| Title       | A review of road structure data in six European countries  
|            | A Comparison of Road Structures of Six EU Countries |
| Author(s)  | Žnidarič, Aleš; Pakrashi, Vikram; O'Brien, Eugene; O'Connor, Alan J. |
| Publication date | 2011 |
| Original citation | ŽNIDARIČ, A., PAKRASHI, V., O'BRIEN, E. & O'CONNOR, A.  
|            | Proceedings of the Institution of Civil Engineers - Urban Design and  
|            | Planning, 164, 225-232. doi: 10.1680/udap.900054 |
| Type of publication | Article (peer-reviewed) |
| Link to publisher's version | http://www.icevirtuallibrary.com/doi/abs/10.1680/udap.900054  
|            | http://dx.doi.org/10.1680/udap.900054  
|            | Access to the full text of the published version may require a  
|            | subscription. |
| Rights     | Copyright © ICE Publishing 2011 |
| Item downloaded from | http://hdl.handle.net/10468/2688 |

Downloaded on 2018-12-07T05:06:03Z
A Review of Road Structure Data in Six European Countries

Ales Znidaric¹, Vikram Pakrashi², Alan O’ Connor³ and Eugene OBrien⁴

Abstract: The European Union has expanded significantly in the recent years. Sustainable trade within the Union leading to the growth and benefit of the 'old' and 'new' member states is thus extremely important. The road infrastructure is strategic and vital to such development of the member states since an uneven transport infrastructure has the potential to reinforce uneven development trends and hinder economic convergence of old and new member states. The loading conditions have significantly changed for many major highway infrastructure elements. Additionally, the gradual deterioration of a significant number of highway structures and the absence of a pan-European assessment framework can affect the smooth functioning of the infrastructure in its as-built condition. This paper reports the findings of a survey regarding the status of the highway infrastructure elements in six countries within the European Union including existing older countries and the new accession countries. The current situations for bridges, culverts, tunnels and retaining walls are reported along with their potential replacement costs. The findings create the framework and act as a departure point for further studies in support of a Centralized Infrastructure Maintenance Management Programme. This kind of information is central to future decision making in terms of trade route choice and
operations, optimized maintenance, management and rehabilitation of the built infrastructure and the economic integration of the newly joined member states.

**Proceedings of ICE Keywords:** Infrastructure Planning, European Union (EU), Maintenance and Inspection

1 Senior researcher, Head of section, ZAG – Slovenian National Building and Civil Engineering Institute, Ljubljana, Slovenia. E-mail: ales.znidaric@zag.si, B.E, M.Sc.

2 Chartered Engineer, Roughan O’Donovan Consulting Engineers, Dublin, Ireland. E-mail: paskarshv@ted.ie, B.E, PhD, CEng, MIEI

3 Senior Lecturer, Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland (lead author) E-mail: alan.oconnor@tcd.ie, BA, BAI, PhD, CEng, MIEI, MICT (Ph: +353-1-896-1822, Fax: +353-1-677-3072, Dept. of Civil Engineering, Museum Building, Trinity College Dublin, Dublin 2, Ireland)

4 Professor of Civil Engineering, School of Architecture, Landscape and Civil Engineering, University College Dublin, Ireland. E-mail: eugene.obrien@ucd.ie, BE, MSc, PhD, CEng, FIEI, MlStructE

