<table>
<thead>
<tr>
<th>Title</th>
<th>Effect of galactose metabolising and non-metabolising strains of Streptococcus thermophilus as a starter culture adjunct on the properties of Cheddar cheese made with low or high pH at whey drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hou, Jia; Hannon, John A.; McSweeney, Paul L. H.; Beresford, Thomas P.; Guinee, Timothy P.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2016-10-20</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1016/j.idairyj.2016.10.003</td>
</tr>
<tr>
<td></td>
<td>Access to the full text of the published version may require a subscription.</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. https://creativecommons.org/licenses/by-nc-nd/4.0/</td>
</tr>
<tr>
<td>Embargo information</td>
<td>Access to this item is restricted until 12 months after publication by the request of the publisher.</td>
</tr>
<tr>
<td>Embargo lift date</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/3215</td>
</tr>
</tbody>
</table>

Downloaded on 2019-01-09T19:26:08Z
Effect of galactose metabolising and non-metabolising strains of *Streptococcus thermophilus* as a starter culture adjunct on the properties of Cheddar cheese made with low or high pH at whey drainage

Jia Hou, John A. Hannon, Paul L.H. McSweeney, Thomas P. Beresford, Timothy P. Guinee

PII: S0958-6946(16)30305-3
DOI: 10.1016/j.idairyj.2016.10.003
Reference: INDA 4083

To appear in: *International Dairy Journal*

Received Date: 10 July 2016
Revised Date: 6 October 2016
Accepted Date: 6 October 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Effect of galactose metabolising and non-metabolising strains of *Streptococcus thermophilus* as a starter culture adjunct on the properties of Cheddar cheese made with low or high pH at whey drainage

Jia Houa, John A. Hannona, Paul L. H. McSweeneyb, Thomas P. Beresforda, Timothy P. Guineea,*

a Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, Ireland

b School of Food and Nutritional Sciences, University College, Cork, Ireland

*Corresponding author. Tel.: +353 2542204

E-mail address: tim.guinee@teagasc.ie (T.P. Guinee)
ABSTRACT

Cheddar cheese was made using control culture (*Lactococcus lactis* subsp. *lactis*), or with control culture plus a galactose-metabolising (Gal⁺) or galactose-non-metabolising (Gal⁻) *Streptococcus thermophilus* adjunct; for each culture type, the pH at whey drainage was either low (pH 6.15) or high (pH 6.45). *Sc. thermophilus* affected the levels of residual lactose and galactose, and the volatile compound profile and sensory properties of the mature cheese (270 d) to an extent dependent on the drain pH and phenotype (Gal⁺ or Gal⁻). For all culture systems, reducing drain pH resulted in lower levels of moisture and lactic acid, a higher concentration of free amino acids, and higher firmness. The results indicate that *Sc. thermophilus* may be used to diversify the sensory properties of Cheddar cheese, for example from a fruity buttery odour and creamy flavour to a more acid taste, rancid odour, and a sweaty cheese flavour at high drain pH.
1. Introduction

Cheddar cheese manufacture has changed much in recent decades with advances in mechanisation and the increase in plant throughput. Specific features of large-scale modern manufacture are the production of different variants (e.g., mild, mature, vintage), the extensive use of direct vat starter (DVS) cultures, and a higher pH at whey drainage, for example, ~6.4–6.5 compared with ~6.1–6.2 in traditional Cheddar cheese made using bulk starter culture. In such factories, even where milk protein standardisation using membrane filtration is not practiced, the various cheesemaking steps, such as starter addition, rennet addition, gel cutting and whey drainage, tend to be performed on the basis of time rather than on some objective parameter such as pH of milk or curd at different stages of manufacture, or gel firmness at cutting. Another feature, at least in Irish Cheddar cheese plants, is the routine use of starter culture adjuncts, including *Streptococcus thermophilus*, which is used primarily for its thermo- and phage- resistance properties, but also apparently to affect flavour. *Sc. thermophilus* is also reported to give faster acid production during Cheddar manufacture (Michel & Martley, 2001), which is likely to be associated with a more effective protein hydrolysis and peptide uptake (Cogan et al., 2007; Law & Haandrikman, 1997), and with the non-utilisation of the galactose moiety of lactose, by most *Sc. thermophilus* strains (Thomas & Crow, 1984; Tinson, Hillier, & Jago, 1982a).

Most strains of *Sc. thermophilus* used in the dairy industry are unable to metabolise galactose (Hutkins, Halambeck, & Morris, 1986; Hutkins, Morris, & McKay, 1985; Robitaille, Moineau, St-Gelais, Vadeboncoeur, & Britten, 2007; Thomas & Crow, 1984; Vaillancourt, Moineau, Frenette, Lessard, & Vadeboncoeur, 2002). De Vin, Rådström, Herman, and De Vuyst (2005) reported that only ~16% of 49 strains of *Sc. thermophilus* evaluated on M17 medium supplemented with galactose were galactose positive. Similarly,
preliminary studies in the authors’ laboratory found that only 8% of 51 strains of Sc.
thermophilus from the Moorepark culture collection metabolised galactose. Thomas and
Crow (1984) investigated the galactose-metabolising ability of Sc. thermophilus from
different sources and found that most were galactose negative (Gal⁻) because of failure to
induce galactokinase, resulting in the excretion of galactose when grown in lactose-
containing broth. When grown under lactose limitation in J8 broth containing 20 mM
galactose, partial galactose utilisation occurred and the proportion of galactose used depended
on the generation time of cells during incubation.

Hence, the use of Sc. thermophilus (which primarily metabolises only the glucose
moiety of lactose) as an adjunct culture usually results in the accumulation of galactose
during cheese manufacture (Michel & Martley, 2001; Thomas, Turner, & Crow, 1980;
Tinson et al., 1982a). Bley, Johnson, and Olson (1985) reported that the use of a 0.5% (w/w)
non-galactose-fermenting Sc. thermophilus as an adjunct resulted in higher level of residual
galactose in one month-old stirred curd Cheddar (compared with the control cheese) and
intensified the degree of browning in processed cheese made therefrom. Similarly, Michel
and Martley (2001) found that Cheddar cheese made using Sc. thermophilus, as an adjunct
culture to Lactococcus lactis subsp. cremoris or Lactococcus lactis subsp. lactis strains, had a
high residual galactose level of ~26.6 mmol kg⁻¹ (0.48%, w/w) at 1 d. Moreover, the residual
galactose content increased as the scald temperature was increased from 38 °C to 41 °C (data
not reported). Tinson, Ratcliffe, Hillier, and Jago (1982b) reported that high levels of residual
galactose (33 mmol kg⁻¹, 0.56%, w/w) in 8 wk-old Cheddar cheese made using Sc.
thermophilus (0.5%, w/w) as an adjunct to Lc. lactis subsp. cremoris coincided with a higher
production of CO₂, leading to the development of slits and fractures in the cheese at 8 and 14
wks. This was most probably caused by the growth of non-starter lactic acid bacteria
(NSLAB) that are able to metabolise galactose.
The accumulation of galactose in cheese can lead to problems such as (i) providing a readily fermentable carbohydrate which could influence the development of NSLAB flora and possibly lead to defects, (ii) the presence of a reducing sugar in cheese that can cause excessive Maillard browning on heating, and (iii) early gas production in Cheddar cheese (Mullan, 2000; Ortakci, Broadbent, Oberg, & McMahon, 2015). Moreover, the presence of galactose in whey can affect the rate of growth of lactose crystals during whey processing and increase the propensity of the resultant whey powder to browning during storage (Dattatreya, Lee, & Rankin, 2010; Paterson & Smakman, 2011). While many of the foregoing studies (Bley et al., 1985; Hutkins et al., 1986; Michel & Martley, 2001) studied the effects of *Sc. thermophilus* as an adjunct on composition and sugar metabolism, we are unaware of any that investigated their effects on proteolysis, rheology or sensory properties, despite its apparent impact on flavour development. Moreover, there appear to be few, if any, studies on the comparative effect of galactose positive (Gal+) and galactose negative (Gal-) *Sc. thermophilus* as adjunct culture on the latter aspects of cheese quality.

