Title
Economic shocks and growth: spatio-temporal perspectives on Europe's economies in a time of crisis

Author(s)
Doran, Justin; Fingleton, Bernard

Publication date
2013-06-24

Original citation

Type of publication
Article (peer-reviewed)

Link to publisher's version
http://dx.doi.org/10.1111/pirs.12048
Access to the full text of the published version may require a subscription.

Rights
© 2013 The Authors. Papers in Regional Science © 2013 RSAI. This is the peer reviewed version of the following article: Doran, J. and Fingleton, B. (2014), Economic shocks and growth: spatio-temporal perspectives on Europe's economies in a time of crisis. Papers in Regional Science, 93: S137–S165., which has been published in final form at http://dx.doi.org/10.1111/pirs.12048. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Item downloaded from
http://hdl.handle.net/10468/2461

Downloaded on 2019-08-02T09:00:30Z
Economic shocks and growth: spatio-temporal perspectives on Europe's economies in a time of crisis

Justin Doranab and Bernard Fingletonb

aSchool of Economics, University College Cork, Cork, Ireland
bDepartment of Land Economy, University of Cambridge, Cambridge, UK

\textbf{Abstract:} The response by regional and national economies to exogenous impulses has a well-established literature in both spatial econometrics and in mainstream econometrics and is of considerable importance given the post-2007 economic crisis, which is characterised by a period of severe global instability resulting from unprecedented economic shocks. This paper focuses on dynamic counterfactual predictions and impulse-response functions derived from appropriate econometric models. These provide insight regarding the question of whether responses to economic shocks are transitory or whether they have a permanent effect. Analysis shows that output shocks have had permanent effects on productivity so that economies have tended not to return to the pre-shock path but rather adjust to new levels. This suggests that the current recession will be embodied permanently within the memory of some of Europe's leading economies as a hysteretic effect.

\textbf{Keywords:} vector error correction, European Union, economic shocks, crisis, Verdoorn law

\textbf{JEL codes:} C32, C53, E27, R11
1. Introduction

The question of spillovers and contagion between economies is a highly relevant topic for study in this current era of globalized impulses and responses, and with the prospect of negative shocks in parts of the Eurozone threatening to affect the stability of the whole EU region, regardless of whether countries are Eurozone members or not, it seems timely to give some additional consideration to the possible mechanisms and routes of transmission, focussing on selected EU economies. One of the motivations for our paper is the work of Cerra and Saxena (2008) and Cerra, Panizza, and Saxena (2009), who look at the impact of shocks on national growth rates. Their work suggests that countries that have experienced economic disruption tend to lower growth rates over the long run. However, every country does not react in the same way, and the differentiated reaction to severe economic shocks in different countries may have an effect on the convergence or divergence of national economies. Thus we are interested in whether some EU economies’ productivity1 growth paths will be affected by the severe downturn in 2007 experienced across the EU and other developed economies. To do this, we look at reactions to previous recessions, which may provide insights regarding relative economic vulnerability. We examine two aspects of the impact of shocks. First we look at the post-recession path of productivity relative to what we might expect given previous trends. Second, we look at the responses of economies to hypothetical shocks within their own economy, and in addition we consider responses to shocks spilling over from other economies. We ask the questions, are some economies more influential in terms of the responses they invoke, and, are some economies more exposed to negative spillover effects?

1 Defined as GDP divided by employment.
The paper is also motivated by Fingleton, Garretsen and Martin (2012), who explore the regional rather than national dimensions of impulse response analysis, and also by the review of the concept of regional resilience by Martin (2012). One feature of Fingleton et al (2012), is the application of vector-error correction (VEC) models to produce forecasts and impulse-response graphs. In contrast, the use of vector autoregressive (VAR) models would embody a presumption of stationarity so that shock-effects are only transient. Our approach allows the possibility that shocks can have permanent effects. A further advantage of our approach is that it allows us to assess the impact of shocks in one country on another country without needing to appeal to a W matrix, as is common in the spatial econometrics literature. By not needing to specify a W matrix we avoid having to impose a-priori expectations on the mechanisms through which shocks are transmitted between countries.

Our empirical analysis shows that shocks have permanent effects, so that economies tend not to return to the pre-shock path but rather adjust to new levels, and that shocks in one country can have an impact on other countries’ growth paths. This indicates that the post-2007 recession will be embodied permanently within the memory of some of Europe's economies as a hysteretic effect, so that they are evidently being shifted permanently to different productivity paths.

We chose to study national economies over European regions for two reasons. The first is that by using national economies we have access to quarterly data from 1960 Q1 to 2011Q1, allowing us to provide a more detailed and accurate analysis of the impact of shocks over this time period than if we had used annual regional data for a shorter time period. Annual data would smooth out some of the variation observed in quarterly data and a shorter time period would prohibit the use of VEC models. Secondly, policy is formulated at a national and
European level, with implications for regional economies. Our analysis provides insights into how national shocks affect national economies, with these national shocks having implications for the composite regions of the national economy.

To summarise, the original contribution of the paper is threefold. First, it extends the work of Cerra et. al. (2008; 2009), but differs significantly in that it is concerned with non-stationary series (i.e. uses VEC not VAR models). Thus it contributes to the hysteresis and resilience literature focussing on the potentially permanent, rather than transient, impact of shocks on subsequent growth. Second, it extends the work of Fingleton et. al. (2012) by modelling both GDP and employment levels combined to give productivity levels, applying this to the international level rather than being restricted to UK regions. And thirdly, it focuses on contagion and spillover effects, asking the question, ‘do shocks in neighbouring countries have a major effect domestically?’

2. Theoretical Background and Preliminary Data Analysis

We frame our analysis through the lens of Verdoorn’s law, which in its dynamic form posits a positive relationship between the rate of output growth and the rate of productivity growth. Verdoorn’s law suggests economies of scale in production, such that higher levels of output result in higher levels of productivity. We focus on the effect of a negative shock to output on countries’ productivity. In doing so this paper provides an empirical analysis of whether output shocks have a permanent or transitory effect on countries’ productivity. Verdoorn’s law, which can be traced back to Verdoorn (1949), is typically expressed as:

$$r_j = r_a + \lambda g_j$$ \hspace{1cm} (1)
Where \(r_a \) is the autonomous rate of growth, and \(r_j \) and \(g_j \) are the growth rates of labour productivity and output, respectively, for country \(j \), and \(\lambda \) is the so-called Verdoorn coefficient, which typically takes a value of 0.5, implying increasing returns to scale (McCombie 1983; Thirlwall 1983; Fingleton and McCombie 1998; Angeriz, McCombie and Roberts 2008). We do not propose to estimate equation (1), but instead appeal to Verdoorn’s law as the theoretical underpinning of our analysis\(^2\). Essentially we assess whether negative shocks to \(g_j \), as a result of recessions, have a permanent effect on the growth path of \(r_j \).

Consideration of Dixon and Thirlwall’s (1975) circular causation model, which embodies the Verdoorn law, points to international interaction between productivity and output growth. The model can be summarised thus:

\[
\begin{align*}
 \text{output growth} & \quad g_{jt} = \gamma x_{jt} \\
 \text{export growth} & \quad x_{jt} = \eta p_{jt} + \delta p_{jt} + \varepsilon z_{jt} \\
 \text{domestic price growth} & \quad p_{jt} = w_{jt} - r_{jt} + \tau_{jt} \\
 \text{productivity growth} & \quad r_{jt} = r_{ja} + \lambda g_{jt}
\end{align*}
\]

in which \(x_{jt} \) is domestic export growth, \(p_{jt} \) is the growth rate of domestic prices, \(p_{jt} \) is the growth rate of foreign (competitor) prices and \(z_{jt} \) denotes real income growth in foreign markets. Also \(w_{jt} \) denotes domestic wage growth (the nominal wage inflation rate), and \(\tau_{jt} \)

\(^2\) Traditionally Verdoorn’s law applies to the manufacturing sector, so there is only approximate concordance with our analysis which is at the level of the overall economy.
is the rate of change of the mark up on labour costs. The subscript t indicates the time period.

