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ABSTRACT

The main facets of designing compliant mechanisms are synthesis, modelling
and optimization. This thesis focuses on these three aspects of designing
compliant mechanisms with a particular emphasis on spatial translational

compliant parallel mechanisms (XYZ CPMs).

In this thesis, a constraint and position identification (CPI) synthesis approach,
a constraint-force-based (CFB) modelling approach and a position-space-
reconfiguration (PSR) approach are proposed. Subsequently, two PSR-based

optimization approaches are presented.

A large number of XYZ CPMs can be synthesized using the proposed CPI
approach. Each of the synthesized XYZ CPMs can provide decoupled
translations along the X-, Y- and Z-axes, and can be actuated by three ground-
mounted linear actuators. Furthermore, the motion characteristics of a
synthesized XYZ CPM can be analysed, based on an analytical model that can
be derived using the proposed CFB approach. Such motion characteristics can
include cross-axis coupling, lost motion, parasitic motion and actuation stiffness.
If the motion characteristics of an XYZ CPM need to be improved, the XYZ
CPM can be reconfigured using the PSR approach. For example, two PSR-based
optimization approaches are detailed, which are used to reduce parasitic
motions of XYZ CPMs and to reconfigure a non-symmetric XYZ CPM into a
symmetric XYZ CPM, respectively. Such PSR-based optimization approaches
can be employed to optimize both the geometrical dimension and the
geometrical shape of an XYZ CPM. Therefore, an XYZ CPM can be synthesized
using the CPI approach, modelled using the CFB approach, and then optimized
using the PSR-based approaches.

In order to demonstrate the use of these proposed approaches, several examples
of XYZ CPMs are synthesized, modelled and optimized. These design examples
are also verified by FEA simulations and/or experimental tests. Several
prototypes of the obtained XYZ CPMs are fabricated, and a control system for

one of the prototypes is also presented.

It is important to note that the proposed CFB approach, PSR approach and PSR-
-based optimization approaches can also be employed to model, reconfigure

and optimize other types of compliant mechanisms in addition to XYZ CPMs.
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1 INTRODUCTION

In this chapter, compliant mechanisms are introduced, and then existing
approaches to the design of compliant mechanisms are reviewed. Based on the
challenges of the existing approaches, the scope and aim of this thesis are

proposed. Finally, the contributions of this thesis are summarized.

1.1 Compliant Mechanisms

A mechanism is a device which is designed to transform input forces and
displacements into desired output forces and displacements. Traditionally,
when designers needed a mechanism to achieve some mechanical tasks, they
commonly employed mechanisms that are assemblies of rigid parts connected
with rigid joints such as rigid sliding joints and rigid rolling joints. Such
mechanisms are termed as the rigid-body mechanisms. The motions of a rigid-
body mechanism are performed through the operation of the rigid joints.
However, it can be seen that a large number of moving things in nature are
flexible, and the movements are made through the bending of their compliant
members. Our hearts are such moving things, which can work for every minute
over our entire lives. A few other examples of living objects with compliant

members include sea weed, bee wings, bat wings, eels and elephant trunks.

If a device transmits or transforms input forces and displacements into a
required set of output forces and displacements by means of the elastic
deformation of its flexible members rather than rigid joints, the device is termed
a compliant mechanism [1-7]. Wire-beams are fundamental flexible members

used in compliant mechanisms. The deformation of a wire-beam depends on
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the boundary conditions and the applied forces. Taking a cantilever wire-beam
as an example, the free end can easily perform two translations and three
rotations about the three axes of a coordinate system located along the beam,
under different applied forces (translational and rotational forces); however, it
is hard to perform a translation along the wire-beam. If the stiffness along or
about one axis is defined as the ratio of the applied force to the associated
deformation along or about the axis, the stiffness of the cantilever wire-beam
along the wire-beam is much larger compared with the stiffness along or about
the other directions. Therefore, the direction along the wire-beam is regarded as
the DOF (degree of freedom) direction, and the other directions are regarded as
the DOC (degree of constraint) directions. In addition, the deformations of the
free end of a wire-beam can be calculated on the basis of the Euler-Bernoulli

beam equation.

The last decade has witnessed the rapid development of compliant mechanisms,
because such mechanisms have many advantages compared with traditional
rigid-body mechanisms. These advantages include reduced number of parts,
reduced product weight, minimized assembly requirements, ability to
miniaturize, no need for lubrication, no friction, no backlash and ease of
fabrication [1-7]. In addition, a compliant mechanism can be constructed of any
type of material including smart and active materials, and can be actuated by
modern actuators such as piezoelectric, shape-memory alloy, electro-thermal,

electrostatic, fluid pressure and electromagnetic actuators.

For example, Figure 1.1 shows one rigid-body clip and two compliant clips
(termed compliant clip-I and compliant clip-II). The rigid-body clip, as shown
in Figure 1.1(a), carries out its clamping motion through performing the rigid
rolling joint. This rigid rolling joint can be replaced by a compliant rolling joint,
and such design examples can be seen in Figure 1.1(b) and Figure 1.1(c). Note
that the rigid rolling joints of the compliant clip-I are not employed to perform

the clamping motion. Compared with the rigid-body clip, the compliant clips,



especially the one shown in Figure 1.1(c), have many advantages such as
reduced number of parts, reduced product weight, minimized assembly

requirements and ease of fabrication.

Due to their advantages, compliant mechanisms have been experiencing a rapid
increase in use in various applications, and some typical applications can be

seen in Table 1.1.

Table 1.1 Main applications of compliant mechanisms

Application fields Application examples

An XY compliant mechanism for nano-positioning, as
Nano-/micro-manipulation [8-20]
shown in Figure 1.2

Microelectromechanical systems (MEMS), as shown in
Small-scale devices [21-28]
Figure 1.3

Energy harvesting and sensors [29-35] | An electromagnetic generator, as shown in Figure 1.4

Medical devices [36-41] A smart knee brace, as shown in Figure 1.5

A compliant wing, as shown in Figure 1.6
Smart materials [42-46] A compliant mechanism based material with negative

Poisson's ratio, as shown in Figure 1.7

Robots [47-52] A insect-scale flying robot, as shown in Figure 1.8

Consumer products [53] Compliant clips, as shown in Figure 1.1
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Figure 1.1 Rigid and compliant clips: (a) rigid-body clip, (b) compliant clip-I, and (c)

compliant clip-1I
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Figure 1.3 Applications of compliant mechanisms in MEMS: (a) a MEMS actuation system
[22], and (b) a MEMS switch [26]
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Figure 1.4 A compliant mechanism based vibration powered electromagnetic generator [32]:

(a) electromagnetic generator, (b) and (c) the compliant sheets at different positions



Figure 1.5 A compliant mechanism based smart knee brace [39]: (a) prototype model without

brace, and (b) prototype model with brace

Figure 1.6 A compliant mechanism based smart aircraft wing

Figure 1.7 Compliant mechanism based material with negative Poisson's ratio (Courtesy of

Prof. Jonathan B. Hopkins, in UCLA)



Compliant wingj o, Compliant wing

Figure 1.8 A compliant mechanism based insect-scale flying robot [51]

1.2 Review of Compliant Mechanism Design

1.2.1 Design process

As mentioned in Section 1.1, compliant mechanisms are widely used in many
applications due to their advantages over traditional rigid-body mechanisms.
However, it is difficult for designers to find enough resources to guide them to
design compliant mechanisms [3, 7]. A rigid-body mechanism can accomplish
its movements by its different rigid-body parts. However, a compliant
mechanism should be able to achieve its complex tasks using its very few
compliant parts, or even only one compliant part [7]. Moreover, it usually
requires designers to consider motion and force behaviours simultaneously in
the design of compliant mechanisms. Therefore, the design of compliant

mechanisms is more difficult compared with that of rigid-body mechanisms.

A compliant mechanism should be designed wunder specific design
requirements. The design requirements are different from case to case, while
some general requirements for designing a compliant mechanism can be seen

below [20].

i.  The most important design requirement is to meet the required number

and directions of DOF or DOC. In contrast to rigid-body mechanisms,



the stiffness of a compliant mechanism is neither zero in its DOF
directions nor infinitely large in its DOC directions. Consequently, the
design of a compliant mechanism requires that the stiffness of the
compliant mechanism along the DOC directions should be much larger
than that along the DOF directions.

ii.  Another important design requirement is to meet the required motion
accuracy within the required motion ranges. Compliant mechanisms can
provide motions with high repeatability because they are free of backlash.
However, due to the stiffness characteristics of compliant mechanisms
mentioned above, compliant mechanisms always suffer from parasitic
motions! which affect their motion accuracy. Therefore, when designing
a compliant mechanism, the parasitic motions should be minimized or
eliminated. Additionally, the cross-axis coupling? and lost motions?® of
the compliant mechanism should also be reduced, because the cross-axis
coupling and lost motions also affect the motion accuracy of the
compliant mechanism.

iii.  Stiffness variation along the DOF and DOC directions, resulting from the

displacement changes, should meet the static and dynamic design

1 A parasitic motion of a compliant mechanism is a motion of the compliant mechanism along

or about a DOC direction of the compliant mechanism.

2 The cross-axis coupling of a compliant mechanism, in this thesis, refers to the motions in the
DOF directions. This specifically means that a motion of a multi-axis output motion stage along
one DOF direction is affected by that along the other DOF directions. For a nominal decoupled
compliant mechanism, the cross-axis coupling results from the parasitic motions of the

compositional compliant modules.

3 A lost motion of a compliant mechanism, in this thesis, represents the difference between an
input displacement and the associated output displacement. Such a lost motion of a nominal
decoupled compliant mechanism results from the parasitic motions of the compositional

compliant modules.



requirements. When designing a control system for a compliant
mechanism, the control system should be robust against the stiffness
variation of the compliant mechanism.

iv.  Manufacturability and compactness should also meet the design
requirements. It is desirable that a compliant mechanism can be designed

and manufactured monolithically.

