

Title	A systematic review of the psychobiological burden of informal caregiving for patients with dementia: focus on cognitive and biological markers of chronic stress
Authors	Allen, Andrew P.;Curran, Eileen A.;Duggan, Áine;Cryan, John F.;Ní Chorcoráin, Aoife;Dinan, Timothy G.;Molloy, D. William;Kearney, Patricia M.;Clarke, Gerard
Publication date	2016-12-13
Original Citation	Allen, A. P., Curran, E. A., Duggan, Á., Cryan, J. F., Chorcoráin, A. N., Dinan, T. G., Molloy, D. W., Kearney, P. M. and Clarke, G. (2017) 'A systematic review of the psychobiological burden of informal caregiving for patients with dementia: Focus on cognitive and biological markers of chronic stress', Neuroscience & Biobehavioral Reviews, 73, pp. 123-164. doi:10.1016/ j.neubiorev.2016.12.006
Type of publication	Article (peer-reviewed)
Link to publisher's version	10.1016/j.neubiorev.2016.12.006
Rights	© 2016 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license - http:// creativecommons.org/licenses/by-nc-nd/4.0/
Download date	2024-04-19 21:59:26
Item downloaded from	https://hdl.handle.net/10468/3439

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Accepted Manuscript

Title: A systematic review of the psychobiological burden of informal caregiving for patients with dementia: Focus on cognitive and biological markers of chronic stress

Author: Andrew P. Allen Eileen A. Curran Áine Duggan John F. Cryan Aoife Ní Chorcoráin Timothy G. Dinan D. William Molloy Patricia M. Kearney Gerard Clarke

PII: DOI: Reference: S0149-7634(16)30279-2 http://dx.doi.org/doi:10.1016/j.neubiorev.2016.12.006 NBR 2681

To appear in:

 Received date:
 6-5-2016

 Revised date:
 28-10-2016

 Accepted date:
 9-12-2016

Please cite this article as: Allen, Andrew P., Curran, Eileen A., Duggan, Áine, Cryan, John F., Chorcoráin, Aoife Ní, Dinan, Timothy G., Molloy, D.William, Kearney, Patricia M., Clarke, Gerard, A systematic review of the psychobiological burden of informal caregiving for patients with dementia: Focus on cognitive and biological markers of chronic stress.Neuroscience and Biobehavioral Reviews http://dx.doi.org/10.1016/j.neubiorev.2016.12.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A systematic review of the psychobiological burden of informal caregiving for patients with dementia: Focus on cognitive and biological markers of chronic stress

For submission to Neuroscience & Biobehavioral Reviews

Andrew P. Allen^{a,b}

Eileen A. Curran^{c,d}

Áine Duggan^e

John F. Cryan^f

Aoife Ní Chorcoráin^g

Timothy G. Dinan^{a,b}

D. William Molloy^g

Patricia M. Kearney^{c,d}

Gerard Clarke^{a,b *}

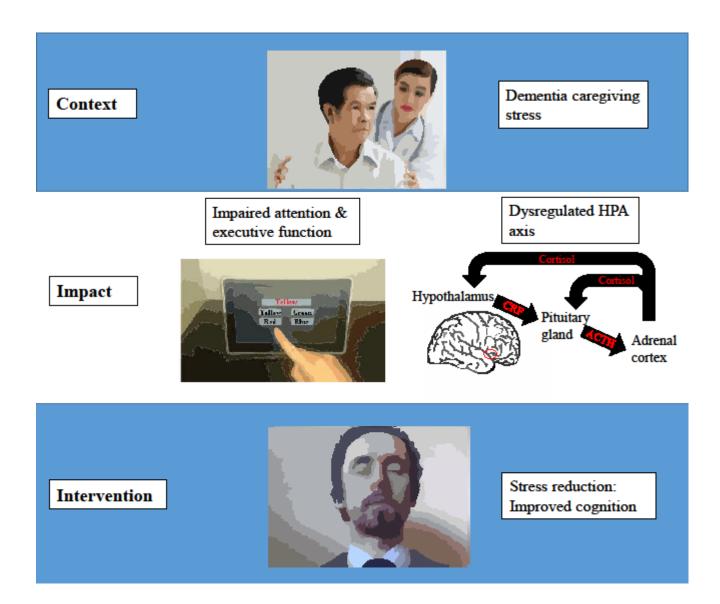
^a APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland

^b Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland

^c The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland

^d Department of Epidemiology & Public Health, University College Cork, Cork, Ireland

^e School of Medicine, University College Cork, Cork, Ireland


^f Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland

^g Centre for Gerontology & Rehabilitation, University College Cork, Cork, Ireland

*Corresponding author: Department of Psychiatry & Neurobehavioural Sciences, 1.15 Biosciences Building,

University College Cork, Cork, Ireland. Tel.: +353 21 4901408. E-mail: G.Clarke@ucc.ie

Graphical abstract

Research Highlights

- Much research has examined biomarkers of chronic stress in dementia caregivers
- Cortisol was increased in dementia caregivers in most studies examining cortisol
- Dementia caregivers displayed poorer attention and executive function performance
- Interventions to reduce stress in caregivers may improve cognition
- Risk of bias was generally low to moderate

Abstract

As the physiological impact of chronic stress is difficult to study in humans, naturalistic stressors are invaluable sources of information in this area. This review systematically evaluates the research literature examining biomarkers of chronic stress, including neurocognition, in informal dementia caregivers.

We identified 151 papers for inclusion in the final review, including papers examining differences between caregivers and controls as well as interventions aimed at counteracting the biological burden of chronic caregiving stress.

Results indicate that cortisol was increased in caregivers in a majority of studies examining this biomarker. There was mixed evidence for differences in epinephrine, norepinephrine and other cardiovascular markers. There was a high level of heterogeneity in immune system measures. Caregivers performed more poorly on attention and executive functioning tests. There was mixed evidence for memory performance. Interventions to reduce stress improved cognition but had mixed effects on cortisol. Risk of bias was generally low to moderate. Given the rising need for family caregivers worldwide, the implications of these findings can no longer be neglected.

Keywords: Stress, caregiver, dementia, cortisol, immune system, cardiovascular, epinephrine, norepinephrine, cognition, attention, memory, biomarker

Introduction

The role of an informal dementia caregiver (i.e. a person providing care to a person with dementia, who is not providing this care in a professional capacity) is a potential source of

substantial psychosocial stress. Patients with dementia may depend increasingly upon informal caregivers, typically close family members, to help them with activities of daily living, as well as displaying challenging behaviours and facing safety issues. In addition to heightened stress, family dementia caregivers show increased levels of anxiety and depression (Baumgarten et al., 1994; Mahoney et al., 2005). Although many informal family caregivers display resilience in the face of their relatives' illness, there is a clear mental health risk within this group. The social impact of this care should not be underestimated; the worldwide economic cost of dementia has been estimated at US\$818 billion, and it is predicted that this figure will increase to \$2 trillion by 2030 (Prince et al., 2015). Within this context, family caregiving saves the exchequer spending on care provision. The results of research on the chronic stress of caring for people with dementia can be used to provide targeted interventions for attenuating the impact of stress in this group, and potentially in other groups exposed to chronic stressors.

Although there has been much research on the biological and psychological markers that accompany the acute stress response (Allen et al., 2014; Dickerson and Kemeny, 2004), it is unethical to experimentally expose humans to chronic stress. As a result, naturalistic chronic stressors such as dementia caregiving are a useful means for examining the impact of chronic stress on human physiology. A number of such models have been examined, such as unemployment (Dettenborn et al., 2010; Gallagher et al., 2016; Ockenfels et al., 1995), or the ongoing effects of childhood abuse (Carpenter et al., 2009; Penza et al., 2003). Compared to other forms of caregiving, caregiving for a family member with dementia may be a particularly stressful experience (Clipp and George, 1993; Kim and Schulz, 2008). Estimates of median survival time for dementia patients vary between 3.3 years and 11.7 years (Todd et al., 2013), and so dementia caregiving represents a chronic source of stress.

Biomarker research may provide us with a greater understanding of mechanisms through which psychological stress may impact upon long-term health outcomes. For instance,

increases in blood pressure may act to increase the risk of cardiovascular illness (MacMahon et al., 1990) and compromised immune system functioning can impair resistance or response to infectious diseases such as influenza (Godbout and Glaser, 2006). Given that ageing and chronic stress can have similar effects on the brain (Prenderville et al., 2015), the impact of caregiving stress may be compounded where caregivers for elderly relatives are themselves senior citizens. However, this also raises the methodological caveat that the search for biomarkers of caregiver stress should take into account the age of the caregiver, as well the nature of impairment and changes in caregiving intensity (Lovell and Wetherell, 2011).

The key aim of this paper is to describe the results of a systematic review of the literature examining the biological and psychological burden of the chronic stress of dementia caregiving. We also review research looking at interventions to reduce the impact of chronic stress in caregivers, where biomarkers are examined as an outcome. We appraise the research quality of relevant research and identify potential future directions for research in this area.

1. Methods

This systematic review was pre-registered at PROSPERO. ID: PROSPERO 2015:CRD42015020828. The date of registration was 28th May 2015. This is available from: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015020828

2.1. Literature search

The databases Cinahl, PsycINFO, Pubmed, ScienceDirect, Scopus and Web of Knowledge were used as electronic search engines for the systematic review.

The search terms included were: "caregiver" AND "dementia" AND "stress" OR "allostatic load" OR "biomarkers" OR "biological marker" OR "cortisol" OR "cytokine" OR "heart rate" OR "gastrointestinal" OR "interleukin" OR "c-reactive protein" OR "catecholamines" OR "adrenaline" OR "noradrenaline" OR "epinephrine" OR "norepinephrine" OR "pH" OR "amylase" OR "vasopressin" OR "DHEA" OR "DHEA-S" OR "lymphocyte" OR "T-cell" OR "B-cell" OR "monocyte" OR "neutrophil" OR "basophil" OR "granulocyte" OR "macrophage" OR "nuclear factor kappa B" OR "immunoglobulin" OR "heart rate variability" OR "BDNF" OR "d-dimer" OR "tryptophan" OR "kynurenine" OR "blood pressure".

2.2. Exclusion criteria

Studies were excluded if they were not written in English (and a translation was not available), if they did not report original research, if they did not employ a quantitative design, if they did not assess any biomarkers or if they did not assess informal caregivers (i.e. those caring in a non-professional capacity) for patients with dementia. Study review and selection was completed by two reviewers. See Figure 1 for flowchart of study exclusion/inclusion.

2.3. Data Extraction

Two reviewers extracted data on study design, control group, length of follow up, region and time period of study, outcome definitions, interventions, compliance with the intervention, data source, sample size, attrition rate, treatment of missing values, confounders considered, patient's dementia diagnosis, inclusion/exclusion criteria for study participants and participant age, gender, ethnicity, and relation to care recipient.

2.4. Study evaluation

Quality was assessed via a tool based on McDonald et al. (2005), but adapted for the context of dementia caregiving. This quality assessment tool assessed six types of bias: 1. selection (sample selection, rationale for control group and length of assessment, and provision of inclusion/exclusion criteria), 2. Exposure (hours of caring per week, overall duration of caring and assistance with activities of daily living), 3. outcome (description of biomarker assessment), 4.confounding (number of potential confounding factors controlled for), 5. analytic (adequately explanation of statistical methods, application of correction for multiple comparisons where appropriate and sample size adequacy), 6. attrition (rate of attrition and explanation).

For each article, the six types of bias were classified as low, moderate or high (see Supplementary Table 1 for quality assessment form with detailed description). Furthermore, overall study bias was classified as low, low-moderate, moderate, moderate-high or high, based on an arithmetic mean of bias from the six types of bias. The second reviewer verified the quality assessment of the first reviewer.

2. **Results**

Of the 8,697 papers initially identified, a total of 151 studies were included in the systematic review (see Figure 1 for inclusion flowchart). This included 133 studies examining the impact of dementia caregiving on stress biomarkers and 18 papers examining the impact of interventions to reduce stress in carers.

3.1. Impact of dementia caregiving on biomarkers of stress

3.1.1. Dementia caregiving and cortisol

Thirty one non-interventional studies examined cortisol levels in dementia caregivers (See Table 1). Of these, twenty-six examined salivary cortisol, three examined plasma cortisol, three examined urinary cortisol, and one looked at hair cortisol (with some studies examining cortisol from multiple sources).

Heightened cortisol was observed in caregivers in sixteen studies (not including studies that focused on factors moderating cortisol output). Of these, seven studies showed increased salivary cortisol when measured at various timepoints throughout the day (Bauer et al., 2000; Da Roza Davis and Cowen, 2001; Davis et al., 2004; Gallagher-Thompson et al., 2006; Palma et al., 2011; Tarrier et al., 2002; Vedhara et al., 1999). In particular, there was evidence from four other studies of increased salivary cortisol at awakening (de Vugt et al., 2005; Fonareva et al., 2011; Oken et al., 2011; Wahbeh et al., 2008) although both an attenuated cortisol awakening response (de Vugt et al., 2005) and Wahbeh et al. (2008) found a clear cortisol awakening response in caregivers at 30 minutes, but not in a non-caregiver control group. Increased cumulative stress load, as indicated from hair cortisol measures, has been reported (Stalder et al., 2014) as has an increase in overnight urinary cortisol (Clark et al., 2007). In terms of response to an acute stressor, both increased saliva cortisol reactivity (Aschbacher et al., 2013) and increased plasma cortisol have been documented (Cacioppo et al., 2000).

The effect of caregiving on cortisol is not always apparent and studies have also found that plasma morning cortisol is unchanged (Irwin et al., 1997; Mills et al., 1997), that there was no difference in salivary cortisol at various timepoints throughout the day or in 12-hour urinary cortisol (Tomiyama et al., 2012) and that there were no differences in plasma cortisol change in response to an acute stressor (Malarkey et al., 1996).

Hypofunction of the HPA axis has also been reported including a reduction in salivary cortisol measured at various timepoints over the day (Jeckel et al., 2010). Deviations from the normal profile despite similar peak levels in caregivers include an earlier onset of salivary cortisol reactivity in response to acute stress (Epel et al., 2010). One study indicated an increased ratio of salivary cortisol to dehydroepiandrosterone (DHEA), which has neuroprotective and antiglucocorticoid effects, suggesting an imbalance in HPA axis activity (Correa et al., 2015). Similarly, another study indicated an increase in salivary dehydroepiandrosterone sulfate (DHEA-S) to cortisol (Jeckel et al., 2010).

A number of moderating factors were observed: age and ethnicity (McCallum et al., 2006; Wilcox et al., 2005) as well as cultural values (Holland et al., 2010), psychological factors: coping style (Merritt and McCallum, 2013; Merritt et al., 2011) and depressed mood (Leggett et al., 2014), caring circumstances: adult day services (Klein et al., 2014) as well as admission and discharge (Neri et al., 2007), and genotype (Brummett et al., 2008).

In summary, the majority of studies using cortisol as a stress readout have revealed abnormal HPA axis function and most support hyperactivity. These assessments vary in terms of timing, the type of biological sample assessed and whether baseline measures or HPA axis challenges were used. We note that many of the studies reported included multiple time points which is critical given the concerns noted with single time point assessments of cortisol (e.g. Allen et al., 2014). Interestingly, there was evidence of alterations in cumulative stress load, the cortisol

awakening response, the diurnal profile of cortisol secretion and the response to an acute stressor. This type of profile suggests that caregivers are exposed to the damaging effects of elevated cortisol across the day and over sustained periods of time; such elevation is known to be associated with psychopathology, including depression (e.g. Dinan, 2001), and irritable bowel syndrome (e.g. Kennedy et al., 2014).

3.1.2. Dementia caregiving and the immune system

Fifty-four non-interventional studies examined either immune system activation or response in dementia caregivers (See Table 2). Differences between caregivers and non-caregivers have been demonstrated by basal comparisons; caregivers had increased peripheral blood levels of C-reactive protein (Fonareva et al., 2011; Gouin et al., 2012), and a longer duration of care was associated with higher levels (Von Känel et al., 2012c), although other studies did not indicate differences (Vitaliano et al., 2007; Von Känel et al., 2006b). There is mixed evidence concerning whether IL-6 levels differ in caregivers (Fonareva et al., 2011; Gouin et al., 2012; Kiecolt-Glaser et al., 2003; Segerstrom et al., 2008; Von Känel et al., 2006b) and TNF-alpha (Fonareva et al., 2011; Von Känel et al., 2012c). Caregivers had an increased percentage of IL-10⁺, but no difference for cells expressing IL-2 or IFN-gamma in the cytoplasm of CD-4⁺ and CD-8⁺ lymphocytes (Glaser et al., 2001) or peripheral IL-2 levels (Neri et al., 2007). Caregivers did not have altered IgA secretion (Bristow et al., 2008; Neri et al., 2007) and did not differ in lymphocyte full blood counts (Bauer et al., 2000; Reese et al., 1994). Differences in lymphocyte levels in caregivers were lymphocyte-type specific (Mills et al., 1999) while they did not differ for NK cell counts (Reese et al., 1994), NK cell activity or cytotoxic activity (Irwin et al., 1991; Vitaliano et al., 2001).

There is evidence that the immune response to challenge is altered in caregivers. Caregivers had a reduced IL-1beta response to LPS stimulation, along with slower wound healing

(Kiecolt-Glaser et al., 1995). Caregivers also had reduced leukocyte response to mitogens (Cacioppo et al., 1998), reduced mitogen-induced lymphocyte proliferation, reduced mitogen-induced IL-2 production, and reduced lymphocyte sensitivity to glucocorticoids (Bauer et al., 2000). Although caregivers did not differ in lymphocyte full blood counts, they had lower T-cell proliferation in response to phytohaemagluttinin (PHA) stimulation (Bauer et al., 2000; Reese et al., 1994). Caregivers did not differ in percentage T or B cells, monocytes or NK cells, but following stimulation with anti CD-3 and anti-CD28 Abs had lower T-cell proliferation and heightened production of cytokines (TNF- α and IL-10) (Damjanovic et al., 2007), although another study found increased proliferation of mitogen-stimulated T-cells to glucocorticoid challenge (Jeckel et al., 2010). Caregivers had reduced NK response to rIL-2 or rIFN-gamma (Esterling et al., 1994; Esterling et al., 1996).

In addition to in vitro evidence, caregivers had reduced antibody titre responses to the Fluzone vaccine and a more rapid reduction in peripheral blood leukocytes (PBL) ability to synthesize IL-2 after vaccine stimulation (Glaser et al., 1998), although other research did not indicate differences in antibody titres to influenza vaccine (Segerstrom et al., 2008; Vedhara et al., 1999). In contrast, increased antibody titres to HSV-1, with a reduced t-cell proliferative response to HSV-1 (Glaser and Kiecolt-Glaser, 1997), as well as increased antibody titres to EBV virus capsid antigen IgG have been reported. Caregivers also had reduced IgC titres over six months in response to pneumococcal pneumonia vaccination (Glaser et al., 2000).

There is evidence that immune activity in response to acute psychosocial stress is altered in caregivers: in response to a speech stressor, leukocytes were increased and the density of L-selectin was reduced in caregivers (Adler et al., 2002), and there was evidence of increased reactivity and delayed recovery of P-selectin (Aschbacher et al., 2008). Depression acted as a significant predictor of P-selectin reactivity (Aschbacher et al., 2009). Cell adhesion molecules such as L- and P-selectin may have a significant impact upon the immune system's

preparedness to mount a response to challenge (e.g. Dhabhar et al., 1994). Caregivers showed no differences in chemotaxis to the beta-adrenergic agonist, isoproteronol (ISO), or to stromal cell-derived factor-1 (SDF-1), N-formyl-methionyl-leucyl-phenylalanine (FMLP) but reduced FMLP and SDF-1 chemotaxic responses to an acute psychosocial stressor (Redwine et al., 2004).

Beta(2)-adrenergic receptor sensitivity is important for peripheral blood mononuclear cell (PBMC) trafficking and cytokine production. Caregiving overload, that is, feelings that carers were overloaded by their role, as assessed with the Pearlin Role Overload scale (Pearlin et al., 1990) was negatively associated with beta-adrenergic receptor sensitivity, which was also negatively associated with caregiver mastery (Mausbach et al., 2008; Mausbach et al., 2007b). Beta-adrenergic receptor sensitivity was lower in caregivers classified as more vulnerable due to increased care demands (Mills et al., 2004).

A number of moderating effects on immune system activity have been described, including age (Irwin et al., 1997; Kiecolt-Glaser et al., 1996; Mills et al., 1997), as well as gender (Mills et al., 1997; 2009; Thompson et al., 2004), and males caring for spouse with more severe dementia had increased IL-6 levels compared to females caring for a spouse with more severe dementia (Von Känel et al., 2006a) disease status/medical treatment: oral or transdermal hormone replacement therapy with the majority taking estrogen only or estrogen and progesterone (Aschbacher et al., 2007), cancer history (Vitaliano et al., 1998a) and depression (Castle et al., 1995; Scanlan et al., 2001). A number of psychological factors have been found to moderate the effects of caregiver stress, including childhood abuse (Kiecolt-Glaser et al., 2011), life stress rating (Mills et al., 1997) sleep levels (Von Känel et al., 2010a) and leisure satisfaction –for TNF-alpha, IL-8, IFN-gamma, but not for IL-6 or CRP (Von Känel et al., 2014). In addition to these moderating effects, there was a mediating effect of bodily pain on

CRP levels in caregivers, who also reported higher bodily pain than non-caregivers (Graham et al., 2006).

Given findings that caregivers are prone to more days with infectious illness (Kiecolt-Glaser et al., 1991), a greater understanding of immune system changes in dementia caregivers is warranted. In summary, immune system function has been assessed in a variety of ways, including both directly and indirectly, at baseline and following challenges, and via multiple different methodologies. Piecing together the information from these disparate approaches is challenging, and more consistent assessment strategies would benefit the field. Baseline levels of cytokines and acute phase markers such as IL-6, TNF-alpha and CRP which are most frequently assessed in psychiatric populations, and which yield robust results in such populations (Goldsmith et al., 2016), have infrequently been assessed in caregivers and the results have been mixed. Interestingly, depression is associated with both HPA axis hyperactivity and immune system activation and this has been ascribed to impaired glucocorticoid receptor function (Pariante & Lightman, 2008). Although baseline low grade immune system activation is apparent in some caregiver studies, the evidence for this is mixed; there is clearer evidence that the responsivity of the immune system to challenge may be compromised following caregiver stress. More careful target selection will be required in future studies to get a clearer picture of immune system function in caregivers and these studies will need to take account of factors such as duration of caregiving and caregiver burden scores. Importantly, there are well defined routes through which immune system activation can impact at the level of the CNS and a number of anti-inflammatory strategies to counteract such activation. It is premature based on the current data to conclude this would be beneficial in caregivers. Equally, the possibility of a compromised immune system reactivity needs to be considered.

3.1.3. Dementia caregiving and cardiovascular biomarkers

Forty seven non-interventional studies examined cardiovascular variables in dementia caregivers (see Table 3). Caregivers had higher resting heart rate (HR) (Cacioppo et al., 2000; Jeckel et al., 2010), systolic blood pressure (SBP) (Cacioppo et al., 2000) and diastolic blood pressure (DBP) (Cacioppo et al., 2000; Jeckel et al., 2010), although other studies found no difference for caregivers in SBP or DBP (Malarkey et al., 1996; Redwine et al., 2004). Further research has found heightened mean arterial pressure in caregivers (Malarkey et al., 1996; Mausbach et al., 2007c; Redwine et al., 2004). Although one cross-sectional study suggested that there were comparable age-related increases in SBP and HR (Uchino et al., 1992), another study found that although there was not a significant difference in blood pressure (BP) at baseline, BP readings consistent with borderline hypertension were more common in caregivers over a six-year follow-up (Shaw et al., 2003). Hospice care was not associated with changes in BP (Irwin et al., 2013).

D-dimer, a hypercoagulability marker that may also be considered a marker of psychosocial distress (Von Känel and Dimsdale, 2003) has been found to be increased in caregivers (Von Känel et al., 2005; Von Känel et al., 2006b), although not after controlling for anxiety and depression (Aschbacher et al., 2005). Clinical dementia rating of the patient was found to be associated with increased baseline D-dimer and D-dimer reactivity (Aschbacher et al., 2006), and higher negative life events were associated with higher D-dimer (Von Känel et al., 2003). Death or placement of the patient is associated with a drop in D-dimer, but only after 6 months or more (Mausbach et al., 2007a). Caregiver had increased tissue-type plasminogen activator antigen over time (Mausbach et al., 2007c), although this was not observed in another report (Von Känel et al., 2005).

A number of composite measures incorporating cardiovascular factors have been assessed in caregivers. A composite measure of allostatic load (based on BP, BMI, NE, EPI, cholesterol) was increased in caregivers (Roepke et al., 2011b), while a composite measure of metabolic syndrome (based on glycosylated hemoglobin concentration, triglycerides, waist circumference and blood pressure) was significantly associated with the patient's cognitive decline (Brummett et al., 2013). Another study did not find a difference for caregivers in a cardiovascular composite based on MAP, HDL and NK cell activity (Vitaliano et al., 2001). A higher rate of problem behaviours by the patient was associated with an increased procoagulent index, derived from von Wildebrand factor, Plasminogen Activator Inhibitor-1, and D-dimer scores (Von Känel et al., 2010b).

A number of other cardiovascular measures have been examined in caregivers, who have been shown to have a higher low frequency/high frequency (LF/HF) ratio (an index of sympathetic activity) during the first half of sleep (Sakurai et al., 2015). Higher burdens in caregivers were associated with lower levels of heart coherence (Sarabia-Cobo, 2015). Caregivers had shorter cardiac pre-ejection periods (Cacioppo et al., 2000), but did not differ from controls in respiratory sinus arrhythmia (Cacioppo et al., 2000; Malarkey et al., 1996). Number of years caring and severity of dementia were associated with lower hyperemia induced flow-mediated dilation (Mausbach et al., 2012; Mausbach et al., 2010). Carotid plaques were more prevalent in caregivers (Roepke et al., 2011a), although caregiving duration did not predict carotid plaques (Roepke et al., 2012). Soluble intercellular adhesion module-1, a marker for cardiovascular risk, was reduced three months following the death of a spouse with dementia (Von Känel et al., 2012c).

There were a number of moderating factors, including gender, on response to acute stress (Atienza et al., 2001; Thompson et al., 2004), and on a composite measure including BP, lipids, BMI, insulin and glucose (Zhang et al., 2006) as well as on DBP (Mills et al., 2009) and D-

dimer (Mills et al., 2009), though this was not the case for ambulatory HR or BP (Atienza et al., 2001). There was mixed evidence on ethnicity (Knight et al., 2007; Knight and McCallum, 1998; Wilcox et al., 2005). Psychological factors moderating the impact of caregiver stress included higher engagement in pleasant events and reduced perceived activity restriction (Chattillion et al., 2013), closer affective bonds (Uchino et al., 1994), higher coping self-efficacy (Harmell et al., 2011), active coping (Kim et al., 2007) and negative life events (Von Känel et al., 2003). Relationship with the care recipient moderated DBP and HR in the presence of the care recipient (King et al., 2002a). Sleep behaviour was associated with heightened D-dimer (Mausbach et al., 2006), but not with hypertension (Schwartz et al., 2013). Cardiovascular disease (Vitaliano et al., 1998b), and lower levels of physical activity (Von Känel et al., 2011b) also moderated caregiver effects, but not genotype (Kring et al., 2010).

In summary, there is mixed evidence concerning differences between caregivers and noncaregivers in heart rate and systolic/diastolic BP, although mean arterial pressure does appear to be elevated in caregivers. There is evidence that D-dimer is elevated, and this effect appears to be due to anxiety and depression. A number of other cardiovascular indices have been measured but have yet to be replicated; further research into heart rate variability over the course of the day may yield greater insight into whether and in what ways heightened stress in caregivers manifests at a cardiovascular level.

3.1.4. Dementia caregiving, epinephrine and norepinephrine

Seventeen non-interventional articles examined epinephrine/norepinephrine (EPI/NE) levels in dementia caregivers (see Table 4). EPI and NE increased over time in caregivers along with stress (Clark et al., 2007), and duration of care was a predictor of EPI but not NE in caregivers (Ho et al., 2014). Caregivers with high life stress had higher NE (Mills et al., 1997) and caregivers identified as vulnerable had higher EPI than non-vulnerable caregivers (Mills et al.,

1999). However, caregivers did not differ from non-caregivers in EPI or NE in five other studies (Cacioppo et al., 2000; Irwin et al., 1991; Irwin et al., 1997; Malarkey et al., 1996; Redwine et al., 2004).

