<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>Supercritical-fluid synthesis of FeF₂ and CoF₂ Li-ion conversion materials</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Armstrong, Mark J.; Panneerselvam, Arunkumar; O'Regan, Colm; Morris, Michael A.; Holmes, Justin D.</td>
</tr>
<tr>
<td><strong>Publication date</strong></td>
<td>2013-07-23</td>
</tr>
<tr>
<td><strong>Type of publication</strong></td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td><strong>Link to publisher's version</strong></td>
<td><a href="http://pubs.rsc.org/en/content/articlepdf/2013/ta/c3ta12436c">http://pubs.rsc.org/en/content/articlepdf/2013/ta/c3ta12436c</a>   <a href="http://dx.doi.org/10.1039/c3ta12436c">http://dx.doi.org/10.1039/c3ta12436c</a></td>
</tr>
<tr>
<td></td>
<td>Access to the full text of the published version may require a subscription.</td>
</tr>
<tr>
<td><strong>Rights</strong></td>
<td>© Royal Society of Chemistry 2013.</td>
</tr>
<tr>
<td><strong>Item downloaded from</strong></td>
<td><a href="http://hdl.handle.net/10468/2278">http://hdl.handle.net/10468/2278</a></td>
</tr>
</tbody>
</table>

Downloaded on 2019-08-02T23:27:50Z
Supercritical-Fluid Synthesis of FeF₂ and CoF₂ Li-ion Conversion Materials

Mark J. Armstrong, Arunkumar Paneerselvam, Colm O’Regan, Michael A. Morris and Justin D. Holmes*

Received (in XXX, XXX) Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

The synthesis of the Li-ion conversion candidates, FeF₂ and CoF₂, obtained from the single source organometallic precursors [Fe(tta)+] (tta = C₅H₅F₃O₅S), and [Co(hfac)₂·2H₂O] (hfac = C₅H₅F₃O₂), respectively, via a novel supercritical fluid (SCF) method is presented. The nature of the synthesis led to highly-crystalline FeF₂ and CoF₂ powders requiring no additional thermal treatment. The as-obtained powders were investigated for use as potential positive Li-ion conversion electrodes by means of chronopotentiometric measurements. The FeF₂ cells displayed high initial capacities following electrochemical conversion (up to ~ 1100 mAh g⁻¹ at a potential of 1.0 V vs. Li/Li⁺), with appreciable cyclic behaviour over 25 discharge-charge cycles. The deposition of a ~ 5 nm layer of amorphous carbon onto the surface of the active material following SCF treatment, likely facilitated adequate electron transport through an otherwise poorly conducting FeF₂ phase. Similarly, CoF₂ cells displayed high initial capacities (up to ~ 650 mAh g⁻¹ at a potential of 1.2 V vs. Li/Li⁺), although significant capacity fading ensued in the subsequent cycles. Ex-situ XRD measurements confirmed a poor reversibility in the conversion sequence for CoF₂, with a complete loss of CoF₂ crystallinity and the sole presence of a crystalline LiF phase following charging.

1. Introduction

Since the advent of Li-ion battery technology, considerable research effort has focused on the discovery and development of electrode materials as candidates for future Li-ion batteries. In particular, nanostructuring of conventional cathode materials, namely LiMO₂ and LiMPO₄ (M = Fe, Co, Mn, Ni etc.), has attracted much focus, owing to shorter Li⁺ diffusion lengths and hence, improved intercalation kinetics. Whilst attractive, first-row transition metal oxides and phosphates suffer from relatively low Li⁺ ion storage capacities (e.g., ~ 170 mAh g⁻¹ in the case of LiFePO₄), and thus their specific energies are limited. The requisite properties of future Li-ion batteries such as increased capacity, enhanced cyclability, rate performance, amongst others, coupled with their ever increasing popularity as drivers for modern and demanding electronic devices and electric/hybrid-electric vehicles (EV/HEVs) etc., challenge researchers to seek ever more desirable materials with the properties to meet such rising demand.

In more recent times, researchers have considered the so-called ‘conversion’ electrodes as potential alternatives to the Li⁺ intercalation host. The reason for their supposition lies with the inherent ability of the conversion candidate to utilise the full range of oxidation states available in the corresponding metal atom (Fe, Mn, Co etc.). The nature of such conversion chemistries typically results in redox transitions involving more than one electron and hence, the potential for greater specific capacities. Typical examples of conversion materials include transition metal oxides (MOₓ), phosphides (MPₓ), sulphides (MSₓ), and fluorides (MFₓ), and have been the subject of recent excellent review articles. While conventional Li⁺ intercalation hosts operate on the physical insertion and removal of Li⁺ ions into and out of the local structure, conversion electrodes undergo their redox transitions in the absence of Li⁺ intercalation, during which a complete reduction of the metal to form metallic nanoparticles of dimensions < 5 nm, embedded in a matrix of Li-X (X= O, S, O, F etc.), results as depicted in equation 1.₄

\[\text{M}_a\text{X}_b + (b \cdot n)\text{Li} \leftrightarrow a\text{M} + b\text{Li}_n\text{X} \quad (1)\]

Initially, conversion materials were only considered useful as negative Li-ion electrodes owing to their relatively low operating potentials vs. Li/Li⁺. Metal fluorides, however, have been touted as one class of conversion materials with potential use as a positive electrode since the highly ionic nature of the M-F bond results in more feasible cathodic operating potentials. However, to their detriment, such high ionicity also renders potential MFₓ...
candidates poorly conducting and, coupled with the formation of an insulating Li-X phase following their conversion, may lead to a reduction in the efficiency of electron transfer and hence, poor electrochemical performance.

Iron (II) fluoride, FeF₂, which crystallises in a rutile, tetragonal structure (space group: P₄₂/mnm), is one such MF₅ conversion candidate since it offers a high theoretical capacitance (~565 mAh g⁻¹), at a theoretical electrode potential of 2.66 V vs. Li/Li⁺. Such attributes could potentially lead to FeF₂ cathodes displaying considerably higher energy densities compared to their intercalation analogues. The potentially high energy density may, however, be somewhat restrained as FeF₂ exhibits known Mott-insulator properties. Poor conductivity is an unfortunate and regular feature of many prospective Li-ion cathodes and is typically challenged by the addition of electrically conducting agents, e.g., C, Cu, Ag etc., to the electrode mix, or by grafting layers of such materials to the active material surface either in situ or via post-synthetic techniques. Further to such treatments, it is accepted that a move to nanoscale dimensions may influence properties such as electrical conductivity versus their bulk counterparts. As such, a tailored synthesis of MF₅ conversion materials having improved electrode properties may permit their use in Li-ion technology.

