Caesarean wound care for midwives

Having investigated the risk factors for surgical site infections, Margaret Murphy makes recommendations for midwives to help keep women safe.

**SUMMARY** With a rise in caesarean births there is a rise in wound care management issues for midwives and the potential for surgical site infections (SSIs). The burden of SSIs include increases in maternal mortality, morbidity, length of hospital stay and cost. Sepsis is currently the leading cause of maternal mortality, with 50 per cent of the women who die having had a caesarean birth (Centre for Maternal and Child Enquiries (CMACE) 2011). Wound management and the prevention of sepsis are therefore issues of great concern to midwives. This article considers the incidence of wound infections and presents the guidance available to help address this problem.

**Keywords** Wound infection, caesarean, surgical site infection, guidance

**Author** Margaret Murphy, lecturer in the school of nursing and midwifery at University College Cork

---

**Incidence**
The Health Protection Agency (HPA) in the UK cite the most frequent healthcare-associated infections (HCAIs) detected, as being respiratory tract, urinary tract and surgical site infections (HPA 2012). Surgical site infections (SSIs) were third overall and accounted for 15.7 per cent of all HCAIs. According to Public Health England (PHE) (2013), rates in England are as diverse as 15.4–34.9 per cent, depending where a woman gives birth. However Leaper et al (2013) would caution that there is non-standardisation of definitions and reporting practices in the UK and Ireland which needs to be addressed to obtain a truly accurate picture of SSIs following caesarean (CS) birth. Wilson et al (2013), in their study of 4,107 women across 14 hospital sites, found a SSI rate of 404 (10 per cent). Women are more likely to develop SSIs if they laboured prior to the CS birth (Allen et al 2003).

**Independent risk factors for an early wound infection are:** obesity, multiple pregnancy, diabetes, hypertension, premature rupture of membranes and emergency CS birth

**Risk and compounding factors** Independent risk factors for an early wound infection are: obesity, multiple pregnancy, diabetes, hypertension, premature rupture of membranes and emergency CS birth (Schneid-Kofman et al 2005). Ward et al (2008) identified five risk factors for SSI: body mass index, age, blood loss, method of wound closure and emergency procedures. The main causative organisms for SSIs are Staphylococcus aureus (30 per cent), Coagulase-negative staphylococci (13.7 per cent) and Enterococcus spp (11.2 per cent) (Hidron et al 2008).

**Prevention of surgical site infections** Current research recommends the use of prophylactic antibiotic before CS birth, closure of subcutaneous space...
greater than two centimetres and maintaining normothermia intraoperatively to help reduce the incidence of postoperative wound complications (Tipton et al 2011). In relation to midwifery care, the National Institute for Health and Care Excellence (NICE) (2012: 8-9) recommend the following for routine CS wound care:

- removing the dressing 24 hours after the CS
- specific monitoring for fever
- assessing the wound for signs of infection (such as increasing pain, redness or discharge), separation or dehiscence

- encouraging the woman to wear loose, comfortable clothes and cotton underwear
- gently cleaning and drying the wound daily
- if needed, planning the removal of sutures or clips

In addition, the key recommendations from the surgical infection guideline with particular relevance to post CS wounds include:

- women should be offered clear, consistent information and advice about the risks of surgical site infections;
- the skin should be prepared at the surgical site immediately before incision, using an antiseptic (aqueous or alcohol-based) preparation such as povidone-iodine or chlorhexidine;
- hair removal should not be routinely used, to reduce the risk of surgical site infection. If required, single-use head electric clippers (not razors) should be used on the day of surgery. Surgical incisions anticipated to heal by primary intention should be covered with a film membrane, with or without a central absorbent pad (NICE 2008).

Contribution factors for SSIs following caesarean birth are outlined in Figure 1.

