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Abstract 

A binder-free cobalt phosphate hydrate (Co3(PO4)2·8H2O) multilayer nano/ microflakes structure 

is synthesized on nickel foam (NF) via a facile hydrothermal process. Four different 

concentrations (2.5 mM, 5mM, 10mM and 20mM) of the Co2+ and PO4
-3 were used to obtain 

different mass loading of cobalt phosphate on the nickel foam. The Co3(PO4)2·8H2O modified 

NF electrode (2.5 mM) shows a maximum specific capacity of 868.3 C g-1 (capacitance of 

1578.7 F g-1) at a current density of 5 mA cm-2 and remains as high as 566.3 C g-1 (1029.5 F g-1) 

at 50 mA cm-2 in 1 M NaOH. A supercapattery assembled using Co3(PO4)2·8H2O/NF as positive 

and activated carbon/NF as negative electrode, delivers a gravimetric capacitance of 111.2 F g-1 

(volumetric capacitance of 4.44 F cm-3). Furthermore, the device offers a high specific energy of 

29.29 Wh kg-1 (energy density of 1.17 mWh cm-3) and a specific power of 4687 W kg-1 (power 

density of 187.5 mW cm-3). 

 

  

Page 2 of 27

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3

Introduction 

Supercapattery, as the ideal electrochemical energy storage device, combines the high energy-

storage capability of conventional batteries with the high power-delivery-capability of 

supercapacitors. A large amount of investigations have been carried out in the development of 

this hybrid energy storage device to combine the best of both worlds1-4. Till date many 

researchers have classified their work to be capacitive which showed battery-like behaviour due 

to the misunderstanding of pseudocapacitor and supercapattery.5-8 “Pseudocapacitance” is used 

to describe the electrode materials with similar electrochemical properties to a capacitive carbon 

electrode, such as RuO2 and MnO2, which exhibits a rectangular cyclic voltammograms (CV) 

and a triangular charge-discharge curve9-10. The new terminology of supercapattery was created 

to define the electrochemical behaviour between capacitor-like and battery-like hybrids. In 

addition, the so-called asymmetric supercapacitors fabricated by using redox materials as 

positive electrode and carbon based materials as negative electrode were also miscalled, which 

should also be named hybrid supercapattery. 8, 11 

In recent years, several groups proposed to apply transition metal phosphates and their 

composites as electrode materials for supercapattery due to their good performance as positive 

electrode materials for rechargeable ion-batteries.1, 12-14 However, for cobalt phosphate, only 

limited reports are available for supercapattery applications and none on a complete cell. 

Li et al. fabricated a 3D Co3(PO4)2·8H2O architecture with a specific capacitance of 350 F g-1 

at an applied current of 1 A g-1 15 whereas, Tang et al. reported a honeycomb-like mesoporous 

Co3(PO4)2·8H2O nanospheres with a specific capacitance of 247.7 F g-1 at a current of 0.25 A g-

1.16 Three different cobalt based composites namely, Co11(HPO3)8(OH)6, CoHPO3·3H2O and 

NH4CoPO4·H2O were fabricated using hydrothermal process, delivered a specific capacitance of 

Page 3 of 27

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 4

312, 413 and 369.4 F g-1, respectively.17-19 . All these single electrodes showed a low specific 

capacitance and thereby will not be able to deliver more energy density than existing carbon or 

oxide based electrodes20-21. Furthermore, Wang et al. reported a mesoporous uniform 

NH4NiPO4·H2O nanostructure with a specific capacitance of 1072 F g-1 at a current of 1.5 A g-

1.22 Nevertheless, none of the above work realized a complete cell to further study the 

electrochemical performance of the cobalt phosphate composites. 