Whilst several examples of iron (III) fluoride (FeF₃) cathodes have been reported in the literature, including nanowires, thin-films, carbon nanocomposites, and the hydrated form, FeF₅·0.33H₂O, much less has been reported on the synthesis and electrochemical performance of the analogous FeF₂ phase alone. A recent report by Reddy et al. has shown C-FeF₂ to be a promising candidate. It is important to note that, although the complete reduction of FeF₃ affords higher theoretical discharge capacities (~ 712 mAh g⁻¹ vs. 565 mAh g⁻¹, respectively), at slightly higher electrode potentials (see table 1), previous work has demonstrated an increasingly ineffective conversion process in FeF₂ following successive charge-discharge cycling. In addition, Yamakawa et al. identified that charging of FeF₃ cells following electrochemical conversion was associated with a transition from an original ReO₃-type structure to that of a defective rutile phase. FeF₃ does, however, possess the inherent ability to insert ~ 0.5 mol Li⁺ before the onset of electrochemical conversion, which has led to its use as a more passive intercalation electrode with capacities reported approaching 200 mAh g⁻¹, at voltages which are beyond the scope of FeF₃⁺,CoF⁺,Li⁺+ or FeF₃⁻,CoF⁻,Li⁻. To this end, FeF₂ may be considered a somewhat more model conversion system, displaying reversible conversion character while beneficially involving fewer phase transitions compared to that of FeF₃. It should also be noted that the complete reduction products of FeF₂ and FeF₃ (Fe⁰ and LiF), are theoretically equivalent, indicating a predictably similar electrochemical pathway should occur during their electrochemical conversion (subsequent to an initial Fe²⁺ → Fe⁰ transition in FeF₃); the mechanism of which, is still a subject of heavy scrutiny.

Cobalt (II) fluoride, CoF₂, which also crystallises in tetragonal form (space group P₄₂/mnm), is another interesting candidate not least given cobalt’s extensive use in early generation Li-ion cells (as LiCoO₂). In addition, CoF₂ extends a theoretical capacity of ~ 553 mAh g⁻¹ at a slightly electrode potential of 2.74 V vs. Li/Li⁺, leading to theoretical energy densities as high as 1500 Wh kg⁻¹.

Previous studies, however, have outlined an incompatibility of phase-pure thin-film CoF₂ electrodes in conventional organic-based electrolytes, which has led to their relatively low levels of evaluation as potential Li-ion conversion candidates. A partial stability of CoF₂ in organic electrolyte was achieved by depositing a layer of lithium phosphorus oxynitride (Lilon) onto the surface of CoF₂ thin-films by a pulsed laser deposition (PLD) process, where such coatings led to the limited cyclic evaluation of CoF₂ as a potential negative Li-ion electrode. Phase-pure CoF₂ cathodes have also been evaluated by Wall et al. which displayed high initial capacities (~ 600 mAh g⁻¹ at 1.0 V vs. Li/Li⁺), however, such cells also displayed significant capacity decline over 25 discharge-charge cycles. CoF₂ has therefore, been somewhat disregarded as a potential conversion electrode to-date, however, a review of its electrical properties with Li⁺ is still a facet that should not be ignored.

Herein this chapter details a novel supercritical fluid (SCF) synthesis of FeF₂ and CoF₂ powders using [Fe(tta)] (tta = 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione), as a single-source precursor for the synthesis of FeF₂ powders and [Co(hfac)₂·2H₂O] (hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), similarly, for the synthesis of CoF₂ powders. Previously, [Co(hfac)₂·2H₂O] precursors have been used for the growth of CoO or Co₃O₄ thin films by MOCVD while a similar Fe-based precursor, [Fe(acac)₃] (acac = pentane-2,4-dione), has been employed for the growth of FeO₃ thin-films in supercritical CO₂. This is the first apparent synthesis of Fe- and Co-containing fluorides using [Fe(tta)] and [Co(hfac)₂·2H₂O] as single-source precursors by direct chemical routes. The as-obtained FeF₂ and CoF₂ electrodes display high initial discharge capacities (up to ~ 1100 mAh g⁻¹ at 1.0 V vs. Li/Li⁺) in the case of FeF₂, and ~ 600 mAh g⁻¹ at 1.2 V vs. Li/Li⁺ for CoF₂.

2. Experimental Section

2.1 Supercritical Fluid Synthesis of FeF₂ Powders

FeF₂ powders were synthesised using the β-diketone, [Fe(tta)] (iron (III) - thonyltrifluoroacetonate), as a single-source precursor according to procedures reported in the literature. 0.2 g of [Fe(tta)] was dissolved in 15 ml of dry toluene and sonicated for 3-5 min to ensure complete dissolution. The [Fe(tta)] precursor solution was then injected into a sealed supercritical fluid (SCF) stainless steel reaction cell (24 ml total volume, High Pressure Equipment (HiP) company), and heated to 400 °C at a ramp rate of 30 °C min⁻¹, and held for 1 h. An illustrative representation of the batch SCF setup is displayed in figure 2.1. After 1 h, the SCF cell was cooled to room temperature naturally (high pressure cells should never be quenched with liquids), and slowly depressurised. The FeF₂ product was isolated by decantation, washed with acetone to remove trace impurities and excess solvent and air-dried at room temperature for at least 24 h, forming the final brown-coloured powder product.

2.2 Supercritical Fluid Synthesis of CoF₂ Powders

CoF₂ was prepared using [Co(hfac)₂·2H₂O] (cobalt (II) - hexafluoroacetylacetonate), as a single-source precursor which was used as received from Sigma-Aldrich and treated in a similar SCF batch method as described in 2.1.1. Typically, 0.2 g of
[Co(hfac)₂2H₂O] precursor was dissolved in toluene (15 ml) and sonicated for 3-5 min, before being injected into a sealed stainless steel reaction cell (24 ml total volume, High Pressure Equipment (HIP) company), and heated to 400 °C at a heating rate of 30 °C min⁻¹ and held at this temperature for 1 h. After 1 h, the reaction cell was cooled to room temperature and slowly depressurised. The CoF₂ product was isolated by means of decantation, washed with acetone to remove trace impurity and excess solvent and air-dried at room temperature for at least 24 h forming the final pink coloured powder.

