<table>
<thead>
<tr>
<th>Title</th>
<th>A systematic review of methods to assess intake of sugar-sweetened beverages among healthy European adults and children: a DEDIPAC (DEterminants of DIet and Physical Activity) study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Riordan, Fiona; Ryan, Kathleen; Perry, Ivan J.; Schulze, Matthias B.; Andersen, Lene Frost; Geelen, Anouk; Van't Veer, Pieter; Eussen, Simone; van Dongen, Martien; Wijckmans-Duysens, Nicole; Harrington, Janas M.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2016-10-21</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>https://www.cambridge.org/core/journals/public-health-nutrition</td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.1017/S1368980016002639</td>
</tr>
<tr>
<td></td>
<td>Access to the full text of the published version may require a subscription.</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Authors 2016</td>
</tr>
<tr>
<td>Embargo information</td>
<td>Access to this article is restricted until 12 months after publication by the request of the publisher.</td>
</tr>
<tr>
<td>Embargo lift date</td>
<td>2017-10-21</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/3233</td>
</tr>
</tbody>
</table>

Downloaded on 2021-05-07T06:54:52Z
A systematic review of methods to assess intake of sugar-sweetened beverages among healthy European adults and children: a DEDIPAC (DEterminants of DIet and Physical Activity) study

Fiona Riordan1,*, Kathleen Ryan2, Ivan J Perry1, Matthias B Schulze3, Lene Frost Andersen4, Anouk Geelen5, Pieter van’t Veer5, Simone Eussen6, Martien van Dongen6, Nicole Wijckmans-Duysens6 and Janas M Harrington1
1Department of Epidemiology and Public Health, University College Cork, Western Road, Cork, Republic of Ireland: 2School of Applied Psychology, University College Cork, Cork, Republic of Ireland: 3Department of Molecular Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany: 4Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway: 5Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands: 6Department of Epidemiology of the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands

Submitted 24 September 2015: Final revision received 19 August 2016: Accepted 24 August 2016

Abstract
Objective: Research indicates that intake of sugar-sweetened beverages (SSB) may be associated with negative health consequences. However, differences between assessment methods can affect the comparability of intake data across studies. The current review aimed to identify methods used to assess SSB intake among children and adults in pan-European studies and to inform the development of the DEDIPAC (DEterminants of DIet and Physical Activity) toolbox of methods suitable for use in future European studies.

Design: A literature search was conducted using three electronic databases and by hand-searching reference lists. English-language studies of any design which assessed SSB consumption were included in the review.

Setting: Studies involving two or more European countries were included in the review.

Subjects: Healthy, free-living children and adults.

Results: The review identified twenty-three pan-European studies which assessed intake of SSB. The FFQ was the most commonly used (n 24), followed by the 24 h recall (n 6) and diet records (n 1). There were several differences between the identified FFQ, including the definition of SSB used. In total, seven instruments that were tested for validity were selected as potentially suitable to assess SSB intake among adults (n 1), adolescents (n 3) and children (n 3).

Conclusions: The current review highlights the need for instruments to use an agreed definition of SSB. Methods that were tested for validity and used in pan-European populations encompassing a range of countries were identified. These methods should be considered for use by future studies focused on evaluating consumption of SSB.

Keywords
Sugar-sweetened beverages Dietary assessment Europe DEDIPAC

A poor-quality diet is associated with non-communicable diseases(1–4) and there is a growing body of research indicating that the consumption of sugar-sweetened beverages (SSB) may be associated with negative health consequences, including the development of metabolic syndrome and higher blood pressure5, an increased risk of diabetes6, increased body weight7 and obesity8. One of the recommendations made by the WHO Global Strategy on Diet and Physical Activity is the limiting of sugar and salt intake9. SSB include drinks that are sweetened with sugar, other calorific sweeteners and corn syrups, as well as encompassing carbonated and non-carbonated drinks. In recent years there has been a global increase in the consumption of SSB10,11, which are characterised by their low nutritional content and failure to provide a feeling of fullness12.
Recent studies suggest that levels of overweight and obesity are increasing in Europe\cite{13,14}. However, while evidence suggests that reducing the intake of SSB would lead to a significant reduction in the incidence of obesity as well as other chronic illness such as diabetes (type 2)\cite{15,16}, the link between obesity and intake of SSB is one that continues to be examined, with mixed results\cite{8,17–22}. Many reasons for this inconsistency have been indicated, including methodological differences between studies and differing characteristics of assessment instruments, such as differences in the units of serving size, frequency categories and the definitions of SSB used\cite{17}. Using standardised instruments and assessment methods across European populations has the potential to strengthen the investigation of associations between SSB and health outcomes such as obesity and to facilitate the collection of valid and comparable dietary intake data, along with the tracking of regional trends\cite{25}.

There has been increasing focus on the standardisation and harmonisation of food classification systems and food composition databases between European countries (e.g. the International Food Data Systems Project, the Eurofoods initiative, the Food-Linked Agro-Industrial Research programme, COST Action 99, TRANSFAIR study, EUROFIR, etc.)\cite{25–29}. The IDAMES (Innovative Dietary Assessment Methods in Epidemiological Studies and Public Health) project has evaluated new methods of dietary intake assessment in Europe\cite{30}, developing the European Food Propensity Questionnaire for use in European countries. Although the European Food Safety Authority indicates that a computerised method (e.g. EPIC-SOFT or similar) should be used for collection of standardised dietary intake data at the European level\cite{31,32}, standards have not yet been developed for the assessment of dietary intake, including intake of SSB, as part of aetiological studies. Thematic Area 1 of the DEDIPAC (Determinants of Diet and Physical Activity) project\cite{33}, a pillar of the EU Joint Programme Initiative ‘Healthy Diet for a Healthy Life’, in part aims to address this gap by determining the most effective, harmonised methods of dietary intake assessment and preparing a toolkit of the most useful measurement tools of dietary intake that can be used extensively across Europe\cite{33,34}. The aim of the current systematic literature review was to identify suitable assessment methods that may potentially be used to measure intake of SSB in European children and adults in pan-European studies. These methods will later be assessed for their effectiveness as part of their inclusion in the DEDIPAC toolkit.

Methods

Data sources and study selection

The current review adheres to the guidelines of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement. The protocol for the review can be accessed from PROSPERO (CRD42014012890)\cite{36}.

A systematic literature search was conducted for pan-European studies that assessed the intake of SSB. A definition of SSB that encompasses drinks with pre-added sugar, including soft drinks and energy drinks (carbonated and non-carbonated drinks) and cordials/squashes, was used; that is, the definition excluded drinks where sugar is added by the consumer (e.g. coffee and tea) and diet soft drinks. Two authors, F.R. and K.R., independently conducted a search of PubMed, EMBASE and Web of Science databases, using combinations of search terms for SSB such as ‘carbonated drink/s’, ‘soft drink/s’, ‘fizzy drink/s’, ‘energy drink/s’, ‘sugar-sweetened beverage/s’ and ‘soda/s’, along with keywords for dietary intake including ‘diet’, ‘eating’, ‘consumption’ and ‘intake’, and search terms for European countries (see online supplementary material, Supplemental Table 1). All searches were limited to literature published from 1990 through to 9 June 2014 (Fig. 1).

Titles and abstracts of the sourced articles were independently screened by F.R. and K.R. If in doubt regarding inclusion, the article was retained for full-text review. Any disagreement during the full-text review stage was resolved through consultation with a third author, J.M.H. Articles were included if they assessed the intake of SSB within two or more European countries (EU countries as defined by the Council of Europe)\cite{36}. The aim of the review was to identify instruments that are suitable to assess SSB intake in the general, healthy adult or child populations. Therefore, study participants were required to be free-living, healthy populations of any age. Hospital-based populations, along with studies which focused on a specific disease subgroup (e.g. diabetic patients) or any fixed societal subgroups (e.g. pregnant women), were excluded. If studies included or compared two cohorts, one of which was a healthy general population, they were included. Intervention studies were eligible provided intake of SSB was measured at baseline. Similarly, case-control studies were included if intake was assessed in population-based controls. Studies were included only if they assessed intake of SSB at the level of the individual; that is, studies which assessed household-level consumption of SSB were excluded (Fig. 1).

Reference lists of all included papers, along with relevant meta-analyses and literature reviews, were reviewed for further publications not identified by the original search. Databases were also searched using the names of individual European projects listed in the DEDIPAC Inventory of Relevant European Studies, a compilation of studies which is an ongoing part of DEDIPAC. Authors were contacted to obtain full versions of the relevant instruments or questionnaires and some articles, and the Endnote library of a concurrently occurring systematic literature review on methods to assess intake of fruits and vegetables (F&V)\cite{37} was reviewed for further studies.
Data extraction and quality assessment

Data extraction was carried out using the same approach as outlined in the F&V review (38); that is, extracting details on study design, number and names of European countries involved, sample size (total and number for each country), age range of the included population, the method used and its description (including frequency categories for FFQ, total number of items/items that referred to SSB, details of nutrient intake assessment, details of portion estimation), mode of administration, and details on the validity or reproducibility testing. Originally sourced articles describing the methods in the most detail were selected for inclusion, with further information obtained from articles sourced from reference lists. One reviewer (F.R.) extracted the data for each study, which was confirmed by the other reviewer (K.R.).

As with the review of methods to assess F&V intake (37), a comprehensive quality appraisal of each included article was not conducted as part of the current review; however, relevant validation studies were referenced where possible and data were extracted from these studies by M.v.D., S.E. and N.W.-D. To determine which instruments would be appropriate to use in pan-European studies, two criteria were applied: (i) the instrument was tested for validity and/or reproducibility; and (ii) the instrument was used in more than two countries simultaneously that represent a range of European regions. A range implied that at least one country from at least three of the Southern, Northern, Eastern and Western European regions, as defined by the United Nations, were included (38).