In terms of complete cells, a capacitance of 80.5 F g-1 was reported for an asymmetric 

supercapacitor using Mn3(PO4)2·3H2O nanosheets as positive electrode and activated carbon 

(AC) as negative electrode.23
 Tang et al. reported a cobalt nickel phosphate nanospheres // AC 

hybrid supercapattery with a good capacitance of 149.6 F g-1.16 Gao et al. investigated an 

ultrathin hybridized phosphate ((NH4)(Ni, Co)PO4·0.67H2O) nanoslices // AC hybrid device 

exhibited a specific capacitance of 78 F g-1.23 Hierarchical 1D NH4NiPO4·H2O microrods 

achieved an aerial capacitance of 66 mF cm-2 in a flexible all-solid-state supercapacitor.24 

Among these complete cells, the highest specific energy of 45.8 Wh kg-1 was reported for 

Co0.86Ni2.14(PO4)2 // AC but the cycle stability is quite low, which is only 66.5% after 1000 

cycles.16 

Herein, we report a cobalt phosphate hydrate (Co3(PO4)2·8H2O) multilayer nano/ microflakes 

structure synthesized on nickel foam by a hydrothermal method. The electrochemical 

performance of the material was tested as single electrode and as the positive electrode of a 

supercapattery cell in 1.0 M NaOH electrolytes. The specific capacity of this binder-free 

multilayer nano/ microflake structured material is 868.3 C g-1 (241.2 mAh g-1) at a current 

density of 5 mA cm-2, which is equivalent to a specific capacitance of 1578.7 F g-1. The capacity 

retention is 65.2% (566.3 C g-1, 157.3 mAh g-1, 1029.5 F g-1) of the initial value at a current 
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 5

density of 50 mA cm-2. The hybrid device in a configuration of Co3(PO4)2·8H2O/NF // separator 

// AC/NF delivers a high specific capacitance of 111.2 F g-1 and a specific energy of 29.29 Wh 

kg-1 (energy density of 1.17 mWh cm-3) at a specific power of 468.75 W kg-1 (power density of 

18.75 mW cm-3), with an excellent cyclic stability of 77.9% after 1000 cycles. Compared to the 

state of the art mono-metallic phosphate based electrode materials, our electrode showed 

increased capacity (capacitance) and energy density with excellent cyclic stability.  
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 6

Experimental Section 

Material Synthesis: 

Co3(PO4)2·8H2O nano/ microflakes were synthesized by hydrothermal method on nickel foam 

(NF). In detail, nickel foam (3 × 3 cm2) treated with 3 M HCl followed by washing with ethanol 

and deionized water for 15 minutes was used as substrate. Equal concentration (2.5 mM) of 

Co(NO3)2·6H2O and NH4H2PO4 were dissolved in deionized (DI) water under stirring for 15 

min. The solution was transferred to a 100 ml reaction vessel, which contained the pre-treated 

nickel foam substrate and was then kept at 120 °C for 8 h in oven. After this time, the reaction 

vessel was allowed to cool down to room temperature naturally. Finally, substrates covered with 

Co3(PO4)2·8H2O were washed with DI water several times with the assistance of ultrasonication, 

and then dried in air. For the mass loading study, different concentrations (5 mM, 10 mM, 20 

mM) of Co+2 and PO4
-3 were prepared using the same procedure. The amount of 

Co3(PO4)2·8H2O was measured from the weight difference of the pure nickel foam and 

Co3(PO4)2·8H2O grown nickel foam. Typical mass of the active electrode material is ~4, ~8, ~11 

and ~15 mg/cm2, respectively. Figure S1 in the Electronic Supplementary Information (ESI) 

shows a photograph of Co3(PO4)2·8H2O/NF samples prepared using different concentrations (2.5 

mM, 5 mM, 10 mM, 20 mM). 

 

Materials Characterization: 

The crystal structures of Co3(PO4)2·8H2O/NF samples were analysed using X-ray 

diffractometer (XRD Philips PW3710-MPD diffractometer with Cu Kα radiation, λ=1.54Å). The 

surface morphology and compositional analysis of Co3(PO4)2·8H2O/NF samples were performed 
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 7

by field emission scanning electron microscope (FEI QUANTA 650 HRSEM) with an energy 

dispersive X-ray spectroscopy (EDX Oxford Instruments INCA energy system) and high 

resolution transmission electron microscope (JEOL HRTEM-2100 at 200 kV). To avoid 

contribution of Ni from the NF, the EDX and TEM measurements were carried out for the 

powder samples scratched off from the NF. The Raman spectra of Co3(PO4)2·8H2O/NF hybrid 

structures were recorded with the Renishaw (RA 100) inVia confocal Raman Microscope at 

514.5 nm excitation. The X-ray photoelectron spectroscopy (XPS) analysis was performed on a 

Kratos Ultra DLD spectrometer with Al K α (1486.6 eV) as the X-ray source. 