A speech stressor increased EPI and NE in dementia caregivers (Adler et al., 2002), depression in caregivers predicted NE change in another study (Mausbach et al., 2005), and heightened anxiety and depression were associated with impaired recovery in NE (Aschbacher et al., 2008). ADL levels were associated with increased NE reactivity to a speech stressor (Roepke et al., 2008).

A longer time caregiving was associated with higher NE and EPI in caregivers with lower leisure satisfaction (Chattillion et al., 2012). Increased waking after sleep onset was associated with heightened NE in caregivers (Mausbach et al., 2006).

3.1.5. Dementia caregiving, neurocognition and neurotrophins

Ten articles examined cognitive performance or neurotrophins in dementia caregivers (see Table 5). Three of these (Caswell et al., 2003; Vitaliano et al., 2007; Vitaliano et al., 2009) described poorer performance in caregivers on the digit symbols test, an assessment of speed of information processing and complex attention (Wechsler, 1981). Caregivers performed more poorly at an attention test (Attention Network Test) in another study (Oken et al., 2011) and had poorer executive function, as indicated by Trail Making B (Correa et al., 2015), and by Stroop performance in another (Oken et al., 2011). Working memory performance was worsened in caregivers (as assessed with digit span; Correa et al., 2015). Recall was worsened in caregivers (de Vugt et al., 2006; Palma et al., 2011) but not in another study after controlling for covariates (Correa et al., 2015), while other research found that recall was enhanced for emotive stimuli (Palma et al., 2011). There also was evidence of poorer performance on an

embedded figures tests, and trends for poorer performance on a proofreading test (Burns et al., 2002) and cognitive flexibility (de Vugt et al., 2006).

Findings on neurotrophins were mixed; Correa et al. (2015) observed lower brain-derived neurotrophic factor (BDNF) in dementia caregivers, while Hadjiconstantinou et al. (2001) observed increased nerve growth factor (NGF). Although PET has been used to examine the impact of an intervention within dementia caregivers (see section 3.2 on intervention for caregivers), there has been a lack of brain imaging studies comparing caregivers to non-caregivers.

In summary, the most consistent findings on neurocognitive performance in caregivers are those suggesting poorer attention and executive function; findings on memory performance are more mixed, which may be due to differently valenced stimuli. Although research on neurotropins in caregivers has been mixed, only a very small number of studies have examined this, and further research in this area examining levels of caregiver stress more closely is warranted.

3.1.6. Dementia caregiving and other biomarkers

Dementia caregivers did not differ significantly in BMI (Aschbacher et al., 2007; Bauer et al., 2000; Bauer et al., 2001), or in glucose (Brummet et al., 2005) although they had heightened glucose, insulin and obesity in another study (Vitaliano et al., 2005). Males had higher BMI at baseline and follow-up, and although female caregivers did not have higher BMI they gained more weight between baseline and follow-up (Vitaliano et al., 1996a). Higher hostility was associated with higher glucose (Vitaliano et al., 1996b), and psychological distress was associated with higher glucose and mediated higher insulin at follow-up (Vitaliano et al., 1996c). A higher sense of coherence was associated with reduced glucose levels in males,

although caregiver status did not moderate this effect (Zhang et al., 2001). Caregivers did not differ in glycosylated hemogloblin concentration (Brummet et al., 2005).

Caregivers have been found to have shorter telomere lengths (an index of cell ageing) in peripheral blood mononuclear cells (PBMC) (Kiecolt-Glaser et al., 2011), and caregivers had higher basal telomerase activity in PBMC and T cells (Damjanovic et al., 2007). However, another study did not find an effect on telomere length (Tomiyama et al., 2012). In response to an acute stressor, there was a trend for reduced telomerase activity overall, but similar levels of reactivity (Epel et al., 2010).

Reduced percentage sleep has been observed in caregivers (Von Känel et al., 2010a), although an overall difference in sleep efficiency was not observed between caregivers and noncaregivers (Roepke et al., 2011a; Sakurai et al., 2015). In contrast, caregivers spent more time in sleep stage N1, but more in stage R, indicating less restorative sleep (Fonareva et al., 2011). Males caring for spouses with more severe dementia had more time awake after sleep onset and a trend for poorer sleep efficiency than female caregivers caring for spouses with more severe dementia (Mills et al., 2009). Spousal death in caregivers was associated with increased waking after sleep onset, increased daytime total sleep time and reduced night time percent sleep (Von Känel et al., 2012a).

Female caregivers had lower skin temperature at pre-stress baseline and at post-stressor relaxation compared to males (Thompson et al., 2004). Glomerular filtration rate (a marker of kidney function) did not change in caregivers at follow-up, although it fell disproportionately after placement of spouse in a nursing home (Von Känel et al., 2012b). Caregivers had lower levels of plasma tryptophan (a precursor of serotonin, as well as other neuroactive metabolites along the kynurenine pathway), although this finding was not statistically significant (Da Roza Davis and Cowen, 2001).

Overall, there is some mixed evidence for metabolic syndrome biomarkers in caregivers, such as insulin and obesity, and they may only be heightened where distress is more substantial. Where there is a lack of difference in overall sleep, this may mask differences in sleep quality, and gender may moderate some sleep differences in caregivers. There is mixed evidence on telomere length in caregivers, and although other biomarkers of stress have been examined, further research would be required to establish the reliability of these effects. A summary of differences between caregivers and control participants in these biomarkers is provided in Table 6.

3.2. Impact of dementia caregiving interventions on biomarkers of stress

Eighteen studies have examined the impact of interventions on stress biomarkers (see Table 7). Some of these have examined the effect of meditation or yoga on stress biomarkers: three have examined Kirtan Kriya, which enhanced executive function (Lavretsky et al., 2013) and memory, as well as reducing SBP (Innes et al., 2012) and altering genes bearing NF- κ B- and IRF-1-response elements (Black et al., 2013). One study examined yoga & compassion meditation, which reduced cortisol (Danucalov et al., 2013). Another study indicated that transcendental meditation increased response speed (Leach et al., 2015). Mindfulness-based CBT improved attention but did not affect cortisol (Oken et al., 2010). In another study kundalini yoga affected numerous brain regions, assessed with PET (Pomykala et al., 2012).

Cognitive behavioural therapy has also been shown to enhance cognitive performance in caregivers (Mackenzie et al., 2013), although there is mixed evidence on cortisol (Aboulafia-Brakha et al., 2014; Vedhara et al., 2003). CBT enhanced IgG response (Vedhara et al., 2003), although combined psycho-education and CBT showed differing trends at post-intervention and follow-up (Wilkins et al., 1999).

A respite intervention reduced EPI but did not affect NE, BP or HR (Grant et al., 2003). A "coping with caregiving" program corrected dysregulation in cortisol, but only in caregivers living with the care recipient and providing longer hours of care per day (Holland et al., 2011). An eight-week support program led to stable NE in comparison to an increase in the control group (Kim, 2011). A pleasant events program led to a reduction in IL-6 (Moore et al., 2013). A video-based coping skills intervention reduced BP, but did not alter BP or HR reactivity to acute stress (Williams et al., 2010). An exercise intervention reduced BP reactivity to acute stress (King et al., 2002b).

Eight studies employed active control conditions (two psycho-education/information support, one psychological/information support plus community services, two relaxing music, one relaxation, one telephone support, one nutrition education), five employed a waitlist/no-treatment control group, one employed both psycho-education support and respite-only control conditions, while four had no control group.

In summary, the most consistent effects of the numerous interventions for caregivers examined appears to be an improvement in cognition. Other biomarkers, such cortisol and immune system factors have also been examined, but this latter body of evidence is less clear.

3.3. Quality assessment

A large majority of studies were rated as having low, low-moderate or moderate bias overall. With regard to sample selection, it should be noted that a number of longitudinal studies have led to the publication of numerous research articles, describing different biomarkers of stress within an overlapping cohort. Most studies reported their inclusion/exclusion criteria. A majority of studies controlled for at least three confounding variables. A majority also reported the duration of care and/or hours per week spent providing care, although there was some variability in the amount of hours per week spent caregiving (including minimum number of

hours required for inclusion in research), and only a minority of studies indicated levels of ADL assistance provided. With regard to statistical analysis, few papers indicated a power analysis to outline whether the study was well-powered to detect expected effect sizes. A summary of the quality assessment is presented in Table 8.

Discussion

This systematic review summarises available data on a broad range of biological and cognitive markers of stress in informal dementia caregivers. The most consistent finding was that dementia caregiving was generally associated with greater HPA axis activity, as indicated by elevated cortisol levels (see Graphical Abstract). This HPA axis hyperactivity was documented using a variety of methodological approaches in different types of biological samples and was apparent at single time points, in the cortisol awakening response and across the diurnal cycle of cortisol secretion. The impact of sustained HPA axis hyperactivity is well documented and has been implicated in the neurobiology of stress-related disorders such as depression (e.g. Otte et al, 2016). Further work is needed to assess the particular aspects of the caregiver experience that may moderate the biological impact of caregiver stress (e.g. challenging behaviours, duration of caregiving, relationship with care recipient), to determine if it is subgroup specific and to determine the best approach to managing any long-term physiological risks of caregiver stress.

Chronic exposure to stress hormones like cortisol during adulthood and aging can have an impact on brain structures involved in cognition (Lupien et al., 2009). It is unsurprising then that there is good evidence to support a cognitive neurobiology of caregiving associated most robustly with poorer performance on attention tasks and executive function performance, although it should be noted that the size of these effects are relatively modest; computerised

tasks that can measure performance (e.g. accurate measurement of reaction time) will thus be more sensitive to such effects. The observed impact upon cognition suggests that there is a functional consequence of the reported HPA axis hyperactivity; this is concerning, given that caregiving for a person with dementia can involve cognitively challenging tasks. This is also consistent with reports of impaired cognitive performance in other stress related disorders such as depression (e.g. Beck, 2008) and irritable bowel syndrome (Kennedy et al., 2014, 2015).

Interestingly, our systematic analysis also indicates that interventions to reduce stress, including meditation as well as cognitive behavioural therapy, can improve cognitive performance (see Graphical Abstract). Unfortunately, the evidence regarding the impact of these interventions on cortisol levels are mixed and, based on the studies assessed here, it is unclear if the improvement in cognition is consistently linked to a blunting of the excessive HPA axis activity. Although pharmacological options targeting cortisol production are available, we note that this approach has not yet yielded impressive results in disorders such as depression (McAllister-Williams et al., 2016), although the populations under assessment are not always enriched for subjects with evidence of a HPA axis abnormality. In any case, it is premature based on the current analysis and in the absence of experimental validation of cortisol as a state or trait biomarker to advocate such an intervention. In this regard, we note the emerging support for the role of the gut microbiome in regulating HPA axis activity (Dinan & Cryan, 2012) and the recent demonstration that this might be achieved via the use of psychobiotics (Allen et al., in press)

Activation of the immune system is associated with stress and has been linked to the emergence of psychopathology, making the assessment of immune function a logical target (Dantzer et al., 2008). In dementia caregivers however, there was mixed evidence. These disparate findings for the plethora of neuroimmune factors assessed make it difficult to difficult to draw firm and meaningful conclusions. The broad range of variables assessed using multiple

methodologies and without a sustained focus on specific targets likely contributes to this uncertainty. In fact, there was stronger evidence for a reduced immune response to various challenges than a baseline alteration in immune function from the analysis of circulating cytokines with additional reports of enhanced sensitivity to glucocorticoid challenge. The reduced ability to mount an appropriate immune response is an obvious concern in this population (Kiecolt-Glaser et al., 1991).

Although sustained elevations in circulating glucocorticoids might be expected to be immunosuppressive, this caregiver immune profile is at odds with that presented in depression, with evidence of immune system activation *despite* excess cortisol concentrations (c.f. review by Pariante & Lightman, 2008). This illustrates that the timing and duration of HPA axis dysfunction can have diverging physiological manifestations. We should also note that there was also evidence of an enhanced immune response and low grade immune system activation in some caregiver studies. Future studies need to determine if this is specific to any particular subgroup of caregivers.

Taken together, these findings highlight risks to caregivers, as well as potential for intervention. Chronic excessive secretion of cortisol has been linked with numerous health problems, including hypertension and depression (e.g. Chrousos & Gold, 1998; Scott & Dinan, 1998). If the immune system is subjugated in response to challenge, then caregivers may experience greater adverse health events from infection (Kiecolt-Glaser et al., 1991). Caregiving for a person with dementia can involve cognitively challenging tasks (e.g. managing difficult behaviours), so findings of reduced attention and executive function performance are of concern, but evidence that such differences can be attenuated by interventions to manage stress is promising.

Longitudinal studies that track caregivers over time would be an informative approach but relatively few studies of this nature exist; assessment of caregivers as patients' dementia progresses allows researchers to build bio-psychosocial profiles of any accumulating effects of increasingly severe chronic stress. It is worth considering that many dementia caregivers may not approach health services until they have been providing care for some time, and so a baseline measurement may not be feasible unless ageing participants are tracked prior to any manifestation of memory problems in the care recipients, or at least prior to memory problems necessitating the provision of care. Increases in problematic behaviours in care recipients are particularly relevant, as these have been shown to be more predictive of caregiver burden than reductions in cognitive capacity in the care recipient (Bédard et al., 1997). Linking the appearance of these problematic behaviours and the associated increase in caregiver burden to a particular biomarker signature or to the emergence of biological abnormalities would be a major advance.

The majority of studies examining the impact of dementia caregiving stress used noncaregivers as a control group, as opposed to caregivers for patients with a different condition or professional caregivers. There was heterogeneity in the comparison groups used to evaluate the specific impact of the interventions, although the most commonly employed approach was an active control group. Interventional research has indicated that meditation or yoga have the potential to improve cognitive performance in dementia caregivers, although some of these studies have small sample sizes (including a study examining the impact of yoga on brain activity using PET; Pomykala et al., 2012). Mindfulness-based interventions may be useful in targeting traits such as emotional intelligence and anxiety sensitivity, which may impact upon stress reactivity (Choi et al., 2014), although emotional cognition also remains an under-studied aspect of cognition within this area.

Studies in this area comparing dementia caregivers to a control group generally used noncaregivers as a control group. Given previous evidence that dementia caregivers experience greater stress than other informal caregivers, it would be of interest if stress biomarkers also differ in a graded fashion between these groups. It would also be of interest to compare family caregivers to professional caregivers, to understand the impact the stress of a loved one having dementia in addition to caring for them, although caring self-efficacy may be considerably lower in family caregivers who are not familiar with dementia or are still learning how to deal with the challenges of providing care.

For the majority of studies, the mean age of participants was over 60 years of age, and so the compounding interaction between aging and the chronic stress of dementia caregiving needs to be considered. This should also be evaluated against the studies that also included caregivers below this age range. Although the majority of dementia carers are women (Prince et al., 2015), the research examined here was not restricted to females, and has indicated the impact of dementia caregiving on biomarkers of stress (e.g. immune system activity) may be moderated by gender. The moderation of stress biomarkers by characteristics of the caregiver is important, given that a systematic review has suggested that the characteristics of caregivers may be a better predictor of patient institutionalisation than the behavioural and psychological symptoms of dementia (Black and Almeida, 2004).

Risk of bias was generally low to moderate. Strengths of the studies reviewed included the fact that most controlled for potential confounders (e.g. age, gender, income), and the studies were generally transparent about their inclusion/exclusion criteria. However, there were weaknesses as well. Many of the studies did not report effect sizes for observed effects. Although laboratory procedures for processing biomarkers are generally reported, a number of studies analysing a particular analyte have collected samples in a way which could reduce comparability between studies (e.g. salivary cortisol being collected at different times of day,

lack of standardisation in assays). A number of papers report on measures statistically integrating multiple biomarkers to form composite measures of cardiovascular risk or allostatic load. Caution should be used in comparing such measures across studies, given that the score will be affected by the nature and number of biomarkers measured, as well as the method of assessment.

Our key methodological recommendations for future research are thus as follows: (i). further prospective/longitudinal designs to allow for greater understanding of the impact of the chronic stress of caregiving over time, (ii). clear reporting of effect sizes and assay techniques, (iii). better-powered intervention studies with well-defined comparison groups, (iv). the assessment of multiple biomarkers of stress within caregiver studies, to allow for associations between different biomarkers to be studied within individuals, (v). detailed phenotyping of caregivers, including better characterisation of the duration and intensity of caregiving, as well as the numerous other factors that can moderate the impact of dementia caregiving on stress biomarkers.

There are a number of different biological and neurocognitive factors that remain unexplored in dementia caregivers. Despite research interest in cognitive performance in this group, brain imaging techniques have had very limited use in research on dementia caregivers; one study has examined the impact of an intervention for caregivers using PET. Polysomnography, which incorporates EEG has been employed, but only to study sleep architecture as opposed to neurocognitive performance. fMRI could be an informative means of examining the underlying neurocognitive impact of stress in dementia caregivers, and would be less invasive than PET. Given findings that caregivers have poorer performance on tests of attention, it is of interest to determine the impact that the stress of dementia caregiving has on frontal cortex function. Similarly, findings of impaired executive function suggest that the anterior cingulate cortex may be implicated in the impact of caregiver stress upon cognition.

Although research on cognition in dementia caregivers has focused on memory, attention and executive function, there is more scope for examining complex cognition in caregivers. As caregivers frequently make decisions for the people that they care for, and as informal caregivers can often experience financial difficulty, it would thus be of interest to examine decision making in caregivers, such as the use of heuristics in financial decision-making. Problem solving could be examined in greater depth, as problem-focused coping may be a healthier approach to dealing with the challenges of providing care.

The microbiota is a promising future direction for the examination of the psychobiology of caregiver stress, and perhaps of chronic stress more broadly. There is existing evidence that the microbiota is altered in the stress-related gastrointestinal disorder irritable bowel syndrome (Jeffery et al., 2012), which is more prevalent in caregivers of people with chronic illnesses (Remes-Troche et al., 2015). Microbiota analysis which follows caregivers prospectively may establish if chronic stress effects are mediated by the microbiota, or indeed if existing changes in the microbiota may be a risk factor for more pathological effects of chronic stress.

We should not ignore that in addition to being stressful, caregiving can be highly rewarding (Boerner et al., 2004; Tarlow et al., 2004), and the potential negative physiological effects of dementia caregiving can be offset by factors such as high levels of self-efficacy (Harmell et al., 2011). Nevertheless it is clear there is a high potential for a widespread detrimental psychobiological impact of caregiving and all relevant stakeholders in the healthcare process need to be cognisant of this for informed management strategies. Further research in this area should help us to better understand what protective factors and targeted interventions can minimise the impact of stress in caregivers for people with dementia, who play a vital role within our society.

Acknowledgments

This systematic review was supported by the Health Research Board, Ireland (HRB) through Health Research Awards (grant number HRA_POR_2014_647; GC, TGD, DWM, ANC, PMK). The APC Microbiome Institute is funded by Science Foundation Ireland (SFI; grant number SFI/12/RC/2273). This Institute has conducted studies in collaboration with several companies including GSK, Pfizer, Wyeth and Mead Johnson.

The authors would like to thank Dr Fearghal O'Brien, as well as authors of a number of the texts reviewed, for assistance with locating full texts of articles.

The funding bodies supporting this article played no role in the design, data collection, analysis or interpretation of this systematic review, or in the writing of this article. The authors declare no conflict of interest.

References

Aboulafia-Brakha, T., Suchecki, D., Gouveia-Paulino, F., Nitrini, R., Ptak, R., 2014. Cognitivebehavioural group therapy improves a psychophysiological marker of stress in caregivers of patients with Alzheimer's disease. Aging Ment. Health 18, 801-808.

Adler, K.A., Mills, P.J., Dimsdale, J.E., Ziegler, M.G., Patterson, T.L., Sloan, R.P., Grant, I., 2002. Temporal stability of acute stress-induced changes in leukocyte subsets and cellular adhesion molecules in older adults. Brain Behav. Immun. 16, 262-274.

Allen, A.P., Hutch, W., Borre, Y., Kennedy, P.J., Temko, A., Boylan, G., Murphy, E., Cryan, J.F., Dinan, T.G., Clarke, G. in press. *Bifidobacterium longum* 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. *Transl. Psychiatr.*

Allen, A.P., Kennedy, P.J., Cryan, J.F., Dinan, T.G., Clarke, G., 2014. Biological and psychological markers of stress in humans: Focus on the Trier Social Stress Test. Neurosci. Biobehav. Rev. 38, 94-124.

Aschbacher, K., Mills, P.J., von Känel, R., Hong, S., Mausbach, B.T., Roepke, S.K., Dimsdale, J.E., Patterson, T.L., Ziegler, M.G., Ancoli-Israel, S., Grant, I., 2008. Effects of depressive and anxious symptoms on norepinephrine and platelet P-selectin responses to acute psychological stress among elderly caregivers. Brain Behav. Immun. 22, 493-502.

Aschbacher, K., O'Donovan, A., Wolkowitz, O.M., Dhabhar, F.S., Su, Y., Epel, E., 2013. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocr. 38, 1698-1708.

Aschbacher, K., Patterson, T.L., von Känel, R., Dimsdale, J.E., Mills, P.J., Adler, K.A., Ancoli-Israel, S., Grant, I., 2005. Coping processes and hemostatic reactivity to acute stress in dementia caregivers. Psychosom. Med. 67, 964-971.

Aschbacher, K., Roepke, S.K., von Känel, R., Mills, P.J., Mausbach, B.T., Patterson, T.L., Dimsdale, J.E., Ziegler, M.G., Ancoli-Israel, S., Grant, I., 2009. Persistent versus transient depressive symptoms in relation to platelet hyperactivation: a longitudinal analysis of dementia caregivers. J. Affect. Disord. 116, 80-87.

Aschbacher, K., von Känel, R., Dimsdale, J.E., Patterson, T.L., Mills, P.J., Mausbach, B.T., Allison, M.A., Ancoli-Israel, S., Grant, I., 2006. Dementia severity of the care receiver predicts procoagulant response in Alzheimer caregivers. Am. J. Geriatr. Psychiatr. 14, 694-703.

Aschbacher, K., von Känel, R., Mills, P.J., Hong, S., Roepke, S.K., Mausbach, B.T., Patterson, T.L., Ziegler, M.G., Dimsdale, J.E., Ancoli-Israel, S., Grant, I., 2007. Combination of caregiving stress and hormone replacement therapy is associated with prolonged platelet activation to acute stress among postmenopausal women. Psychosom. Med. 69, 910-917.

Atienza, A.A., Henderson, P.C., Wilcox, S., King, A.C., 2001. Gender differences in cardiovascular response to dementia caregiving. Gerontol. 41, 490-498.

Bauer, M.E., Vedhara, K., Perks, P., Wilcock, G.K., Lightman, S.L., Shanks, N., 2000. Chronic stress in caregivers of dementia patients is associated with reduced lymphocyte sensitivity to glucocorticoids. J. Neuroimmunol. 103, 84-92.

Bauer, M.J., Maddox, M.K., Kirk, L.N., Burns, T., Kuskowski, M.A., 2001. Progressive dementia: personal and relational impact on caregiving wives. Am. J. Alzheimers Dis. Other Demen. 16, 329-334. Baumgarten, M., Hanley, J.A., Infante-Rivard, C., Battista, R.N., Becker, R., Gauthier, S., 1994. Health of family members caring for elderly persons with dementia: A longitudinal study. Ann. Intern. Med. 120, 126-132.

Beck, A.T. 2008. The evolution of the cognitive model of depression and its neurobiological correlates. Am. J. Psychiatr., 165, 969-977.

Bédard, M., Molloy, D.W., Pedlar, D., Lever, J.A., Stones, M.J., 1997. Associations between dysfunctional behaviors, gender, and burden in spousal caregivers of cognitively impaired older adults. Int. Psychogeriatr. 9, 277-290.

Black, D.S., Cole, S.W., Irwin, M.R., Breen, E., St Cyr, N.M., Nazarian, N., Khalsa, D.S., Lavretsky, H., 2013. Yogic meditation reverses NF-kappaB and IRF-related transcriptome dynamics in leukocytes of family dementia caregivers in a randomized controlled trial. Psychoneuroendocr. 38, 348-355.

Black, W., Almeida, O.P., 2004. A systematic review of the association between the Behavioral and Psychological Symptoms of Dementia and burden of care. Int. Psychogeriatr. 16, 295-315.

Boerner, K., Schulz, R., Horowitz, A., 2004. Positive aspects of caregiving and adaptation to bereavement. Psychol. Aging 19, 668-675.

Bristow, M., Cook, R., Erzinclioglu, S., Hodges, J., 2008. Stress, distress and mucosal immunity in carers of a partner with fronto-temporal dementia. Aging Ment. Health 12, 595-604.

Brummet, B.H., Siegler, I.C., Rohe, W.M., Barefoot, J.C., Vitaliano, P.P., Surwit, R.S., Feinglos, M.N., Williams, R.B., 2005. Neighborhood characteristics moderate effects of caregiving on glucose functioning. Psychosom. Med. 67, 752-758.

Brummett, B.H., Austin, S.B., Welsh-Bohmer, K.A., Williams, R.B., Siegler, I.C., 2013. Long-term impact of caregiving and metabolic syndrome with perceived decline in cognitive function 8 years later: A pilot study suggesting important avenues for future research. Open J. Med. Psychol. 2, 23-28.

Brummett, B.H., Boyle, S.H., Siegler, I.C., Kuhn, C.M., Surwit, R.S., Garrett, M.E., Collins, A., Ashley-Koch, A., Williams, R.B., 2008. HPA axis function in male caregivers: effect of the monoamine oxidase-A gene promoter (MAOA-uVNTR). Biol. Psychol. 79, 250-255.

Burns, E.A., Wagstaff, D.A., Hirschman, R., Fleming, R., Goodwin, J.S., Greenberg, J.J., 2002. Affective and behavioral stress outcomes in Alzheimer's caregivers. J. Appl. Biobehav. Res. 7, 65-74.

Cacioppo, J.T., Burleson, M.H., Poehlmann, K.M., Malarkey, W.B., Kiecolt-Glaser, J.K., Berntson, G.G., Uchino, B.N., Glaser, R., 2000. Autonomic and neuroendocrine responses to mild psychological stressors: effects of chronic stress on older women. Ann. Behav. Med. 22, 140-148.

Cacioppo, J.T., Poehlmann, K.M., Burleson, M.H., Kiecolt-Glaser, J.K., Malarkey, W.B., Berntson, G.G., Glaser, R., 1998. Cellular immune responses to acute stress in female caregivers of dementia patients and matched controls. Health Psychol. 17, 182-189.

Carpenter, L.L., Tyrka, A.R., Ross, N.S., Khoury, L., Anderson, G.M., Price, L.H., 2009. Effect of childhood emotional abuse and age on cortisol responsivity in adulthood. Biol. Psychiatr. 66, 69-75.

Castle, S., Wilkins, S., Heck, E., Tanzy, K., Fahey, J., 1995. Depression in caregivers of demented patients is associated with altered immunity: impaired proliferative capacity, increased CD8+, and a decline in lymphocytes with surface signal transduction molecules (CD38+) and a cytotoxicity marker (CD56+ CD8+). Clin. Exp. Immunol. 101, 487-493.

Caswell, L.W., Vitaliano, P.P., Croyle, K.L., Scanlan, J.M., Zhang, J., Daruwala, A., 2003. Negative associations of chronic stress and cognitive performance in older adult spouse caregivers. Exp. Aging Res. 29, 303-318.

Chattillion, E.A., Ceglowski, J., Roepke, S.K., von Känel, R., Losada, A., Mills, P.J., Romero-Moreno, R., Grant, I., Patterson, T.L., Mausbach, B.T., 2013. Pleasant events, activity restriction, and blood pressure in dementia caregivers. Health Psychol. 32, 793-801.

Chattillion, E.A., Mausbach, B.T., Roepke, S.K., von Känel, R., Mills, P.J., Dimsdale, J.E., Allison, M., Ziegler, M.G., Patterson, T.L., Ancoli-Israel, S., Grant, I., 2012. Leisure activities, caregiving demands and catecholamine levels in dementia caregivers. Psychol. Health 27, 1134-1149.

Choi, K., Vickers, K., Tassone, A., 2014. Trait emotional intelligence, anxiety sensitivity, and experiential avoidance in stress reactivity and their improvement through psychological methods. Eur. J. Psychol. 10, 376-404.

Chrousus, G.P. & Gold, P.W., 1998. A health body in a healthy mind-and *vice versa*-the damaging power of "uncontrollable" stress. J. Clin. Endocr. Metab. 83, 1842-1845.

Clark, M.S., Bond, M.J., Hecker, J.R., 2007. Environmental stress, psychological stress and allostatic load. Psychol. Health Med. 12, 18-30.

Clipp, E.C., George, L.K., 1993. Dementia and cancer- a comparison of spouse caregivers. Gerontol. 33, 534-541.

