness (up to 500 ALD cycles), resulted in lower capacity and poor retention, even compared to bare LiCoO$_2$ particles, while the highest capacity and most stable cycling was seen in samples with the thinnest layers of Al$_2$O$_3$ (10 ALD cycles). Interestingly, TiO$_2$-coated LiCoO$_2$ particles fared considerably worse than their bare counterparts, which was ascribed to the insertion of Ti$^{4+}$ into the LiCoO$_2$ host, forming a redox-active interlayer of LiTi$_{1.5}$Co$_{0.5}$O$_{2.5}$, consuming TiO$_2$ in the process. The relationship between any potential surface layers and electrode must therefore remain inactive if surface passivation is to impart purposeful character [263].
insertion of greater than one equivalent of Li\(^+\) (LiMn\(_2\)O\(_4\) \(1 < x < 2\)), are met by a structural transition from tetragonal to cubic spinel phase resulting in large unit cell expansion \([279]\). For bulk particles, a core–shell structure is suggested, where shells exist entirely of the tetragonal spinel phase which is solely active towards intercalation. Smaller diameter particles of Li\(_{1-x}\)Mn\(_2\)O\(_4\) (<43 nm), however, were shown to accommodate near stoichiometric amounts of Li\(^+\) while those of sizes <15 nm did so via solid-state processes, without domain boundaries. The boundary-less mechanism facilitated capacities of greater than 160 mA h g\(^{-1}\) at rates as high as 10 C, far exceeding those of bulk and larger sized (43 nm) particles \([275]\). Such size-effects could therefore account for the enhanced rate capability displayed by small diameter LiMn\(_2\)O\(_4\) nanorods \([270–272]\), and nanowires \([265–267]\), which possess both high power and enhanced cycling ability. In particular, high-aspect ratio nanowires with mean diameters <10 nm and lengths of several µm, displayed large capacities at rates up to 75 C, and even to as much as 150 C \([267]\). The ultra-thin LiMn\(_2\)O\(_4\) nanowires (Fig. 20), synthesised by treating solvothermally prepared α-Mn\(_2\)O\(_3\) nanowires with LiOH at reduced pressure, were single-crystalline in nature while their small diameter enabled accommodation of the large lattice parameter changes brought about by the cubic to tetragonal phase transitions. Larger diameter LiMn\(_2\)O\(_4\) nanowires also showed good structural stability, maintaining their single-crystalline nature (as confirmed by selected area electron diffraction (SAED) analysis), even after 100 charge–discharge cycles \([265]\). Such results suggest that LiMn\(_2\)O\(_4\) nanowires could represent the basis of potential high-power, high-rate Li-ion batteries.

Figure 19 (a) High-resolution TEM micrograph of Al\(_2\)O\(_3\)-coated LiCo\(_2\)O\(_4\) particles, (b) cycling performance of Al\(_2\)O\(_3\)-coated LiCo\(_2\)O\(_4\) particles versus bare nano- and bulk- sized LiCo\(_2\)O\(_4\) particles, (c) and (d) performance rate of Al\(_2\)O\(_3\)-coated LiCo\(_2\)O\(_4\) particles with 2 or 6 ALD cycles, and bare nano- and bulk- sized LiCo\(_2\)O\(_4\) particles. Adapted with permission from \([262]\). Copyright 2011 American Chemical Society.

2.1.2 LiMn\(_2\)O\(_4\)

Spinel-LiMn\(_2\)O\(_4\) has emerged as one of the most promising cathode candidates and has found mainstream utilisation in Korean and Japanese Li-ion battery markets \([264]\). With a theoretical capacity of 142 mA h g\(^{-1}\) and a practical working voltage of between 4.0–4.2 V, LiMn\(_2\)O\(_4\) cathodes could potentially display energy densities in excess of 600 W h kg\(^{-1}\). Coupled with relatively low production costs and appreciable electrochemical performance at high discharge rates and elevated temperatures, LiMn\(_2\)O\(_4\) is touted as a potential driver of future EV/HEV battery packs, notably against favourable LiFePO\(_4\) candidates \([264]\). Recent nanostructured morphologies of note include nanowires \([265–267]\), nanorods \([268–272]\), nanotubes \([273]\), nanoparticles \([269,274–276]\) and ordered meso/porous electrodes \([277,278]\). Okubo et al. \([275]\) have demonstrated an important size-effect occurring in LiMn\(_2\)O\(_4\) particles, confirming that bulk particle sizes are unable to achieve complete lithiation (up to Li\(_{4}\)Mn\(_2\)O\(_4\)), due to their lower surface area. Instances where intercalation results in
Although nanostructuring of LiMn$_2$O$_4$ electrodes may provide a means of enhanced strain relaxation induced by electrochemical cycling, it should be noted that LiMn$_2$O$_4$ also suffers from reduced cycling efficiency as a result of dissolution of Mn$^{3+}$ in organic electrolytes. Dissolution of Mn$^{3+}$ is driven by a disproportionation reaction (2Mn$^{3+}$ → Mn$^{2+}$ + Mn$^{4+}$) facilitated by HF, whose origins may arise from the interaction of surface water with LiPF$_6$ salts [264]. Various methods including nanoscale coatings [272,280–282], and dopants [270,283,284] have been introduced to protect LiMn$_2$O$_4$ nanostructures from dissolution, thus enhancing their cyclic behaviour. Cho prepared VO$_x$-coated LiMn$_2$O$_4$ nanorod clusters which displayed comparable performance rates while successfully reducing Mn$^{3+}$ dissolution from 5000 ppm to 60 ppm at 80 °C (as measured by mass spectrometry) [272]. Improved cycling performance and reduced dissolution was also obtained by coating LiMn$_2$O$_4$ particles with lithium boron oxide (LBO) [280]. A more-detailed depiction of the unfavourable interaction of Mn$^{3+}$ with LiPF$_6$-based electrolytes is reported by Yang et al. [270]. The single nanorod devices (Fig. 21), consisting of Al-doped LiAl$_{1-x}$Mn$_x$O$_4$, displayed a significantly reduced amount of etching compared to either pure λ-MnO$_2$ or LiMn$_2$O$_4$ nanorods after comparable exposure time in LiPF$_6$ electrolytes at 60 °C. Current–voltage (I–V) measurements collected after the same exposure times also showed reduced conductivity among the λ-MnO$_2$ or LiMn$_2$O$_4$ samples (Fig. 22), while the Al-doped LiAl$_{1-x}$Mn$_x$O$_4$ nanorod devices remained largely unchanged. Cycling studies of the LiAl$_{1-x}$Mn$_x$O$_4$ nanorod samples also showed an improvement in capacity fading versus their un-doped counterparts, further corroborating previous results. Such evidence outlines the practical importance of controlling Mn$^{3+}$ dissolution in order to impart both structural stability and long-term cycling capabilities of future LiMn$_2$O$_4$ electrodes.

Although somewhat less reported in recent times, the synthesis of the LiMnO$_2$ cathode is still worth mentioning, especially since it offers over twice the theoretical capacity of LiMn$_2$O$_4$ (285 vs. 140 mA h g$^{-1}$), while still involving the same Mn$^{4+/3+}$ redox couple [285,286]. Although the 3D framework of LiMnO$_2$ allows for efficient Li$^+$ transfer, layered orthorhombic LiMnO$_2$ still presents a channelled framework, structurally analogous to that of LiCoO$_2$ (α-NaFeO$_2$ structure). However, early cycling of orthorhombic LiMnO$_2$ for x > 0.5 (Li$_x$MnO$_2$), results...
in some structural transformation from the α-NaFeO₂ structure to that of cubic spinel (LiMnO₄) phase [287]. The transition is believed to be a result of the displacement of Mn atoms into neighbouring octahedral sites, favouring the nucleation and growth of new spinel nanodomains [4,287]. While the transition seemingly affects the initial cycling behaviour of LiMnO₄, an insignificant contribution is suggested for the 5th and subsequent cycles [287].