The objective of the current study was to compare the effects of Gal+ and Gal- strains of *Sc. thermophilus* as an adjunct culture on the composition, sugar metabolism, pH, proteolysis, volatile compounds, texture, microbiology and sensory properties of Cheddar cheeses prepared made with a high drain pH (6.45), as in modern manufacture, or a low drain pH (6.15), as in more traditional manufacture.

2. **Materials and methods**

2.1. **Preparation of cheese milk**
Holstein-Friesian cows’ milk (3000 kg) was obtained from a spring-calving herd (Moorepark, Fermoy, Ireland). Milk samples were standardised to a protein to fat ratio of 0.96:1, stored overnight at 8 °C, pasteurised at 72 °C for 15 s, cooled to 31 °C, and pumped to cheese vats (500 L).

2.2. Starter cultures for cheesemaking

Defined strain starter cultures were used in cheesemaking (Lc. lactis subsp. lactis strains 227 and 303; Chr. Hansen Ireland Ltd., Little Island, Ireland). Both cultures were grown overnight at 24 °C in reconstituted 10% (w/v), antibiotic-free skim milk powder solution (Golden Vale Food Products Ltd., Charleville, Ireland) that had been heat treated at 95 °C for 30 min. When the pH of the inoculated milk reached between pH 4.5 to 5.0, the cultures were cooled and stored at 4 °C until required for cheesemaking (1 d).

Adjunct starter cultures of Sc. thermophilus from the Moorepark culture collection were screened on the basis of sugar metabolism, acidification rate and salt sensitivity. One galactose metabolising (DPC 1796) and one galactose non-metabolising (DPC 5095) Sc. thermophilus strain were selected for cheesemaking. Both cultures were grown overnight at 37 °C in reconstituted 10% (w/v), antibiotic-free skim milk powder solution (Golden Vale Food Products Ltd.) as described above.

For convenience, the cultures used in cheesemaking were denoted as follows: control culture C, consisting of Lc. lactis subsp. lactis strain 227 and 303, each inoculated at a level of 0.075% (w/w); Gal⁺ culture, consisting of the control culture and a galactose-metabolising Sc. thermophilus DPTC 1796 (inoculated at a level of 0.25%, w/w); and Gal⁻ culture, consisting of the control culture C plus galactose non-metabolising Sc. thermophilus DPTC 5095 (inoculated at a level of 0.25%, w/w).
2.3. Cheese manufacture and treatments

Six different treatment cheeses were manufactured in each of three replicate trials undertaken over a three-week period from October 20 to November 11, 2011. The cheeses were denoted as: high-drain pH (6.45) made using culture C (HDpHC); high-drain pH with Gal⁺ culture (HDpHGall⁺); high-drain pH with Gal⁻ culture (HDpHGall⁻); low-drain pH (6.15) with culture C (LDpHC); low-drain pH with Gal⁺ culture (LDpHGall⁺); low-drain pH with Gal⁻ culture (LDpHGall⁻).

The manufacture of cheese involved inoculation of cheesemilk with *Lc. lactis* subsp. *lactis* strain 227 and 303, each at a level of 0.75% (w/w). Additionally, *Sc. thermophilus* 179 was added to milk for the HDpHGall⁺ and LDpHGall⁺ cheeses, and *Sc. thermophilus* 5095 to milk for the LDpHGall⁻ and HDpHGall⁻ cheeses; *Sc. thermophilus* 179 and 5095 were each inoculated at a level of 0.25% (w/w). The mean initial count of the *Lc. lactis* subsp. *lactis* was \(\sim 1 \times 10^7 \) cfu mL\(^{-1}\) in all milk lots, while that of the *Sc. thermophilus* was \(\sim 6.2 \times 10^6 \) cfu mL\(^{-1}\) in the LDpHGall⁺, LDpHGall⁻, HDpHGall⁺ and HDpHGall⁻ milk. Thirty minutes later, rennet (Chymax Plus, Chr. Hansen Ireland Ltd., 200 IMCU mL\(^{-1}\)), diluted 1:10 in de-ionised water, was added at a level of 36 IMCU kg\(^{-1}\) based on a protein level of 3.3 g 100 g\(^{-1}\) milk, and mixed in for 1.5 min to ensure uniform distribution. Immediately, a sample of the rennet-treated cheese milk was taken from the cheese vat, and placed in an insulated glass container. Within 2 min, a 13 g subsample was placed in the cell of a controlled stress rheometer (CSL2 500 Carri-Med, TA Instruments, Inc., New Castle, DE, USA) located in an adjacent laboratory, and subjected to a low oscillating strain of 0.025 at a frequency of 1 Hz at 31 °C. The development of elastic shear modulus, G', a measure of gel stiffness, was measured as a function of time; when G' reached 54 Pa, cutting of the gel in the cheese vat was initiated.
Following a 1.5 min cutting programme, the resultant curd particle-whey mixture was allowed to stand quiescently (heal) for 10 min, then stirred continuously, cooked at a rate of 0.2 °C min\(^{-1}\) from 31 to 38.5 °C, which is typical of the scald temperature used in commercial practice for Cheddar cheese made with, or without, *Sc. thermophilus* as an adjunct culture. Whey was separated from the curd when the pH of the curd reached 6.45 for the high-drain pH cheeses (HDpHC, HDpHGal\(^+\), HDpHGal\(^-\)) and 6.15 for the low-drain pH cheeses (LDpHC, LDpHGal\(^+\), LDpHGal\(^-\)). The curds were Cheddared, milled at pH 5.35, salted at a level of 2.7% (w/w), mellowed for 20 min, placed in rectangular moulds (23 kg), and pre-pressed at 0.13 kPa for 30 min. The moulded cheeses were then placed in a horizontal press and pressed overnight at 2.5 kPa. A total of two cheeses, each weighing ~20 kg, was obtained for each treatment on each of the three separate cheesemaking occasions (trials).

Cheeses were vacuum-packed and stored at 4 °C for 14 d and at 8 °C thereafter.

2.4. Sampling of cheese

Cheeses (from 20 kg blocks) were sampled at different times (1, 14, 30, 90, 180, 270 d) over the 270 day ripening period, as described by Hou, McSweeney, Beresford, and Guinee (2014b).

2.5. Composition analysis of cheese

Grated cheese samples were analysed at 14 d for moisture, protein, fat, NaCl, moisture, ash, Ca and P using standard IDF methods (Guinee, Harrington, Corcoran,
The pH was measured after each sampling date on cheese slurry prepared from 20 g of grated cheese and 12 g distilled water (Guinee et al., 2000).