Correa, M.S., Vedovelli, K., Giacobbo, B.L., de Souza, C.E., Ferrari, P., de Lima, A., II, Walz, J.C., Kapczinski, F., Bromberg, E., 2015. Psychophysiological correlates of cognitive deficits in family caregivers of patients with Alzheimer Disease. Neurosci. 286, 371-382.

Da Roza Davis, J.M., Cowen, P.J., 2001. Biochemical stress of caring. Psychol. Med. 31, 1475-1478.

Damjanovic, A.K., Yang, Y., Glaser, R., Kiecolt-Glaser, J.K., Nguyen, H., Laskowski, B., Zou, Y., Beversdorf, D.Q., Weng, N.P., 2007. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients. J. Immunol. 179, 4249-4254.

Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46-56.

Danucalov, M.A.D., Kozasa, E.H., Ribas, K.T., Galduróz, J.C.F., Garcia, M.C., Verreschi, I.T.N., Oliveira, K.C., Romani De Oliveira, L., Leite, J.R., 2013. A Yoga and compassion meditation program reduces stress in familial caregivers of alzheimer's disease patients. Evid. Complement. Altern. Med. Article ID 513149.

Davis, L.L., Weaver, M., Zamrini, E., Stevens, A., Kang, D., Parker, C.R., Jr., 2004. Biopsychological markers of distress in informal caregivers. Biol. Res. Nurs. 6, 90-99.

de Vugt, M.E., Jolles, J., van Osch, L., Stevens, F., Aalten, P., Lousberg, R., Verhey, F.R., 2006. Cognitive functioning in spousal caregivers of dementia patients: findings from the prospective MAASBED study. Age Ageing 35, 160-166.

de Vugt, M.E., Nicolson, N.A., Aalten, P., Lousberg, R., Jolle, J., Verhey, F.R., 2005. Behavioral problems in dementia patients and salivary cortisol patterns in caregivers. J. Neuropsychiatry Clin. Neurosci. 17, 201-207.

Dettenborn, L., Tietze, A., Bruckner, F., Kirschbaum, C., 2010. Higher cortisol content in hair among long-term unemployed individuals compared to controls. Psychoneuroendocr. 35, 1404-1409.

Dhabhar, F.S., Miller, A.H., McEwen, B.S., Spencer, R.L. 1995. Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. J. Immunol. 154, 5511-5527.

Dickerson, S.S., Kemeny, M.E., 2004. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol. Bull. 130, 355.

Dinan, T.G. 2001. Novel approaches to the treatment of depression by modulating the hypothalamic– pituitary–adrenal axis. Hum. Psychopharmacol. Clin. Exp. 16, 89-93.

Dinan, T.G., Cryan, J.F. 2012. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocr. 37, 1369-1378.

Epel, E.S., Lin, J., Dhabhar, F.S., Wolkowitz, O.M., Puterman, E., Karan, L., Blackburn, E.H., 2010. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav. Immun. 24, 531-539.

Esterling, B.A., Kiecolt-Glaser, J.K., Bodnar, J.C., Glaser, R., 1994. Chronic stress, social support, and persistent alterations in the natural killer cell response to cytokines in older adults. Health Psychol. 13, 291-298.

Esterling, B.A., Kiecolt-Glaser, J.K., Glaser, R., 1996. Psychosocial modulation of cytokine-induced natural killer cell activity in older adults. Psychosom. Med. 58, 264-272.

Fonareva, I., Amen, A.M., Zajdel, D.P., Ellingson, R.M., Oken, B.S., 2011. Assessing sleep architecture in dementia caregivers at home using an ambulatory polysomnographic system. J. Geriatr. Psychiatr. Neurol. 24, 50-59.

Gallagher-Thompson, D., Shurgot, G.R., Rider, K., Gray, H.L., McKibbin, C.L., Kraemer, H.C., Sephton, S.E., Thompson, L.W., 2006. Ethnicity, stress, and cortisol function in hispanic and non-hispanic white women: A preliminary study of family dementia caregivers and noncaregivers. Am. J. Geriatr. Psychiatr. 14, 334-342.

Gallagher, S., Sumner, R.C., Muldoon, O.T., Creaven, A., Hannigan, A., 2016. Unemployment is associated with lower cortisol awakening and blunted dehydroepiandrosterone responses. Psychoneuroendocr. 69, 41-49.

Glaser, R., Kiecolt-Glaser, J.K., 1997. Chronic stress modulates the virus-specific immune response to latent herpes simplex virus type 1. Ann. Behav. Med. 19, 78-82.

Glaser, R., Kiecolt-Glaser, J.K., Malarkey, W.B., Sheridan, J.F., 1998. The influence of psychological stress on the immune response to vaccines. Ann. N.Y. Acad. Sci. 840, 649-655.

Glaser, R., MacCallum, R.C., Laskowski, B.F., Malarkey, W.B., Sheridan, J.F., Kiecolt-Glaser, J.K., 2001. Evidence for a shift in the Th-1 to Th-2 cytokine response associated with chronic stress and aging. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 56, M477-482.

Glaser, R., Sheridan, J., Malarkey, W.B., MacCallum, R.C., Kiecolt-Glaser, J.K., 2000. Chronic stress modulates the immune response to a pneumococcal pneumonia vaccine. Psychosom. Med. 62, 804-807. Godbout, J.P., Glaser, R., 2006. Stress-induced immune dysregulation: Implications for wound healing, infectious disease and cancer. J. Neuroimmune Pharmacol. 1, 421-427.

Goldsmith, D.R., Rapaport, M.H., Miller, B.J. (2016). A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatr. doi: 10.1038/mp.2016.3.

Gouin, J.P., Glaser, R., Malarkey, W.B., Beversdorf, D., Kiecolt-Glaser, J., 2012. Chronic stress, daily stressors, and circulating inflammatory markers. Health Psychol. 31, 264-268.

Graham, J.E., Robles, T.F., Kiecolt-Glaser, J.K., Malarkey, W.B., Bissell, M.G., Glaser, R., 2006. Hostility and pain are related to inflammation in older adults. Brain Behav. Immun. 20, 389-400.

Grant, I., McKibbin, C.L., Taylor, M.J., Mills, P., Dimsdale, J., Ziegler, M., Patterson, T.L., 2003. Inhome respite intervention reduces plasma epinephrine in stressed Alzheimer caregivers. Am. J. Geriatr. Psychiatr. 11, 62-72.

Hadjiconstantinou, M., McGuire, L., Duchemin, A.M., Laskowski, B., Kiecolt-Glaser, J., Glaser, R., 2001. Changes in plasma nerve growth factor levels in older adults associated with chronic stress. J Neuroimmunol. 116, 102-106.

Harmell, A.L., Mausbach, B.T., Roepke, S.K., Moore, R.C., Von Känel, R., Patterson, T.L., Dimsdale, J.E., Mills, P.J., Ziegler, M.G., Allison, M.A., Ancoli-Israel, S., Grant, I., 2011. The relationship between self-efficacy and resting blood pressure in spousal Alzheimer's caregivers. Br. J. Health Psychol. 16, 317-328.

Ho, J.S., Bordon, J., Wang, V., Ceglowski, J., Kim, D.H., Chattillion, E.A., Patterson, T.L., Grant, I., Ziegler, M.G., Mills, P.J., Mausbach, B.T., 2014. Reduced activity restriction buffers the relations between chronic stress and sympathetic nervous system activation. J Gerontol. Ser. B Psychol. Sci. Soc. Sci. 69, 408-416.

Holland, J.M., Thompson, L.W., Cucciare, M.A., Tsuda, A., Okamura, H., Spiegel, D., Rasgon, N.L., Gallagher-Thompson, D., 2011. Cortisol outcomes among caucasian and latina/hispanic women caring for a family member with dementia: A preliminary examination of psychosocial predictors and effects of a psychoeducational intervention. Stress Health 27, 334-346.

Holland, J.M., Thompson, L.W., Tzuang, M., Gallagher-Thompson, D., 2010. Psychosocial factors among Chinese American women dementia caregivers and their association with salivary cortisol: Results of an exploratory study. Ageing Int. 35, 109-127.

Innes, K.E., Selfe, T.K., Brown, C.J., Rose, K.M., Thompson-Heisterman, A., 2012. The effects of meditation on perceived stress and related indices of psychological status and sympathetic activation in persons with Alzheimer's disease and their caregivers: a pilot study. Evid. Complement. Altern. Med. Article ID 927509.

Irwin, M., Brown, M., Patterson, T., Hauger, R., Mascovich, A., Grant, I., 1991. Neuropeptide Y and natural killer cell activity: findings in depression and Alzheimer caregiver stress. FASEB J 5, 3100-3107.

Irwin, M., Hauger, R., Patterson, T.L., Semple, S., Ziegler, M., Grant, I., 1997. Alzheimer caregiver stress: basal natural killer cell activity, pituitary-adrenal cortical function, and sympathetic tone. Ann. Behav. Med. 19, 83-90.

Irwin, S.A., Mausbach, B.T., Koo, D., Fairman, N., Roepke-Buehler, S.K., Chattillion, E.A., Dimsdale, J.E., Patterson, T.L., Ancoli-Israel, S., Mills, P.J., von Känel, R., Ziegler, M.G., Grant, I., 2013. Association between hospice care and psychological outcomes in Alzheimer's spousal caregivers. J. Palliat. Med. 16, 1450-1454.

Jeckel, C.M., Lopes, R.P., Berleze, M.C., Luz, C., Feix, L., Argimon, II, Stein, L.M., Bauer, M.E., 2010. Neuroendocrine and immunological correlates of chronic stress in 'strictly healthy' populations. Neuroimmunomodulation 17, 9-18.

Jeffery, I.B., O'Toole, P.W., Öhman, L., Claesson, M.J., Deane, J., Quigley, E.M.M., Simrén, M., 2012. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997-1006.

Kennedy, P.J., Allen, A.P., O'Neill, A., Quigley, E.M.M., Cryan, J.F., Dinan, T.G., Clarke, G. 2015. Acute tryptophan depletion reduces kynurenine levels: implications for treatment of impaired visuospatial memory performance in irritable bowel syndrome. Psychopharmacol., 232, 1357-1371.

Kennedy, P.J., Clarke, G., O'Neill, A., Groeger, J.A., Quigley, E.M.M., Shanahan, F., Cryan, J.F., Dinan, T. G., 2014. Cognitive performance in irritable bowel syndrome: evidence of a stress-related impairment in visuospatial memory. Psychol. Med., 44, 1553-1566.

Kiecolt-Glaser, J.K., Dura, J.R., Speicher, C.E., Trask, O.J., Glaser, R. (1991). Spousal caregivers of dementia victims: longitudinal changes in immunity and health. Psychosom. Med. 53, 345-362.

Kiecolt-Glaser, J.K., Glaser, R., Gravenstein, S., Malarkey, W.B., Sheridan, J., 1996. Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc. Natl. Acad. Sci. U.S.A. 93, 3043-3047.

Kiecolt-Glaser, J.K., Gouin, J.P., Weng, N.P., Malarkey, W.B., Beversdorf, D.Q., Glaser, R., 2011. Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosom. Med. 73, 16-22.

Kiecolt-Glaser, J.K., Marucha, P.T., Malarkey, W.B., Mercado, A.M., Glaser, R., 1995. Slowing of wound-healing by psychological stress. Lancet 346, 1194-1196.

Kiecolt-Glaser, J.K., Preacher, K.J., MacCallum, R.C., Atkinson, C., Malarkey, W.B., Glaser, R., 2003. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc. Natl. Acad. Sci. U.S.A. 100, 9090-9095.

Kim, H., 2011. The effect of a support program for family caregivers of dementia on stress hormones, Commun. Computer Inf. Sc., pp. 278-285.

Kim, J.H., Knight, B.G., Longmire, C.V.F., 2007. The role of familism in stress and coping processes among african american and white dementia caregivers: Effects on mental and physical health. Health Psychol. 26, 564-576.

Kim, Y., Schulz, R., 2008. Family caregivers' strains: Comparative analysis of cancer caregiving with dementia, diabetes, and frail elderly caregiving. J. Aging Health 20, 483-503.

King, A.C., Atienza, A., Castro, C., Collins, R., 2002a. Physiological and affective responses to family caregiving in the natural setting in wives versus daughters. Int. J. Behav. Med. 9, 176-194.

King, A.C., Baumann, K., O'Sullivan, P., Wilcox, S., Castro, C., 2002b. Effects of moderate-intensity exercise on physiological, behavioral, and emotional responses to family caregiving: a randomized controlled trial. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 57, M26-36.

Klein, L.C., Kim, K., Almeida, D.M., Femia, E.E., Rovine, M.J., Zarit, S.H., 2014. Anticipating an easier day: Effects of adult day services on daily cortisol and stress. Gerontol. 56, 303-312.

Knight, B.G., Longmire, C.V.F., Dave, J., Kim, J.H., David, S., 2007. Mental health and physical health of family caregivers for persons with dementia: A comparison of African American and white caregivers. Aging Ment. Health 11, 538-546.

Knight, B.G., McCallum, T.J., 1998. Heart rate reactivity and depression in African-American and white dementia caregivers: Reporting bias or positive coping? Aging Ment. Health 2, 212-221.

Kring, S.I., Brummett, B.H., Barefoot, J., Garrett, M.E., Ashley-Koch, A.E., Boyle, S.H., Siegler, I.C., Sorensen, T.I., Williams, R.B., 2010. Impact of psychological stress on the associations between apolipoprotein E variants and metabolic traits: findings in an American sample of caregivers and controls. Psychosom. Med. 72, 427-433.

Lavretsky, H., Epel, E.S., Siddarth, P., Nazarian, N., St. Cyr, N., Khalsa, D.S., Lin, J., Blackburn, E., Irwin, M.R., 2013. A pilot study of yogic meditation for family dementia caregivers with depressive symptoms: Effects on mental health, cognition, and telomerase activity. Int. J. Geriatr. Psychiatr. 28, 57-65.

Leach, M.J., Francis, A., Ziaian, T., 2015. Transcendental Meditation for the improvement of health and wellbeing in community-dwelling dementia caregivers [TRANSCENDENT]: a randomised waitlist controlled trial. BMC Complement. Altern. Med. 15, 145.

Leggett, A.N., Zarit, S.H., Kim, K., Almeida, D.M., Klein, L.C., 2014. Depressive mood, anger, and daily cortisol of caregivers on high- and low-stress days. J Gerontol. Ser. B Psychol. Sci. Soc. Sci. 70, 820-829.

Lovell, B., Wetherell, M.A., 2011. The cost of caregiving: Endocrine and immune implications in elderly and non elderly caregivers. Neurosci. Biobehav. Rev. 35, 1342-1352.

Lupien, S.J., McEwen, B.S., Gunnar, M.R., & Heim, C., 2009. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434-445.

McAllister-Williams, R.H., Anderson, I.M., Finkelmeyer, A., Gallagher, P., Grunze, H.C., Haddad, P. M., ...Pearce, S. 2016. Antidepressant augmentation with metyrapone for treatment-resistant depression (the ADD study): a double-blind, randomised, placebo-controlled trial. Lancet Psychiatr. 3, 117-127.

Mackenzie, C.S., Wiprzycka, U.J., Khatri, N., Cheng, J., 2013. Clinically significant effects of group cognitive behavioral therapy on spouse caregivers' mental health and cognitive functioning: A pilot study. J. Gerontol. Soc. Work 56, 675-692.

MacMahon, S., Peto, R., Collins, R., Godwin, J., MacMahon, S., Cutler, J., Sorlie, P., Abbott, R., Collins, R., Neaton, J., Abbott, R., Dyer, A., Stamler, J., 1990. Blood pressure, stroke, and coronary heart disease: Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 335, 765-774.

Mahoney, R., Regan, C., Katona, C., Livingston, G., 2005. Anxiety and depression in family caregivers of people with Alzheimer disease: The LASER-AD study. Am. J. Geriatr. Psychiatr. 13, 795-801.

Malarkey, W.B., Wu, H., Cacioppo, J.T., Malarkey, K.L., Poehlmann, K.M., Glaser, R., Kiecolt-Glaser, J.K., 1996. Chronic stress down-regulates growth hormone gene expression in peripheral blood mononuclear cells of older adults. Endocr. 5, 33-39.

Mausbach, B.T., Ancoli-Israel, S., Von Känel, R., Patterson, T.L., Aschbacher, K., Mills, P.J., Ziegler, M.G., Dimsdale, J.E., Calleran, S., Grant, I., 2006. Sleep disturbance, norepinephrine, and D-dimer are all related in elderly caregivers of people with Alzheimer disease. Sleep 29, 1347-1352.

Mausbach, B.T., Aschbacher, K., Mills, P.J., Roepke, S.K., von Känel, R., Patterson, T.L., Dimsdale, J.E., Ziegler, M.G., Ancoli-Israel, S., Grant, I., 2008. A 5-year longitudinal study of the relationships between stress, coping, and immune cell beta(2)-adrenergic receptor sensitivity. Psychiatr. Res. 160, 247-255.

Mausbach, B.T., Aschbacher, K., Patterson, T.L., von Känel, R., Dimsdale, J.E., Mills, P.J., Ancoli-Israel, S., Grant, I., 2007a. Effects of placement and bereavement on psychological well-being and cardiovascular risk in Alzheimer's caregivers: A longitudinal analysis. J. Psychosom. Res. 62, 439-445. Mausbach, B.T., Chattillion, E., Roepke, S.K., Ziegler, M.G., Milic, M., von Känel, R., Dimsdale, J.E., Mills, P.J., Patterson, T.L., Allison, M.A., Ancoli-Israel, S., Grant, I., 2012. A longitudinal analysis of the relations among stress, depressive symptoms, leisure satisfaction, and endothelial function in caregivers. Health Psychol. 31, 433-440.

Mausbach, B.T., Dimsdale, J.E., Ziegler, M.G., Mills, P.J., Ancoli-Israel, S., Patterson, T.L., Grant, I., 2005. Depressive symptoms predict norepinephrine response to a psychological stressor task in Alzheimer's caregivers. Psychosom. Med. 67, 638-642.

Mausbach, B.T., Mills, P.J., Patterson, T.L., Aschbacher, K., Dimsdale, J.E., Ancoli-Israel, S., von Känel, R., Grant, I., 2007b. Stress-related reduction in personal mastery is associated with reduced immune cell beta2-adrenergic receptor sensitivity. Int. Psychogeriatr. 19, 935-946.

Mausbach, B.T., Roepke, S.K., Ziegler, M.G., Milic, M., von Känel, R., Dimsdale, J.E., Mills, P.J., Patterson, T.L., Allison, M.A., Ancoli-Israel, S., Grant, I., 2010. Association between chronic caregiving stress and impaired endothelial function in the elderly. J. Am. Coll. Cardiol. 55, 2599-2606. Mausbach, B.T., Von Känel, R., Aschbacher, K., Roepke, S.K., Dimsdale, J.E., Ziegler, M.G., Mills, P.J., Patterson, T.L., Ancoli-Israel, S., Grant, I., 2007c. Spousal caregivers of patients with Alzheimer's disease show longitudinal increases in plasma level of tissue-type plasminogen activator antigen. Psychosom. Med. 69, 816-822.

McCallum, T.J., Sorocco, K.H., Fritsch, T., 2006. Mental health and diurnal salivary cortisol patterns among African American and European American female dementia family caregivers. Am. J. Geriatr. Psychiatr. 14, 684-693.

McDonald, S.D., Murphy, K., Beyene, J., Ohlsson, A., 2005. Perinatal outcomes of singleton pregnancies achieved by in vitro fertilization: a systematic review and meta-analysis. J. Obstet. Gynaecol. Can. 27, 449-459.

Merritt, M.M., McCallum, T.J., 2013. Too much of a good thing?: Positive religious coping predicts worse diurnal salivary cortisol patterns for overwhelmed African American female dementia family caregivers. Am. J. Geriatr. Psychiatr. 21, 46-56.

Merritt, M.M., McCallum, T.J., Fritsch, T., 2011. How much striving is too much? John Henryism active coping predicts worse daily cortisol responses for African American but not white female dementia family caregivers. Am. J. Geriatr. Psychiatr. 19, 451-460.

Mills, P.J., Adler, K.A., Dimsdale, J.E., Perez, C.J., Ziegler, M.G., Ancoli-Israel, S., Patterson, T.L., Grant, I., 2004. Vulnerable caregivers of Alzheimer disease patients have a deficit in beta 2-adrenergic receptor sensitivity and density. Am. J. Geriatr. Psychiatr. 12, 281-286.

Mills, P.J., Ancoli-Israel, S., von Känel, R., Mausbach, B.T., Aschbacher, K., Patterson, T.L., Ziegler, M.G., Dimsdale, J.E., Grant, I., 2009. Effects of gender and dementia severity on Alzheimer's disease caregivers' sleep and biomarkers of coagulation and inflammation. Brain Behav. Immun. 23, 605-610. Mills, P.J., Yu, H., Ziegler, M.G., Patterson, T., Grant, I., 1999. Vulnerable caregivers of patients with Alzheimer's Disease have a deficit in circulating CD62L- T lymphocytes. Psychosom. Med. 61, 168-174.

Mills, P.J., Ziegler, M.G., Patterson, T., Dimsdale, J.E., Hauger, R., Irwin, M., Grant, I., 1997. Plasma catecholamine and lymphocyte beta 2-adrenergic receptor alterations in elderly Alzheimer caregivers under stress. Psychosom. Med. 59, 251-256.

Moore, R.C., Chattillion, E.A., Ceglowski, J., Ho, J., von Känel, R., Mills, P.J., Ziegler, M.G., Patterson, T.L., Grant, I., Mausbach, B.T., 2013. A randomized clinical trial of Behavioral Activation (BA) therapy for improving psychological and physical health in dementia caregivers: Results of the Pleasant Events Program (PEP). Behav. Res. Ther. 51, 623-632.

Neri, M., Bonati, P.A., Pinelli, M., Borella, P., Tolve, I., Nigro, N., 2007. Biological, psychological and clinical markers of caregiver's stress in impaired elderly with dementia and age-related disease. Arch. Gerontol. Geriatr. 44 Suppl 1, 289-294.

Ockenfels, M.C., Porter, L., Smyth, J., Kirschbaum, C., Hellhammer, D.H., Stone, A.A., 1995. Effect of chronic stress associated with unemployment on salivary cortisol: Overall cortisol levels, diurnal rhythm, and acute stress reactivity. Psychosom. Med. 57, 460-467.

Oken, B.S., Fonareva, I., Wahbeh, H., 2011. Stress-related cognitive dysfunction in dementia caregivers. J. Geriatr. Psychiatr. Neurol. 24, 191-198.

Otte, C., Gold, S.M., Penninx, B.W., Pariante, C.M., Etkin, A., Fava, M., Schatzberg, A.F. 2016. Major depressive disorder. Nat. Rev. Dis. Prim. 2, 16065.

Palma, K.A.X.A., Balardin, J.B., Vedana, G., De Lima Argimon, I.I., Luz, C., Schröder, N., Quevedo, J., Bromberg, E., 2011. Emotional memory deficit and its psychophysiological correlate in family caregivers of patients with dementia. Alzheimer Dis. Assoc. Dis. 25, 262-268.

Pariante, C.M. Lightman, S.L. 2008. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 31, 464-468.

Pearlin, L.I., Mullan, J.T., Semple, S.J., Skaff, M.M., 1990. Caregiving and the stress process: An overview of concepts and their measures. Gerontol. 30, 583-594.

Penza, M.K., Heim, C., Nemeroff, B.C., 2003. Neurobiological effects of childhood abuse: implications for the pathophysiology of depression and anxiety. Arch. Women's Ment. Health 6, 15-22.

Pomykala, K.L., Silverman, D.H., Geist, C.L., Voege, P., Siddarth, P., Nazarian, N., St Cyr, N.M., Khalsa, D.S., Lavretsky, H., 2012. A pilot study of the effects of meditation on regional brain metabolism in distressed dementia caregivers. Aging Health 8, 509-516.

Prenderville, J.A., Kennedy, P.J., Dinan, T.G., Cryan, J.F., 2015. Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci. 38, 13-25.

Prince, M., Wimo, A., Guerchet, M., Ali, G., Wu, Y.T., Prina, M., 2015. World Alzheimer Report 2015. The global impact of dementia. An analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International, London.

Redwine, L., Mills, P.J., Sada, M., Dimsdale, J., Patterson, T., Grant, I., 2004. Differential immune cell chemotaxis responses to acute psychological stress in Alzheimer caregivers compared to non-caregiver controls. Psychosom. Med. 66, 770-775.

Reese, D.R., Gross, A.M., Smalley, D.L., Messer, S.C., 1994. Caregivers of Alzheimer's disease and stroke patients: immunological and psychological considerations. Gerontol. 34, 534-540.

Remes-Troche, J.M., Torres-Aguilera, M., Montes-Martínez, V., Jiménez-García, V.A., Roesch-Dietlen, F., 2015. Prevalence of irritable bowel syndrome in caregivers of patients with chronic diseases. Neurogastroenterol. Motil. 27, 824-831.

Roepke, S.K., Allison, M., Von Känel, R., Mausbach, B.T., Chattillion, E.A., Harmell, A.L., Patterson, T.L., Dimsdale, J.E., Mills, P.J., Ziegler, M.G., Ancoli-Israel, S., Grant, I., 2012. Relationship between chronic stress and carotid intima-media thickness (IMT) in elderly Alzheimer's disease caregivers. Stress 15, 121-129.

Roepke, S.K., Chattillion, E.A., Von Känel, R., Allison, M., Ziegler, M.G., Dimsdale, J.E., Mills, P.J., Patterson, T.L., Ancoli-Israel, S., Calleran, S., Harmell, A.L., Grant, I., 2011a. Carotid plaque in Alzheimer caregivers and the role of sympathoadrenal arousal. Psychosom. Med .73, 206-213.

Roepke, S.K., Mausbach, B.T., Aschbacher, K., Ziegler, M.G., Dimsdale, J.E., Mills, P.J., von Känel, R., Ancoli-Israel, S., Patterson, T.L., Grant, I., 2008. Personal mastery is associated with reduced sympathetic arousal in stressed Alzheimer caregivers. Am. J. Geriatr. Psychiatr. 16, 310-317.

Roepke, S.K., Mausbach, B.T., Patterson, T.L., Von Känel, R., Ancoli-Israel, S., Harmell, A.L., Dimsdale, J.E., Aschbacher, K., Mills, P.J., Ziegler, M.G., Allison, M., Grant, I., 2011b. Effects of Alzheimer caregiving on allostatic load. J. Health Psychol. 16, 58-69.

Sakurai, S., Onishi, J., Hirai, M., 2015. Impaired autonomic nervous system activity during sleep in family caregivers of ambulatory dementia patients in Japan. Biol. Res. Nurs. 17, 21-28.

Sarabia-Cobo, C.M., 2015. Heart coherence: A new tool in the management of stress on professionals and family caregivers of patients with dementia. Appl. Psychophysiol. Biofeedback 40, 75-83.

Scanlan, J.M., Vitaliano, P.P., Zhang, J.P., Savage, M., Ochs, H.D., 2001. Lymphocyte proliferation is associated with gender, caregiving, and psychosocial variables in older adults. J. Behav. Med. 24, 537-559.

Schwartz, J., Allison, M.A., Ancoli-Israel, S., Hovell, M.F., Patterson, R.E., Natarajan, L., Marshall, S.J., Grant, I., 2013. Sleep, type 2 diabetes, dyslipidemia, and hypertension in elderly Alzheimer's caregivers. Arch. Gerontol. Geriatr. 57, 70-77.

Scott, L.V., Dinan, T.G., 1998. Urinary free cortisol in chronic fatigue syndrome, major depression and in healthy volunteers. J. Affect. Disord. 47, 49-54.

Segerstrom, S.C., Schipper, L.J., Greenberg, R.N., 2008. Caregiving, repetitive thought, and immune response to vaccination in older adults. Brain. Behav. Immun. 22, 744-752.

Shaw, W.S., Patterson, T.L., Semple, S.J., Dimsdale, J.E., Ziegler, M.G., Grant, I., 2003. Emotional expressiveness, hostility and blood pressure in a longitudinal cohort of Alzheimer caregivers. J. Psychosom. Res. 54, 293-302.

Shaw, W.S., Patterson, T.L., Ziegler, M.G., Dimsdale, J.E., Semple, S.J., Grant, I., 1999. Accelerated risk of hypertensive blood pressure recordings among Alzheimer caregivers. J. Psychosom. Res. 46, 215-227.

Stalder, T., Tietze, A., Steudte, S., Alexander, N., Dettenborn, L., Kirschbaum, C., 2014. Elevated hair cortisol levels in chronically stressed dementia caregivers. Psychoneuroendocr. 47, 26-30.

Tarlow, B.J., Wisniewski, S.R., Belle, S.H., Rubert, M., Ory, M.G., Gallagher-Thompson, D., 2004. Positive aspects of caregiving: Contributions of the REACH project to the development of new measures for Alzheimer's caregiving. Res. Aging 26, 429-453.