 

Electrochemical Measurement: 

The electrochemical performance of the Co3(PO4)2·8H2O/NF electrodes were investigated in a 

three-electrode system at 25 ºC. The nickel foam supported Co3(PO4)2·8H2O, platinum wire and 

saturated calomel electrode (SCE) were used as working, counter and reference electrodes, 

respectively. The electrolyte was 1.0 M NaOH solution. The electrochemical properties of hybrid 

cell were evaluated in a two-electrode system using Co3(PO4)2·8H2O/NF as positive electrode 

and activated carbon/NF as negative electrode separated by Celgard separator in 1.0 M sodium 

hydroxide solution. The activated carbon (AC) based electrode was prepared by mixing 90 wt% 

AC and 10 wt% PVDF (polyvinylidene difluoride) and spreading the mixture on to a 3 × 3 cm2 

nickel foam. Typical mass loading of 2, 4 and 6 mg cm-2 were used to fabricate activated carbon 

electrode. Both positive and negative electrodes were cut into 1 × 1 cm2 then assembled into a 

hybrid supercapattery. The electrochemical measurements, including cyclic voltammetry (CV), 

chronopotentiometry, and A. C. impedance techniques were conducted using a CHI 660C 

electrochemical workstation and a Bio-logic VSP Modular 5 channels potentiostat. 
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 8

Results and Discussion 

X-ray diffraction (XRD) and Raman spectroscopy were used to explore the phase structure of 

Co3(PO4)2·8H2O nano/ microflakes. As shown in Figure 1(a), except the marked peaks of nickel 

foam (peaks at 44.6°, 51.9° and 76.6°) single phase of Co3(PO4)2·8H2O were formed. All the 

other peaks can be indexed to the planes of cobalt phosphate hydrate (JCPDS NO. 41-0375). 

With increasing concentration, the peak intensity of Co3(PO4)2·8H2O increased (Figure S2), 

while the peak intensity of nickel decreased due to larger mass loading for higher concentration 

samples. Figure 1(b) shows the Raman spectra of nickel foam and Co3(PO4)2·8H2O/NF. No 

obvious peaks were obtained from acid pre-treated pure nickel foam spectroscopy, because of no 

changes in polarization in the pure metal. In the spectroscopy of Co3(PO4)2·8H2O/NF,  the peaks 

due to the Ni-O stretching at 560 cm-1 indicated the conversion of the nickel foam which is 

presented in Section 5 of the ESI.25 O-Co-O bending appears at 260 and 370 cm-1.26 The O-P-O 

bending modes are located at 462 cm-1,27-28 while the symmetric O-P-O stretching vibrations are 

observed at 956, 1023 and 1046 cm-1. 26 27-28 The asymmetric P-O-P stretching vibration was 

obtained at 894 cm-1.28 The external modes are found in the 160-250 region.28-29 All these modes 

confirm the formation of Co3(PO4)2·8H2O composite on nickel foam26, 28, 30-31. 
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 9

 

Figure 1. (a) XRD pattern and (b) Raman spectra of pure nickel foam and 2.5 mM 

Co3(PO4)2·8H2O/NF nano/microstructure. 