2.1.3 Mixed spinel and layered oxides

Doping of spinel-phase LiMnO₄ with metals such as Al results in enhanced electrode performance, through the structural support imparted by the metal dopant species [284]. Another possible alleviation of the HF-driven Mn³⁺ dissolution process may be afforded by the partial substitution of transition metals (Co, Ni, Cu etc.) into the solid structure, thus restricting the Mn³⁺ species under feasible operating voltages. As a prominent example, the Mn-rich LiMnₓNi₄₋ₓO₄ electrodes [292–299], which consist primarily of Mn⁴⁺, should not succumb to such undesirable interactions with electrolytes. Substitution of Mn with Ni, as opposed to other transition metals, has been met favourably due to good cycling stability, access to the Ni⁴⁺/³⁺ redox couple below 4.9 V and the appearance of only one distinct plateau in the voltage profile (~4.7 V), compared to a bi-plateauing afforded by other transition metals [299]. In particular, 5 V spinel LiMn₁₋ₓNiₓO₄ electrodes have attracted considerable attention in recent times and are reviewed in some detail by Santhanam and Rambabu [299]. A few drawbacks of LiMn₁₋ₓNiₓO₄ electrodes, however, mar their application: The formation of an impurity phase LiNi₁₋ₓO seemingly worsens electrochemical performance over time and while accessible, the Ni⁴⁺/³⁺ redox couple falls at potentials where electrolyte decomposition is prevalent. Addition of other transition metal cations into LiMn₁₋ₓNiₓO₄ systems has been adopted and could prevent the formation of LiNi₁₋ₓO phases, together with reducing the cycling-induced lattice expansion [292,300–304]. As an example, partial substitution of Fe for Mn or Ni in LiMn₁₋ₓNiₓO₄ electrodes has led to enhanced electrochemical activity, most notably in terms of cycling stability and rate performance [292]. Moving away from spinel-phase oxides, layered candidates such as Li[NiₓCo₁₋ₓMnₐ]O₂ [305–312], or the so-called
“Li-excess” solid solution Li$_2$MnO$_3$-LiMO$_2$ electrodes, (e.g., Li[Li$_{1/3}$Ni$_{1/3}$Mn$_{5/3}$] [313] and Li[Ni$_{1/3}$Li$_{(1/3-2x/3)}$Mn$_{(2x-3-2x/3)}$]O$_2$ [296,314,315], have attracted much attention owing to an enhancement of capacity and cyclic behaviour. Kim et al. [296], prepared Li[Li$_{0.15}$Ni$_{0.25}$Mn$_{0.6}$]O$_2$ nanowires primarily consisting of the layered hexagonal α-NaFeO$_2$ phase, having high aspect ratio and diameters of approximately 30 nm, by a pH-controlled hydrothermal treatment of Ni$_{0.3}$Mn$_{0.7}$O$_2$ precursors at 200 °C. The nanowires displayed a high surface area of 65 m2 g$^{-1}$ with lengths exceeding 1 µm (Fig. 23). At the rate of 0.3 C, the Li[Li$_{0.15}$Ni$_{0.25}$Mn$_{0.6}$]O$_2$ nanowires displayed high performance, reaching a capacity of 367 mA h g$^{-1}$ in the first cycle and up to ~285 mA h g$^{-1}$ in the following 80 cycles. By varying the pH, the same synthesis conditions produced nanoplate morphologies of Li[Li$_{1.15}$Ni$_{0.25}$Mn$_{0.6}$]O$_2$ which fared considerably worse than their nanowire counterparts (Fig. 24). Notably, the rate capability of the nanowire samples was far improved, displaying ~250 mA h g$^{-1}$ at a high rate of 7 C. The nanowire electrodes also remained structurally intact after 80 charge–discharge cycles, outlining their potential use as high-rate Li$^+$-ion cathodes.

In comparison, crystallographically tailored Li[Li$_{0.17}$Ni$_{0.25}$Mn$_{0.58}$]O$_2$ nanoplates prepared by Wei and co-workers [314], exhibited appreciable cycle life and discharge capacities exceeding 200 mA h g$^{-1}$, with high-rate performance at current rates up to 6 C. The high performance of the Li[Li$_{0.17}$Ni$_{0.25}$Mn$_{0.58}$]O$_2$ nanoplates was attributed to their precise crystallographic orientation which was favourable to Li$^+$ interaction: In the layered α-NaFeO$_2$ structures, Li$^+$ intercalation is only entertained in a direction parallel to the Li$^+$-layers. The (001) planes, which lie perpendicular to the c-axis in the α-NaFeO$_2$ crystal, remain dominant when nanoplate growth is facilitated in a direction perpendicular to the c-axis. Such orientation leads to large inefficiencies as the dominant (001) planes do not provide an appropriate path for Li$^+$ transport. Growth perpendicular to (001) planes (along the c-axis), however, results in (001) or (100) dominant planes which are active to Li$^+$ transport (Fig. 25). Thus, tailoring a synthesis to obtain either a- or b-axis oriented nanoplates could facilitate an improved electrochemical response. Such a product was obtained by a shortened hydrothermal synthesis which led to the growth of nanoplates in the <010> and <001> directions, resulting in nanoplates whose (010) faces predominate. At a rate
of ~0.2 C, the crystallographically-tuned nanoplates delivered a discharge capacity of 238 mA h g\(^{-1}\) after 100 cycles. The nanoplates also performed well at the high testing rate of 6 C, delivering a capacity approximately twice that of a more thermodynamically-favoured nanoplate sample, which grew along the <001> direction and whose (001) faces predominate. Further electrochemical gain could be sought by increasing the ratio of (010)- to (001)-nanoplates in the tailored sample, which was estimated by XRD to be in the order of 6:4:1 respectively \[314\]. Such results however, outline the importance of synthetically tailoring layered \(\alpha\)-NaFeO\(_2\) nanomaterials if one is to develop an improved electrochemical response. The structural stability, high operating voltage, relatively high capacity and good rate performance of \(\alpha\)-NaFeO\(_2\)-structured LNMO electrodes make them appealing future candidates.

Figure 25 (a) Illustrative representation of the synthesis of (001) and (010) dominant Li\([Li_{x/0.17}Ni_{0.25}Mn_{0.58}]O_2\) nanoplates, (b) SEM image of the (010) nanoplates, (c) cycling and Coulombic efficiency studies of (010) nanoplates at a current density of 60 mA g\(^{-1}\) between 2.0 - 4.8 V and (d) cycling of (010)-nanoplates (HTN-LNMO), (001)-nanoplates (CN-LMNO) and LNMO particles at 6 C rate. Adapted from [314]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

2.1.4 Vanadium/lithiated vanadium oxide (V:\(\alpha\)O\(_5\)/LiV:\(\alpha\)O\(_5\))

V:\(\alpha\)O\(_5\) offers access to its redox couples at relatively high potentials, making it an attractive candidate as a positive Li-ion electrode. Through its layered structure, as shown in Fig. 26, intercalation of guest species such as Li\(^+\), is facilitated through perovskite-like vacancies [316,317]. As a consequence of intercalation, V:\(\alpha\)O\(_5\) undergoes a series of structural modifications, based on a puckering or gliding of the layers, depending on the amount of Li\(^+\) inserted (Li\(_x\)V:\(\alpha\)O\(_5\)). These modifications involve the reversible formation of an \(\alpha\)-phase for values of \(x < 0.1\), to an \(\varepsilon\)-phase for \(0.35 < x < 0.7\), and to a \(\delta\)-phase for \(0.9 < x \leq 1.0\). A metastable \(\gamma\)-phase develops subsequently offering reversible intercalation over \(0 < x < 2.0\), yielding theoretical capacities in the region of 290 mA h g\(^{-1}\) [318,319]. Although further capacity is initially possible, saturation of the \(\gamma\)-phase with Li\(^+\) (\(x > 2.0\)) leads to the formation of an irreversible cubic \(\omega\)-phase having a typical rock-salt structure. Whilst this structure minimises internal electrostatic interactions [318], electrochemical cycling of the \(\omega\)-phase is often only considered for values of \(x\) between 0.4 < \(x < 3.0\) [320]. Completely reversible Li\(^+\) intercalation has yet to be demonstrated by electrochemical means; thus far, complete de-lithiation has only been achieved through chemical treatment of V:\(\alpha\)O\(_5\) nanorods with Br\(_2\), resulting in the reformation of the pristine orthorhombic phase [321]. Since the formation of cubic \(\omega\)-V:\(\alpha\)O\(_5\) for both bulk and nanostructured V:\(\alpha\)O\(_5\) is known at potentials <2.0 V, electrochemical cycling with strict lower cut-off potentials may hinder its formation if applicable, resulting in stable cycling of the \(\gamma\)-phase over the region of \(0.0 \leq x \leq 2.0\).

Figure 26 Structure of layered V:\(\alpha\)O\(_5\) (left) depicting square pyramidal VO\(_5\) units which share both corner and edges and the
associated bond distances (right) within a VO₅ octahedra, which facilitate a separation and weak interaction between layers. Reproduced with permission from [322]. Copyright 1979 American Chemical Society.