— Force
~f—
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Figure 1.9 Deformation demonstration of compliant mechanisms: (a) deformation of a basic
(planar) parallelogram compliant mechanism, and (b) deformation of an XY compliant

mechanism

The above-mentioned parasitic motion, cross-axis coupling and lost motion can
be demonstrated by an example, as shown in Figure 1.9. Figure 1.9(a) shows a
basic parallelogram compliant mechanism. There is a point position in the
beams’ geometrical centre of the basic parallelogram compliant mechanism, as
shown in Figure 1.9(a). If an actuation force, applied on the mobile stage, goes
through this point, it will not produce a rotational displacement of the basic
parallelogram compliant mechanism. The point position is termed the stiffness
centre of the basic parallelogram compliant mechanism [54-56]. The force-
displacement relationship of the basic parallelogram compliant mechanism
with respect to the stiffness centre shows that the translations are decoupled
from the rotation, which means the linear stiffness matrix with respect to the

stiffness centre is a diagonal matrix.



If an actuation force is applied at another position shown in Figure 1.9(a), it will
result in a torque relative to the stiffness centre, so that the mobile end of the
basic parallelogram compliant mechanism will not only have a translation but
also a rotation. The rotation is the parasitic rotation of the basic parallelogram
compliant mechanism, because it is in the DOC direction of the parallelogram
compliant mechanism. In addition, the vertical distance between the two ends
of the basic parallelogram compliant mechanism decreases when the free end
has a horizontal translation. In other words, the free end has a vertical
translation and a horizontal translation at the same time. The vertical
translation is the parasitic translation of the basic parallelogram compliant
mechanism, because it is also in the DOC direction of the parallelogram
compliant mechanism. The parasitic rotation and parasitic translation are
parasitic motions of the basic parallelogram compliant mechanism, which are
much smaller than the horizontal translation (the horizontal translation is

usually termed as the primary translation).

Figure 1.9(b) shows a nominal decoupled XY compliant mechanism, whose
primary motions are the translations of the XY output stage along the X- and Y-
axes, the translation of the X input stage along the X-axis, and the translation of
the Y input stage along the Y-axis. It can be seen that the XY compliant
mechanism consists of four basic parallelogram compliant mechanisms.
Because each of the basic parallelogram compliant mechanisms has a parasitic
rotation and a parasitic translation, the XY compliant mechanism has parasitic
motions including the rotations of both the input and output stages, the
translation of the X input stage along the Y-axis, and the translation of the Y

input stage along the X-axis.

If only a Y-axis actuation force is applied, the primary translation of the Y input
stage is a little bit larger than the primary translation of the XY output stage
along the Y-axis. The difference between the two translations is the lost motion

of the XY compliant mechanism along the Y-axis. The lost motion happens due



to the fact that the compliant module located between the Y input stage and XY
output stage has a parasitic translation along the Y-axis. Moreover, the XY
output stage also has a tiny translation along the X-axis under the actuation of
Y-axis actuation force only. That is to say, the X-axis and Y-axis motions of the
XY output stage are coupled. This cross-axis coupling also results from the
parasitic motions of the XY compliant mechanism. Therefore, both the lost
motion and the cross-axis coupling are caused by the parasitic motions of the

associated compositional compliant modules.

According to the general design requirements summarized above, the best
available process for compliant mechanism design is probably a combination of
synthesis, modelling and optimization [20]. Consequently, these topics have

been active research areas in terms of compliant mechanism design.

1.2.2 Existing design approaches and their challenges

As mentioned in Section 1.2.1, the process of designing a compliant mechanism
includes synthesis, modelling and optimization. Therefore, design approaches
for implementing compliant mechanisms are the approaches to the synthesis,
modelling and optimization of such mechanisms. The existing approaches and

their challenges are introduced in this section.

1.2.2.1 Type synthesis: approaches and challenges

The constraint-based approach is widely used to synthesize compliant
mechanisms [55, 57-59]. This approach is based on the concepts [57-59]: (a) the
mobility of a given rigid stage is determined by the locations and orientations of
the constraint elements, such as wire-beams, applied on it; and (b) one non-
redundant 1-DOC constraint element removes one DOF from the given rigid
stage. A compliant mechanism can be synthesized using the constraint-based
approach by selecting appropriate constraint elements and identifying their
locations and orientations [55]. Such selection and identification rely heavily on

designers’ creative thinking and experience [55], so it is hard for beginners to

10



synthesize new compliant mechanisms using the constraint-based approach.

The screw-theory-based approach, as proposed in [60-65], can mathematically
identify the locations and orientations of the required constraint elements in a
compliant mechanism. Moreover, this screw-theory-based approach does not
require any design experience, so it can be used by both experts and beginners.
However, if using the screw-theory-based approach to synthesize a complex
compliant mechanism, the associated mathematical expressions can be

complicated.

References [66, 67] introduce a synthesis approach called freedom and
constraint topologies (FACT). The FACT approach represents the mathematics
of screw theory by a comprehensive library of geometrical shapes which is
shown in Figure 1.10. When synthesizing a compliant mechanism, the
geometrical shapes show the possible permitted selections of constraint
elements. The FACT approach enables designers to visualize and determine the
general geometrical forms of the compliant mechanisms so as to accomplish
required motions. However, the FACT approach usually does not take actuator

isolation into account (actuator isolation is defined in [55]).

Optimization-based approaches, such as the topology-optimization-based
approach and the module optimization approach, can also help designers to
synthesize novel compliant mechanisms, even though the designers may not
have any relevant design experience [68-74]. However, these optimization-
based approaches often result in a narrow family of designs because of their

specific design spaces [20].

When some basic compliant mechanisms have been synthesized using the
approaches introduced above, one can adopt these basic compliant mechanisms
to synthesize other compliant mechanisms using the rigid-body-replacement-
based approach, as reported in [3, 75, 76]. If a rigid-body mechanism already

exists, a compliant mechanism can be synthesized by replacing the rigid
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components of the rigid-body mechanisms with corresponding basic compliant
mechanisms designed previously, based on the rigid-body-replacement-based
approach. The resulting compliant mechanism has the same DOF as the rigid-
body mechanism. The rigid-body-replacement-based approach is a useful and
practical approach for the synthesis of compliant mechanisms, but this
approach usually leads designers to generate compliant mechanisms that are

characterized by the associated rigid-body mechanisms.

3 DOF
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Figure 1.10 Library of freedom and constraint spaces in the FACT approach (Courtesy of Prof.
Jonathan B. Hopkins, in UCLA)

1.2.2.2 Analytical modelling: approaches and challenges

Numerous works have been conducted on modelling compliant mechanisms [3,
55, 56, 77-84]. There are two main system-level approaches to model compliant
mechanisms, one is the free-body-diagram (FBD)-based approach used in [55],
and the other is the energy-based approach, using the virtual work principle
employed in [79, 85]. Compared with the FBD-based modelling approach, the

energy-based approach can simplify compliant mechanism modelling through
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ignoring some internal variables. However, the ignored internal variables may
be needed to estimate the motion characteristics of the modelled compliant
mechanisms. Awtar [20] also claims that it is very difficult to derive an inverse
relationship using the energy based approach. The analytical model of a
compliant mechanism, derived using the FBD-based modelling approach, can
be used not only to predict the motion characteristics but also to analyse the
effects of all the variables (including the internal variables) on the motion

characteristics.

When using the FBD-based modelling approach to model a compliant
mechanism non-linearly, the deformed configuration of the compliant
mechanism should be obtained. It is hard to model complex compliant
mechanisms non-linearly using the FBD-based modelling approach, because it
is difficult to obtain the deformed configuration and the associated
mathematical expressions. The FBD-based modelling approach can be easily
used to model a compliant mechanism linearly, because the deformed
configuration of the compliant mechanism does not need to be known.
However, the linear model of a compliant mechanism is valid only for very

small displacements [77].

1.2.2.3 Structure optimization: approaches and challenges

The analytical model of a compliant mechanism can be used not only to predict
the motion characteristics of the compliant mechanisms, but also to obtain the
relationships between the geometrical parameters and the motion
characteristics. Therefore, the analytical model of a compliant mechanism can
be used to optimize the geometrical parameters so that the motion
characteristics are improved. Both the geometrical dimension and the
geometrical shape of a compliant mechanism can be optimized by optimizing
the geometrical parameters. However, the author is unaware of an optimization
approach that simultaneously allows consideration of the geometrical

dimension and the geometrical shape of a compliant mechanism. Therefore, an
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optimization approach which can optimize both geometrical dimensions and

the geometrical shapes of compliant mechanisms is desired.

1.3 Scope and Aim of This Thesis

Compliant mechanisms can be classified into different types which should be
designed based on different requirements. Therefore, it is better to use different
design approaches (synthesis, modelling and optimization approaches) to
design different types of compliant mechanisms. This thesis focuses on the
design of spatial translational compliant parallel mechanisms (XYZ CPMs), and
the main aim of this thesis is to develop approaches to the synthesis, modelling

and optimization of XYZ CPMs.

1.3.1 Scope: XYZ CPMs

Serial kinematic configuration and parallel kinematic configuration are two
well-known configurations used in the design of compliant mechanisms [20].
Each of the kinematic configurations has its own pros and cons. A serial
kinematic compliant mechanism can be designed by stacking several compliant
modules*in series, and each of the compliant modules achieves some of the
required motions of the compliant mechanism. The compliant modules in a

serial kinematic compliant mechanism are independent of each other, so they

¢ A compliant module is a compliant compositional part of a compliant mechanism (also known
as a sub-compliant mechanism), which includes flexible members and their rigid linkages.
Therefore, a compliant module can be a single wire beam, a single sheet, or a combination of
wire beams, sheets, and their rigid linkages. In addition, compliant modules are divided into
two types, basic compliant modules (BCMs) and non-basic compliant modules (NBCMs). If a
compliant module contains only one basic compliant element, the compliant module is a BCM;
otherwise, the compliant module is a NBCM. A wire beam, a sheet beam, a short beam, a notch
hinge and a split tube are BCMs. A NBCM is composed of several BCMs in a serial, parallel or

hybrid configuration.
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can be designed separately [20]. Additionally, all the compliant modules of a
serial kinematic compliant mechanism can be actuated by different actuators, so
that the control system design can also be relatively simple. However, the most
undesirable feature of a serial kinematic compliant mechanism is that most
actuators of the serial kinematic compliant mechanism move with the
associated compliant modules. Such moving actuators affect the dynamic
performance of the compliant mechanism and the application of the compliant
mechanism in some fields such as MEMS. Parallel kinematic compliant
mechanisms (usually called compliant parallel mechanisms (CPM)) are free of
this problem because actuators of CPMs can be mounted on the ground (the
actuators are called ground-mounted actuators). However, it is a challenge to
design a CPM with desired motion characteristics such as reduced cross-axis
coupling, decreased lost motions and minimized parasitic motions. Therefore,
this thesis focuses on the development of the approaches to the synthesis,
modelling and optimization of CPMs rather than serial kinematic compliant
mechanisms. XYZ CPMs are a type of CPMs, which are mainly studied in this
thesis, because such CPMs are gaining more and more attention due to their

successful applications.