1. Introduction

The European Union (EU) has expanded significantly in the decades since the Treaty of Rome in 1958. A recent and critical development has been the accession of ten new states in 2004 and a further two in 2007. These accessions have added 74 million people, 444 billion euro of extra Gross Domestic Product (GDP) and 738,573 square kilometres of land area$^{1,2}$. It creates the largest single market for trade and investment in the world, and
exceeding that of the United States and Japan combined. It is clearly important that intra-
EU trade becomes sustainable and grows to the benefit of both the 'old' and 'new' member
states. According to studies of the International Monetary Fund and the European Union
itself, the gross and per capita GDP of many of the new states are lagging significantly
behind the longer standing members. The road infrastructure is strategic and vital to the
trade and economic development of the member states. An uneven transport
infrastructure has the potential to reinforce uneven development trends and hinder
economic convergence of old and new member states. Previous European studies have illustrated the importance of infrastructure maintenance management programmes.
The loading conditions, especially the traffic loading, have significantly changed due to
economic development and the construction of many major highway infrastructure
elements. Additionally, the gradual deterioration of a significant number of highway
structures and the absence of a pan-European assessment framework can affect the
smooth functioning of the infrastructure in its as-built condition. Consequently, a well-
organised infrastructure monitoring and infrastructure assessment framework is
considered by the authors to be critical to achieve the goals of the Lisbon Agenda.

This paper reports the findings of a questionnaire based survey, as a part of the EU
funded research project SAMARIS regarding the status of the highway infrastructure
elements in various countries within the EU/EFTA (European Free Trade Association)
region. This includes both existing older countries and the new accession countries. The
findings have been summarized in terms of the various infrastructural elements (bridges,
culverts, tunnels and retaining walls), their distribution in various kinds of roads,
construction materials, methods of construction and costs of replacement. These findings create the framework and act as a departure point for further studies in support of a Centralized Infrastructure Maintenance Management Programme (CIMMP). Such information, when used in a CIMMP, has the potential to significantly reduce the infrastructural cost. It also aids in providing a route choice for the trading countries and in prioritizing the important new trade networks in the extended economic zones. The development of such a proactive framework enables the new member states to create an extended robust trade network involving key economic hubs leading towards integration of the economies. The uncertainty regarding infrastructural deficits is reduced for countries with such management programmes significantly. This, in turn, can attract prospective investors within the extended economic zones leading towards a long term and sustained investment associated with economic growth.

2. Infrastructure Information Survey

Under the work package WP15 of SAMARIS, a questionnaire was sent to experts and research partners in various European countries to obtain information regarding the condition of their road structures. Significant information was received from Slovenia, Poland, Hungary, Czech Republic, Austria and Norway. The first four of these countries joined the EU in 2004 while Austria joined the union in 1995. Norway is a founder member of the European Free Trade Association (EFTA) since 1960. While being outside of the EU, it supports free trade and cooperation. Thus, the countries selected provide a significant variation which reasonably covers the spectrum of the situation in Europe.
3. Results of the Survey

3.1 Bridges

Table 1 provides an overview of the existing road network system in the chosen countries, the distribution of bridges in them and the types of roads. Poland, being a large country, has a significantly longer length of roads than the others considered in this paper. However, the length of roads per unit area for the different countries is more or less comparable with the exception of Norway which is sparsely populated. As expected, the motorways comprise the least and the local roads comprise the largest share of the roads. The definition of regional or local roads varies from country to country and they are sometimes not distinguished separately. As a result, in some cases, they are marked as unknown. The minimum length beyond which a structure is considered to be a bridge in these countries varies from 2m to 5m. Short bridges, typically of length 10m or less, are the majority in most of the countries except for Poland where medium (10m to 100m) and long (greater than 100m) bridges are more common. Most of the bridges are situated on regional or local roads except for Slovenia and Austria where a significant number of bridges are situated on motorway.

Figure 1(a) shows the number of bridges built in various countries over a period of more than a hundred years. It is important to note that the majority of bridges have been built in the post-war period from 1945 to 1965. The loading conditions in many of these bridges have changed significantly and many have undergone a significant amount of
deterioration. Information regarding the bridge stock is only partial and an assessment framework for these bridges is considered to be very important in the new countries for the establishment of safe infrastructure to facilitate intra-EU trade. The growth of bridge deck area over time (Figure 1(b)) fluctuates somewhat for most of the countries. While all six countries built extensively in the post-war period, there was little addition to the Norwegian and Austrian stocks between 1966 and 1980. This was addressed in Norway in the 1981 to 1990 period and in Austria since then.