From this it is easy to show that if $\text{abs}(\gamma \eta \lambda) < 1$ then an equilibrium\(^3\) exists at which

$$r_j = a_0 r_{ju} + a_1(w_j + \tau_j) + a_2 p_f + a_3 z_f$$

$$g_j = b_0(w_j - r_{ju} + \tau_j) + b_1 z_f + b_2 p_f$$

(3)

This shows that domestic productivity growth and domestic output growth depend on the growth of foreign (competitor) prices and real income growth in foreign markets. While we do not formally embody the Dixon and Thirlwall (1975) model within our econometric model, it does suggest possible and plausible mechanisms of international contagion and transmission allowing a shock to foreign markets to have repercussions domestically.

To illustrate the impact of the recession on the EU and US economies’ productivity, and on specific countries, we focus on the case of Ireland, which is a small open economy which one would anticipate would be quite exposed to external shocks. Figures 1 through 3 display the actual and counterfactual level of productivity for Ireland, the EU15 and the US, with the solid vertical line representing the onset of the 2007 recession. If we examine Figure 1, we see the drop in Ireland’s productivity since 2007q3. It could be suggested that the recession’s impact in Ireland was more a reflection of internal conditions, with a bubble economy leading into 2007q3, than the shock itself. However while this might have contributed to the strength of the negative response, it is clear that the shock was a mainly exogenous phenomenon affecting economies across the globe rather than being principally the consequence of over-rapid internal expansion. For example, the EU15 economies were not expanding quite so fast,

\(^3\)This is the general solution to a difference equation in g showing the transition dynamics to equilibrium when a single period time lag is introduced to one of the equations.
and yet we still see a significant downturn in relation to expectation after 2007q3, likewise the US economy (see Figures 2 and 3)a.

[insert Figures 1, 2, and 3 around here]

We explore data for major EU economies by fitting a (suite of) VEC model(s) to give the likely post-recession counterfactual path. We look at the historical evidence going back to the recession of the early 1990s (or in the case of Ireland the 1980s) in order to examine what the data tell us about shock impacts. Subsequently, we show that shocks to one economy spill over to others with differentiated impacts that do seemingly reflect differing internal conditions. With negative shocks, we might say that some economies are more exposed than others to outside shocks; on the other hand a positive boost to an outside economy may have greater benefits internally. Thus our analysis of Ireland, which is a small, open economy, is particularly interesting, because it is more likely to be more vulnerable, but on the other hand is likely also to benefit more from a surge in growth in other economies.

3. Hysteresis
We are interested in the following questions. What is the likely long term effect of the 2008 economic crisis? Will it produce a permanent reduction in productivity, or will it have the effect of stimulating productivity as an outcome of a process of creative destruction. By considering the response of productivity to output shocks we are implicitly considering the

a The dynamic forecasts in Figures 1 are based on the estimates of a VEC model with two cointegrating vectors and two lags, with GDP and employment series for Ireland, EU-14 and the US. The forecasts in Figure 2 and 3 are based on the estimates of a VEC model with three cointegrating vectors and one lag with GDP and employment series for the US and the EU-15. Productivity is calculated following the estimation of the VEC models as GDP/employment.
response of output and employment to output shocks as productivity is given as output divided by employment. Our model embodies the possibility of hysteresis, which is a long established concept transgressing the various sciences which typically has been applied to explain the persistence of negative shocks to unemployment. Thus according to Blanchard and Summers (1987) the concept of hysteresis refers to “the development of alternative theories of unemployment embodying the idea that the equilibrium unemployment rate depends on the history of the actual unemployment rate. Such theories may be labelled hysteresis theories after the term in the physical sciences referring to situations where equilibrium is path-dependent” (pp 290). Thus a negative shock leading to permanently higher unemployment may occur if the long term unemployed lose skills and miss out on job training, so that they ultimately become unemployable. In contrast, the employed continue to benefit from learning-by-doing. This viewpoint of hysteresis in unemployment is supported by Jaeger and Parkinson (1994) and Jacobson, Vredin and Warne (1997).

More recently Paul Krugman (2011) has argued that “there is a real concern that if the slump goes on long enough, it can turn into a supply-side problem, because investment will be depressed, reducing future capacity, and because workers who have been unemployed for a long time become unemployable”. Thus “hysteresis can mean that the costs of failing to pursue expansionary policies are much greater than even the direct effects on employment. And it can also mean, especially in the face of very low interest rates, that austerity policies are actually self-destructive even in purely fiscal terms: by reducing the economy’s future potential, they reduce future revenues, and can make the debt position worse in the long run” (Krugman 2011).

[insert Figure 4 around here]
The opposite of hysteresis, or what we term anti-hysteresis, is embodied in Friedman’s (1964; 1993) so-called plucking model, which assumes that shocks are temporary in nature and have no permanent effect on an economy’s long-run growth ceiling or growth trend (see Figure 4). This return to the pre-shock growth path is not what we anticipate for the EU economies, with the prospect of long-term ‘damage’ as the result of a negative shock, although a negative shock could also produce long-term positive benefits. Martin (2012), Fingleton et al. (2012) and Cross et al. (2009) note that it is possible to envisage a number of different possible hysteretic outcomes of a shock and that the outcome may depend on the variable considered as well as the underlying structure of the economy. Cross et al. (2010) appeal to a Schumpeterian point of view of creative destruction to explain these hysteresis effects.

Two possible negative hysteretic outcomes can be identified. In the first instance, the shock causes a downward shift in the variable’s growth path, but the growth rate returns to its pre-shock rate. This may result from a shock destroying a significant proportion of the economy’s productivity capacity and jobs. This is depicted in Figure 5(a). The second negative outcome is where, not only is there a downward shift in level, but also a reduction in growth rate. This may result from the destruction of large sections of an economy’s industrial base which may have a negative multiplier effect on other sectors. This is displayed in Figure 5(b). Two positive hysteretic reactions can also materialise following a negative shock. In both instances, the economy more than rebounds from the shock and initially experiences rapid growth, in excess of the pre-shock rate, following the initial downward effects of the shock. This may be due to optimistic business expectations, the availability of spare capacity to expand, or new firm foundations. The distinction between the two possible positive hysteretic effects is whether the post-shock growth rates can be
maintained. If the scope for continued rapid expansion becomes exhausted, the economy may return to pre-shock growth rates, albeit at a higher level. This is depicted in Figure 5(c). However, if the economy can maintain the post-shock growth rates this implies continued growth at a rate in excess of the pre-shock rate. For instance the shock may have released productive resources that were formerly employed in other now defunct low growth and low productivity sectors, causing permanently faster output and productivity growth than hitherto. This is depicted in Figure 5(d).