PSD

Sample image Laser

Micro-cantilever

Vy

V|

Figure 1.11 Operating principle of an AFM [18] (Courtesy of Prof. Y. K. Yong)

XYZ CPMs are suitable for a wide range of 2D and 3D nano- and micro-

manipulation applications. They can be used in various applications such as
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nano-/micro-assembly, optical component alignment, metrology applications, 3-
axis force sensors, microscopy and spectroscopy applications [16, 77, 86, 87].
Some of the applications can be seen from Table 1.2. It is important to note that
Atomic-force microscopy (AFM) is one of the most successful applications of
XYZ CPMs [88]. The XYZ nanopositioner, as shown in Figure 1.11, can be
designed using an XYZ CPM.

Table 1.2 Applications of XYZ CPMs

Application field

Application description

Company

Micro assembly

Assembly of micro
components

Invenios

Nano-/micro-positioning

High accuracy nano-
positioning along X-, Y- and
Z-axes

nPoint, Thorlabs, Physik
Instrument, Invenios,
Piezosystem Jena, Newmark
Systems Inc., SmarAct GmbH,
Elliot Scientific, Mad City Labs,
Nano Scan Tech, Polytec

Optics

Handling of small
components and assemblies

Piezosystem Jena, Elliot Scientific,
Edmund Optics, Queensgate
Instruments

Optical tweezers and optical

Manipulating nano- and

micro-meter sized electric Thorlabs
traps .
particles
Accurate motion and
Optical fibre alignment placement of individual Edmund Optics

fibres for alignment

Metrology

Accurate measurement of
motion and placement

Nano Scan Technology, Carl
Zeiss Microscopy

AFM/SPM/MFM/Reflectance

Accurate placement of
specimen for examination

Nano Scan Technology, Siskiyou,
Queensgate Instruments

Measurement of radiation

Spectroscopy intensity as a function of Physik Instrument
wavelength
Fluorescence microscopy and | Accurate placement of -
. . Siskiyou
spectroscopy specimen for examination
. . Accurate placement of .
Super resolution microscopy P Physik Instrument

specimen for examination

Photovoltaics Component alignment Newport Corporation
Accurate handling of nano-
. . Newport Corporation, Nano Scan
MEMS and micro-electronic p P

mechanical systems

Technology

Nano-fabrication, Nano-

Accurate positioning with

. precision motion is needed to | Mad City Labs, Newport
patterning and Nano- . .
.. manufacture small, detailed |Corporation
machining
components
. Scientific instruments for the
Magnetic tweezers, traps and . . . .
manipulation of Elliot Scientific

manipulation

biomolecules
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1.3.2 Aim: effective approaches to the design of XYZ CPMs

Existing XYZ CPMs were designed using the existing synthesis, modelling and
optimization approaches discussed in Section 1.2. However, these existing
approaches have limitations. Therefore, this thesis will focus on new effective
approaches to the synthesis, modelling and optimization of XYZ CPMs. The
desired effective synthesis approach requires that a great number of XYZ CPMs
with different geometrical structures can be synthesized by both experts and
beginners; the desired effective modelling approach requires that the physical
meaning of the mathematical expression can be understood easily; and the
desired effective optimization approach requires that both the geometrical
dimension and the geometrical shape of an XYZ CPM can be optimized

simultaneously.

1.3.2.1 Desired synthesis approach

Most existing XYZ CPMs were synthesized using the constraint-based approach
with qualitative arguments and rationale [87]. In recent years, many XYZ CPMs
were also synthesized using the rigid-body-replacement-based approach [77, 80,
89]. This rigid-body-replacement-based approach often begins with a rigid-
body mechanism which can provide the same motions as the desired XYZ CPM.
The rigid-body mechanism can be converted to an XYZ CPM by replacing the
rigid kinematic joints or chains with equivalent compliant modules [7]. The
rigid-body-replacement-based approach is an efficient approach to the
synthesis of XYZ CPMs. However, this approach is only suitable for those
designers who are knowledgeable about rigid-body parallel mechanisms.
Additionally, the rigid-body-replacement-based approach depends on the

development of rigid-body mechanisms [7].

A constraint map for XYZ CPM synthesis was proposed by Awtar et al in [87].
This constraint map decomposes an XYZ CPM into rigid stages and compliant

modules, and each compliant module is allocated specific constraints. In [87], all
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compliant modules were designed based on the allocated constraints, and an
XYZ CPM was presented by assembling the rigid stages and the compliant
modules together. It is well known that different compliant modules can be
designed on the basis of the specific constraints, so that new XYZ CPMs can be
obtained through replacing the compliant modules of the XYZ CPM designed
in [87] with other compliant modules with the same constraints. However, the
constraint map is only suitable for certain types of XYZ CPMs. For example, the
constraints of the compliant modules in the XYZ CPMs as shown in [77, 89] are

beyond the range of the constraint map.

The existing approaches for synthesizing XYZ CPMs are often limited to some
types of XYZ CPMs. Therefore, a more effective approach of synthesizing XYZ
CPMs is desirable. The XYZ CPMs, designed using the desired synthesis
approach, should be able to provide three highly-decoupled translations along
three orthogonal axes (X-, Y- and Z-axes), while the rotational stiffness about
the three axes should be much higher than the translational stiffness along the
three axes [74, 78]. Furthermore, the three translations can be actuated by three
ground-mounted linear actuators. In addition, the designed XYZ CPMs should
have the potential of allowing diverse structures, which can be employed in

different applications.

1.3.2.2 Desired analytical modelling approach

As mentioned in Section 1.2.2, there are two main approaches to model
compliant mechanisms (including XYZ CPMs). One is the FBD-based modelling
approach, and the other is the energy-based approach. In this thesis, the basic
principle of the FBD-based modelling approach is followed to model XYZ
CPMs, because all geometrical parameters/variables of an XYZ CPM can be

taken into account in the FBD-based modelling approach.

The FBD-based modelling approach, as used in [55], decomposes a compliant

mechanism into rigid stages and compliant modules, and then identifies the
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deformed configuration of the compliant mechanism. According to the
deformed configuration, the analytical model of the compliant mechanism is
derived by resolving all the equations associated with the force equilibrium
conditions, the geometrical compatibility conditions, and the force-
displacement relationships of the compliant modules. The analytical model of a
compliant mechanism, derived using the FBD-based modelling approach, can
be used to estimate and optimize the motion characteristics of the compliant
mechanism. However, the modelling of a complex XYZ CPM directly using the
FBD-based modelling approach proves to be complicated, as demonstrated in
[55], because (a) a designer must use his/her pattern recognition and
visualization skills to identify the possible deformed configuration of the XYZ
CPM in order to obtain the geometrical compatibility conditions, (b) the
derivation of all the force equilibrium equations should be based on the
visualized deformed configuration, and (c) the physical meaning of the
expressions, in terms of the force-displacement relationships of the compliant

modules, is not apparent.

In order to simplify the modelling process, XYZ CPMs are usually modelled
linearly using the FBD-based modelling approach [77, 80]. In such a linear
modelling process, both the associated geometrical compatibility conditions
and the force-displacement equations are linearized and represented by linear
matrices [80]. Therefore, the linear model of an XYZ CPM can be obtained via
basic matrix operations such as matrix transformation, matrix addition and
matrix subtraction. However, the linear model captures only instantaneous

effects, which is suitable for very small displacements [55, 80, 90].

Therefore, a modelling approach, based on the same basic principle as the FBD-
based modelling approach, is desired to effectively deal with both linear and
nonlinear modelling of XYZ CPMs.
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1.3.2.3 Desired optimization approach

The stiffness of a compliant joint is neither zero in DOF directions nor infinitely
large in the DOC directions. Therefore, compliant mechanisms (with a
particular emphasis on distributed-compliance) often suffer from undesired

cross-axis couplings, lost motions and parasitic motions [2-5, 91, 92].

It is desirable to minimize such cross-axis couplings and the lost motions, while
they can also be compensated by close-loop control systems [55]. However,
most parasitic rotations of a compliant mechanism cannot be compensated by
an active control system, so parasitic rotations of compliant mechanisms should
be maximally reduced or eliminated through the associated structure
optimization. Taking a basic parallelogram compliant mechanism shown in
Figure 1.12(a) as an example, a force acting at the top mobile stage of the basic
parallelogram compliant mechanism can produce not only a primary transverse
motion, but also a small parasitic rotation [54, 93]. The parasitic rotation can
affect the motion accuracy of the basic parallelogram compliant mechanism,
and cannot be compensated by the actuation force [55, 87]. Therefore, this thesis
focuses on the reduction of parasitic motions of compliant mechanisms, with

consideration of reducing the cross-axis couplings and lost motions.