Figure 2 shows the SEM images of nickel foam supported Co3(PO4)2·8H2O nano/ microflakes 

at different magnifications fabricated from 2.5 mM concentration. Low magnification images 

(Figure 2a, b) shows the homogeneous growth of the Co3(PO4)2·8H2O multilayer nano/ 

microflakes. These nano/ microflakes were formed layer by layer with an average thickness 

ranging from 400 nm to 1 µm as can be seen in Figure 2(c, d). With increasing concentration 

(from 2.5 to 20 mM), individual layer of the multilayer structures grew thicker (600 nm to 1.2 
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µm) in a disorderly fashion into different directions as can be observed in Figure S3-S4. Thicker 

flakes easily block the interspace of the nickel foam and might reduce the overall surface area of 

the electrode. To analyze the component in the nano/ microflakes structure, thin flake-powder 

was scratched off from the nickel foam and stuck to the copper tape. The elemental mapping on 

the flakes in Figure 2(e) clearly shows the distribution of Co, P and O, which is in good 

agreement with the XRD and Raman analysis. 

 

Figure 2. (a-d) SEM images of 2.5 mM Co3(PO4)2·8H2O/NF nano/microflakes at different 

magnifications (e) Elemental mapping spectrum of Co3(PO4)2·8H2O/NF nano/microstructure 

scanned at different flake-powder. 
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 11

In addition, high-resolution transmission electron microscopy (HR-TEM) measurements were 

carried out for the powder samples scratched off from the nickel foam to avoid the contribution 

of the substrate. The HR-TEM and corresponding selected-area electron diffraction (SAED) 

images are shown in Figure 3. Different thicknesses of scratched powder sample were selectively 

analyzed. Figure 3(a) and (b) clearly show a single layer found at the edge of a thick sample 

piece, which is comprised of several layers. Similarly, Figure 3(c) demonstrates the obvious 

layer-by-layer structure, confirming the multilayer structure shown in the SEM images in Figure 

2(c-d). The corresponding SAED pattern in Figure 3(d) shows the electron diffraction from 

different planes and is consistent with XRD results. 

 

Figure 3. (a-c) HRTEM images of Co3(PO4)2·8H2O multilayer structure, (d) corresponding 

SAED pattern. 

The samples were further analyzed by XPS to investigate the appropriate valence states. Figure 

S6 in ESI represents the XPS spectra of pure nickel foam and Co3(PO4)2·8H2O/NF samples. A 
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 12

brief description of the XPS data and analysis is presented in Section 2 of the ESI, which is in 

good agreement with the XRD and Raman analysis. 

 

To investigate the electrochemical performance of the Co3(PO4)2·8H2O/NF, a three electrode 

system was used. Figure S7(a) shows the CV curves of pure nickel foam, 2.5, 5, 10 and 20 mM 

Co3(PO4)2·8H2O/NF at a scan rate of 2 mV/s in 1.0 M NaOH solution. The contribution of bare 

nickel foam is negligible compare to the Co3(PO4)2·8H2O. Clear current peaks are observed in all 

the samples, indicating the non-capacitive faradaic energy storage properties of the electrode 

material. With increasing concentration (i.e., with increased mass loading of the active material), 

the main peaks around 0.45 and 0.25 V broaden and the peak current varies. This may be due to 

the higher mass loading, which results in more activate material to take part in the redox reaction 

but on the other hand reduces the conductivity of the electrode as can be observed from the 

Nyquist plots in Figure S8. The resistance of the electrodes are found to be 1.90, 1.94, 2.47 and 

4.8 Ω with increased mass loading. The 2.5 and 5 mM CVs are nearly symmetrical, indicating 

good redox property of the material. However, for higher concentration samples, the secondary 

peaks (around 0.25 and 0.55 V) become more obvious because of the larger mass loading 

enhanced the first step of the redox reactions (shown as equation 1). Two pairs of oxidation and 

reduction peaks indicate the transform between the different states of Co2+ and Co3+. Figure 4(a) 

shows the CV curves of 2.5 mM sample at different scan rate from 1 to 50 mV/s. With increasing 

scan rate, the oxidation and reduction peaks started to shift from each other, indicating quasi-

reversible reaction and the shape of the CVs tends to be asymmetric. Figure S7(b) shows that the 

peak shift in 5 mM sample is less than 2.5 mM sample, which may be due to the larger loading 

(2× compared to 2.5 mM) of cobalt phosphate, resulted in more active materials to be involved in 

the faradaic reactions as follows32-33: 
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Co3(PO4)2.8H2O + OH- ↔ Co3(PO4)2(OH*) + e- 1 