4. The data
Our analysis focuses on using employment and GDP series over the period from 1960q1 to 2011q1 to study the impact of shocks to GDP on productivity. The quarterly data for GDP for all the EU countries and the US are obtained from the OECD’s historical quarterly national accounts series. In order to derive a quarterly historical time series the most recent OECD national accounts are linked to older historical series. The method utilised to link the differing series, which on occasion are assembled using different methodologies, starts by identifying the ratio between the newest series and the older series in the first common year. This ratio is then multiplied along the older series to render it comparable to the newest series. This method is applied across all breaks in methodology for all countries (OECD 2011b). The GDP data are converted by the OECD into US dollars and are adjusted for purchasing power parity (PPP). Specific PPPs are utilised to convert European countries’ GDP and its components in national currencies into US dollars. When converted by means of PPPs, the expenditure on GDP for different countries is measured using the same set of international prices so that comparisons between countries reflect only differences in the volume of goods and services purchased. National converted data can then be aggregated to
obtain aggregates for groups of countries, which are expressed at the same set of international prices (OECD 2011a).

While data are available for GDP from 1960q1 to 2011q1, quarterly employment data are not as readily available. Employment data for the US and Italy are available quarterly back to 1960, however, this is not the case for the remaining fourteen countries considered. In the case of Ireland, data are only available from 1997 to present. However, annual employment data are available from 1960 for all countries contained in the sample from the Total Economy Database (The Conference Board 2012). This presents an opportunity to construct quarterly employment series for all countries going back to 1960q1 using the Chow-Lin best linear disaggregator. A brief summary of this procedure is presented in the Appendix 1.

5. **Econometric Model**

Following the empirical framework adopted by Fingleton et al. (2012), we attempt to capture the likely effects of negative shocks on productivity econometrically by our implementation of VEC models, which are designed to model nonstationary series. As a prelude to our VEC modelling exercise, we test for unit roots in our employment and GDP series, and from this show that shocks to these series do have permanent rather than transient effects, as implied by the VEC model. Details of the Dickey-Fuller tests for the VEC models estimated by this paper are presented in the Appendix 2., for the full time period from which the IRFs are derived, and Appendix 3., for the sub-periods modelled to generate the dynamic forecasts for the counterfactual productivity levels.

5.1 **Specification**

Our counterfactual prediction of productivity levels and of the impact of hypothetical shocks depends on the underlying VEC model being an accurate description of reality. The VEC model specification is determined by the number of lags in the model (the order) and by the
rank of the long-run response matrix, in other words the number of linearly independent rows, as indicated by the number of non-zero eigenvalues (or characteristic roots) or cointegrating vectors. In each of the VEC models there are six series, so the rank is the number of independent cointegrating relationships between these six series. Having determined the number of lags\(^5\), we consider the outcome of applying the so-called Pantula principle (Pantula 1989) used by Johansen (1992), Hansen and Juselius (1995) and others to identify the exact model structure including the rank. The Pantula principle allows a joint test of whether there are deterministic variables (a trend and constant) within the cointegration space together with a test of cointegration rank. However it is not a panacea for model choice (Doornik, Hendry and Nielsen 1998; Hjelm and Johansson 2005). In their Monte Carlo study, Hjelm and Johansson (2005) find that the Pantula principle is “heavily biased towards choosing the model with an unrestricted constant when the model with a restricted trend is the true one” (pp. 691). Accordingly, rather than confine analysis to a single, ‘optimal’ model for each country chosen via the Pantula principle, we also estimate a range of different supplementary models with different orders and different ranks. From this we can indicate the degree of robustness of our predictions and impact analysis to model misspecification.

The intuition behind the Pantula principle is that while a number of possible specifications of the VEC model are feasible it is possible to identify one specification which best describes the data. The specifications of the VEC model vary depending on the number of cointegrating vectors identified and on whether it is appropriate to include a constant or trend term in the short run or long run component of the model. The Pantula model starts with the most restrictive model specification and progresses to the most relaxed specification sequentially testing for cointegration rank in each specification. The first instance in which

\(^5\) See Appendix 4, Tables A4.1 and A4.2 for details.
the null hypothesis of rank ≤ r is not rejected is taken as the most appropriate model and number of cointegrating vectors. Therefore, following the Pantula principle allows us to identify our model specification and cointegration rank simultaneously.

Detailed consideration of the issues surrounding the application of the Pantula principle points us towards specifications that appear to be feasible for our data. The approach involves a sequence of nested models based on restrictions on the full model, as given in equation (4). It starts with the most restrictive specification and moves through to the least restrictive, testing whether the number of cointegrating vectors satisfy r = 0. Then we repeat, moving across from most to least restrictive specification, checking for r = 1, and so on repeating for r = n - 1, where n = 6 series. For each test the null hypothesis is that the true rank ≤ r, in other words that the columns of β in equation (4) greater than r are null. The alternative is that r < rank ≤ full rank. Thus the trace test compares the likelihoods of the rank r model and the full rank model. If the difference is significant, we cannot assume that the true rank is r and eliminate higher ranks. If the difference is not significant, we assume that the rank is r. Going through the sequence of model comparisons, the stopping point is the first occasion on which we ‘accept’ the null that the rank ≤ r.

\[\Delta Z_t = \Gamma_1 \Delta Z_{t-1} + \ldots + \Gamma_{k-1} \Delta Z_{t-k-1} + \mu_i + \delta_i t + u_i + \alpha (\beta' Z_{t-1} + \mu_2 + \delta_2 t) \] (4)

Equation (4) is the full, unrestricted model in which Z is an n x 1 vector comprising six endogenous variables observed at time t, namely a (target) country’s log GDP and log employment levels, the log of aggregate GDP and employment in the other 14 countries of

6 Failure to reject r = 0 implies that the appropriate model is a VAR in stationary first differences. On the other hand rejecting all hypotheses regarding r implies that the data are stationary in levels, i.e. Z~I(0).
the EU15 (which we refer to as EU14, although of course this variable changes as we change
the ‘target’ country excluded from EU15), and log GDP and log employment levels in the
US. The Γ's are $n \times n$ matrices, μ_i and δ_i are $n \times 1$ vectors of parameters, and u_i is an $n \times 1$
vector of disturbances. Also α and β are $n \times r$ rank matrices, so that μ_2 and δ_2 are $r \times 1$
vectors of parameters. Since the variables are in logs, the first differences ΔZ_t are
exponential growth rates.

The number of lags k is first identified by fitting VAR models, which are mathematically
equivalent to VEC models with full rank. Given k we can proceed to consider, jointly with
the determination of rank, hypotheses about the inclusion or exclusion of the constant terms
μ_2 and the trend terms $\delta_2 t$ in the long run cointegrating vector (CE), and the presence or
absence of the constant terms μ_1 and trend terms $\delta_1 t$ in the short run (VAR) model.

There are 5 possible models which can be obtained by placing various restrictions, or none,
on the parameters of equation (4) and comparing likelihoods. Assume that we restrict both
the VAR and the CE (corresponding to the terms within brackets), so that there is no constant
and time trends in either, hence $\mu_1 = \delta_1 = \mu_2 = \delta_2 = 0$. This would only be appropriate if

7 The results of the SBIC tests applied to each VAR model are displayed in Appendix 4. It can be noted that for
the full sample Ireland, Germany, France and Italy models an optimal lag length of two is identified whereas for
the UK an optimal lag length of one is identified. For the sub-periods lag lengths of two apply for Ireland and
Germany and one for the remaining countries.