2.3 Material Characterisation

X-ray diffraction (XRD) measurements were performed on a Philip’s XPert diffractometer using Cu Ka radiation (1.5406 nm) operating at 40 kV and 35 mA. Scanning electron microscopy (SEM) images were collected on a FEI Quanta 650 microscope operating at 10 kV and transmission electron microscopy (TEM) images were collected on a JEOL JEM 2100 TEM operating at 200 kV. EDX spectra were collected on an Oxford Instruments (INCA) EDX system fitted to the TEM. Thermogravimetric analysis (TGA) was carried out at a heating rate of 40 °C min⁻¹ in air using a Mettler Toledo TGA/DSC1 STAR system.

For the electrochemical measurements, electrode slurries were prepared by mixing the active powder, acetylene black (Alfa Aesar, corp.), and PVDF (Sigma Aldrich) in a ratio of 75:25:5 by mass, respectively. Absolute EtOH was used to ensure adequate consistency of the slurries. The slurries were then cast on to pre-cleaned Al-foil and dried at 120 °C for several hours before mechanically pressing and further drying at 120 °C for at least 24 h. CR2025-type coin cells were assembled in a glovebox filled with high purity Ar gas, using pure Li chips (MTP corp.), serving as the negative electrode and Celgard® 2320 PE/PP/PE membranes as separator. The electrolyte was a solution of 1M LiPF₆ in EC:DMC (50:50 v/v). Galvanostatic cycling was carried out in tetravalent state (Ti) solution in the order of 0.5 – 1 mg. Respective current densities and capacities were determined on the mass of active material loading.

3. Results and Discussion

3.1 Synthesis and Structural Characterisation of FeF₂

FeF₂ powders were prepared via a novel supercritical fluid synthesis using [Fe(tta)₃] as a single-source precursor, dissolved in toluene. The reaction setup is depicted in figure 1. Supercritical conditions were attained by the batch-method by sealing the as-prepared precursor sol in a high pressure reaction cell, followed by the thermal treatment at 400 °C for 1 h. Previously, [M(tta)₃] (M = Cd, Zn), single-source precursors have been used in the preparation of CdO, CdS or CdF₂ phases by a solution route, and ZnO by a MOCVD route, respectively, following coordination of the bis-complex precursor sphere with tmeda (N,N,N’,N”-tetramethylmethylenediamine), to form the single-source precursor adduct [M(tta):tmeda]. Similarly, the precursors [Mg(hfac)₂] and [Mg(TFacac)₂], (TFacac = 1,1,1-trifluoro-2,4-pentanedione), have been used to prepare MgF₂ films by the thermally-driven disproportionation and decomposition of the respective precursors at temperatures exceeding 500 °C. The similarity of precursor composition in these instances outlines the role of synthetic conditions in directing the formation of either metal-oxide, sulphide or fluoride as the major product phase. Under supercritical CO₂ conditions, the non-fluorinated [Fe(acac)₃] (acac = pentane-2,4-dione), single-source precursor has been used in the preparation of Fe₃O₄ however, this is the first apparent synthesis and direct formation of FeF₂ by means of either conventional thermal treatment or via a supercritical route using [Fe(tta)₃] as a single-source precursor.

To elucidate potential FeF₂ formation under SCF conditions, a consideration of the thermal decomposition of [Fe(tta)₃] is necessary, where the formation of either oxide, sulphide or fluoride as mixed or single phases may be expected depending on the nature of decomposition; the process of which, likely varies considerably as changes are employed to the reaction conditions (temperature, time etc.). Such phases are not easily distinguishable by means of TGA given that their expected residues are appreciably similar. The variance in C-X (X = S, O, F), bond dissociation energies of [Fe(tta)₃] (C=O = 799 kJ mol⁻¹, C-S = 272 kJ mol⁻¹ and C-F = 480 kJ mol⁻¹), could possibly indicate a preference for the formation of a dominant FeS₃ phase, however, XRD analysis (figure 2), of the brown powder product indicated the formation of tetragonal-phase FeF₂ as the single-phase reaction product (JCPDS card no.: 81-2272), with reflections at 20 values of 26.99, 33.31, 38.56, 43.17, 51.66, 55.40, 62.89, 66.10 and 69.68° corresponding to the (110), (101), (111), (210), (211), (220), (112), (301) and (202) set of planes in tetragonal FeF₂, respectively. No impurity peaks belonging to sulphide or oxide phases, or otherwise originating from the analogous Fe₃O₄ or other Fe₄⁺ impurities, were discernible in the XRD profile. Interestingly, Malandrino et al. have shown that an analogous [Cd(tta)₃]:tmeda precursor adduct favoured the formation of CdO via a conventional solution route when thermal treatment was carried out between 300 – 700 °C under flowing O₂, while CdF₂ was favoured under flowing N₂ between 350 – 450 °C and CdS favoured above a temperature of 550 °C. These results suggest that the formation of CdF₂ is favoured at the lower temperature region (350 – 450 °C), while dissociation of the CF bond under such conditions is likely preferential to that of C-S, which is located within the heavily stabilised 5-membered ring of the respective thiophene group. Malandrino et
al. have also alluded to the possibility of CdS or S phase formation existing in non-crystalline form which could further react with CdF to form CdS at the higher temperature regions.

In the case of FeF₂, a temperature of 400 °C was used to attain supercritical conditions (toluene) which likely facilitated a similar decomposition process of the [Fe(tta)₃] precursor. TGA analysis of the [Fe(tta)₃] precursor collected under flowing N₂ depicts a two-phase transition process resulting in the complete decomposition of the precursor over the temperature range between 400 – 450 °C. A two-phase transition commences with a ~ 1 wt. % loss occurring at a temperature of ~ 165 °C (ascribed to the onset of precursor melting), followed by a decomposition step over the range 210 – 400 °C resulting in a further loss of ~ 93 wt. % and a residue of ~ 6 wt. %.

The formation of FeF₂ as a single phase component underlines SCF conditions were also favourable to the formation of Fe existing in the +2 oxidation state, given that no FeF₃ or other Fe³⁺ species were discernible in the XRD powder patterns; such an effect is particularly of note while the availability of F in the precursor was abundant and that the relative Gibbs energy of formation, ΔG, of FeF₃ is considerably lower than that of FeF₂ under standard conditions (-972 vs. -663 kJ mol⁻¹, respectively). It must also be suggested, however, that there lies a possibility of such Fe³⁺ phases existing in the amorphous state or critically, existing in feature size below the X-ray coherence length used in the evaluation of the product composition.