Tarrier, N., Barrowclough, C., Ward, J., Donaldson, C., Burns, A., Gregga, L., 2002. Expressed emotion and attributions in the carers of patients with Alzheimer's disease: The effect on carer burden. J. Abnorm. Psychol. 111, 340-349.

Thompson, R.L., Lewis, S.L., Murphy, M.R., Hale, J.M., Blackwell, P.H., Acton, G.J., Clough, D.H., Patrick, G.J., Bonner, P.N., 2004. Are there sex differences in emotional and biological responses in spousal caregivers of patients with Alzheimer's disease? Biol. Res. Nurs. 5, 319-330.

Todd, S., Barr, S., Roberts, M., Passmore, A.P., 2013. Survival in dementia and predictors of mortality: a review. Int. J. Geriatr. Psychiatr. 28, 1109-1124.

Tomiyama, A.J., O'Donovan, A., Lin, J., Puterman, E., Lazaro, A., Chan, J., Dhabhar, F.S., Wolkowitz, O., Kirschbaum, C., Blackburn, E., Epel, E., 2012. Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol. Behav. 106, 40-45.

Uchino, B.N., Kiecolt-Glaser, J.K., Cacioppo, J.T., 1992. Age-related changes in cardiovascular response as a function of a chronic stressor and social support. J. Personal. Soc. Psychol. 63, 839-846.

Uchino, B.N., Kiecolt-Glaser, J.K., Cacioppo, J.T., 1994. Construals of preillness relationship quality predict cardiovascular response in family caregivers of Alzheimer's disease victims. Psychol. Aging 9, 113-120.

Vedhara, K., Bennett, P.D., Clark, S., Lightman, S.L., Shaw, S., Perks, P., Hunt, M.A., Philip, J.M.D., Tallon, D., Murphy, P.J., Jones, R.W., Wilcock, G.K., Shanks, N.M., 2003. Enhancement of antibody responses to influenza vaccination in the elderly following a cognitive-behavioural stress management intervention. Psychother. Psychosom. 72, 245-252.

Vedhara, K., Cox, N.K.M., Wilcock, G.K., Perks, P., Hunt, M., Anderson, S., Lightman, S.L., Shanks, N.M., 1999. Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet 353, 627-631.

Vitaliano, P., Echeverria, D., Shelkey, M., Zhang, J., Scanlan, J., 2007. A cognitive psychophysiological model to predict functional decline in chronically stressed older adults. J. Clin. Psychol. Med. Settings 14, 177-190.

Vitaliano, P.P., Echeverria, D., Yi, J., Phillips, P.E., Young, H., Siegler, I.C., 2005. Psychophysiological mediators of caregiver stress and differential cognitive decline. Psychol. Aging 20, 402-411.

Vitaliano, P.P., Russo, J., Scanlan, J.M., Greeno, C.G., 1996a. Weight changes in caregivers of Alzheimer's care recipients: psychobehavioral predictors. Psychol. Aging 11, 155-163.

Vitaliano, P.P., Scanlan, J.M., Krenz, C., Fujimoto, W., 1996b. Insulin and glucose: Relationships with hassles, anger, and hostility in nondiabetic older adults. Psychosom. Med. 58, 489-499.

Vitaliano, P.P., Scanlan, J.M., Krenz, C., Schwartz, R.S., Marcovina, S.M., 1996c. Psychological distress, caregiving, and metabolic variables. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 51, P290-299. Vitaliano, P.P., Scanlan, J.M., Ochs, H.D., Syrjala, K., Siegler, I.C., Snyder, E.A., 1998a. Psychosocial

stress moderates the relationship of cancer history with natural killer cell activity. Ann. Behav. Med. 20, 199-208.

Vitaliano, P.P., Scanlan, J.M., Siegler, I.C., McCormick, W.C., Knopp, R.H., 1998b. Coronary heart disease moderates the relationship of chronic stress with the metabolic syndrome. Health Psychol. 17, 520-529.

Vitaliano, P.P., Scanlan, J.M., Zhang, J., Savage, M.V., Brummett, B., Barefoot, J., Siegler, I.C., 2001. Are the salutogenic effects of social supports modified by income? A test of an "added value hypothesis". Health Psychol. 20, 155-165.

Vitaliano, P.P., Zhang, J., Young, H.M., Caswell, L.W., Scanlan, J.M., Echeverria, D., 2009. Depressed mood mediates decline in cognitive processing speed in caregivers. Gerontol. 49, 12-22.

Von Känel, R., Ancoli-Israel, S., Dimsdale, J.E., Mills, P.J., Mausbach, B.T., Ziegler, M.G., Patterson, T.L., Grant, I., 2010a. Sleep and biomarkers of atherosclerosis in elderly Alzheimer caregivers and controls. Gerontol. 56, 41-50.

Von Känel, R., Dimsdale, J.E., 2003. Fibrin D-dimer: a marker of psychosocial distress and its implications for research in stress-related coronary artery disease. Clin. Cardiol. 26, 164-168.

Von Känel, R., Dimsdale, J.E., Adler, K.A., Patterson, T.L., Mills, P.J., Granta, I., 2005. Exaggerated plasma fibrin formation (D-Dimer) in elderly alzheimer caregivers as compared to noncaregiving controls. Gerontol. 51, 7-13.

Von Känel, R., Dimsdale, J.E., Ancoli-Israel, S., Mills, P.J., Patterson, T.L., McKibbin, C.L., Archuleta, C., Grant, I., 2006a. Poor sleep is associated with higher plasma proinflammatory cytokine interleukin-6 and procoagulant marker fibrin D-dimer in older caregivers of people with Alzheimer's disease. J. Am. Geriatr. Soc. 54, 431-437.

Von Känel, R., Dimsdale, J.E., Mills, P.J., Ancoli-Israel, S., Patterson, T.L., Mausbach, B.T., Grant, I., 2006b. Effect of Alzheimer caregiving stress and age on frailty markers interleukin-6, C-reactive protein, and D-dimer. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 61, 963-969.

Von Känel, R., Dimsdale, J.E., Patterson, T.L., Grant, I., 2003. Association of negative life event stress with coagulation activity in elderly Alzheimer caregivers. Psychosom. Med. 65, 145-150.

Von Känel, R., Mausbach, B.T., Ancoli-Israel, S., Dimsdale, J.E., Mills, P.J., Patterson, T.L., Ziegler, M.G., Roepke, S.K., Chattillion, E.A., Allison, M., Grant, I., 2012a. Sleep in spousal alzheimer caregivers: A longitudinal study with a focus on the effects of major patient transitions on sleep. Sleep 35, 247-255.

Von Känel, R., Mausbach, B.T., Dimsdale, J.E., Mills, P.J., Patterson, T.L., Ancoli-Israel, S., Ziegler, M.G., Roepke, S.K., Allison, M., Grant, I., 2010b. Problem behavior of dementia patients predicts lowgrade hypercoagulability in spousal caregivers. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 65 A, 1004-1011.

Von Känel, R., Mausbach, B.T., Dimsdale, J.E., Mills, P.J., Patterson, T.L., Ancoli-Israel, S., Ziegler, M.G., Roepke, S.K., Chattillion, E.A., Allison, M., Grant, I., 2011a. Cardiometabolic effects in caregivers of nursing home placement and death of their spouse with Alzheimer's disease. J. Am. Geriatr. Soc. 59, 2037-2044.

Von Känel, R., Mausbach, B.T., Dimsdale, J.E., Mills, P.J., Patterson, T.L., Ancoli-Israel, S., Ziegler, M.G., Roepke, S.K., Chattillion, E.A., Allison, M., Grant, I., 2012b. Effect of chronic dementia caregiving and major transitions in the caregiving situation on kidney function: A longitudinal study. Psychosom. Med. 74, 214-220.

Von Känel, R., Mausbach, B.T., Dimsdale, J.E., Mills, P.J., Patterson, T.L., Ancoli-Israel, S., Ziegler, M.G., Roepke, S.K., Harmell, A.L., Allison, M., Grant, I., 2011b. Regular physical activity moderates cardiometabolic risk in alzheimer's caregivers. Med. Sci. Sports Exerc. 43, 181-189.

Von Känel, R., Mausbach, B.T., Mills, P.J., Dimsdale, J.E., Patterson, T.L., Ancoli-Israel, S., Ziegler, M.G., Allison, M., Chattillion, E.A., Grant, I., 2014. Longitudinal relationship of low leisure satisfaction but not depressive symptoms with systemic low-grade inflammation in dementia caregivers. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 69, 397-407.

Von Känel, R., Mills, P.J., Mausbach, B.T., Dimsdale, J.E., Patterson, T.L., Ziegler, M.G., Ancoli-Israel, S., Allison, M., Chattillion, E.A., Grant, I., 2012c. Effect of Alzheimer caregiving on circulating levels of C-reactive protein and other biomarkers relevant to cardiovascular disease risk: A longitudinal study. Gerontol. 58, 354-365.

Wahbeh, H., Kishiyama, S.S., Zajdel, D., Oken, B.S., 2008. Salivary cortisol awakening response in mild Alzheimer disease, caregivers, and noncaregivers. Alzheimer Dis. Assoc. Disord. 22, 181-183.

Wechsler, D., 1981. Wechsler Adult Intelligence Scale. Psychological Corporation, New York. Wilcox, S., Bopp, M., Wilson, D.K., Fulk, L.J., Hand, G.A., 2005. Race differences in cardiovascular

and cortisol responses to an interpersonal challenge in women who are family caregivers. Ethn. Dis. 15, 17-24.

Wilkins, S.S., Castle, S., Heck, E., Tanzy, K., Fahey, J., 1999. Immune function, mood, and perceived burden among caregivers participating in a psychoeducational intervention. Psychiatr. Serv. 50, 747-749.

Williams, V.P., Bishop-Fitzpatrick, L., Lane, J.D., Gwyther, L.P., Ballard, E.L., Vendittelli, A.P., Hutchins, T.C., Williams, R.B., 2010. Video-based coping skills to reduce health risk and improve psychological and physical well-being in Alzheimer's disease family caregivers. Psychosom. Med. 72, 897-904.

Wu, H., Wang, J., Cacioppo, J.T., Glaser, R., Kiecolt-Glaser, J.K., Malarkey, W.B., 1999. Chronic stress associated with spousal caregiving of patients with Alzheimer's dementia is associated with downregulation of B-lymphocyte GH mRNA. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 54, M212-215.

Zhang, J., Vitaliano, P.P., Lin, H., 2006. Relations of caregiving stress and health depend on the health indicators used and gender. Int. J. Behav. Med. 13, 173-181.

Zhang, J., Vitaliano, P.P., Lutgendorf, S.K., Scanlan, J.M., Savage, M.V., 2001. Sense of coherence buffers relationships of chronic stress with fasting glucose levels. J. Behav. Med. 24, 33-55.

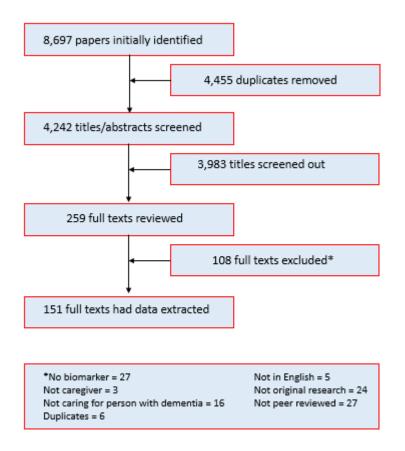


Figure 1: Flow chart of study literature search with reasons for exclusion

Article	Sample size	Participant age, gender &	Relation to care	Level of care	Biomarkers	Findings
		ethnicity	recipient	provided	examined	
Aschbac	-CG: N = 25	Mean age: 63, range = 51-79	-	Mean duration =	Salivary cortisol	CG: ↑ perceived stress associated
her et al.	-Non-CG: N =	All female		4.7 years, range =		with greater anticipatory and peak
(2013)	23	43 Caucasian, 4 Asian/Pacific		8 months - 11.42		cortisol reactivity to acute stressor.
		Islander, 1 African-American		years		Non-CG: perceived stress: not
						associated with peak or
						anticipatory cortisol.
Bauer et	-CG: N = 49	Mean age = 72, SD = 7.7	All spouses	-	Salivary cortisol	Elderly CG: \uparrow distress and \uparrow
al. (2000)		F = 24, M = 25				salivary cortisol
		All Caucasian				
Brummet	-CG: N = 42	- CG: Mean age = 70.1, SD = 13.6	-	-	Urinary cortisol	CG (but not non-CG) with less
et al.	-Non-CG: N =	80.9% Caucasian, 19.1% African-				active MAOA-uVNTR genotype
(2008)	32	American				did not show enhanced cortisol

Table 1: Summary of studies examining effects of family dementia caregiving on HPA axis activity

		-Non-CG: Mean age = 66.1, SD =				output at daytime compared to
		14.1				overnight
		78.1% Caucasian, 21.9% African-				
		American				
		All male				
Caciopp	-CG: N = 27	Mean age = 67.17, SEM = 1.03	All spouses	Mean level = at	Plasma cortisol,	CG: higher plasma ACTH. CG
o et al.	-Non-CG: N =	83% White, 17% Black		least 5 hours/week	АСТН	showed larger increase in cortisol
(2000)	37	All female				in response to stress
Clark, et	At Yr 1: New	-New CG: Mean age = 73.9, SD =	All spouses	-New CG: Mean	Urinary cortisol,	Primary mediators significantly
al. (2007)	CG: N = 80	7.1		duration $= 5.4$	EPI	associated with stress- \uparrow with time
	-Veteran CG:	62.5% female		months, $SD = 3$.	NE	for CG but not non-CG
	N = 120	-Veteran CG: Mean age = 74.2, SD		-Veteran CG:	serum DHEA-S	
	-Non-CG: N =	= 7.4		Mean = 39.7	(primary	
	60.	65.8% female		months, SD = 17.9	mediators)	
		-Non-CG: 71.9, SD = 7.7				
		68.2% female				

-CG: N = 17	-CG: Mean age: 64.83, SEM =	-	Duration: at least	Saliva	cortisol	CG: ↑ cortisol/DHEA ratio
-Non-CG: N =	3.64		one year	and DHEA	A	
18	F = 13, M = 5		Level: at least 8			
	-Non-CG: Mean age = 58.29,		hours per day			
	SEM = 3.16					
	F = 14, M = 3					
	-					
-CG: N = 30	-CG: Mean age = 68.8, range =	-	-	Saliva	cortisol	Higher cortisol in CG (at 12.00 and
-Non-CG: N =	30-75 years			(8.00,	12.00,	22.00)
28	F = 18, M = 12			16.00, 22.0	00),	
	-Non-CG: Mean age = 68.1,					
	range = 35-84 years					
	F = 17, M = 11					
	-					
	-Non-CG: N = 18 -CG: N = 30 -Non-CG: N =	-Non-CG: N = 3.64 18 F = 13, M = 5 -Non-CG: Mean age = 58.29, SEM = 3.16 F = 14, M = 3 - -CG: N = 30 -CG: Mean age = 68.8, range = -Non-CG: N = $30-75$ years 28 F = 18, M = 12 -Non-CG: Mean age = 68.1, range = 35-84 years	-Non-CG: N = 3.64 18 F = 13, M = 5 -Non-CG: Mean age = 58.29, SEM = 3.16 F = 14, M = 3 - -CG: N = 30 -CG: Mean age = 68.8, range = -Non-CG: N = 30-75 years 28 F = 18, M = 12 -Non-CG: Mean age = 68.1, range = 35-84 years	-Non-CG: N = 3.64 one year 18 F = 13, M = 5 Level: at least 8 -Non-CG: Mean age = 58.29, SEM = 3.16 hours per day SEM = 3.16 F = 14, M = 3 - -CG: N = 30 -CG: Mean age = 68.8, range = - -Non-CG: N = 30-75 years - 28 F = 18, M = 12 - -Non-CG: Mean age = 68.1, range = 35-84 years - -	-Non-CG: N = 3.64 one year and DHEA 18 F = 13, M = 5 Level: at least 8 hours per day -Non-CG: Mean age = 58.29, SEM = 3.16 hours per day hours per day -SEM = 3.16 F = 14, M = 3 - - Saliva -CG: N = 30 -CG: Mean age = 68.8, range = - - Saliva -Non-CG: N = 30-75 years - - Saliva 28 F = 18, M = 12 - - 16.00, 22.4 -Non-CG: Mean age = 68.1, range = 35-84 years - - -	-Non-CG: N = 3.64 one year and DHEA 18 F = 13, M = 5 Level: at least 8 hours per day -Non-CG: Mean age = 58.29, SEM = 3.16 hours per day hours per day -Evel: at least 8 hours per day hours per day hours per day -CG: N = 30 -CG: Mean age = 68.8, range = - - Saliva cortisol -Non-CG: N = 30-75 years - - Saliva cortisol 28 F = 18, M = 12 - - 16.00, 22.00), -Non-CG: Mean age = 68.1, range = 35-84 years - - -

Davis et	-CG: N = 30	Mean age = 76.9, SD = 6.9	All spouses	Mean duration =	Salivary cortisol (CG events: ↑ Cortisol production
al. (2004)		All female		69 months, SD =	4 times beginning	
		76.7% Caucasian, 23.3% African-		28.9	2h after arising	
		American		Mean level: 11.6	and ending 2h	
				hours/day, SD =	before their	
				6.9	reported time of	
					retiring for the	
					night)	
De Vugt	-CG: N = 57	-CG: Mean age = 60.4, range =	28 spouses, 26	Mean duration =		CG: ↑ cortisol at awakening, with
et al.	-Non-CG: N =	34-81	children, 3 other	31.1 months		smaller ↑ after awakening. Higher
(2005)	55	F = 36, M = 21		(range = 3-120)		cortisol awakening response in CG
		-Non-CG: Mean age = 60.5,		months)		of patients with \uparrow behavioral and
		range = 31-85		Mean level = 85.6		psychological symptoms of
		F = 36, M = 19		hours per week		dementia (BPSD)
		-		(range = 2-168)		

Epel et	-CG: N = 22	Mean age = 62, range = 51-75	All	spouses/	Level: at least 4	Salivary co	ortisol	CG had similar baseline cort levels
al. (2010)	-Non-CG: N =	All female	partners		hours/day	(in response	e to	and peak cortisol reactivity, but
	22	84% Caucasian, 5% African				stressor)		earlier onset of cortisol reactivity
		American, and 11% Asian						
Fonareva	-CG: N = 20	-CG: Mean age = 64.5, SD = 7.13	70%	spouses,	-	Salivary co	ortisol	CG: ↑ salivary cortisol at waking
et al.	-Non-CG: N =	F = 18, M = 2	30% chil	dren		(bedtime, wa	ıking,	only
(2011)	20	-Non-CG: Mean age = 66.95, SD =				30 minutes	post	
		7.89				waking),		
		F = 18, M = 2						
		97.5% White						
Gallaghe	-CG: N =83	-CG: Age range: 40-70 years	-		-	Salivary co	ortisol	CG: \uparrow 8 AM, 5 PM, and 9 PM
r-	-Non-CG: N =	20 Hispanic and 24 non-Hispanic					saliva	cortisol. Both ethnicity and
Thompson	39 Subsample of					samples daily	y for	
_	_					-		

et al.	17 Hispanic and	-Non-CG: 19 Hispanic and 20			3 consecutive	independently predicted daytime
(2006)	28 non-Hispanic	non-Hispanic white			days.	cortisol slope.
	white	All female				
	participants					
	matched on age					
	and education					
	used for main					
	analyses.					
Holland	-CG: N = 47	Mean age = 59.5, SD = 12.8	54.5% Daughter,	Duration = About	Salivary cortisol	Belief in Asian values predicted
et al.		Female	38.6% spouse,	4 years	(wake, 5pm, 9pm)	cort:
(2010)		Chinese	6.8% daughter-in-	Mean level $= 9.8$		descent (i.e. less dysregulated)
			law	hours/day, SD =		
				7.9		
Irwin et	-CG: N = 100	-CG: Mean age = 71, SD = 7.2	All spouses	Mean duration =	Plasma ACTH,	CG: no difference in ACTH,
al. (1997)	-Non CG: N =	F= 57%, M= 43%		2.1 years, SD =	cortisol	cortisol. Dementia severity did not
	33			1.2		

		87% White, 4% Black, 5%				predict cortisol. Demand/respite
		Hispanic, 4% Asian				mismatch predicted ACTH only
		-Non-CG: Mean age = 69.6, SD				
		= 6.2				
		F = 58%, M = 42%				
		100% White				
Jeckel et	-CG: N = 41	-CG: Mean age = 60.56, SD =	All spouses	Mean duration =	Salivary cortisol	CG: \downarrow cortisol at 8.00, \downarrow DHEAS
al. (2010)	-Non-CG: N =	16.56.		4.03 years, SD =	& DHEA-S (8.00,	& \uparrow cort/DHEAS. More cortisol
	33	F = 32, M = 9		2.89	12.00, 20.00),	non-suppressors among CG in
		-Non-CG: M = 60.27, SD = 14.1		Mean level = 16	HPA response to	response to DST.
		F = 26, M = 7		hours/day, SD =	dexamethasone	
		-		5.73	suppression test	
					(DST)	
Klein et al.	-CG: N = 158	Mean age = 61.59, SD = 10.54	58.2% children,	Mean duration =	Salivary cortisol	CG with negative CAR on non-
(2014)		F = 87.3%	38% spouses	62.05 months, SD	(wake, wake + 30	ADS days had positive CAR on
		74.1% White		= 46	minutes, before	ADS days, CG with flat CAR or

					lunch, before	medium-high CAR on non-ADS
					dinner, before	days had increased CAR on ADS
					bed)	days, and CG with high CAR on
						non-ADs days had reduced CAR
						on ADS days (similar pattern for
						AUCg data)
Leggett et	-CG: N = 164	-CG: Mean age = 61.79, SD =	38.4% spouses,	Mean duration =	CAR	↑ anger scores on days when
al. (2014)		10.47	57.3% children,	61.56 months, SD	Cortisol area	AUCg below average
		F = 87.2%	4.2% other	= 46.2	under the curve	Model 2: anger associated with \uparrow
		72.6% White, 25,6% African			with respect to	care-related stressors, not with
		American, 1.8% Other			ground (AUCg)	ADS use or daily cortisol.
						Depressed mood associated with
						more care-related stressors and a
						low average CAR.

Malarke	-CG: N = 10	Mean age = 69	All spouses	-	Plasma cortisol,	CG: ↑ ACTH. CG: no difference in
y et al.	-Non-CG = 16	All female			АСТН	cort. CG did not differ in stress
(1996)	(10 completed	-				response on these variables
	acute stressor, 6					
	did not)					
McCallu	-CG: N = 54	-CG: African-American: Mean	AA: 66%	Level: At least	Salivary diurnal	Only age and ethnicity predicted
m et al.	-Non-CG: N =	age = 58.17, SD = 8.3, European	children, 16%	10 hours/week	cortisol	cortisol slope
(2006)	63	American: Mean age = 67.5, SD =	spouses,		Participants also	
		10.95	European: 25%		collected five	
		30 African American and 24	children, 75%		saliva samples	
		European American	spouses		daily for two	
		-Non-CG: African-American:			consecutive days	
		Mean age = 59. European				
		American: Mean age = 71				
		48 AA, 15 European American				
		All female				

Merritt &	-CG: N = 54	-CG: African-American: Mean age	-AA: 67%	-AA: Mean	Saliva cortisol	John Henryism coping associated
McCallum	-Non-CG: N =	= 58.2, SD $= 8.3$, White: Mean age	children,	duration = 60.13	(wake, 9am,	with flatter cortisol slope. For high
(2011)	63	= 67.2, SD = 10.2	-White: 26%	months, SD =	12noon, 5pm	JHAC AA, CG status predicted
		-Non-CG: AA: Mean age = 59	children	54.38,	9pm)	flatter cortisol slope.
		White Mean age = 71		-White: Mean		
		All female		duration = 70.39 ,		
		-CG: 30 African-American, 24		SD = 31.2		
		White, -Non-CG: 48 African-		Level: at least 10		
		American, 15 White		hours/week		
Merritt &	-CG: N = 30	-CG Mean age: 58.2, SD = 8.3	67% children	Mean duration =	Saliva cortisol	↑ religious coping = flatter cortisol
McCallum	-Non-CG: N =	-Non-CG: Mean age = 59.6, SD =		60.1 months, SD =	(wake, 9am,	slope (specifically at higher
(2013)	48	10.7		54.4	12noon, 5pm	memory/behaviour problems)
		All female		Level: at least 10	9pm)	
		All African-American		hours per week		

Mills et	-High stress	-High stress CG: Mean age = 72,	All spouses	-	Plasma cort	CG with high life stress: no
al. (1997)	CG: N = 10	SD = 5				change in plasma cort.
	-Low-stress	F = 8, M = 2				
	CG: N = 17	-Low stress CG: Mean age = 75,				
	-Non CG: N =	SD = 7				
	10	F = 13, M = 4				
		-Non-CG: Mean age = 74, SD =				
		7				
		F = 2, M = 8				
		-				
Neri et	-CG (BPSD):	CG (BPSD): M = 60.6, SD = 7.9	-	CG (BPSD):	Salivary cortisol	CG showed a reduction in cortisol
al. (2007)	N = 10	F = 8, M = 2		Mean duration =		(between 1 week from entry and 3-
	-CG (hip	CG (HF): M = 49, SD = 8.7		36.1 months, SD =		7 days before discharge)
	fracture/HF): N	F = 10		23.5		
	= 10	CG (res): M = 56.9, SD = 4.6				
		F = 8, M = 1				

	-CG	-		Mean level =		
	(respite/res): N =			10.7 hrs/day, SD =		
	9			11.2		
				CG (HF): Mean		
				duration = 59.4		
				months, $SD = 71.1$		
				Mean level $= 3.2$		
				hours/days, SD =		
				2.1		
				CG (res): Mean		
				duration $= 43.3$		
				SD = 38.4		
				Mean level = 9.6		
				hrs/day, SD = 4.6		
Oken et	- CG: N = 31	-CG: Mean age = 64.5, SD = 9.3	23 spouses	Level: minimum	Morning	CG: ↑ waking cortisol
al. (2011)		F = 25, M = 6		10 hours/week	salivary cortisol	

	-Non-CG: N =	-Non-CG: Mean age = 66.5, SD			(waking, prior to	
	25	= 7.6			sleep)	
		F = 22, M = 3				
Palma et	-CG: N = 14	-CG: Age range = 66-74	-	Duration: at least	Salivary cortisol	CG: ↑ cortisol at 22.00 but not at
al. (2011)	-Non-CG: N =	F = 7, M = 7		1 year	(8.00, 16.00,	earlier times
	24	-Non-CG: Age range = 61-82		Level: at least 6	22.00)	
		F = 20, M = 4		hours/day		
Stalder et	-CG: N = 20	-CG: Mean age = 71.2, SD = 6.1	20 spouses, 1	Mean duration =	Hair cortisol	CG: ↑ <u>HCC</u>
al. (2014)	-Non-CG: N =	F = 19, M = 1	child (1 excluded)	40.8 months, SD =	concentration	CG: trend for positive association
	20	-Non-CG: Mean age = 72.2, SD		30.8	(HCC)	of HCC with CG burden and
		= 6.4				positive association with
		F = 17, M = 3				depressiveness.
		-				
Tarrier et	-CG: N = 100	Mean age = 63.1 years, SD = 13.6	53 spouses, 36	Mean duration =	Salivary cortisol	Strain and distress associated with
al. (2002)		F = 57, M = 43	children, 11 other	35.2 months, SD =	(9.00a.m and	morning cortisol
		-		28.7		

				Mean level =	11.00pm for 3	
				56.1 hours/week	consecutive days)	
				("face-to-face		
				contact"), SD =		
				30.5		
Tomiya	-CG: N = 14	Mean age = 62, SD = 6.46	All partners	-	Salivary cortisol	CG: no difference in cortisol
ma et al.	-Non-CG = 9	All female			(waking, 30	
(2012)		82% White, 11% Asian, 5% Black,			minutes post-	
		2% Latina			waking, bedtime;	
					urine over 12 hr)	
Vedhara	- CG: N = 50	-CG: Median = 73, interquartile	All spouses	Mean duration =	Salivary cortisol	CG: \uparrow AUC for cortisol at baseline,
et al.	-Non-CG: N =	range = 66-77		3.5 years, SD =	(between 8.00-	3 months and 6 months.
(1999)	67	F = 26, M = 24		2.7	10.00/before	
		-Non-CG: Median = 68,			breakfast, 11.00-	
		interquartile range = 66-71			13.00/before	
		F = 36, M = 31			lunch, 20.00-	