A great deal of research has been published recently concerning the electrochemistry of nanostructured V₂O₅, owing to its significant intercalation properties. Various morphologies which have been reported recently include nanorods [321,323,324], nanowires/fibres [323,325–333], nanobelts [334–337], nanotubes [331,338,339], spheres [340–343], nanourchins [344,345], meso/porous particles [326,341,346,347], carbon nanocomposites [348–350], and thin-films [351,352]. 1D nanostructures (i.e., nanowires, nanofibres, nanobelts and nanotubes), have been of particular interest given their unique physical properties and have been prepared by various techniques, most notably by electrospinning [326,328,329,331,332] and hydrothermal methods [324,325,327,335,338,353,354]. Electrospinning is an interesting technique where a high voltage is employed to accelerate a liquid jet of charged polymeric solution towards a grounded collector. A continuous fibre forms as a result of stretching due to electrostatic repulsions between surface charges, and the evaporation of solvent [355]. An overview of the process and application of electrospinning has been succinctly summarised in various review articles, to which the reader is referred [355,356]. Wang et al. [331] recently prepared 1D V₂O₅ nanostructures by an electrospinning method combined with subsequent thermal annealing (Fig. 27). Three distinct morphologies were obtained by controlling the annealing temperature, producing porous nanotubes (400 °C), hierarchical nanofibres (500 °C) and single-crystalline nanobelts (600 °C), from the as-obtained electrospun nanofibres. The formation of the individual morphologies was ascribed to temperature dependent mechanisms, where the transition from the smooth electrospun nanofibres to porous nanotubes occurred at temperatures above 400 °C due to the complete thermal decomposition of PVP, while the continuous growth of V₂O₅ nanograins at higher temperatures regions (500–600 °C), resulted in the loss of porous morphologies forming first hierarchical nanofibres and finally to the larger, single-crystalline nanobelts. The 1D porous nanotubes exhibited stable cycling performance over 250 cycles in the range of 2.5–4.0 V, with near theoretical initial capacities attained (138 mA h g⁻¹) at 0.1 A g⁻¹, with a capacity retention of ~80% at the 250th cycle (Fig. 28). Furthermore, the porous nanotubes displayed stable cycling (~72% capacity retention), under test rates up to 6 A g⁻¹, while at current densities as high as 15 A g⁻¹, the nanotubes still delivered ~65 mA h g⁻¹ resulting in a discharge energy density of 201 Wh kg⁻¹ and a high power density of ~40.2 kW kg⁻¹. Cycling of the nanotubes over the range of 2.0–4.0 V resulted in high initial capacities (~276 mA h g⁻¹), although rapid capacity fading was evident over successive cycles. The cyclic stability was improved in the hierarchical nanofibres and further still among the single-crystalline nanobelts, although such morphologies displayed lower capacities over comparative test rates. The increase in cyclic stability among the nanobelt electrodes was ascribed to their specific crystallographic orientation, which limited the thickness in the unfavourable [001] direction (c-axis). The thin nanobelt morphology was maintained over 100 electrochemical cycles which indicated the nanobelt structure was able to withstand the volume strain associated with successive intercalation mechanisms. Importantly, the contrasting electrochemical performance of the individual nanostructures prepared by the same electrospinning method outlines the importance of crystallization factors and morphology on the overall Li-ion performance of V₂O₅ cathodes.
The importance of structure, crystallinity and order for V$_2$O$_5$ was also demonstrated to strongly influence its Li-ion insertion capacities. V$_2$O$_5$ nanotubes synthesised using amine templates impeded Li ion insertion by blocking sites due to functionalisation of the high surface area of tubes, rendering them worse than simple xerogel counterparts. All vanadate structures are heavily reliant on the vanadate conformation and valency [357,358]. After hydrothermal treatment, the resultant morphologies and constituent phases are dependent on the degree of hydration, or protonation, within the vanadium oxide lamina and not solely on the intercalated structural organic template used. By forming nanourchin morphologies (Fig. 29), O’Dwyer et al. [359] demonstrated that the reduced amine uptake during synthetic functionalisation when making nanotubes in radial arrays such as nanourchin forms, frees up the V$_2$O$_5$ (010) surface within the high surface area material, allowing improved density and rate for Li ion insertion.

High-resolution TEM studies revealed the unique observation of nanometer-scale nanocrystals of pristine unreacted V$_2$O$_5$ throughout the length of the nanotubes in the nanourchin. Electrochemical intercalation studies revealed that the very well ordered xerogel-based nanotubes exhibit similar specific capacities (235 mA h g$^{-1}$) to Na$^+$-exchange nanorolls of VO$_x$ (200 mA h g$^{-1}$). By comparison, the theoretical maximum value is reported to be 240 mA h g$^{-1}$. The nanotubes of the nanourchin 3-D assemblies, however, exhibit high charge capacities exceeding 437 mA h g$^{-1}$, which demonstrates the benefit of template removal and nanostructuring of the crystalline phases in V$_2$O$_5$ structures.

Electrospinning has also been employed recently in the synthesis of 1D V$_2$O$_5$ nanowires which display enhanced Li-ion performance [326,328,329,332]. For example, Mai et al. [329], prepared ultra-long V$_2$O$_5$ nanowires with diameters between 100–200 nm and lengths of several millimetres, by electrospinning a solution of poly
(vinyl alcohol) and NH4VO3 under an applied voltage of 20 kV. The as-obtained fibres were subsequently treated at 480 °C in air which facilitated the concurrent decomposition of the PVA scaffold and crystallisation of V2O5. The resultant hierarchical V2O5 nanowires, which were composed of connected V2O5 nanorods, displayed initial and 50th discharge capacities of 275 and 187 mA h g\(^{-1}\) (68% retention), respectively, between 2.0–4.0 V at a current density of 30 mA g\(^{-1}\). Cycling over the 1.75–4.0 range (ω-phase), resulted in higher initial capacities (390 mA h g\(^{-1}\)), although the cells attained a lower capacity retention of ~52% at the same discharge rate. Confirmation of the morphological advantage was presented by comparison to hydrothermally prepared V2O5 nanowires which displayed ~110 mA h g\(^{-1}\) under the same conditions [329]. In contrast, centimetre long V2O5 nanowires of between 80–120 nm in diameter prepared by conventional hydrothermal methods, delivered a high initial capacity of 351 mA h g\(^{-1}\) and up to 175 mA h g\(^{-1}\) after 20 cycles between 1.75–4.0 V at a current density of 50 mA g\(^{-1}\). Although some capacity fade was evident, the V2O5 nanowire samples still delivered a Coulombic efficiency of ~99%, highlighting the good reversibility in the charge–discharge process. The V2O5 nanowires also displayed high performance in other applications such as field emission and photoconductivity, outlining their potential capacity for use in photodetectors or optoelectronic devices [325]. A novel hybrid material consisting of 1D V2O5 nanowires and 2D graphene nanosheets, which was prepared by a hydrothermal treatment of V2O5 powder with H2O2, delivered high Li-ion performance as a result of the kinetic enhancement of the highly conducting graphene nanosheets [327]. V2O5 itself has an electrical conductivity of between 10–2–10–3 S cm\(^{-1}\) in the bulk form [360], which may limit its application in high-rate Li-ion batteries. Increasing electrical conductivity within a V2O5 cathode is therefore likely to benefit the overall rate performance. Indeed, the V2O5 nanowire–graphene nanosheet composite delivered high initial discharge capacities of 412 mA h g\(^{-1}\) at a current density of 50 mA g\(^{-1}\), and up to 316 mA h g\(^{-1}\) at current densities as high as 1.6 A g\(^{-1}\) (1.5–4.0 V). Electrochemical cycling resulted in some capacity fading; however, the composite electrode still delivered capacities of up to 190 mA h g\(^{-1}\) at the C rate (400 mA g\(^{-1}\)). Improvement in the cyclic stability of such V2O5 composites could lead to their use in higher rate-demanding applications. Although 1D nanostructures are appealing candidates given their unique properties, V2O5 nanostructures taking other forms have also shown high capacity and stable cycling. A recent notable example is demonstrated by Zhang et al. [361], who prepared carbon-coated V2O5 nanocrystals which delivered high capacities (~130 mA h g\(^{-1}\)) at test rates of up to 68 C (10 A g\(^{-1}\)). Such rate capability is thus far unknown amongst V2O5 cathodes. The carbon-coated V2O5 crystals were prepared by the impregnation of mesoporous carbon monolith templates with molten V2O5 at a temperature of 750 °C under vacuum, followed by the removal of most of the carbon template by thermal treatment at 600 °C in air. The resultant carbon-coated V2O5 nanocrystals of 10–20 nm in diameter, aggregated to form secondary particles of several hundred nanometres in diameter. In addition to the high rate performance, the carbon-coated V2O5 cathodes displayed stable cycling over 50 cycles at current densities ranging between 1–10 A g\(^{-1}\) (Fig. 30). More explicitly, capacities as high as 255 mA h g\(^{-1}\) could be recovered after 50 cycles at a current density of 2 A g\(^{-1}\), and up to 155 mA h g\(^{-1}\) at 5 A g\(^{-1}\). These results lie among the highest reported capacities for V2O5 under such current rates, which has been ascribed to the short Li\(^+\) diffusion lengths of the nanoscale particles, combined with the interstitial spacing which allows for efficient electrolyte access and the increased electronic conductivity offered by the carbon coatings. Moreover, the high cyclic stability, which is often problematic in V2O5 electrodes, coupled with the relatively facile synthesis route could make them potential candidates as future high performance Li-ion cathodes.
The lithiated tri-vanadate, LiV$_2$O$_8$, is another class of vanadium oxide material which has attracted attention, largely due to its high theoretical capacity of 372 mA h g$^{-1}$, assuming a complete 4 e$^{-}$ transfer mechanism. Such capacities are one of the highest known amongst all positive electrodes. LiV$_2$O$_8$ also displays a layered structure consisting of VO$_6$ octahedra and distorted VO$_5$ trigonal bipyramids grouped as sheets, which share edges and corners [362]. A number of LiV$_2$O$_8$ nanostructures have been reported in the literature recently, including nanorods [363–368], nanowires [369], nanosheets [370,371], and nanoparticles [372]. Xu et al. [369], have recently synthesised one of the first large-scale examples of LiV$_2$O$_8$ nanowires by a topotactic conversion of structurally analogous H$_2$V$_2$O$_8$ nanowires. The H$_2$V$_2$O$_8$ nanowires, which were prepared previously by hydrothermal methods, were subsequently mixed in an ethanolic solution of LiOH and thermally treated 400–500 °C. The resultant LiV$_2$O$_8$ nanowires remained largely similar to their H$_2$V$_2$O$_8$ precursors, although some structural changes, such as the loss of smooth surfaces were evidenced from microscopy analysis. The chosen annealing temperature was determined to be an important factor in the overall electrochemical performance of the LiV$_2$O$_8$ nanowires, where temperatures of 450 °C led to the highest performance, which was ascribed to the high degree of crystallinity and largest surface area among all prepared samples (400, 450 and 500 °C). Galvanostatic testing over the potential range of 1.5–4.0 V, returned encouraging results with initial discharge capacities of 176 mA h g$^{-1}$ reported at a high current density of 1.5 A g$^{-1}$, which attained up to 160 mA h g$^{-1}$ after some 400 charge–discharge cycles. Similarly, the first and 600th cycles collected at a higher current density of 2 A g$^{-1}$, still returned 137 and 120 mA h g$^{-1}$, respectively. At lower test rates (20 mA g$^{-1}$), up to 318 mA h g$^{-1}$ could be attained, which remained largely stable over 20 cycles. Such results outline the tremendous potential of 1D LiV$_2$O$_8$ in future high rate Li-ion batteries.

