<table>
<thead>
<tr>
<th>Title</th>
<th>Giant enhancement of n-type carrier mobility in highly strained germanium nanostructures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Murphy-Armando, Felipe; Fahy, Stephen B.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2011-06-02</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
</tbody>
</table>
| **Link to publisher's version** | http://scitation.aip.org/content/aip/journal/jap/109/11/10.1063/1.3590334
http://dx.doi.org/10.1063/1.3590334
Access to the full text of the published version may require a subscription. |
| **Rights** | © 2011, AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Journal of Journal of Applied Physics, 109, 113703. (2011) and may be found at http://scitation.aip.org/content/aip/journal/jap/109/11/10.1063/1.3590334 |
| **Item downloaded from** | http://hdl.handle.net/10468/2680 |

Downloaded on 2020-02-04T23:37:28Z
Giant enhancement of n-type carrier mobility in highly strained germanium nanostructures

F. Murphy-Armando,$^{1, a)}$ and S. Fahy2

1Tyndall National Institute, University College, Cork, Ireland
2Department of Physics, University College, Cork, Ireland

(Received 15 February 2011; accepted 12 April 2011; published online 2 June 2011)

First-principles electronic structure methods are used to predict the rate of n-type carrier scattering due to phonons in highly-strained Ge. We show that strains achievable in nanoscale structures, where Ge becomes a direct bandgap semiconductor, cause the phonon-limited mobility to be enhanced by hundreds of times that of unstrained Ge, and over a thousand times that of Si. This makes highly tensile strained Ge a most promising material for the construction of channels in CMOS devices, as well as for Si-based photonic applications. Biaxial (001) strain achieves mobility enhancements of 100 to 1000 with strains over 2%. Low temperature mobility can be increased by even larger factors. Second order terms in the deformation potential of the Γ valley are found to be important in this mobility enhancement. Although they are modified by shifts in the conduction band valleys, which are caused by carrier quantum confinement, these mobility enhancements persist in strained nanostructures down to sizes of 20 nm. © 2011 American Institute of Physics. [doi:10.1063/1.3590334]

I. INTRODUCTION

Increasing the carrier mobility is key to both improving the performance and reducing the power dissipation in CMOS technology devices.1 Historically, a gradual increase in mobility has been obtained by reducing the size of the carrier channels, and later by the strain engineering of Si. More recently, the search has also focused on incorporating other materials with a mobility higher than that of Si in the channel. This has proved to be a difficult task, since materials that are compatible with the established Si-fabrication technologies are hard to obtain. One of the few materials that can fulfill these two conditions is Ge. The mobility of Ge is two to three times higher than that of Si, and even more if slightly strained. Further interest in strained Ge has been stimulated by the recent accomplishment of lasing,2 which makes the integration of photonic devices and lasers compatible with the Si fabrication process possible.

Previous studies$^{3, 4}$ have suggested the possibility of enhancing the mobility of tensile strained Ge a few times further by turning it into a direct gap semiconductor. This is predicted to occur at 2% biaxial (001)$^{5, 6}$ and 4% uniaxial (111)$^{5, 6}$ strains, among others. While these strains are unsustainable in bulk material due to the growth of strain-relieving dislocations, they are readily achieved in nanoscale structures with dimensions less than the critical thickness. The first type of strain has recently been achieved on thin films of Ge grown on In$_x$Ga$_{1-x}$As substrates,7 where direct gap photoluminescence has been observed. Strains of the second type have been experimentally surpassed in nanowires,$^8, 9$ where strains up to 17% have been achieved.

In this work, we use recently developed10 methods for calculating electron-phonon transport parameters from first principles to predict an enhancement of the n-type mobility of tensile strained Ge of ten to a thousand times that of unstrained Ge, which is over two orders of magnitude larger than previously estimated.$^{3, 4}$ Extremely high mobilities such as these would dramatically increase the operational speed while significantly reducing the power dissipation of CMOS devices, two critical factors for the further advancement of this technology.

