<table>
<thead>
<tr>
<th>Title</th>
<th>Harnessing bacterial signals for suppression of biofilm formation in the nosocomial fungal pathogen Aspergillus fumigatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Reen, F. Jerry; Phelan, John P.; Woods, David F.; Shanahan, Rachel; Cano, Rafael; Clarke, Sarah L.; McGlacken, Gerard P.; O’Gara, Fergal</td>
</tr>
<tr>
<td>Publication date</td>
<td>2016-12-22</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.3389/fmicb.2016.02074</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2016 Reen, Phelan, Woods, Shanahan, Cano, Clarke, McGlacken and O’Gara. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. https://creativecommons.org/licenses/by/4.0/</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/3451</td>
</tr>
</tbody>
</table>

Downloaded on 2018-12-07T18:47:32Z
General procedure for the preparation of AHQ analogues

Methyl-3-oxodecanoate

2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum’s acid) (18.7 g, 130 mmol) was dissolved in distilled dichloromethane (200 mL). The solution was cooled to 0°C under a N₂ atmosphere. To the cooled solution were added pyridine (20.5 mL, 260 mmol) and octanoyl chloride (23.8 mL, 140 mmol), dropwise. The solution was stirred at 0°C for 1 hr and then at room temperature for 1 hr. The mixture was washed with 5% HCl (3 x 75 mL) and with distilled water (75 mL). The solution was then dried with anhydrous MgSO₄ filtered and concentrated in vacuo to yield acyl Meldrum’s acid as a brown oil which was used in the subsequent step without further purification.

Acyl Meldrum’s acid was dissolved in MeOH (180 mL) and heated at reflux for 5 hr with constant stirring. After allowing to cool, the reaction mixture was concentrated in vacuo yielding the crude product as an orange oil. Purification was achieved by fractional distillation affording the β-keto ester as a pale yellow oil (16.7 g, 64 % yield).

Substituted 2-alkyl-4-quinolones

To a solution of the β-ketoester (5 mmol) in dry hexane (10 mL) were added the substituted aniline (5 mmol) and p-toluene sulfonic acid (0.1 mmol). The reaction mixture was heated at reflux (>70°C) under N₂ atmosphere overnight using a Dean-Stark system. Upon completion, the reaction mixture was concentrated in vacuo to afford the crude β-enamino ester, which was then added drop-wise to refluxing diphenyl ether (2 mL, >260°C). Reflux was maintained for approx. 1.5 hr. After cooling to room temperature, ether (approx. 20 mL) was added to the reaction mixture and left overnight at 5°C, allowing the quinolone product to precipitate. The quinolone was collected by vacuum filtration, recrystallised from hot methanol (if necessary) and dried in vacuo.

Spectra data of new compounds

6-Bromo-2-heptylquinolin-4(1H)-one (20).
Grey solid: yield: 355 mg (14 %); m. p. = 186-188 °C (Et₂O); IR (KBr): 3421, 1632, 1596, 1130 cm⁻¹; ¹H-NMR (300 MHz, DMSO-d₆): δ 8.06 (t, J = 6.9 Hz, 3H), 1.20-1.35, 1.65-1.75 (2m, 8 and 2H, respectively), 2.74 (t, J = 7.7 Hz, 2H), 6.36 (s, 1H), 7.68 (d, J = 8.9 Hz, 1H), 7.91 (dd, J = 8.9 Hz, 4J = 2.3 Hz, 1H), 8.22 (d, 4J = 2.3 Hz, 1H), 12.7 (s, br, 1H); ¹³C-NMR (75 MHz, DMSO-d₆): δ 14.0, 22.1, 28.40, 28.46, 28.5, 31.2, 33.4, 107.3, 116.9, 121.1, 124.4, 126.5, 135.2, 138.8, 156.6, 173.4. HRMS calc. (%) for C₁₃H₁₂BrNO: 322.0807; found: 322.0798.

Ethyl 2-heptyl-4-oxo-1,4-dihydroquinoline-6-carboxylate (21).
Orange solid; yield: 202 mg (13 %); m. p. = 197-198 °C; IR (KBr): ν 3261, 2926, 1719, 1645, 1495, 1278 cm⁻¹; ¹H-NMR (300MHz, DMSO-d₆): δ 0.88 (3H, t, J = 6.7 Hz), 1.20-1.40 (11H, m), 1.60-1.75 (2H, m), 2.60 (2H, t, J = 7.6 Hz), 4.34 (2H, q, J = 7.2 Hz), 6.00 (1H, s), 7.61 (1H, d, J = 8.7 Hz), 8.12 (1H, dd, J = 8.6 Hz, 4J = 2.0 Hz), 8.65 (1H, d, 4J = 2.0 Hz), 11.74 (1H, bs); ¹³C-NMR (150MHz, DMSO-d₆): δ 14.0, 14.2, 22.1, 28.2, 28.4, 28.5, 31.2, 33.2, 60.8, 108.7, 118.5, 123.86, 123.92, 127.2, 131.4, 143.1, 154.6, 165.4, 176.8; HRMS calc. (%) for C₁₀H₁₂NO₂: 156.1913; found: 156.1913.