Results

Description of the included studies

The initial search identified 1949 papers, of which 1290 remained once duplicates were removed. After title and abstract screening, 1188 papers were excluded (Fig. 1).
Full-text papers were sourced and reviewed for 102 papers, of which forty-eight were ultimately retained. These articles were grouped according to the major European project to which they belonged (n 44) or as ‘Other’ if they did not belong to a project (n 4; see Fig. 1 for breakdown of papers). From these forty-eight articles, sixteen articles were selected which best described the background to the project or the method used; one to three articles were typically selected per project, with the exception of the ToyBox study where articles obtained from authors were used in favour of the sourced article. Reviewing the reference lists yielded eighteen further articles in which the methods were described.(29,39–55)

Fourteen further articles were obtained through correspondence with authors; and ten articles were obtained from the F&V Endnote library, which identified seven additional studies assessing the intake of SSB, namely CANS (Cross National Student Health Survey) 56,57, HAPIEE (Health, Alcohol and Psychosocial factors in Eastern Europe) 58,59, Finbalt Health Monitor 60, MEDIS (Mediterranean Islands Study) 61, MGSID (Mediterranean Group for the Study of Diabetes) 62, ISAAC (International Study of Asthma and Allergies in Childhood) 63,64, and the Finnish and Russian Karelia study(65). Unpublished details on the instruments used as part of the I.Family Project 66, successor to the IDEFICS (Identification and prevention of Dietary-and lifestyle-induced health Effects In Children and infants) study, were obtained through contact with the IDEFICS group. Articles on the background and validity testing as part of the Food4Me project, published after the search dates, were also added to the review (n 3). The characteristics of the included studies(29,39–40,42–58,62–119) are described in Table 1.

As with the F&V review(37), the term ‘study’ refers to a larger project and not individual analyses/publications arising the same project and using the same methodology. In total, sixty-one articles on twenty-three studies were included in the current review: original search (n 16), from reference lists (n 18), from the concurrent F&V review (n 10), from authors (n 14) and added subsequently (n 3). In total, twelve pan-European studies were identified which assessed intake of SSB along with eleven smaller studies which were conducted in two to four countries. Sixteen studies identified SSB intake among adults only(29,39–44,50,51,62,64,66,67,80,105,110) along with eleven smaller studies which were conducted in two to four countries. Twelve studies assessed the intake of SSB in children, aged 3–6 years (29,39,44,50,51,62,64,66,67,80,105,110) or 2–9 years (39,44,66,67,71–73,76,78,107). Twelve studies assessed the intake of SSB in children, aged 3–6 years (29,39,44,50,51,62,64,66,67,80,105,110) or 2–9 years (39,44,66,67,71–73,76,78,107). Fourteen studies assessed intake among adults only(29,39,44,50,51,62,64,66,67,80,105,110) and one study assessed intake among adolescents (39,44,66,67,71–73,76,78,107). Fourteen studies assessed intake among adults only(29,39,44,50,51,62,64,66,67,80,105,110) and one study assessed intake among adolescents (39,44,66,67,71–73,76,78,107). Fourteen studies assessed intake among adults only(29,39,44,50,51,62,64,66,67,80,105,110) and one study assessed intake among adolescents (39,44,66,67,71–73,76,78,107). Fourteen studies assessed intake among adults only(29,39,44,50,51,62,64,66,67,80,105,110) and one study assessed intake among adolescents (39,44,66,67,71–73,76,78,107).

Types of methods
Several methods were used to assess dietary intake of SSB in the identified studies, but most used FFQ (n 24), 47,51,54,56,59–65,67,69,71–73,76,82,101,103,107,110,121. Other methods identified through the review were 24 h recalls (24-HDR; n 6), 48,51,52,78,113,122 and diet records/diet diaries (102). Most studies assessed intake of SSB using a single method, although four – ENERGY, IDEFICS and I.Family Project, and HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) – used and described a second assessment methodology that supplemented or tested the study’s primary method for validity. FFQ along with 24-HDR were used in the ENERGY, IDEFICS and HELENA projects. EPIC (European Prospective Investigation into Cancer and Nutrition) used a highly standardised 24-HDR, EPIC-SOFT, in a representative sub-sample from each cohort, which served as a common reference measurement across the different study populations, to calibrate and account for differences in the country-specific FFQ used as part of the study(50,92,112). Since a common FFQ instrument was not used across all countries in EPIC, only the EPIC-SOFT instrument is discussed in the present review. Similarly, as the EYHS (European Youth Heart Study) FFQ was reported as part of the Danish component of the study, so only the 24-HDR, preceded by the 1d record, is discussed herein.