Force Force

Force

Stiffness centre

(a) (b) (©) (d)

Figure 1.12 1-DOF translational compliant mechanisms: (a) basic parallelogram compliant
mechanism, (b) compound basic parallelogram compliant mechanism, (c) basic parallelogram
compliant mechanism being actuated at its stiffness centre, and (d) basic parallelogram

compliant mechanism with smaller in-plane thickness and larger spanning size
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The employment of a symmetric arrangement, as shown in Figure 1.12(b), is a
widely-used approach to minimize parasitic motions of compliant mechanisms.
Using such an approach can lead to a compliant mechanism with larger
actuation stiffness (i.e., stiffness along the directions of the actuations), because

of the additional (redundant) constraints.

Awtar [55] proposed a method of attenuating a parasitic motion of a compliant
mechanism by using the concept of the stiffness centre of a parallelogram
mechanism first reported in [1, 91] by R. V. Jones. For example, if an actuation
force goes through the stiffness centre of the basic parallelogram compliant
mechanism, as shown in Figure 1.12(c), the parasitic rotation of the basic
parallelogram compliant mechanism will be significantly reduced [91].

However, this approach is suitable for only some compliant mechanisms.

The above mentioned optimization approaches are used to reduce a parasitic
motion of a compliant mechanism by changing the geometrical shape of the
compliant mechanism. A parasitic motion of a compliant mechanism can also
be decreased by optimizing the geometrical dimension of the compliant
mechanism [94]. For example, the parasitic rotation of the basic parallelogram
compliant mechanism can be alleviated by decreasing the beam in-plane thick-
ness and/or increasing the spanning size of the two beams, as illustrated in
Figure 1.12(d). The optimization of a basic parallelogram compliant mechanism
is easily achieved by optimizing the geometrical dimension. However,
decreasing the beam in-plane thickness can significantly reduce the stiffness of
the basic parallelogram compliant mechanism due to the cubic relationship that
exists between the stiffness and the in-plane thickness, at the expense of
increasing the difficulty of manufacturing. Increasing the spanning size can
make the system bulky, as is clear by comparing Figure 1.12(d) with Figure
1.12(a).

Each of the optimization approaches introduced above has both pros and cons.
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An XYZ CPM can be optimized using the above approaches, but none of the
approaches can optimize an XYZ CPM by simultaneously changing both the
geometrical dimension and the geometrical shape. Therefore, the desired
approach of optimizing an XYZ CPM should be able to reduce a parasitic
motion of the XYZ CPM via optimizing both the geometrical dimension and the

geometrical shape simultaneously.

1.4 Main Contributions of This Thesis

Based on the scope and aim of this thesis, new approaches to the type synthesis,
analytical modelling and structure optimization of XYZ CPMs are proposed in
the following chapters. More specifically, a constraint and position
identification (CPI) approach to the synthesis of XYZ CPM is proposed in
Chapter 2; a constraint-force-based (CFB) approach of modelling XYZ CPMs is
derived in Chapter 3; and a position-space-based reconfiguration (PSR)
approach and two PSR-based approaches of optimizing XYZ CPMs are
introduced in Chapter 4. Using the above approaches, some typical XYZ CPMs
are synthesized, modelled and optimized in this thesis. Additionally, one of the
optimized XYZ CPMs is fabricated, and a control system for this prototype is

also presented.

The CPI synthesis approach, the CFB modelling approach and the PSR-based
optimization approaches are the main contribution of this thesis. In the

remainder of this section, these approaches are introduced briefly.

1.4.1 CPI synthesis approach

The CPI approach is proposed to synthesize decoupled XYZ CPMs, and each of
these synthesized XYZ CPMs can be actuated by three ground-mounted linear

actuators.

An XYZ CPM, in the CPI approach, is decomposed into compliant modules that
are linked by rigid stages. Therefore, an XYZ CPM can be synthesized through
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carrying out the following main tasks: (a) identifying the topological structure
of the compliant modules and rigid stages, which shows the interconnection of
the compliant modules and rigid stages, (b) obtaining the geometrical forms of
compliant modules, and (c) arranging the positions of the compliant modules,
and (d) linking the compliant modules using the rigid stages based on the

topological structure.

Three-legged XYZ CPMs are basic XYZ CPMs. In the CPI approach, the
topological structure of a three-legged XYZ is derived, and the constraint spaces®
of the compliant modules are obtained using screw theory. The geometrical
form of each of the compliant modules can be obtained based on any one of the
possible permitted constraints in the constraint space of the compliant module.
For any one possible permitted constraint of a compliant module, the compliant
module has many possible permitted positions in the associated compliant
mechanism. In this thesis, the set of all the possible permitted positions of a
compliant module is termed position space® of the compliant module. The
derivation of the position space of a compliant module is also introduced in the

CPI approach.

Note that existing synthesis approaches such as the constraint-based approach
[55], the screw-theory-based approach [61-65, 95] and the FACT approach [66,

67, 96-98] are not effective approaches for synthesizing XYZ CPMs. However,

5 The set of all the possible permitted constraints of a compliant module is defined as the
constraint space of the compliant module in the compliant mechanism. Note that the constraint
of a compliant module is defined to represent both the number and the directions of the DOC of

the compliant module.

¢ For one possible permitted constraint, a compliant module in a compliant mechanism can be
placed at different positions. The set of the entire possible permitted positions of the compliant
module is termed the position space of the compliant module in the compliant mechanism under

the selected constraint of the compliant module.
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they, especially the FACT approach, are suitable for synthesizing compliant
modules. Therefore, in the CPI approach, the geometrical form of a compliant

module can be obtained using these existing synthesis approaches.

It is clear in the CPI approach that one compliant module in a three-legged XYZ
CPM has many possible permitted geometrical forms and positions, so the CPI
approach can synthesize a large number of three-legged XYZ CPMs through
assembling the possible permitted geometrical forms of compliant modules and
rigid stages, based on the topological structure and the position spaces.
Moreover, a three-legged XYZ CPM, that is synthesized using the CPI approach,
can provide three decoupled translations. Additionally, XYZ CPMs with more
than three legs can be synthesized through adding redundant legs to three-
legged XYZ CPMs.

1.4.2 CFB modelling approach

In order to analyse the motion characteristics of an XYZ CPM that is
synthesized using the CPI approach, it is better to model the XYZ CPM
analytically. Therefore, the CFB approach is proposed, which can be used to
effectively model XYZ CPMs both linearly and non-linearly. Additionally, the
CFB approach can also be used to model other types of compliant mechanisms

in addition to XYZ CPMs.

The CFB approach regards compliant modules as multi-DOF or multi-DOC
springs, and a deformed compliant module stores potential energy which can
produce elastic forces that act on the connected rigid stages. Such elastic forces
are termed variable constraint forces in this thesis, because the elastic forces vary
with the deformation of the compliant modules. Additionally, in this thesis, the
external forces exerted on a compliant mechanism are regarded as constant
constraint forces, because the external forces are independent of the deformation
of the compliant mechanisms. If a compliant mechanism is in static equilibrium,

the rigid stages are in static equilibrium under the influence of the variable
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constraint forces and the applied constant constraint forces. Therefore, the
constraint force equilibrium equations for the rigid stages can be represented by
the associated variable and constant constraint forces. The analytical model of
the compliant mechanism can be derived based on the constraint force

equilibrium equations.

The variable constraint force of a BCM (basic compliant module, as defined in
Section 1.3.1) can be derived from its previously-obtained force-displacement
relationship. The variable constraint force of a NBCM (non-basic compliant
module, as defined in Section 1.3.1) can also be derived from the force-
displacement relationship of the NBCM, if this force-displacement relationship
is already known. If the force-displacement relationship of a NBCM is not
known, the variable constraint force of the NBCM can be derived based on the
variable constraint forces of the associated BCM, because the NBCM can be

further decomposed into BCMs.

Taking the XYZ CPM shown in Figure 1.13 (proposed in [99]) for example, the
XYZ CPM has three NBCMs, Leg-X, Leg-Y, and Leg-Z. Each of the legs can be
decomposed into an actuated module (AM) and a passive module (PM), and
the AM and PM can also be further decomposed into BCMs, sheet beams and
wire-beams, respectively. The variable constraint forces of Leg-X, Leg-Y and
Leg-Z can be obtained from their own force-displacement relationships, or
derived based on the variable constraint forces of the AMs and PMs. The
variable constraint forces of the AMs and PMs can be obtained from their own
force-displacement relationships, or derived based on the variable constraint

forces of the sheet beams and wire-beams.

Based on the above, the CFB approach can model a compliant mechanism (the
compliant mechanism can be an XYZ CPM) by following on the following steps:
(a) decomposing the compliant mechanism into rigid stages and compliant

modules, (b) obtaining the variable constraint forces of the compliant modules,
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(c) obtaining the constraint force equilibrium equations for the rigid stages, and
(d) deriving the model of the compliant mechanism by solving the constraint

force equilibrium equations.

Compared with the traditional FBD-based modelling approach, use of the CFB
approach eliminates the need to identify the possible deformed configuration of
a compliant mechanism to obtain the geometrical compatibility conditions and
the force equilibrium equations. Moreover, the mathematical expressions of the
CFB approach have easily understood physical meanings. Therefore, the CFB
approach can be regarded as a development of the FBD-based modelling

approach.

A complex compliant mechanism can be regarded as a combination of several
sub-compliant mechanisms. Therefore, the modelling process of a complex

compliant mechanism can be divided into many modelling sub-processes.

Compliant mechanism

Figure 1.13 Decomposition of an XYZ CPM [99]

1.4.3 PSR-based optimization approaches

As discussed in Section 1.4.1, a compliant module in an XYZ CPM has many
possible permitted positions within its position space. Therefore, an XYZ CPM
can be reconfigured by rearranging the positions of the associated compliant

modules within their position spaces. Such a reconfiguration approach is
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termed the PSR approach. Note that the decomposition of an XYZ CPM in the
PSR approach can be different from the decomposition in the CPI and CFB
approaches. In addition, any compliant mechanisms (including XYZ CPMs) can

be reconfigured using the PSR approach.