		All Caucasian			22.00/at least two	
					hours after	
					evening meal)	
Wahbeh	-CG: N = 15	-CG: Mean age = 70, SD = 9	-	-	Salivary CAR	CG: ↑ cortisol values. Unlike non-
et al.	-Non-CG: N =	F = 9, M = 6			Salivary diurnal	CG, cortisol in CG \uparrow between
(2008)	15	15 White			cortisol	awakening and 30 minutes
		-Non-CG: Mean age =75, SD = 5				afterward
		F = 10, M = 5				
		14 White				
Wilcox	-CG: N = 28	-Caucasian CG: N = 16, Mean	-Caucasian CG:	-Caucasian CG:	Salivary cortisol	More AA (58%) than Caucasians
et al.		age =65.69, SD = 10.5	8 spouse, 8	Mean duration =		(14%) showed cortisol reactivity
(2005)		-African-American CG: N = 12,	children	47.56 months, SD		from rest to 15-minutes post-
		Mean age = 62 , SD = 10.2	-AA CG: 3	= 43.89		challenge.
		All female	spouse, 7 children,	Mean level =		
			2 siblings	73.75 hours/week,		
				SD = 56.65		

-AA CG: Mean	
duration $= 60$	
months, SD =	
40.97,	
40.77,	
Mena level =	
96.08 hours/week,	
SD = 42.54	

Article	Sample size	Participant age, gender &	Relation to care	Level of care	Biomarkers	Findings
		ethnicity	recipient	provided	examined	
Adler et	-CG: N = 67	Mean age = 73, range: 56-82	-	-	Total leukocytes	Speech stressor ↑ circulating
al. (2002)		F = 45, M = 22			Total	leukocytes, LFA-1 density, \downarrow L-
		88% Caucasian			lymphocytes	selectin density.
Aschbac	-CG: N = 51	Mean age = 77, SD = 6.8	All spouses	Mean duration =	Platelet	↑ platelet activation in CG's
her et al.	-Non-CG: N =	All female		7.75 years, SD =	activation	taking HRT. No main effect of CG
(2007)	27	95% Caucasian		2.49		on platelet activity.
Aschbac	-CG: N = 39	-CG: Mean age = 68.7, SD = 7.99	All spouses	Mean duration =	Percent platelet P-	CG: ↑ symptoms of depression
her et al.	-Non-CG: N =	F = 25, M = 14		9 years	selectin (PSEL)	and anxiety associated with \uparrow
(2008)	31	-Non-CG: Mean age = 71.87, SD				PSEL reactivity, and delayed
		= 7.07				PSEL recovery. CG: Delayed NE

Table 2: Summary of studies examining effects of family dementia caregiving on the immune system

		F = 22, M = 9				recovery associated with \uparrow PSEL
		65 Caucasian				reactivity and delayed PSEL
						recovery
Aschbac	-CG: N = 99	Mean age = 73 (range = 52-88)	All spouses	-	PSEL	↑ depression significantly
her et al.		F = 68%, M = 32%				predicted \uparrow PSEL activation by
(2009)		93% Caucasian				stressor
Aschbac	-CG: N = 25	Mean age: 63, range = 51-79	-	Mean duration =	8-oxoG, 8-OHdG,	CG: Perceived stress not
her et al.	-Non-CG: N =	All female		4.7 years, range =	IsoP	associated with any oxidative
(2013)	23	43 Caucasian, 4 Asian/Pacific		8 months - 11.42		stress markers. Non-CG:
		Islander, 1 African-American		years		perceived stress: ↓ IsoP and trend
						to \downarrow 8-oxoG and 8-OHdG.
Bauer et	-CG: N = 49	Mean age = 72, SD = 7.7	All spouses	-	Full blood count	Elderly CG: ↓ mitogen-induced
al. (2000)		F = 24, M = 25			Lymphocytes	lymphocyte proliferation, \downarrow
		All Caucasian				mitogen-induced IL-2 production,

					Glucocorticoid	and \downarrow lymphocyte sensitivity to
					concentration	glucocorticoids
					IL-2	
Bristow	-CG: N = 25	-CG: Mean age = 62.9, SD = 5.9	All spouses/	-	Salivary	CG: no difference in IgA
et al.	-Non-CG: N =	F = 76%, M = 24%	partners		immunoglobulin	secretion
(2008)	36	-Non-CG: Mean age = 63.3, SD			A (IgA)	
		= 5.4				
		F = 69%, M = 31%				
		-				
Caciopp	- CG: N = 27	Mean age = 67.17, SEM = 1.03	All spouses	Level: at least 5	Blood percentages	CG: ↓ proliferative response to
o et al.	-Non-CG: N =	All female		hours/ week	of T lymphocytes	concanavalin A and a non-
(1998)	37	83% White, 17% Black			(CD3+), two	significant \downarrow in response to PHA.
					subsets of T	CG: ↓ percentage of NK cell
					lymphocytes	cytotoxicity. No interaction
					(CD4+ and	between CG status and acute
					CD8+), and NK	stressor

					cells (CD56+), NK cell cytotoxicity., mitogen- stimulated PB1	
					activity	
Castle et	-CG: N = 11	-CG: Mean age = 70, SD = 5.7	All spouses	-	Lymphocytes	Depression strongest association
al. (1995)		All female				with impaired T cell proliferative
		-				capacity. Depression was also
						most strongly associated with \uparrow
						CD8 ⁺ T cells, and a reduced
						percentage of CD38 ⁺ cells in both
						CD8 ⁺ and CD4 ⁺ T cell
						populations. \downarrow percentage of CD
						38 ⁺ cells correlated with impaired
						T cell function (proliferation). \downarrow in

						natural killer (NK) cells and
						percentage of CD56 ⁺ component
						of the CD8 ⁺ population.
Damjano	-CG: N = 41	Mean age = 65, SD = 1	26 spouses, 15	Mean duration =	PBMC, T-cells &	CG had lower T cell proliferation
vic et al.	-Non-CG: N =	-CG: F = 30, M = 11	children	5.2 years, SD =	monocytes:	but higher production of immune-
(2007)	41	-Non-CG: F = 30, M = 11		0.5	cytokines (IL-2,	regulatory cytokines (TNF- α and
		-			IL-4, IL-6, IL-8,	IL-10). Percentage of T/B cells,
					IL-10, GM-CSF,	monocytes and NK cells not sig.
					IFN-gamma,	different for CG.
					TNF-alpha)	
Esterling	-CG: N = 14	-CG: Mean age = 68, SEM = 3.21	Family	-CG: Mean	Peripheral blood	Continuing and bereaved CG did
et al.	-Bereaved CG:	F = 9, M = 5		duration $= 62.53$	leukocytes treated	not differ in NK response to rIL-2
(1994)	N = 17	-Bereaved CG: Mean age = 72.3		months, SEM = 16	with rIL-2 and	or rIFN-gamma; both worse NK
	-Non-CG: N =	years, $SEM = 2.06$		Mean level $= 5.08$	rIFN-gamma, NK	response than non-CG.
	31	F = 12, M = 5		hour/day	cell and	
					lymphokine-	

		-Non-CG: Mean age = 70.9		-Bereaved C	CG:	activated	killer		
		years, SEM = 1.82		Mean $= 26$.	5.57	cells			
		F = 22, M = 9		months, SEM	[=				
		94% White		3.09, since dea	eath				
				of care recipien	nt				
				Mean level $= 6$.	5.97				
				hour/day.					
Esterling	-CG: N = 11	- CG: Mean age = 71.5, SEM =	Family members	-CG: Me	lean	Enriched	NK	CG (both groups):	worse NK
et al.	-Bereaved CG:	2.97		duration =	9.6	response to	rIL-2	response in vitro to	recombinant
(1996)	N = 17	F = 17, M = 4		years.		or rIFN-gam	ima;	IL-2 or IFN-gamma	, and worse
	-Non-CG: N =	-Bereaved CG: Mean age = 61.9,		Mean level $= 4$	4.2			response to cytokines	
	29	SEM = 3.2		hours/day.					
		F = 11, M = 6		-Bereaved C	CG:				
		-Non-CG: Mean age = 68.9, SEM		Mean = 30	36.6				
		= 1.51		months, $SD = 4$.	4.46				

		F = 22, M = 7		months sin	ce	
		90% Caucasian		death of ca	re	
				recipient		
Fonareva	-CG: N = 20	-CG: Mean age = 64.5, SD = 7.13	70% spouses,	-	CRP, IL-6, TNF-	CG: ↑ CRP, no difference in IL-
et al.	-Non-CG: N =	F = 18, M = 2	30% children		alpha	6 or TNF-alpha
(2011)	20	-Non-CG: Mean age = 66.95, SD =				
		7.89				
		F = 18, M = 2				
		97.5% White				
Glaser et	Vaccination 1:	-CG: Mean age = 71.92, SEM =	All spouses	Bereaved C	G: Antibody titres to	CG (both groups): ↓ antibody titres
al. (1998)	-CG = 23	1.72		Mean $=$ 23.	34 influenza vaccine	to vaccine and more rapid \downarrow in PBL
	-Bereaved CG	-Bereaved CG: Mean age =		months, SEM	= and PBL ability to	ability to synthesize IL-2 after
	= 26	72.65, SEM = 1.7		3.3 since death	of synthesize IL-2	stimulation with Fluzone
	-Non-CG = 27	-Non-CG: Mean age = 70.67,		spouse		
		SEM = 1.83				

		-				
Glaser et	Vaccination 2:	-CG: Mean age = 73.12, SEM =	All spouses	Bereaved CG:	Antibody titres to	Fewer four-fold responders in
al. (1998)	-CG = 32	1.53		Mean = 29	influenza vaccine	CG's
	-Bereaved CG	-Bereaved CG: Mean age =		months, SEM =	and PBL ability to	
	= 22	72.77, SEM = 1.82		3.81 since death of	synthesize IL-2	
	-Non-CG = 68	-Non-CG: Mean age = 71.54,		spouse		
		SEM = 1.05				
		-				
		-				
Glaser et	-CG: N = 71	-CG: Mean age = 60.55, SEM =	34 spouses, 37	Mean duration =	Antibody titres to	CG: ↑ antibody titres, no
al. (1997)	-Non-CG: N =	1.52	children	7.66 years, SEM =	HSV-1, HSV-1	difference in neutralising
	58	F = 58, M = 13		4.56	virus neutralising	antibody, \downarrow proliferative response
		-Non-CG: Mean age = 62.41,		Mean level =	antibody titres,	to HSV-1
		SEM = 1.98		4.86 hours/day,	HSV-1 specific T-	
		F = 45, M = 13		SEM = 5.04		

		92% White			cell proliferation	
					response	
Glaser et	-CG: N = 11	-CG: Mean age = 68.09, SD = 3.8	All spouses	Mean duration:	IgC titres in	CG: antibody titres \downarrow over 6
al. (2000)	-Bereaved CG:	-Bereaved CG: Mean age =		CG: Mean = 6.93	response to	months, bereaved CG and non-CG
	N = 13	72.46, SD = 2.29		years, SEM =	vaccination	remained the same
	-Non-CG: N =	-Non-CG: Mean age = 69.54, SD		0.94, Mean level =		
	28	= 1.69		8.39 hours/day,		
		F = 39, M = 13		SD = 1.98		
		84% White		Bereaved: Mean =		
				2.08, SEM = 0.5		
				years since their		
				spouse died		
Glaser et	-CG: N = 16	-CG: Mean age = 71.69, SD =	All spouses	Duration: CG:	Cytoplasmic	CG: ↑ percentage of IL-10 in PBL.
al. (2001)	-Bereaved CG:	7.25		Mean = 104.11	cytokines: cells	No difference for cells expressing
	N = 16			months, SEM =	synthesising IL-2,	IL-2 or IFN-gamma.

	-Non-CG: N =	-Bereaved CG: Mean age = 77,		12.31, Mean level	IL-10+ T cells,	
	44	SD = 9.51		= 7.6 hours/day	intercellular IFN-	
		-Non-CG: Mean age = 69.89, SD		Bereaved: Mean =	gamma. Percent	
		= 9.26.		2.57 years, SEM =	and number of IL-	
		71% female		0.5, since death of	10/CD-4, IL-	
		82% Caucasian, 18% African-		spouse	10/CD-8, IFN-	
		American			/CD-4, IFN-/CD-	
					8 and IL-2/CD-4,	
					and IL-2/CD-8	
					cells	
Gouin et	-CG: N = 53	-CG: Mean age = 64.3, SD =	35 children, 18	Mean duration =	Serum IL-6, CRP	CG: ↑ CRP, no difference on IL-6
al. (2012)	-Non-CG: N =	11.17	spouses	56 months, SD =		levels. Direct effect of CG status
	77	F = 79.25%, M = 21.75%.		44		on CRP and mediating effect of
		79.25% Caucasian		Mean level =		daily stressors.
		-Non-CG: Mean age = 65.97, SD		8.21 hours/day,		
		= 14.35,		SD = 7.92		

		F = 84.41% M = 15.59% 84.41%				
		Caucasian				
Graham	-CG	-CG: Mean age = 69.8, SD = 9.5	All spouses	Level: At least 5	Plasma IL-6 and	In structural equation models, path
et al.	(continuing &	F = 69%, M = 31%		hours/week at	CRP	between bodily pain and CRP was
(2006)	bereaved): N =	90.3% Caucasian		inclusion		significant for CG but not non-CG.
	113	-Non-CG: M = 68.2, SD = 9.5				
	-Non-CG: N =	F = 74%, M = 26%				
	101	84.2% Caucasian				
Irwin et	-CG: N = 48	-CG: Mean age = 71.3, SD = 6.8	All spouses	-	NK activity,	CG: No effect on NK cell activity,
al. (1991)	-Non-CG: N =	F = 30, M = 18			cytotoxic activity	or cytotoxic activity.
	17	-Non-CG: Mean age = 71.3, SD				
		= 7.3				
		F = 11, M = 6				
		-				

Irwin et	-CG: N = 100	-CG: Mean age = 71, SD = 7.2	All spouses	Mean duration =	NK cell activity	Age (over v. under 70) X CG
al. (1997)	-Non CG: N =	F= 57%, M= 43%		2.1 years, SD =		interaction: non-CG who were
	33	87% White, 4% Black, 5%		1.2		younger had lowest NK activity,
		Hispanic, 4% Asian				and younger CG the same as older
		-Non-CG: Mean age = 69.6, SD				non-CG.
		= 6.2				
		F = 58%, M = 42%				
		100% White				
Jeckel et	-CG: N = 41	-CG: Mean age = 60.56, SD =	All spouses	Mean duration =	РВМС	CG: \uparrow T-cell proliferation, \uparrow
al. (2010)	-Non-CG: N =	16.56.		4.03 years, SD =	lymphocyte	cellular sensitivity to DEX &
	33	F = 32, M = 9		2.89	proliferation and	corticosterone
		-		Mean level = 16	steroid sensitivity	
		-Non-CG: M = 60.27, SD = 14.1		hours/day, SD =		
		F = 26, M = 7		5.73		
		-				
	-Non-CG: N =	-CG: Mean age = 60.56, SD = 16.56. F = 32, M = 9 - -Non-CG: M = 60.27, SD = 14.1 F = 26, M = 7	All spouses	4.03 years, SD = 2.89 Mean level = 16 hours/day, SD =	lymphocyte proliferation and	cellular sensitivity to DI

Kiecolt-	-CG: N = 69	-CG: Mean age = 67.26, SEM =	All spouses	Mean duration =	Blastogenesis	CG: greater ↑ in EBV, VCA, IgG
Glaser et	-Non-CG: N =	0.98		5.2 years, SEM =	with two	antibody titres. CG: \downarrow
al. (1991)	69	F = 49, M = 20		0.55	mitogens,	blastogenesis in response to ConA
		95% Caucasian		Mean level $= 8.26$	concanavalin A	and PHA
		-Non-CG: M = 67.75, SEM =		hours/day, SEM =	(Con A) and	
		0.93		0.6	phytohemagglutin	
		F = 49, M = 20			in (PHA), as well	
		93% Caucasian			as antibody titres	
					to latent Epstein-	
					Barr virus (EBV),	
					antibodies to EBV	
					virus capsid	
					antigen (VCA)	
					IgG	

Kiecolt-	-CG: N = 13	-CG: Mean age = 62.3, SEM =	9 spouses, 4	Mean duration =	Wound healing,	Complete wound healing took
Glaser et	-Non-CG: N =	2.3	children	7.8 years, SD =	IL-1beta mRNA	longer in CG. CG: ↓ IL-1beta
al. (1995)	13	-Non-CG: Mean age = 60.4,		0.6	production	mRNA in response to stimulation,
		SEM = 2.8		Mean level $= 6.7$		specifically LPS (not TNF or GM-
		All female		hours/day, SD =		CSF)
		-		1.9		
Kiecolt-	-CG: N = 32	-CG: M = 73.12, SD = 8.64	All spouses	Mean duration =	Antibody	> 70 years old: CG less likely to
Glaser et	-Non-CG: N =	F = 18, M = 14		7.25 years, SD =	response (4-fold	have antibody response to
al. (1996)	32	-Non-CG: M = 73.3, SD = 7.94		3.46	increase) to	vaccination, despite comparable
		F = 18, M = 14		Mean level =	vaccination, IL-	baseline antibodies. CG: lower IL-
		93% Caucasian		8.39 hours/day,	1beta & IL-6	1beta, change following
				SD = 8.49	mononuclear	vaccination not sig, no group X
					responses to LPS	time interaction. No effects for IL-
					stimulation. % of	6. CG: lower IL-2 (no change in
					T-lymphocytes	time or group X time). CG: no
					and monocytes	difference in percentages of

						monocytes, CD3+, CD4+, or CD8+ lymphocytes
Kiecolt-	-CG: N = 119	Mean age = 70.58, SD = 8.03.	All spouses	Mean duration	Plasma IL-6	For both continuing and
Glaser et	-Non-CG: N =	F = 160, M = 65		= 4.91 years,		bereaved CG, IL-6 rise ↑ across the
al. (2003)	106	-		SD = 3.63		6 years
				Mean level =		
				9.72 hours/day,		
				SD = 7.7		
				-Bereaved CG:		
				Mean = 33.71		
				months, SD =		
				19 since death		
				of spouse		

Kiecolt-	-CG: N = 58	-CG: Mean age = 70.1, SD = 9.41	Spouses and	-	IL-6	Multiple childhood adversities: ↑
Glaser et	-Non-CG: N =	F = 41, M = 17	children		TNF-α	IL-6
al. (2011)	74	-Non-CG: Mean age = 69.34, SD				Abuse: \uparrow IL-6 and TNF- α levels;
		= 10.73				for TNF- α , this relationship was
		F = 54, M = 20				magnified in CG
		122 White, 10 Non-White				
Mausbac	-CG: N = 106	Mean age = 73, SD = 8.73	All spouses	-	Beta-adrenergic	Role overload ↓ beta adrenergic
h et al.					receptor	sensitivity, and mastery but not
(2007b)					sensitivity	depression mediated this
Mausbac	-CG: N = 112	-CG: Mean age = 72.8, SD = 8.7	All spouses	Mean duration =	Plasma t-PA	CG: ↑ t-Pa over time compared
h et al.	-Non-CG: N =	F= 68%, M = 32%		3.5 years, SD =	antigen	with non-CG
(2007c)	53	92% White		1.1		
		-Non-CG: Mean age = 67.4, SD =				
		6.9				
		F = 76%, M = 24%				

		92% White				
Mausbac	-CG: N = 115	Mean age = 72.6, SD = 8.8	All spouses	Mean duration =	Beta-adrenergic	CG stress negatively associated
h et al.		68.7% female		6 years, SD = 3.5	receptors	and CG mastery positively
(2008)		92.2% Caucasian		Mean level:		associated with beta-adrenergic
				43.5% less than 7		sensitivity
				hrs/day, 33% 7-		
				12hrs/day, 12.2%		
				13-18 hrs/day,		
				11.3% 19+		
				hrs/day		
Mills et	-High stress	-High stress CG: Mean age = 72,	All spouses	-	Beta adrenergic	For beta-receptor sensitivity,
al. (1997)	CG: N = 10	SD = 5			sensitivity	30% of the variance was accounted
	-Low-stress	F = 8, M = 2				for by high life stress rating,
	CG N = 17	-Low stress CG: Mean age =75,				increased age, being male, and
	-Non CG: N =	SD = 7				lower NE; 17% of the variance in
	10	F = 13, M = 4				

		-Non-CG: Mean age = 74, SD =				beta-receptor density was
		7				accounted for by plasma NE.
		F = 2, M = 8				
Mills et	-Vulnerable	-Vulnerable CG: Mean age =	All spouses	Level: at least 10	Lymphocytes	Vulnerable CG: had $60\% \downarrow$ L-
al. (1999)	CG: N = 10	74.6, SD = 5		(vulnerable CG)	Catecholamines	selectin negative CD8+ T cells
	-Non-	F = 6, M = 4		providing more		(CD8+CD62L-) but no difference
	vulnerable: N =	-Non-vulnerable CG: Mean age =		than 12 hrs/day		in CD8+CD62L+ cells.
	10	72.4, SD = 8				Vulnerable CG: ↓ CD4+CD62L- T
		F = 6, M = 4				lymphocytes but no difference in
		-				CD4+CD62L+ lymphocytes.
						Acute stressor: ↑ circulating levels
						of CD8+CD62L- and
						CD8+CD62L+ lymphocytes and
						catecholamines similarly in both
						groups

Mills et	-Vulnerable	-Vulnerable CG: Mean age =	All spouses	Level: at least 16	Beta ₂ receptor	Vulnerable CG had lower beta2
al. (2004)	CG: N = 16	70.3, SD = 8.6		(vulnerable CG)	sensitivity	receptor sensitivity and density
	-Non-	F = 12, M = 4		providing more		than non-CG (non-vulnerable did
	vulnerable: N =	-Non-vulnerable: Mean age =		than 12 hrs/day		not differ from other groups)
	53	74.8, SD = 8.4				
	-Non-CG: N =	F = 31, M = 22				
	37	-Non-CG: Mean age = 68.2, SD				
		= 7.4				
		F = 30, M = 7				
		Most White				
Mills et	-CG: N = 81	-Males (N = 34):	All spouses	-	Plasma IL-6	Males caring for spouse with
al. (2009)	-Non-CG: N =	CG with High CDR: Mean age =			plasma D-dimer	poorer dementia had \uparrow IL-6 levels
	41	75.6, SD = 9.1				than non-CG or female CG for
		CG with Low CDR: Mean age =				worse dementia
		77.8, SD = 3.5				

		Non-CG: Mean age = 70.5, SD =				
		8.9				
		88% Caucasian				
		-Females (N = 88):				
		CG with High CDR: Mean age =				
		71.3, SD = 9.3				
		CG with Low CDR: Mean age =				
		68.5, SD = 8.2				
		Non-CG: Mean age = 65.7, SD =				
		6.2				
		89% Caucasian				
Neri et	-CG (BPSD):	-CG (BPSD): M = 60.6, SD = 7.9	-	CG (BPSD):	Salivary IgA,	No overall effect of group on IgA
al. (2007)	N = 10	F = 8, M = 2		Mean duration =	blood IL-2	or IL-2
	-CG (hip	-CG (HF): M = 49, SD = 8.7		36.1 months, SD =		
	fracture/HF): N	F = 10		23.5		
	= 10	-CG (res): M = 56.9, SD = 4.6				

-CG	F = 8, M = 1	Mean level =		
(respite/res): N =	-	10.7 hrs/day, SD =		
9		11.2		
		CG (HF): Mean		
		duration = 59.4		
		months, $SD = 71.1$		
		Mean level = 3.2		
		hours/days, SD =		
		2.1		
		CG (res): Mean		
		duration $=$ 43.3		
		SD = 38.4		
		Mean level $= 9.6$		
		hrs/day, $SD = 4.6$		

Redwine	-CG: N = 18	-CG: Mean age = 72.1,	All spouses	Mean duration =	SDF-1, FMLP,	CG: no difference at baseline in
et al.	-Non-CG: N =	F = 89%		average of 3-5	ISO	chemotaxis to SDF-1, FMLP, ISO,
(2004)	9	-Non-CG: Mean age = 67.6		years		but \downarrow SDF-1, FMLP, ISO
		F = 90%				chemotaxic responses to task
		-				
Reese et	-Alzheimer's	-AD CG: M = 56.3, SD = 12.6	-AD CG: 9	-AD CG: Mean	Immune	No group differences in immune
al. (1994)	disease (AD)	F = 19, M = 6	spouses, 14	duration = 3.7, SD	parameters: CD3+	data
	CG: N = 25	Caucasian = 22, African-American	children, 2 other	= 1.9 years since	cells, CD4+ cells,	
	-Stroke (ST)	= 3	-ST CG: 13	diagnosis	CD8+ cells, NK	
	CG: N = 25	-ST CG: M = 63.9, SD = 12.9,	spouses, 10	Mean level $= 5.8$	cells, and total	
	-Non-CG: N =	F = 15, M = 10	children, 2 other	hrs/day, $SD = 4.3$	lymphocytes	
	25	Caucasian = 23, African-American		-ST CG: Mean		
		= 2		duration = 3.9, SD		
		-Non-CG: M = 60.9, SD = 7.4		= 3.4 years since		
		F = 17, M = 8		diagnosis		

		Caucasian = 22, African-American		Mean level $= 4.4$		
		= 3		hrs/day, $SD = 2.6$		
Scanlan	-CG: N = 82	-CG: Mean age = 69.8, SD = 7.4	All spouses	-Male CG: Mean	Lymphocyte	In males, depressed mood factor
et al.	-Non-CG: N =	F = 53, M = 29		duration $=$ 45.5	response to	negatively related to all mitogen
(2001)	83	81 Caucasian, 1 African-		months, $SD = 20.8$	mitogens	responses at T1 and PHA at T2. No
		American dyad		-Male CG: Mean		relationships occurred in women.
		-Non-CG: Mean age =69.1, SD =		duration $=$ 52.7		At T2 an anger expression factor
		5.4		months, $SD = 30.6$		(anger-out – anger-control) was
		F = 60, M = 23				negatively related to all mitogen
		82 Caucasian, 1 African-				responses in CG. Depressed mood
		American/Asian				at T1 predicted residualised
						changes in PHA at T2 in men.
Segerstor	-CG: N = 14	Mean age = 74.52, SD = 7.11	All spouses	Mean duration =	Antibody titres.	CG: no difference in antibody titre
m et al.	-Non-CG: N =	F = 57%		6.57 years, SD =	IL-6	to any component of vaccine.
(2008)	30	All White		2.68		CG: ↑ levels of post-vaccination
						IL-6

Thompso	-CG: N = 61	-Female: Mean age = 69.7, range =	All spouses	-Female: Mean	Lymphocytes	Male CG had \uparrow % NK cells and
n et al.		56-87		duration = 5.8		lower percentage of T helper cells.
(2004)		-Male: Mean age = 71.4, range =		years, range = 1-		Female CG had \downarrow NK cells than
		61-84		12 years		non-CG females (from data bank).
		F = 45, M = 16		-Male: Mean		In men, ↑ NK cell number
		-		duration = 5.3		correlated with \downarrow perceived stress
				years, range = 1-		and symptoms.
				11		
Vedhara	- CG: N = 50	-CG: Median = 73, interquartile	All spouses	Mean duration =	Influenza IgG	CG: no difference in antibody
et al.	-Non-CG: N =	range = 66-77		3.5 years, SD =	antibodies	concentrations to any vaccine
(1999)	67	F = 26, M = 24		2.7		component at baseline. Excluding
		-Non-CG: Median = 68,				non-responders, CG had \downarrow
		interquartile range = 66-71				response to Nanchang strain
		F = 36, M = 31				
		All Caucasian				

Vitaliano	- CG: N = 80	-CG: Mean age = 69.8, SD = 8	All spouses	Mean duration =	NK cell activity	At time 1, CG with cancer history
et al.	-Non-CG: N =	F = 66%, M = 34%		43 months, $SD =$		had lower NK activity (trend at
(1998a)	85	77 Caucasian, 1 African-American		26		time 2). People with cancer history
		-Non-CG: M = 69.1, SD = 5.6				and high hassles, low uplifts had
		F = 70%, M = 30%				less NK cell activity.
		71 Caucasian, 1 African-				
		American/Asian dyad				
Vitaliano	-CG: N = 81	-CG: Mean age = 69.8, SD = 7.9	All spouses		NK activity	CG: no difference in NK activity
et al.	-Non-CG N =	F = 64%, M = 36%				
(2001)	86	77 Caucasian, 1 African-American				
		-Non-CG: M = 69.1, SD = 5.6				
		F = 71%, M = 29%				
		71 Caucasian, 1 African-				
		American/Asian				