According to the two selection criteria (Table 1), several study instruments appeared appropriate to assess intake of SSB in future pan-European studies. Instruments that had been used among adult populations and that fulfilled the criteria included EPIC-SOFT, the Food4Me FFQ, the SENeca Survey in Europe on Nutrition and the Elderly; a Concerted Action modified dietary history method, the ToyBox Primary Caregiver’s Questionnaire and the ENERGY parent questionnaire. Three instruments used to assess intake among adolescents, namely HELENA-DIAT (Dietary Assessment Tool), the HELENA online FFQ and the HBSC (Health Behaviour in School-aged Children) FFQ, fulfilled the criteria, as did the IDEFICS 24-HDR (SACINA) and Children’s Eating Habits Questionnaire (CEHQ-FFQ), the ENERGY Children’s Questionnaire (FFQ and pre-coded 24-HDR) and the ToyBox Children’s Questionnaire (FFQ), all of which were used among children. The I.Family instrument was based on those developed for the IDEFICS study. The 24-HDR preceded by the 1d qualitative food record used in the EYHS was tested for validity among children from the USA but not in a European population(99). The 24-HDR was compared with observational data on consumption collected by parents and teachers. The instruments selected according to the two criteria are indicated by ticks in Table 1. However, in order to make the review more comprehensive, details on all the identified methods are provided.
<table>
<thead>
<tr>
<th>Study/Instrument</th>
<th>Study Design</th>
<th>Population</th>
<th>Countries</th>
<th>Instrument(s)</th>
<th>Tested for validity</th>
<th>> 2 countries/ range</th>
<th>Validity</th>
<th>Reproducibility</th>
<th>Instrument selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNSHS(56,57)</td>
<td>Cross-sectional</td>
<td>Adults/students (n 2651)</td>
<td>4 (Germany, Denmark, Poland, Bulgaria)</td>
<td>FFQ</td>
<td>X</td>
<td>No test of validity was performed, but the questionnaire was similar to other FFQ that had been tested for validity</td>
<td>No details †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY(51,77,140)</td>
<td>Cross-sectional</td>
<td>Adults/parents or guardians (n 6002)</td>
<td>7 (Belgium, Greece, Hungary, Netherlands, Norway, Slovenia, Spain)</td>
<td>Questionnaire with FFQ and 24-HDR‡</td>
<td>X(51)</td>
<td></td>
<td>X</td>
<td>No details †</td>
<td>The reliability and content validity of the parent questionnaires were tested separately in all participating countries, in five schools per country, using approximately 50 parents per country for the reliability study and 20 parents for the construct validity study</td>
</tr>
<tr>
<td>EPIC(40,47, 49,109)</td>
<td>Longitudinal</td>
<td>Adults (n 519 978) 30–70 years</td>
<td>10 (Italy, Spain, Netherlands, Germany, Sweden/Malmö/ Sweden (Umeå), Denmark, France, Greece, Norway, England)</td>
<td>FFQ, 24-HDR (EPIC-SOFT)</td>
<td>X(49)</td>
<td></td>
<td>X</td>
<td>Country-specific FFQ were tested for validity. Data obtained from highly standardised 24-HDR, EPIC-SOFT, carried out in a random sample of each EPIC cohort, were used to account for differences in the FFQ, reducing the measurement error of the FFQ by calibration(104). EPIC-SOFT was tested for validity against biomarkers as part of the EFCOVAL project(91).</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>ESCAREL(110)</td>
<td>Cross-sectional</td>
<td>Adults (n 3187) 18–35 years</td>
<td>7 (France, Spain, Italy, UK, Finland, Latvia, Estonia)</td>
<td>FFQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No data on SSB</td>
</tr>
<tr>
<td>Finbelt Health Monitor(60)</td>
<td>Cross-sectional</td>
<td>Adults (n 25 044) 20–64 years</td>
<td>4 (Estonia, Finland, Latvia, Lithuania)</td>
<td>FFQ</td>
<td></td>
<td></td>
<td></td>
<td>No data on SSB</td>
<td></td>
</tr>
<tr>
<td>Finnish and Russian Karelia study(63)</td>
<td>Cross-sectional</td>
<td>Adults (n 1201) 25–64 years</td>
<td>2 (Russia, Finland)</td>
<td>FFQ</td>
<td></td>
<td></td>
<td></td>
<td>No data on SSB</td>
<td></td>
</tr>
<tr>
<td>Food4Me(103–105)</td>
<td>Randomised controlled trial</td>
<td>Adults (n 5562) 17–79 years</td>
<td>7 (Ireland, Netherlands, Spain, Greece, UK, Poland, Germany)</td>
<td>FFQ (web-based)</td>
<td>X(104, 105)</td>
<td></td>
<td>X</td>
<td>FFQ was tested for validity against 4 d non-consecutive weighed records(101) using crude correlations and exact level of agreement. Good agreement with 4 d weighed food record. Tested for validity against the EPIC-Norfolk FFQ(105) using energy-adjusted correlations, mean/median differences and exact level of agreement. Good agreement with EPIC-Norfolk FFQ, which has been tested for validity.</td>
<td>Reproducibility of the FFQ has been tested(104)</td>
</tr>
<tr>
<td>HAPIEE(54,55)</td>
<td>Cross-sectional</td>
<td>Adults (n 28 847) 45–69 years</td>
<td>3 (Russia, Poland, Czech Republic)</td>
<td>FFQ</td>
<td>X(54,55)</td>
<td></td>
<td></td>
<td>The FFQ was based on the Whitehall II questionnaire tested for validity by Brunner et al.(55) and Willett et al.(55).</td>
<td></td>
</tr>
<tr>
<td>I.Family Project(66,69,70)</td>
<td>Prospective cohort study (successor of IDEFICS study)</td>
<td>Adults/parents (> 7000) Age range not determined</td>
<td>8 (Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain, Sweden)</td>
<td>A diet questionnaire (FFQ) was included as part of the parent questionnaire Online 24-HDR (SACANA)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Instruments are similar to those used in the IDEFICS project and these were tested for validity.</td>
<td></td>
</tr>
<tr>
<td>Kolaczynski et al.(107)</td>
<td>Cross-sectional</td>
<td>Adults/parents (n 1517) Age range not determined</td>
<td>4 (Poland, Belarus, Russia, Lithuania)</td>
<td>FFQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIS(54)</td>
<td>Cross-sectional</td>
<td>Adults (n 1190) 65–80+ years</td>
<td>2 (Cyprus, Greece)</td>
<td>FFQ</td>
<td></td>
<td></td>
<td></td>
<td>No data on SSB</td>
<td>Tested for validity(60)</td>
</tr>
<tr>
<td>MGS(55)</td>
<td>Cross-sectional</td>
<td>Adults (n 4254) Non-diabetics (n 1833) 35–60 years</td>
<td>6 (Greece, Italy, Algeria, Bulgaria, Egypt, Yugoslavia (only diabetics in Yugoslavia))</td>
<td>Dietary history method using questionnaire</td>
<td>X(55)</td>
<td></td>
<td>X</td>
<td>The FFQ has been tested for validity and recommended by the National Food and Nutrition Institute in Warsaw, Poland.</td>
<td>No data on SSB</td>
</tr>
<tr>
<td>No details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Summary of all studies identified to assess sugar-sweetened beverages (SSB): design, population studied, dietary assessment instruments used and details of testing for validity and/or reproducibility. Studies were selected to be potentially suitable to assess SSB intake based on (i) the instrument was tested for validity and/or reproducibility and (ii) the instrument was used in more than two countries simultaneously which represent a range of European regions; and are indicated by ticks in the last column. Where validation or reliability data was not available for SSB specifically, this is highlighted in bold font.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Countries</th>
<th>Instrument(s)</th>
<th>Tested for validity</th>
<th>> 2 countries/ range</th>
<th>Validity</th>
<th>Reproducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENECA(42,43,50,102)</td>
<td>Mixed design (longitudinal and cross-sectional)</td>
<td>Adults/elderly (n ~ 2600) 70–75 years</td>
<td>12 (Belgium, Denmark, France, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Spain, Switzerland)</td>
<td>Modified dietary history method comprising a 3 d estimated record and meal-based frequency checklist Primary caregiver FFQ (PCQ)‡</td>
<td>X(24–26) X</td>
<td>X</td>
<td>The cross-check dietary history method has been tested for validity.(102) No data on SSB</td>
<td></td>
</tr>
<tr>
<td>ToyBox(80–86)</td>
<td>Intervention multifactorial study</td>
<td>Adults/parents or guardians (n 7056) (providing data at baseline)</td>
<td>6 (Belgium, Bulgaria, Germany, Greece, Poland, Spain)</td>
<td>24-HDR using the HELENA-DIAT (Dietary Assessment Tool)‡ Online FFQ</td>
<td>X(53–54) X</td>
<td>X</td>
<td>Tested for validity against 7 d diet record using crude correlations, mean/median differences and exact level of agreement(53) Moderate agreement for ‘soft drinks’</td>
<td></td>
</tr>
<tr>
<td>Adolescents HBSC 2009/10 survey(71)</td>
<td>Cross-sectional</td>
<td>Adolescents (n 209320) 11-, 13- and 15-year-olds</td>
<td>37 (England, Norway, Macedonia, Iceland, Netherlands, Portugal Wales, Italy, Sweden, Latvia, Switzerland, Denmark, Estonia Scotland, Slovenia, Ukraine, Belgium, Finland, Greece, Croatia, Hungary Lithuania, Poland, Germany, Greenland, Russia, Armenia, Austria, Belgium, Spain, France, Romania Turkey, Czech Republic, Ireland, Luxembourg, Slovakia)</td>
<td>FFQ‡</td>
<td>X(27) X</td>
<td></td>
<td>Interval: 7–15 d(71) Provides reproducible estimates of food group intake</td>
<td></td>
</tr>
<tr>
<td>HELENA(44,45,52–54,68)</td>
<td>Cross-sectional</td>
<td>Adolescents (n 3000) 13–17 years</td>
<td>9 (Greece, Germany, Belgium, France, Hungary, Italy, Sweden, Austria, Spain) 8 countries used the 24-HDR (as above, except Hungary) Only 5 (Austria, Belgium, Greece, Sweden, Germany) pilot-tested the online FFQ</td>
<td>24-HDR using the HELENA-DIAT (Dietary Assessment Tool)‡ Online FFQ</td>
<td>X(23–24) X(54)</td>
<td>X</td>
<td>24-HDR tested for validity against 1 d food records and 24-HDR(54) using crude correlations, mean/median differences and exact level of agreement Moderate to good agreement for ‘soft drinks’ Self-report 24-HDR was compared with interview-administered 24-HDR using crude correlations and mean/median differences, with good agreement(54) Online FFQ tested for validity against four 24-HDR using crude correlations, mean/median differences(54) Good agreement for ‘soft drinks’</td>
<td></td>
</tr>
<tr>
<td>I.Family Project(66,69,70)†</td>
<td>Prospective cohort study (successor of the IDEFICS study)</td>
<td>Adolescents (> 9000 children of iDEFICS study and their siblings) 12–17 years Adolescents (n 2041)</td>
<td>8 (Belgium, Cyprus, Estonia, Germany Hungary, Italy, Spain, Sweden)</td>
<td>A diet questionnaire (FFQ) was included as part of the teen questionnaire Online 24-HDR (SACANA)</td>
<td>X</td>
<td></td>
<td>The instruments are similar to those used and tested for validity as part of the IDEFICS project</td>
<td></td>
</tr>
<tr>
<td>Larsson et al.(71)</td>
<td>Cross-sectional</td>
<td>Age range NR Adolescents (n 2041)</td>
<td>2 (Sweden, Norway)</td>
<td>FFQ‡</td>
<td>No details†</td>
<td>No details†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szczepanska et al.(72)</td>
<td>Cross-sectional</td>
<td>Age range NR Adolescents (n 404)</td>
<td>2 (Poland, Czech Republic)</td>
<td>FFQ</td>
<td>No details†</td>
<td>No details†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPEST(73–75)</td>
<td>Cross-sectional</td>
<td>Age range NR Adolescents (n 2764) 12–17 years</td>
<td>4 (Netherlands, Poland, UK, Portugal)</td>
<td>FFQ‡</td>
<td>X</td>
<td>No details†</td>
<td>No details†</td>
<td></td>
</tr>
<tr>
<td>Children Cinar and Murtomaa(76)</td>
<td>Cross-sectional</td>
<td>Children (n 619) 10–12 years Children (n 7234) 10–12 years</td>
<td>2 (Turkey, Finland)</td>
<td>Youth FFQ‡</td>
<td>X</td>
<td>No details†</td>
<td>No details†</td>
<td></td>
</tr>
<tr>
<td>ENERGY(51,77)</td>
<td>Cross-sectional</td>
<td>Children (n 619) 10–12 years</td>
<td>7 (Belgium, Greece, Hungary, Netherlands, Norway, Slovenia, Spain)</td>
<td>Questionnaire with FFQ and 24-HDR‡</td>
<td>X(108)</td>
<td>X</td>
<td>Construct validity assessed by comparing self-complete questionnaire against questionnaire completed by interview using exact level of agreement(108) Moderate to good construct validity for ‘soft drinks’</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 Continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Countries</th>
<th>Instrument(s)</th>
<th>Tested for validity</th>
<th>> 2 countries/ range</th>
<th>Validity</th>
<th>Reproducibility</th>
<th>Instrument selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYHS(46,48,78)</td>
<td>Cross-sectional</td>
<td>Children (n 4000) 9 and 15 years</td>
<td>4 (Denmark, Portugal, Estonia, Norway) (sourced studies involve only Denmark)</td>
<td>FFQ, 24-HDR preceded by a qualitative 1 d food record</td>
<td>X X</td>
<td></td>
<td>A 24-HDR preceded by a qualitative 1 d food record has been found to be valid for generating estimates of children’s food intake for the purpose of group comparison(100)</td>
<td>No details†</td>
<td></td>
</tr>
<tr>
<td>IDEFICS(39,41,79)</td>
<td>Prospective cohort study with an embedded intervention</td>
<td>Children (n 16224) 2–9 years</td>
<td>8 (Belgium, Cyprus, Estonia, Germany Hungary, Italy, Spain, Sweden)</td>
<td>CEHQ-FFQ† SACINA 24-HDR</td>
<td>X</td>
<td>[100,101,110,111–114]</td>
<td>Test for validity was not conducted in European population CEHQ-FFQ provides reproducible estimates of food group intake(110)</td>
<td>No fixed interval</td>
<td></td>
</tr>
<tr>
<td>I.Family Project(66,69,70)</td>
<td>Prospective cohort study (successor of the IDEFICS study)</td>
<td>Children (n > 9000 children of IDEFICS study and their siblings) 2–11 years</td>
<td>Children (n 63 000) 8–12 years</td>
<td>A diet questionnaire (FFQ) was included as part of the Children’s Questionnaire Online 24-HDR (SACINA) FFQ as part of a general questionnaire</td>
<td>X</td>
<td></td>
<td>No data on SSB CGHQ-FFQ was tested for validity against 24-HDR using crude correlations, mean/median differences and exact level of agreement(102)</td>
<td>No details†</td>
<td></td>
</tr>
<tr>
<td>ISAAC(63,64)</td>
<td>Cross-sectional</td>
<td>Children (n 63 000) 8–12 years</td>
<td>15 (Albania, France, Estonia, Germany, Georgia, Greece, Iceland, Italy, Latvia, Netherlands, Norway, Spain, Sweden, Turkey, UK)</td>
<td>X</td>
<td></td>
<td>No details†</td>
<td>No data on SSB CGHQ-FFQ was tested for validity against 24-HDR using crude correlations, mean/median differences and exact level of agreement(102)</td>
<td>No details†</td>
<td></td>
</tr>
</tbody>
</table>
| ToyBox(90–96) | Intervention multifactorial study | Children (n 7056) providing data at baseline 3.5–5.5 years | Children’s FFQ† | X(100) | | | | The children’s questionnaire is based on a FFQ previously tested for validity and developed by Huybrechts et al(101) Tested for validity by comparison with 3 d diet record using crude and de-attenuated correlations, mean/median differences and exact level of agreement Moderate to good agreement for ‘sugared drinks’ | Interval: at least 5 weeks FFQ provides reproducible estimates of food group intake | ✓