The PSR approach can be used to reconfigure any one compliant mechanism to
change both the geometrical dimension and the geometrical shape of the
compliant mechanism. For example, the original 1-DOF translational compliant
mechanism, as shown in Figure 1.14(a), can be decomposed into an motion
stage (MS), four base stages (BSs), and two double-two-beam compliant
modules (DTBCMs), as shown in Figure 1.14(b). The two DTBCMs, with their
BSs, can be moved to other permitted positions in the 1-DOF translational
compliant mechanism system. It is clear that all the positions of the two
DTBCMs, shown in Figure 1.14, are possible permitted positions, because the
DOC or DOF of the 1-DOF translational compliant mechanism remains the
same when the positions of the two DTBCMs change, as shown in Figure 1.14.
When the positions of the two DTBCMs are changed, both the geometrical
dimension and the geometrical shape can be changed, as seen in Figure 1.14(c) -
Figure 1.14(e). Figure 1.14(c) shows that the spanning size between the two
compliant modules is increased, via translating one of the DTBCMs along the X-
axis and linking the compliant module to the MS using a rigid linkage (RL).
Figure 1.14(d) shows that the geometrical shape of the compliant mechanism is
changed through rotating one of the DTBCMs about the X-axis at 180°. The
changes of both the geometrical dimension and the geometrical shape are

illustrated in Figure 1.14(e).

In addition, from Figure 1.14(f), it can be seen that a permitted position of a
compliant module is also a position to add a redundant copy of the compliant
module. In Figure 1.14(f), three redundant copies of the DTBCM are added to
the 1-DOF translational compliant mechanism, which does not affect the DOF

of the compliant mechanism.
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The motion characteristics of a compliant mechanism can be improved through
optimizing the geometrical dimension and geometrical shape of the compliant
mechanism. Therefore, the PSR can be used to improve the motion
characteristics of a compliant mechanism through reconfiguring the compliant
mechanism. Such motion characteristics can be parasitic motion, cross-axis
coupling and lost motion. In this thesis, two PSR-based optimization
approaches are proposed, which are employed to reduce parasitic motions
(RPMs) of compliant mechanisms and to reconfigure non-symmetric compliant
mechanisms into symmetric compliant mechanisms (SCMs), respectively. These
two PSR-based optimization approaches are termed the PSR-RPM and PSR-

SCM approaches, respectively.

)
@™

(d)

Figure 1.14 Position-space-based reconfiguration of a 1-DOF translational compliant
mechanism: (a) original 1-DOF translational compliant mechanism, (b) decomposition of the
1-DOF translational compliant mechanism, (c¢) geometrical dimension change, (d)
geometrical shape change, (e) changes of both geometrical dimension and geometrical shape,
and (f) adding redundant compliant modules (RL: rigid linkage, MS: motion stage, BS: base

stage)

The PSR-RPM approach is employed to reduce parasitic motions of a compliant
mechanism by rearranging the compliant modules of the compliant mechanism,

without adding redundant compliant modules. The PSR-SCM approach is
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employed to reconfigure a non-symmetric compliant mechanism into a
symmetric compliant mechanism, through rearranging the compliant modules
of the compliant mechanism by adding a small number of redundant compliant
modules. The derived symmetric compliant mechanism has desired motion
characteristics such as reduced parasitic motions, due to its symmetric

configuration.
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2 CPI SYNTHESIS APPROACH

The CPI approach, proposed in this chapter, focuses on synthesizing three-
legged XYZ CPMs which are basic XYZ CPMs. Other XYZ CPMs with more
than three legs can be obtained through adding redundant legs on three-legged
XYZ CPMs. Both the principle and the application of the CPI approach are
detailed in this chapter. More specifically, the principle of the CPI approach is
presented in Section 2.1. According to this principle, the suitable constraints
and positions of the compliant modules of a three-legged XYZ CPM should be
known. As defined in Chapter 1, the constraint of a compliant module
represents both the number and the directions of the DOC of the compliant
module. Possible permitted constraints and positions for the compliant
modules in a three-legged XYZ CPM are derived in Sections 2.2 and 2.3. The
synthesis procedure of the CPI approach is summarized in Section 2.4, followed
by several detailed example demonstrations in Section 2.5. Summary is finally

drawn in Section 2.6.

2.1 Principle

As is required in Chapter 1, an XYZ CPM synthesized using the CPI approach
should be able to provide three translations along the X-, Y- and Z-axes.
Additionally, the three translations should be decoupled, and can be actuated
by three ground-mounted linear actuators. Therefore, a desired XYZ CPM has
at least three non-redundant parallel legs. The three legs can be termed Leg-X,
Leg-Y and Leg-Z (associated with the translations of the XYZ CPM along the X-,

Y- and Z-axes, respectively).
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A three-legged XYZ CPM has three non-redundant legs, Leg-X, Leg-Y and Leg-
Z, so each of the legs should be able to transmit the translation of the associated
linear actuator to the motion stage (MS) of the XYZ CPM. Furthermore, each of
the legs should have an actuated stage (AS) on which the translation of the
associated linear actuator can be exerted. The ASs of Leg-X, Leg-Y and Leg-Z
can be termed AS-X, AS-Y and AS-Z, respectively. Moreover, base stages (BSs)
of a three-legged XYZ CPM can be termed BS-X, BS-Y and BS-Z, and these BSs
link the Leg-X, Leg-Y and Leg-Z to the ground, respectively. As a result, a
three-legged XYZ CPM should have the following rigid stages: MS, AS-X, AS-Y,
AS-Z, BS-X, BS-Y and BS-Z.

Based on the definition of a compliant module in Chapter 1, the components
linking the MS, AS and BS in a leg of a three-legged XYZ CPM can be regarded
as compliant modules. More specifically, the compliant modules between the
MS and the ASs are called passive modules (PMs), and the compliant modules
between the ASs and the BSs are called active modules (AMs). Therefore, a
three-legged XYZ CPM has three PMs (PM-X, PM-Y and PM-Z) and three AMs
(AM-X, AM-Y and AM-Z). Both the PMs and the AMs can be parallel, serial and

hybrid compliant modules.

Figure 2.1 Illustration of the topological structure of a three-legged XYZ CPM

Therefore, the topological structure of a three-legged XYZ CPM can be seen in
Figure 2.1, which shows the interconnection of the compliant modules and rigid

stages.
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It can be seen from the topological structure that a three-legged XYZ CPM is a
combination of compliant modules (PMs and AMs) that are linked by rigid
stages (MS, ASs and BSs). Therefore, synthesizing a three-legged XYZ CPM is to
identify the geometrical forms and positions of the compliant modules in the
topological structure, and then to link the compliant modules using the rigid
stages based on the topological structure. The rigid stages can be synthesized
easily, so the main work of synthesizing a three-legged XYZ CPM requires

identification of the geometrical forms and positions of the compliant modules.

The geometrical forms and positions of the compliant modules of a three-legged
XYZ CPM can be obtained based on the constraints of the compliant modules.
Therefore, in order to identify the geometrical forms and positions of the
compliant modules, it is better to firstly obtain all the possible permitted

constraints of the compliant modules.

A three-legged XYZ CPM should provide three decoupled translations, which
means the translations of the MS should be decoupled from each other.
Additionally, it can be derived that each AS is permitted to translate only along
the actuation direction of the associated actuator, because linear actuators
cannot tolerate off-axis loads and displacements [87]. Additionally, the desired
mobility of the MS and ASs is completely controlled by the PMs and AMs.
Therefore, the constraint spaces of the compliant modules can be identified by
the desired mobility of the MS and ASs. The constraint spaces of the PMs and
AMs in a three-legged XYZ CPM are derived in Section 2.2.

For a specific synthesis process, the constraint of a PM or an AM can be selected
from its constraint space. Based on the selected constraint, both the possible
permitted geometrical forms and the position spaces of the PM or AM can be
determined. As stated in Section 1.4.1, the possible permitted geometrical forms
of the PMs and AMs can be obtained using the existing approaches such as the

screw-theory-based method and the FACT method, based on the constraints of
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the PMs and AMs. The derivation of the position spaces of the PMs and AMs in
a three-legged XYZ CPM are described in Section 2.3.

2.2 Constraint Space

2.2.1 Analysis domains for constraint space identification

AS domain MS domain AS domain

AS domai

Figure 2.2 Illustration of rigid stages and compliant modules of a three-legged XYZ CPM in

different analysis domains, MS domain and AS domains

It is derived in Section 2.1 that the constraint spaces of the PMs and AMs can be
identified based on the desired mobility of the MS and ASs. In order to identify
the constraint spaces of the PMs and AMs easily, the MS, ASs, PMs and AMs
are assigned to different analysis domains as shown in Figure 2.2. The
constraint spaces of the compliant modules in a domain are subject to the
permitted motions of the rigid stage in the domain. It can be seen in Figure 2.2
that the MS is constrained by the total contribution of the constraints of the
three PMs. Similarly, each AS is constrained by the total contribution of the
constraints of the PM and the AM in the same leg. Note that the three PMs are
included in the intersection fields between the MS domain and the AS domains,
so that the constraint spaces of the PMs and those of the AMs interrelate with

each other.

In order to simplify the CPI approach, it can be assumed that the PMs and AMs
of a three-legged XYZ CPM are independent of each other. This assumption
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means that one of the compliant modules, PMs and AMs, constrains a motion of
a rigid stage completely depending on its own structure, without considering
any contribution of the other compliant modules. Due to this assumption, a
small number of XYZ CPMs, such as the one shown in Appendix A, cannot be
synthesized using the CPI approach. However, they may be obtained via some
appropriate modifications on XYZ CPMs that can be synthesized using the CPI

approach.

2.2.2 Mathematical theory for constraint space identification

In this chapter, constraint spaces of compliant modules are derived using screw
theory. Therefore, for a three-legged XYZ CPM, the constraints of the compliant
modules and the motions of the rigid stages are represented by wrenches and
twists, respectively, in screw theory. In other words, a twist can be used to
represent a combination of linear and rotary motions, a wrench can be employed
to describe a combination of linear and rotary forces, and screw theory
combines them together. The constraint spaces of the compliant modules can be

derived based on the relationships between the wrenches and the twists.