![Fig 2. XRD profile of FeF₂ powders obtained from the SCF synthesis of Fe(tta)₃ at 400 °C for 1 h. The red bar markers indicate the respective positions (20) of FeF₂ (JCPDS: 81-2272).](image)

The morphology of the FeF₂ powders was investigated by SEM and is displayed in figure 3. The SEM images reveal the formation of a variety of different structures consisting of small-scale nanorods which widely assembled into urchin-like features, to larger, more-elongated ribbon-like structures. The diameter of these structures varied from approximately 100 nm (short nanorod structures) to the wider, up to ~ 2 μm sized elongated rods. TEM analysis of the FeF₂ structures (figure 3(d)), revealed a highly crystalline nature with an amorphous layer surrounding the FeF₂ domains, measuring approximately 5 nm in thickness. The clearly observable lattice fringes, which correspond to an inter-planar (d) spacing of 3.13 Å, may be indexed to the (110) set of planes in tetragonal FeF₂ (JCPDS: 81-2272), while the clearly defined lattice fringes visibly extend the length of the FeF₂ structure and confirm the high crystallinity of the FeF₂ powder product. The ~5 nm amorphous layer may be attributed to the deposition of carbonaceous species following decomposition of the organometallic precursor or the organic reaction medium (toluene) used during preparation. The presence of amorphous carbon is also indicated in the XRD profile (shown in figure 2), displaying a broad (20 – 35° 20), bending region, a feature often characteristic of non-graphitic carbon types. The presence of carbon is further confirmed by Raman analysis, displayed in figure 4, which shows the D and G bands characteristic of sp² and sp³ carbon types.

![Fig 3. (a,b) SEM images of FeF₂ obtained from [Fe(tta)₃] at 400 °C in supercritical toluene (c,d) TEM images of FeF₂ obtained under the same conditions. The lattice spacing indicated in figure 5.2(d) may be indexed to the (110) set of planes in FeF₂ (JCPDS: 81-2272).](image)

![Fig 4. Raman spectra of a FeF₂ powder sample collected over the range 1200 – 1800 cm⁻¹, showing D (sp²) and G (sp³) bands characteristic of carbon types.](image)

2.2 Synthesis and Characterisation of CoF₂ Powders

CoF₂ powders were synthesised under a similar SCF method following the thermal decomposition of the [Co(hfac)₂·2H₂O] in supercritical toluene at 400 °C. The XRD profile of the as-obtained, pale-pink coloured CoF₂ powder is shown in figure 5.
The crystal reflections at 20 values of 26.83, 34.14, 39.26, 42.90, 52.19, 55.17, 58.21, 62.22, 65.26 and 66.50° correspond to (110), (101), (111), (210), (211), (220), (002), (310), (112) and (301) set of planes in tetragonal CoF2 (JCPDS: 33-0417), respectively, and confirms the presence of CoF2 existing as the major product phase. A similar bending region in the XRD profile (20 – 35° 20) was also observed, and is ascribed to the existence of amorphous carbon. The thermal decomposition of [Co(hfac)]2∙2H2O] is predictably less complex than that of [Fe(tta)]3 given the likely possibility of forming just two separate phases as the major product (CoO2 and CoF2), as opposed to a third MSx phase. In this instance, the formation of CoF2 was pronounced under supercritical conditions at 400 °C with such conditions favouring the formation of Co in the +2 oxidation state while the availability of F in the [Co(hfac)]2∙2H2O] precursor (12 F⁻ per formula unit), was markedly abundant. The possibility of forming CoOx phases was also considered, however, the apparent lack of oxide formation as a result of supercritical processing (in what is a closed reaction system), may be explained by the lack of available oxygen existing in the reaction medium (toluene), coupled with the strong dissociation energy of the C=O bond of the organometallic precursor (C=O = 799 kJ mol⁻¹). Such an effect would also describe the lack of FeF3+x phases resulting from the supercritical processing of [Fe(tta)]3 under similar conditions. A direct comparison of the relative Gibbs’ energy of formation for the respective phases (CoOx, CoF2), is difficult in this instance, given the large deviation from standard conditions under SCF processing.

![Fig. 5 XRD profile of CoF2 powders obtained from the SCF synthesis of Fe(hfac)2 at 400 °C for 1 h. The red bar markers indicate the respective positions (2θ) of CoF2 from PDF pattern no. 33-1074](image)

SEM analysis of the CoF2 powder samples indicated the formation of near-uniform spherical morphologies, ranging in diameter from 0.7 – 1.8 µm as shown in figures 6(a) and (b). Closer inspection of the CoF2 spheres revealed a distinctive surface roughness, indicating that the spheres are comprised of a series of smaller, nanoscale features of an acicular-like crystal type. Higher resolution TEM images displayed in figures 6(c) and 6(d), confirmed that the larger CoF2 spheres formed from a series of dendritic-like structures, whose feature sizes ranged between 20 – 30 nm in diameter. The nanoscale featuring of the CoF2 powders in this instance may enhance the size of the electrode-electrolyte interface versus the respective bulk counterpart; such properties may possibly favour Li⁺ transport by facilitating improved electrolyte access. It must also be considered, however, that such increases in the available surface area compared to that of the bulk phase may augment the formation of unwanted side interactions with the electrolyte, resulting in increases in respective decomposition products.