We calculate the mobility of Ge stressed in two different configurations: uni-axially along the $\langle 111 \rangle$ direction, and bi-axially on the (001) plane. Although some parameters are already available from experiments and empirical pseudopotential methods, using first principles calculations we corroborate the required energy splittings and phonon deformation potentials at small strains and calculate them as functions of strain for higher strain values. We then use the Boltzmann transport equation in the relaxation time approximation to obtain the n-type carrier mobility as a function of strain. We predict very significant increases in room temperature mobility for uni- and bi-axial strains larger than 1.5%, and increases of one to two orders of magnitude for strains greater than 2%. We also consider the effect on the mobility of reducing the channel size, and find that the mobility enhancement diminishes for channel sizes below 20 nm, due to the stronger quantum confinement of the Γ band compared to the L band.

II. THEORY AND METHOD

We can roughly estimate the expected enhancement of the mobility, obtained by confining electron transport to the Γ valley, by considering a parabolic approximation for the Γ and L valleys. Assuming the scattering to be isotropic, the ratio of mobilities is then

aAuthor to whom correspondence should be addressed. Electronic mail: philip.murphy@tyndall.ie

Cite this article as: J. Appl. Phys. 109, 113703 (2011)
where μ_i, with $i = L$ or Γ, is the mobility of the L or Γ valley, $\langle \tau_i \rangle$ is the thermal average of the relaxation time and the conduction masses are $m_L^* = 0.12m_e$ and $m_\Gamma^* = 0.04m_e$ for the L and Γ valleys, respectively, and m_e is the free electron mass. The effective deformation potential for the L valley is $\Xi_L = 11.5$ eV, calculated from Eq. (28) of Ref. 3, using the values of Ξ_u and Ξ_d of Ref. 10. The deformation potential for the Γ valley is $\Xi_\Gamma = -5.3$ eV, and m_d^* is the density of states effective mass of valley i, with $m_d^* = 0.23m_e$, and $m_d^{\Gamma} = m_\Gamma^*$. Thus, the enhancement expected by isolating the Γ valley will be on the order of $\mu_\Gamma/\mu_L = 182$. However, this spectacular enhancement can only be achieved if the zone center valley is well below the larger density of states L valley. Also, one has to consider how the deformation potential and effective mass of the Γ valley change at large applied strains. Without yet resorting to the full scale calculation, we can estimate the result of these considerations by using the calculated dependence of the Ξ_i deformation potential and of the m_{γ} mass (discussed below), and multiplying the r.h.s. of Eq. (1) by the ratio of the carrier occupations n_i/n_L of the Γ and L valleys. This results in, for example, a 40 times enhancement for the 5% (111) uniaxial strain, and 500 times for the 2.5% (001) biaxial strain. We consider all these effects below, and demonstrate that the mobility enhancement can be as high as this crude estimate.

From what we have discussed above, it is clear that the possibility of enhancing the mobility in strained Ge is determined by the following competing effects:

- Avoiding a closure of the band gap, where Ge becomes a semimetal,
- lowering of the Γ valley below the L valleys,
- decreasing the effective mass of the Γ valley due to the decreasing direct bandgap,
- nonlinearities in the Γ valley deformation potential, which may change the magnitude of the acoustic-phonon scattering.

The Γ valley has to be sufficiently far below the L valleys so that there are enough carriers in the former valley to dominate conduction. The decreasing effective mass will substantially enhance mobility, but also decreases the density of states of the Γ valley, thus in turn, requiring it to be much lower in energy than the L valley if the majority of carriers are to populate the Γ valley. At the strains in which this occurs, the contribution of the nonlinear part of the deformation potential becomes comparable to the linear part.

We shall concentrate on the effects of (a) a pure uniaxial tensile stress along the (111) direction, and (b) biaxial tensile stress in the (001) plane on the mobility of bulk Ge. The stress of type (a) introduces a longitudinal tensile strain, ϵ_l, along the (111) direction, and results in a transverse strain, $\epsilon_t = -0.14\epsilon_l$. The bulk results obtained in this way should also well describe nanowires wider than 10 nm. The effects of a (111) stress on nanowires have been discussed in Ref. 6 and we find very similar results for the band structure of the strained material. The stress of type (b) is composed of strains, $\epsilon_{xx} = \epsilon_{yy}$, in the (001) plane, and a transverse strain, $\epsilon_{zz} = -0.76\epsilon_{xx}$, in the (100) direction. This type of strain would be obtained by the epitaxial growth of Ge on a substrate of a larger lattice constant, such as GeSnSi or InGaAs.