Figures 2a and 2b present the distributions of the various types of bridges by their numbers and deck area respectively. There are clear differences in preferences between countries. Austria leads in by the number of arch bridges, suspension bridges, beam and slab bridges and cable stayed bridges. Slab and box girder bridges form the majority of the bridge stock in the Czech Republic. The movable and other types of bridges are mostly found in Norway. However, Norway has significantly more deck area than Austria in terms of suspension bridges and the Czech Republic in terms of box girder bridges.

Bridges made of reinforced concrete comprise about two-thirds of the entire bridge stock for all the countries. This is followed by prestressed concrete, masonry and steel. The findings are the same both in terms of numbers and deck area. Apart from Hungary, no other country reported reinforced polymer bridges. Figure 3 shows the distribution of the bridges in terms of the material of construction used. Replacement costs for bridges have
been estimated from 1.12 billion Euros for Slovenia (lowest) to 29 billion Euro for Austria (highest). All prices have been reported in the year 2006. A comparison between Poland and the Czech Republic in terms of the replacement costs of bridges for various types of road (Figure 4) show that the costs are comparable for national roads. However, replacement of bridges in motorways or regional roads is significantly more expensive in Czech Republic.

Data on the investment in bridges over time is available for the Czech Republic (Figure 5). The investment is fairly uniform with time, except for the last fourteen years which shows a sharp decline. The maximum investment period coincides with the time when most of the bridges were built (1946 to 1965). The annual costs per square meter of bridge area were reported to be very high for Poland and Slovenia in comparison with the other countries. A comparison between the total annual costs of management for Slovenia, Poland and the Czech Republic (Figure 6) shows that the costs are ranked according to the rank by number of bridges.

Although regular inspections are carried out there exists a definite shortage of personnel with specialized training on deterioration and diagnostics. About half of all such personnel have to be trained for the inspections carried out. Engineers participate directly only in major inspections. Although most countries have a bridge management system, they usually consider the aspect of safety[Have we evidence of this – it is a very strong statement – ONLY!]. Few systems have optimization strategies to minimize overall cost??.. (Any need of this?)
3.2 Culverts
Inadequate information on culverts is available for most of the countries. Norway considers a culvert to be a bridge; hence data for culverts usually gets combined with data for the bridge stock. Figure 7 presents the information on culverts for Poland. Most of the culverts are made of concrete or precast concrete both in terms of numbers and total length. The rate of construction of culverts over time has been varied. However, a significant growth in numbers is noted since 1946. The Czech Republic has reported the replacement costs per square meter for concrete, precast concrete and corrugated steel to be 857, 367 and 350 Euro respectively (cost reported in 2006). The total replacement costs for all culverts were estimated to be 36 million and 106 million Euro for Slovenia and Poland respectively.

3.3 Retaining Walls
The data collected for the various countries centers around the bridge stock. In contrast, questions regarding retaining walls elicited little response. Figure 8 shows the only available information from the Czech Republic. Most retaining walls are situated on regional roads. Gravity walls are the most common form of construction. Dry-stone and improved dry-stone are the most common materials for construction followed by plain and reinforced concrete.

3.4 Tunnels
Excluding Norway, which has about one thousand tunnels on their national roads, Austria, Slovenia and Czech Republic have modest numbers of tunnels. The average length of tunnels varies from about 500m to 900m for Norway, Austria and Slovenia. The distribution, by number and length, in Slovenia, the Czech Republic and Austria on various types of road, is presented in Table 2. The growth in tunnel construction has been significant and about 70% have been built in the last 35 years. Interestingly, in the post-war period when the construction of bridges and culverts were significant, tunnel construction was quite low (Figure 9). About 89% tunnels of Slovenia are ventilated followed by Austria (70%) and Norway (57%). Nearly all the tunnels are bored or cut-and-cover type. The replacement costs are about 7 to 9 million Euro (reported in 2006) per km length.