2.6. Microbial counts in cheese

Starter lactococci were enumerated on LM17 agar after incubation at 20 °C for 5 d and the *Sc. thermophilus* adjunct cultures were also enumerated on LM17 agar after incubation at 43 °C for 3 d (ISO/IDF, 2010).

Cheeses were analysed for counts of non-starter lactic acid bacteria on LBS agar, as described previously (Hou, Hannon, McSweeney, Beresford, & Guinee, 2012). Coliform were enumerated by pour-plating on Violet Red Bile Agar (VRBA) incubated at 30 °C for 24 h.

2.7. Lactose and lactate in cheese

Lactose, glucose and galactose were extracted and measured using high performance liquid chromatography (HPLC) as described previously by Hou et al. (2014b); HPLC was performed using a 300 × 7.8 mm Aminex HPX-87C cation exchange carbohydrate column (Bio-Rad Laboratories, Richmond, CA, USA) and detection with a Waters 2414 refractive index detector (Waters, Bray, Ireland). The concentrations of sugars in the cheeses were calculated by comparing the peak area of samples with standard curves. Sugar concentrations were calculated as g 100 g⁻¹ cheese.

Similarly, D(−)- and L(+)- lactate were extracted and separated as described previously by Hou et al. (2014b); HPLC was performed using a Phenomenex chirex 3126 cation exchange silica column (Phenomenex, Hurdsfield Ind. Est., Macclesfield, UK) and detection
was with a Waters 2487 dual wavelength absorbance detector (Waters) as described previously by Hou et al. (2014b). The concentration of total lactate was calculated as the sum of $D(-)$- and $L(+)$- lactate; each analysis was carried out in duplicate.

2.8. **Proteolysis**

The level of pH 4.6-soluble nitrogen (pH4.6-SN) was measured as described by Hou, Hannon, McSweeney, Beresford, & Guinee (2014a). The concentration of individual free amino acids (FAAs) in the pH4.6-SN extract were determined using cation-exchange chromatography on a Beckman 6300 High Performance Analyser (Beckman Instruments Ltd., High Wycombe, UK), as described by Fenelon, Guinee, Delahunty, Murray, and Crowe (2000).

2.9. **Rheology**

Six cheeses cubes (25 mm3 cubes) were cut from each treatment cheese using a Cheese Blocker (Bos Kaasgreedschap, Bodengraven, Netherlands), wrapped in tin foil, and stored at 8 °C overnight prior to analysis. Each cube was compressed by 70% on a texture analyser (model TA-HDI, Stable Micro Systems, Godalming, UK) with a 5 mm compression plate and a 100 kg load cell, as described previously (Hou et al., 2014a). The following rheological parameters were calculated from the resultant force/displacement curves: fracture stress (kPa), the stress at fracture, as indicated by the inflection point of the curve; fracture strain, the fractional displacement at fracture; and firmness, the force required to compress the cheese to 30% of its original height.
2.10. **Volatile compounds**

The 270 day old cheeses were analysed in triplicate for volatile compounds. For each cheese, a 5 g sample was analysed by solid phase micro-extraction (SPME) coupled to a gas chromatograph (GC)-mass spectrometer (MS). Volatile compounds were separated under the conditions defined by Hannon, Kilcawley, Wilkinson, Delahunty, and Beresford (2007).

2.11. **Descriptive sensory analysis**

The sensory properties of the 270 day old cheeses from each of the three replicate trials were evaluated using descriptive sensory analysis, as described previously (Hou et al., 2014a). The results are presented as a principal component (PC) plot. Attributes scored for odour included pungent, sweaty/cheesy, rancid, fruity, buttery and caramel; attributes for flavour were pungent, farmyard, creamy, rancid, fruity, buttery, caramel and sweaty/cheesy, while those for taste comprised throat burn, sweet, acid, salt, bitter and astringent.

2.12. **Statistical analysis**

Three replicate cheesemaking trials were undertaken, each with 6 treatment cheeses, namely LDpHC, LDpHGα, LDpHGα+, HDpHC, HDpHGα+ and HDpHGα−. Analysis of variance (ANOVA) was used to determine if the treatment cheeses differed with respect to response variables, such as compositional factors, at specific time points (e.g., 14 d). ANOVA was undertaken using SAS® version 9.1.2 (SAS Institute, 2004), where the effects of treatment (different drain pH or starter system) and replicates were estimated for all
response variables. Tukey’s multiple-comparison test was used for paired comparison of
treatment means and the level of significance was determined at $P < 0.05$.

The data for changes in individual response variables (such as sugars and micro
counts) in the high and low drain pH cheeses over the duration of ripening were analysed
using a split-plot design to determine the effects of treatment, ripening time, and their
interaction. Analysis of variance for the split-plot design was carried out using a general
linear model (GLM) procedure of SAS (SAS Institute, 2004), and significance at $P < 0.05$
determined using Fisher’s least significant difference test.

The data for volatile compounds and descriptive sensory analysis, measured at 270 d
only, were analysed using PCA by Unscrambler V 6.1 (CAMO AS, N-7041 Trondheim,
Norway). The results are presented as a principal component (PC) plot.

3. Results

3.1. Cheese manufacturing time

The use of *Sc. thermophilus* adjunct cultures and alteration of pH at whey drainage
had varying effects on the times for the different stages of manufacture, namely the curd
residence time in cheese vat (time from gel cutting to whey drainage), Cheddaring time (time
from whey drainage to curd milling), and total make time (time from starter culture addition
to curd milling).

The curd residence time in the cheese vat for the HDpH cheeses (53–54 min) was
significantly lower than that for the LDpH cheeses (105–135 min). However, the Cheddaring
time for the HDpH cheeses (~125–150 min) was generally longer than that of the LDpH
cheeses (71–87 min) (Table 1). Hence, the overall make time for corresponding LDpH and HDpH cheeses did not significantly differ.

Starter culture had a significant effect on the total make time of the HDpH cheeses, with that for the HDpHGal$^+$ cheese (260–288 min) being significantly shorter (by ~30 min) than that of the corresponding control HDpHC or HDpHGal$^-$ cheeses.

3.2. Composition at 14 d

The gross composition of the cheese was affected by pH but not by starter culture type (Table 1). The moisture content of the LDpH cheeses was below the maximum level (39%, w/w) specified for Cheddar cheese (HMSO, 1996), while that of the HDpH cheeses was higher. Despite the difference in moisture content between the LDpH and HDpH cheeses (1.6–2.3%, depending on starter culture system used), the higher moisture content of the HDpH cheeses was significant only in the case of HDpHGal$^-$ cheese. A similar trend was noted for content of moisture-in-fat substances (MNFS).

3.3. Changes in sugars during ripening

3.3.1. Lactose and galactose

The effects of drain pH and starter culture system on the changes in lactose and galactose over the course of ripening are shown in Fig. 1a–d and Table 2. The mean level of residual lactose in the LDpH cheeses over the 270 d ripening period was significantly affected by starter culture system, ripening time and their interaction (Fig. 1a). The mean lactose content in the HDpH cheeses was, similarly, influenced by ripening time, but not by starter culture (Fig. 1b).
Lactose content decreased during maturation (Fig. 1a, b), and was, essentially, fully metabolised in all cheeses by 90 d, apart from the LDpHC cheese that had a significantly higher content than that of the corresponding LDpHG+ and LDpHG- cheeses at this time. The mean lactose level over the 270 d ripening period in the LDpHC cheese was significantly higher than that in the corresponding LDpHG+ and LDpHG- cheeses. The results indicate that residual lactose content in Cheddar cheese (< 180 days old) can be reduced by the use of *Sc. thermophilus* (Gal+ or Gal-) as a culture adjunct when the pH at whey drainage is low, or by increasing the pH at whey drainage when the cheese is made using the control starter culture.