In another recent example, Shi and co-workers [368], demonstrated significantly high capacity in their [100]-oriented LiV$_2$O$_8$ nanorods, which were encased in an amorphous LiV$_2$O$_8$ wrapping (Fig. 31). The thin-film sample, which was prepared by RF-sputtering onto stainless steel substrates, was controlled by adjusting levels of Ar and O$_2$. Importantly, the level of O$_2$ was found to affect the nature of LiV$_2$O$_8$ crystallisation, where a dominantly [100] oriented sample could be obtained by maintaining a 2:1 ratio of Ar:O$_2$, respectively. The crystallographically-tailored LiV$_2$O$_8$ thin-films returned a first discharge capacity as high as 388 mA h g$^{-1}$ at the C/5 rate, and 350 mA h g$^{-1}$ after 40 cycles (Fig. 31(b)). In the same instance, the Coulombic efficiency remained at ~100%, indicating a high degree of reversibility in the cycling process. The high capacity was attributed to the unique structuring, where the amorphous LiV$_2$O$_8$ wrapping provided a 3D pathway for Li$^+$ diffusion to the favourable (100) plane, while further, the amorphous wrapping may itself provide Li$^+$ storage before transfer to the (100) plane. Also encouraging, was the high rate performance of the wrapped LiV$_2$O$_8$ nanorods, where large capacities of 102 mA h g$^{-1}$ could be obtained at a rate of 40 C (a ~45 s discharge), and up to ~80 mA h g$^{-1}$ at a rate of 50 C.
Both the stable, high capacity cycling and high rate performance of this example outline the tremendous potential of the LiV₃O₈ cathode. Future work may evolve to produce further examples of nanostructured LiV₃O₈ cathodes displaying paralleled performance.

2.2 Polyanion cathodes

2.2.1 LiFePO₄ (LFP)

LFP cathodes have received tremendous academic attention over recent years since its introduction by Padhi et al. [373]. Given its extreme popularity, several recent review articles have covered its progress in detail [374–376]. LFP’s olivine framework enables rapid Li⁺ transport [377], and is stabilised by the electron-withdrawing nature of the PO₄³⁻ polyanion. The strong P–O covalent bond reduces the relative strength of the covalent interaction to the neighbouring Fe, thus lowering the Fe⁴⁺/³⁺ redox couple energy and providing stable operating voltages of ~3.5 V, with good reversibility [378]. LFP electrodes are also relatively inexpensive to prepare, non-toxic and environmentally benign, all factors which have become increasingly important over recent years. LFP electrodes do, however, suffer from relatively low theoretical capacities (~170 mA h g⁻¹), and poor electrical conductivity (10⁻⁸ S cm⁻¹), which may set a degree of limitation on its future application. Developing nanostructured LFP-based electrodes with enhanced properties through surface modifications such as carbon coating or via carbon compositing is now commonplace [379–420], and has enabled almost complete intrinsic utilisation of LFP. Table 3 highlights a selection of some recent developments in LFP nanoarchitectures.

The mechanism of Li⁺ intercalation in LFP electrodes has been a hotbed of intense study [421–424], and is even more the remarkable given LFP’s high-rate capability whilst remaining both a poor ionic and electrical conductor. A generalised notion is that Li⁺ de/intercalation occurs via a two-phase nucleation and growth process involving both LiₓFePO₄ and Li₁₋ₓFePO₄ end-phases. Intercalation is, however, predicted to differ on reducing particle size to nanodimensions given the variation in surface and interface energies at the nanoscale [375]. Recently, the high-rate capability of LFP nanoparticles has been identified as a result of a single-phase transformation process, thus removing the kinetic limitations of nucleation and growth of two separate, LiₓFePO₄ and Li₁₋ₓFePO₄ end-phases [423,425]. Although considerations are far from complete on this matter, nanostructuring is predicted to offer significant benefits to the intercalation chemistry of LFP cathodes and is now predictably commonplace.

Zhu et al. [392] have recently demonstrated one of the first examples of truly single-crystalline
LiFePO$_4$ nanowires which contain a uniform and moderately thick (2–5 nm) carbon-coating, leading to enhanced electrochemical ability. The ~100 nm wires, which are smaller than those previously reported for LFP [426,427], were deposited on stainless steel substrates by electrospinning an aqueous solution of Fe(NO$_3$)$_3$, LiH$_2$PO$_4$ and poly(ethylene oxide) (PEO), using an accelerating voltage of 15 kV before thermal annealing at 700 °C under flowing N$_2$. TEM analysis revealed that the LFP nanowires grew along the c-axis, leading to facile Li$^+$ transport and a potentially high-rate response along the shortened b- and a-axis, while the carbon coating ensured adequate electrical conductivity and minimal aggregation throughout the electrode.

Table 3 LFP nanostructured electrodes; the rate and cycle number are given in brackets.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Morphology</th>
<th>Initial Capacity</th>
<th>Final Capacity</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO$_4$</td>
<td>Powder (various)</td>
<td>~150 (C/10)</td>
<td>~150 (20)</td>
<td>[428]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Nanoparticles</td>
<td>~160 (C/10)</td>
<td>~160 (100)</td>
<td>[429]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Nanoparticles</td>
<td>~120 (C/10)</td>
<td>~120 (60)</td>
<td>[425]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Porous (hollow)</td>
<td>~165 (1 C)</td>
<td>~165 (80)</td>
<td>[427]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Nanoporous</td>
<td>~135 (2 C)</td>
<td>~135 (50)</td>
<td>[430]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Powder (various)</td>
<td>166 (C/10)</td>
<td>~165 (50)</td>
<td>[431]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Platelets</td>
<td>151 (C/10)</td>
<td>~151 (30)</td>
<td>[432]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Powder (various)</td>
<td>167 (C/10)</td>
<td>142 (30)</td>
<td>[433]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Dumbbell</td>
<td>100 (C/30)</td>
<td>110 (70)</td>
<td>[434]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Nanorods</td>
<td>150 (5 C)</td>
<td>~155 (5)</td>
<td>[435]</td>
</tr>
<tr>
<td>LiFePO$_4$</td>
<td>Mesocrystals</td>
<td>150 (2 C)</td>
<td>~155 (150)</td>
<td>[436]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Porous spheres</td>
<td>~140 (0.1 C)</td>
<td>~150 (20)</td>
<td>[437]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanocrystals</td>
<td>~155 (0.1 C)</td>
<td>~155 (20)</td>
<td>[438]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Porous spheres</td>
<td>153 (0.1 C)</td>
<td>~150 (5)</td>
<td>[439]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanoparticles</td>
<td>126 (20 C)</td>
<td>~112 (1000)</td>
<td>[440]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanoplates</td>
<td>~165 (0.1 C)</td>
<td>~160 (50)</td>
<td>[441]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanocrystals</td>
<td>~160 (0.2 C)</td>
<td>158 (100)</td>
<td>[442]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanowires</td>
<td>150 (1 C)</td>
<td>146 (100)</td>
<td>[392]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanocomposite</td>
<td>~163 (0.1 C)</td>
<td>162 (100)</td>
<td>[406]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanoplates</td>
<td>~165 (0.1 C)</td>
<td>~165 (50)</td>
<td>[402]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanocomposite</td>
<td>~168 (0.1 C)</td>
<td>~160 (1100)</td>
<td>[384]</td>
</tr>
<tr>
<td>LiFePO$_4$/C</td>
<td>Nanorods</td>
<td>~160 (0.1 C)</td>
<td>~160 (30)</td>
<td>[403]</td>
</tr>
<tr>
<td>LiFePO$_4$/CNT</td>
<td>Nanocomposite</td>
<td>~160 (10 mA g$^{-1}$)</td>
<td>~160 (10)</td>
<td>[399]</td>
</tr>
<tr>
<td>LiFePO$_4$/GO</td>
<td>Nanocomposite</td>
<td>~145 (1 C)</td>
<td>~145 (5)</td>
<td>[443]</td>
</tr>
<tr>
<td>LiFePO$_4$/ZnO$_2$</td>
<td>Particles</td>
<td>~140 (0.1 C)</td>
<td>~143 (100)</td>
<td>[444]</td>
</tr>
</tbody>
</table>
Li-ion performance (Fig. 32), was recorded over several discharge rates with a first discharge capacity of 169 mA h g⁻¹ (between 2.5–4.3 V vs. Li/Li⁺), and as much as 93 mA h g⁻¹ at the high discharge rate of 10 C. Cycling of the LFP nanowires resulted in stable performance with 146 mA h g⁻¹ obtained after 100 cycles at the C rate. Furthermore, the LFP nanowires remained structurally stable (evidenced to at least 25 cycles), which was observed by the single-crystalline nature under TEM imaging and SAED analysis. A high electrochemical performance was also achieved at the elevated operating temperature of 60 °C, with such cells displaying stable cycling (C rate) close to the theoretical maximum; capacity retention was expressed as 98% of the initial capacity after 100 charge-discharge cycles [392]. The electrochemical performance of the single-crystalline LFP nanowires exceeded those of CNT–LFP tri-axial nanowire composites prepared by a similar electrospinning process [426]. The increased performance is attributed to the smaller diameter nanowires (~100 nm), versus the larger CNT-LFP composite (~500 nm), resulting in shorter Li⁺ diffusion paths. While the low-current performance of the LFP nanowires displays close to theoretical capacity (170 mA h g⁻¹), further performance increases at high rates could potentially be sought by scaling the diameters of c-axis nanowires further, particularly as ionic and electronic transport in single crystalline LFP is governed by particle size [445], and through a quasi, two-dimensional movement along the b–c plane [446].