Co3(PO4)2(OH*) +  OH- ↔ Co3(PO4)2(O*) + H2O + e- 2 

O* + O* ↔ O2↑ 3 

 

Figure 4. (a) Cyclic voltammograms of 2.5 mM Co3(PO4)2·8H2O/NF at different scan rate from 

1 to 50 mV/s in 1 M NaOH. (b) Charge-discharge profile of the electrode at different current 

densities. (c) Specific capacitance and capacity variation at different current densities. (d) Cyclic 

stability of the electrode. Inset represents continuous charge-discharge profile at 20 mA/cm2. 

 

Figure 4(b) shows the charge-discharge profile of 2.5 mM Co3(PO4)2·8H2O/NF. In both 2.5 

and 5 mM discharging curves (Figure S7(c) and (d)), distinct potential plateaus are observed, 

which demonstrate the battery-like characteristics of the electrodes. The nearly symmetric 

charging and discharging curves at low current density indicate the reversible redox reaction. 5 

mM sample shows nearly twice discharging time than the 2.5 mM sample at similar current 

density, which may be due to double mass loading in case of 5 mM sample. However, for 10 and 
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20 mM samples (Figure S7(e-f)), the discharge time does not increase with larger mass loading. 

From SEM image analysis in Figure S4 we found that the multilayer structures for higher-

concentration samples grew thicker and larger in a disorderly fashion, which reduces the overall 

surface area of the electrode accessible by the electrolyte and thereby less active material is 

taking part in storing the charge. These results are in good agreement with the CV analysis 

presented in Figure 4(a) and Figure S7(a). 

Due to the non-capacitive faradaic (or battery) mechanism, the specific capacity in terms of C 

g-1 or mAh g-1 was calculated using equations 1 and 2 as described in section 3 of ESI. A 

maximum specific capacity of 868.3 C g-1 (241.2 mAh g-1) at an applied current density of 5 mA 

cm-2 was found for the 2.5 mM sample. The capacity variation as a function of current density is 

shown in Figure 4(c). With a 10 times increase in the current density (from 5 to 50 mA cm-2), the  

capacity retention is 65.2% and 72.1% of the initial value for 2.5 and 5 mM samples, which are 

much better than the  state of the art (48%) cobalt phosphate electrodes.15 

However, to be comparable with reported literatures, specific capacitance in terms of F g-1 was 

calculated using equation 3 as shown in section 3 of ESI. An ultra-high specific capacitance of 

1578.7 F g-1 was achieved from 2.5 mM Co3(PO4)2·8H2O/NF at 5 mA cm-2 (1.25 A/g) and 

1336.9 F g-1 was attained for 5 mM sample at 5 mA cm-2 (0.625 A/g), and reduced to 1029.5 F g-

1 (65.2%) for 2.5 mM and 963.6 F g-1 (72.1%) for 5 mM sample for a current density of 50 

mA/cm2 (Figure 4(c) and Figure S9). The reduction in specific capacitance in the 5 mM and 

higher concentration samples are due to the larger mass loading, which resulted in a thicker layer 

formation as compared to low concentration sample that ultimately reduced the active sites for 

ion diffusion from the electrolyte. However, the specific capacitance for 2.5 mM electrode is 

found to be better than the work reported by Tang et al., where a specific capacitance of 1409.8 F 
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 15

g-1 at 0.25 A g-1 was obtained for a honeycomb-like mesoporous cobalt nickel phosphate 

nanospheres, whereas for Co3(PO4)2, only 247.7 F g-1 was reported16. Similarly, Li et al. showed 

350 F g-1 at 1 A g-1 for a 3D Co3(PO4)2·8H2O architecture with flower-like morphologies 

assembled from 2D microsheets.15 Furthermore, Pang et al. reported three different phosphate 

microstructures, and achieved 312 F g-1 for Co11(HPO3)8(OH)6 nanoribbons 17, 413 F g-1 for 