The galactose content at 1 d varied from ~0.2–0.025%, remained relatively constant between d 1 and 14, and thereafter decreased to ≤0.05% in all cheeses at 180 d (Fig. 1c,d). Starter culture had a significant effect on the mean galactose level over the 270 d ripening period in the HDpH cheeses, with the mean concentration in the HDpHG+ cheese being higher than that of the HDpHC or HDpHG- cheeses (Table 2). While a similar overall pattern was observed in the LDpH cheeses, the effect of starter culture was not significant, probably because of the relatively large inter-trial variation in galactose content. Overall, the results indicate that the use of the Gal+ *Sc. thermophilus* led to higher residual galactose content in young Cheddar cheese (≤30 d), especially where the pH at whey drainage was high, as frequently is the case in large modern cheese manufacturing facilities using DVS cultures.

The mean levels of reducing sugars (lactose plus galactose) over ripening were unaffected by the addition of *Sc. thermophilus* (Table 2), indicating that the associated increase in galactose was offset by the concomitant decrease in lactose content; similarly, the drain pH did not significantly affect the level of reducing sugars for any of the cultures used.
3.3.2. **Total lactate**

The metabolism of lactose and galactose resulted in a significant increase in lactate content during the first 30 d, from ~1 to 1.3% in the LDpH cheeses and 1.2–1.45% in the HDpH cheeses; thereafter lactate levels remained relatively constant. The mean concentration over the 270 d maturation period was significantly higher in the HDpH cheeses than that in the corresponding LDpH cheeses for each culture type ($P < 0.05$). This trend is consistent with the higher level of moisture (which is the solvent for lactose) in the HDpH cheeses.

The mean level of total lactate in the LDpH or HDpH cheeses over the 270 d ripening period was unaffected by the starter culture type (Table 2; Fig. 1e,f).

3.4. **pH changes during ripening**

The mean pH of the LDpH and HDpH cheeses over the 270 d ripening period was not significantly affected by the starter culture, time or their interaction (Table 2). In contrast, the pH at whey drainage had a significant effect, with the pH of the LDpH cheeses being slightly (~0.07 pH units), but significantly ($P < 0.05$), higher than that of the corresponding HDpH cheeses at all times. The slightly higher pH of the LDpH cheeses concurs with their lower contents of moisture and lactic acid.

3.5. **Microbial counts of starter and non-starter lactic acid bacteria (NSLAB) in cheese**

3.5.1. **Starter bacteria** (Lactococcus)

The mean count of starter lactococci decreased significantly ($P < 0.05$) in all cheeses during ripening, from $\sim 1 \times 10^{10}$ cfu g$^{-1}$ at 1 d to $\sim 3.2 \times 10^{7}$ cfu g$^{-1}$ at 270 d (Table 3; Fig.
The inclusion of Gal+ or Gal− *Sc. thermophilus* strains in the starter culture did not influence the mean of count over the ripening period.

The lactococci count in the LDpHC cheese at 270 d was slightly, but significantly, higher than that of the corresponding HDpHC cheese (*P* < 0.05). As the counts in both cheeses (LDpHC, HDpHC) were similar at 1 d, the higher count in the LDpHC cheese at 270 d suggests a lower degree of starter cell autolysis, which could be associated with its lower mean level of lactic acid over the 270 d ripening period (Nájera-Domínguez & Gutiérrez-Méndez, 2013).

3.5.2. Adjunct bacteria (Sc. thermophilus)

The mean count of *Sc. thermophilus* over the 270 d ripening period was significantly affected by starter system and ripening time in both the LDpH and HDpH cheeses (Table 3; Fig. 2c,d).

Sc. thermophilus grew (from ~1 × 106 cfu g−1 in the milk following inoculation) during cheese manufacture and pressing to reach counts of ~1 × 109 cfu g−1 in the Gal+ and Gal− cheeses at 1 d (Fig. 2c,d). The population in the Gal+ and Gal− cheese decreased significantly during ripening to ~1 × 105 cfu g−1 at 270 d. While the mean count of *Sc. thermophilus* over the 270 ripening period were similar in the LDpHGal+ and LDpHGal− cheeses, that in the HDpHGal− cheese was slightly, but significantly, lower than that in the HDpHGal+ cheese.

The mean count of *Sc. thermophilus* in the control cheeses (LDpHC, HDpHC) was significantly lower than that of the corresponding Gal+ and Gal− cheeses, which had similar counts at 1 d (1 × 109 cfu g−1). Nevertheless, *Sc. thermophilus* was present in the control HDpHC and LDpHC cheeses at ~103 cfu g−1 cheese on 1 d, grew to ~1 × 104 cfu g−1 between 1 and 5 d, and remained essentially constant at this level through the remainder of ripening.
The low *Sc. thermophilus* count in the control cheeses probably reflects cross-contamination during cheese manufacture, even though care was taken to avoid this.

3.5.3. *Non-starter lactic acid bacteria (NSLAB)*

NSLAB were present in all cheeses at $\leq 3.2 \times 10^2$ cfu g$^{-1}$ at 1 d and grew during ripening, reaching counts of $\sim 3.2 \times 10^6$ to 10^7 cfu g$^{-1}$ at 180 d (Table 3; Fig. 2e,f). The mean population in the LDpH cheeses over the 270 d ripening period was significantly affected by starter culture system, with the mean count in the LDpHG$^+$ cheese being significantly higher than that in the LDpHG$^-$ cheese, and numerically, though not significantly, higher than that in the LDpHC. Post-hoc analysis showed that the counts in the LDpHG$^+$ were significantly higher than that in the LDpHG$^-$ cheese at 1, 14 and 30 d, but similar at all other times.

3.6. *Proteolysis*

The mean level of pH4.6-SN, which is indicative of hydrolysis of the insoluble intact calcium phosphate *para*-casein into water soluble peptides by residual chymosin, increased significantly in all cheeses during ripening from $\sim 5\%$ of total nitrogen at 1 d to ~ 26–29% at 270 d (data not shown). The mean level over the 270 d ripening was significantly affected by starter culture system in the HDpH cheeses (Table 4), with the mean level in the HDpHC cheese being significantly lower than that in the HDpHG$^+$ or HDpHG$^-$ cheeses for which it was similar; no such difference was found between the LDpH cheeses. However, these differences were quite small (0.6–1.3 \%) and are unlikely to have had a notable effect on the physical or sensory properties of the cheese. The pH at whey drainage did not affect the content of pH4.6-SN.
The concentration of FAAs increased significantly during ripening (Fig. 3), with glutamic acid, leucine, phenylalanine and valine being the major FAAs present in all cheeses (data not shown). The mean concentration of FAAs in the LDpH or HDpH cheeses over the 270 d ripening period was not affected by the starter culture (Table 4). In contrast, pH at whey drainage had a significant effect, with the LDpH cheeses having significantly higher mean levels of FAAs than the corresponding HDpH cheeses over the 270 d ripening period. The 270 day old LDpH cheeses had significantly higher levels of total FAAs, glutamic acid, valine, leucine, phenylalanine, proline and lysine than the corresponding HDpH cheeses. The differences in FAA concentration between the cheeses may reflect inter-cheese differences in peptidase activities as affected by pH, NSLAB species (Gobbetti et al., 1999), and degrees of autolysis and permeability of starter and non-starter bacteria (Doolan & Wilkinson, 2009).