Vitaliano	-CG: N = 130	-CG: Mean age = 71.7, SD =8.9	All spouses	T1: Median	CRP	CG: no difference in CRP.
et al.	-Non-CG: N =	F = 62%, M = 38%		duration = 44.1		
(2007)	125 (at time 1)	94% Caucasian		months, Mean		
		-Non-CG: 70.2, SD = 7.2		level = 7		
		F = 64%, M = 36%		hours/day, SD =		
		92% Caucasian		8.2		
Von	-CG: N = 64	-CG: Mean age = 72.1, SD = 8.7	All spouses	-	IL-6	CG: ↑ IL-6. After controlling for
Känel et	-Non-CG, N =	F = 44, M = 20				age and BMI, longer wake time
al. (2006a)	36	-Non-CG: Mean age =68.1, SD =				after sleep onset and interaction
		6.6				between caregiver status and
		F = 26, M = 10				higher apnea-hypopnea index
		-				were predictors of IL-6.
Von	-CG: N = 116	-CG: Mean age = 72.9, SD = 8.7	All spouses	-	Plasma IL-6	CG: ↑ IL-6. CRP levels similar
Känel et	-Non-CG: N =	F = 79, M = 37			CRP	between groups. Age accounted
al.	54	-Non-CG: Mean age = 67.6, SD				for much of the relationship with
(2006b)		= 6.8				IL-6. After controlling for

		F = 40, M = 14				covariates, interaction between
		93% Caucasian				CG status and age borderline
						significant for IL-6 (p =.090).
						CG: age correlated with IL-6.
Von	-CG: N = 97	-CG: Mean age = 72.4, SD = 8.7	All spouses	-	CRP, IL-6,	CG: stronger negative correlation
Känel et	-Non-CG: N =	F = 71%, M = 29%			von Wildebrand	between % sleep and IL-6, % sleep
al. (2010a)	48	-Non-CG: M = 67.9, SD = 7			factor antigen,	and CRP
		F = 73%, M = 27%				
		-				
Von	-CG: N = 118	-CG: Mean age = 74.4, SD = 8.1	All spouses	Mean duration =	C-reactive	↑ duration of caregiving
Känel et	-Non-CG: N =	F = 83, M = 35		4.4 years, SD =	protein (CRP)	associated with \uparrow CRP levels
al. (2012c)	51	-Non-CG: Mean age = 74.4, SD		3.4	Tumour necrosis	↑ TNF-α levels in CG
		= 5.9		Mean level $= 7.4$	factor (TNF	\downarrow CRP, 3 months after the death
		F = 33, M = 18		hours/day, SD =	alpha)	of spouse
		155 Caucasian		5.8		

enjoyment from leisure activities: ↑ TNF-alpha, IL-8, IFN-gamma,
↑ TNF-alpha, IL-8, IFN-gamma,
but not IL-6 or CRP. \downarrow frequency
of activities: higher IL-8 only
GH mRNA expression in PBMC
and B cells↓ in CG
of ac GH

Article	Sample size	Participant age, gender &	Relation to care	Level of care	Biomarkers	Findings
		ethnicity	recipient	provided	examined	
Aschbac	-CG: N = 60	-CG: Mean age = 72.3, SD = 8.8	All spouses	-	D-dimer	CG: \uparrow D-dimer, but not when
her et al.	-Non-CG: N =	F = 63%, M = 37%				depression and anxiety added as
(2005)	33	-Non-CG: Mean age = 68, SD =				covariates
		7.4				
		F = 76%, M = 24%				
		85 Caucasian, 3 Asian, 3				
		Hispanic, 1 African-American, 1				
		other				
Aschbac	-CG: N = 71	-CG: Mean age = 72.58, SD = 8.48	All spouses	Duration: Six	D-dimer	Clinical dementia rating:
her et al.	-Non-CG: N =	F = 65%, M = 35%		months-10 or		dimer at baseline and in response
(2006)	37	93% White		more years		to stress

Table 3: Summary of studies examining effects of family dementia caregiving on cardiovascular measures

		-Non-CG: Mean age = 67.73, SD =				
		7.11				
		73% female, 27% male				
		89% White				
Atienza	-CG: N = 50	-Female CG: N = 25, Mean age =	-Female CG: 22	Female: Mean = 5	HR	Female CG: \uparrow SBP and DBP
et al.		70.4, SD = 8.1	spouses	years, $SD = 3.4$	BP	reactivity to stress task compared
(2001)		92% Caucasian	-Male CG: 22	Mean level = 89.5		with male CG. No gender
		-Male CG: N = 25, Mean age =	spouses	hours/week, SD =		differences for ambulatory
		72.8, SD = 9.6		48.8		hemodynamic functioning
		92% Caucasian		Males: Mean		
				duration $= 3.7$		
				years, $SD = 3.0$		
				Mean level $= 61.5$		
				hours/week, SD =		
				41.9		

Brum	met	-CG: N = 54	Mean age = 62.4, SD = 10.5	Approximately	A	number	of	Metabolic	Cognitive	decline	in	patient
et	al.	-Non-CG: N =	F = 79.2%, M = 21.8%	half were spouses	years			syndrome	significantly	assoc	ciated	with
(2013)		23	53.3% Caucasian, 46.7% African	and				(Combination of	metabolic s	yndrome	in CG	
			American	approximately				glycosylated				
				half were children				hemoglobin				
								concentration				
								(HbA1c%),				
								triglycerides,				
								waist				
								circumference,				
								BP)				
Cacio	pp	-CG: N = 27	Mean age = 67.17, SEM = 1.03	All spouses	Mea	in level =	at	BP, HR, cardiac	CG: Highe	r resting	HR,	SBP &
o et	al.	-Non-CG: N =	83% White, 17% Black		least 5	5 hours/we	eek	preejection period	DBP, and	shorter P	EPs,	but not
(2000)		37	All female					(PEP), respiratory	different	in	ł	oaseline
								sinus arrhythmia	respiration/	RSAI. CO	G sho	wed no
								(RSA)				

						differences in cardiovascular
						physiological response
Chattillio	-CG: N = 66	Mean age = 71.19, SD = 8.71	58 spouses, 2	Mean duration:	Mean arterial	CG with \uparrow engagement in pleasant
n et al.		F = 75.8%	partners, 6	5.22 years, SD =	pressure, SBP,	events & ↓ perceived activity
(2013)		84.85% Caucasian	children	4.41	DBP	restriction had \downarrow mean arterial BP,
				Mean level: 8.15		SBP & DBP
				hours/day, SD =		
				5.17		
Clark, et	-New CG: N =	-New CG: Mean age = 73.9, SD =	All spouses	-New CG: Mean	Urinary cortisol,	Primary mediators significantly
al. (2007)	80	7.1		duration $= 5.4$	EPI	associated with stress- \uparrow with time
	-Veteran CG:	62.5% female		months, $SD = 3$.	NE	for CG but not non-CG
	N = 120	-Veteran CG: Mean age = 74.2, SD		-Veteran CG:	serum DHEA-S	
	-Non-CG: N =	= 7.4		Mean = 39.7	(primary	
	60	65.8% female		months, $SD = 17.9$	mediators),	
		-Non-CG: Mean age = 71.9, SD =			serum HDL	
		7.7			cholesterol	

		68.2% female			total cholesterol	
					blood	
					glycosylated	
					haemoglobin	
					blood pressure,	
					waist-hip ratio	
					(secondary	
					mediators)	
Harmell	-CG: N = 100	Mean age = 73.8, SD = 8.4	All spouses	Mean duration =	Mean arterial	Coping self-efficacy related to ↓
et al.				4.23 +/- 3.32 years	pressure,	resting mean arterial pressure,
(2011)					SBP	SBP, and pulse pressure, and
					DBP	marginally related to DBP
					pulse pressure	
Irwin et	-CG: N = 32	CG (hospice): Mean age = 76.8,	All spouses	-	BP	Hospice: no difference in SBP or
al. (2013)	(10 with hospice	SD = 8.68				DBP

	prior to death, 22	Non-CG (no hospice): Mean age				
	without)	= 73.95, SD = 8.85				
		-				
		-				
Jeckel et	-CG: N = 41	-CG: Mean age = 60.56, SD =	All spouses	Mean duration =	BP, HR	CG: ↑ DBP & heart rate
al. (2010)	-Non-CG: N =	16.56		4.03 years, SD =		
	33	F = 32, M = 9		2.89		
		-Non-CG: M = 60.27, SD = 14.1		Mean level = 16		
		F = 26, M = 7		hours/day, SD =		
		-		5.73		
Kim et	-CG: N = 160	-White: Mean age = 56.62, SD =	-	White: Mean	HR, BP	Buffering effect of active coping
al. (2007)		16.35		duration $= 4.63$		on DBP in AA.
		F = 69.2%, M = 30.8%		years, $SD = 3.2$		
		-African-American: Mean age =		Mean level =		
		54.71, SD = 15.27		19.72 hours/week,		
		F = 68.4%, M = 31.6%		SD = 12.99		

		95 African-American, 65 White		AA: Mean		
				duration = 4.07		
				years, $SD = 3.05$		
				Mean level=		
				16.86 hours/week,		
				SD = 10.57		
King et	-CG: N = 88	Wives: Mean age = 67.9, SD = 8.7	52 wives, 36	Wives: Mean	HR	No difference between wives &
al. (2002a)		92.2% white	daughters	duration $=$ 4.4	BP (ambulatory in	daughter on acute stressors
		Daughters: Mean age = 56.8, SD =		years, $SD = 3.4$,	response to acute	Daughters had \uparrow DBP and HR in
		5.4		Daughters: Mean	stressor-	presence of care recipient than
		85% White		duration $= 3.5$	Submaximal	wives
		All female		years, $SD = 2.7$	treadmill exercise	
				Level: At least 10	test +	
				hours/week	interpersonal	
					interview on CG)	

Knight et	-CG: N = 102	-CG: African-American: Mean age	AA: 23% spouses,	Level: At least 8	BP	AA CG: ↑ DBP
al. (2007)	-Non-CG: N =	= 57.15, SE = 1.95	45% children,	hours/week		
	102	White: Mean age = 55.05, SE =	31% other			
		2.67	White: 30%			
		African-American: $F = 45$, $M = 17$	spouses, 43%			
		White: F = 25, M = 15	children, 25%			
		62 AA, 40 White	other			
		-Non-CG: African-American:				
		Mean age = 57.1, SE = 1.97,				
		White: Mean age = 54.83 , SE = 2.7				
		African-American: $F = 45$, $M = 17$,				
		White: $F = 25$, $M = 15$				
		62 AA, 40 White				
Knight	-CG: N = 154	-White: Mean age = 62.9 years,	-White: 67	-	Heart rate	Race did not modulate SBP
and		SD = 12.6	spouse, 33 child,		BP	reactivity. For DBP, White CG
			10 other.			

McCallum		- African-American: M = 57.7	-AA: 18 spouse,			showed small AA males showed
(1998)		years, $SD = 14.3$	20 child, 6 other			\downarrow , AA females showed larger \uparrow .
		-White: $F = 78$, $M = 32$				Race did not modulate HR
		- African-American: $F = 36$, $M = 8$				
		110 White, 44 African-American				
Kring et	-CG: N = 126	-CG: Mean age = 63.2, SD = 13.1	96% children	-	Serum HDL	For rs439401, CG with TT
al. (2010)	-Non-CG: N =	F = 91, M = 35			cholesterol, serum	genotype had worse waist
	122	-Non-CG: Mean age = 60, SD =			triglyceride	circumference, triglycerides and
		14.4			levels, waist	HDL cholesterol compared to non-
		F = 91, M = 31			circumference	CG with TT genotype.
		All White				
Malarke	-CG: N = 10	Mean age = 69	All spouses	-	HR, BP, MAP,	CG: ↑ MAP.
y et al.	-Non-CG = 16	All female			RSA	
(1996)	(10 completed	-				
	acute stressor, 6					
	did not)					

Mausbac	-CG: N = 40	Mean age = 73.3, SD = 8.5	All spouses	-	Plasma D-dimer	\uparrow wake after sleep onset = \uparrow D-
h et al.		F = 26, M = 14				dimer
(2006)		38 Caucasian				
Mauchaa	CC: N 126	Detient meen and 72 SD 97	A 11 am an an a		Plasma D-Dimer	Death/ale compart in institution lad
Mausbac	-CG: N = 126	Patient mean age = 73 , SD = 8.7	All spouses	-	Plasma D-Dimer	Death/placement in institution led
h et al.		F = 68%, M = 32%				to drop in D-dimer, but only 6
(2007a)		92% White, 2.4% Hispanic, 2.4%				months or more after
		Asian, 0.8% African-American,				
		0.8% other				
Mausbac	-CG: N = 112	-CG: Mean age = 72.8, SD = 8.7	All spouses	Mean duration =	MAP	CG: ↑ MAP
h et al.	-Non-CG: N =	F= 68%, M = 32%		3.5 years, SD =		
(2007c)	53	92% White		1.1		
		-Non-CG: Mean age = 67.4, SD =				
		6.9				
		F = 76%, M = 24%				

		92% White				
Mausbac	-CG: N = 55	-CG: Mean age = 74.2, SD = 7.6	All spouses		Hyperemia	CG for spouse with moderate to
h et al.	-Non-CG: N =	F = 38, M = 17			induced flow-	severe dementia: worse FMD than
(2010)	23	White = 50, Hispanic = 4, Black			mediated dilation	CG for spouse with mild dementia
		= 1			(FMD)	and non-CG
		-Non-CG: Mean age = 74.3, SD				\uparrow CG duration = \downarrow FMD
		= 7.8				
		F = 18, M = 5				
		White = 19, Hispanic = 3, Asian =				
		1				
Mausbac	-CG: N = 116	Mean age = 74.3, SD = 8.1	All spouses	-	Brachial artery	More years CG: ↓ FMD
h et al.		F = 68.1%, M = 31.9%			flow-mediated	
(2012)		87.1% White, 7.7% Hispanic,			dilation (FMD)	
		2.6% Black, 0.9% Asian, 1.7%				
		Native American				

Mills et	-CG: N = 81	-Males (N = 34):	All spouses	-	BP, plasma D-	Males caring for spouse with
al. (2009)	-Non-CG: N =	CG with High CDR: Mean age =			dimer,	poorer dementia had ↑ D-dimer
	41	75.6, SD = 9.1				than female CG for worse
		CG with Low CDR: Mean age =				dementia and compared to non-CG
		77.8, SD = 3.5				
		Non-CG: Mean age = 70.5, SD =				
		8.9				
		88% Caucasian				
		-Females (N = 88):				
		CG with High CDR: Mean age =				
		71.3, SD = 9.3				
		CG with Low CDR: Mean age =				
		68.5, SD = 8.2				
		Non-CG: Mean age = 65.7, SD =				
		6.2				
		89% Caucasian				

Redwine	-CG: N = 18	-CG: Mean age = 72.1,	All spouses	Mean duration =	BP, HR	No difference in baseline BP or
et al.	-Non-CG: N =	F = 89%		average of 3-5		HR
(2004)	9	-Non-CG: Mean age = 67.6		years		
		F = 90%				
		-				
Roepke	-CG: N = 111	-CG: Mean age = 73.6, SD = 8.2	All spouses	Mean duration:	BP, carotid artery	CG: ↑ carotid plaques, and poor
et al.	-Non-CG: N =	F = 76, M = 35		4.2 years, SD =	imaging	EPI recovery = ↑ plaque
(2011a)	51	102 White, 6 other		3.5		prevalence
		-Non-CG: Mean age = 74.7, SD =				
		6.4				
		F = 35, M = 16				
		43 White, 7 other				
Roepke	-CG: N = 87	-CG: Mean age = 74.3, SD = 7.8	All spouses	Mean duration:	Allostatic load	CG: ↑ allostatic load. Mastery, but
et al.	-Non CG: N =	F = 62, M = 25		4.3 years, SD = (1.3 years)	(composite of BP,	not depression or overload,
(2011b)	43	83 Caucasian, 2 Non-Caucasian		3.4	BMI , NE, EPI,	moderated the relationship
					cholesterol)	

		-Non-CG: Mean age = 74.9, SD				between CG status and allostatic
		= 6.8				load
		F = 26, M = 17				
		38 Caucasian, 4 Non-Caucasian				
Roepke	-CG: N = 110	Mean age = 73.7, SD = 8.2	All spouses	Mean duration =	BP, carotid artery	CG duration not a predictor of
et al.		F = 76, M = 34		4.2 years, SD =	imaging (IMT)	IMT, but significant predictor of
(2012)		102 Caucasian		3.5		internal/bifurcation IMT
Sakurai	-CG: N = 20	CG: Median age = $60 (25$ th- 75 th	7 spouses, 10	Median duration	R-R heart wave	CG: LF/HF ratio during first
et al.	-Non-CG: N =	percentile: 56-65.8)	children, 3 child-	= 3.9 years (25th-		half. No difference in HF
(2015)	20	F = 16, M = 4	in-law	75th percentile =		amplitude. Greater change in HF
		Non-CG: Median age = 64.5 (25th-		2.4-5.2)		ratio between first and second half
		75th percentile: 59.3-69).				of sleep in CG.
		F = 16, M = 4				
		-				

-Family CG:	-Family CG: Mean age = 59.2	-	Family CG: Mean	Heart coherence	CG: \uparrow burden levels = \downarrow heart
2	F = 86%, M = 14%		duration = 9.8		coherence. Burnout associated
-Pro CG: 42	-Pro CG: Mean age = 42.7		years		with low coherence for
	F = 83%, M = 17%		Pro CG: Mean		professional CG as well. After 3
	-		duration = 11.7		months' training, no difference
			years		found in heart coherence for
					family v. professional CG. Heart
					coherence training = \downarrow burnout and
					burden and \uparrow heart coherence
-CG: N = 126	Mean age = 74.16, SD = 7.98	All spouses	Mean duration =	Dyslipidemia,	Night time sleep duration, night
	F = 89, M = 37		4.33 years, SD =	hypertension	time sleep efficiency and daytime
	115 Caucasian, 10 non-Caucasian		3.38		naps not significantly associated
					with dyslipidemia, or hypertension
-]	Pro CG: 42	Pro CG: 42 -Pro CG: Mean age = 42.7 F = 83%, M = 17% - CG: N = 126 Mean age = 74.16, SD = 7.98 F = 89, M = 37	Pro CG: 42 -Pro CG: Mean age = 42.7 F = 83%, M = 17% - CG: N = 126 Mean age = 74.16, SD = 7.98 F = 89, M = 37 All spouses	Pro CG: 42-Pro CG: Mean age = 42.7years $F = 83\%, M = 17\%$ Pro CG: Mean duration = 11.7CG: N = 126Mean age = 74.16, SD = 7.98 F = 89, M = 37All spousesMean duration =4.33 years, SD =	Pro CG: 42-Pro CG: Mean age = 42.7 $F = 83\%, M = 17\%$ -yearsPro CG: Mean duration = 11.7 yearsCG: N = 126Mean age = 74.16, SD = 7.98 $F = 89, M = 37$ All spousesMean duration = 4.33 years, SD = hypertension

Shaw et	-CG: N = 144	-CG: M = 70.5, SD = 7	All spouses	Mean duration =	BP, HR	CG: no difference in baseline BP,
al. (1999)	-Non-CG: N =	F = 93, M = 51		1.9 years, SD =		CG: more likely to develop BP
	47	-Non-CG: M = 70.2, SD = 6.4		1.2		readings consistent with
		F = 24, M = 23		Level: $N = 11$:		borderline hypertension at follow-
		-		no care, N = 44: 1-		up. ADL and problem behaviours
				6 hours/day, N =		not significant predictors.
				24: 7-12		
				hours/day, $N = 31$:		
				13-18 hours/day,		
				N = 29: 19-24		
				hours/day		
Shaw et	-CG: N = 111	Mean age = 71.6, SD = 6.5	All spouses	Mean years since	BP	More problem behaviours and less
al. (2003)		F = 78, M = 33		AD diagnosis =		emotional expression = \uparrow DBP.
		102 White (non-Hispanic), 3		4.5 years, SD =		Longitudinal ↑ in DBP predicted
		African American, 3 Hispanic, 3		3.3		by ADL assistance, not emotional
		Asian, Pacific Islander				

				Mean years since		expression.	State	hostility
				first symptoms =		unrelated to B	P.	
				7, SD = 4.8				
				Level: $N = 9$: no				
				care, N = 28: 1-6				
				hours/day, $N = 26$:				
				7-12 hours/day, N				
				= 26: 13-18				
				hours/day, $N = 22$:				
				19-24 hours/day				
Thompso	-CG: N = 61	-Female: Mean age = 69.7 range =	All spouses	-Female: Mean	Skin conductance	Females had	↑ HR,	↓ skin
n et al.		56-87		duration $= 5.8$	HR	conductance a	t baseline a	and during
(2004)		-Male: Mean age = 71.4, range =		years, range = 1-		post-stress rela	ax phase	
		61-84		12 years				
		F = 45, M = 16		-Male: Mean				
		-		duration = 5.3				

				years, range = 1-		
				11		
Uchino	-CG: N = 36	Median age = 63.5 , range = 30 -	-	Mean duration =	HR	CG: comparable age-related
et al.	-Non-CG: N =	84		101.97 months	BP	increases in SBP and HR. For HR
(1992)	34	-CG: F = 23, M = 13		Level: At least 5		reactivity, social support
		-Non-CG: F = 28, M = 6		hours/week		attenuation age-related \uparrow , but only
		-				in CG
Uchino	-CG: N = 31	Mean age = 61.87 years	20 spouse, 10	Mean duration =	HR	Closer affective bonds: ↓ resting
et al.		F = 18, M = 13	children, 1 in-law	7.35 years	BP	DBP.
(1994)		-		Level: At least 5		Higher preillness cohesiveness
				hours per week		associated with \uparrow DBP and SBP
Vitaliano	-CG: N = 71	-CG: Mean age = 69.8, SD = 8	All spouses	Mean duration =	BP	CG: ↑ Metabolic syndrome levels,
et al.	-Non-CG: N =	F = 66%, M = 34%		43 months, SD =	Lipids	but only those with CHD
(1998b)	70	70 White, 1 AA		27		

		-Non-CG: Mean age = 69.1, SD =				
		5.6				
		F = 70%, M = 30%				
		69 White, 1 African-American				
		/Asian-American dyad				
Vitaliano	-CG: N = 81	-CG: M = 69.8, SD = 7.9	All spouses		Cardiovascular	CG: no difference in
et al.	-Non-CG N =	F = 64%, M = 36%			composite	cardiovascular composite
(2001)	86	77 Caucasian, 1 African-American				
		-Non-CG: M = 69.1, SD = 5.6				
		F = 71%, M = 29%				
		71 Caucasian, 1 African-				
		American/Asian				
Vitaliano	-CG: N = 72	-CG: Mean age = 71.5, SD = 4.8	All spouses	Male: Mean	Measures of	In males, CG had higher obesity
et al.	-Non-CG: N =	F = 48 (20 using HRT, 28 without		duration $=$ 36.3	metabolic	and lipids. CG had higher
(2002)	80	HRT), M = 24		months, $SD = 21.9$	syndrome (BP,	prevalence of CHD
		71 Caucasian, 1 African-American			plasma lipids,	

		-Non-CG: Mean age = 69, SD =		Female	w/o	insulin, BMI/with	
		5.4		HRT:	Mean	obesity)	
		F = 57 (21 using HRT, 36 without		duration =	41.9		
		HRT), M = 23		months, SD	=24.9		
		79 Caucasian, 1 African-		Female	using		
		American/Asian dyad		HRT:	Mean		
				duration =	55.8,		
				SD = 35.8			
Von	-CG: N = 53	Mean age = 73, range = 59-82	All spouses	-		D-dimer	D-dimer ↑ more in response to
Känel et		F = 35, M = 18					acute stress in those with CV
al. (2001)		-					disease
Von	-CG: N = 54	Mean age = 73 , SD = 6	All spouses	-		D-dimer	Negative life events associated
Känel et							with greater D-dimer
al. (2003)							

Von	-CG: N = 48	-CG: Mean age = 72, SD = 9	All spouses	-	D-dimer	CG: higher D-dimer
Känel et	-Non-CG: N =	F = 30, M = 18				
al. (2005)	20	-				
		-Non-CG: Mean age = 68 , SD = 7				
		F = 16, M = 4				
		-				
Von	-CG: N = 64	-CG: Mean age = 72.1, SD = 8.7	All spouses	-	D-dimer	CG: \uparrow D-dimer. Controlling for
Känel et	-Non-CG, N =	F = 44, M = 20				age, CG status independently
al. (2006a)	36	-Non-CG: Mean age = 68.1, SD				predicted D-dimer levels.
		= 6.6				Controlling for age and caregiver
		F = 26, M = 10				status, lower sleep efficiency and
						the interaction between caregiver
						status and more Stage 2 sleep
						independently predicted plasma
						D-dimer levels.