8 The log likelihood for the VEC is derived assuming the errors are independently and identically distributed
(i.i.d.) normal. However normality can for practical purposes be replaced by weaker assumptions that the errors
are merely i.i.d., since these alone support many of the asymptotic properties that are the basis of our inferences
(Johansen, 1995).
each variable had a zero mean. Similarly, we can exclude consideration of the totally unconstrained model in which \(\mu_i \neq 0, \delta_1 \neq 0, \mu_2 \neq 0, \delta_2 \neq 0 \), even though this is likely to fit the data quite well. It implies quadratic trends so that if the variables are entered as logs, as in our case, this implies an ever increasing or ever decreasing rate of change and one which is likely to produce poor out-of-sample forecasts. There is also some discussion in the literature about the general plausibility of model (5), in which \(\mu_i = \delta_1 = \delta_2 = 0 \), in macroeconomic analysis because of the exclusion of linear trends, so we exclude this so-called restricted constant model from consideration, leaving us with models (6) and (7), namely the models with unrestricted constants in both CE and VAR components, and restricted trends in the CE component respectively. However even here there is reason to doubt the validity of the trace test used to compare models (6) and (7) (Johansen 1995; Ahking 2002; Hjelm and Johansson 2005). Johansen (1992) only suggests the use of the Pantula principle for choosing between Models (5) and (6). This therefore casts some doubt on the Pantula principle as a valid model selection procedure, although the issues relating to its application do point to the consideration of just two feasible rivals, namely models (6) and (7):

\[
\Delta Z_t = \Gamma_1 \Delta Z_{t-1} + \ldots + \Gamma_{k-1} \Delta Z_{t-k-1} + u_t + \alpha (\beta' Z_{t-1} + \mu_2)
\]

(5)

\[
\Delta Z_t = \Gamma_1 \Delta Z_{t-1} + \ldots + \Gamma_{k-1} \Delta Z_{t-k-1} + \mu_1 + u_t + \alpha (\beta' Z_{t-1} + \mu_2)
\]

(6)

\[
\Delta Z_t = \Gamma_1 \Delta Z_{t-1} + \ldots + \Gamma_{k-1} \Delta Z_{t-k-1} + \mu_1 + u_t + \alpha (\beta' Z_{t-1} + \mu_2 + \delta I)
\]

(7)

These models are increasingly less restrictive. In the case of (5), which has a (restricted) constant within the cointegration space \(\mu_i = \delta_1 = \delta_2 = 0, \mu_2 \neq 0 \), there are no time trends in the model, and only intercepts in the CE, with none in the VAR. We exclude further
consideration of this model. The model (6) specification with (unrestricted) constants entails that $\delta_1 = \delta_2 = 0, \mu_2 \neq 0, \mu_4 \neq 0$ hence it contains no trends in either VAR or CE, but each has intercepts. With differences in logs, this implies constant growth in levels and hence this model is a plausible option. Likewise model (7) has (restricted) trends within the cointegration space so that $\delta_1 = 0, \delta_2 \neq 0, \mu_2 \neq 0, \mu_4 \neq 0$, hence there are intercepts in both VAR and CE, and trends in CE but no trends in VAR. The trend in CE therefore picks up some additional growth that is not captured by (6).

5.2 Results
Our chosen models on which our predictions and impulse-response analysis are based are versions of models (6) and (7) with an appropriate rank and order. The selected, or more or less ‘typical’, models are highlighted in Appendix 5 alongside the results of the Johansen trace tests for each VEC model estimated. Although we choose models for which the null hypothesis $\text{rank} \leq r$ is not rejected, additional predictions and response functions of different specifications are illustrated in Appendix 6. We show a panoply of outcomes because of the criticism that can be laid against formal application of the Pantula principle, as outlined above. In cases where different specifications produce essentially the same outcomes as are produced by our preferred model, we can be more confident in our interpretations than in cases where there is more variability in outcome. Therefore, the alternative traces on our graphs allow us some form of quality control, enabling us to weigh our interpretations below according to their relative stability across different specifications.

We estimate two sets of VEC models, one for our dynamic forecasts and one for our IRFs. In the first instance we estimate VEC models using data up to the point of a recession and subsequently predict forward using dynamic forecasts. So, for example, we use data from 1960 to 1991 to estimate a VEC model for Germany in order to derive a counterfactual
forecast of what productivity could have looked like post 1991. For our IRFs we estimate our VEC models using all the available data, from 1960 to 2011, allowing us to analyse the response of countries to hypothetical shocks over the full time period.

6. Actual and counterfactual responses to shocks
This section presents historical evidence of the response of Ireland, Germany, the UK, France and Italy’s productivity to recessionary shocks. The counterfactual and actual productivity series for each country following a recession are displayed in Figure 6. As the onset of recessions occur at different times in each country, VEC models based on different time periods must be analysed. For Ireland, which barely showed sign of recession in the 1990s, the recession chosen commenced in 1982q3. The other countries went into recession at different times in the 1990s, commencing with 1990q2 for the UK, 1992q1 for Germany, and finally 1992q2 for France and Italy. As stated previously, while the results presented here are based on one preferred model, a series of alternative models are estimated to indicate the degree to which our analysis is robust to model respecification. The dynamic forecasts generated from these alternative specifications are presented in Appendix 6, Figure A6.1.

6.1 Response of Productivity to Recession
Figure 6 shows actual and counterfactual quarterly productivity series, with the counterfactual growth rates based on dynamic forecasts showing the hypothetical growth path of productivity for the country should the recession not have occurred⁹. Of interest to us is whether actual productivity remains permanently lower than the counterfactual productivity, signifying a permanent fall in productivity, or whether the actual level returns to or exceeds the counterfactual level. If productivity remains below its counterfactual level or indeed rises

⁹ Based on coefficient estimates from our preferred specifications obtained from the data prior to the onset of recession.
above it, a hysteretic effect can be deemed to have occurred, where the recessionary shock has resulted in a permanent lowering/raising of the country’s productivity growth path.

As Ireland barely suffered a recession in the 1990s the more severe 1980s recession is used. It can be observed that following the recession productivity in Ireland dipped temporarily but appears to return to the pre-shock productivity level. This is not dissimilar to anti-hysteresis (Figure 4), since Irish productivity more or less returns to its pre-shock growth path, implying only transient shock effects that fade away over time. However, during the late 1990s and following the 2007 crisis Ireland again falls below the counterfactual productivity forecast.

A similar pattern emerges for the other four countries considered. Following the recession, actual productivity falls away from the counterfactual level but in the case of Germany, France and Italy it remains permanently lower. This suggests that the recessions experienced by these three countries resulted in a permanent lowering of the productive ceiling, implying that the shocks had a negative hysteretic effect. However, in the case of the UK, actual productivity quickly converges to the counterfactual path after approximately two quarters, and then subsequently superseded the counterfactual level. This suggests that the UK economy responded differently to the recessionary shock of the early 1990s than the other countries considered. The picture emerging for the UK’s productivity path is not unlike Figure 5d which shows the eventuality where the creative elements of a recession outweigh the destructive elements (Cross et al. 2010). This may be partly the result from optimistic business expectations, the availability of spare capacity to expand or new firm foundations. However the fundamental reason is the shake-out of employment, with jobs evidently being replaced by capital and to a greater extent than in the other economies, rather than there being a surge in production and productive capacity. This is the story told by the equivalent
graphs10 of employment and of GDP. While the UK’s GDP tracked expectation fairly closely, employment fell permanently well below expectation, the net outcome being above expectation productivity levels through the projection period. In contrast, in the post-recession period, employment levels in Germany, France and Italy were closer to and even exceeded the counterfactual expectations, whereas GDP remained below the counterfactual. Because it is an outcome based largely on lower employment than expected, despite the positive hysteretic effect on productivity we are reluctant to suggest that the UK economy was more resilient than that of Germany, France and Italy to the recessionary shock in the 1990s.