3.7. Rheological properties

The mean values of firmness, fracture stress and fracture strain of all cheeses decreased significantly during ripening (Table 5). The decreases are consistent with the increase in primary proteolysis of calcium phosphate para-casein network (data not shown), which is the main structural component of the cheese matrix controlling the level of stress in response to applied deformation, e.g., during compression (Guinee, 2016). Starter culture had no effect on rheological properties of either the LDpH or HDpH cheeses (Table 5), a trend compatible with the very small differences in pH4.6-SN between the LDpH cheeses or HDpH cheeses. In contrast, the pH at drainage had a significant effect on firmness, with that of the LDpH cheeses, which had lower moisture content (Table 1), being significantly higher than that of the HDpH cheeses (data not shown).
3.8. Volatile compounds at 270 d

Thirty six different volatile compounds were identified in the 270 day old cheese. These comprised 10 alcohols, 8 ketones, 3 esters, 3 aldehydes, 6 acids, 2 sulphur compounds, 2 alkanes, 1 alkene (octene) and 1 terpene (limonene) were identified in all of the cheeses.

PCA was undertaken to establish if the different cheeses could be separated by the types and concentrations of volatile compounds; a biplot of the volatile compounds is presented in Fig. 4. Principal components PC1 and PC2 accounted for 47% and 25% of explained variance between the cheeses, respectively. Three cheeses, i.e., the control (LDpHC and HDpHC) and HDpHGal\(^+\) cheeses, scored positively on PC1, and three (LDpHG\(^+\)al\(^+\), LDpHG\(^+\)al\(^-\) and HDpHG\(^+\)al\(^-\) scored negatively. In contrast, all cheeses, apart from LDpHC and LDpHGal\(^+\), scored positively on PC2. Two groupings of cheeses were identifiable based on their proximity on both PC1 and PC2, namely the cheeses made using Sc. thermophilus at high drain pH (HDpHG\(^+\)al\(^+\) and HDpHG\(^+\)al\(^-\)) or at low drain pH LDpHC and LDpHG\(^+\)al\(^+\), scored positively on PC2. Two groupings of cheeses were

The control cheeses (LDpHC and HDpHC) differed from the adjunct-containing cheeses and from each other with respect to volatile compounds. The LDpHC cheese was characterised by the presence of an array of volatiles including alcohols (ethanol, 1- and 2-pentanol, 3-methyl-2-buten-1-ol and 3-methyl-3-buten-1-ol), ketones (acetone, 2-butane,
hydrocarbons (octane, pentane, heptane), acids (butanoic, hexanoic) and carbon disulphide; few volatile compounds were identified in the HDpHC cheese.

3.9. Descriptive sensory analysis at 270 d

The PCA biplot for the different odour and flavour attributes of the 270 d-old cheeses is shown in Fig. 5. The first two PCs discriminated significantly between the cheeses and accounted for a cumulative explained variance of 77%. Two distinct groupings were evident based on proximity on PC1 and PC2, namely the HDpHGål⁺ and HDpHGål⁻ cheeses that had a sweaty, rancid flavour, a rancid and sweaty odour, and acid taste, and the LDpHC and LDpHGål⁻ cheeses that had buttery flavour, caramel odour and sweet taste. In contrast, the HDpHC and LDpHGål⁻ cheeses were separated from the above groupings and from each other with respect to sensory characteristics. The former had a fruity, creamy flavour, and a fruity buttery odour, while the LDpHGål⁻ cheese had a pungent and farmyard flavour, pungent odour, pungent throat and astringent sensations, and bitter taste (Fig. 5).

4. Discussion

The current study investigated the effects of adding either a galactose metabolising (Gal⁺) or galactose non-metabolising (Gal⁻) strain of Sc. thermophilus on the properties of Cheddar cheese made using either a low (pH 6.15) or high (pH 6.45) pH at whey drainage. The study is of significance because of the growing use of Sc. thermophilus as an adjunct culture and the increase in pH at whey drainage, accompanying the transition from bulk mesophilic starter culture (Lc. lactis subsp. cremoris or lactis) to direct-vat starter mesophilic culture in large modern Cheddar cheese factories. Sc. thermophilus was inoculated at a level
of 1×10^6 cfu mL$^{-1}$ milk, resulting in counts of 1×10^9 cfu g$^{-1}$ cheese at 1 d, decreasing gradually to $\sim 1 \times 10^5$ cfu g$^{-1}$ at 270 d. The use of the *Sc. thermophilus* adjuncts had significant effects on levels of residual sugars (lactose plus galactose), volatile compounds and sensory properties of the 270 day old cheese to a degree dependent on its galactose-metabolising ability and pH, and altering the pH at whey drainage directly affected cheese composition (contents of moisture, MNFS), lactic acid level, pH and firmness irrespective of the culture systems used.

While lowering the pH at whey drainage resulted in lower contents of moisture (1.6–2.3%) and MNFS (~1.4–2.0%) in all cheeses, the effect was significant only in cheeses made with the Gal Sc. thermophilus strain. The lower moisture content of the LDpH cheeses was consistent with the longer residence time of the curd particle-whey mixture in the cheese vat prior to whey drainage (Everard et al., 2011). Whey expulsion in the cheese vat is more intense than that which occurs after whey drainage (e.g., during Cheddaring, salting and moulding) because the higher surface area of the curd particles in the cheese vat (compared with slabs of fused curd particles during Cheddaring in finishing vats or on Cheddaring belts) and the higher temperature (~3 °C) compared with that during curd Cheddaring (Dejmek & Walstra, 2004). The numerically higher moisture content of the HDpH cheeses, though non-significant in the case of the HDpHC and HDpHGal$^+$ cheeses, could have practical implications, in terms of compliance to compositional specification, quality and yield. However, normalisation of moisture content in cheese produced at different pH could easily be achieved through process intervention, whereby factors such as firmness of gel at cutting, curd particle size and rate of cooking are altered (Guinee & O’Callaghan, 2010).

Owing to their lower moisture content, the LDpH cheeses had a lower mean level of lactic acid, higher pH and higher firmness than the corresponding HDpH cheeses. This trend concurs with the findings of other studies (Chevanan, Muthukumarappan, Upreti, & Metzger,
2006; McCarthy, Wilkinson, Kelly, & Guinee, 2015, 2016; Rynne et al., 2004; Upreti, Bühlmann, & Metzger, 2006). In contrast to the current results, Lee, Johnson, and Lucey (2005) found that a reduction in the pH at whey drainage from 6.17 to 5.82 led to a reduction in pH of Cheddar cheese (from ~5.0 to 4.8), while Tunick, Guinee, van Hekken, Beresford, and Malin (2007) reported no change in in the pH of half-fat Cheddar cheese when reducing the drain pH from 6.3 to 5.85. The inter-study discrepancy on the effect of drain pH on cheese pH probably relates to differences in manufacturing conditions, such as the pH at set and the range of pH investigated, that influence the concentration of calcium phosphate which buffers the pH of cheese upwards (Lucey & Fox, 1993). Reducing drain pH by lowering the set pH (e.g., by pre-acidification of the cheese milk) is conducive to a reduction in the ratio of calcium phosphate to casein, a lower buffering capacity and a lower cheese pH (Lee et al., 2005). Conversely, lowering drain pH by extending the curd residence time of the curd/whey mixture in the cheese vat, as in the current study, is conducive to lower moisture content, a slightly higher pH, and has little, or no, effect on the calcium-to-casein ratio (Table 1).