![Fig. 6 (a,b) SEM images of CoF2 spheres obtained at 400 °C from [Co(hfac)2∙2H2O] using supercritical toluene and (c,d) TEM images of CoF2 spheres obtained under the same conditions.](image)

### 2.3 Li⁺ Induced Conversion of FeF3 Powders

Table 1 summarises the theoretical electrode potentials and capacities of Fe- and Co- fluorides, outlining their practical use as potential positive electrodes in Li-ion technology; theoretical electrode potentials, E(V), are given in the literature. Our study has focused on the synthesis of FeF3 and CoF2 powders and their use as prospective Li-ion cathodes since the equilibrium potentials of FeF3 and CoF2 fall within feasible limits for such applications. Although the corresponding tri-fluoride phases afford higher theoretical energy densities given their increased working potentials and capacities (table 1), much less has been reported on the model MF2 conversion systems alone.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Oxidation state</th>
<th>Theoretical capacity (mAh g⁻¹)</th>
<th>E(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeF2</td>
<td>+2</td>
<td>571</td>
<td>2.66</td>
</tr>
<tr>
<td>FeF3</td>
<td>+3</td>
<td>712</td>
<td>2.74</td>
</tr>
<tr>
<td>CoF2</td>
<td>+2</td>
<td>553</td>
<td>2.85</td>
</tr>
<tr>
<td>CoF3</td>
<td>+3</td>
<td>694</td>
<td>3.61</td>
</tr>
</tbody>
</table>

The equilibrium potential of FeF2 is predicated from thermodynamic considerations at 2.66 V vs. Li/Li⁺ (table 1). Such potentials are considerably higher than those afforded by the ferric oxides, sulfides and phosphides, outlining the practical use of FeF2 as a positive Li-ion electrode. The premise of the FeF2 conversion mechanism assumes the reversible reaction as depicted in equation 2. Although the complete mechanism is...
somewhat bypassed in this form, the formation of LiF and Fe\(^0\) accounts for the complete reduction of Fe\(^2+\) in the original species via a 2 e\(^-\) process, resulting in a theoretical capacity of \(\approx 571\) mAh g\(^{-1}\). Such capacities are considerably higher than those afforded by conventional intercalation hosts such as LiFePO\(_4\) (\(\approx 170\) mAh g\(^{-1}\)), and LiCoO\(_2\) (\(\approx 120\) mAh g\(^{-1}\)) and lead to vast specific energies exceeding 1500 Wh kg\(^{-1}\).

\[
\text{FeF}_2 + 2\text{Li}^+ + 2e^- \rightarrow \text{Fe}^0 + 2\text{LiF}
\]

The first discharge curves of the FeF\(_2\) cells cycled at a lower cut-off potential of 1.0 vs. Li/Li\(^+\) at the current densities of 10 and 20 mA g\(^{-1}\) (\(\approx 0.017\) and 0.035 C rate, respectively), are displayed in figure 7(a). Both discharge profiles show a sloping voltage region commencing at \(\approx 2.6\) V vs. Li/Li\(^+\) (open circuit voltage = 2.95 V), which accounts for some \(\approx 50\) mAh g\(^{-1}\) of the total capacity obtained in the first cycle. A portion of this sloping region may be attributed to the formation of SEI layers on the active material surface: Initially, such passivation layers were only considered for lithium or carbon anodes, however, research has confirmed the existence of the SEI layer on cathodic surfaces, including that of FeF\(_2\).\(^{17}\) Such occurrences may arise as a result of spontaneous contact with electrolyte or predictably, during normal electrochemical operation, however, no structural confirmation of this layer is presented. Additionally, a number of other possible mechanisms have been predicted which could account for the initial sloping region, preceding the onset of electrochemical conversion. Although the existence of impurity Fe\(^{3+}\) phases, including that of FeF\(_2\), were not detected in the XRD profile (figure 5), a reduction of trace amounts of amorphous Fe\(^{3+}\) phases must be considered; indeed, the reduction of Fe\(^{3+}\) phases is known to occur in the 3.0 – 2.0 V region and is thus a distinct possibility.\(^{17}\) Conversely, a number of conversion-competing processes have also been proposed,\(^{17,18}\) although there remains some degree of uncertainty as to their proposition. Yamakawa et al.\(^{17}\) studied the local structures formed as a result of cycling FeF\(_2\) cathodes by Li\(^+\) and Fe\(^+\) solid-state NMR coupled with ex-situ XRD measurements, and concluded that the early stages of discharge in FeF\(_2\) involved both intercalation and conversion processes. It is generally accepted that reduction of Fe\(^3+\) to Fe\(^1+\) is unlikely via simple 1x1 tunnelling, thus any possible intercalation is likely to proceed following reduction of Fe\(^3+\) impurity, or via the formation of intermediate species formed as a result of a disproportionation reaction of FeF\(_2\) to form Fe\(^0\) and Fe\(^{3+}\) species, outlined in equations 3 - 6.\(^{17}\)

\[
\text{FeF}_2 \rightarrow \text{Fe}_{1-x}\text{F}_2 + \text{Fe} \quad (3) \\
\text{Fe}_{1-x}\text{F}_2 + x\text{Li} \rightarrow \text{Li}_x\text{Fe}_{1-x}\text{F}_2 \quad (4) \\
\text{Fe}^{1+}_{x-1}\text{F}_{2-x}\text{F}_2 \rightarrow \text{Li}_x\text{Fe}_{1-x}\text{F}_2 \quad (5) \\
\text{Li}_{2-x}\text{Fe}_{1-x}\text{F}_2 \rightarrow 2\text{LiF} + \text{Li}_{2-x}\text{Fe}_{1-x}\text{F}_2 \quad (6)
\]