CNSHS, Cross National Student Health Survey; ENERGY, EuropeaN Energy balance Research to prevent excessive weight Gain among Youth; EPIC, European Prospective Investigation into Cancer and Nutrition; ESCAREL, European Study in Non-Carious Cervical Lesions; HAPIEE, Health, Alcohol and Psychosocial factors in Eastern Europe; MEDIS, MEDiterranean Islands Study; MGSD, Mediterranean Group for the Study of Diabetes; SENECA, Survey in Europe on Nutrition and the Elderly; a Concerted Action; HBSC, Health Behaviour in School-aged Children; HELENA, Healthy Lifestyle in Europe by Nutrition in Adolescence; TEMPEST, ‘Temptations to Eat Moderated by Personal and Environmental Self-regulatory Tools’; EYHS, European Youth Heart Study; IDEFICS, Identification and prevention of Dietary-and lifestyle-induced health EFfects In Children and infantS; ISAAC, International Study of Asthma and Allergies in Childhood; NR, not reported; 24-HDR, 24 h recall; PCQ, Primary Caregiver’s Questionnaire; CEHQ, Children’s Eating Habits Questionnaire; EFCOVAL, European Food Consumption Validation; YANA-C, ‘Young Adolescents’ Nutrition Assessment on Computer.

* Funded by the Wellcome Trust programme grant entitled ‘Determinants of Cardiovascular Diseases in Eastern Europe: A multi-centre cohort study’ (reference number 064947/Z/01/Z) and developed by Martin Bobak, Anne Peasey, Hynek Pikhart (UCL), Ruzena Kubinova, Lubomira Milla Novosibirsk, Sofia Malyutina, Oksana Bradina (Prague), Andrzej Pajak, Aleksandra Gisil-Januszewska (Krakow).

† Validity or reproducibility of the instrument was not reported in the article and no reference to validation or reproducibility studies was provided.

§ Original instrument was obtained for review.

Other beverages’ includes everything except milk, alcoholic beverages, tea and coffee.
Validation

From the studies that were tested for validity or reproducibility and fulfilled the first criterion (Table 1), validity and reliability of FFQ was assessed using FFQ(105), food records(54,97,100,104) 24-HDR(40,54) or interviews(53,98) as reference methods. In eleven studies, validity was assessed by crude correlations (n 7)(40,52,54,97,100,104) energy-adjusted correlations (n 1)(105), de-attenuated correlation coefficients (n 2)(40,100), mean or median differences in SSB consumption (n 7)(40,52,54,97,100,104,105) exact level of agreement of SSB consumption (n 8)(40,53,54,97,100,104,105), Bland–Altman plots (n 4)(40,53,54,105), intraclass correlation coefficients(98) or weighted kappa (n 2)(54,100) between the FFQ and reference instrument. In seven studies, reliability of SSB consumption was assessed by correlations (n 5)(54,97,100,112), mean/median differences (n 3)(54,100,112), weighted kappa (n 2)(97,112) or intraclass correlation coefficients(98) between subsequent administrations of the FFQ. Details on the validation and/or reproducibility are provided in Table 1 and, where available, extracted results for the statistical assessments are provided in the online supplementary material, Supplemental Table 2.

Validation data specifically on SSB were available for only six instruments, three among adolescents, the HBSC FFQ, HELENA-DIAT and HELENA FFQ, and three among children, the ENERGY Children’s Questionnaire, IDEFICS FFQ and ToyBox Children’s Questionnaire. The Food4Me FFQ, for use among adult populations, provided validation data only for ‘other beverages’ grouped together, described as including all beverages except milk, alcoholic beverages, tea and coffee(104) and including fruit juices, carbonated beverages and squash(105). These instruments are summarised in Table 2.

Although data were not specific to SSB, the Food4Me FFQ had moderate agreement (0.4–0.6) for ‘other beverages’ with a 4d diet record using Spearman’s crude correlation (r=0.66)(104) and good agreement (>0.6) with the EPIC-Norfolk FFQ using energy-adjusted coefficients (r=0.79)(105). In terms of instruments for adolescents, the HBSC FFQ tested for validity against a 7 d diet record had moderate agreement for ‘soft drinks’ using Spearman’s crude correlation (r=0.46). HELENA-DIAT had moderate to good agreement with a 1 d food record (r=0.42) and 24-HDR (r=0.65)(52), and the HELENA FFQ had good agreement (r=0.79) when tested for validity against four 24-HDR(54). In terms of instruments to be used among children, the construct validity of the ENERGY questionnaire was tested, with moderate (55%) exact level of agreement for ‘soft drinks’ between the self-completed questionnaire compared with the questionnaire completed by interview(98). The ToyBox instrument had moderate to good agreement with a 3 d diet record for ‘sugared drinks’ (r=0.57)(100) while the IDEFICS CEHF-FFQ tested for validity against a 24-HDR had low agreement (<0.4) for ‘soft drinks’ using Pearson’s crude correlations among children aged <6 years (r=0.14) and 6–9 years (r=0.21)(113) (see online supplementary material, Supplemental Table 2).

FFQ

Table 3 summarises the characteristics of the identified FFQ. These instruments are already described in detail as part of the concurrent review on F&V intake(57), with the exception of the FFQ used by Cinar and Murtomaa(76) and Kolarzyk et al.(107). Therefore, the results focus on aspects which are specific to the assessment of SSB; that is, definitions and portion measurement, of which there were notable differences between the instruments identified.

FFQ were used to assess dietary intake, identify determinants of dietary intake or test diet–disease associations and identify disease risk factors.

Range of items and definitions

SSB were referred to as ‘soft drinks’ (HELENA, Finbalt Health Monitor, ENERGY Parent Questionnaire, CNSHS and MEDIS), ‘soft drinks with sugar’ (Finnish FFQ of the Finnish and Russian Karelia project, EYHS), ‘juice or soft drinks’ (Russian FFQ of the Finnish and Russian Karelia project), ‘fizzy drinks’ (ISAC, HAPIEE, ENERGY Children’s Questionnaire), ‘fizzy soft drinks’ (Food4Me), ‘carbonated drinks (Fanta, Sprite, Coke, Pepsi)’ (Szczepanska et al.(72)), sweet drinks’ (Kolarzyk et al.(107)) and ‘Cola-Cola, Pepsi or other sugary drinks’ (MGSD). Where two items referred to SSB on an FFQ, typically one referred to soft drinks, and another referred to squashes or cordials (MGSD, Food4Me) or pre-packed juice (ToyBox).

Few FFQ distinguished between pure fruit juice, and cordials or squashes, with the exception of the ENERGY and Food4Me studies. Some FFQ contained an item that captured intake of a sugarless or low-calorie equivalent (EYHS, HAPIEE, IDEFICS, I.Family, Food4Me, Finnish and Russian Karelia study, and Larsson et al.(71)).

Portion size

Several FFQ assessed the frequency of consumption only and did not record portion size(60,65,64,67,71–75,76,107,110). Of the semi-quantitative FFQ that did assess portion size, many did so in-line using a standard measure and asking participants to select the average portion size ranging from 1 can, whereas in the HAPIEE FFQ this was 2 dl. The EYHS FFQ informed participants that one glass approximated to 1 small glass bottle or 2 glasses approximated to a ½ litre bottle.

The ENERGY and ToyBox children’s questionnaires provided the greatest detail on portion sizes. The former questionnaire asked participants to report the number of glasses or small bottles, cans and/or bottles, and specified volumes for each. The ToyBox questionnaire asked participants to select the average portion size ranging from...
SSB intake measurement methods: a review

‘100 ml or less’ to ‘1000 ml or more’, and provided the volumes of typical containers. As part of the ToyBox FFQ, a photographic food guide was also provided to assist with portion size estimation. The Food4Me FFQ asked participants to select from a range of photographs which were linked electronically to portion sizes (in grams).

Dietary recalls

The characteristics of the identified 24-HDR are summarised in Table 4. The majority of the 24-HDR were used to determine estimates of dietary intake, comparing estimates across regions or over time. These instruments are already described in detail as part of the concurrent review on F&V intake\(^\text{37}\); therefore only details on portion measurement are reported here.

On the ENERGY 24-HDR, participants could select 200 ml, 350 ml or 500 ml by way of selecting a glass or small bottle, a can or a large bottle, respectively\(^\text{51}\). Portion size was also assessed using the HELENA-DIAT, SACINA and EPIC-SOFT instruments. EPIC-SOFT used six quantification methods including photographs and standard measures, both of which were used by the HELENA-DIAT tool. The IDEFICS SACINA tool measured SSB portion by glass using photographs of six different glass sizes. The EYHS 24-HDR interview was accompanied by different-sized drinking glasses and photographs to aid portion estimation.

Diet records/diet diaries

Only one diet record was identified, the self-completed 3 d estimated record which was used in the SENECA study. This instrument is already described in detail in the concurrent review of instruments to assess F&V intake\(^\text{37}\). The purpose of the study was to examine cross-cultural differences in nutrition and lifestyle factors\(^\text{43}\) and cross-cultural variations and changes in intake over time\(^\text{125}\). The population sampled was adults aged 70–75 years. The 3 d record was used in conjunction with a frequency checklist of foods that was adapted to local food customs and the order in which they typically appear, and used during the follow-up interview to verify the record. For example, SSB were listed on the Dutch checklist as ‘lemonades with sugar’\(^\text{42,102}\).