[insert Figure 6 around here]

Another possible explanation of the varying responses across countries may be economic structure. Martin (2010) notes that one of the central elements of resilience post shock is restructuring involving structural change. Appendix 7 displays the average contribution of each sector to an economy’s GDP pre and post recession. It can be observed that there are some similarities in how countries’ industrial structure evolved following the recessionary shock. For instance, most countries, with the exception of Ireland, observed a decrease in the contribution of industry to GDP following a recession. This decrease in industry appears to have corresponded to an increased contribution to GDP from Financial intermediation, real estate, renting and business activities and also from other service activities. In the case of Ireland the recession also resulted in a reduced contribution from Agriculture, hunting, forestry and fishing.

10 To save space we have omitted the GDP and employment counterfactuals series.
The UK experienced the largest change in average sectoral contribution to GDP following the recession, followed by Ireland, Germany, France and Italy. Given that the UK and Ireland appear to be the most resilient to the recessions studied and they also experienced the largest reallocation of sectoral contribution to GDP this may suggest that structural change does play a role in countries’ responses to recessionary shocks. However, it is beyond the scope of this paper to explicitly test this hypothesis.

7. **Impulse-response analysis**
Our impulse-response analysis is based on orthogonalized impulse response functions (OIRFs) which measure endogenous variables’ responses to a hypothetical one unit (one standard error) shock to one specific endogenous variable occurring at one instant in time. Orthogonalization eliminates contemporaneous correlation and we can therefore ‘shock’ one variable without ‘shocking’ others, thus allowing a causal interpretation. To achieve this we invoke a recursive structure corresponding to the ordering of the Cholesky decomposition of the cross-equation covariance matrix (Enders 2010). However, because the identifying restrictions are arbitrary, with different Cholesky decomposition orderings possible, there are different possible outcomes, although we find that outcomes are robust to different orderings.

In order to identify the responsiveness of countries to shocks originating from within and outside the country, IRFs are derived which show the impact of (i) internal shocks, (ii) shocks from other EU countries and (iii) shocks from the US. Shocks originating in both GDP and employment can be considered, but in line with our Verdoorn law motivation, we limit our analysis here to the impact of shocks to GDP on productivity. The use of IRFs allows us to assess whether impulses from foreign countries are stronger or weaker than local impulses. Secondly, we assess the relative permanency of the response of productivity to GDP shocks.
7.1 Impact of a Shock to GDP on Productivity
The response of countries’ productivity to a hypothetical negative one standard error shock in GDP can be observed in Figure 7. The broad conclusions are as follows. First, we find that the effects of a shock, irrespective of source, are always negative in the short run. Secondly, domestic shocks mainly have a permanent negative effect. Thirdly, in the long run the negative effects of shocks emanating from neighbouring European economies tend to dissipate. Finally, shocks with origins in the US generally have a permanent negative effect.

Of course these are generalizations, and looking in detail we see immediately that there is substantial variation in how countries respond to shocks in terms of response magnitudes, sensitivity to internal and external shocks, the persistence or transience of these shock effects and also whether the shocks have positive or negative long-run effects on productivity.

Starting with Ireland, Figure 7 indicates that GDP shocks, regardless of their origin, clearly have permanent negative effects on Irish productivity, an interpretation generally reinforced by the alternative (less preferred) model outcomes in Figures A6.2 through A6.4. Domestic GDP shocks have the largest negative effect on Irish productivity. The spillover effect of a shock to US GDP produces a less intense negative response, and while remaining negative, the long-run response is only just negative although our alternative models (Figure A6.2) generally support the view of a negative long-run response. Shocks originating in the EU-14 also have a permanent long run negative effect on Irish productivity, though the initial response is slightly positive. However, Figure A6.3 shows that our alternative models exhibit some ambiguity relating to the response in the long-run. The evidence suggests that Ireland may be more sensitive to GDP shocks originating in the domestic economy followed by other EU countries and finally the US economy. Although due to variations in the alternative model specifications we are less confident in our EU shock interpretation.
Turning to Germany, Figure 7 shows that while domestic GDP shocks and GDP shocks originating in the US have permanent negative effects on productivity, the relative magnitude is reversed compared with Ireland. Shocks from the US have a deeper negative effect than domestic shocks suggesting that, unlike Ireland, Germany is evidently more susceptible to outside shocks as opposed to domestic shocks. This is interesting, because one would suppose that Ireland was much more susceptible to external shocks, and the large German economy was more insulated. However, while Figure A6.2 reinforces the view that a US GDP shock has a permanent negative effect on German productivity, our preferred model is definitely more pessimistic than almost all the alternative models considered, while the prediction of our preferred model of the Irish productivity response is in the middle of all the alternatives considered, so the deeper response in Germany may not be so profound as Figure 7 indicates. Interestingly, the response of German productivity to a negative GDP shock in the EU14 is mainly transient with no long-run impact. Like some other countries, Germany is relatively immune to negative external shocks originating from the EU, with no apparent long-run impact on productivity. This prediction is fairly central to the range of reasonably clustered outcomes from our alternative specifications shown in Figure A6.3.

As in the case of Ireland, for the UK our preferred simulations show that domestic shocks have a larger negative effect than US or EU shocks, although again the prediction is towards the bottom of the range of outcomes in Figure A6.4. US shocks also evidently have a persistent but smaller negative effect on productivity. Figure 7 shows that in the long-run shocks originating in the EU14, while initially negative, once again mainly dissipate so that the long-run consequence for productivity is negligible. Figure A6.3 shows that some
alternative specifications produce the same outcome, but some (less preferred) models predict a more positive long-run response.

A negative shock to US GDP also has a large permanent effect on the French economy, relative to a domestic or EU GDP shocks, clearly reducing productivity in the long-run. Somewhat in contrast, a negative GDP shock in the neighbouring EU economies produces positive long-run consequences for French productivity, which is an outcome that is not confined to our preferred specification (see the alternative projections in Figure A6.3). However, a negative domestic shock to France’s GDP is tending towards no long-term negative consequences for productivity, an interpretation supported by almost all outcomes in Figure A6.4. The possibly transient nature of the impact of a domestic GDP shock is unusual compared with outcomes for our other countries.

Italy is similar to France in that shocks originating from the US have the largest negative effects on Italian productivity. However, the consequences of a shock to domestic GDP are also evidently negative in the long-run, tracing a similar path to the US impulse. Italy, like other countries, suffers no long term negative effects from EU shocks, indeed like France it actually experiencing a permanent increase in productivity. These conclusions are supported by the alternative specifications presented in Appendix 6.

[insert Figure 7 around here]

The reasons for the differentiated responses are, we suggest, very much related to the industrial structure of each country and to the size and diversity of economies. Industrial structure may be important as some economies are more cyclically sensitive than others,
typically those dominated by manufacturing may be more prone to the vagaries of the economic cycle. It also appears that larger economies, such as Germany, the UK, France and Italy bounce back and productivity is enhanced in the long-run when subject to a negative impulse from the surrounding 14 EU economies, as though within the EU-14 negative output shocks decimate domestic productive capacity and the larger economies gain in the long-run, capturing neighbours’ markets post-recession whenever domestic productive capacity is reduced. This would be consistent with the increasing returns to scale story embodied with our Verdoorn law which provides a theoretical context for our empirical analysis. The static version of Verdoorn’s law suggests increasing levels of productivity as output increases. Therefore, as domestic economies suffer from a negative shock this should have an adverse effect on productivity. In Dixon and Thirwall’s (1975) model, which incorporates income in other countries, the varying responses of economies to shocks in other countries may be due to varying dependence on price and income in other countries as well as the extent of trade between these countries.