6-Fluoro-2-heptylquinolin-4(1H)-one (22).
Pale yellow solid; yield: 357 mg (27 %); m. p. = 174-176 °C (Et₂O); IR (KBr): ν 3426, 1644, 1599 cm⁻¹; ¹H-NMR (300 MHz, DMSO-d₆): δ 0.85 (t, J = 6.7 Hz, 3H), 1.20-1.35, 1.60-1.75 (2m, 8 and 2H, respectively), 2.59 (t, J = 7.6 Hz, 2H), 5.95 (s, 1H), 7.53 (td, 4J= 4.7 Hz, 1H), 7.62 (dd, 4J= 8.8 Hz, 4J= 4.7 Hz, 1H), 7.69 (dd, 4J= 9.4 Hz, 4J= 2.9 Hz, 1H), 11.65 (s, br, 1H); ¹³C-NMR (75 MHz, DMSO-d₆): δ 13.8, 22.0, 28.32, 28.33, 28.4, 31.1, 33.2, 106.9, 108.7 (d, 4J= 22 Hz), 120.1 (d, 4J= 25.4 Hz), 120.5 (d, 4J= 8.4 Hz), 125.7 (d, 4J= 6.4 Hz), 136.8 (d, 4J= 0.6 Hz), 153.8, 158.1 (d, 4J= 241 Hz), 176.0 (d, 4J= 2.7 Hz). HRMS calc. (%) for C₁₀H₁₂FNO: 262.1607; found: 262.1605.

6-(tert-Butyl)-2-heptylquinolin-4(1H)-one (23).
Pale yellow solid; yield: 385 mg (26 %); m. p. = 161-163 °C (Et₂O); IR (KBr): ν 3426, 1637, 1595, 1487 cm⁻¹; ¹H-NMR (300 MHz, DMSO-d₆): δ 0.86 (t, J = 6.7 Hz, 3H), 1.20-1.35 (m with s at 1.33, 17H), 1.60-1.75 (m, 2H), 2.57 (t, J = 7.6 Hz, 2H), 5.90 (s, 1H), 7.48 (d, J = 8.7 Hz, 1H), 7.71 (dd, J = 8.7 Hz, 4J = 2.9 Hz).
= 2.3 Hz, 1H), 8.01 (d, J = 2.3 Hz, 1H), 11.42 (s, br, 1H); \[^{13}\text{C-NMR (75 MHz, DMSO-d_6)}: \delta \] 14.0, 22.1, 28.4 (2C), 28.5, 31.1 (3C), 31.2, 33.2, 34.4, 107.4, 117.7, 119.9, 124.1, 129.6, 138.2, 145.2, 153.2, 177.0. HRMS calcd. (%) for C\textsubscript{28}H\textsubscript{50}NO: 300.2327; found: 300.2318.

2-Heptyl-5,7-dimethylquinolin-4(1H)-one (24)
Pale yellow solid; yield: 612 mg (45 %); m.p. = 158-160 °C; IR (KBr): v 3252, 2959, 1641, 1551, 1462, 1296 cm\(^{-1}\); \[^{1}\text{H-NMR (300MHz, DMSO-d_6)}: \delta \] 0.85 (3H, t, J = 6.8 Hz), 1.15-1.40 (8H, m), 1.55-1.70 (2H, m), 2.31 (3H, s), 2.45-2.55 (2H, t, overlap with DMSO) 2.73 (3H, s), 5.75 (1H, s), 6.76 (1H, m), 7.09 (1H, s), 11.05 (1H, bs); \[^{13}\text{C-NMR (75MHz, DMSO-d_6)}: \delta \] 13.9, 21.0, 22.0, 22.9, 28.1, 28.35, 28.39, 31.1, 32.6, 109.2, 115.3, 120.9, 126.7, 138.8, 140.2, 142.0, 151.5, 179.4; HRMS calcd. (%) for C\textsubscript{15}H\textsubscript{26}NO: 272.2014; found: 272.2009.
^1H NMR (300 MHz, DMSO-d$_6$)
13C NMR (75 MHz, DMSO-d_6)
1H NMR (300 MHz, DMSO-d_6)
^{13}C NMR (75 MHz, DMSO-d_6)
1H NMR (300 MHz, DMSO-<i>d</i>6)
13C NMR (75 MHz, DMSO-d_6)
1H NMR (300 MHz, DMSO-d$_6$)
13C NMR (75 MHz, DMSO-d_6)
1H NMR (300 MHz, DMSO-d$_6$)
13C NMR (75 MHz, DMSO-d_6)