Figure 32 TEM images of (a,b) single-crystalline LFP nanowires, (c,d) LFP nanowires collected ex-situ after 25 charge-discharge cycles, (e) typical voltage curves for LFP nanowires at various rates between 2.5 – 4.3 V and (f) cycling performance of the LFP nanowires at a rate of 1 C at 60 and 25 °C. Adapted from [392]. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

A high rate capability and appreciable cyclic stability is also found amongst nanoplate morphologies of LFP, whose unique nanostructuring results in diminishing b-axis dimensions conducive to Li⁺ transport [402,440,441]. Therefore, the thickness of LFP nanoplates, together with the nature of their synthesis, is likely to heavily impact the electrochemical performance of LFP nanoplates. Saravanan and co-workers [402,441] recently demonstrated the advantage of using nanoplate morphologies and compared the unique structuring to spindle and diamond-shaped LFP cathodes [402]. The LFP nanoplates were prepared by a solvothermal process (ethylene glycol) at 270 °C, using Fe(oxalate) as an iron precursor, LiH₂PO₄ as Li⁺ and PO₄³⁻ sources, and D-gluconic acid, serving as carbon former. After a subsequent thermal treatment at 450 °C under a reducing atmosphere, carbon-coated LFP nanoplates were obtained whose thickness was in the order of 30–40 nm. Replacing the Fe precursor with Fe(acac)₃, (acacH = acetylacetonate) Fe(gluconate)₂ or Fe(PMIDA) (PMIDA = N-(phosphonomethyl)iminodiacetate) resulted in LFP spindles (aggregated nanoplates), diamonds or thick plate (200–300 nm) morphologies, respectively.
During galvanostatic testing (Fig. 33), the LFP nanoplate morphologies fared considerably better than thick plate morphologies, whose increased thickness resulted in the expansion of the b-axis parameter, and LFP spindles, whose thinner (~20 nm) but tightly agglomerated LFP nanoplates did not allow for efficient electrolyte access [402]. The hierarchical, open structuring of the LFP nanoplates, which allowed near theoretical capacities at low-rates (C/10), therefore underlines the appreciable contribution that morphology has on the electrochemical response of LFP and other potential electrodes.

Figure 33 (a, b) SEM images of LiFePO₄/C nanoplates with thicknesses of 30 – 40 nm prepared by a solvothermal process at 270 °C (scale bar 1 µm and 100 nm) and (c) discharge capacity as a function of cycle number for the hierarchical LFP/C nanoplates, spindle, diamond and thick plate morphology LFP electrodes [402]. Adapted with permission of The Royal Society of Chemistry.

LFP nanoparticles are also appealing choices and have extended cycling ability and good rate capability [384,425,429,440]. As a notable example, Yang et al. [440], prepared large-scale carbon-coated LFP nanoparticles by a PEG-assisted (PEG = polyethylene glycol) hydrothermal reaction of FeSO₄, H₃PO₄ and LiOH at 180 °C for 24 h. Adjusting the synthetic conditions such as reaction time, temperature and the PEG:H₂O ratio, could yield products having nanoparticle, nanoplate and microplate morphologies depending on exact conditions. The rod-like LFP nanoparticles, which had an average size of 58 nm, were favoured at higher reaction temperatures (180–220 °C), and displayed enhanced performance over their nanoplate counterparts. Both samples fared considerably better than the thick LFP plates, which is in agreement with previous reports [402]. With an addition of 30 wt.% of the conductive carbon black Super P, the LFP nanoparticles displayed extended cycle performance at a high discharge rate of 20 C, resulting in capacities in the region of 112 mA h g⁻¹ after 1000 cycles (~89% capacity retention). A similar high-rate performance was also displayed by the LFP/C nanoplates, although such morphologies ultimately offered a poorer capacity retention (~78%), yielding a final capacity of approximately 100 mA h g⁻¹ after 1000 cycles.

The high rate capability of LFP nanoparticles is thus far showcased in the example of Kang and Ceder [377], whose surface-modified LFP nanoparticles displayed exceptional performance, even at test rates as high as 397 C. The authors suggest increasing Li⁺ conduction across the surface of the LFP nanoparticle towards the (010) facet is likely to facilitate rapid intercalation kinetics since it is known that intercalation of Li⁺ into bulk LFP crystals is only possible in the [010] direction. An amorphous layer of lithium phosphate was chosen as the surface enhancer due to its abilities to enhance Li⁺ mobility and the potential for such surfaces to be doped with metallic atoms resulting in enhanced electronic conductivity. TEM analysis confirmed the amorphous nature of the surface layer, showing it to be in the region of 5 nm against the 50 nm diameter of the LFP nanoparticles. The electrochemical testing (Fig. 34), revealed the surface-modified LFP electrodes could return high Li-ion performance with near theoretical capacity attained at discharge rates of 2 C, and up to 80% of capacity at a high rate of 50 C. Cycling of the nanoparticles at rates of 20 and 60 C resulted in
stable performance with no apparent reduction in capacity after 50 cycles. Utilising a configuration of 60 wt.% carbon black as conductive agent, albeit industrially impractical but important in terms of achieving conductivity through the electrode assembly, revealed that the surface-modified LFP nanoparticles could attain capacities of ~100 and ~60 mA h g⁻¹ after 100 cycles at rates of 197 and 397 C, respectively. These results demonstrate the ability of LFP as a potential high power electrode capable of ultrafast charging and discharging, which may necessarily bring dramatic change to the way that batteries are conceived in the future [377]. The results outlined in this section demonstrate that LFP electrodes may represent the most common alternative to LiCoO₂ or LiMnO₂ cathodes for some time to come. The high-rate and near-theoretical capacity display of LFP electrodes, coupled with their relatively affordable production cost and low environmental impact make them one of the most promising Li-ion solutions. In addition, the appreciable thermal stability and high charge rates at relatively high operating temperatures (~60 °C), may allow its targeted use in automotive EV/HEV applications [264]. Although LFP electrodes display some incompatibility at elevated temperature (dissolution of Fe³⁺ under storage in conventional electrolytes is known), various electrolyte (e.g., Li₂CO₃) and electrode additives (coatings, etc.), may be used to limit problematic interactions with organic-based electrolyte solutions [264].

2.2.2 Other transition metal phosphates (LiMPO₄)
Transition metal phosphates such as LiMnPO₄, LiCoPO₄ and LiVOPO₄ have also been studied as potential cathodes, notably as their theoretical capacity and working potentials may exceed those of LiFePO₄. One such example is LiMnPO₄ [447–458], which is isostructural to that of olivine LiFePO₄, while possessing a higher operating voltage (4.1 vs. 3.5 V, respectively) [378, 448], and hence energy densities which could exceed 700 Wh kg⁻¹. At this point, it should be suggested that LiMnPO₄ represents a more realistic candidate compared to LiCoPO₄ or LiNiPO₄, since the working voltage of LiCoPO₄ or LiNiPO₄ electrodes (4.9 and 5.1 V, respectively), currently lies outside regions of stability of the commonly-employed organic (carbonate) electrolytes [378]. Early examples of LiMnPO₄ electrodes, however, were unable to demonstrate appreciable electrochemical activity [373], until a solid-state reaction involving the addition of carbon black to the reactant mixture enabled a capacity of 140 mA h g⁻¹ to be extracted [448]. The addition of carbon black resulted in a reduction of particle size while acting as an electrically conductive agent, which is particularly necessary for the operation of LiMnPO₄ electrodes given that the inherent electrical conductivity in
LiMnPO₄ (10⁻¹⁰ S cm⁻¹) is considerably lower than that of LiFePO₄ (10⁻⁸ S cm⁻¹) [457]. In more recent reports, carbon-coated nanostructures have enabled stable cycling as a result of diminishing Li⁺ diffusion paths, accommodation of the volume induced change on cycling (∼9.5%) [459], and enhanced electrical conductivity. Choi and co-workers [458], have demonstrated enhanced performance of carbon-coated LiMnPO₄ nanoplates, with stable cycling and high gravimetric capacity. The LiMnPO₄ nanoplates, which were in the order of 50 nm thick, were prepared by a surfactant (oleic acid)-assisted solid-state reaction of MnCO₃ and NH₄H₂PO₄ with molten paraffin serving as co-solvent. Although TEM analysis revealed the thinnest portion of the nanoplates was in fact along the a-axis (unfavourable for Li⁺ transport), the LiMnPO₄ nanoplates still delivered near theoretical capacity at a C/50 rate, reaching a discharge capacity of 168 mA h g⁻¹. Cycling at higher C rates, however, resulted in diminished performance (a discharge capacity of 54 mA h g⁻¹ was achieved), unless a fixed charging rate of C/25 rate was adopted. With such charging rates, stable capacities to over 50 charge discharge cycles at test rates up to 2 C were obtained. Oh and co-workers [447], prepared LiMnPO₄/C nanocomposite powders with test rates of up to 10 C reported. The LiMnPO₄/C nanocomposites were prepared by an ultrasonic spray pyrolysis method followed by subsequent ball-milling, resulting in LiMnPO₄ particles of between 10–50 nm. Similarly, the LiMnPO₄/C cells were charged to 4.5 V at the slow rate of C/20 for the cycle tests (plus additional holding at 4.5 V until C/100), where the addition of 30 wt.% carbon black during ball-milling was found to offer the highest capacity of ∼130 mA h g⁻¹ (C/2 rate). Cycling at the higher operating temperature of 55 °C resulted in initial capacity gains (vs. 25 °C), due to an increase in the Li⁺ diffusion rate experienced at the higher temperature, however, the LiMnPO₄/C cells suffered from capacity decline as a result of the HF-driven Mn⁺⁺ dissolution in organic electrolyte. LiMnPO₄/C cells with an optimal level of carbon addition (30 wt.%), displayed greater stability which was suggested to be the result of a more adequate carbon coverage throughout the electrode (40 wt.% C addition led to an agglomeration of C particles) [447]. While these results offer an insight into the possible utilisation of LiMnPO₄ as a future Li-ion cathode, the inherently low ionic and electronic conductivities, coupled with an incompatibility at elevated temperature [455], likely preclude its use in future high-rate Li-ion batteries. Further work is therefore needed to redress such limitations.