Regarding the counter-intuitive responses of Germany and Ireland to shocks originating domestically and in the US this may be due to the underlying characteristics of these economies. For instance an important consideration may be the degree of flexibility in an economy in terms of its ability to respond and adapt to the loss of export markets and domestic productive capacity. Some economies, perhaps overspecialized in sectors that are vulnerable, may find it difficult to change to other types of production that are more resilient to shocks. Moreover adapting to external shocks may have been easier in economies with smaller, more flexible production units and labour markets than those more dominated by large inflexible enterprises with a large amount of sunk capital dedicated to supplying specialised vulnerable markets. Ireland can be thought of as an economy which has
overspecialised in various industries thought the period studied, most notably construction throughout the late 1990s and up to 2007. This may have made Ireland more susceptible to domestic shocks than to international shocks. Avellaneda and Hardiman (2010) note that Germany, as the largest exporting economy in Europe, may be especially exposed to external demand for its goods and services. If we consider the US as a barometer of the global economy, a negative output shock originating in the US could signal falling demand for German exports in the global economy. Given the overriding importance of exports to the German economy this sensitivity to US shocks may represent a lack of resilience in Germany to shocks in its export markets.

While all European countries may be expected to suffer from falls in the demand for their exports the variation in responses to shocks may be the effect of variegated connectivity across economies, partly as a result of different hierarchical ownership and control patterns for productive capital. For example, decisions made by multinational US companies to cut output and employment both domestically and internationally may impact different economies in different ways as their export markets fall away, and may have had global repercussions for productive capacity and employment levels in subsidiary plants wherever they are located within the EU economies. Therefore, while a shock from the US may impact on Germany through a reduction in demand for their exports, a shock to the US may impact Ireland through its effects on US multinational companies operating in Ireland. These differing connectivity patterns may explain the sensitivity of Germany to US shocks while Ireland appears more susceptible to domestic shocks.

We do however add a word of caution, because our analysis, which is predicated on average impulse-response reactions over the entire quarterly series going back to 1960Q1, masks the
dynamical structural changes that are probably occurring in each country in response to earlier shocks. Thus vulnerability in some sectors to negative shocks, and positive growth in other sectors in response to positive shocks, is very likely to be changing the structural composition of each country over time, and thus also changing the country’s resilience to economic shocks.

8. Conclusions
This paper analyses how selected EU economies’ productivity growth paths have been affected by previous recessions and uses this to cast light on how the post-2007 economic downturn experienced across the EU and other developed economies may impact on their subsequent productivity. The paper firstly looks at the post-recession path of productivity relative to counterfactuals based on pre-recession trends. Secondly, it analyses the responsiveness of economies to hypothetical domestic and external GDP shocks, addressing the question of which of domestic, US or neighbouring EU economies are more influential in terms of the responses they invoke, and, whether some economies are more exposed than others to negative spillover effects.

Five European countries are analysed; Ireland, Germany, the UK, France and Italy. Quarterly GDP and employment levels from 1960q1 to 2011q1 are utilised. A series of five preferred VEC models are estimated which include each of these countries’ GDP and employment, US GDP and employment and an aggregate of the EU15 countries’ (excluding the individual country considered) GDP and employment. From the resulting models we obtain dynamic forecasts and impulse response functions showing the impact of GDP shocks on productivity.

Comparing post-recession outcomes with counterfactual series suggests varying responses to recession. Evidence suggests that the recessions experienced by Germany, France and Italy
in the 1990s resulted in these countries’ productivity shifting to a lower growth path. However, UK and Irish productivity recovered from the recessionary shocks they experienced, with the UK even performing above expectation. This suggests a strong heterogeneity in the response of European countries to recessionary shocks.

Subsequent analysis using IRFs allows a more detailed analysis of varied outcomes which depend on the source of the shock and the country affected, although the short-run impact of a shock to GDP from any source is invariably negative for productivity. One common element among the countries is that shocks originating from the US have a permanent negative effect. In the case of all countries bar Ireland (which for much of the period was tied closely to the UK economy), this negative response to US shocks is greater than to shocks originating in the EU. This suggests that the EU countries considered appear to suffer more from shocks originating in the US than shocks originating in their European neighbours (recall that our data cover the period 1960 to 2011, so what we are seeing are ‘average’ responses for this whole period). The relative importance of domestic and external shocks also varies across countries. While Ireland and the UK are most vulnerable to domestic shocks, Germany, France and Italy are more responsive to shocks from the US. These results suggest that the ability of countries to rebound from shocks is predicated upon the origin of the shock experienced and the specific country. The results also suggest that two countries, which experience the same types of shock, may have substantially different long run outcomes resulting from the shock.

From the perspective of Verdoorn’s law, or more specifically the Dixon and Thirlwall(1975) theory, it would appear that what is important for productivity growth is the growth of output, which is fundamentally determined by export growth. The latter depends on both domestic
(export) price inflation, which itself depends on wage growth relative to productivity growth and on the mark-up on labour costs that one would associate with imperfectly competitive market structures. Export growth also depends on competitor price inflation, and on real income growth in export markets. So there are a range of variables that one might consider that will differ across domestic economies, with different labour markets, and these domestic economies will themselves have different export markets each of which has its own specific inflation and real income growth rates. An important message from this theoretical model is the importance of interdependence between economies, notably via trade, but also the heterogeneity across economies relating particularly to their labour market structures and export orientation.

To sum up, the implications of our analysis in light of the 2008 crisis are that, if previous trends are followed, the shock will have a permanent negative effect on the productivity growth path of most EU economies. It is possible that structural change may help countries recover from the crisis, but the scope for structural adjustment in the economies studied, which are now largely service based economies, may be limited.

What we have shown in the paper is that on average there appear to be differences in economies’ resilience to shocks which are a fairly long-lasting feature, as is apparent from the time series we have available. Further more detailed analysis taking fuller account of ongoing dynamical structural change is the subject of another paper.
References

OECD. (2011a). "OECD Statistics Directorate National Accounts Devison." from http://www.google.ie/url?sa=t&rct=j&q=oecd%20national%20converted%20data%20can%20then%20be%20aggregated%20to%20obtain%20aggregates%20for%20groups%20of%20countries&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fstats.oecd.org%2Ffileview2.aspx%3FIDFile%3Da7e60ef1-5139-4a2c-9331-cfd135033b8a&ei=hojBTsvJNoOKhQevrrCGDw&usg=AFQjCNjGgB_SdNScAFhNBHILwkvqYo5kXew.

Appendix 1. Generating Quarterly Employment using the Chow-Lin Procedure

Quarterly data on employment for the majority of the sixteen countries (EU15 plus the US) considered by this paper are only available for shorter periods of time than the quarterly GDP figures obtained from the OECD’s historical quarterly national accounts, which are available from 1960q1 to 2011q1. Table 1 displays the availability of employment data. In total we need to impute approximately 40% of our employment data.

<table>
<thead>
<tr>
<th>Country</th>
<th>United States</th>
<th>Germany</th>
<th>United Kingdom</th>
<th>France</th>
<th>Italy</th>
<th>Spain</th>
<th>Netherlands</th>
<th>Belgium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of Data</td>
<td>Q1 1960</td>
<td>Q1 1962</td>
<td>Q2 1969</td>
<td>Q1 1995</td>
<td>Q1 1960</td>
<td>Q3 1972</td>
<td>Q1 2000</td>
<td>Q1 1999</td>
</tr>
<tr>
<td>End of Data</td>
<td>Q1 2011</td>
</tr>
</tbody>
</table>

Note 1: Source OECD Employment data series
2: Quarterly data for Luxembourg are actually also available from Q1 1985 to Q4 1997 however there are gaps in the data series between Q4 1997 and Q1 2003.