Discussion

The aim of the current review was to identify the methods used to assess intake of SSB in pan-European studies. The main dietary assessment methods were the FFQ, 24-HDR and diet record/diary. The review identified twelve instruments to assess intake of SSB in children or adolescents in the age range of 2–12 years, seven among children and six among adolescents. Fourteen instruments were identified that assessed intake of SSB among adults, three of which assessed parents or caregivers. Of the identified FFQ, thirteen could be used among adult populations, six among adolescents and six among children. A few key differences were identified between the methods, some of which have been reported previously\(^\text{124,125}\). For example, in terms of the FFQ, differences included: the definition of SSB used; the number and range of frequency categories; the time period covered by the FFQ; and the approach to determining portion size. Such differences, in particular, how SSB are defined, should be resolved if future instruments are to be standardised across Europe.

The present review is the first to systematically identify and describe instruments used to assess intake of SSB in pan-European studies. Although a growing body of research points to a possible association between the consumption of SSB and obesity, there is currently a lack of standardised instruments available for use in pan-European studies when measuring and monitoring the intake of SSB. A large number of instruments were identified through the review. Similar to the approach used for the concurrent review of methods to assess F&V intake\(^\text{37}\), to reduce the number of instruments, identify potential instruments for use in future pan-European studies measuring SSB intake and determine those to be included in the DEDIPAC toolbox, two selection criteria were applied: (i) the instrument was tested for validity and/or reproducibility; and (ii) the instrument was used in more than two countries simultaneously which represented a range of European regions.

According to these selection criteria, five instruments were considered appropriate to assess SSB among adults in pan-European studies, namely those used by the EPIC, Food4Me, SENECA, ToyBox and ENERGY studies. However, only the Food4Me FFQ was tested for validity for intake of SSB (but grouped together with other drinks as ‘other beverages’) using 4 d diet records\(^\text{103}\). The HELENA-DIAT\(^\text{53}\), HELENA online FFQ\(^\text{54}\) and HBSC FFQ\(^\text{97}\) appeared appropriate to assess intake among adolescents and demonstrated moderate to good agreement with 1 d records and 24-HDR, four 24-HDR and 7 d diet records, respectively. Only three of the four instruments selected to be used among children were tested for validity for SSB (IDEFICS FFQ, ENERGY and ToyBox)\(^\text{98,100,113}\) and the ENERGY questionnaire was tested only for construct validity. The IDEFICS and ToyBox instruments demonstrated low agreement with 24-HDR and moderate to good agreement with a 3 d diet record, respectively. It is important to note that these instruments were all tested for validity against other self-report (and potentially error-prone) methods, namely FFQ, food records, 24-HDR or interviews.

The two selection criteria, along with the summary of validation data, indicate the methods which may be appropriate to use in pan-European studies. However, as already outlined in the review of methods to assess F&V intake methods, some of which have been reported previously\(^\text{124,125}\). For example, in terms of the FFQ, differences included: the definition of SSB used; the number and range of frequency categories; the time period covered by the FFQ; and the approach to determining portion size. Such differences, in particular, how SSB are defined, should be resolved if future instruments are to be standardised across Europe.

The present review is the first to systematically identify and describe instruments used to assess intake of SSB in pan-European studies. Although a growing body of research points to a possible association between the consumption of SSB and obesity, there is currently a lack of standardised instruments available for use in pan-European studies when measuring and monitoring the intake of SSB. A large number of instruments were identified through the review. Similar to the approach used for the concurrent review of methods to assess F&V intake\(^\text{37}\), to reduce the number of instruments, identify potential instruments for use in future pan-European studies measuring SSB intake and determine those to be included in the DEDIPAC toolbox, two selection criteria were applied: (i) the instrument was tested for validity and/or reproducibility; and (ii) the instrument was used in more than two countries simultaneously which represented a range of European regions.

According to these selection criteria, five instruments were considered appropriate to assess SSB among adults in pan-European studies, namely those used by the EPIC, Food4Me, SENECA, ToyBox and ENERGY studies. However, only the Food4Me FFQ was tested for validity for intake of SSB (but grouped together with other drinks as ‘other beverages’) using 4 d diet records\(^\text{103}\). The HELENA-DIAT\(^\text{53}\), HELENA online FFQ\(^\text{54}\) and HBSC FFQ\(^\text{97}\) appeared appropriate to assess intake among adolescents and demonstrated moderate to good agreement with 1 d records and 24-HDR, four 24-HDR and 7 d diet records, respectively. Only three of the four instruments selected to be used among children were tested for validity for SSB (IDEFICS FFQ, ENERGY and ToyBox)\(^\text{98,100,113}\) and the ENERGY questionnaire was tested only for construct validity. The IDEFICS and ToyBox instruments demonstrated low agreement with 24-HDR and moderate to good agreement with a 3 d diet record, respectively. It is important to note that these instruments were all tested for validity against other self-report (and potentially error-prone) methods, namely FFQ, food records, 24-HDR or interviews.

The two selection criteria, along with the summary of validation data, indicate the methods which may be appropriate to use in pan-European studies. However, as already outlined in the review of methods to assess F&V intake methods, some of which have been reported previously\(^\text{124,125}\). For example, in terms of the FFQ, differences included: the definition of SSB used; the number and range of frequency categories; the time period covered by the FFQ; and the approach to determining portion size. Such differences, in particular, how SSB are defined, should be resolved if future instruments are to be standardised across Europe.

The present review is the first to systematically identify and describe instruments used to assess intake of SSB in pan-European studies. Although a growing body of research points to a possible association between the consumption of SSB and obesity, there is currently a lack of standardised instruments available for use in pan-European studies when measuring and monitoring the intake of SSB. A large number of instruments were identified through the review. Similar to the approach used for the concurrent review of methods to assess F&V intake\(^\text{37}\), to reduce the number of instruments, identify potential instruments for use in future pan-European studies measuring SSB intake and determine those to be included in the DEDIPAC toolbox, two selection criteria were applied: (i) the instrument was tested for validity and/or reproducibility; and (ii) the instrument was used in more than two countries simultaneously which represented a range of European regions.

According to these selection criteria, five instruments were considered appropriate to assess SSB among adults in pan-European studies, namely those used by the EPIC, Food4Me, SENECA, ToyBox and ENERGY studies. However, only the Food4Me FFQ was tested for validity for intake of SSB (but grouped together with other drinks as ‘other beverages’) using 4 d diet records\(^\text{103}\). The HELENA-DIAT\(^\text{53}\), HELENA online FFQ\(^\text{54}\) and HBSC FFQ\(^\text{97}\) appeared appropriate to assess intake among adolescents and demonstrated moderate to good agreement with 1 d records and 24-HDR, four 24-HDR and 7 d diet records, respectively. Only three of the four instruments selected to be used among children were tested for validity for SSB (IDEFICS FFQ, ENERGY and ToyBox)\(^\text{98,100,113}\) and the ENERGY questionnaire was tested only for construct validity. The IDEFICS and ToyBox instruments demonstrated low agreement with 24-HDR and moderate to good agreement with a 3 d diet record, respectively. It is important to note that these instruments were all tested for validity against other self-report (and potentially error-prone) methods, namely FFQ, food records, 24-HDR or interviews.

The two selection criteria, along with the summary of validation data, indicate the methods which may be appropriate to use in pan-European studies. However, as already outlined in the review of methods to assess F&V intake methods, some of which have been reported previously\(^\text{124,125}\). For example, in terms of the FFQ, differences included: the definition of SSB used; the number and range of frequency categories; the time period covered by the FFQ; and the approach to determining portion size. Such differences, in particular, how SSB are defined, should be resolved if future instruments are to be standardised across Europe.
Table 2 Summary of the selected instruments which were tested for validity \((n = 7)\) for assessment of sugar-sweetened beverages (SSB): design, age group, countries, mode of administration, definition of SSB used and portion estimation

<table>
<thead>
<tr>
<th>Study/instrument</th>
<th>Design</th>
<th>Age group</th>
<th>Countries</th>
<th>Mode</th>
<th>Definition</th>
<th>Portion estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>Web-based FFQ</td>
<td>17–79 years</td>
<td>7 (Ireland, Netherlands, Spain, Greece, UK, Poland, Germany)</td>
<td>Self-admin.</td>
<td>'Fizzy soft drinks, e.g. coca cola/lemonade' 'Low-calorie/diet fizzy soft drinks' 'Fruit squash/cordial/nectar'</td>
<td>X</td>
</tr>
<tr>
<td>Adolescents</td>
<td>HBSC(67)</td>
<td>11-, 13- and 15-year-olds</td>
<td>37 (England, Norway, Macedonia, Iceland, Netherlands, Portugal, Wales, Italy, Sweden, Latvia, Switzerland, Denmark, Estonia, Scotland, Slovenia, Ukraine, Belgium, Finland, Greece, Croatia, Hungary, Lithuania, Poland, Germany, Greenland, Russia, Armenia, Austria, Belgium, Spain, France, Romania, Turkey, Czech Republic, Ireland, Luxembourg, Slovakia)</td>
<td>Self-admin.</td>
<td>'Sweetened soft drinks (cola or other soft drinks that contain sugar)'</td>
<td></td>
</tr>
<tr>
<td>HELENA</td>
<td>24-HDR</td>
<td>13–17 years</td>
<td>8 (Greece, Germany, Belgium, France, Italy, Sweden, Austria, Spain)</td>
<td>Self-admin.</td>
<td>'Regular soft drinks' 'Diet soft drinks'</td>
<td>X</td>
</tr>
<tr>
<td>HELENA</td>
<td>HELENA-DIAT</td>
<td>13–17 years</td>
<td>5 (Austria, Belgium, Greece, Sweden, Germany)</td>
<td>Self-admin.</td>
<td>'Diet soft drinks'</td>
<td>X</td>
</tr>
<tr>
<td>Children</td>
<td>IDEFICS(59–61,72)</td>
<td>2–9 years</td>
<td>8 (Belgium, Cyprus, Estonia, Germany Hungary, Italy, Spain, Sweden)</td>
<td>Self-admin.</td>
<td>'Sweetened drinks including sports drinks, bottled or canned tea, syrup-based drinks and similar' 'Diet coke or diet soft drinks' 'Fizzy drinks or fruit squash'</td>
<td></td>
</tr>
<tr>
<td>ENERGY</td>
<td>Cross-sectional</td>
<td>10–12 years</td>
<td>7 (Belgium, Greece, Hungary, Netherlands, Norway, Slovenia, Spain)</td>
<td>Self-admin.</td>
<td>Specified that this was: 'NOT diet drinks and fruit juice' 'Froggy water'</td>
<td></td>
</tr>
<tr>
<td>ToyBox</td>
<td>Intervention multifactorial study</td>
<td>3.5–5.5 years</td>
<td>6 (Belgium, Bulgaria, Germany, Greece, Poland, Spain)</td>
<td>Self-admin.</td>
<td>'Fruit juice, pre-packed/ bottled'</td>
<td></td>
</tr>
</tbody>
</table>