Of paramount importance to this is the timely recognition and treatment of sepsis in women (CMACE 2011). Other causes of pyrexia (mastitis, urinary tract infection or upper respiratory tract infection) need to be investigated and excluded (Tharpe 2008). Strict adherence to hand hygiene needs to be used by both women and healthcare staff (CMACE 2011).

Approaches are needed to prevent, or decrease, the risk of SSIs following caesarean birth involving this multidisciplinary team (see Figure 2, over page). All women who experience a caesarean birth should have post-discharge surveillance from a multidisciplinary team (Ward et al 2008).

---

Figure 1 Contributing factors for SSIs following caesarean birth

<table>
<thead>
<tr>
<th>Pre-existing maternal conditions</th>
<th>Events during labour or birth</th>
<th>Procedure/provider related conditions and events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremes of maternal age</td>
<td>Pre-term labour and birth</td>
<td>Pre-operative shaving</td>
</tr>
<tr>
<td>Elevated body mass index</td>
<td>Prolonged rupture of membranes</td>
<td>Pre-operative skin preparation technique</td>
</tr>
<tr>
<td>Smoking</td>
<td>Prolonged labour</td>
<td>General anaesthesia</td>
</tr>
<tr>
<td>Primiparity</td>
<td>Intrapartum fever/pyrexia</td>
<td>Hypothermia</td>
</tr>
<tr>
<td>Low socioeconomic status</td>
<td>Multiple vaginal examinations</td>
<td>Poor aseptic technique</td>
</tr>
<tr>
<td>Poor maternal hygiene</td>
<td>Post-term pregnancy</td>
<td>Inadequate sterilisation of instruments</td>
</tr>
<tr>
<td>Poor nutrition</td>
<td>Thick meconium staining</td>
<td>Delayed or omitted prophylactic antibiotics</td>
</tr>
<tr>
<td>Poor oxygenation</td>
<td>Internal fetal scalp electrode</td>
<td>Suboptimal haemostasis</td>
</tr>
<tr>
<td>Poor tissue perfusion</td>
<td>Uterine monitoring with an intrauterine pressure catheter</td>
<td>Practitioner skill</td>
</tr>
<tr>
<td>Multiple comorbidities</td>
<td>Operative vaginal birth</td>
<td>Practitioner experience</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Foley catheter</td>
<td>Length of procedure</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Caesarean birth</td>
<td>Operative trauma</td>
</tr>
<tr>
<td>Immune compromise</td>
<td>Uterine perforation</td>
<td>Contamination of wound or surgical site</td>
</tr>
<tr>
<td>Splenectomy</td>
<td>Manual removal of placenta</td>
<td>Residual dead space following wound closure</td>
</tr>
<tr>
<td>Severe anaemia</td>
<td>Retained products of conception</td>
<td></td>
</tr>
<tr>
<td>Infection: Bacterial vaginosis, chlamydia, gonorrhoea, trichomonias</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Andrews et al 2003; Smaill and Hofmeyr 2002; Smaill and Cyte 2010; Mangram et al 1999; Maharaj 2007a; Maharaj 2007b)
Conclusion
Midwives must be competent in assessing, recognising and caring for women who experience CS birth and who are at risk of developing a surgical site infection. The most recent confidential inquiry (CMACE 2011) has identified the need for midwives to address sepsis prevention and management as a matter of urgency.

TPM
Margaret Murphy is a lecturer in the school of nursing and midwifery at University College Cork

References
‘Maternal morbidity associated with cesarean delivery without labor compared with spontaneous onset of labor at term’. Obst Gyn, 102(3): 477-482.

‘Randomized clinical trial of extended spectrum antibiotic prophylaxis with coverage for Ureaplasma urealyticum to reduce post-caesarean delivery endometritis’. Obst Gyn, 101(6): 1183-1189


NICE (2012). Caesarean section (CG 132), London: NICE.


(Mangram et al 1999; Greif et al 2000; Melling et al 2001; Ueno et al 2006; Maharaj 2007a; Tharpe 2008)