The acoustic phonon scattering has been obtained using the deformation potential approach. The acoustic deformation potential, Ξ_{Γ}, was obtained using the frozen phonon approach of Ref. 10, and is in agreement with that found experimentally at zero strain. The inter-valley phonon couplings were computed using the density functional perturbation theory approach, from which the parameters for the L valley were extracted. Zhang et al. report a nonlinear dependence of the Γ valley energy under shear strains. This will have an effect on the carrier scattering by phonons at the large values of strain needed to produce a direct bandgap. The linear shift of the Γ valley is described by the Ξ_{Γ} deformation potential. The nonlinear term in the energy shift, up to second order in the strain, is given by,

$$\delta E_2 = A \left(\epsilon_{xx}^2 + \epsilon_{yy}^2 + \epsilon_{zz}^2 \right) + B \left(\epsilon_{xx} \epsilon_{yy} + \epsilon_{xx} \epsilon_{zz} + \epsilon_{yy} \epsilon_{zz} \right) + C \left(\epsilon_{xx}^2 + \epsilon_{yz}^2 + \epsilon_{zx}^2 \right),$$

where A, B, and C are the second order deformation potentials, and $\epsilon_{ii} = \epsilon_{ii}$ and $\epsilon_{ij} = \epsilon_{ij} + \epsilon_{ji}$ are the Cartesian strain components. Following the approach of Ref. 10, the values of A, B, and C (see Table I) have been calculated using the frozen phonon approach, similarly to the calculation of Ξ_{Γ}. The variation of the inter-valley deformation potentials with strain was found to be negligible, except in the case of the L to Γ inter-valley deformation potential, $(D_{\Gamma L})_{111}$ (as defined in Ref. 11). However, this deformation potential is rather small, and its contribution to carrier scattering is

<table>
<thead>
<tr>
<th>Ξ_{Γ} (eV)</th>
<th>Ξ_L^* (eV)</th>
<th>Ξ_L^* (eV)</th>
<th>A (eV)</th>
<th>B (eV)</th>
<th>C (eV)</th>
<th>$(D_{\Gamma L})_{111}$ (106 eV/m)</th>
<th>$(D_{\Gamma L})_{122}$ (106 eV/m)</th>
<th>$(D_{\Gamma L})_{112}$ (106 eV/m)</th>
<th>$\hbar\omega_{e1}$ (meV)</th>
<th>$\hbar\omega_{e2}$ (meV)</th>
<th>$\Delta E_{111}^{\text{max}}(\epsilon_l)$ (eV)</th>
<th>$\Delta E_{112}^{\text{max}}(\epsilon_l)$ (eV)</th>
<th>$\Delta E_{122}^{\text{max}}(\epsilon_t)$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.3</td>
<td>16.98</td>
<td>-6.27</td>
<td>20</td>
<td>152</td>
<td>-72</td>
<td>28.6</td>
<td>7.9</td>
<td>36.3</td>
<td>30</td>
<td>29</td>
<td>0.838 – 12.6 \epsilon_l – 33.8 \epsilon_l^2</td>
<td>0.838 – 2.1 \epsilon_t + 66.2 \epsilon_l^2</td>
<td>0.838 – 27.7 \epsilon_{xx} + 122.0 \epsilon_t^2</td>
</tr>
</tbody>
</table>
dwarfed by that of the acoustic phonons. The same is true for
the scattering of optical phonons in the Γ valley: in the
unstrained case it is forbidden by symmetry, and strain in the
⟨111⟩ direction increases it but imperceptibly, compared to
acoustic phonon scattering. Likewise, the change of the L-
valley effective mass with strain is of the order of 1% per
percent of strain.