A competitive alternative to Fe and Mn based phosphates could be found through the lithiated vanadyl phosphates, namely LiVOPO₄ [460–463], the fluorinated derivative LiVPO₄F [464,465], and Li₃V₂(PO₄)₃ [466–489]. LiVOPO₄ which crystallises in two electrochemically active α- (triclinic) and β- (orthorhombic) forms, has a theoretical capacity of 166 mA h g⁻¹ and through a ~3.9 V operating voltage, may yield specific energy densities in excess of ~640 Wh kg⁻¹. Equally, Li₃V₂(PO₄)₃, which has a high theoretical capacity of 197 mA h g⁻¹, could yield cells whose specific energies exceed 750 Wh kg⁻¹. Recently, Saravanan et al. [490], prepared hollow sphere morphologies of α-LiVOPO₄, a phase which is suggested to be more crystallographically favourable to Li⁺ intercalation than its polymorph twin, β-LiVOPO₄ [491]. The structure of α-LiVOPO₄ may be described as columns of close-packed vanadium oxide octahedra, where the interstitial sites are filled alternatively by P and Li atoms. In contrast, β-LiVOPO₄ contains a P atom in every other empty site while the Li atoms are located between the coordination polyhedra of the V and P atoms, and neighboured by six oxygen atoms to form a distorted octahedra. The edge lengths of which are much smaller (2.463–3.404 Å), than twice the ionic radius of the Li⁺ ion (4.24 Å) [491]. Consequently, β-LiVOPO₄ may suffer from poor rate capability. The α-LiVOPO₄ spheres, which themselves were comprised of agglomerated nanoplates, were prepared by an ethylene glycol (EG)-assisted solvothermal treatment of V(acac)₃, LiOH and NH₄H₂PO₄ between 240–260 °C. The hollow spheres, which could be tailored somewhat by adjusting the solvothermal conditions such as
reaction time, temperature and EG content, delivered a first discharge capacity of 145 mA h g\(^{-1}\) (~87% of the theoretical capacity) between 3.0–4.5 V at the C/10 rate. Cycling under the same conditions resulted in initial capacity fade, which stabilised after ~25 cycles and delivered approximately 100 mA h g\(^{-1}\) after 50 cycles. The rate capability was also demonstrated up to current rates of 13 C, which delivered up to 22 mA h g\(^{-1}\) over the same potential regime. Monoclinic Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\) has perhaps attracted greater attention [466–489], owing in part to its higher theoretical capacity (~199 mA h g\(^{-1}\), assuming 3 Li\(^+\) insertions are attained). Carbon coatings or carbon composite formation is commonplace due to the inherently poor electronic conductivity of Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\) (2.4 × 10\(^{-7}\) S cm\(^{-1}\)), which has resulted in cells attaining competitive performance. Early examples of hydrothermally prepared core–shell Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3@C\) composites, comprised of ~400 nm Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\) particles and a carbon shell of ~10 nm thickness, displayed a discharge capacity of approximately 130 mA h g\(^{-1}\) under a current density of 28 mA g\(^{-1}\). The carbon-coated samples exhibited both enhanced rate capability and cyclic stability, retaining a discharge capacity of ~98.5% over 50 cycles while restricting the growth of passivating SEI layers [480]. Liu et al. [484], have recently exploited the electronic properties of graphene by forming a Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3@\)graphene nanocomposite which displayed considerable rate capability. The Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3@\)graphene nanocomposite was prepared by mixing Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\) precursors in a solution of partially reduced graphene oxide followed by sintering at 800 °C under N\(_2\). The resultant Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\) nanoparticles (~40 nm), were uniformly dispersed and enwrapped in the partially reduced graphene sheets, thus forming a highly conductive network. The nanocomposite electrode delivered high electrochemical performance, with near theoretical discharge capacities achieved (~130 mA h g\(^{-1}\)), delivered at the C/10 rate (between 3.0–4.3 V vs. Li/Li\(^+\)). Cyclic voltammetry measurements of the Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3@\)graphene nanocomposite revealed a shaper set of redox pairs compared to pure Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\), with a smaller potential separation between peaks, indicating an increase in electrical conductivity and lower Ohmic resistance. On cycling between 3.0–4.8 V, where a third Li\(^+\) extraction is possible up to 4.8 V, the Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3@\)graphene nanocomposite delivered high initial capacity at the C and 2C rates (>150 mA h g\(^{-1}\)), however, cells retained only ~80% of the initial capacity after 100 cycles [484].

Nanoscale coatings other than carbon have also been implemented to improve the performance of Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\) [482,488,489]. Recently, Zhang et al. [489], prepared Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3@\)C samples coated with a 3–5 nm layer of SiO\(_2\) by mixing Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\)/C powders in an ethanolic solution containing 1, 2 or 3 wt.% tetraethyl orthosilicate (TEOS). The SiO\(_2\)-coated powders fared noticeably better through rate testing (up to 5 C), and cycling studies than uncoated Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3@\)C electrodes; the increased performance was attributed to an overall structural stabilisation and retardation of V dissolution over progressive electrochemical cycling [489]. Xun and co-workers [488] prepared Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\) powders modified with a <5 nm LiP\(_2\)O\(_7\)-coating by an off-stoichiometric reaction between Li\(_2\)CO\(_3\), NH\(_4\)H\(_2\)PO\(_4\) (in 5% molar excess) and V,O\(_x\). In a similar fashion to Ceder et al. [377], the LiP\(_2\)O\(_7\) coatings led to enhanced rate performance and stability as a result of increases in Li\(^+\) diffusion and additionally in this case, through a reduction in debilitating side-reactions at potentials >4.0 V [488]. The management of capacity fade as a result of unwanted interaction with electrolyte at higher potential regions is currently of great importance if full utilisation of Li\(_{x}\)V\(_2\)(PO\(_4\))\(_3\) is to be achieved.

2.3 Transition metal silicates (Li\(_{x}\)MSiO\(_4\))

A new family of cathode materials have been presented recently based on the tetrahedral orthosilicates which, theoretically, are capable of two electron intercalation process involving the M\(^{3+/2+}\) and M\(^{5+/4+}\) redox couples [492,493]. The dual-electron process may therefore yield cathodes with capacities exceeding 300 mA h g\(^{-1}\), while the relative strength of the Si-O bond may impart a necessary structural stability. Fe, Mn or Co have
typically been utilised, with more attention recently devoted to Li$_2$FeSiO$_4$ structures, due in part to reasons of safety and cost. The structure of Li$_2$FeSiO$_4$ has been a focus of a number of recent studies owing to its rich display of polymorphism [494–499], where a number of different polymorphs, designated as β, β′I, γI, γII and γs (see Fig. 35), have been identified and account for an experimental variation in the electrochemical performance of Li$_2$FeSiO$_4$ cathodes [498–500].

Li$_2$FeSiO$_4$, as with other polyanion cathodes, are poor electronic conductors leading to the utilisation of particle size reduction combined with carbon-coating or carbon composite formation to enhance Li-ion performance [501–511]. Reversible intercalation has only been entertained for one of two Li$^+$ ions per formula unit in Li$_2$FeSiO$_4$, resulting in cells whose experimental capacities fall in the region of ~130–160 mA h g$^{-1}$.

Figure 35 The known polymorphs of Li$_2$FeSiO$_4$: (a) βI, where corner-sharing tetrahedra align in one direction with LiO$_4$ chains running along the a-axis parallel to alternating FeO$_4$ and SiO$_4$ units, (b) βI, corner-sharing tetrahedra aligning in one direction and chains of alternating LiO$_4$ and FeO$_4$ units positioned along the a-axis and parallel to alternating FeO$_4$ and SiO$_4$ units, (c) γI, half of tetrahedra are in opposite directions with pairs of LiO$_4$/FeO$_4$ and LiO$_4$/LiO$_4$ edge-sharing tetrahedra (shown underneath), (d) γII, grouping of three tetrahedra units with the outer two units positioned in the same direction. The sequencing is Li-Li-M (shown underneath) and (e) γs, akin to structure (d) however, the sequencing involves Li-M-Li (shown underneath). Colours: yellow (SiO$_4$), brown (FeO$_4$), blue (LiO$_4$). The two blue shades represent distinct Li sites. Reproduced with permission from [492]. Copyright 2011 American Chemical Society.