Lactose was present in all cheeses at 1 d, with levels in the control LDpHC and HDpHC cheeses (~0.25–0.3%) being higher than that (< 0.15%) in the corresponding cheeses (LDpHGα+, LDpHGα−, HDpHGα+, HDpHGα−) made using the Galα+ or Galα− strains of Sc. thermophilus. Moreover, the use of the Sc. thermophilus adjuncts led to faster depletion of lactose, especially in the LDpH cheeses, in which lactose was fully metabolised at 90 d in the LDpHGα+ and LDpHGα− cheeses compared with 180 d in the LDpHC cheese. High residual lactose content in Cheddar cheeses has been previously reported by others (Hou et al., 2012; Shakeel-Ur-Rehman, Waldron, & Fox, 2004; Upreti & Metzger, 2006). The current study indicated that increasing the pH at whey drainage in the control Cheddar cheese (made with mesophilic culture) and the use of Galα+ culture are effective means of reducing the residual...
lactose content in Cheddar cheese. In contrast to the trend noted for lactose, cheeses made
using *Sc. thermophilus* (LDpHGα+, LDpHGα−, HDpHGα+ and HDpHGα−) had relatively
high levels of residual galactose (~0.075–0.2% or 4.2–11.34 mM at 1 d) compared with
control LDpHC or HDpHC cheeses (~0.025% or 1.3 mM at 1 d), especially at times ≤ 30 d.
While the combined concentration of reducing sugars (lactose and galactose) were unaffected
by *Sc. thermophilus*, the *Sc. thermophilus*-containing cheese may have a greater propensity to
browning on cooking because of the higher concentration of galactose, which has lower
molecular mass than lactose and, hence, higher number of reducing groups per unit weight of
reducing sugars.

The addition of *Sc. thermophilus* had a notable effect on both the type volatile
compounds and sensory properties of the 270 day old cheeses, with the effect dependent on
culture phenotype and pH. At high drain pH, the addition of *Sc. thermophilus* increased the
range of volatile compounds associated with the cheeses (HDpHGα+, HDpHGα−), including
butanoic acid, butanone, acetoin, dimethyl sulphone, and acetic acid; by comparison, the
control HDpHC cheese had few relatively few volatile compounds, apart from acetic acid and
acetoin. The change in profile of volatile compounds coincided with a marked transition in
sensory properties, from a buttery/fruity odour and creamy/fruity flavour in the HDpHC
cheese to a sweaty, cheesy and rancid odour and sweaty, cheesy, rancid flavour. Such a trend
is consistent with the strong sweaty, cheesy aroma of butanoic acid, and the sour aroma of
acetic acid (Kilcawley, 2016; Singh, Drake, & Cadwallader, 2003). Similarly, the addition of
Sc. thermophilus to the low drain pH cheeses resulted in a major shift in the profile of volatile
compounds, from a predominance of short-chain alcohols (ethanol, methyl-butene-ols,
pentanol), hydrocarbons and ketones in the control LDpHC cheese to short chain fatty acids
(butanoic, pentanoic, heptanoic and octanoic acid), ethyl esters of fatty acids, alcohols,
ketones and aldehydes (benzene acetaldehyde, nonanal), in the LDpHGα+ and LDpHGα−
cheeses; nevertheless, the latter cheeses varied with the short chain fatty acids being more closely aligned with the LDpHGal\(^+\) cheese and aldehydes and ketones with the HDpHGal\(^+\) cheeses. Unlike the trend observed in the HDpH cheeses, the effect of \textit{Sc. thermophilus} on the sensory properties on the LDpH cheeses was dependent on its galactose metabolising ability. Based on their closeness on both PC1 and PC2, the LDpHGal\(^+\) and LDpHC cheese were distinguished as a group and characterised as having a caramel odour, sweet taste and butty flavour, with the intensity of these attributes being higher in the former than the latter. In contrast, the LDpHGal\(^-\) had a pungent odour, with a bitter, throat burn, astringent farmyard flavour. Hence, despite the LDpHC and LDpHGal\(^+\) cheeses belonging to the same PCA grouping for volatile compounds, they belonged to a different grouping for the corresponding descriptive sensory analyses. This confirms that sensory perception of cheese at any time is complex, being determined by volatile compounds, taste compounds, texture and their interaction (Szczesniak, 2002).

5. Conclusion

The use of \textit{Sc. thermophilus} as an adjunct culture (to \textit{Lc. lactis} subsp. \textit{lactis}) affected the levels of residual lactose and galactose, the profile of volatile compounds and sensory properties of Cheddar cheese to an extent dependent on the drain pH and \textit{Sc. thermophilus} phenotype (Gal\(^-\) or Gal\(^+\)). At high drainage pH (6.45), the use of both Gal\(^-\) or Gal\(^+\) strains of \textit{Sc. thermophilus} gave Cheddar cheese that had a sweaty, rancid flavour, a rancid and sweaty odour, and acid taste at 270 d, compared with control cheese (without adjunct) that had a fruity, creamy flavour, and a fruity butter odour. Conversely, at low drain pH (6.15), the control cheese and cheese made using Gal\(^+\) strain of \textit{Sc. thermophilus} were closer in sensory properties (buttery flavour, caramel odour and sweet taste) than the cheese made using the
Gal’ strain of *Sc. thermophilus*, which had a pungent and farmyard flavour, pungent odour, pungent throat and astringent sensations, and bitter taste. For both the control culture and adjunct-containing cultures, reducing the pH at whey drainage from 6.45 to 6.15 resulted in cheese that had lower levels of moisture and FAA, and was firmer. The results suggest that *Sc. thermophilus* as a starter culture adjunct may be used as a means of creating Cheddar cheese variants with distinctive flavour profiles; but when using Gal’ variant *Sc. thermophilus*, the pH at whey drainage should be increased to avoid the accumulation of high levels of residual galactose during ripening.

Acknowledgements

This work was funded by the Department of Agriculture, Fisheries and Food, under the National Development Plan and Food Institutional Research Measure with project reference no. 08RDC604.

References

Figure legends

Fig. 1. Changes in the level of residual lactose (a and b), galactose (c and d) and total lactate (e and f) during ripening in low drain pH (broken line, open symbol) and high drain pH (solid line, closed symbol) Cheddar cheeses made with control starter culture (LDPHC, △; HDpHC, △), control starter culture with galactose metabolising *Sc. thermophilus* culture adjunct (LDPHGal+, ○; HDpHGαl+, ●) or control starter culture with galactose non-metabolising *Sc. thermophilus* as culture adjunct (LDPHGαl−, □; HDpHGαl−, ■). Values are the means of three replicate trials; error bars represent standard deviations of the mean.