Von	-CG: N = 116	-CG: Mean age = 72.9, SD = 8.7	All spouses		D-dimer levels	CG: ↑ D-dimer. Relationship
Känel et	-Non-CG: N =	F = 79, M = 37				between CG status and D-dimer
al.	54	-Non-CG: Mean age = 67.6, SD				affected by role overload.
(2006b)		= 6.8				After controlling for covariates,
		F = 40, M = 14				interaction between CG status and
						age significant for D-dimer.
						CG: age correlated with D-dimer.
Von	-CG: N = 97	-CG: Mean age = 72.4, SD = 8.7	All spouses	-	D-dimer	CG: positive correlation between
Känel et	-Non-CG: N =	F = 71%, M = 29%				duration of awakenings and D-
al. (2010a)	48	-				dimer (not significant when
		-Non-CG: M= 67.9, SD = 7				controlling for covariates)
		F = 73%, M = 27%				
		-				
Von	-CG: N = 108	Mean age = 74 , SD = 8	All spouses	Duration: N = 33:	Procoagulent	↑ problem behaviours and CG
Känel et		F = 70%, M = 30%		less than 2 years,	index (sum of	negative reaction to behaviours = \uparrow
al. (2010b)		-			standardized z-	procoagulent index

				N = 41: 2-5 years,	scores of VWF,	
				N = 34: 5 years+	PAI-1, and D-	
					dimer dividing the	
					sum by 3)	
Wilcox	-CG: N = 28	-Caucasian CG: N = 16, Mean	-Caucasian CG:	-Caucasian CG:	BP	Race x Task interaction for SBP
et al.		age =65.69, SD = 10.5	8 spouse, 8	Mean duration =	Heart rate	and HR but not DBP reactivity.
(2005)		- African-American CG: N = 12,	children	47.56 months, SD		AA women showed greater
		Mean age = 62, SD = 10.2	-AA CG: 3	= 43.89		reactivity than Caucasian women.
		All female	spouse, 7 children,	Mean level =		
			2 siblings	73.75 hours/week,		
				SD = 56.65		
				-AA CG: Mean		
				duration = 60		
				months, SD =		
				40.97,		

				Mena level =		
				96.08 hours/week,		
				SD = 42.54		
Zhang et	-CG: N = 75	-CG: Mean age = 69.8, SD = 8	All spouses	-	Risk composite of	$CG \uparrow risk$ in males, Cg status did
al. (2006)	-Non-CG: N =	F = 66%, M = 34%			BP, lipids, BMI,	not \uparrow risk in females
	82	-Non-CG: Mean age = 69.1, SD =			insulin, glucose	
		5.6				
		F = 70%, M = 30%				
		All White				

Article	Sample size	Participant age, gender &	Relation to care	Level of care	Biomarkers	Findings
		ethnicity	recipient	provided	examined	
Adler et	-CG: N = 67	Mean age = 73 (Range: 56-82)	-	-	EPI	Speech stressor ↑ plasma EPI and
al. (2002)		F = 45, M = 22			NE	NE.
		88% Caucasian				
Aschbac	-CG: N = 39	-CG: Mean age = 68.7, SD = 7.99	All spouses	Mean duration =	Plasma NE	CG: ↑ symptoms of depression
her et al.	-Non-CG: N =	F = 25, M = 14		9 years		and anxiety associated with
(2008)	31	-Non-CG: Mean age = 71.87, SD				delayed NE recovery.
		= 7.07				
		F = 22, M = 9				
		65 Caucasian				

 Table 4: Summary of studies examining effects of family dementia caregiving on epinephrine/norepinephrine

-CG: N = 27	Mean age = 67.17, SEM = 1.03	All spouses	Mean level = at	Plasma EPI	CG: Not different in baseline
-Non-CG: N =	83% White, 17% Black		least 5 hours/week	NE	plasma EPI/NE or EPI/NE in
37	All female				response to stress
- CG: N = 107	Mean age = 73.95 , SD = 8.12	All spouses	Mean level = 7.6	EPI	CG with \downarrow leisure satisfaction:
	years		hours/day, SD =	NE	time caregiving positively
	F = 73, M = 34		5.91		associated with plasma NE and
	Caucasian = 101, Other = 5				EPI.
-New CG: N =	-New CG: Mean age = 73.9, SD =	All spouses	-New CG: Mean	Urinary cortisol,	Primary mediators significantly
80	7.1		duration $= 5.4$	EPI	associated with stress-↑ with time
-Veteran CG:	62.5% female		months, $SD = 3$.	NE	for CG but not non-CG
N = 120	-Veteran CG: Mean age = 74.2, SD		-Veteran CG:	serum DHEA-S	
-Non-CG: N =	= 7.4		Mean = 39.7	(primary	
60.	65.8% female		months, $SD = 17.9$	mediators),	
	-Non-CG: Mean age = 71.9, SD =				
	7.7				
8	-Non-CG: N = 37 - CG: N = 107 -New CG: N = 30 -Veteran CG: N = 120 -Non-CG: N =	-Non-CG: N = 83% White, 17% Black 37 All female - CG: N = 107 Mean age = 73.95, SD = 8.12 years $F = 73, M = 34$ Caucasian = 101, Other = 5 Caucasian = 101, Other = 5 -New CG: N = -New CG: Mean age = 73.9, SD = 80 -New CG: N = -New CG: Mean age = 73.9, SD = 80 -New CG: N = -New CG: Mean age = 73.9, SD = 80 -Non-CG: N = -Veteran CG: 62.5% female -Non-CG: N = = 7.4 50. 65.8% female -Non-CG: Mean age = 71.9, SD =	-Non-CG: N = $\begin{cases} 83\%$ White, 17% Black All female -CG: N = 107 Mean age = 73.95, SD = 8.12 All spouses years F = 73, M = 34 Caucasian = 101, Other = 5 -New CG: N = -New CG: Mean age = 73.9, SD = All spouses 7.1 -Veteran CG: 62.5% female N = 120 -Veteran CG: Mean age = 74.2, SD -Non-CG: N = = 7.4 50. 65.8% female -Non-CG: Mean age = 71.9, SD = $\begin{cases} -2.5\% \text{ female} \\ -Non-CG \end{bmatrix}$	-Non-CG: N =83% White, 17% Black All femaleleast 5 hours/week 37 All femaleleast 5 hours/week $-CG: N = 107$ Mean age = 73.95, SD = 8.12 yearsAll spousesMean level = 7.6 hours/day, SD = $F = 73, M = 34$ Caucasian = 101, Other = 5S.91S.91-New CG: N =-New CG: Mean age = 73.9, SD =All spouses-New CG: Mean duration = 5.4 30 7.1All spouses-New CG: Mean duration = 5.4 $N = 120$ -Veteran CG: Mean age = 74.2, SD-Veteran Mean = 39.7 $Non-CG: N =$ $= 7.4$ Mean age = 71.9, SD =	-Non-CG: N =83% White, 17% Black All femaleleast 5 hours/weekNE-CG: N = 107Mean age = 73.95, SD = 8.12 years F = 73, M = 34 Caucasian = 101, Other = 5All spousesMean level = 7.6 bours/day, SD =EPI NE-New CG: N =-New CG: Mean age = 73.9, SD =All spouses-New CG: Mean uration = 5.4Urinary cortisol, duration = 5.4-New CG: N =-New CG: Mean age = 73.9, SD =All spouses-New CG: Mean uration = 5.4Urinary cortisol, duration = 5.4-New CG: N =-Veteran CG: 62.5% female -Non-CG: N =-Veteran CG: serum DHEA-SNE-Non-CG: N == 7.4Mean = 39.7 (primary months, SD = 17.9Mean age = 71.9, SD =

	68.2% female				
-CG: N = 84	-CG: Mean age = 70.7, SD = 8.46	All spouses	Mean duration =	Resting EPI	Mean duration of CG a significant
	F = 75%, M = 25%		4.9 years, SD =	NE	predictor of EPI, not NE. Activity
	86.9% Caucasian, 13.1% other		4.1 years		restriction did not predict EPI,
					with a trend for NE. Years
					predicted EPI but not NE when CG
					activity restriction ↑
-CG: N = 48	-CG: Mean age = 71.3, SD = 6.8	All spouses	-	EPI	CG: No difference in EPI or NE.
-Non-CG: N =	F = 30, M = 18			NE	CG did not differ for dynamic
17	-Non-CG: Mean age = 71.3, SD				activity of NE/EPI following
	= 7.3				orthostatic challenge
	F = 11, M = 6				
	-				
	-CG: N = 48 -Non-CG: N =	-CG: N = 84 -CG: Mean age = 70.7, SD = 8.46 $F = 75\%$, M = 25% 86.9% Caucasian, 13.1% other -CG: N = 48 -CG: Mean age = 71.3, SD = 6.8 -Non-CG: N = $F = 30$, M = 18 17 -Non-CG: Mean age = 71.3, SD = 7.3 $F = 11$, M = 6	-CG: N = 84 -CG: Mean age = 70.7, SD = 8.46 All spouses $F = 75\%$, M = 25% 86.9% Caucasian, 13.1% other All spouses -CG: N = 48 -CG: Mean age = 71.3, SD = 6.8 All spouses -Non-CG: N = $F = 30$, M = 18 All spouses 17 -Non-CG: Mean age = 71.3, SD = 6.8 $F = 30$, M = 18 $F = 11$, M = 6 $F = 11$, M = 6 $F = 11$, M = 6	-CG: N = 84 -CG: Mean age = 70.7, SD = 8.46 All spouses Mean duration = $F = 75\%$, M = 25% 4.9 years, SD = 4.9 years, SD = 86.9% Caucasian, 13.1% other 4.1 years -CG: N = 48 -CG: Mean age = 71.3, SD = 6.8 All spouses -Non-CG: N = $F = 30$, M = 18 - 17 -Non-CG: Mean age = 71.3, SD = 6.8 All spouses $F = 11$, M = 6 -	-CG: N = 84 -CG: Mean age = 70.7, SD = 8.46 All spouses Mean duration = Resting EPI $F = 75\%, M = 25\%$ 4.9 years, SD = NE 86.9% Caucasian, 13.1% other 4.1 years NE -CG: N = 48 -CG: Mean age = 71.3, SD = 6.8 All spouses - EPI -Non-CG: N = F = 30, M = 18 NE NE NE 17 -Non-CG: Mean age = 71.3, SD All spouses - EPI $= 7.3$ F = 11, M = 6 I I I I

Irwin et	-CG: N = 100	-CG: Mean age = 71, SD = 7.2	All spouses	Mean duration =	EPI	CG: EPI, NE. Dementia severity
al. (1997)	-Non CG: N =	F= 57%, M= 43%		2.1 years, SD =	NE	did not predict physiological
	33	87% White, 4% Black, 5%		1.2		variables.
		Hispanic, 4% Asian				
		-Non-CG: Mean age = 69.6, SD				
		= 6.2				
		F = 58%, M = 42%				
		100% White				
Malarke	-CG: N = 10	Mean age = 69	All spouses	-	EPI	CG: no difference in EPI/NE. CG
y et al.	-Non-CG = 16	All female			NE	did not differ in stress response
(1996)	(10 completed	-				
	acute stressor, 6					
	did not)					
Mausbac	-CG: N = 55	-CG: Mean age = 72.64, SD =	All spouses	-	NE	Depressive symptoms predicted
h et al.		8.46				post-stressor NE change after
(2005)		F = 39, M = 16				controlling for age, CG distress,

		51 Caucasian, 2 Asian, 1 Hispanic,				hypertension, and care recipient
		1 Other				cognitive function. Depressive
						symptoms associated with \uparrow
						plasma NE response to
						psychological stress task
Mausbac	-CG: N = 40	Mean age = 73.3, SD = 8.5	All spouses	-	EPI	\uparrow wake after sleep onset = \uparrow NE
h et al.		F = 26, M = 14			NE	No association between sleep
(2006)		38 Caucasian				variables and EPI
Mills et	-High stress	-High stress CG: Mean age = 72,	All spouses	-	Plasma NE	CG with high life stress: ↑ plasma
al. (1997)	CG: N = 10	SD = 5				NE
	-Low-stress	F = 8, M = 2				
	CG N = 17	-Low stress CG: Mean age = 75,				
	-Non CG: N =	SD = 7				
	10	F = 13, M = 4				

		-Non-CG: Mean age = 74, SD =				
		7				
		F = 2, M = 8				
		-				
Mills et	-Vulnerable	-Vulnerable CG: Mean age =	All spouses	Level: at least 10	EPI	Resting plasma EPI levels ↑
al. (1999)	CG: N = 10	74.6, SD = 5		(vulnerable CG)		vulnerable CG than non-
	-Non-	F = 6, M = 4		providing more		vulnerable. Acute stressor: ↑
	vulnerable: N =	-Non-vulnerable CG: Mean age =		than 12 hrs/day		circulating levels of EPI similarly
	10	72.4, SD = 8				in both groups
		F = 6, M = 4				
		-				
Redwine	-CG: N = 18	-CG: Mean age = 72.1	All spouses	Mean duration =	EPI	CG: no difference in baseline EPI
et al.	-Non-CG: N =	F = 89%		average of 3-5	NE	or NE
(2004)	9	-Non-CG: Mean age = 67.6		years		
		F = 90%				
		-				
		-				

Roepke	-CG: N = 68	Mean age = 72.8, SD = 8.8	All spouses	-	Plasma NE	ADL: Associated with heightened
et al.		F = 45, M = 23				NE reactivity to speech stressor.
(2008)		63 Caucasian, 5 non-Caucasian				Mastery ↓ NE recovery
Roepke	-CG: N = 111	-CG: Mean age = 73.6, SD = 8.2	All spouses	Mean duration:	NE, EPI, carotid	CG: Poor EPI recovery = \uparrow
et al.	-Non-CG: N =	F = 76, M = 35		4.3 years, SD =	artery imaging	plaque prevalence
(2011a)	51	102 White, 6 other		3.5		
		-Non-CG: Mean age = 74.7, SD =				
		6.4				
		F = 35, M = 16				
		43 White, 7 other				
Roepke	-CG: N = 87	-CG: Mean age = 74.3, SD = 7.8	All spouses	Mean duration:	Allostatic load	CG: ↑ allostatic load. Mastery,
et al.	-Non CG: N =	F = 62, M = 25		4.3 years, SD =	(composite of BP,	but not depression or overload,
(2011b)	43	83 Caucasian, 2 Non-Caucasian		3.4	BMI , NE, EPI,	moderated the relationship
		-Non-CG: Mean age = 74.9, SD			cholesterol)	between CG status and allostatic
		= 6.8				load
		F = 26, M = 17				

3	88 Caucasian, 4 Non-Caucasian		

Article	Sample size	Participant age, gender &	Relation to care	Level of care	Biomarkers	Findings
		ethnicity	recipient	provided	examined	
Burns, et	-CG: N = 33	-CG: Mean age = 55.6, SD = 13.5	First degree	-	Concentration and	$CG \downarrow$ time on the embedded
al. (2002)	-Non-CG: N =	F = 82%, M = 18%	relative, spouse or		problem solving	figures test
	33	73% Caucasian, 27 African-	in-law		(Proofreading	CG: Trend for missing more
		American			task, Embedded	errors on proofreading test.
		-Non-CG: Mean age = 55.4, SD			Figure Test)	
		= 14.1				
		F = 82%, M = 18%				
		73% Caucasian, 27 African-				
		American				
Caswell	-CG: N = 44	-CG: Mean age = 74.27, SD =	All spouses	-	Information	CG: ↓ DST overall performance.
et al.	-Non-CG: N =	7.91			processing speed,	Explained by CG status as well as
(2003)	66	F = 52.3%, M = 47.7%			concentration and	age and education, but no longer

 Table 5: Summary of studies examining effects of family dementia caregiving on neurocognition and neurotrophins

		-Non-CG: Mean age = 70.85, SD			attention (Digit	significant when distress was
		= 6.32			symbols test;	added to equation
		F = 68.2%, M = 31.8%.			DST)	
		All Caucasian				
Correa et	-CG: N = 17	-CG: Mean age: 64.83, SEM =	-	Duration: at least	Logical/episodic	CG: ↓ cognitive performance
al. (2015)	-Non-CG: N =	3.64		one year	Memory (Story	(Digit Span and Trail Making B
	18	F = 13, M = 5		Level: at least 8	recall), Working	post-covariate adjustment)
		-Non-CG: Mean age = 58.29,		hours per day	memory (Digit	
		SEM = 3.16			Span), Executive	
		F = 14, M = 3			function (Trail	
		-			Making)	
De Vugt	-CG: N = 54	-CG: Mean age = 68.4, SD = 8.5	All spouses	Median duration	Verbal memory	CG: ↓ performance in delayed
et al.	-Non-CG: N =	F = 59.3%, M = 40.7%		= 24 months,	(Auditory verbal	recall and speed of information
(2006)	108	-Non-CG: Mean age = 68.3, SD		range = 3-120	learning test), info	processing, trend for \downarrow
		8.4		months	processing speed	performance in cognitive
		F = 59.3%, M = 40.7%			(letter digit coding	flexibility. CG did not differ in IQ

		-		Mean level =	test), Stroop	
				153.6 hours/week,	(cognitive	
				SD = 14.1	flexibility), IQ	
					(Groninger	
					Intelligence Test-	
					short)	
Oken et	- CG: N = 31	-CG: Mean age = 64.5, SD = 9.3	23 spouses	Level: minimum	Attention	CG: ↓ performance Attention
al. (2011)	-Non-CG: N	F = 25, M = 6		10 hours/week	(Attention	network test and Stroop, no
	=25	-Non-CG: Mean age = 66.5, SD			network test),	difference in verbal memory
		= 7.6			cognitive	
		F = 22, M = 3			flexibility	
					(Stroop), verbal	
					memory (CERAD	
					word list)	

Palma et	-CG: N = 14	-CG: Age range = 66-74	-	Duration: at least	Logical/episodic	CG: \downarrow recall, memory \uparrow for
al. (2011)	-Non CG: N =	F = 7, M = 7		1 year	Memory (Story	emotionally valenced story only
	24	-Non-CG: Age range = 61-82		Level: at least 6	recall)	for non-CG.
		F = 20, M = 4		hours/day		
Vitaliano	-CG: $N = 130$	-CG: Mean age = 71.7, SD = 8.9	All spouses	Median duration	Information	CG: ↓ DST scores at T1, 1-tear
et al.	-Non-CG: N =	F = 62%, M = 38%		= 44.1 months	processing speed,	and 2-year follow-up, and declined
(2009)	13	94% White		Mean level = 7	concentration and	4.5 times faster than non-CG
		-Non-CG: Mean age = 70.2, SD =		hours/day, SD =	attention (DST)	
		7.2		8.2		
		F = 64%, M = 32%				
		92% White				
Vitaliano	-CG: N = 130	-CG: Mean age = 71.7, SD = 8.9	All spouses	Mean level = 7	Information	CG: \downarrow DST at T1 and 2-year
et al.	-Non-CG: N =	F = 62%, M = 38%		hours/day, SD =	processing speed,	follow-up
(2007)	125 (at time 1)	94% Caucasian		8.2 (At T1)	concentration and	
		-Non-CG: 70.2, SD = 7.2			attention (DST)	

F = 64%, M = 36%		
92% Caucasian		

Article	Sample size	Participant age, gender &	Relation to care	Level of care	Biomarkers	Findings
		ethnicity	recipient	provided	examined	
Aschbac	-CG: N = 51	Mean age = 77, SD = 6.8	All spouses	Mean duration =	BMI	CG: No sig difference for BMI
her et al.	-Non-CG: N =	All female		7.75 years, SD =		
(2007)	27	95% Caucasian		2.49		
Bauer et	-CG: N = 49	Mean age = 72, SD = 7.7	All spouses	-	BMI	CG: No sig difference for BMI
al. (2000)		F = 24, M = 25				
		All Caucasian				
Brummet	-CG: N = 147	-CG: Mean age = 60.6, SD = 13.1	96% children	Duration:	Plasma glucose	CG: \uparrow glucose for those with worse
et al.	-Non-CG: N =	F = 110, M = 37		Majority active		neighbourhood characteristics
(2005)	147	38 African-American		for 3 months or		
		-Non-CG: Mean age = 55.7, SD =		longer		
		14.3				
		F = 111, M = 36				

Table 6: Summary of studies examining effects of family dementia caregiving on other markers of stress

		42 African-American				
Da Roza	-CG: N = 30	-CG: Mean age = 68.8, range =	-	-	Plasma	CG: \downarrow total tryptophan, no
Davis et al.	-Non-CG: N =	30-75 years			tryptophan	difference in free tryptophan
(2001)	28	F = 18, M = 12				
		-Non-CG: Mean age = 68.1,				
		range = 35-84 years				
		F = 17, M = 11				
		-				
Damjano	-CG: N = 41	Mean age = 65 , SD = 1	26 spouses, 15	Mean duration =	PBMC telomere	CG: \downarrow telomere lengths in PBMC.
vic et al.	-Non-CG: N =	-CG: F = 30, M = 11	children	5.2 years, SD =	length, telomerase	CG: ↑ basal telomerase activity in
(2007)	41	-Non-CG: F = 30, M = 11		0.5	activity	PBMC and T cells
		-				
Epel et	-CG: N = 22	Mean age = 62, range = 51-75	All spouses/	Level: at least 4	PBMC telomerase	CG: ↓ telomerase activity at
al. (2010)	-Non-CG: N =	All female	partners	hours/day	activity	baseline and \downarrow telomerase activity
	22	84% Caucasian, 5% African				across timepoints. Similar \uparrow in
		American, and 11% Asian				

						telomerase activity in response to
						acute stress
Fonareva	-CG: N = 20	-CG: Mean age = 64.5, SD = 7.13	70% spouses,	-	Sleep	CG: \uparrow sleep time in stage N1, \downarrow in
et al.	-Non-CG: N =	F = 18, M = 2	30% children		polysomnography	stage R, similar time in stages N2
(2011)	20	-Non-CG: Mean age = 66.95, SD =				and N3
		7.89				
		F = 18, M = 2				
		97.5% White				
Kiecolt-	-CG: N = 58	-CG: Mean age = 70.1, SD = 9.41	Spouses and	-	Telomere length	Multiple childhood adversities: \downarrow
Glaser et	-Non-CG: N =	F = 41, M = 17	children			telomere length
al. (2011)	74	-Non-CG: Mean age = 69.34, SD				
		= 10.73				
		F = 54, M = 20				
		122 White, 10 Non-White				
Kring et	-CG: N = 126	-CG: Mean age = 63.2, SD = 13.1	96% children	-	Plasma glucose,	No significant difference in
al. (2010)		F = 91, M = 35			serum insulin	glucose/insulin

	-Non-CG: N =	-Non-CG: Mean age = 60, SD =				
	122	14.4				
		F = 91, M = 31				
		All White				
Mills et	-CG: N = 81	-Males (N = 34):	All spouses	-	Sleep	Males caring for spouse with more
al. (2009)	-Non-CG: N =	CG with High CDR: Mean age =			polysomnography	severe dementia had more time
	41	75.6, SD = 9.1				awake after sleep onset (WASO)
		CG with Low CDR: Mean age =				and trend for poorer sleep
		77.8, SD = 3.5				efficiency than female CG for
		Non-CG: Mean age = 70.5, SD =				worse dementia
		8.9				
		88% Caucasian				
		-Females (N = 88):				
		CG with High CDR: Mean age =				
		71.3, SD = 9.3				

		CG with Low CDR: Mean age =				
		68.5, SD = 8.2				
		Non-CG: Mean age = 65.7, SD =				
		6.2				
		89% Caucasian				
Roepke	-CG: N = 111	-CG: Mean age = 73.6, SD = 8.2.	All spouses	Mean duration:	Sleep actigraphy	CG: No difference in sleep
et al.	-Non-CG: N =	F = 76, M = 35		4.2 years, SD =		efficiency
(2011a)	51	102 White, 6 other		3.5		
		-Non-CG: Mean age = 74.7, SD =				
		6.4				
		F = 35, M = 16				
		43 White, 7 other				
Sakurai	-CG: N = 20	-CG: Median age = 60 (25th-	7 spouses, 10	Median duration	Sleep actigraphy	CG: No difference in sleep
et al.	-Non-CG: N =	75th percentile: 56-65.8)	children, 3 child-	= 3.9 years (25th-		latency, time, efficiency, or wake
(2015)	20	F = 16, M = 4	in-law	75th percentile =		after sleep onset
				2.4-5.2)		

		-Non-CG: Median age = 64.5				
		(25th-75th percentile: 59.3-69).				
		F = 16, M = 4				
		-				
Thompso	-CG: N = 61	-Female: Mean age = 69.7, range =	All spouses	-Female: Mean	Skin temperature	Women had ↓ skin temp at
n et al.		56-87		duration = 5.8		baseline and during post-stress
(2004)		-Male: Mean age = 71.4, range =		years, range = 1-		relax phase
		61-84		12 years		
		F = 45, M = 16		-Male: Mean		
		-		duration $=$ 5.3		
				years, range = 1-		
				11		
Tomiya	-CG: N = 14	Mean age = 62, SD = 6.46	All partners	-	PBMC telomere	CG: no difference in telomere
ma et al.	-Non-CG = 9	All female			length	length or BMI
(2012)		82% White, 11% Asian, 5% Black,			BMI	
		2% Latina				

-CG: N = 81	-CG: Mean age = 69.8, SD = 8	All spouses	-Male CG: Mean	BMI	Male CG: \uparrow BMI at T1 and T2.
-Non-CG: N =	F = 64%, M = 36%.		duration $=$ 40.1		Female CG: No difference in BMI,
36	80 White, 1 African-American		months, $SD = 24.8$		but gained more weight between
	-Non-CG: Mean age = 69.1, SD =		-Female CG:		T1 and T2
	5.6		Mean duration =		
	F = 70%, M = 30%		47.2 months, SD =		
	85 White, 1 African-		29.5		
	American/Asian dyad				
-CG: N = 78	-CG: Mean age = 69.8, SD = 7.4	All spouses	-Male CG: Mean	Insulin	CG: \uparrow hostility = \uparrow glucose
-Non-CG: N =	F = 47, M = 26		duration $=$ 45.5	Glucose	
72	77 Caucasian, 1 African-		months, $SD = 20.8$		
	American.		-Female CG:		
	-Non-CG: Mean age =69.1, SD =		Mean duration =		
	5.4		69.1 months, SD =		
	F = 50, M = 22.		5.4		
	-Non-CG: N = 6 -CG: N = 78 -Non-CG: N =	-Non-CG: N = $F = 64\%$, M = 36%. 6 80 White, 1 African-American -Non-CG: Mean age = 69.1, SD = 5.6 $F = 70\%$, M = 30% 85 White, 1 African-American/Asian dyad -CG: N = 78 -CG: Mean age = 69.8, SD = 7.4 -Non-CG: N = $F = 47$, M = 26 2 77 Caucasian, 1 African-American, 1 American. -Non-CG: Mean age = 69.1, SD = 5.4	-Non-CG: N = $F = 64\%$, M = 36%. 6 80 White, 1 African-American -Non-CG: Mean age = 69.1, SD = 5.6 F = 70%, M = 30% 85 White, 1 African- American/Asian dyad -CG: N = 78 -CG: Mean age = 69.8, SD = 7.4 All spouses -Non-CG: N = $F = 47$, M = 26 2 77 Caucasian, 1 African- American. -Non-CG: Mean age = 69.1, SD = 5.4	Non-CG: N =F = 64%, M = 36%.duration = 40.1680 White, 1 African-American -Non-CG: Mean age = 69.1, SD = 5.6 F = 70%, M = 30% 85 White, 1 African- American/Asian dyad-Female 47.2 months, SD = 29.5-CG: N = 78 -CG: Mean age = 69.8, SD = 7.4 -Non-CG: N = 2-CG: Mean age = 69.8, SD = 7.4 F = 47, M = 26 77 Caucasian, 1 African- American. -Non-CG: Mean age = 69.1, SD = 5.4All spouses-Non-CG: M = 5.4 $-Female$ Mean duration = 45.5-Male CG: Mean duration = 45.5	-Non-CG: N =F = 64%, M = 36%.duration = 40.1680 White, 1 African-American -Non-CG: Mean age = 69.1, SD = 5.6 F = 70%, M = 30% 85 White, 1 African- American/Asian dyad-Female 47.2 months, SD = 29.5CG: Mean duration = 47.2 months, SD = 29.5-CG: N = 78 - CG: Mean age = 69.8, SD = 7.4 American.All spouses-Male CG: Mean duration = 45.5 All spousesInsulin-CG: N = 78 2-CG: Mean age = 69.8, SD = 7.4 77 Caucasian, 1 African- American.All spouses-Male CG: Mean duration = 45.5 BlucoseInsulin277 Caucasian, 1 African- AmericanFemale CG: Mean duration = 69.1 months, SD =CG: Mean duration = 69.1 months, SD =

		71 Caucasian, 1 African- American/Asian				
Vitaliano	-CG: N = 78	-CG: Mean age = 69.8, SD = 7.4	All spouses	-Male CG: Mean	Insulin	Differences in psychological
et al.	-Non-CG: N =	F = 65%, M = 35%		duration $=$ 45.5	Glucose	distress mediated higher insulin in
(1996c)	72	77 Caucasian, 1 African-		months, $SD = 20.8$		CG at T2. CG: no difference in
		American.		-Female CG:		glucose, but psychological distress
		-Non-CG: Mean age =69.1, SD =		Mean duration =		= \uparrow glucose at T2 (controlling for
		5.4		52.7 months, SD =		T1)
		F = 69%, M = 31%		30.6		
		71 Caucasian, 1 African-				
		American/Asian dyad				
Vitaliano	-CG: N =110	-CG: Mean age = 72.2, SD = 9.3	All spouses	-	Glucose, insulin,	CG: ↑ insulin, glucose, obesity
et al.	-Non-CG: N =	F = 60%, M = 40%			BMI	
(2005)	105	93% Caucasian, 7% non-				
		Caucasian				

		-Non-CG: Mean age = 71, SD =				
		6.9				
		F = 62%, M = 38%				
		94% Caucasian, 6% non-				
		Caucasian				
Von	-CG: N = 97	-CG: Mean age = 72.4, SD = 8.7	All spouses	-	Sleep actigraphy	CG: \downarrow % sleep, wake after sleep
Känel et	-Non-CG: N =	F = 71%, M = 29%				onset, ↑ duration of awakenings
al. (2010a)	48	-Non-CG: M= 67.9, SD = 7				
		F = 73%, M = 27%				
		-				
Von	-CG: N = 109	-CG: Mean age = 74.1, SD = 8.1	All spouses	Mean duration =	Sleep actigraphy	Spousal death \uparrow CG night time
Känel et	-Non-CG: N =	F = 69.7%, M = 30.3%		4.5 years, SD =		wake after sleep onset & daytime
al. (2012a)	48	-Non-CG: Mean age = 74.7, SD		3.5 years		total sleep time. Night time sleep
		= 6				percent ↓. Night time total sleep
		F = 62.5%, M = 37.5%				time did not change. Placement of
		92% Caucasian, 8% other				

						spouse had no significant effect on
						CG sleep.
Von	-CG: N = 119	-CG: Mean age = 74.4, SD = 8.1	All spouses	Mean duration =	Glomerular	CG: No difference in change in
Känel et	-Non-CG: N =	F = 69.7%, M = 30.3%		4.4 years, SD =	filtration rate	GFR at follow-up. GFR \downarrow
al. (2012b)	58	113 Caucasian		3.4	(GFR)	disproportionately 3 months after
		-Non-CG: Mean age = 74.9, SD				placement of spouse in nursing
		= 6.2				home. Effect stronger in CG with
		F = 67.2%, M = 32.8%				hypertension or \uparrow DBP levels
		50 Caucasian, 5 African American,				
		9 Other				
Zhang et	-CG: N = 93	-CG: M = 69.9, SD = 7.4	All spouses	Male CG: Mean	Glucose	Higher Sense of coherence = \downarrow
al. (2001)	-Non-CG = 91	F = 66%, M = 34%		duration $=$ 45.5		glucose in males (both CG and
		-Non-CG: M = 69.1, SD = 5.4		months, $SD = 20.8$		non-CG)
		F = 71%, M = 29%		Female CG: Mean		
		All Caucasian		duration $= 52.7$		
				months, $SD = 30.6$		