*Original instrument obtained for review.
<table>
<thead>
<tr>
<th>Study</th>
<th>Type/number of items</th>
<th>Purpose</th>
<th>Population</th>
<th>Definition</th>
<th>Reference period</th>
<th>Mode</th>
<th>Frequency categories</th>
<th>Portion estimated? (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults CNSH</td>
<td>Non-quantitative General questionnaire One item on SSB</td>
<td>Test association between food patterns and living arrangements</td>
<td>Adults/students Age range NR</td>
<td>‘Soft drinks’</td>
<td>NR</td>
<td>Self-admin.</td>
<td>5 categories, ranging from ‘several times a day’ to ‘1–4 times a month’, and ‘never’</td>
<td>No</td>
</tr>
<tr>
<td>ENERGY Adults’ FFQ</td>
<td>Semi-quantitative General questionnaire One item on SSB</td>
<td>Determine prevalence of EBRB Identify personal, family and school environmental correlates of EBRB</td>
<td>Adults/caregivers Age range NR</td>
<td>‘Soft drinks’ defined as: ‘Fizzy drinks and fruit squash but NOT diet drinks and fruit juice’ Provided examples</td>
<td>Previous week, Usual consumption on a day on which SSB consumed</td>
<td>Self-admin.</td>
<td>7 categories per week, ranging from ‘never’, ‘1 portion or less per week’ to ‘6 or more portions per day’</td>
<td>Yes, Assessed in line</td>
</tr>
<tr>
<td>ESCAREL</td>
<td>Non-quantitative Five-item FFQ Two items on SSB</td>
<td>Assess the prevalence of tooth wear on buccal/facial and lingual/palatal tooth surfaces Identify related risk factors (i.e. fresh fruit and juice intake)</td>
<td>Adults 18–35 years</td>
<td>‘Soft drinks, i.e. cola beverages, Sprite, lemonade, Fanta, iced tea, etc.’ ‘Isotonic drinks/energy drinks, e.g. Isostar, Powerade, Perform, Red-bull, Red Horse, etc.’</td>
<td>Not stated</td>
<td>Self-admin.</td>
<td>4 categories: ‘often’, ‘rarely’, ‘never’, ‘don’t know’</td>
<td>No</td>
</tr>
<tr>
<td>Finbalt Health Monitor</td>
<td>Non-quantitative Sixteen-item FFQ One item on SSB Non-quantitative Forty-three-item Finnish FFQ (FINRISK), two items on SSB Twenty-item Russian FFQ, one item on SSB</td>
<td>Assess gender differences in F&V consumption</td>
<td>Adults</td>
<td>‘Soft drinks’</td>
<td>Previous week</td>
<td>Self-admin.</td>
<td>4 categories: ‘often’, ‘rarely’, ‘never’, ‘don’t know’</td>
<td>No</td>
</tr>
<tr>
<td>Finnish and Russian Karelia study (2002 survey)</td>
<td></td>
<td>Determine socio-economic differences in the consumption of vegetables, fruit and berries in two regions</td>
<td>Adults</td>
<td>‘Soft drinks, with sugar [e.g. cola etc]’ ‘Diet soft drinks (e.g. Furlight, Pepsi Max, Light-Cola)’ Russian FFQ: ‘Juices or soft drinks’</td>
<td>12 months</td>
<td>Self-admin.</td>
<td>6 categories, ranging from ‘less than once a month to ‘daily or more often’</td>
<td>No</td>
</tr>
<tr>
<td>Food4Me</td>
<td>Semi-quantitative, web-based, 157-item FFQ</td>
<td>Determine impact of personalised dietary advice on eating patterns and health outcomes</td>
<td>Adults 18–79 years</td>
<td>‘Fizzy soft drinks, e.g. cocoa cola/lemonade’ ‘Low-calorie/diet fizzy soft drinks’ ‘Fruit squash/cordial/nectar’</td>
<td>Previous month</td>
<td>Self-admin.</td>
<td>9 categories, ranging from ‘never or less than once a month’ to ‘5–6 times per day’ and > 6 times per day</td>
<td>Yes, Three photographs representing small, medium and large portions Participants could select one of the following options: ‘very small’, ‘small’, ‘small/medium’, ‘medium’, ‘medium/large’, ‘large’ or ‘very large’, which were linked electronically to portion sizes (in grams)</td>
</tr>
<tr>
<td>HAPIEJ</td>
<td>Semi-quantitative Items: Czech = 136, Russian = 147, Polish = 140, Three items on SSB</td>
<td>Test association between socio-economic indicators and diet</td>
<td>Adults 45–69 years</td>
<td>As per generic FFQ ‘Fizzy drink’ ‘Squash’ ‘Diet/low-calorie fizzy drinks’</td>
<td>Previous 3 months</td>
<td>Interview (Russia & Poland) Self-admin. (Czech Republic)</td>
<td>9 categories, ranging from ‘never to ‘6 or more times per day’ Open-ended section where subjects could add any further foods not listed.</td>
<td>Yes, Assessed in line</td>
</tr>
<tr>
<td>I.Family Project</td>
<td>Non-quantitative Sixty-item FFQ Four items on SSB</td>
<td>Assess determinants of eating behaviour</td>
<td>Adults/parents Age range not determined</td>
<td>‘Carbonated sugar sweetened drinks (e.g. Coca-Cola, Fanta, non-alcoholic beer, etc.)’ ‘Diet carbonated drinks (e.g. diet cola, etc.)’ ‘Sugar sweetened drinks, not carbonated (e.g. bottled ice tea, syrup-based drinks and similar, fruit juices with less than 100% fruit, sports drinks, non-alcoholic wine, etc.)’ ‘Artificially sweetened drinks, not carbonated (e.g. diet ice tea, diet fruit syrup, diet sports drinks, etc.)’</td>
<td>Typical week over the previous month</td>
<td>Self-admin.</td>
<td>7 categories, ranging from ‘never/less than once a week’ to ‘4 or more times per day’</td>
<td>No</td>
</tr>
<tr>
<td>Kolarzyn et al</td>
<td>Non-quantitative Thirty-nine-item FFQ One item on SSB</td>
<td>Examine the food choices and determine the prevalence of underweight, overweight and obesity</td>
<td>Adults/students Age range NR</td>
<td>‘Sweet drinks’</td>
<td>Previous month</td>
<td>Self-admin.</td>
<td>7 categories, ranging from ‘not eaten at all’ to ‘eaten every day’</td>
<td>No</td>
</tr>
<tr>
<td>Study</td>
<td>Type/number of items</td>
<td>Purpose</td>
<td>Population</td>
<td>Definition</td>
<td>Reference period</td>
<td>Mode</td>
<td>Frequency categories</td>
<td>Portion estimated? (yes/no)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
<td>------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>MEDIS study<sup>61,95</sup></td>
<td>Semi-quantitative Total number of items unknown Dietary history method using a seventy-eight-item FFQ</td>
<td>Test association between energy-generating nutrients and obesity</td>
<td>Adults/elderly 65–80+ years</td>
<td>‘Soft drinks’</td>
<td>(NR)</td>
<td>NR</td>
<td>Frequency assessed on a daily, weekly or monthly basis</td>
<td>No</td>
</tr>
<tr>
<td>MSGD<sup>52,53</sup></td>
<td>Semi-quantitative Forty-four-item FFQ</td>
<td>Compare the nutritional habits among six Mediterranean countries and with official recommendations</td>
<td>Adults 35–60 years</td>
<td>‘Coca-Cola, Pepsi or other sugary drinks’</td>
<td>NR</td>
<td>NR</td>
<td>Interview administered face-to-face</td>
<td>Assessed in-line 300 ml; 1 can Assessed separately Household measures</td>
</tr>
<tr>
<td>Toyon<sup>64,69</sup>, Caregiver’s Questionnaire</td>
<td>Semi-quantitative Forty-four-item FFQ</td>
<td>Measure the effectiveness of an intervention to prevent obesity</td>
<td>Adults/parents or guardians Age range NR</td>
<td>Sugared beverages (soda drinks like cola, lemonade, ice tea) (defined as: ‘all sugared or sweet-flavoured beverages, carbonated or not, plain or light e.g. Cola and Cola light/zero, Ice Tea, 7-up, Pepsi, Fanta, Fanta non-carbonated, Sprite, Orangina, etc.’) Fruit juice, pre-packed/bottled (100 %, nectar etc.) (defined as all fruit juice-based products including 100 % fresh juice bottled or in paper-pack, 30 % fruit juice with added sugar (recait), sports drinks, smoothies, canned juices, e.g. Life, Tropicana, lemonade, Lucozade.)</td>
<td>NR</td>
<td>Self-admin.</td>
<td>7 categories, ranging from ‘1–3 days per month’ to ‘every day’</td>
<td>Yes</td>
</tr>
<tr>
<td>Adolescents HBSC 2009/10 survey<sup>61,62,67</sup></td>
<td>Seven-item FFQ, four mandatory items</td>
<td>Determine health and health behaviours and the factors that influence them<sup>60</sup> Investigate influence of chronological period of data collection on dietary intake<sup>60</sup></td>