However annual series are available, and Chow and Lin (1971) develop a procedure for converting annual into monthly time series, which can be adapted to convert annual to quarterly series as demonstrated by Abeysinghe and Lee (1998) and Abeysinghe and Rajaguru (2004). As data for US and Italian Employment are available quarterly from 1960, it is possible to disaggregate the other countries’ annual employment series from 1960 into quarterly data, taking care to match to known annual totals for each country. Therefore, the approach models the available non-stationary cointegrated employment series to produce otherwise unavailable quarterly estimates, ensuring that the annual values of the predicted quarterly data equal the observed annual data in each country. However, as noted by the OECD, quarterly employment data does not sum to annual data, but is averaged to annual data. In order to ensure that the employment data averages, as oppose to sums, to equal the annual data, further adjustment to the series is carried out. Where we do have known
quarterly series available, we have used these in place of the Chow-Lin based estimates, although the differences between the two are very minor.

The reliability of imputation methods has been the subject of much study, with the Chow-Lin method producing what the literature regards as accurate imputations of quarterly data from annual data, as shown for example by Miralles, Lladosa and Vallés (2003). Santos Silva and Cardoso (2001) further note that the Chow-Lin method, despite being over 30 years old, is one of “the most widely used methods to disaggregate time series [data]” (pp 269). We therefore conclude that our employment estimates are robust and suitable for the purposes intended. Further technical details are available on request.
Appendix 2. Dickey-Fuller Tests for Full Sample
This appendix presents the diagnostic statistics for the VEC model estimates for the full sample. This ranges from 1960Q1 to 2011Q1. The augmented Dickey-Fuller tests on GDP and employment levels for the six log GDP and employment series for each specific ‘target’ country, the EU minus the ‘target’ country, and the US are presented in Table A2.1. In the case of all countries and EU14 aggregates we do not reject the null of a unit root for levels, but do so for differences, indicating that shocks to levels have a permanent effect, they are I(1) series.

Table A2.1: Results of Augmented Dickey Fuller Tests – Full Sample

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>Ireland</th>
<th>EU14-Ireland</th>
<th>Germany</th>
<th>EU14-Germany</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output - Level</td>
<td>-2.599</td>
<td>-1.485</td>
<td>-1.721</td>
<td>-1.456</td>
<td>-1.929</td>
<td>-2.192</td>
</tr>
<tr>
<td>Employment - Levels</td>
<td>0.205</td>
<td>-1.770</td>
<td>-1.641</td>
<td>-0.804</td>
<td>-1.650</td>
<td>-2.611</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>EU14-UK</th>
<th>France</th>
<th>EU14-France</th>
<th>Italy</th>
<th>EU14-Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output - Level</td>
<td>-1.858</td>
<td>-2.725</td>
<td>-1.554</td>
<td>-1.217</td>
<td>-1.835</td>
</tr>
<tr>
<td>Output - First Differences</td>
<td>-5.135***</td>
<td>-6.059***</td>
<td>-5.331***</td>
<td>-5.864***</td>
<td>-5.416***</td>
</tr>
<tr>
<td>Employment - Levels</td>
<td>-1.668</td>
<td>-2.300</td>
<td>-1.638</td>
<td>-3.049</td>
<td>-1.708</td>
</tr>
<tr>
<td>Employment - First Differences</td>
<td>-4.962***</td>
<td>-5.004***</td>
<td>-4.508***</td>
<td>-7.038***</td>
<td>-4.188***</td>
</tr>
</tbody>
</table>

Note 1: All Dickey-Fuller tests applied to GDP and employment levels include a constant and trend term. The critical values for Dickey-Fuller tests which include trends are -4.006, -3.437 and -3.137 for the 0.01, 0.05 and 0.1 levels of significance respectively.

2: All Dickey-Fuller tests applied to GDP and employment in first differences include only a constant. The critical values for Dickey-Fuller tests, excluding trends are -3.476, -2.883 and -2.573 for the 0.01, 0.05 and 0.1 levels of significance respectively.

3: All variables are expressed in natural logarithms.

4: ***, ** and * indicate rejection of the null hypothesis at the 0.01, 0.05 and 0.1 level of significance respectively.

5: The null hypothesis is that the data possesses a unit root.
Appendix 3. Dickey-Fuller Tests for Sub Period

Table A3.1 presents the results of the augmented Dickey Fuller tests for the sub periods considered. As before, we include all of the countries we study as well as the EU14 countries excluding our ‘target’ country. While for the full period Dickey Fuller tests presented in Appendix 2 we only showed one test for the US, for the sub periods we need to present five different US Dickey Fuller test. This is due to the length of the specific sub periods varying depending upon which country is the ‘target’. For example, our VEC estimation for Ireland uses data from 1960 Q1 to 1982q3 and we carry out a Dickey-Fuller test for the US data based on this time period (given as US-Ireland). For Germany on the other hand we use data from 1960 Q1 to 1992q1 and we perform a separate Dickey-Fuller test for the US data using this time period (given as US-Germany).

Table A3.1: Results of Augmented Dickey Fuller Tests – Sub Periods

<table>
<thead>
<tr>
<th></th>
<th>US-Ireland</th>
<th>Ireland</th>
<th>EU14-Ireland</th>
<th>US-Germany</th>
<th>Germany</th>
<th>EU14-Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output – Level</td>
<td>-1.366</td>
<td>-2.642</td>
<td>0.283</td>
<td>-2.806</td>
<td>-1.871</td>
<td>-1.819</td>
</tr>
<tr>
<td>Output – First Differences</td>
<td>-4.544***</td>
<td>-4.442***</td>
<td>-3.775***</td>
<td>-5.453***</td>
<td>-6.81***</td>
<td>-4.077***</td>
</tr>
<tr>
<td>Employment – Levels</td>
<td>-2.985</td>
<td>-1.993</td>
<td>-2.400</td>
<td>-2.977</td>
<td>-0.299</td>
<td>-1.456</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>US-UK</th>
<th>UK</th>
<th>EU14-UK</th>
<th>US-France</th>
<th>France</th>
<th>EU14-France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output – Level</td>
<td>-2.828</td>
<td>-1.884</td>
<td>-1.753</td>
<td>-2.599</td>
<td>-1.928</td>
<td>-1.627</td>
</tr>
<tr>
<td>Output – First Differences</td>
<td>-5.419***</td>
<td>-5.508***</td>
<td>-4.533***</td>
<td>-6.571***</td>
<td>-5.849***</td>
<td>-4.669***</td>
</tr>
<tr>
<td>Employment – Levels</td>
<td>-2.170</td>
<td>-1.929</td>
<td>-1.053</td>
<td>-2.941</td>
<td>-1.797</td>
<td>-1.183</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>US-Italy</th>
<th>Italy</th>
<th>EU14-Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output – Level</td>
<td>-2.849</td>
<td>-1.689</td>
<td>-1.734</td>
</tr>
<tr>
<td>Output – First Differences</td>
<td>-5.481***</td>
<td>-5.462***</td>
<td>-4.825***</td>
</tr>
<tr>
<td>Employment – First Differences</td>
<td>-4.555***</td>
<td>-6.044***</td>
<td>-3.657***</td>
</tr>
</tbody>
</table>

Note 1: All Dickey-Fuller tests applied to GDP and employment levels include a constant and trend term. The critical values for Dickey-Fuller tests which include trends are -4.006, -3.437 and -3.137 for the 0.01, 0.05 and 0.1 levels of significance respectively.

2: All Dickey-Fuller tests applied to GDP and employment in first differences include only a constant. The critical values for Dickey-Fuller tests, excluding trends are -3.476, -2.883 and -2.573 for the 0.01, 0.05 and 0.1 levels of significance respectively.

3: All variables are expressed in natural logarithms.

4: ***, ** and * indicate rejection of the null hypothesis at the 0.01, 0.05 and 0.1 level of significance respectively.