CoHPO4·3H2O nanosheets and 369.4 F g-1 for NH4CoPO4·H2O nano/microstructures. Whereas, 

our 2.5 mM electrode showed ~4 times better specific capacitance as compared to the best 

reported cobalt phosphate based electrodes. Table S1 and Table S3 compares the specific 

capacity and capacitance of all the four different concentration electrodes fabricated in this work 

and other similar metal phosphate and cobalt oxide based electrode materials and from published 

literature.15-19, 22-24, 34 Another important requirement for supercapattery application is the long 

term cyclic stability. Figure 4(d) shows the cyclic stability of the 2.5 mM sample and the inset 

shows the continuous charge-discharge profile at 20 mA/cm2. The electrode exhibited a 

capacitance of 1149 F g-1 (72.8% retention) after 1000 cycles, which is more than twice of the 

best capacitance value reported for cobalt phosphate based electrodes.15-18 The decrease of the 

capacitance after 1000 charge-discharge cycles may be due to the morphology transformation 

and the dissolution of the active material as shown in Figure S16. 

It is noteworthy that the observed specific capacity (or capacitance) is higher than the 

theoretical value (533 C g-1 or 969 F g-1 as calculated by Equation 8 and 9 as shown in section 3 

of ESI 35) for the cobalt phosphate electrode. This may be attributed to the contribution of 

electric double layer capacitance in addition to the battery-like faradaic contributions.36 When 

crystalline water is removed from the Co3(PO4)2·8H2O during electrochemical reaction, a large 

amount of void space is available for redox reaction. The interconnected Co3(PO4)2 nanosheets 
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are favorable for electrolyte penetration to the interior surfaces via the intercalated water 

molecules. After oxidation of crystalline water, there is a possibility of forming abundant pores 

within the Co3(PO4)2 nano/ microsheets as can be seen in Figure S5 of ESI, which provide large 

surface area and numerous electroactive sites for effective ion adsorption.  

 

Figure 5. (a) Cyclic voltammograms of the Co3(PO4)2·8H2O//AC hybrid supercapattery at 

different scan rates in 1 M NaOH. (b) Charge-discharge curves of supercapattery at different 

current densities. (c) Cyclic stability of supercapattery. Inset represents continuous charge-

discharge profile at 20 mA/cm2 (d) Ragone plots of supercapattery.4, 14, 16, 23, 34, 36-37 

 

In order to evaluate the performance of our Co3(PO4)2·8H2O/NF electrode, a hybrid 

supercapattery (Co3(PO4)2·8H2O//AC) was assembled with 2.5 mM Co3(PO4)2·8H2O/NF as 

positive electrode and AC/NF as negative electrode in 1 M NaOH solution. A brief discussion on 

the optimization of the positive and negative electrodes for the hybrid supercapattery is presented 
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 17

in Section 4 of the ESI. Typical mass loading of 2, 4 and 6 mg cm-2 were used to fabricate the 

activated carbon electrode. Among those, 4 mg cm-2 mass loading of activated carbon showed 

the best performance due to the balance of the charge flow between the positive electrode and the 

negative electrode. Figure 5(a) shows the CV curves of the Co3(PO4)2·8H2O//AC supercapattery 

at different scan rates from 5 to 50 mV/s. The quasi-rectangle shapes of these CV curves 

demonstrate the dominant capacitive behaviour rather than battery characteristic. The CV curves 

retain the same shape with increasing scan rate, which exhibited a good rate capability of the 

hybrid supercapattery. The individual CV curves of positive (Co3(PO4)2·8H2O/NF) and negative 

(AC/NF) electrodes are shown in Figure S10 (c). The negative electrode demonstrated a typical 

electric double layer charge-discharge profile, with hydrogen storage at deep cathodic 

conditions. On the other hand, the positive electrode has a capacity of redox reversible reaction. 

Thereby, a potential window of 1.6 V was achieved in this hybrid supercapattery. Figure 5(b) 

shows the charge-discharge curves of the Co3(PO4)2·8H2O//AC supercapattery at different 

current densities with a cell voltage up to 1.5 V. Quasi-lined charge and discharge curves rather 

than potential plateaus confirm the capacitive characteristic of the hybrid supercapattery. 