2.2.2.1 Wrenches and twists in screw theory

It is well known that forces and displacements can be represented by screw
vectors, wrenches and twists, respectively [100]. Wrenches and twists can be
represented as wrench lines and twist lines, with particular locations,
orientations and pitches. Such a pitch refers to the coupling between the
translational force and the rotational force in a wrench, and describes the
translational displacement per rotation in a twist. Therefore, a wrench can be
represented by Equation (2.1) and Figure 2.3(a), while a twist can be described
by Equation (2.2) and Figure 2.3(b).
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[fT rx fo+af; ]T forceand moment

fr

=t

= [fT rxf, ]T q= 0, pure force (2.1)

[0 fx ]T g — oo,pure moment

where G is a wrench vector; and f and f, are two three-dimensional vectors

which represent translational and rotational loads, respectively. Additionally, r

is a 3x1 location vector which points from the origin of the coordinate system to

a point on the wrench line. The pitch is defined by g = (fT fR) / (fT : fT)

) . .
[c XU+ poy 04 ] screw motion
T .
E=| =] [c XU, Uy ] p=0, purerotation (2.2)
R
[UT O]T p — oo, puretranslation

where & is a twist, v, and v, are two three-dimensional vectors which represent

translational and rotational motions, respectively, while ¢ is a 3x1 location

vector which points from the origin of the coordinate system to a point on the

twist line. The pitch is defined by p= (ZJR -UT> / (Z)R ~vR>.

Figure 2.3 Illustration of a wrench and a twist: (a) a wrench C with a location vector r, an

orientation vector f, and a scalar value of pitch g; and (b) a twist & with a location vector c,

an orientation vector v, and a scalar value of pitch p

In a coordinate system, unit wrenches along and about the X-, Y- and Z-axes are
defined as principal wrenches, as shown in Equation (2.3) and Figure 2.4(a) [64].

Any one wrench in this coordinate system can be described as a linear
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combination of the principal wrenches, as shown in Equation (2.4) and Figure
2.4(b).
¢, =[1,0,0,0,0,0]',¢, =[0,1,0,0,0,0]',¢, =[0,0,1,0,0,0]'

(2.3)

¢, =[0,0,0,1,0,0] ¢ =[0,0,0,0,1,0]' ¢, =[0,0,0,0,0,1]'

SN NEN NN SR AT SN S e | (24)

where (., G, C,, ., G, and (,, are termed principal wrench coefficients. When

using Equation (2.4) to represent a general force in a coordinate system, the
principal wrench coefficients are the values of the general force along and about

the X-, Y- and Z-axes.

Constraints can also be represented by wrenches. However, unlike a general
force, a constraint is bidirectional in practice. For example, a translational
constraint can restrict all translations along the constraint in two possible
opposite directions. Therefore, if a wrench can be used to represent a constraint,
the wrench should have two possible directions. This means that each of the
principal wrench coefficients should have two possible values, one of which is
the negation of the other. Consequently, the wrench C in Equation (2.4) can be
rewritten as a wrench Cc, as shown in Equation (2.5), when using the wrench to

represent a constraint.

T
C’C = K’tx]tx’ K’ty]ty’ K’tz]tz’ K’rx]rx’ Kry]ry’ K’rz]rz} (25)

wherek, , Ky, K, K, , K, andk, are termed constraint coefficients, while j,, .,

jor Jur ], and j_ are direction coefficients. The constraint and direction
tz X ry 1Z

coefficients can be calculated using Equations (2.6) and (2.7), respectively.

Y

tx

R,

/2

= Ctx

’Iity = ‘Cty = Ctz = C_r>< Cry = Crz (26)

4 Iirx 4 Iiry = 4 Hrz
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Joo = il,jty =+1,j, =%£1,j_ = il,jry =+1,5 =41 (2.7)

It is appropriate to define that a constraint coefficient equals one if the
associated constraint is infinitely large, while the constraint coefficient equals
zero if the associated constraint is infinitely small. In other words, if a constraint
coefficient equals one, the direction associated with the constraint coefficient is
a DOC direction; otherwise it is a DOF direction. Therefore, each of the
constraint coefficients equals one or zero, for the synthesis of compliant
mechanisms described in this chapter. In addition, a constraint wrench has two
possible directions, while the instantaneous effective direction of a constraint
wrench is always opposite to the direction of the motion constrained by this

constraint wrench.

Figure 2.4 Principal wrenches and linear combination of the principal wrenches: (a) principal

wrenches, and (b) linear combination of the principal wrenches

Similarly, unit twists along and about the three axes of a coordinate system, as
shown in Figure 2.5(a) and Equation (2.8), can also be defined as principal
twists. Any one twist £in a coordinate system can be described as a linear
combination of the principal twists in the same coordinate system, as shown in

Figure 2.5(b) and Equation (2.9).

&, =[1,0,0,0,0,0] ,& =[0,1,0,0,0,0]',&,=[0,0,1,0,0,0]

.

2.8
£, =[0,0,0,10,0],&, =[0,0,0,010],&,=[0,0,0,0,0,1] 29
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where &, &y, &z, &, &y and &r- are termed principal twist coefficients, which are

the values of the displacements along and about the X-, Y- and Z-axes.

Figure 2.5 Principal twists and linear combination of the principal twists: (a) principal twists,

and (b) linear combination of the principal twists

2.2.2.2 Relationship between a wrench and a twist

Assume that a rigid stage in a compliant mechanism is constrained by both
constraints (provided by compliant members of the compliant mechanism) and
external forces (such as actuation forces). A motion of the rigid stage can be
represented by a twist, the constraints can be written as constraint wrenches,
and the external forces can be denoted by force wrenches. If the twist is
reciprocal to all the wrenches including both constraint wrenches and force
wrenches, the direction of the twist is a DOF direction of the rigid stage;
otherwise, the direction of the twist is a DOC direction [60, 100]. Note that if the
dot product of a twist and a wrench equals zero (as shown in Equation (2.10)),
the motion represented by the twist will not produce work under the action of

the wrench and the twist is reciprocal to the wrench [60, 100].

For force wrenches:

£0G =6.C| |6 G | HI6Gl H G s G HEC] =0
For constraint wrenches: (2.10)
£0Ge =l il HEy oy |l et HE iy | 61| =0

where operator 'o'represents the dot product of a twist and a wrench.
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2.2.2.3 Coordinate transformation of wrenches

A wrench, representing a force or a constraint, can be transformed from a
coordinate system ‘A’ to another coordinate system ‘B’. Equation (2.11) [60]
shows that a coordinate transformation matrix T, which can be used to perform

the transformation of a wrench from one coordinate system to another.

0 -z vy
R 0
= where D=z 0 —x (2.11)
DxR R
-y x 0

where the sub-matrix Ris a 3x3 rotation matrix and the sub-matrix D is a 3x3
location skew-symmetric matrix. Based on this transformation matrix, a wrench
in a coordinate system ‘A’ can be represented in another coordinate system ‘B’
by pre-multiplying the coordinate transformation matrix T. The entries x, y and
z in the sub-matrix D are the coordinates of the origin of the coordinate system

‘A’ in the coordinate system “B’.

2.2.3 Mobility of the rigid stages in the topological structure

As stated in Section 2.2.1, the constraint spaces of the compliant modules of a
three-legged XYZ CPM can be determined by the mobility of the rigid stages. In
this section, the mobility of the rigid stages in the topological structure of a
three-legged XYZ CPM is obtained. Additionally, the transmission of the three

actuation forces in the topological structure is also described in this section.

In a three-legged XYZ CPM system, the three translations of the MS are
actuated by three ground-mounted linear actuators. The actuation forces of the
actuators can be regarded as wrenches. A linear actuator can provide a
translational force along the actuation axis, but cannot tolerate transverse forces
and displacements [87]. Therefore, the actuation force of a linear actuator can be
represented by a pure force wrench. This is also the reason why an AS is
allowed to translate in one direction only. The actuation forces of the three

actuators in a three-legged XYZ CPM system can be written as wrenches based
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on Equation (2.1), as shown in Equation (2.12).

T
asx [fTasx rasx X fTasx] 7 Jasy [fTasy rasy X fTasy} and
(2.12)

T
asz [fTasz rasz X fTasz]

where Casy, Casy and Casz are the three pure force wrenches in a global coordinate

system Oms-XmsYmsZms, while f_, fTasy and f,  represent the directions of the

three pure force wrenches, and rasx, rasy and rasz are the three location vectors. In
the global coordinate system, the MS is permitted to translate along the Xms-,
Yms- and Zms-axes. Based on Equation (2.8), the mobility of the MS along the Xums-,

Yms- and Zms-axes can be described by three principal twists, & and

ms-tx/ ‘sms-ty
&...,» of the global coordinate system, as shown in Equation (2.13). As required

by the decoupling characteristic, each actuator drives one of the three
translations without influencing the other two translations, so that Equation

(2.14) can be obtained based on Equation (2.10).

& =[1,0,0,0,0,0]' & 0,1,0,0,0,0] ,& 0,0,1,0,0,0]' (2.13)

ms-ty [ ms-tz = [

gms—tx © Casx = 0’ é‘ms tx C’ 0 é‘ms tx C'asz = 0
éms—ty © Casx = O’ é-ms -ty (’ éms ty © Casz =0 (214)
gms—tz © Casx = O’ 5ms tz C O gms tz C’asz = O

It can be concluded from Equation (2.14) that: (a) £, fTasy and f,_ should be

parallel to the Xms-, Yms- and Zms-axes, respectively; and (b) rasx, rasy and rasz can
be any vectors. Consequently, the three actuation forces should be parallel to

the Xms-, Yms- and Zms-axes, respectively.

A PM is used to transmit the actuation force of an actuator from the AS to the
MS without influencing the forces transmitted by the other two PMs, so that the
PM cannot be compressed and elongated along the direction of the actuation

force transmitted by the PM, i.e. the PM has a pure force wrench along the
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actuation direction. A PM connects an MS and an AS using its two ends, so the
force of the actuator inputs from the end connecting the AS and outputs from
the end connecting the MS. Both the input force and the output force of a PM
should be parallel to the axis of the global coordinate system, but the input
force and the output force are not required to be collinear, as shown in Figure
2.6. According to the description above, three PM local coordinate systems
(Opmx-Xpmx Y pmxZpmx, Opmy-XpmyYpmyZpmy and Opmz-XpmzYpmzZpmz) and three AM
local coordinate systems (Oamx-XamxYamxZamx, Oamy-XamyYamyZamy and Oamz-

XamzYamzZamz) are defined, as shown in Figure 2.6.