Rangappa et al. [512], however, have recently demonstrated the first cycling of two Li$^+$ ions in Li$_2$MSiO$_4$ electrodes (M = Fe, Mn), at elevated temperature through a supercritical fluid preparation of 2D Li$_2$MSiO$_4$ nanoplates. Li$_2$FeSiO$_4$ nanoplates were synthesised by adding an aqueous solution of LiOH and ascorbic acid to FeCl$_2$·4H$_2$O and TEOS dissolved in ethanol. Supercritical fluid (SCF) conditions were attained by heating the prepared solution in a high-pressure cell at 350–420 °C under a pressure of 38 MPa for 4–10 min. The highly crystalline Li$_2$FeSiO$_4$ nanoplates were subsequently combined with a conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) and MWCNTs by a ball-milling process to improve
the electronic conductivity. The SCF approach, which results in suitable reaction media having both properties of a gas and liquid, has been utilised previously in the preparation of other nanostructures (particularly 1D semiconductors), but has been a relatively uncommon approach thus far in the synthesis of battery materials. The Li$_2$FeSiO$_4$ nanosheet composite electrodes displayed predictable capacities of ~160 mA h g$^{-1}$ under room temperature at the rate of C/50, which is in line with a one Li$^+$ mechanism; however, on testing at elevated temperature (45 ± 5 °C), the Li$_2$FeSiO$_4$ composite delivered up to 340 mA h g$^{-1}$ representing near-complete two electron cycling. Similar voltage curves (Fig. 36), were obtained between the first and second discharge cycles which would indicate that no major structural change occurred following the initial charge. Such changes are a dominant feature of Li$_2$FeSiO$_4$ electrodes, where stable cycling is only achieved after cation rearrangement to a stable phase and have been outlined in various reports [498,500]. XRD studies of cycled cells revealed that structural change occurred after the first charge cycle leading to the formation of a new, seemingly metastable phase. This newly formed phase remained unchanged over subsequent cycles until a further phase developed which was characterised by the loss of all diffraction peaks and addition of a single peak at 2θ = 44°. The formation of the new phase, occurring after 20 charge discharge cycles, was accompanied by a rapid decline in electrochemical performance. While this example has demonstrated the first reversible cycling of two Li$^+$ ions in Li$_2$FeSiO$_4$ electrodes, further work is needed to elucidate the nature of such transitions in order to attain stable, long-term cycling. Currently, it appears that Li$_2$FeSiO$_4$ may remain a single Li$^+$ host which may require a move toward other cathodes with higher capacity and increased rate capability.

![Figure 36](image_url)

Figure 36 (a, b and c) TEM images of Li$_2$FeSiO$_4$ nanoplates prepared by SCF method, (d) voltage curves of the Li$_2$FeSiO$_4$ nanoplates at a rate of C/50 and temperature of 45 °C and (e) cycling performance of the Li$_2$FeSiO$_4$ nanoplates. Adapted with permission from [512]. Copyright 2012 American Chemical Society

3. Summary and outlook

Our dependency on Li-ion and emerging alternatives in the coming years will no doubt require further enhancements in the performance of existing anode and cathode materials, their architectures and the properties of good electrolytes that are thermodynamically stable at the operation voltage. The development of large-scale Li-ion batteries, particularly for applications such as EV/HEVs, will likely facilitate interest in the drive for electrodes with higher power density, excellent rate capability and cycle life and importantly, safety characteristics which underpin their use, particularly at extremes of operating temperature. Li-ion battery research has seen a second resurgence in academic and industrial development since the oil crisis of the late seventies, owing primarily to the projected need for a reduction in CO$_2$ emissions which is hoped can be alleviated by increasing the density of EVs and related hybrids. The rechargeable battery based on lithium chemistry represents one of the biggest success stories of the research-to-industry models. Importantly, nanostructuring of the active materials has enabled the development of
electrode architectures with many of the requisites to meet the demanding applications for which they are intended, and it is likely through nanostructuring that future generations of Li-ion batteries shall meet the demand that such batteries will generate. One extension of the understanding gleaned from thousands of papers focused almost entirely on the materials issues with Li-ion technologies, is the ability to fashion structures and arrangements of materials that could potentially accommodate larger anions such as Mn$^{2+}$ or Al$^{3+}$. This approach exploits a higher valence but requires a material that is capable of even more volumetric expansion of its structure with large ionic radius of the intercalating ions. The trade-off is the possibility of multiple electrons per redox event and thus higher energy densities at a given voltage. Such approaches would need minimal battery electrolyte development if the hexafluorophosphate anion salt is used, and options exist for the incorporation of higher voltage-stable ionic liquid based electrolytes. Indeed, monoelectronic charge transfer events can also be found in Na-ion technology, which has benefits of sodium abundance, but limitations arise from material pulverization due to the larger ionic size and a limited number of materials capable of successful, stable and repeatable Na-ion intercalation. In these cases, the nanostructuring of materials is likely to help filter suitable chemistries for their development.

In this review, we have highlighted just some of the advancements which have been made in both anode and cathode nanoarchitectures to meet the challenging goal of better performing, safer and longer life Li-ion batteries. Ultimately, the industry shall likely decide the fate of the prospective design and electrode choice, based on performance, safety and cost in each application. Some expensive materials growth, deposition and formation methods are still required for new materials and battery chemistries especially where knowledge of a very well defined material and its electrochemical response are critical. With high quality growth methods used as a test-bed, routes towards more up-scalable and lower cost alternatives can be developed based on a detailed understanding of new materials. In situ TEM is currently being used to identify the real effect of Li$^+$ intercalation into new nanomaterials without the complications that are difficult to assess in disordered powders [513–515].

High-performance batteries are now a direct requirement in the change to renewable and sustainable energy applications. The requirement for charge storage modules for new transport means is very important—it is the biggest consumer application requirement yet. With the growing demand for larger-sized Li-ion batteries for automotive and in the future smart grid energy storage applications, the issue of battery safety will continue to present a challenge. The flammability of the conventional organic carbonate solvent based electrolytes remains a key issue. The desire to migrate to an all solid-state system is heightened in these larger battery designs and so one can anticipate that this represents a key area for future material development and hence, an opportunity for new classes of nanoscale materials.

The information derived from the plethora of investigations into nanomaterials performance should help define optimum chemistries, sizes, assemblies, conductivities, structural and electrochemical properties etc., to optimize specific next-generation battery needs and the demanding performance and safety requirements of plug-in hybrid electric vehicles. Advances in modelling have helped greatly in predicting solid solution phases for a range of charge storage technologies, and in particular, Ceder et al. [516], among others, are pioneering a library of alloys, compounds and structures from first principles calculations and density functional theory so that Li insertion potentials, voltage windows and structural response to charging and discharging can be predicted.

Recent approaches are testing the possibility
of enhancing the rate capability (charging and discharging), by using 3D nanoarchitectures of individual nanostructures to improve the packing density of the electrode materials, without unwanted short-circuiting or self-discharge acceleration. In such cases, the active material can be deposited at a thickness close to the Li-ion diffusion length, thereby reducing the limitation of solid-state diffusion. Such approaches typically use photonic crystals, or opal, templates to create inverse opal structures or other 3D forms of assemblies. These materials can also be filled with electrolytes that are liquid or polymer based, forming interpenetrating networks. Recent demonstrations have shown that ultrafast-charging batteries can be fashioned by controlling porosity in active materials [517–521]. The downside is the severe reduction in specific energy due to the porosity, but the technology may prove useful for large surface area applications.

In more recent times, there has been a large resurgence in the research and development of Li–O₂ and Li–S chemistries, particularly since such systems offer theoretically vast specific energies, far in excess of their predicted Li-ion equivalents. A number of excellent review articles are available on such systems, to which the reader is referred.[522–527] It is envisioned that Li–O₂ and Li–S chemistries may challenge the dominancy of Li-ion batteries in the future; aqueous and non-aqueous Li–O₂ designs, for example, could potentially offer up to ~3500 Wh kg⁻¹, an approximately ten-fold increase based on today's LiCoO₂/graphite Li-ion cells (~390 Wh h kg⁻¹), while Li–S designs could offer in the region of 2570 Wh h kg⁻¹. Although such chemistries have been known for some time, there today still exists obstacles to their prospective use which has led to relatively low levels of commercial uptake thus far. In particular, the use of Li-metal anodes presents challenges to the safety of rechargeable battery designs which must be overcome, while the extended reversible charge storage, particularly relating to that of Li–O₂ systems, also remains a feature for improvement. Further research and development shall no doubt bring a greater understanding and appreciation of their chemistries and is indeed necessary to achieve an adequate understanding of their application and cost. In turn, however, Li–O₂ and Li–S batteries of the future may offer a viable and necessary alternative to the Li-ion battery, especially for applications requiring greater performance.

It seems likely the next generation of lithium-ion batteries fully based on nanomaterials will soon be here. There is plenty to inspire development in the living world—biofuel cells, high-voltage liquid-electrolyte microbatteries based on processes naturally occurring in electric eels, and battery nanomaterials assembled using viruses and bacteria, have already been demonstrated. The virus-enabled battery design is intriguing: Genetically engineered viruses can first coat themselves with iron phosphate and then knit carbon nanotubes to create a network of highly conductive material. Extensions could be envisaged whereby biological or polymeric species can both assemble materials within a battery, and accommodate the stresses that occur within materials, in addition to maintaining electrical conductivity, and perhaps heal and maintain contact between broken down materials typically found in some Li-ion batteries after many charge-discharge cycles.

In the immediate future, the promise of nanotechnology and nanomaterials will be tested and the likelihood is that next generation high performance rechargeable batteries, even sustainable ones, will have their electrodes designed using nanoscale materials. Advances in Li–O₂ designs, Li–S batteries and other systems such as fuel cell technology, may seriously challenge the current dominancy of Li-ion batteries in the 2025–2030 timeframe; however, for the next decade at least, Li-ion batteries remain at the forefront of powering modern consumer devices and in supporting the growing number of electric vehicles on our roads.
Acknowledgements

This work was supported by Science Foundation Ireland (SFI) Grant no. 07/SRC/I1172.