4. Conclusions

This paper presents a synopsis of the responses of various experts from a number of countries in Europe to questions on road structures. The importance of the information lies in the fact that a number of these countries have joined the European Union in recent years and the existing condition of their infrastructure is important for intra-EU trade and economic development. Information on infrastructural components other than bridges is poor. A large number of bridge and culverts were constructed during the post-war period of 1946 to 1969 suggesting that it is important to rate them according to their present deteriorated status and under current traffic loading. Although the replacement costs of
the infrastructural elements are extremely high and the management costs have to be prioritized due to limited budgets, few management systems, in the opinion of the authors, consider economic aspects in the assessment and prioritization of remedial actions. There appears to be considerable scope for better optimization and prioritization processes at a network rather than a project level.

References


List of Figures

Figure 1(a). Number of bridges built during various times.

Figure 1(b). Growth of bridge deck area over time expressed as a percentage of national stock.

Figure 2(a). Type of construction of bridges expressed as a percentage of total number of national stock.

Figure 2(b). Type of construction of bridges expressed as a percentage of total deck area of national stock.

Figure 3. Distribution of number of bridges based on material of construction.

Figure 4. Replacement costs of bridges on various types of road.

Figure 5. Investment in Bridges over time in the Czech Republic expressed as a percentage of total investment.

Figure 6. Total Annual Management Costs for Bridges.

Figure 7. Distribution of culverts in Poland by material of construction and over time.

Figure 8.
Figure 1. Period of Construction of Bridges by Country: (a) Number of Bridges; (b) Deck Area. [specify % of what? Of national stock, or % of the total number in all 6 countries?]

Figure 2. Type of Construction: (a) Number of Bridges; (b) Total Length of Bridge Deck.

Figure 3 Number of Bridges by Material of Construction.

Figure 4 Bridge Replacement Costs for Various Types of Road.

Figure 5 Investment in Bridges in the Czech Republic. [Percentage of WHAT?] [The time periods are all different so should the bars be wider to correspond to the more extended periods and the areas proportional to the investment? This really depends on what is on the axis (which should be specified)]

Figure 6. Total Annual Management Costs for Bridges.[make figure smaller – it is too big given its simplicity]

Figure 7 Culverts in Poland. [what are the 4 figures? How are they different? Label them a, b, c and d and specify what each is]

Figure 8 Retaining Walls in the Czech Republic.[2nd and 3rd figs seem to be the same. X-axis labels missing for 2 bars in 2nd and 3rd. Label all four.]

Figure 9. Period of Tunnel Construction: (a) Number; (b) Total Length [specify what % is]
Figure 1(a)
Figure 1(b)

Figure 2(a)

Figure 2(b)
Figure 4
Figure 5
Figure 7
Figure 8
Figure 9(a)

Figure 9(b)
List of Tables

Table 1. Distribution of Roads and Bridges in Various Countries.