All of the calculations of the band structure have been
performed using the GW approximation16,17 with the \textsc{abinit}
code.18–20 We use the local density approximation (LDA)
for exchange and correlation. Fritz Haber Institute (FHI)
pseudopotentials (available in the \textsc{abinit} website19) are used for
all calculations in this paper. We use an energy cut-off of 18
Hartree for the expansion of wavefunctions in all our calcu-
lations, except for those of the second order deformation
potentials, which require a cut-off of 43 Hartree. The super-
cell sizes are the same as described in Ref.10. The number
of irreducible k-points is obtained using the ‘kptrlen’ capa-
bility of \textsc{abinit}. The required number of irreducible k-points
for the first and second order deformation potentials is 134
and 198, respectively.

It is well known that the underestimate of the LDA
direct bandgap, compared to experiment, gives rise to a cor-
responding underestimate of the effective mass, \(m_f \),
which can be understood simply in terms of \(\mathbf{k} \cdot \mathbf{p} \) theory. In con-
trast, although the GW bandgap is typically close to the ex-
perimental value, it is difficult to directly calculate the
effective mass using the GW method. Therefore, we have
used the following simple, approximate scheme to estimate
the strain-dependence of the band dispersion (and the effec-
tive mass) in the conduction band Γ valley: The direct
bandgap for a given strain, \(\varepsilon \), is determined using the GW
method. The band dispersion is later calculated by a \(5 \times 5 \)
matrix using the \(\mathbf{k} \cdot \mathbf{p} \) theory,21,22 accounting for strain and
spin-orbit coupling.23 Since we are only interested in the dis-
persion of the conduction band, we have neglected the ma-
trix elements between the valence bands. We also considered
the matrix element between the conduction band and valence
bands to be given by free electron wavefunctions, with \(P = 2\pi\hbar^2/\omega_c \).22 The only input needed by this model are the
energy gaps (see below) and the spin-orbit coupling. This
approximation gives an excellent fit to the LDA conduction
band dispersion as a function of strain.

The conduction band dispersion is a function of its
energy difference with all three highest valence bands, which
are not degenerate under strain. The GW-calculated values
as a function of strain are shown in Table1. In the strain
cases considered here, the GW valence bands split into a sin-
glet and a doublet (without spin-orbit). The energy gap
between the conduction band at Γ (labeled as Γ\textsubscript{7,3} in Ref.3),
the valence band singlet (Γ\textsubscript{8,1}), and doublet (Γ\textsubscript{8,2}) are
labeled \(\Delta E_1 \) and \(\Delta E_2 \), respectively, where \(i \) is the type of
strain. We note that as the bandgap closes, the energy
becomes linear close to the band-edge.24 The density of
states of this nonparabolic dispersion, unlike that of a pure
quadratic dispersion, does not vanish as the bandgap closes,
which we find to be more realistic.

To simplify the mobility calculation, we have fitted the
density of states and group velocity given by the \(\mathbf{k} \cdot \mathbf{p} \) model,
with third-order polynomials in energy and strain. The effec-
tive mass of the Γ valley in the unstrained system is found to
be \(m_f = 0.04 m_0 \), which is in good agreement with the values
reported by Refs.11 and 3. The mobilities were then calcu-
lated18 using the Boltzmann transport equation, in the relaxa-
tion time approximation, using only the first-principles
calculated lattice and scattering parameters as input.