<td>Adolescents 11-, 13- and 15-year-olds</td>
<td>‘Sweetened soft drinks (coke or other soft drinks that contain sugar)’ Habitual intake over week</td>
<td>Self-admin.</td>
<td>7 categories, ranging from ‘never’ ‘less than once a week’ to ‘every day, more than once’</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>HELENA<sup>54,55</sup></td>
<td>Semi-quantitative HHQ 137-item FFQ Two items on SSB</td>
<td>Assess effectiveness of an intervention to enhance the physical activity and diet of adolescents</td>
<td>Adolescents 13–17 years</td>
<td>‘Regular soft drinks’ and ‘Diet soft drinks’ listed under the ‘beverages’ heading</td>
<td>NR</td>
<td>Self-admin.</td>
<td>Select from typically 10 frequency categories, then select frequency of: ‘units per day’, ‘units per week’ or ‘units during the last 30 days’</td>
<td>Yes</td>
</tr>
<tr>
<td>IFamily Project<sup>66,69</sup></td>
<td>Semi-quantitative Sixty-item FFQ Four items on SSB</td>
<td>Assess determinants of eating behaviour</td>
<td>Adolescents 12–17 years</td>
<td>‘Carbonated sugar-sweetened drinks (e.g. Coca-Cola, Fanta, non-alcoholic beer, etc.)’ ‘Diet carbonated drinks (e.g. diet cola, etc.)’ ‘Sugar-sweetened drinks, not carbonated (e.g. bottled ice tea, syrup-based drinks and similar, fruit juices with less than 100 % fruit, sports drinks, non-alcoholic wine, etc.)’ ‘Artificially sweetened drinks, not carbonated (e.g. diet ice tea, diet fruit syrup, diet sports drinks, etc.)’</td>
<td>Typical week over the previous month</td>
<td>Self-admin.</td>
<td>7 categories, ranging from ‘never/less than once a week’ to ‘4 or more times per day’</td>
<td>No</td>
</tr>
<tr>
<td>Larsson et al.<sup>71</sup></td>
<td>Semi-quantitative Thirty-three-item FFQ</td>
<td>Determine prevalence of vegetarianism Compare food habits among vegetarians and omnivores</td>
<td>Adolescents Age range NR</td>
<td>‘Regular soda’ ‘Light soda’</td>
<td>Not stated</td>
<td>Self-admin.</td>
<td>6 categories, ranging from ‘never/rarely’ to ‘several times a day’. Subjects also report for a typical weekday, times they usually eat and what type of meal they usually eat at the time 5 categories, ranging from ‘daily’, ‘3–4 times a week’ to ‘several times a month’, ‘less/occasionally’, ‘never’</td>
<td>No</td>
</tr>
<tr>
<td>Szczepanska et al.<sup>72</sup></td>
<td>Semi-quantitative Twelve-item FFQ</td>
<td>Assess and compare dietary habits</td>
<td>Middle school age Age range NR</td>
<td>‘Carbonated drinks (Fanta, Sprite, Coke, Pepsi)’</td>
<td>Not stated</td>
<td>Self-admin.</td>
<td>6 categories, ranging from ‘never/rarely’ to ‘several times a day’. Subjects also report for a typical weekday, times they usually eat and what type of meal they usually eat at the time 5 categories, ranging from ‘daily’, ‘3–4 times a week’ to ‘several times a month’, ‘less/occasionally’, ‘never’</td>
<td>No</td>
</tr>
<tr>
<td>Study</td>
<td>Type/number of items</td>
<td>Purpose</td>
<td>Population</td>
<td>Definition</td>
<td>Reference period</td>
<td>Mode</td>
<td>Frequency categories</td>
<td>Portion estimated? (yes/no)</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------------</td>
<td>------</td>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>TEMPEST(75,76)*</td>
<td>Semi-quantitative Five-item FFQ One item on SSBB</td>
<td>Test association of ‘subjective peer norms’ with eating intentions and diet</td>
<td>Adolescents 12–17 years</td>
<td>‘Soft drinks, lemonade or energy drinks’ Explained that light soft drinks and mineral water should not be taken into account for the soft drink measure</td>
<td>Per average day Self-admin.</td>
<td>5 categories, ranging from ‘less than 1’ to ‘more than 4’</td>
<td>Yes Assessed in-line Specified ‘glass’ as the portion</td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td>Cinar and Murtomaa(72)* Pre-adolescent FFQ</td>
<td>Determine clustering between obesity and lifestyle factors in two countries Determine prevalence of EBRB Identify personal, family and school environmental correlates of</td>
<td>Children 10–12 years</td>
<td>‘Soft drinks or juice’</td>
<td>Previous week Self-admin.</td>
<td>4 categories: ‘6–7 days’, ‘3–5 days’, ‘1–2 days’ and ‘not at all’</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ENERGY(51, 77)* Children’s FFQ</td>
<td>Non-quantitative Fourteen-item FFQ One item on SSB</td>
<td></td>
<td>Children 10–12 years</td>
<td>‘Fizzy drinks or fruit squash’ Specified that this was: ‘NOT diet drinks and fruit juice’ Provided examples</td>
<td>Previous week Usual consumption on a day on which SSB consumed Self-admin.</td>
<td>7 categories per week, ranging from ‘never’, ‘1 portion or less per week’ to ‘5 or more portions per day’</td>
<td>Yes Assessed in-line Subject can select number of glasses/small cartons (250 ml) and regular cartons (330 ml) drank on a day of consumption</td>
<td></td>
</tr>
<tr>
<td>IDEFICS(78, 79)*</td>
<td>Non-quantitative Forty-eight-item FFQ Two items on SSB</td>
<td>Determine the aetiology of overweight, obesity and related disorders Test association between diet and cardiovascular risk factors(117) Test association between diet and BMI</td>
<td>Children 2–9 years (parents or guardians as proxies)</td>
<td>‘Sweetened drinks including sports drinks, bottled or canned tea, syrup-based drinks and similar’ Local examples given. ‘Diet coke or diet soft drinks’ Local examples given</td>
<td>Typical week over the previous month Self-admin.</td>
<td>6 categories per day, ranging from ‘never’ to ‘5 or more glasses/bottles’</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>I.Family Project(80, 81)*</td>
<td>Non-quantitative Forty-nine-item FFQ Four items on SSB</td>
<td>Assess determinants of eating behaviour</td>
<td>Children 2–11 years (parents or guardians as proxies)</td>
<td>‘Carbonated sugar sweetened drinks (e.g. Coca-Cola, Fanta, non-alcoholic beer, etc.)’ ‘Diet carbonated drinks (e.g. Diet coke, etc.)’ ‘Sugar-sweetened drinks, not carbonated (e.g. bottled ice tea, syrup-based drinks and similar, fruit juices with less than 100 % fruit, sports drinks, non-alcoholic wine, etc.)’ ‘Artificially sweetened drinks, not carbonated (e.g. diet ice tea, diet fruit syrup, diet sports drinks, etc.)’</td>
<td>Typical week over the previous month Self-admin.</td>
<td>8 categories, ranging from ‘never’ to ‘4 or more times per day’</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ISAAC study(82, 83)*</td>
<td>Non-quantitative General questionnaire Eight-item FFQ One item on SSB</td>
<td>Test association between dietary factors, asthma and allergy</td>
<td>Children 8–12 years (parents or guardians as proxies)</td>
<td>‘Fizzy drinks’ Local examples provided</td>
<td>Not stated Self-admin.</td>
<td>5 categories, ranging from ‘never’ to ‘once per day or more often’</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ToyBox(84, 85)* Children’s FFQ</td>
<td>Semi-quantitative Forty-four-item FFQ Two items on SSB</td>
<td>Measure the effectiveness of an intervention to prevent obesity</td>
<td>Children 3.5–5 years (parents or guardians as proxies)</td>
<td>‘Sugared beverages (Coca-Cola, Pepsi, Fanta, Sprite, Nestea)’ ‘Fruit juice, pre-packed/bottled’</td>
<td>12 months Self-admin.</td>
<td>6 categories, ranging from ‘1–3 days per month’ to ‘every day’</td>
<td>Yes Assessed separately Subjects asked to select from a range of portion for each food, e.g. from ‘100 ml or less’ to ‘1500 ml or more’. Examples of corresponding portions in grams or millilitres provided for each food item Photo book included in appendix</td>
<td></td>
</tr>
</tbody>
</table>