The first step (equation 3) proposed by Yamakawa et al.\(^{17}\) involves the lithium-driven displacement of Fe from the FeF\(_2\) lattice, forming Fe\(^0\) and Fe\(^{3+}\), whilst also maintaining a rutile Fe\(_{1-x}\)F\(_2\) structure. Such structures are thought to accommodate the insertion of Li\(^+\) ions in a more typical intercalative fashion. The possibility of further Li\(^+\) insertion to form Li\(_x[\text{Li}_x\text{Fe}_{1-x}]\)F\(_2\) is also considered. The reactions such as those proposed in equations (3) to (6), are believed to fall within the 3.0 – 2.0 V voltage window and could potentially compete with an onset of the conversion reaction outlined earlier in equation (2). In support of this fact, molecular dynamic simulations have also predicted early intercalation in FeF\(_2\) cathodes by means of analysing Li\(^+\) exposure to the low energy (001) and (110) surfaces of FeF\(_2\), where it was identified that a competitive process existing between Li\(^+\) intercalation along [001] channels and that of electrochemical conversion results.\(^{18}\) Such mechanisms are suggested to be widely governed by the rate of discharge and crystal orientation of the FeF\(_2\) local structure during exposure to Li\(^+\).\(^{18}\) Such a competitive mechanism is, however, challenged somewhat by experimental observation that FeF\(_2\) undergoes a rapid structural conversion mechanism in the absence of intercalation to the corresponding Fe\(^0\) and LiF phases with no Fe\(^+\) intermediaries.\(^{20,19}\) A recent communication by Wang et al.\(^{21}\) has also depicted the conversion process of FeF\(_2\) for the first time by in-situ TEM observation. The authors found a surprisingly fast conversion process occurs (several minutes for FeF\(_2\) nanoparticles), forming small diameter (1 – 3 nm) metallic Fe\(^0\) nanoparticles, surrounded by an amorphous LiF phase which ensued as a result of a propagation of a reaction front through the active FeF\(_2\) domains. The absence of any identifiable Fe\(^{3+}\) phases by EELS measurements suggested that the conversion mechanism followed an intermediary pathway although, notably, the authors also suggest the possibility of Li\(^+\) intercalation resulting in supersaturation of the FeF\(_2\) host resulting in a transformation from a crystalline rutile structure to that of an amorphous phase which could be responsible for the lack of detection of a lithiated (intercalated), phase by means of electron diffraction measurements.\(^{21}\) Following on from the early sloping region in our discharge profile (figure 7), a long plateauing region develops which is attributed to the relevant phase transition(s) associated with the electrochemical conversion reaction of FeF\(_2\). At the lower current density of 10 mA g\(^{-1}\) (\(\approx 0.035\) C rate, 1C = 571 mAh g\(^{-1}\)), the onset of plateauing ensues from \(\approx 1.65\) V before showing very gradual decline over the remainder of the discharge process. After reaching a potential limit of 1.0 V, the capacity obtained following the first discharge cycle was \(\approx 1100\) mAh g\(^{-1}\), representing approximately twice that of the theoretical capacity assumed for a 2 e\(^-\) conversion process in FeF\(_2\). On increasing the current rate to 20 mA g\(^{-1}\), the discharge profile displayed a gradual decline over the first \(\approx 400\) mAh g\(^{-1}\), followed by an inflection from \(\approx 1.5\) V before a slight plateau region ensued nearer the low-voltage limit. After reaching a potential limit of 1.0 V, the capacity returned was some \(590\) mAh g\(^{-1}\), representing only a slight over-capacity with respect to theoretical maxima (571 mAh g\(^{-1}\)); in both cases, the high capacities returned outlines the highly promising potential of FeF\(_2\) during early stages of electrochemical cycling. The disparity in capacity and the nature of discharge between the comparative current densities does, however, indicate a large degree of sensitivity of the conversion process to the applied discharge rate. Such a result is not surprising given the current understanding of the relatively sluggish kinetics of the conversion sequence, coupled by a predictably high incidence of overpotential which arises from poor electronic conductivity and polarisation effects.
The first, third and fifth discharge-charge (voltage) curves for the FeF$_2$ cells taken at a current density of 20 mA g$^{-1}$ over the same potential range are displayed in figure 7(b), while the 25-cycle discharge curves are shown in figure 7(c), depicting the evolution of the discharge process. The average discharge potential displayed increases slightly with respect to the initial conversion reaction (black line, figure 7(b)), which is likely due to the dramatically reduced active material size, resulting as a consequence of electrochemical conversion, thus leading to enhanced efficiency in the subsequent electrochemical conversion cycles. Notably, the first charge curve to 5.0 V (black line), displays a somewhat significant overcharge region, the nature of which may be ascribed to increases in SEI formation at elevated potential. Such overcharge, however, remains relatively insignificant following the first cycle which would also corroborate its attribution to instances of SEI formation during the first charge cycle. While potentially detrimental, the high charge voltage was necessary in order to attain appreciable cycling for our FeF$_2$ powders (see later). Also apparent, is the distinct observation of disparity between the relevant shapes of the discharge and charge curves, a feature of hysteresis which is both a common and undesirable feature of the conversion electrodes.$^4$

Previously, it was shown that charging of FeF$_3$ cells at potentials up to 4.0 V results in the recovery of a lithiated-Li$_x$FeF$_3$ phase while further charging of FeF$_3$ cells to 4.5 V results in an initial recovery of a defect tri-rutile FeF$_3$ phase.$^7$ To this end, capacity fading has been expressed as a consequence of a poor reversibility in conversion sequence and has been observed by ex-situ TEM/electron diffraction measurements, which depicts the co-existence of α-Fe and LiF phases existing with FeF$_3$ after successive (50) charge cycles.$^7$ Such incidences may suggest higher charging potentials may be required over time. In our case, charging the FeF$_2$ cells below 4.5 V, even at the relatively low current density of 20 mA g$^{-1}$, resulted in poor Columbic efficiency ($Q_{\text{charge}}/Q_{\text{discharge}}$), leading to poor capacity retention over relatively few discharge-charge cycles (not shown).

Figure 7(d) displays the cycling performance of our FeF$_2$ powders at a current density of 20 mA g$^{-1}$. The specific capacity of the first discharge at a potential limit of 1.0 V was ~ 590 mAh g$^{-1}$, representing a conversion of approximately 2.1 Li$^+$/formula unit FeF$_2$. In the second cycle, a reduction in capacity is observed after formation of the SEI layer, however, the discharge capacity at this stage is still largely agreeable with the theoretical approximations based on a total reduction of Fe$^{2+}$ in FeF$_2$ (~ 571 mAh g$^{-1}$). The midpoint voltage displayed over the discharge curve was ~ 1.38 V, therefore representing a second-cycle energy density of 715 Wh kg$^{-1}$; energy densities of this magnitude are considerably higher than those which may be afforded by conventional Li-ion intercalation cathodes such as LiFePO$_4$ (~ 610 Wh kg$^{-1}$). A degree of capacity fading was evident over the first four cycles, however, some stabilisation of capacity was attained notably over the first 15 cycles at ~ 300 mAh g$^{-1}$, while a discharge capacity of ~ 220 mAh g$^{-1}$ was returned following 25 charge-discharge cycles, representing a final conversion of approximately 1.1 Li$^+$/formula unit FeF$_2$. Such capacities are largely similar to C-FeF$_2$ nanocomposites discharged to 1.3 V after the same number of cycles,$^{16}$ and still superior to theoretical capacities exhibited by some of the more conventional intercalation hosts, e.g., LiCoO$_2$ (~ 120 mAh g$^{-1}$) and LiFePO$_4$ (~ 170 mAh g$^{-1}$); the lower average working voltage and low current rate of FeF$_2$ remains, however, potentially significant.