Figure 2.6 shows that: (a) the MS is permitted to move in the Xms-, Yms- and Zms-
axes of the global coordinate system; (b) the PM local coordinate systems are
located at the centre points of the interfaces between the MS and the three PMs,
and are fixed to the MS; (c) each PM is represented as two parallel lines, a
parallel line connector, and two small virtual rigid stages which are used to
connect the PM to the MS and the AS. The two parallel lines indicate the input
direction and the output direction of the actuation force transmitted by the PM;
(d) each PM has a pure force wrench along the X-axis of the PM local coordinate
system; (e) each AS is constrained to translate only along the X-axis of the PM
coordinate system; (f) the AM local coordinate systems are located at the centre
points of the interfaces between the ASs and the AMs, and fixed to the ASs; (g)
each AM is expressed by one straight line and two virtual rigid stages which
are used to connect the AM to the AS and the BS; and (h) each BS is bound to
the ground, whose six DOF are completely constrained by the ground. In the
next two sections, the constraint spaces and the position spaces will be

identified based on the established coordinate systems.

42



Connecting stage

Figure 2.6 Illustration of rigid stages, compliant modules and actuators in a three-legged XYZ

CPM system and representation of the defined coordinate systems (global coordinate system

Oms‘Xmstsst} PM local coordinate systems Opmx'Xpmepmepmx, Opmy'Xpmprmymey and Opmz'

Xpmszmzmez; and AM local coordinate systems Oamx-Xameameamx, Oamy-XamyYamyZamy and Oamz-

XamzYamzZamz)

2.2.4 Constraint space identification

Table 2.1 The definitions of the motions of the rigid stages and the constraints of the

compliant modules in a three-legged XYZ CPM

Item  Twist of motion Wrench of constraint ~ Coordinate system
MS Emstx, Emsty, Emstz, Emsrx, Emsry, Emsrz / Oms-Xms YmsZms
PM-X / Cepmx Opmx-Xpmx Y pmxZpmx
PM-Y / Cepmy Opmy-Xpmy YpmyZpmy
PM-Z / Cepmz Opmz-XpzYpzZpz
AS-X  &asxtx, Sasxcty, Sasxetz, Eascrx, Sasxry, Sasxerz / Opmx-Xpmx Y pmxZpmx
ASY  &asytx, Sasyty, Sasy-tz, Sasy-rx, Easyry, Sasy-rz / Opmy-Xpmy Y pmyZpmy
AS-Z  &asztx, Easety, Easztz, Easzrx, Easzry, Saszrz / Opmz-Xpmz Y pmzZpmz
AM-X / Ccamx Oamx-Xamx Y amxZamsx
AM-Y / Ccamy Oamy-Xamy Y amyZamy
AM-Z / Ccamz Obamz-Xamz YamzZamz

For a decomposed three-legged XYZ CPM, the motions of each of the rigid
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stages can be represented by the principal twists in the associated coordinate
system, and the constraints of the compliant modules can be represented by
wrenches in the associated coordinate systems. Such twists and wrenches are
defined and shown in Table 2.1. Note that all the motions of the BSs are
restricted by the ground, so the motions of the BSs are not represented by twists.
The principal twists defined in Table 2.1 can be written as shown in Equations
(2.13) and (2.15) — (2.18), based on Equation (2.8). The wrenches defined in Table

2.1 can be written as wrenches, as shown in Equations (2.19) — (2.24), based on

Equation (2.5).
Eren =[0,0,0,1,0,0]' &, =[0,0,0,0,1,0] &, =[0,0,0,0,01] (2.15)
& =[1,0,0,0,0,0 &, =[0,1,0,0,0,0] ,&,.,, =[0,0,1,0,0,0],

2.16
& =[0,0,0,1,0,0] &, =[0,0,0,0,1,0] &, =[0,000,01] (210
£ =[10,0,0,0,0] &, . =[010000] &, . =[0071,000],

2.17
&n =[0,0,0,1,0,0]' &, . =[0,00010] ¢, ., =[000001 247
&.e =[1,0,0,0,0,0]' &, =[0,1,0,0,0,0]',&,,,, =[0,0,1,0,0,0],

2.18

o =[0,0,0,1,0,0]' &, =[0,0,0,0,1,0] &, =[0,00,001] (18)

oo (2.19)
[I{pmx—tx] pmx-tx/ Kpmx—ty] pmx-ty 7 K’pmx—tz] pmx-tz” Kpmx—rx] pmx-rx” Iipmx—ry] pmx-ry” K’pmx—rz] pmx—rz]
oo = (2.20)
[Hpmy-tx] pmy-tx” Fpmy-ty /pmy-ty 7 Fpmy-tz) pmy-tz* Fpmy-rxJpmy-rx” Fpmy-ry pmy-ry # Fopmy-rz pmy-rz }
o = 2.21)
CCamx =

(2.22)

T
[Hamx—tx] amx-tx 7 K/amx—ty] amx-ty / K;amx-tz] amx-tz/ Hamx—rx] amx-rx”/ Hamx—ry] amx-ry / F';amx—rz] amx-rz ]
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CCarny =

. . . . . .o (223
[K’amy-tx] amy-tx / Hamy-ty] amy-ty / "iamy-tz] amy-tz/ Kamy—rx] amy-rx/ Hamy-ry] amy-ry / Kamy—rz] amy-rz }
C’Camz =

. . . . , o (229
[/{amz-tx] amz-tx/ Kamz—ty] amz-ty / Kamz—tz] amz-tz”/ /{amz-rx] amz-rx’/ /{amz-ry] amz-ry”’ Kamz—rz] amz-rz }

where £'s are constraint coefficients, and j's are direction coefficients.

For a three-legged XYZ CPM, the motions associated with & ., & .., & .,
&omcxs Gamyne and &, are permitted, while the others should be constrained.

Moreover, the possible permitted constraints of the compliant modules can be
identified in the different domains based on Equation (2.10). The wrench and
the twist in Equation (2.10) should be in the same coordinate system, so the
wrenches in Table 2.1 should be transformed to appropriate coordinate systems.
More specifically, Ccpmx, Ccpmy and Cepmz should be transformed to the global

coordinate system, because these wrenches are used to identify the motions
associated with & | éms_ty, & s éms_ry and & . Similarly, Ccamx, Ccamy
and Ccamz should be transformed to the coordinate system Opmx-XpmxYpmxZpms,
Opmy-Xpmprmymey and Ome'XmeYmemeZ, reSpeCtively. These coordinate
transformation matrices can be derived as shown in Equations (2.25) - (2.30),

based on Equation (2.11).

1 0 000
0 1 0 000
0 0 1 000

pom =0 -z oy 100 (2.25)
Z 0 —x, 010
~Yore Xm0 0 01
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pmy-m

pmz-m

amx-pmx

amy-pmy

amz-pmz

o © O =

y amx

Y.

amx

my

amy

yamz

amz

e ===
c o~ o o o oo, o o o ©c = o o o ©

S O =k O O O

S = O O O O

S = O O O O S = O © O O

S = O O O O

_ O O O O O

o

- O O O O O

- O O O O O

_ o O O O O

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

where Tpmx-m, Tpmy-m and Tpmzm are the coordinate transformation matrices from

the PM

local

coordinate

systems
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(xpmx,ypmx,zpmx), <xpmy,ypmy,zpmy) and(xpmz,ypmz,zpmz)are the coordinates of the

origins of the PM local coordinate systems in the global coordinate system,
respectively, while Tamxpmx, Tamypmy and Tamzpm: are the coordinate
transformation matrices from the AM local coordinate systems Oamx-
Xamx YamxZamx, Qamy-Xamy YamyZamy and Oamz-XamzYamzZamz to the PM local coordinate

Systems Opmx'Xpmepmepmx, Opmy'Xpmprmymey and Opmz'Xpmszmzmez,
respectively. Also, (xamx,yamx,zamx), (xamy,yamy,zamy) and(xam,yam,zam> are the

coordinates of the origins of the AM local coordinate systems in the PM local

coordinate systems.

Based on Equations (2.11) and (2.25) — (2.30), Ccpmx, Ccpmy and Cepmz can be
transformed to the global coordinate system by pre-multiplying Tpmxm, Tpmy-m
and Tpmzm, respectively, which are represented in Equations (2.31), (2.32) and
(2.33). Similarly, Ccamy, Ccamy and Ccamz can be transformed to the PM local
coordinate systems by pre-multiplying Tamx-pmx, Tamy-pmy and Tamz-pmz, respectively,

as shown in Equations (2.34), (2.35) and (2.36).