5: The null hypothesis is that the data possesses a unit root.

6: As the sample lengths for our VEC estimations are different we run a series of Dickey-Fuller tests. For example, our VEC estimation for Ireland uses data from 1960 Q1 to 1982q3 and we estimate a Dickey-Fuller test for the US based on this time period (given as US-Ireland) while the estimation for Germany uses data from 1960 Q1 to 1992q1 and we estimate a separate Dickey-Fuller test for the US using this data (given as US-Germany).
Appendix 4. SBIC Tests for Appropriate Lag Length

Table A4.1: Results of SBIC for Ideal Lag Length – Full Sample

<table>
<thead>
<tr>
<th>Lag Length</th>
<th>Ireland</th>
<th>Germany</th>
<th>UK</th>
<th>France</th>
<th>Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-43.8362</td>
<td>-45.3327</td>
<td>-46.2541*</td>
<td>-46.8068</td>
<td>-45.454</td>
</tr>
<tr>
<td>2</td>
<td>-44.0435*</td>
<td>-45.3679*</td>
<td>-46.0292</td>
<td>-46.9223*</td>
<td>-45.5294*</td>
</tr>
<tr>
<td>3</td>
<td>-43.4651</td>
<td>-44.8036</td>
<td>-45.3812</td>
<td>-46.4106</td>
<td>-44.8834</td>
</tr>
<tr>
<td>4</td>
<td>-42.994</td>
<td>-44.1679</td>
<td>-44.7884</td>
<td>-45.8484</td>
<td>-44.2966</td>
</tr>
</tbody>
</table>

Note 1: The ideal lag length as selected by SBIC is given as the lowest value derived from the various lags.

2: * indicates the ideal lag length.

Table A4.2: Results of SBIC for Ideal Lag Length – Sub Periods

<table>
<thead>
<tr>
<th>Lag Length</th>
<th>Ireland</th>
<th>Germany</th>
<th>UK</th>
<th>France</th>
<th>Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-43.6816</td>
<td>-44.2692</td>
<td>-44.549*</td>
<td>-46.2996*</td>
<td>-43.9249*</td>
</tr>
<tr>
<td>2</td>
<td>-44.0362*</td>
<td>-44.745*</td>
<td>-43.7621</td>
<td>-46.0819</td>
<td>-43.7904</td>
</tr>
<tr>
<td>3</td>
<td>-42.7584</td>
<td>-43.9037</td>
<td>-42.747</td>
<td>-45.0576</td>
<td>-42.8334</td>
</tr>
<tr>
<td>4</td>
<td>-41.718</td>
<td>-43.0457</td>
<td>-41.8429</td>
<td>-44.2193</td>
<td>-41.9265</td>
</tr>
</tbody>
</table>

Note 1: The ideal lag length as selected by SBIC is given as the lowest value derived from the various lags.

2: * indicates the ideal lag length.
Appendix 5. Results of the Johansen Cointegration Tests

Table A5.1 Results of Johansen’s Trace Tests for Cointegration – Full Sample

<table>
<thead>
<tr>
<th>Time</th>
<th>Ireland</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
<td>Restricted Trend</td>
</tr>
<tr>
<td>0</td>
<td>155.6241</td>
<td>186.4354</td>
</tr>
<tr>
<td>1</td>
<td>87.948</td>
<td>116.6207</td>
</tr>
<tr>
<td>2</td>
<td>47.7997</td>
<td>72.9546</td>
</tr>
<tr>
<td>3</td>
<td>19.5923*</td>
<td>37.8381*</td>
</tr>
<tr>
<td>4</td>
<td>4.5857</td>
<td>13.9452</td>
</tr>
<tr>
<td>5</td>
<td>1.0427</td>
<td>2.9466</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
<td>Restricted Trend</td>
</tr>
<tr>
<td>0</td>
<td>328.9186</td>
<td>272.7849</td>
</tr>
<tr>
<td>1</td>
<td>186.1572</td>
<td>127.7704</td>
</tr>
<tr>
<td>2</td>
<td>86.543</td>
<td>65.2663</td>
</tr>
<tr>
<td>3</td>
<td>32.3905</td>
<td>34.0089*</td>
</tr>
<tr>
<td>4</td>
<td>11.8507*</td>
<td>15.0622</td>
</tr>
<tr>
<td>5</td>
<td>0.0748</td>
<td>3.3871</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
</tr>
<tr>
<td>0</td>
<td>94.15</td>
</tr>
<tr>
<td>1</td>
<td>93.0449</td>
</tr>
<tr>
<td>2</td>
<td>58.2097</td>
</tr>
<tr>
<td>3</td>
<td>30.1078</td>
</tr>
<tr>
<td>4</td>
<td>10.4921*</td>
</tr>
<tr>
<td>5</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

Note 1: * indicates failure to reject the null hypothesis of no more than \(r \) cointegrating relationships at the 0.05 level of significance.

2: The lag length used in each of the estimations is determined through the use of the SBIC.

3: Bold highlights indicate the rank and model used in the ‘optimal’ estimation of the VEC model.
Table A5.2: Results of Johansen’s Trace Tests for Cointegration – Sub Periods

<table>
<thead>
<tr>
<th></th>
<th>Ireland</th>
<th></th>
<th>Germany</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
<td>Restricted</td>
<td>Constant</td>
<td>Restricted</td>
</tr>
<tr>
<td></td>
<td>Trend</td>
<td>Trend</td>
<td>Trend</td>
<td>Trend</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>146.0341</td>
<td>165.0341</td>
<td>122.1625</td>
<td>114.9</td>
</tr>
<tr>
<td>1</td>
<td>96.4512</td>
<td>115.093</td>
<td>79.0052</td>
<td>103.3847</td>
</tr>
<tr>
<td>2</td>
<td>56.3435</td>
<td>72.0123</td>
<td>45.0672*</td>
<td>63.4054</td>
</tr>
<tr>
<td>3</td>
<td>30.6338</td>
<td>41.1221*</td>
<td>23.4963</td>
<td>41.5542*</td>
</tr>
<tr>
<td>4</td>
<td>16.006</td>
<td>16.121</td>
<td>8.2173</td>
<td>20.8811</td>
</tr>
<tr>
<td>5</td>
<td>6.208</td>
<td>6.3199</td>
<td>0.9968</td>
<td>6.3779</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: * indicates failure to reject the null hypothesis of no more than \(r \) cointegrating relationships at the 0.05 level of significance.

2: The lag length used in each of the estimations is determined through the use of the SBIC.

3: Bold highlights indicate the rank and model used in the ‘optimal’ estimation of the VEC model.
Appendix 6. Dynamic Forecasts derived from Alternatively Specified VEC models

Figure A6.1: Dynamic Forecasts for Productivity
Figure A6.2: IRFs based on Alternative VEC models for US GDP -> Productivity
Figure A6.3: IRFs based on Alternative VEC models for EU14 GDP -> Productivity
Figure A6.4: IRFs based on Alternative VEC models for Domestic GDP -> Productivity
Appendix 7: Sectoral Contribution to GDP – Pre and Post Recession

Figure A7 displays the average sectoral contribution to GDP for each of our countries for the pre and post recessionary shock time periods.

Figure A7: Sectoral Contribution to GDP – Pre and Post Recession

Notes: 1 Where A_B indicates Agriculture, hunting, forestry and fishing, C_E indicates Industry, including energy, F indicates Construction, G_I indicates Wholesale and retail trade, repairs, hotels and restaurants and transport, J_K indicates Financial intermediation, real estate, renting and business activities and L_P indicates Other service activities

2 Source: OECD (2011a)