Reference:
ISAAC, International Study of Asthma and Allergies in Childhood; EBRB, energy balance-related behaviours; F&V, fruits and vegetables; NR, not reported; self-admin., self-administered.

*Original instrument was obtained for review.
†Information on the Food4Me instrument was obtained through contact with study authors.
Table 4 Summary of the 24 h recalls (24-HDR; n 6) identified for the assessment of sugar-sweetened beverages (SSB): population, instrument purpose, mode, structure, prompts and portion estimation

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Purpose</th>
<th>Mode</th>
<th>Structure</th>
<th>Prompts</th>
<th>Portion estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIC*</td>
<td>Adults 30–70 years</td>
<td>Provide comparable food consumption data between several European countries</td>
<td>EPIC-SOFT One 24-HDR Computerised Face-to-face interview</td>
<td>1. ‘Quick list’: chronological entry of all foods and recipes consumed during day 2. Foods are entered per meal 3. Each ‘quick list’ item is described and quantified</td>
<td>Yes. Program mediated Checklist of easily forgotten foods</td>
<td>Estimated Six quantification methods including photos, shapes, household measurements, standard units, standard portions, volume method and ‘unknown’ method 4–6 portion sizes</td>
</tr>
<tr>
<td>HELENA*</td>
<td>Adolescents 13–17 years</td>
<td>Assess food and nutrient intakes</td>
<td>HELENA-DIAT Two non-consecutive 24-HDR (within 2 weeks) Computerised Self-admin.</td>
<td>Six meal occasions</td>
<td>Yes. Program mediated</td>
<td>Estimated Photographs Standard units, e.g. spoon, can, glass, grams</td>
</tr>
<tr>
<td>EYHS*</td>
<td>Children 9 and 15 years</td>
<td>Examine personal, environmental and lifestyle influences on cardiovascular risk factors Examine changes in diet intake over time</td>
<td>One 24-HDR Paper-based Face-to-face recall interview preceded by 1 d qualitative food record</td>
<td>Pre-coded food checklist on the 24-HDR Recorded: type/description/location</td>
<td>Yes. During face-to-face interview</td>
<td>Estimated Different-sized drinking glasses, plates, spoons and food pictures of most common foods and food groups in different portion sizes were used to estimate food quantities</td>
</tr>
<tr>
<td>ENERGY*</td>
<td>Children 10–12 years</td>
<td>Determine prevalence of EBRB Identify personal, family and school environmental correlates of EBRB</td>
<td>One 24-HDR Paper-based Self-admin.</td>
<td>Single question asked number of ‘fizzy drinks or fruit squash’ consumed yesterday Six options ranging from ‘none’ to ‘5 or more’ 6 meal occasions</td>
<td>No</td>
<td>Estimated (in-line) Subject can select number of glasses/small bottles (250 ml), cans (330 ml) and bottles (500 ml)</td>
</tr>
<tr>
<td>IDEFICS* (SACINA)</td>
<td>Children 2–9 years (parents or guardians as proxies)</td>
<td>Determine the aetiology of overweight, obesity and related disorders</td>
<td>SACINA One 24-HDR Computerised Face-to-face interview Hungary: self-admin. 24-HDR completed at home</td>
<td>Yes. Program mediated Showed intake and asked participants ‘What food items are missing?’</td>
<td>Estimated Photographs, 6 glass sizes</td>
<td></td>
</tr>
<tr>
<td>I.Family Project**</td>
<td>Children and adolescents 8 years or older Parents No age range determined</td>
<td>Identify determinants of food choice and lifestyle</td>
<td>SACANA One 24-HDR Online self-admin.</td>
<td>Meal occasions 1 breakfast, 1 lunch, 1 dinner; snacks and drinks as needed</td>
<td>Yes. Program mediated</td>
<td>Accurate portion size in grams or millilitres and graphical images and photos</td>
</tr>
</tbody>
</table>

*Original instrument obtained for review.

EPIC, European Prospective Investigation into Cancer and Nutrition; HELENA, Healthy Lifestyle in Europe by Nutrition in Adolescence; EYHS, European Youth Heart Study; ENERGY, EuropeaN Energy balance Research to prevent excessive weight Gain among Y outh; IDEFICS, Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infants; EBRB, energy-balance-related behaviours; self-admin., self-administered; F&V, fruits and vegetables.
SSB intake measurement methods: a review

intake (37), ideally, an instrument should be tested for validity in the population in which it will be used and the purpose for which the instrument is intended should be taken into account. For example, most FFQ identified by the review were used to examine determinants of dietary intake or examine the diet-disease associations, in contrast to the 24-HDR and diet records which were used mainly to assess intake for cross-cultural comparisons, or over time. FFQ are typically designed to be population-specific, to capture dietary customs and foods (125), and so the FFQ may not be the ideal instrument to use across several countries.

However, the current review has indicated how questions relating to SSB may best be structured, even across country-specific FFQ. For example, self-administered instruments should define SSB and provide examples to aid respondent comprehension. Furthermore, more than one item may be necessary to assess SSB; that is, the use of a single term such as ‘soft drinks’ to capture SSB may not be sufficient to fully assess intake of SSB as that term does not differentiate soft drinks, diet soft drinks and squashes. An agreement on a standardised way to assess SSB intake across instruments, including a requirement on assessing portion size in a systematic manner (i.e. clarifying units for participants, e.g. beaker = 250 ml), would be a key step in harmonising the data collection in different regions. The feasibility of using the instrument is also an important consideration. Of the seven instruments that were tested for validity, three were self-administered, paper-based FFQ (IDFICS, ToyBox, HBSC) which may require less resources (i.e. Internet/computer, personnel and time resources) than online or computer-based self-administered FFQ (HELENA, Food4Me) or 24-HDR (HELENA- DIAT). As discussed in the paper on methods to assess F&V intake (37), suitability of the instrument, based on the purpose of the study, must be weighed against feasibility.

When reflecting on the best approach to assess SSB intake, balancing purpose against feasibility is particularly relevant. A 24-HDR or diet record can offer a more detailed and potentially more accurate (126) account of an individual’s SSB intake (particularly if records are maintained throughout the day by respondents, and/or prompted appropriately e.g. as part of HELENA-DIAT). Furthermore, as recalls or records capture SSB intake in the context of overall consumption for the day, they also offer the potential to explore intake in the light of other dietary components and dietary/meal patterns throughout the day; such as the association of consumption of sugar-rich foods with skipped/missed meals or as a marker of poor diet quality (127). However, given food intake has the potential to vary from day to day, it is generally accepted that where assessing an individual’s usual intake is of interest, a single 24-HDR is not appropriate. As SSB ideally should be consumed on an occasional basis, it is possible that an assessment over a limited time period may not reliably reflect usual intake. Much of the current research around SSB has a strong policy focus, tracking global or country-level consumption frequency and relating this to wider health concerns such as obesity or type 2 diabetes (11,16,128). FFQ, particularly if made more comparable across regions (e.g. through standardising frequency categories and definitions of SSB), are valid for this purpose, and do not incur the same respondent burden and expense as the multiple 24-HDR or records which would be required to approximate an individual’s usual intake. However, given the different opportunities offered by the different methodologies, it can be argued that to obtain a broader understanding of patterns of SSB consumption overall, both FFQ and diet records should be utilised. For example, the questionnaire used by the ENERGY study included elements of the FFQ and 24-HDR for the purposes of assessing SSB intake among children (51).

The current review is strengthened by the use of a comprehensive, broad search strategy, supplemented by hand-searching reference lists. Instruments were sourced through contact with study authors and reviewing the results of the review on methods to assess F&V intake. However, there remains the possibility that we did not identify all relevant articles. It is important to note that where a copy of the original instrument or article could not be accessed, the instrument description may be limited. The review is limited to articles published up to June 2014 and we cannot exclude the possibility that new instruments to assess SSB may have become available since the review was completed. Although we would expect more recent instruments to be similar to those identified by our review (i.e. predominantly FFQ and 24-HDR), it is possible that further online tools may have been developed. The advent of tools such as the Food4Me and HELENA FFQ (55,106), both of which are administered online, suggests the move towards this approach, which also offers the opportunity for delivering personalised feedback messages on the basis of food intake data entered by participants.

While the review limited its focus to pan-European studies, as mentioned in the concurrent review on F&V intake (37), this is not to assert that other instruments tested for validity as part of non-European studies would be unsuitable for assessing intakes across Europe. Beyond examining the outcomes of validation studies, as was the case when reviewing instruments to assess F&V intake (37), the quality of the identified instruments was not assessed in the current review owing to the lack of an appraisal tool to rate dietary assessment instruments on the basis of their characteristics. As with the F&V review (37), comparing the characteristics of the instruments identified in the current review could inform how quality standards around dietary assessment instruments might be developed. Although the quality of each instrument could not be fully assessed, the review has provided a shortlist of potential instruments for use in future pan-European studies through selecting instruments that had been used across more than two European countries and those tested for validity for SSB intake. These results will contribute to the development of...
the DEDIPAC toolbox of dietary intake assessment methods, which should provide a basis for appraising and selecting suitable instruments to use in future pan-European studies.

Conclusion

The present review has identified a range of instruments to assess intake of SSB. Results indicate key differences between the identified instruments. In order to standardise and harmonise assessment methods between European countries and increase the accuracy with which intake of SSB is measured, it is essential that a clear and agreed definition of SSB be used: one which clearly explains what is captured by the term ‘soft drinks’, and which distinguishes between sugar-free or light drinks and sugared drinks, and between pure fruit juices and squashes. The review has indicated seven methods that were tested for validity and used in pan-European studies. These methods may be most suitable to assess the intake of SSB among adult, child or adolescent populations in future pan-European studies.

Acknowledgements

Financial support: The preparation of this paper was supported by the DEDIPAC Knowledge Hub. This work was supported by the Joint Programming Initiative ‘Healthy Diet for a Healthy Life’. The funding agency supporting this work was The Health Research Board (HRB), Ireland (DEDIPAC/2013/1). Conflicts of interest: None. Authorship: F.R. planned and conducted the review, and drafted and revised the paper. K.R. planned and conducted the review, and drafted the paper. I.J.P. drafted and revised the paper. M.B.S. contributed to the planning, and drafted and revised the paper. P.v.V. drafted and revised the paper. A.G. drafted and revised the paper. J.M.H. contributed to the planning, and drafted and revised the paper. N.W.-D. conducted the review, and drafted and revised the paper. D.J. conducted the review, and drafted and revised the paper. K.R. conducted the review, and drafted and revised the paper. I.J.P. conducted the review, and drafted and revised the paper. M.B.S. contributed to the planning, and drafted and revised the paper. A.G. drafted and revised the paper. M.D.V. conducted the review of validation data, and drafted and revised the paper. N.W.-D. conducted the review of validation data, and drafted and revised the paper. J.M.H. contributed to the planning, and drafted and revised the paper. Ethics of human subject participation: Not applicable.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/S1368980016002639

References

SSB intake measurement methods: a review

35. Harrington JM, Riordan F & Ryan K (2014) What are the assessment methods used to determine dietary intake of sugar-sweetened beverages in adults (>18 years) and children in European countries, according to children in Europe, according to studies involving two or more European countries? (Protocol). http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=53049 (accessed September 2016).

70. Determinants of eating behaviour in European children, adolescents and their parents (i.Family) (2012–2017) SACANA. EC FP7 Grant Agreement no. 266044.
89. Androutsos O, Apostolidou E, Iotova V et al. (2014) Process evaluation design and tools used in a kindergarten-based,