Although the discharge capacity of FeF$_2$ remained appreciable over the cycling period, the large degree of overpotential leads to large round-trip energy inefficiencies which may currently preclude their use in commercial environments. In addition, the high charging potentials required may lead to dramatic increases in electrolyte oxidation products, e.g., FeF$_6$, LiF$_6$, LiPO$_4$F$_2$, resulting in abject increases in SEI formation which could potentially lead to increased levels of capacity fading. In addition, the rate capability of FeF$_2$-based electrodes, owing to their intrinsically poor conductivity and the relatively limited kinetics of the conversion sequence, is also an issue facing the utilisation of FeF$_2$ and other similar conversion candidates. The data reported in this work so far was collected at the relatively low specific currents of 10 and 20 mA g$^{-1}$, while cycling at an elevated current density of 200 mA g$^{-1}$ (~ 0.35 C rate), resulted in a discharge capacity of just ~ 72 mAh g$^{-1}$ after 25 cycles (not shown). FeF$_2$, therefore, may find limited application in future high-rate Li-ion batteries due to its sluggish and complex conversion chemistries. Such examples depend on rapid Li$^+$ diffusion kinetics which are ill-afforded in this case, and may depend on suitable open host structuring. Although the conversion kinetics of FeF$_3$ are demonstrated to be cumbersome at room temperature, both Reddy$^{16}$ and Badway et al.$^{10}$ have shown a vast improvement of an equivalent carbon-composite FeF$_2$ cathodes operating at 40 and 70 °C, respectively. Interestingly, the operation of FeF$_2$ cathodes at 70 °C was largely similar to those of C/FeF$_3$ cells cycled at 25 °C, indicating the rate limiting steps during conversion of FeF$_2$ lie at potentials < 2.0 V.

2.4 Li$^+$ Induced conversion of CoF$_2$ Powders

Theoretically, CoF$_2$ extends the possibility of delivering a high capacity of 553 mAh g$^{-1}$ at a slightly increased electrode potential
compared to the FeF$_2$ (2.85 V vs. Li/Li$^+$; see table 1), resulting in potentially high energy densities exceeding 1500 Wh kg$^{-1}$. The acicular-like CoF$_2$ powders prepared by our SCF route (displayed in the SEM images, figure 4), are a potentially useful morphology in electrode technology, and beyond, owing to an increase in the tapped density provided by their spherical structuring, while in addition, the nanoscale structuring which comprises the overall CoF$_2$ form, allows for an increased size of the electrode/electrolyte interface, and offering shorter Li$^+$ diffusion paths. While such characteristics have important implications for conventional intercalation hosts, such as favourable Li$^+$ transport, much less is known about such influences on conversion-type electrodes which undergo significant morphological changes as a result of their conversion. To this end, the influence of starting morphology on the first and subsequent discharge cycles remains unclear; however, it is reasonable to stipulate that an overall reduction in the size of the active material prior to conversion may facilitate an enhancement in the respective conversion kinetics. While these features are implicated before the initial discharge state, much less consideration is given to these effects after successive electrochemical cycling in which the active metallic species are already cycled between significantly smaller nano-sized features. Recently, Li et al.$^7$ reported the ability of FeF$_3$ nanowire architectures to largely maintain their overall structuring on cycling by forming a network of interconnected α-Fe domains, surrounded by a matrix of LiF. Equivalent data has not been presented for CoF$_2$ architectures, although a similar pathway is predicted.

The overall electrochemical conversion reaction of CoF$_2$ is outlined in equation (7), where the expected sequence affords LiF and Co$^0$ as the reduction species in a 2 $e^-$ process. Previous reports of CoF$_2$ architectures operating as conversion candidates have thus far been limited due to an instability of CoF$_2$ in conventional liquid organic electrolytes. Fu et al.$^{22}$ prepared LiPON-coated CoF$_2$ thin-films by a PLD method, which delivered a capacity in the first discharge of $~600$ mAh g$^{-1}$ at the anodic potential limit of 0.01 V vs. Li/Li$^+$, while the introduction of their pure CoF$_2$ thin-films to the electrolyte solution resulted in severe instability. In this case, the introduction of LiPON coatings to the CoF$_2$ thin-film surface was thought to facilitate a reduction in the unfavourable interaction with liquid electrolyte, serving as a physical barrier layer in preventing its dissolution. The reduction species were confirmed by ex-situ XRD measurements, signified by LiF (220) and Co (111) reflections in the XRD profile.$^{22}$ Recently, Wall et al.$^{63}$ prepared both CoF$_2$/C and Co/LiF/C composite cathodes without such protective features; although the CoF$_2$/C composite displayed higher initial capacity than that of the Co/LiF/C composite (~600 and ~150 mAh g$^{-1}$ in the first discharge cycle, respectively), the Co/LiF/C composites displayed good capacity retention while the CoF$_2$/C composites attained just 15 % capacity retention within the cycling period (50 cycles). The application of Co/LiF in composite form has also been displayed with meritable results.$^{31}$

In the case of our SCF-prepared CoF$_2$ powders, little visible interaction with the electrolyte solution (LiPF$_6$ dissolved in EC/DMC 50:50 vol. %) was evident. The apparent stability of the CoF$_2$ powders in electrolyte was ascribed to the potential formation of carbon surfaces following the decomposition of both organometallic precursor and residual toluene during synthetic processing. To this end, evaluation by galvanostatic cycling was possible (figure 8), although consideration must be given to the long term influence of stability of CoF$_2$ with progressive electrochemical cycling in liquid organic electrolytes.

Limited data is available thus far with regards to detailed conversion mechanisms in CoF$_2$, although it has been proposed that CoF$_2$ extends an incomplete conversion mechanism with a further possibility of reaction between the newly formed nanograins of metallic Co$^0$ with LiF (equation 7), the process of which is outlined in equations 8 & 9. $^{22}$

$$\text{CoF}_2 + 2\text{Li} + 2e^- \leftrightarrow \text{Co} + 2\text{LiF} \quad (7)$$

$$x\text{Co} + \text{LiF} \leftrightarrow (1-x)\text{LiF} + x\text{FCo} + x\text{Li}^+ \quad (8)$$

$$(-)\text{LiF} + x\text{FCo} + x\text{Li}^+ + xe^- \leftrightarrow x\text{Co} + \text{LiF} \quad (9)$$