III. RESULTS

All of the calculated parameters are shown in Table1. Uniaxial ⟨111⟩ strain lifts the degeneracy of the L valleys, in
agreement with Ref.6, splitting them into a singlet (L1) along
⟨111⟩ and a triplet (L3) along ⟨1\bar{1}1⟩, ⟨\bar{1}11⟩, and ⟨\bar{1}1\bar{1}⟩. Under
positive strain, the L3 valleys are lowered in energy, which
could potentially enhance the \(p \)-type carrier mobility by a few
tenths of a percent due to the possibility of transport through a
lower effective mass direction, albeit not in the ⟨111⟩ direc-
tion. Negative strain isolates the L1 valley, and the mobility
could be enhanced if transport occurs along the direction
transverse to the valley. However, if a larger tensile strain of
\(\varepsilon_{⟨111⟩} = 0.04 \) is applied, the conduction Γ valley can be low-
ered below the L3 valleys. The smaller density of states of the
Γ valley, together with the small acoustic deformation poten-
tial and lack of coupling to an optical phonon, results in a pre-
dicted room temperature mobility tens of times larger than
that of unstrained Ge. A similar argument applies to biaxial
strain. In this case, however, a much smaller strain of
\(\varepsilon_{xx} = \varepsilon_{yy} = 0.015 \) is required to lower the Γ valley below
the L valleys. This means that the density of carriers in the Γ
valley is potentially higher, resulting in much larger mobilities.
The gaps close at \(\varepsilon_{⟨111⟩} = 0.051 \text{ and } \varepsilon_{xx} = 0.03 \), respectively.

In ⟨111⟩ stress, the nonlinear part of the deformation
potential results in a decrease of the scattering of carriers by
longitudinal acoustic phonons, but increases the hitherto neg-
ligible scattering by phonons from the transverse branch,
increasing the total scattering overall. By this means, the
total acoustic phonon scattering rate is increased by about
3.5 times at 4% strain. This increase in the scattering rate is
counterbalanced by the reduction of the effective mass,
yielding an overall increase in the carrier mobility. In the
case of biaxial stress, the total scattering rate is reduced by
half at \(\varepsilon_{xx} = 0.02 \), and returns to its unstrained value at
\(\varepsilon_{xx} = 0.07 \). This nonlinear effect on the electron-phonon
scattering accounts for the larger mobilities we obtain, com-
pared to earlier estimates.3 Large strains are required to lower the Γ valley below
L3. However, these strains have recently been proven to be
well within the realizable limit in nanowires.8,9 Therefore,
we predict that the phonon-limited mobility of Ge can be
evernomously enhanced by applying positive stress in the
⟨111⟩ direction, as shown in Fig.1. For example, an
enhancement of five times the unstrained mobility is achiev-
able if a positive strain of 4.7% is applied, while increasing
the strain to 5% increases the mobility by 20 times the
unstrained case.

We should note that the enhancement of the mobility is
very sensitive to the strain configuration. The most desirable
strain setting is that which most lowers the Γ valley below
In summary, we have shown that the room temperature mobility of highly tensile bi-axially (001) strained Ge could
be increased several hundred times, and over a thousand times that of Si, in epitaxial thin Ge (001) films with strain, $\varepsilon_{xx} > 0.02$. The mobility of strained (111) grown Ge nanowires could be enhanced by 5–20 times if a uniaxial stress in the direction of growth is applied. Despite the competing effects of quantum confinement, these enhancements are sustainable in nanostructures of width of at least 20 nm. The low temperature mobilities are found to be over an order of magnitude higher than that of GaAs. The resulting ultrahigh mobilities make highly-strained Ge a very exciting candidate for CMOS channels and ultra-fast MOSFETs within the established Si-fabrication technology processes. Since the strains at which this is predicted to occur have already been demonstrated\(^7\)–\(^9\) in nanostructures, these extraordinary increases in mobility are well within the reach of the current technology.

ACKNOWLEDGMENTS

This work has been supported by Science Foundation Ireland.

\(^7\)N. Pavarelli, T. J. Ochalski, Y. Huo, G. Huyet, and J. S. Harris, Presentation at Photonics Europe (2010).

\(^8\)D. Smith, V. Holmberg, and B. Korgel, ACS Nano 4, 2356 (2010).

\(^12\)Obtained from density functional theory calculations.

\(^15\)F. Murphy-Armando and S. Fahy (2011) (to be published).

\(^17\)We have kept the zeroth order term of the GW approximation. In the LDA calculation, we impose zero temperature semiconductor filling of the bands. This ensures that the LDA wavefunctions are a good approximation to the quasiparticle wavefunctions.

\(^20\)The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (http://www.abinit.org).