References

[34] Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

[83] Liu, J.; Li, W.; Manthiram, A. Dense core–shell structured SnO₂@C composites as high performance anodes for lithium ion batteries. Chem. Commun. 2010, 46, 1437–1439.

[100] Chen, Z.; Qian, J.; Ai, X.; Cao, Y.; Yang, H. Preparation and electrochemical performance of Sn–Co–C composite as anode material for Li-ion batteries. J. Power Sources 2009, 189, 730–732.

[101] Hassoun, J.; Panero, S.; Mulas, G.; Scrosati, B. An electrochemical investigation of a Sn–Co–C ternary alloy as a negative electrode in Li-ion batteries. J. Power Sources 2007, 171, 928–931.

[131] Jung, H.-G.; Jang, M. W.; Hassoun, J.; Sun, Y.-K.; Scrosati, B. A high-rate long-life LiTi$_2$O$_5$/Li[Ni$_{0.8}$Co$_{0.1}$Mn$_{0.1}$]O$_2$ lithium-ion battery. *Nature Commun.* **2011**, *2*, 516.

[166] Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. α-Fe:O₃...

[189] Li, Y.; Tan, B.; Wu, Y. Mesoporous CoO$_x$ nanowire arrays for lithium ion batteries with high capacity and rate capability. *Nano Lett.* **2008**, *8*, 265–270.

[199] Chen, S. Q.; Wang, Y. Microwave-assisted synthesis of a CoO@graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. *J. Mater. Chem.* **2010**, *20*, 9735–9739.

[213] Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. MnO\textsubscript{x}–graphene hybrid as a high-capacity anode

[259] Chen, Z.; Qin, Y.; Amine, K.; Sun, Y.-K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 2010, 20, 7606–7612.

[283] Ito, A.; Li, D.; Lee, Y.; Kobayakawa, K.; Sato, Y. Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi0.8Mn0.2O2. *J. Power Sources* 2008, 185, 1429–1433.

[292] Liu, J.; Manthiram, A. Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiNi0.5Mn1.5O4. *J. Phys. Chem. C* 2009, 113, 15073–15079.

[296] Kim, M. G.; Jo, M.; Hong, Y.-S.; Cho, J. Template-free synthesis of Li[Ni_{0.2}Li_{0.15}Mn_{0.6}]O_2 nanowires for high performance lithium battery cathode. Chem. Commun. 2009, 218–220.

[297] Wu, H. M.; Belharouak, I.; Abouimrane, A.; Sun, Y.-K.; Amine, K. Surface modification of LiNi_{0.5}Mn_{1.5}O_4 by ZrP:O and ZrO: for lithium-ion batteries. J. Power Sources 2010, 195, 2909–2913.

[298] Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J. A high energy Li-ion battery based on nanosized LiNi_{0.3}Mn_{0.3}O_2 cathode material. J. Power Sources 2008, 183, 310–315.

[299] Santhanam, R.; Rambabu, B. Research progress in high voltage spinel LiNi_{0.3}Mn_{0.3}O_2 material. J. Power Sources 2010, 195, 5442–5451.

[300] Arunkumaran, T. A.; Manthiram, A. Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn_{1.5-y}Ni_{y}Mg_{0.5}O_4 (M = Li, Mg, Fe, Co, and Zn). Electrochem. Solid-State Lett. 2005, 8, A403–A405.

[301] Liu, J.; Manthiram, A. Improved electrochemical performance of the 5 V spinel cathode LiMn_{1.5}Ni_{0.5}Zn_{0.5}O_4 by surface modification. J. Electrochem. Soc. 2009, 156, A66–A72.

[302] Aklalouch, M.; Amarilla, J. M.; Rojas, R. M.; Saadoune, I.; Rojo, J. M. Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi_{0.5}Mn_{0.5}O_4-based positive electrode. J. Power Sources 2008, 185, 501–511.

[303] Liu, J.; Manthiram, A. Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn_{1.5}Ni_{0.5}Co_{0.5}O_4 spinel cathodes in lithium-ion cells. Chem. Mater. 2009, 21, 1695–1707.

[305] Hu, S.-K.; Cheng, G.-H.; Cheng, M.-Y.; Hwang, B.-J.; Santhanam, R. Cycle life improvement of ZrO-coated spherical LiNi_{0.5}Co_{0.5}Mn_{0.5}O_2 cathode material for lithium ion batteries. J. Power Sources 2009, 188, 564–569.

[306] Lin, B.; Wen, Z.; Gu, Z.; Huang, S. Morphology and electrochemical performance of Li[Ni_{0.5}Co_{0.5}Mn_{0.5}]O_2 cathode material by a slurry spray drying method. J. Power Sources 2008, 175, 564–569.

[307] Yabuuchi, N.; Yoshii, K.; Myung, S.-T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, LiMnO_2-LiCoO_2Ni_{0.3}Mn_{0.7}O_2. J. Am. Chem. Soc. 2011, 133, 4404–4419.

[308] Martha, S. K.; Sclar, H.; Szmuk Framowitz, Z.; Kovacheva, D.; Saliyski, N.; Gofer, Y.; Sharon, P.; Golik, E.; Markovsky, B.; Aurbach, D. A comparative study of electrodes comprising nanometric and submicron particles of LiNi_{0.5}Mn_{0.5}O_2, LiNi_{0.3}Mn_{0.3}Co_{0.3}O_2, and LiNi_{0.6}Mn_{0.4}Co_{0.2}O_2 layered compounds. J. Power Sources 2009, 189, 248–255.

[309] Park, S.-H.; Kang, S.-H.; Belharouak, I.; Sun, Y. K.; Amine, K. Physical and electrochemical properties of spherical Li_{1-y}(Ni_{0.5}Co_{0.5}Mn_{1-y})O_2 cathode materials. J. Power Sources 2008, 177, 177–183.

[310] Guo, R.; Shi, P.; Cheng, X.; Du, C. Synthesis and characterization of carbon-coated LiNi_{0.5}Co_{0.5}Mn_{0.2}O_2 cathode material prepared by polyvinyl alcohol pyrolysis route. J. Alloys Compd. 2009, 473, 53–59.

electrochemical performance of Li(Ni0.5Co0.5Mn0.5)O2. J. Power Sources 2009, 188, 538–545.

[312] Santhanam, R.; Rambabu, B. High rate cycling performance of Li10.9Ni0.5Co0.5Mn0.5O2: materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries. J. Power Sources 2010, 195, 4313–4317.

[313] Jiang, M.; Key, B.; Meng, Y. S.; Grey, C. P. Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li0.18Ni0.10Mn0.85]O2. Chem. Mater. 2009, 21, 2733–2745.

[315] Ito, A.; Li, D.; Sato, Y.; Arao, M.; Watanabe, M.; Hatano, M.; Horie, H.; Ohsawa, Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.10Li0.05Co0.45Mn0.45]O2. J. Power Sources 2010, 195, 567–573.

[375] Zhang, W.-J. Structure and performance of LiFePO₄ cathode materials: A review. *J. Power Sources* 2011, 196, 2962–2970.

[376] Li, Z.; Zhang, D.; Yang, F. Developments of lithium-ion batteries and challenges of LiFePO₄ as one promising cathode material. *J. Mater. Sci.* 2009, 44, 2435–2443.

[382] Lu, C.; Fey, G.; Kao, H. Study of LiFePO₄ cathode materials coated with high surface area carbon. *J. Power Sources* 2009, 189, 155–162.

[408] Yu, F.; Zhang, J.-J.; Yang, Y.-F.; Song, G.-Z. Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO₄@C nanocomposites. J. Mater. Chem. 2009, 19, 9121–9125.

[413] Beninati, S.; Damen, L.; Mastragostino, M. Fast sol–gel synthesis of LiFePO₄/C for high power lithium-ion batteries for hybrid electric vehicle application. J. Power Sources 2009, 194, 1094–1098.

[430] Doherty, C. M.; Caruso, R. A.; Smarsly, B. M.; Drummond, C. J. Colloidal crystal templating to produce hierarchically porous LiFePO$_4$ electrode materials for high power lithium ion batteries. *Chem. Mater.* 2009, 21, 2895–2903.

[484] Liu, H.; Gao, P.; Fang, J.; Yang, G. LiV$_2$(PO$_4$)/graphene nanocomposites as cathode material for lithium ion batteries. Chem. Commun. 2011, 47, 9110–9112.

[486] Liu, H.; Yang, G.; Zhang, X.; Gao, P.; Wang, L.; Fang, J.; Pinto, J.; Jiang, X. Kinetics of conventional carbon coated-LiV$_2$(PO$_4$) and nanocomposite LiV$_2$(PO$_4$)/graphene as cathode materials for lithium ion batteries. J. Mater. Chem. 2012, 22, 11039–11047.
[487] Sun, C.; Rajasekhar, S.; Dong, Y.; Goodenough, J. B. Hydrothermal synthesis and electrochemical properties of LiV₂(PO₄)₃/C-based composites for lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3772–3776.

materials for lithium-ion batteries. RSC Adv. 2012, 2, 6994–6998.

[509] Zhang, S.; Deng, C.; Yang, S. Preparation of nano-LiFeSiO4 as cathode material for lithium-ion batteries. Electrochim. Solid-State Lett. 2009, 12, A136–A139.