Specific capacitances at different current densities (Figure S11) were calculated by equation 4 

and 5 (ESI), based on the total mass of both positive and negative active materials (~8 mg) or the 

total measured volume of the hybrid supercapattery (0.2 cm-3). 

The device showed a specific capacitance of 111.2 F g1
 (4.44 F cm-3) at a current density of 5 

mA cm-2. Even at 50 mA cm-2, it showed a specific capacitance of 50.7 F g1
 (2.03 F cm-3). 

Thereby, our hybrid device could retain a remarkable 45.6% of the initial value for ten times of 

initial current density. Furthermore, the hybrid supercapattery showed better cyclic stability of 

77.9% (Figure 5(c)) after 1000 cycles as compared to the earlier reported work (66.5% and 
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57.8%)16. Compared to three electrode system, the hybrid supercapattery exhibits a better cyclic 

stability, which may be due to the synergistic effect of the positive supercapattery electrode with 

the negative carbon based electrode, which reduced the dissolution of active material. 

Due to the non-linear function of the charge-discharge curves, the specific energy (density) and 

specific power (density) were calculated by equations 6 and 7 as shown in the ESI. As in the 

Ragone plots shown in Figure 5(d) and Table S2, the highest specific energy was found to be 

29.29 Wh kg-1 (energy density of 1.17 mWh cm-3) at a specific power of 468.75 W kg-1 (power 

density of 18.75 mW cm-3) for the hybrid device using 2.5 mM Co3(PO4)2·8H2O/NF as positive 

and AC/NF as negative electrode. Even at a high specific power of 4687 W kg-1 (power density 

of 187.5 mW cm-3), the device could retain a specific energy of 5.33 Wh kg-1 (energy density of 

0.21 mWh cm-3). The Nyquist plot of the hybrid supercapattery before and after 1000 cycles is 

shown in Figure S12. From the two plots, resistance was found to be only 0.80 Ω and 5.06 Ω for 

the hybrid supercapattery before and after cyclability test, which indicate acceptable conductivity 

for the device even after 1000 cycles.  

Overall, cobalt phosphate hydrate multilayer nano/ microflakes structure showed interesting 

properties as a positive electrode for supercapattery application. Lower concentration samples 

exhibited better electrochemical performance due to the less mass loading and thinner layer and 

showed state of the art specific capacitance for this composite. Formation of Co3(PO4)2·8H2O 

nano/ microflakes coupled with mesoporous Ni foam resulted in a large contact area between 

active materials and the electrolyte, leading to more efficient ion and charge transport, resulting 

in significant increases in the specific capacitance and rate capability at high current densities. 

Thereby, the hybrid device showed excellent specific capacitance with very good energy and 

power density, acceptable retention capability and good cyclability.   
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Conclusions 

In summary, we reported a binder-free Co3(PO4)2·8H2O multilayer nano/ microflakes structure 

via simple hydrothermal technique on nickel foam substrate as a positive electrode for 

supercapattery application. Due to the different concentrations of the synthesis process, different 

mass loading of the active materials were achieved. Single phase of Co3(PO4)2·8H2O were 

formed homogeneously over the nickel foam with an average thickness of 400 nm to 1 µm. 

Among all the samples, the highest specific capacity of 868.3 C g-1 (241.2 mAh g-1) at a current 

density of 5 mA cm-2 was exhibited from 2.5 mM sample, with a rate capability of 65.2% for 10 

times of the initial current density. A high performance hybrid supercapattery was fabricated 

using Co3(PO4)2·8H2O/NF as positive and AC/NF as the negative electrode. A maximum 

specific energy of 29.29 Wh kg-1 (energy density of 1.17 mWh cm-3) was obtained at a specific 

power of 468.75 W kg-1 (power density of 18.75 mW cm-3), with good cyclic stability of 77.9% 

after 1000 cycles. Therefore, Co3(PO4)2·8H2O can be a promising material for supercapattery 

application. 
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