Fig. 2. Changes in the counts of starter *Lactococcus* (a and b), *Sc. thermophilus* (c and d) and non-starter lactic acid bacteria (e and f) during ripening in low drain pH (broken line, open symbol) and high drain pH (solid line, closed symbol) Cheddar cheeses made with control starter culture (LDPHC, △; HDpHC, △), control starter culture with galactose metabolising *Sc. thermophilus* culture adjunct (LDPHGal+, ○; HDpHGαl+, ●) or control starter culture with galactose non-metabolising *Sc. thermophilus* as culture adjunct (LDPHGαl−, □; HDpHGαl−, ■). Values are the means of three replicate trials; error bars represent standard deviations of the mean.

Fig. 3. Changes in the concentrations of total free amino acids (FAA) during ripening in low drain pH (a, broken line, open symbol) and high drain pH (b, solid line, closed symbol) Cheddar cheeses made with control starter culture (LDPHC, △; HDpHC, △), control starter culture with galactose metabolising *Sc. thermophilus* culture adjunct (LDPHGαl+, ○; HDpHGαl+, ●) or control starter culture with galactose non-metabolising *Sc. thermophilus* as
culture adjunct (LDpHGal\(^-\), □; HDpHGal\(^-\), ■). Values are the means of three replicate trials; error bars represent standard deviations of the mean.

Fig. 4. PCA showing the first two principal components of volatile compounds in 270 day old low drain pH and high drain pH Cheddar cheeses made with control starter culture (LDpHC; HDpHC), control starter culture with galactose metabolising *Sc. thermophilus* culture adjunct (LDpHGal\(^+\); HDpHGal\(^+\)) or control starter culture with galactose non-
metabolising *Sc. thermophilus* as culture adjunct (LDpHGal\(^-\); HDpHGal\(^-\)). Values are the means of three replicate trials.

Fig. 5. PCA showing the first two principal components of descriptive sensory odour and flavour attribute in 270 day-old low drain pH and high drain pH Cheddar cheeses made with control starter culture (LDpHC; HDpHC), control starter culture with galactose metabolising *Sc. thermophilus* culture adjunct (LDpHGal\(^+\); HDpHGal\(^+\)) or control starter culture with galactose non-metabolising *Sc. thermophilus* as culture adjunct (LDpHGal\(^-\); HDpHGal\(^-\)). Values are the means of three replicate trials.
Table 1

Effect of different starter culture and pH at whey drainage on the composition of 14 day old Cheddar cheeses and the times required for different stages of manufacture. a

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low drain pH cheese</th>
<th>High drain pH cheese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture (% w/w)</td>
<td>38.5ᵇᵃ</td>
<td>38.7ᵃᵃ</td>
</tr>
<tr>
<td>Fat (% w/w)</td>
<td>30.7ᵇᵃ</td>
<td>30.5ᵃᵃ</td>
</tr>
<tr>
<td>Protein (% w/w)</td>
<td>25.4ᵇᵃ</td>
<td>25.1ᵃᵃ</td>
</tr>
<tr>
<td>Salt (% w/w)</td>
<td>1.74ᵃᵃ</td>
<td>1.93ᵃᵃ</td>
</tr>
<tr>
<td>Ca (mg 100 g⁻¹)</td>
<td>755ᵇᵇ</td>
<td>757ᵃᵃ</td>
</tr>
<tr>
<td>Calcium to protein (mg g⁻¹)</td>
<td>29.7ᵇᵇ</td>
<td>30.2ᵃᵃ</td>
</tr>
<tr>
<td>P (mg 100 g⁻¹)</td>
<td>486ᵃᵇ</td>
<td>480ᵃᵃ</td>
</tr>
<tr>
<td>S/M (% w/w)</td>
<td>4.54ᵇᵇ</td>
<td>5.01ᵃᵇ</td>
</tr>
<tr>
<td>MNFS (% w/w)</td>
<td>55.5ᵃᵇ</td>
<td>55.6ᵃᵇ</td>
</tr>
<tr>
<td>FDM (% w/w)</td>
<td>49.9ᵇᵇ</td>
<td>49.7ᵃᵇ</td>
</tr>
<tr>
<td>pH</td>
<td>5.25ᵇᵇ</td>
<td>5.34ᵃᵇ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time for different stages of cheese manufacture (min)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Curd residence time</td>
<td>133ᵃᵃ</td>
<td>104ᵇᵇ</td>
<td>125ᵇᵇ</td>
<td>54ᵇᵇ</td>
<td>54ᵇᵇ</td>
<td>53ᵇᵇ</td>
</tr>
<tr>
<td>Cheddaring time</td>
<td>71ᵇᵇ</td>
<td>75ᵃᵃ</td>
<td>87ᵇᵇ</td>
<td>150ᵃᵃ</td>
<td>124ᵇᵇ</td>
<td>151ᵃᵃ</td>
</tr>
<tr>
<td>Total make time</td>
<td>281ᵃᵃ</td>
<td>252ᵃᵃ</td>
<td>279ᵃᵃ</td>
<td>280ᵃᵃ</td>
<td>253ᵇᵇ</td>
<td>284ᵃᵃ</td>
</tr>
</tbody>
</table>

a Cheeses were low drain pH (LDpH) or high drain pH (HDpH) cheeses made with control culture (LDpHC, HDpHC), galactose-metabolising *Sc. thermophilus* culture (LDpHGal⁺, HDpHGal⁺), or galactose-metabolising *Sc. thermophilus* culture (LDpHGal⁻, HDpHGal⁻). Values within a row relating to LDpH cheeses (LDpHC, LDpHGal⁺, LDpHGal⁻) or HDpH cheeses (HDpHC, HDpHGal⁺, HDpHGal⁻) and not sharing a common lower-case superscript differ significantly (P < 0.05) for effect of starter culture; values within a row relating to cheeses made with control culture (LDpHC, HDpHC), galactose-metabolising *Sc. thermophilus* culture (LDpHGal⁺, HDpHGal⁺) or galactose-non-metabolising *Sc. thermophilus* culture (LDpHGal⁻, HDpHGal⁻), and not sharing a common upper-case superscript letter differ significantly (P < 0.05) for effect of drain pH. Abbreviations are: S/M, salt in moisture; MNFS, moisture in non-fat substances; FDM, fat in dry matter.
Table 2

Statistical significances (P values) for effects of starter culture and ripening time on concentrations of lactose, galactose, total lactate and pH in Cheddar cheeses made using low- or high-drain pH. a