Table 2. Distribution of Tunnels in Various Countries
<table>
<thead>
<tr>
<th></th>
<th>Slovenia</th>
<th>Poland</th>
<th>Hungary</th>
<th>Czech Republic</th>
<th>Norway</th>
<th>Austria</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total Road Length</strong></td>
<td>km</td>
<td>20138</td>
<td>370297</td>
<td>135555</td>
<td>55711</td>
<td>91825</td>
</tr>
<tr>
<td><strong>Road Length/ km²</strong></td>
<td>km</td>
<td>0.99</td>
<td>1.184</td>
<td>1.457</td>
<td>0.706</td>
<td>0.238</td>
</tr>
<tr>
<td><strong>Motorway</strong></td>
<td>%</td>
<td>2</td>
<td>unknown</td>
<td>unknown</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><strong>National Roads</strong></td>
<td>%</td>
<td>6</td>
<td>5</td>
<td>22</td>
<td>11</td>
<td>29</td>
</tr>
<tr>
<td><strong>Regional Roads</strong></td>
<td>%</td>
<td>23</td>
<td>8</td>
<td>unknown</td>
<td>88</td>
<td>29</td>
</tr>
<tr>
<td><strong>Local Roads</strong></td>
<td>%</td>
<td>69</td>
<td>87</td>
<td>78</td>
<td>unknown</td>
<td>41</td>
</tr>
<tr>
<td><strong>Number of Bridges</strong></td>
<td></td>
<td>2095</td>
<td>29041</td>
<td>6059</td>
<td>16536</td>
<td>16140</td>
</tr>
<tr>
<td><strong>Average Road Length/ Bridge</strong></td>
<td>km</td>
<td>9.6</td>
<td>12.75</td>
<td>22.37</td>
<td>3.37</td>
<td>5.69</td>
</tr>
<tr>
<td><strong>Bridges on Motorway</strong></td>
<td>%</td>
<td>34.8</td>
<td>0.3</td>
<td>2.7</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td><strong>Bridges on National Roads</strong></td>
<td>%</td>
<td>17.7</td>
<td>12</td>
<td>11.7</td>
<td>19.6</td>
<td>63.9</td>
</tr>
<tr>
<td><strong>Bridges on Regional Roads</strong></td>
<td>%</td>
<td>47.5</td>
<td>12</td>
<td>31.3</td>
<td>76.3</td>
<td>36.1</td>
</tr>
<tr>
<td><strong>Bridges on Local Roads</strong></td>
<td>%</td>
<td>unknown</td>
<td>75.8</td>
<td>54.3</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td><strong>Superstructure Length &lt;10m</strong></td>
<td>%</td>
<td>45</td>
<td>6</td>
<td>69</td>
<td>69</td>
<td>59</td>
</tr>
<tr>
<td><strong>Superstructure Length 10m-100m</strong></td>
<td>%</td>
<td>45</td>
<td>54</td>
<td>30</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td><strong>Superstructure Length &gt;100m</strong></td>
<td>%</td>
<td>10</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td><strong>Span Length &lt;10m</strong></td>
<td>%</td>
<td>55</td>
<td>37</td>
<td>75</td>
<td>72</td>
<td>62</td>
</tr>
<tr>
<td><strong>Span Length 10m to 100m</strong></td>
<td>%</td>
<td>44</td>
<td>63</td>
<td>25</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td><strong>Span Length &gt;100m</strong></td>
<td>%</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1.
<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Slovenia</th>
<th>Czech Republic</th>
<th>Austria</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total</strong></td>
<td>Number</td>
<td>37</td>
<td>15</td>
<td>320</td>
</tr>
<tr>
<td><strong>Motorway</strong></td>
<td>Number</td>
<td>14</td>
<td>3</td>
<td>181</td>
</tr>
<tr>
<td><strong>National Roads</strong></td>
<td>Number</td>
<td>13</td>
<td>9</td>
<td>84</td>
</tr>
<tr>
<td><strong>Regional Roads</strong></td>
<td>Number</td>
<td>10</td>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td><strong>Local Roads</strong></td>
<td>Number</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Motorway</strong></td>
<td>km</td>
<td>11.46</td>
<td>0.9</td>
<td>204</td>
</tr>
<tr>
<td><strong>National Roads</strong></td>
<td>km</td>
<td>0.9</td>
<td>3.98</td>
<td>51</td>
</tr>
<tr>
<td><strong>Regional Roads</strong></td>
<td>km</td>
<td>1.946</td>
<td>0.08</td>
<td>32</td>
</tr>
<tr>
<td><strong>Local Roads</strong></td>
<td>km</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Unidirectional</strong></td>
<td>Number</td>
<td>24</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td><strong>Bidirectional</strong></td>
<td>Number</td>
<td>13</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td><strong>Unidirectional</strong></td>
<td>km</td>
<td>6.386</td>
<td>1</td>
<td>206</td>
</tr>
<tr>
<td><strong>Bidirectional</strong></td>
<td>km</td>
<td>7.92</td>
<td>4</td>
<td>81</td>
</tr>
</tbody>
</table>

Table 2.