Figure 8(a) shows the initial discharge-charge curves of the CoF$_2$ powders prepared by SCF synthesis. At a discharge potential limit of 1.2 V in the first cycle, a capacity of ~535 mAh g$^{-1}$ was obtained, representing ~97 % of the theoretical discharge capacity with respect to a full 2 $e^-$ conversion reaction of CoF$_2$ (~553 mAh g$^{-1}$). Thus far, first discharge capacities of this magnitude for CoF$_2$ conversion systems have only recently been reported.$^{23}$ A similar capacity (~600 mAh g$^{-1}$), was also obtained at the anodic potential limit of 0.01 V,$^{22}$ although the use of such voltages preclude their direct comparison. The first discharge profile extends a dual plateauing system with such regions extending from ~2.7 and 1.5 V vs. Li/Li$^+$, The first plateauing region (~2.7 – 2.3 V), accounts for some ~400 mAh g$^{-1}$ of the total discharge capacity obtained, while the lower plateauing region (~1.5 – 1.2 V), is significantly shorter, accounting for ~130 mAh g$^{-1}$. Oxidation (fluorination) steps are discernable in the voltage curves, appearing as a sloping region from 4.3 – 4.6 V followed by a long, flat charge profile occurring from 4.6 – 4.8 V. The total charge capacity obtained at the upper cut-off potential was ~2000 mAh g$^{-1}$, representing significant overcharge compared to that of the first discharge capacity (535 mAh g$^{-1}$). Such an event indicates that complete charging of the
CoF₂ cells overlaps the potential regions where the formation of electrolyte oxidation products is known to occur, through which may culminate in concomitant increases in unwanted electrolytic side reactions. Interestingly, the discharge capacity increased in the second cycle to ~ 650 mAh g⁻¹, which is significantly higher than predicted; the possibility of an insertion/interaction of metallic Co with LiF to form a CoLiF intermediary has been proposed, although there is no evidence for this in our study. The third and subsequent discharge cycles offered declining capacity performance, however, the dual-plating regions which extend throughout the discharge profile offer somewhat similarity to those of the first cycle and suggests a similar yet increasingly inefficient sequence of electrochemical reductions occurred. Fu et al. have shown that the first discharge reaction (equation (7)) is largely irreversible, while the charge reaction of Co⁰ and LiF affords CoF₂ (here, x < 1), with only ~ 50% of the Co⁰ and LiF reconverted to CoF₂ in the re-conversion process. The poor reversibility in the conversion sequence would account for the > 70% loss of capacity experienced following the first few cycles, which results in a return of ~ 100 mAh g⁻¹ after 10 cycles, while further cycling afforded yet further capacity decline, resulting in just ~ 30 mAh g⁻¹ following the cycling period (25 cycles). In support of a poorly reversible sequence, the final phases in the charged CoF₂ cells were identified by ex-situ XRD measurements (figure 8 (d)). The collected XRD patterns indicated a loss of CoF₂ crystallinity following cycling, with no discernible peaks originating from the starting CoF₂ phase. Broad peaks identifiable at 20 values of 38.5, 44.8 and 65.3° may, however, be indexed to the crystal reflections of the (110), (200) and (220) set of planes in LiF (PDF 78-1217). The apparent loss of CoF₂ crystallinity as detected by XRD measurements would indicate that all of the original CoF₂ phase participated in the earlier conversion (discharge) reaction, while the charging process was either incomplete, or that the resultant CoF₁ phase that reformed was amorphous or sufficiently small so as to exceed the X-ray coherence length. Further, no reflections originating from Co phases could be identified to indicate the reversibility of the system. The indication of crystalline LiF existing in the charged state, however, supports the notion of a poorly reversible conversion mechanism as proposed by Fu et al. An in-situ analysis of CoF₂ conversion with Li⁺ is therefore preferential in order to best understand the mechanistic and structural evolution in the conversion sequence. While the specific capacity and operating voltage of CoF₂ remains agreeable with magnitudes that theoretical considerations would predict, improved electrochemical performance of CoF₂, particularly pertaining to extended cycle life, may result from a complete understanding of the conversion sequence. The optimisation of CoF₂ electrodes, such as the grafting of electrically conducting layers to the CoF₂ surface, could result in enhanced conversion kinetics and a more favourable re-conversion process, while the development and utilisation of alternative electrolyte compositions more suited to the operating potentials could allow further study of the respective cycling processes. A thorough understanding of the conversion mechanisms and the respective kinetics involved may allow for complete utilisation of CoF₂ with stable performance as a future Li-ion electrode.

3. Conclusions

In conclusion, a method of synthesising FeF₃ powders using a novel SCF route using [Fe(tta)₃] as a single-source precursor in toluene at 400 °C was presented. CoF₂ powders were also prepared under a similar approach, using [Co(hfac)₂·2H₂O] serving as single-source precursor. This represents the first display of utilising such precursors in the formation of highly crystalline MF₂ powders under supercritical conditions. TEM analysis revealed an amorphous layer (~ 5 nm), surrounding the FeF₂ domains, which was ascribed to the deposition of carbonaceous species following the synthetic treatment under SCF conditions. Due to the intrinsically insulating nature of FeF₂, the conducting carbon layers surrounding the FeF₂ domains likely enabled adequate electron transfer. The FeF₂ cells display high initial energy capacities (up to 1100 mAh g⁻¹ and 595 mAh g⁻¹ at 10 and 20 mA mA g⁻¹, respectively), and are relatively stable over 25 charge-charge cycles. A second discharge energy density of 810 Wh kg⁻¹, which is significantly higher than those afforded by the conventional intercalation electrodes such as LiFePO₄ and LiCoO₂, outlines the high-potential of FeF₂ cathodes. The kinetics of the FeF₂ conversion sequence were appreciably poor at room temperature, however, resulting in diminished electrochemical performance at increased discharge rates. In addition, the relatively low average working potential of FeF₂ (a deviation of > 1.0 V per the calculated e.m.f.), coupled with a large overpotential remains pertinent. Further work is required in order to assess the potential of FeF₂ cathodes with improved rate performance, which may be achieved by further reducing the active particle size or through the introduction of dopant species.

CoF₂ spheres, which were comprised of nanorods in the order of 20 nm diameter, also displayed appreciable capacity during early stages of electrochemical cycling, however, an unfavorable re-conversion mechanism and a possible ill-reaction with the organic electrolyte rendered the SCF prepared phase-pure CoF₂ a poor Li-ion electrode after relatively few electrochemical cycles. However, through the advancement of electrolyte compositions which are stable at higher voltages, or via composite formation, CoF₂ cannot be disregarded as a potential positive electrode at this stage.

4. References