Article	Intervention	Sample size	Participant age,	Relation to care	Level of care	Biomarkers	Findings
			gender &	recipient	provided	examined	
			ethnicity				
Aboulafia-	Cognitive	-CBT: N = 12	-CBT: Mean age:	-CBT: 9	-CBT: Mean level	Salivary cortisol	CBT: ↓ salivary
Brakha et al.	behavioural	-PE: N = 15	59.42, SD = 6.67	spouses, 2	= 6 hours/day, SD		cortisol levels post-
(2014)	therapy (CBT) v		All female	children, 1 other	= 2.09		intervention, not in PE
	Psycho-		-	-PE: 12 spouses,	PE: Mean level =		
	education (PE)		-PE: Mean age =	2 children, 1 other	5.40 hours per day,		
			55.07, SD = 10.68		SD = 2.35		
			F = 10, M = 5				
			-				
Black et al.,	Kirtan Kriya	-Med: N = 23	-Med: Mean age =	-	- Med: Mean	Genome-wide	Med: \downarrow expression of
(2013)	Meditation	-Music: N = 16	60.5 SD = 28.2		duration = 4.7	transcriptional	genes bearing NF-κB-
	(Med) v.		F = 100%		years, $SD = 2.4$	analysis	response elements, and \uparrow

Table 7: Studies examining interventions to reduce impact of dementia caregiving on biomarkers of stress

	relaxing music		-		Mean level= 47.8		expression	of genes
	control (Music)		-Music: Mean age		hours/week, SD =		bearing	Interferon
			= 60.6, SD = 12.5		35.8		Response	Factor 1
			F = 88%, M = 12%		- Music: Mean		response eler	nents
			-		duration $=$ 4.2			
					years, SD =2.9			
					Mean level = 63.3			
					hours/week, SD =			
					36.2			
Danuclav et	Yoga &	-YCMP: N =	-YCMP: Mean age	-	-YCMP: Mean	Salivary cortisol	YMCP: ↓ co	ortisol post-
al. (2013)	Compassion	25	= 55.5, SD = 8.1		duration $=$ 4.2	(waking, 30 mins	intervention,	not in
	Meditation	-Control: N =	F = 22, M = 3.		years, $SD = 3.3$	post-waking)	control	
	Program	21	-		-Control: Mean			
	(YCMP).		-Control: Mean age		duration $= 5.7$			
			= 53.4, SD = 8.2		years, $SD = 3.7$			

	v. No treatment		F = 19, M = 2.							
	control (Control)		-							
Garand et al.	Progressively	-CG: N = 37	Mean age $= 65.49$,	73% spouses	Mean = 61.51	NK		cell	PLST: ↑	T-cell
(2002)	Lowered Stress		SD = 10.75		months ago since	cytot	toxicity,	T-	proliferation to P	HA and
	Threshold		F = 92%, M = 8%		diagnosis, SD =	cell	prolifer	ation	con, including	at 6-
	(PLST) v.		All Caucasian		63.17	to	PHA	and	month follow-up	
	comparison				Mean level: PLST:	conc	anavalin	А		
	intervention with				Mean = 161.57					
	information,				hours/week, SD =					
	psychological				46.27					
	support,				Comparison: M =					
	community				133.35 hours/					
	services				week, SD = 46.27					
	(comparison)									

Grant et al.	Respite: 10 days	-Vulnerable	-Vulnerable CG:	All spouses	At least 27	BP	In vulnerable CG, at 1-
(2003)	of in-home help	CG: N = 27	Mean age = 72.07,		providing more	HR	month follow-up, respite
	v. non-respite	-Non-	SD = 6.32		than 12 hours/day	EPI	↓ plasma EPI, but
	control	vulnerable CG:	F=55.6%,		(vulnerable CG)	NE	waitlist \uparrow . No effect for
		N = 28	M=44.4%.				NE, HR, BP
			89.3% White,				
			10.7% non-White				
			-Non-vulnerable				
			CG: Mean age =				
			74.54, SD = 4.05				
			F = 67.9%, M =				
			32.1%				
			100% White				
Holland et al.	Coping with	-CwC: N = 90	Mean age = 58.21,	38.3% spouse	Mean duration =	Salivary cortisol	CG intensity (hours +
(2011)	Caregiving	-TSC: N = 85	SD = 13.76		4.24 years, SD =	(waking, 5pm,	cohabit): ↓ baseline cort-
	(CwC) v.		All female		4.12	9pm)	

	telephone		53.1 % Caucasian,		Mean level = 10.18		at waking and flatter
	support control		46.9% Hispanic		hours/day, SD =		across day
	(TSC)		/Latino		7.2		CwC: no main effect on
			-				cort, but high intensity
							CG had dysregulation
							reversed by intervention
Innes et al.	Kirtan Kriya	-CG: N = 5	Mean age $=$ 71.5,	5 spouses, 1	-	BP, heart rate,	CG: ↑ retrospective
(2012)	Meditation	(with 5 care	SEM = 5.25 (1)	daughter		cognitive status	memory and \downarrow SBP.
	(Med)	recipients)	person dropped				Trend for BDP
	(No control		out)				
	condition)		F = 3, M = 3				
			All non-Hispanic				
			White				
Kim et al.	Support program	-SP: N = 25	-SP: Age: $N = 1$:	-SP: 6 Daughters-	-SP: Duration of	EPI, NE	-SP: No sig. change in
(2011)	(SP), 8 weeks, 2-	-Control: N =	80+ years, N = 8:	in-law, 1 son, 10	care: $20 = 5$ years		NE, but was \uparrow for
		19	60-69, N = 10: 50-				control, no effect on EPI.

	3 hours per		59, N = 4: 40-49, N	daughters, 4	or less, 4 = 6-15, 1		No baseline difference in
	session		= 2: below 40	spouses, 4 sisters	= 16 or more		EPI/NE.
	v. no		F = 24, M = 1	-Control: 5	-Control: Duration		
	intervention		-	daughter-in-laws,	of care: $9 = 5$ years		
	(Control)		-Control: Age: N =	1 son, 3	or less, $6 = 6-15$, 4		
			3: 80+, N = 1: 70-	daughters, 9	= 16 or more		
			79, N = 10: 60-69,	spouses, 1 sister			
			N = 3: 50-59, N = 2:				
			40-49				
			F = 16, M = 3				
			-				
King et al.	Home-based	-Exercise: N =	-Exercise: Mean	-Exercise: 55.6%	Mean duration = 4	HR, BP (in	Exercise: ↓ BP reactivity
(2002b)	exercise v.	45	age = 62.2, SD =	spouse	years	response to	to emotional stressor
	nutrition	-Control: N =	9.3	-Control: 50%	Mean level = 72	emotional	
	education as	40	-Control: Mean age	spouse	hours/week	challenge)	
	attention control		= 63.3, SD = 9				

			All female					
			86% White					
Lavretsky et	Kirtan Kriya	-CG: N = 39	-Med: Mean age =	13 spouses,	36	-Med: Mean	Telomerase	Med: MMSE and
al. (2013)	Meditation	-Med: N = 23	60.5, SD = 28.2	children	(at	duration = 4.7	activity, verbal	Trailmaking B
	(Med) v Music	-Music: N = 16	All female	screening)		years, $SD = 2.4$	memory, attention	(executive function).
	control (Music)		-Control: Mean age			Mean level $= 47.8$	and processing	↑ telomerase activity
			= 60.6, SD = 12.5			hours/week, SD =	speed, executive	
			F = 14, M = 2			35.8	function	
			-			-Control: Mean		
						duration $=$ 4.2		
						years, $SD = 2.9$		
						Mean level $= 63.3$		
						hours/week, SD =		
						36.2		

Leach et al.	Transcendental	-TM: N = 8	-TM: Mean age =	-TM: 5 spouses, 3	-TM: Mean	Cognitive	TM: ↑ response speed
(2015)	meditation (TM)	-Waitlist: N = 9	69.4, SD = 7.3.	children	duration $= 6.75$	performance	
	course v. waitlist		F = 7, M = 1	-Waitlist: 6	years, SD = 3.57	(response speed,	
	control (waitlist)		-	spouses, 3	Mean level =	impulsivity,	
			-Waitlist: Mean age	children	118.06	attention &	
			= 63.2, SD = 8.8		hours/week, SD =	concentration,	
			F = 8, M = 1		68.9	information	
			-		-Waitlist: Mean	processing	
					duration $=$ 4.21	efficiency,	
					years, $SD = 3.32$	memory,	
					Mean level =	executive	
					125.71	function, emotion	
					hours/week, SD =	identification,	
					72.27	emotion bias)	

McKenzie et	CBT	-CG: N = 12	Mean age = 70.17,	All spouses	Mean level $= 9.46$	Cognition	CBT: ↑ cognition total
al. (2013)	(No control		SD = 7.15		hours/day, SD =		index; \uparrow attention,
	condition)		F = 91.7%		9.42		immediate and delayed
			All White				memory
Moore et al.	Pleasant events	-PEP: N = 49	-PEP: Mean age =	Family members	PEP: Mean	D-dimer, IL-6	PEP: \downarrow IL-6 more than
(2013)	program (PEP)	-IS: N = 51	70.86, SD = 7.57		duration $= 5.42$		IS, though not
	v. info support		F = 81.6%, M =		years, SD = 4.91		maintained at 1-year
	(IS)		18.4%		Mean level $= 8.22$		follow-up
			89.8% Caucasian		hours/day, SD = 5		No sig difference
			-IS: Mean age =		IS: Mean duration		between treatments for
			71.33, SD = 9.08		= 3.95 years, SD =		D-dimer.
			F = 66.7% M =		2.41		
			33.3%		Mean level $= 8.02$,		
			90.2% Caucasian		SD = 5.38		

Oken et al.	Mindfulness-	-CG: N = 31	-MBCT: Mean age	-MBCT:	7]	Level: At least 12	Salivary	cortisol,	MBC	Г&РТ(C: ↑ A	NT
(2010)	based cognitive		= 62.5, SD = 11.6	spouses,	3 1	hours/week	cognition	(Stroop	alertin	g score.		
	therapy		F = 8, M = 2	children			colour a	nd word	PTC:	ſ	Str	oop
	(MBCT), v.		8 White, 1 AA, 1	-PTC: 8 spouse	s,		test, ANT)	perfor	mance		
	educational class		Asian	3 children					No	differen	nces	in
	adapted from		-PTC: Mean age =	-Control:	8				cortise	ol		
	Powerful Tools		67.1, SD = 8.4	spouses,	2							
	for		F = 8, M = 3	children								
	Caregivers(PTC)		8 White, 1 Asian									
	v. respite-only		-Control: Mean age									
	interventions		= 63.8, SD = 7.9									
	(Control)		F = 9, M = 1									
			10 Caucasian									

Pomykala et	Kundalini Yoga	-Yoga: N = 4	-Yoga: Mean age =	-	Yoga: Mean	PET	Yoga: ↓ metabolism
al. (2012)	v. relaxation	-RC: N = 5	56, SD = 10.1.		duration = 7.8		over time in right
	control (RC)		All female		years, $SD = 2.9$		inferior frontal cortex,
			-		RC: Mean duration		right posterior cingulate
			RC: Mean age =		= 4.2 years, SD =		cortex, left associative
			49.8, SD = 3.9		3.6		visual cortex. ↑ left
			F = 4, M =1		Level: At least 3		superior frontal cortex,
			-		days per week		right lentiform nucleus,
							bilateral cerebellar
							metabolism. Yoga
							showed smaller \uparrow right
							anterior hippocampus
Vedhara et al.	Cognitive-	-CG: N = 43	-CG: Mean age =	All spouses	Mean duration = 4	Saliva cortisol,	CG: no difference on
(2003)	behavioural SMI	-Non-CG: N =	75 years, SD = 7		years, $SD = 2$ since	IgG response to	salivary cort. Cortisol
	course	27	F = 24, M = 19		diagnosis	vaccination	highest mid-course.
			42 White/European				CBT: ↑ IgG response

	(No control		-Non-CG: Mean		Mean level = 16		and more likely to show
	condition)		age = 71 years, SD		hours/day, SD = 6		clinically appropriate
			= 4				level of response to viral
			F = 14, M = 13				strain
			26 White/European				
Wilkins et al.	Psycho-	-CG: N = 11	Mean age = 70, SD	All spouses	-	T cell proliferation	PE: \downarrow immune function
(1999)	education (PE;		= 5.7			capacity in	post-intervention, but
	coping skills +		All female			response to	trend for improvement at
	CBT)		6 Caucasian, 4 AA,			phytohemaglutinin	1 month follow-up
	(No control		1 Hispanic			antigen (PHA)	
	condition)						
Williams et	Video-based	-VSC: N = 59	-VSC: Mean age =	-VSC: 30	-VCS: Mean = 42	BP, HR, salivary	VCS: ↓ DBP and SBP,
al. (2010)	coping skills	-Control: N =	62.1, SD = 13.6	spouses, 22	months since	cortisol (in	no effect for BP/HR
	(VSC) v. waitlist	57	F = 44, M = 15	children, 7 other	diagnosis, SD = 35	response to stress	reactivity to stress. No
	control (control)		37 Caucasian, 20		-Waitlist: Mean =	and at waking-i.e.	effect on cortisol
			AA, 1 other		45, SD = 32		

-Waitlist: Mean age	-Control: 17	waking, wake +30	
= 59, SD = 12.8	spouses, 36	mins, after 6pm)	
F = 46, M = 11	children, 4 other		
36 Caucasian, 20			
AA			

 Table 8: Quality assessment of literature reviewed

							<u>Overall</u>
	Selection	Exposure	<u>Outcome</u>	Confounding	<u>Analytical</u>	<u>Attrition</u>	<u>risk of</u>
<u>Study</u>	<u>bias</u>	<u>bias</u>	<u>bias</u>	<u>bias</u>	<u>bias</u>	<u>bias</u>	<u>bias</u>
							Low-
Aboulafia-Brakha et al. (2014)	Low	High	Minimal	Low	Low	Low	Moderate
							Low-
Adler et al. (2002)	Moderate	High	Minimal	High	Low	N/A	Moderate
							Low-
Aschbacher et al. (2005)	Low	High	Moderate	Minimal	Low	N/A	Moderate
						Unclear	Low-
Aschbacher et al. (2006)	Moderate	Low	Minimal	Minimal	Moderate	(moderate)	Moderate
Aschbacher et al. (2008)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
Aschbacher et al. (2009)	Moderate	High	Minimal	Minimal	Moderate	Moderate	Moderate
Aschbacher et al. (2013)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
Atienza, et al. (2001)	Minimal	Minimal	Minimal	Minimal	Low	N/A	Minimal
Bauer, et al. (2000)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
Black et al. (2013)	Low	Low	Minimal	Minimal	Moderate	Low	Low

							Low-
Bristow, et al. (2008)	Low	High	Minimal	Minimal	High	N/A	Moderate
Brummet et al. (2005)	Minimal	Low	Moderate	Minimal	Low	N/A	Low
							Low-
Brummet et al. (2007)	Low	High	Minimal	Minimal	Moderate	N/A	Moderate
							Low-
Brummet et al. (2008)	Low	High	Minimal	Minimal	Low	N/A	Moderate
Brummet et al. (2013)	Low	High	Moderate	Minimal	Low	Moderate	Moderate
							Low-
Burns et al. (2002)	Minimal	High	Minimal	Minimal	Moderate	N/A	Moderate
Cacioppo et al. (1998)	Minimal	Low	Minimal	Minimal	Moderate	N/A	Low
Cacioppo et al. (2000)	Minimal	Low	Minimal	Minimal	Moderate	N/A	Low
Castle et al. (1995)	Moderate	High	Minimal	High	Moderate	N/A	Moderate
							Low-
Caswell et al. (2003)	Minimal	High	Minimal	Low	Moderate	N/A	Moderate
Chattillion et al. (2012)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
Chattillion et al. (2013)	Low	Low	Minimal	Minimal	Low	N/A	Low
Clark et al. (2007)	Moderate	Low	Moderate	High	Low	Moderate	Moderate
Correa et al. (2015)	Low	Low	Minimal	Minimal	Low	N/A	Low

							Low-
Da Roza Davis & Cowen (2001)	Minimal	High	Minimal	Low	Moderate	N/A	Moderate
							Low-
Damjanovic et al. (2007)	Moderate	Low	Minimal	Low	Moderate	N/A	Moderate
							Low-
Danucalov et al. (2013)	Low	Low	Minimal	Minimal	Moderate	Moderate	Moderate
Davis et al. (2004)	Low	Minimal	Moderate	Minimal	Minimal	Low	Low
							Low-
de Vugt et al. (2005)	Low	Low	Moderate	Minimal	Low	N/A	Moderate
							Low-
de Vugt et al. (2006)	Moderate	Low	Minimal	Minimal	Low	Moderate	Moderate
Epel et al. (2010)	Low	Low	Minimal	Minimal	Moderate	Minimal	Low
Esterling et al. (1994)	Low	Low	Minimal	Minimal	Low	N/A	Low
Esterling et al. (1996)	Low	Low	Minimal	Minimal	Low	N/A	Low
Fonareva et al. (2011)	Low	High	Moderate	Minimal	Moderate	N/A	Moderate
							Low-
Gallagher-Thompson et al. (2006)	Minimal	Low	Moderate	Minimal	Moderate	N/A	Moderate
Garand et al. (2002)	Low	Low	Minimal	Minimal	Moderate	Low	Low
Glaser & Kiecolt (1997)	Moderate	Low	Minimal	Minimal	Low	N/A	Low
Glaser et al. (1998)	Moderate	Low	High	Minimal	Moderate	N/A	Moderate

							Low-
Glaser et al. (2000)	Low	Low	High	Minimal	Moderate	N/A	Moderate
Glaser et al. (2001)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
							Low-
Gouin et al. (2012)	Low	Low	Moderate	Minimal	Moderate	N/A	Moderate
							Low-
Graham et al. (2006)	Low	Low	Moderate	Minimal	Low	N/A	Moderate
Grant et al. (2003)	Low	Low	Minimal	Minimal	Low	Low	Low
							Low-
Hadjiconstantinou et al. (2001)	Low	Low	Moderate	Minimal	Low	N/A	Moderate
Harmell et al. (2011)	Low	Low	Minimal	Minimal	Low	N/A	Low
							Low-
Ho et al. (2014)	Low	Low	Moderate	Minimal	Moderate	N/A	Moderate
				Unclear			
Holland et al. (2010)	Minimal	Low	Minimal	(Moderate)	Low	Low	Low
							Low-
Holland et al. (2011)	Low	Low	Minimal	Minimal	Moderate	Moderate	Moderate
							Moderate-
Innes et al. (2012)	Moderate	High	Moderate	High	Moderate	Low	High
							Low-
Irwin et al. (1991)	Low	High	Minimal	Minimal	Moderate	N/A	Moderate

Irwin et al. (1997)	Low	Low	Minimal	Minimal	Low	N/A	Low
							Low-
Irwin et al. (2013)	Moderate	High	Minimal	Minimal	Moderate	N/A	Moderate
Jeckel et al. (2010)	Low	Low	Minimal	Minimal	Low	N/A	Low
							Low-
Kiecolt-Glaser et al. (1991)	Moderate	Low	Minimal	Minimal	Low	Moderate	Moderate
Kiecolt-Glaser et al. (1995)	Low	Low	Minimal	Minimal	Low	N/A	Low
							Low-
Kiecolt-Glaser et al. (1996)	Moderate	Low	Minimal	Minimal	Low	Moderate	Moderate
						Unclear	Low-
Kiecolt-Glaser et al. (2003)	Low	Low	Moderate	Minimal	Low	(moderate)	Moderate
							Low-
Kiecolt-Glaser et al. (2011)	Minimal	High	Minimal	Minimal	Moderate	N/A	Moderate
Kim et al. (2007)	Moderate	Minimal	Minimal	Minimal	Low	N/A	Low
							Moderate-
Kim et al. (2011)	High	Low	Moderate	Low	High	N/A	High
King et al. (2002a)	Low	Low	Minimal	Minimal	Low	N/A	Low
							Low-
King et al. (2002b)	Low	Low	Moderate	Minimal	Low	Low	Moderate
Klein et al. (2014)	Minimal	Low	Minimal	Minimal	Low	Minimal	Minimal

							Low-
Knight & McCallum (1998)	Low	High	Minimal	Minimal	Low	N/A	Moderate
Knight et al. (2007)	Minimal	Low	Minimal	Minimal	Moderate	N/A	Low
							Low-
Kring et al. (2010)	Low	High	Moderate	Minimal	Low	N/A	Moderate
							Low-
Lavretsky et al. (2013)	Low	Low	Moderate	Minimal	Low	Moderate	Moderate
							Low-
Leach et al. (2015)	Low	Low	Moderate	Minimal	Moderate	Minimal	Moderate
Leggett et al. (2014)	Moderate	Low	High	Minimal	Moderate	Minimal	Moderate
							Low-
Li et al. (2007)	Moderate	High	Minimal	Minimal	Low	Moderate	Moderate
Lutgendorf et al. (1999)	Low	High	Moderate	Minimal	Moderate	N/A	Moderate
							Low-
McCallum et al. (2006)	Low	Low	Moderate	Low	Moderate	N/A	Moderate
McKenzie et al. (2013)	Moderate	Low	Moderate	Low	Moderate	Moderate	Moderate
Malarkey et al. (1996)	Moderate	High	Minimal	Low	Moderate	N/A	Moderate
							Low-
Mausbach et al. (2005)	Moderate	High	Minimal	Minimal	Low	N/A	Moderate
							Low-
Mausbach et al. (2006)	Moderate	High	Minimal	Minimal	Moderate	N/A	Moderate

Mausbach et al. (2007a)	Low	High	Moderate	Low	Moderate	High	Moderate
							Low-
Mausbach et al. (2007b)	Moderate	High	Minimal	Minimal	Low	N/A	Moderate
Mausbach et al. (2007c)	Low	Low	Minimal	Minimal	Low	Moderate	Low
							Low-
Mausbach et al. (2008)	Low	Minimal	Minimal	Minimal	Low	High	Moderate
Mausbach et al. (2010)	Moderate	Low	Minimal	Minimal	Low	N/A	Low
Mausbach et al. (2012)	Low	Low	Minimal	Minimal	Low	High	Low
Merritt et al. (2011)	Minimal	Minimal	Moderate	Minimal	Moderate	N/A	Low
Merritt & McCallum (2013)	Minimal	Minimal	Minimal	Minimal	Low	N/A	Minimal
							Low-
Mills et al. (1997)	Low	High	Minimal	Minimal	Moderate	N/A	Moderate
							Low-
Mills et al. (2004)	Low	Low	Minimal	Moderate	Moderate	Moderate	Moderate
							Low-
Mills et al. (2009)	Low	High	Minimal	Minimal	Low	N/A	Moderate
Mills & Yu (1999)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
Moore et al. (2013)	Low	Minimal	Minimal	Minimal	Low	Moderate	Low
							Moderate-
Neri et al. (2007)	Moderate	Low	High	High	Low	N/A	High

							Low-
Oken et al. (2010)	Moderate	Low	Minimal	Moderate	Moderate	N/A	Moderate
							Low-
Oken et al. (2011)	Low	Low	Moderate	Minimal	Low	N/A	Moderate
							Low-
Palma et al. (2011)	Low	Low	Minimal	Low	Moderate	N/A	Moderate
Pomykala et al. (2012)	Low	Low	Minimal	Minimal	Low	Low	Low
							Low-
Redwine et al. (2004)	Moderate	Low	Minimal	Minimal	Moderate	N/A	Moderate
Reese et al. (1994)	Minimal	Low	Moderate	Minimal	Low	N/A	Low
							Low-
Roepke et al. (2008)	Moderate	Low	Moderate	Minimal	Low	N/A	Moderate
Roepke et al. (2011a)	Low	Low	Minimal	Minimal	Low	N/A	Low
							Low-
Roepke et al. (2011b)	Low	Low	Moderate	Minimal	Low	N/A	Moderate
Roepke et al. (2012)	Low	Low	Minimal	Minimal	Low	N/A	Low
							Low-
Sakurai et al. (2015)	Low	Low	Moderate	Minimal	Moderate	Minimal	Moderate
							Low-
Sarabia-Cobo et al. (2015)	Low	Low	Moderate	High	Minimal	Minimal	Moderate

							Low-
Scanlan et al. (1998)	Low	Low	Minimal	Minimal	Moderate	Moderate	Moderate
Scanlon et al. (2001)	Low	Low	Minimal	Minimal	Moderate	Low	Low
							Low-
Schwartz et al. (2013)	Moderate	Low	Moderate	Minimal	Moderate	N/A	Moderate
Segerstorm et al. (2008)	Low	Low	Moderate	Low	Moderate	Moderate	Moderate
							Low-
Shaw et al. (2003)	Low	Low	Moderate	Minimal	Moderate	Low	Moderate
							Low-
Shaw et al. (1999)	Low	Minimal	Moderate	Minimal	Moderate	Low	Moderate
Stalder et al. (2014)	Low	Low	Minimal	Minimal	Low	N/A	Low
Tarrier et al. (2002)	Moderate	Minimal	Minimal	Low	Low	N/A	Low
							Low-
Thompson et al. (2004)	Moderate	Low	Minimal	High	Low	N/A	Moderate
							Low-
Tomiyama et al. (2012)	Low	High	Minimal	Minimal	Moderate	N/A	Moderate
Uchino et al. (1992)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
							Low-
Uchino et al. (1994)	Low	Low	Moderate	Minimal	Moderate	Moderate	Moderate
						Unclear	
Vedhara et al. (1999)	Low	Low	Minimal	High	Moderate	(moderate)	Moderate

							Low-
Vedhara et al. (2003)	Low	Low	Minimal	High	Moderate	Minimal	Moderate
							Low-
Vitaliano et al. (1995)	Low	High	Minimal	Minimal	Moderate	N/A	Moderate
						Unclear	Low-
Vitaliano et al. (1996a)	Minimal	Low	Moderate	Minimal	Low	(moderate)	Moderate
Vitaliano et al. (1996b)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
Vitaliano et al. (1996c)	Low	Low	Minimal	Minimal	Moderate	N/A	Low
Vitaliano et al. (1998a)	Low	Low	Minimal	Minimal	Low	Minimal	Low
Vitaliano et al. (1998b)	Low	Low	Minimal	Minimal	Low	Low	Low
							Low-
Vitaliano et al. (2001)	Low	High	Moderate	Minimal	Moderate	Minimal	Moderate
							Low-
Vitaliano et al. (2002)	Low	Minimal	Moderate	Minimal	Moderate	Low	Moderate
Vitaliano et al. (2005)	Moderate	High	Minimal	Minimal	Moderate	Low	
Vitaliano et al. (2007)	Moderate	Low	Minimal	Minimal	Moderate	Minimal	
Vitaliano et al. (2009)	Low	Low	Minimal	Minimal	Low	Minimal	Low
							Low-
Von Känel, et al. (2001)	Moderate	High	Minimal	Minimal	Moderate	N/A	Moderate
							Low-
Von Känel, et al. (2003)	Moderate	High	Minimal	Minimal	Moderate	N/A	Moderate

							Low-
Von Känel, et al. (2005)	Low	High	Minimal	Minimal	Moderate	N/A	Moderate
Von Känel et al. (2006a)	Low	High	Moderate	Minimal	Moderate	N/A	Moderate
							Low-
Von Känel et al. (2006b)	Low	High	Minimal	Minimal	Moderate	N/A	Moderate
							Low-
Von Känel, et al. (2010a)	Low	High	Minimal	Minimal	Moderate	N/A	Moderate
							Low-
Von Känel, et al. (2010b)	Moderate	Low	Moderate	Minimal	Low	Moderate	Moderate
							Low-
Von Känel, et al. (2011a)	Low	Low	Moderate	Minimal	Low	N/A	Moderate
							Low-
Von Känel, et al. (2011b)	Low	Low	Moderate	Minimal	Low	N/A	Moderate
Von Känel, et al. (2012a)	Low	Low	Minimal	Minimal	Low	N/A	Low
							Low-
Von Känel, et al. (2012b)	Low	Low	Moderate	Minimal	Low	Low	Moderate
Von Känel, et al. (2012c)	Low	Low	Moderate	Minimal	Low	Minimal	Low
						Unclear	
Von Känel, et al. (2014)	Moderate	Low	Moderate	Minimal	Moderate	(moderate)	Moderate
Wahbeh et al. (2008)	Low	High	Moderate	Minimal	Moderate	N/A	Moderate

							Moderate-
Wilkins et al. (1999)	High	High	High	Minimal	Moderate	Moderate	High
Wilcox et al. (2005)	Moderate	Minimal	Minimal	Minimal	Moderate	N/A	Low
							Moderate-
Williams et al. (2010)	Moderate	Low	Moderate	High	Moderate	Unclear	High
Wu et al. (1999)	Moderate	High	Minimal	Low	Moderate	Low	Moderate
Zarit et al. (2014)	Minimal	Low	Minimal	Low	Low	N/A	Low
						Unclear	Low-
Zhang et al. (2001)	Low	Low	Minimal	Low	Moderate	(moderate)	Moderate
						Unclear	Low-
Zhang et al. (2006)	Low	High	Minimal	Minimal	Moderate	(moderate)	Moderate