<table>
<thead>
<tr>
<th>Factor</th>
<th>Lactose</th>
<th>Galactose</th>
<th>Lactose + galactose</th>
<th>Total lactate</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>P</td>
<td>df</td>
<td>P</td>
<td>df</td>
</tr>
<tr>
<td>Low drain pH cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter system</td>
<td>2</td>
<td>0.005</td>
<td>2</td>
<td>0.158</td>
<td>2</td>
</tr>
<tr>
<td>Sub-plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripening time</td>
<td>5</td>
<td><0.001</td>
<td>5</td>
<td><0.001</td>
<td>5</td>
</tr>
<tr>
<td>Interaction (starter system × ripening time)</td>
<td>10</td>
<td>0.0002</td>
<td>10</td>
<td>0.110</td>
<td>10</td>
</tr>
<tr>
<td>High drain pH cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter system</td>
<td>2</td>
<td>0.073</td>
<td>2</td>
<td>0.036</td>
<td>2</td>
</tr>
<tr>
<td>Sub-plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripening time</td>
<td>5</td>
<td><0.001</td>
<td>5</td>
<td><0.001</td>
<td>5</td>
</tr>
<tr>
<td>Interaction (starter system × ripening time)</td>
<td>10</td>
<td>0.004</td>
<td>10</td>
<td>0.048</td>
<td>10</td>
</tr>
</tbody>
</table>

a Cheeses were made with different starter cultures (C, Gal$^+$ or Gal$^-$, as described in Materials and methods) at low or high drain pH. Analysis of variance was carried out using the general linear model (GLM) procedure of SAS, where the effects of treatment, ripening time and their interaction were estimated; there were ‘2’ degrees of freedom (df) for starter system and ‘5’ for ripening time.
Statistical significances (P values) for effects of starter culture and ripening time on counts of *Lactococcus*, *Sc. thermophilus* and non-starter lactic acid bacteria (NSLAB) in Cheddar cheeses made using low or high drain pH.\(^a\)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Lactococcus</th>
<th></th>
<th>Sc. thermophilus</th>
<th></th>
<th>NSLAB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>P</td>
<td>df</td>
<td>P</td>
<td>df</td>
<td>P</td>
</tr>
<tr>
<td>Low drain pH cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter system</td>
<td>2</td>
<td>0.883</td>
<td>2</td>
<td>0.028</td>
<td>2</td>
<td>0.002</td>
</tr>
<tr>
<td>Sub-plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripening time</td>
<td>5</td>
<td><0.001</td>
<td>5</td>
<td><0.001</td>
<td>5</td>
<td><0.001</td>
</tr>
<tr>
<td>Interaction (starter system × ripening time)</td>
<td>10</td>
<td>0.759</td>
<td>10</td>
<td><0.001</td>
<td>10</td>
<td>0.337</td>
</tr>
<tr>
<td>High drain pH cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter system</td>
<td>2</td>
<td>0.120</td>
<td>2</td>
<td><0.001</td>
<td>2</td>
<td>0.284</td>
</tr>
<tr>
<td>Sub-plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripening time</td>
<td>5</td>
<td><0.001</td>
<td>5</td>
<td><0.001</td>
<td>5</td>
<td><0.001</td>
</tr>
<tr>
<td>Interaction (starter system × ripening time)</td>
<td>10</td>
<td>0.337</td>
<td>10</td>
<td><0.001</td>
<td>10</td>
<td>0.145</td>
</tr>
</tbody>
</table>

\(^a\) Cheeses were made with different starter cultures (C, Gal\(^+\) or Gal\(^-\), as described in Materials and methods) at high or low drain pH. Analysis of variance was carried using the general linear model (GLM) procedure of SAS, where the effects of treatment, ripening time and their interaction were estimated; there were ‘2’ degrees of freedom (df) for starter system and ‘5’ for ripening time.
Table 4

Statistical significances (P values) for effects of starter culture and ripening time on levels of pH 4.6-soluble N (pH4.6-SN) and free amino acids (FAAs) in Cheddar cheeses made using low or high drain pH. a

<table>
<thead>
<tr>
<th>Factor</th>
<th>pH4.6-SN df</th>
<th>pH4.6-SN P</th>
<th>FAAs df</th>
<th>FAAs P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low drain pH cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter system</td>
<td>2</td>
<td>0.883</td>
<td>2</td>
<td>0.499</td>
</tr>
<tr>
<td>Sub-plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripening time</td>
<td>4</td>
<td><0.001</td>
<td>4</td>
<td><0.001</td>
</tr>
<tr>
<td>Interaction (starter system × ripening time)</td>
<td>8</td>
<td>0.96</td>
<td>8</td>
<td>0.754</td>
</tr>
<tr>
<td>High drain pH cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter system</td>
<td>2</td>
<td><0.001</td>
<td>2</td>
<td>0.081</td>
</tr>
<tr>
<td>Sub-plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripening time</td>
<td>4</td>
<td><0.001</td>
<td>4</td>
<td><0.001</td>
</tr>
<tr>
<td>Interaction (starter system × ripening time)</td>
<td>8</td>
<td>0.978</td>
<td>8</td>
<td>0.122</td>
</tr>
</tbody>
</table>

a Cheeses were made with different starter cultures (C, Gal+ or Gal-, as described in Materials and methods) at high or low drain pH. Analysis of variance was carried using the general linear model (GLM) procedure of SAS, where the effects of treatment, ripening time and their interaction were estimated; there were ‘2’ for degrees of freedom (df) for starter system and ‘5’ for ripening time.
Table 5

Statistical significances (P values) for effects of starter culture and ripening time on the firmness, facture stress and fracture strain of Cheddar cheese made using low or high drain pH. a

<table>
<thead>
<tr>
<th>Factor</th>
<th>Firmness</th>
<th></th>
<th>Facture stress</th>
<th></th>
<th>Fracture strain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>P</td>
<td>df</td>
<td>P</td>
<td>df</td>
<td>P</td>
</tr>
<tr>
<td>Low drain pH cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter system</td>
<td>2</td>
<td>0.240</td>
<td>2</td>
<td>0.346</td>
<td>2</td>
<td>0.340</td>
</tr>
<tr>
<td>Sub-plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripening time</td>
<td>4</td>
<td><0.001</td>
<td>4</td>
<td><0.001</td>
<td>4</td>
<td><0.001</td>
</tr>
<tr>
<td>Interaction (starter system × ripening time)</td>
<td>8</td>
<td>0.949</td>
<td>8</td>
<td>0.453</td>
<td>8</td>
<td>0.294</td>
</tr>
<tr>
<td>High drain pH cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starter system</td>
<td>2</td>
<td>0.066</td>
<td>2</td>
<td>0.163</td>
<td>2</td>
<td>0.773</td>
</tr>
<tr>
<td>Sub-plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripening time</td>
<td>4</td>
<td><0.001</td>
<td>4</td>
<td><0.001</td>
<td>4</td>
<td><0.001</td>
</tr>
<tr>
<td>Interaction (starter system × ripening time)</td>
<td>8</td>
<td>0.923</td>
<td>8</td>
<td>0.483</td>
<td>8</td>
<td>0.949</td>
</tr>
</tbody>
</table>

Cheeses were made with different starter cultures (C, Gal+ or Gal-, as described in Materials and Methods) at high or low drain pH. Analysis of variance was carried using the general linear model (GLM) procedure of SAS, where the effects of treatment, ripening time and their interaction were estimated; there were ‘2’ for degrees of freedom (df) for starter system and ‘5’ for ripening time.
Figure 1

(a) Lactose (% w/w) vs. Ripening time (d)
(b) Galactose (% w/w) vs. Ripening time (d)
(c) Total lactate (% w/w) vs. Ripening time (d)
(d) Total lactate (% w/w) vs. Ripening time (d)
(e) Galactose (% w/w) vs. Ripening time (d)
(f) Total lactate (% w/w) vs. Ripening time (d)
Figure 2.
Figure 3.
Figure 4.
Figure 5.