CCmeﬂm = Tpmx-m(’Cpmx = [Hpmx—tx] pmx-tx/ H;pmx—ty] pmx-ty / I{pmx-tz] pmx-tz”/ H;pmx—rx] pmx-rx”/

. (231)
szmx—ry] pmx-ry + mex] pmx-tx/ Iipmx—rz] pmx-rz y pmx] pmx-tx }
CCpmy—>m = pmy-mCCpmy = [Hpmy—ty]pmy—ty’ K/pmy—tx]pmy-tx’ K/pmy—tz]pmy-tz’
L (232)
- Rpmy-ry] pmy-ry mey] pmy-tx/ Rpmy-rx] pmy-rx”/ /ipmy-rz] pmy-rz + xpmy] pmy-tx]
CCpmz—>m = pmz-mCCpmz = [Hpmz—tZ]pmz—tZ’ Iipmz—ty]pmz—ty’ Iipmz—tx]pmz—tx’
L (233)
y pmz] pmz-tx - H;pmz—rz] pmz-rz’ I{pmz—ry] pmz-ry - xpmz] pmz-tx”/ '%pmz-rx] pmz-rx ]
CCamxapmx = amx-pme'Camx = [/{amx-tx] amx-tx / Kamx-ty] amx-ty / Hamx-tz] amx-tz”/ Hamx-rx] amx-rx /
L (234)
Ramx—ry] amx-ry + Zamx] amx-tx / Kamx-rz] amx-rz Y amx] amx-tx }
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CCamy—>pmy = Tamy-pmyCCamy = [/{amy—tx]amy—tx’ K:amy—ty]amy—ty’ Iiamy—tz]amy—tz’ K:amy—rx]amy—rx’

. (2.35)
Ramy—ry] amy-ry + Zamy] amy-tx / I{amy—rz] amy-rz - y amy] amy-tx]
CCamzapmz = amz-pmzC'Camz = [Ramz-tx] amz-tx / /{amz-ty] amz-ty / K’amz-tz] amz-tz” /{amz-rx] amz-rx”’
L (2.36)
amz—ry]amz—ry + Zamz]amz—tx 4 Hamz—rz]amz—rz - yamz]amz—tx}

As discussed in Section 2.1, the instantaneous direction of a constraint wrench is
always in the opposite direction to the restricted motion. Therefore, the
elements in an entry of the screw vectors, as shown in Equations (2.31) - (2.36),

should have the same sign. Taking Equation (2.31) for example, the elements

K and

pmx—rz] pmx-rz

in the entry

prnx—rszrnx—rz - ypmxjprnx—tx always have the

_y pmx] pmx-tx

same sign. Therefore, K

ez pmcrs — Ypmpmcn €AN be rewritten as +1 multiplied

by the sum of the absolute values of ~,. ., and —y, . ie. ‘I{pmx_rz + ‘ Yomy|- AS @
result, Equations (2.31) - (2.36) can be rewritten as
Z;Cpmxﬂm = [K’pmx—tx] pmx-tx / Hpmx—ty] pmx-ty Hpmx—tz] pmx-tz”/
T
K’pmx—rx]pmx—rx’ + (‘ pmx-ry + ‘ pmx )’ + (‘Kpmx-rz + ‘ypmx )} (237)
CCpmy—>m = [/{pmy—ty]pmy—ty’ K:pmy—tx]pmy—tx’ Hpmy—tz]pmy—tz’
. (2.38)
+ (‘ pmy-ry + ‘ pmy )’ pmy-rx]pmy—rx 4 + (‘,{pmy—rz + ‘xpmy D
CCpmzam = [K’pmz-tz] pmz-tz”/ Kpmz-ty] pmz-ty 7 K’pmz-tx] pmz-tx/
. (2.39)
+ (‘ypmz + ‘Kpmz-rz )’ + (‘ pmz-ry + ‘ pmz ) pmz-rx]pmz-rx
CCamx~>pmx = [,{amx—tx] amx-tx / ,{amx—ty] amx-ty / Kamx—tz] amx-tz”/ l{amx—rx] amx-rx/
: (2.40)
+ ( Hamx—ry + Zamx )’ :i:( L yamx )}
CCamy—»pmy = [/{amy-tx]amy—tx’ /{amy-ty]amy—ty’ /{amy—tz]amy—tz’ /{amy—rx]amy—rx’
: (2.41)
+ ( ,{amy-ry + Zamy )’ :t( ,{amy—rz + yamy )
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CCamz—q:)mz - I{amz—tx]amz—tx 4 Hamz—ty]amz—ty 4 I{amz—tz]amz-tz’ I{amz—rx]amz-rx 4

)= )

According to the permitted motions of the MS, Equation (2.43) can be derived

. ( " (2.42)

+

+

K

amz-ry

Z

amz

K

amz-rz

yamz

based on Equation (2.10) for the MS domain. The values of the constraint
coefficients shown in Equation (2.44) can be identified based on Equations (2.37)

~(2.39) and (2.43).

(a) gms—tx © CCpmxam =0 and 5ms-‘cx ° CCpmyam = Oand Ems-tx ° CCmeﬂm =0
(b) gms—ty o C—’CmeHm = Oand gms—ty o CCpmy~>m = Oand 5ms—ty © CCpmz—>m = 0

(C) gms—tz o CCpmxam = Oand gms—tz © C(:1:'11'1y~>rr1 = Oand gms—tz © CCmeHm = 0

(d)&,....° Ccpmﬁm =0and/org§ o Ccpmyﬂm =0and/or §__ o Ccpmzam =0 (2.43)
(e) Sms_ry o Ccpmwm = (0 and/or Sms_ry o Ccpmyﬂm = 0and/or gms_ry o Ccpmhm =0
£)&,...° C,Cpmxam =(0and/org§ _ o Ccpmyﬂm =0and/or & __ o Ccpmzam =0

(@) Bt = land Koty = Oand Koty = 0

(b) Kopmytx = 1land Bomyty = Oand Kopmytz = 0

(o) Bomp e = land Kopmzty = Oand Bomrty = 0 240)
(d) Bopmery = 1 or/and Bomyry = 1 or/and Bomprs = 1 '
(e) B pmry = 1lor/and B pmyre = 1 or/and Kopmzry = 1

(f) B s = 1or/and Bopmyrs = 1 or/and Kopmzx = 1

It should be noted that Equation (2.44) shows the completed solutions for the
permitted constraints of the PMs in a three-legged XYZ CPM, including the
exact constraints and redundant constraints. However, only independent
constraints within each PM are considered in this thesis. The process of

deriving the values of the constraint coefficients associated with the rotational

DOF of the MS requires elaboration. Take €ms_rXOCCpmHm =0 and/or
Emorx ©Ccpmy m =0 and/or & oG, =0in Equation (243) for example,
based on Equations (2.37) - (2.39), the following equations can be obtained:

K =0 or/and ‘/{ = 0. Suppose that

pmx-rx

pmy-ry +‘zpmy‘ =0 or/and ‘/{pmz_rz +‘ypmz
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Kon =0, K =0 andr__, , =0, the motions associated with & __ cannot be

pmx-rx pmy-ry pmz-rz
constrained if the global coordinate system is moved to the locations where

Zomy = Yomz = 0. In other words, if B = 0, Bomyry = 0 and Komprs = 0, there is

still a line about which the MS can rotate. Therefore, at least one of the stiffness

coefficients ~ K and Kk cannot be zero as shown in the fourth row

pmx-rx/ Tpmy-ry pmz-rz

in Equation (2.44). Other stiffness coefficients in Equation (2.44) associated with
the rotational DOF of the MS can also be obtained based on the process
described as above. It should be pointed out that the results shown in Equation
(2.44) are independent of the positions of the PM local coordinate systems (or

the PMs).

In the same way, according to the permitted motions of the ASs in the AS
domains, Equation (2.45) can be derived based on Equation (2.10) if the
constraints of the PMs to the ASs are not considered. The values of the
constraint coefficients can be identified as shown in Equation (2.46) based on
Equations (2.40) - (2.42) and (2.45). The values of the stiffness coefficients in
Equation (2.46) are also not subject to the positions of the AM local coordinate

systems (or the AMs).

(a) gasx—tx © CCamxapmx =0 and 5asx-ty © CCamXHpmx =0 and gasx—tz © CCamxapmx =0 and

6asx—rx © CCamXﬁpmx =0 and g =0 and 5 =0

(b) é;asy—tx © CCamy~>pmy = 0 and é;asy—ty © CCamy—>pmy = O and gasy—tz o CCamyﬂpmy = 0 and

asx-ry © CCal’l’l.X*qDl'l'IX asx-1z © C(:al’l’lX*qDl'l’lX

(2.45)
6asy—rx © CCamprmy = O and gasy—ry © CCamy~>pmy = 0 and é;asy—rz © CCamyapmy = O
(C) 6asz—tx © CCamZHpmz = 0 and 5asz—ty o CCamZHpmz = O and gasz—tz © CCamzaprnz = 0 and
6asz—rx © CCamzapmz = 0 and é;asz—ry © CCamZHpmz = 0 and 5asz—rz © CCamZ*}me = O
(@) x,_., =0and Bty = landk, , =1land
K/amx—rx =1 and K/amx—ry = ]'and Kamx—ry =1
(b) k =0andk =1landk =1land
amy-tx amy-ty amy-tz
(2.46)
K =landk =landk =1
amy-rx amy-ry amy-ry
(¢) k... =0and Bty = landk, . =1land
K =landk =landk =1
amz-rx amz-ry amz-ry
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Equation (2.44) shows that there are 27 (3x3x3=27) permitted constraint
combinations for the PM-X, PM-Y and PM-Z if the redundant constraints from
the three PMs to the MS are not considered. It can be seen from Equation (2.46)
that each AM has five constraints in the AM local coordinate system if the

constraints of the PM imposed on the AS are not considered.

At this part of the design, ASs are completely constrained by the AMs with the
27 permitted exact-constraint combinations for the PMs, which are shown in
Table B.1 in Appendix B. The constraint combinations in Table B.1 form the
basic constraint space of the compliant modules (i.e. B-constraint space), which

is a subspace of the constraint spaces of the compliant modules.

As shown in Figure 2.2, each PM is included not only in the MS domain but also
in the AS domain. Therefore, each AS can be constrained by both the PM and
the AM. The following two conditions should be met if a PM can constrain an
extra rotational DOF of the AS connecting to the PM: (a) the PM should have
the constraint associated with the extra rotational DOF of the AS; and (b) this
extra rotational DOF of the AS should be restricted by the other leg(s). Based on
these two conditions, another subspace of the constraint space, termed the T-
constraint space, can be obtained by transmitting some of the rotational
constraints (each PM has one translational constraint which is used to actuate
the MS, so the translational constraints of the PMs cannot be transmitted to the
AMs) from the AMs to the PMs in the B-constraint space. One or more
redundant constraints can be added to the PMs and AMs in the B-constraint
space and the T-constraint space, and therefore the constraint space with
redundant constraints is defined as the S-constraint space. Overall, the complete
constraint space of the compliant modules consists of the B-constraint space, the
T-constraint space and the S-constraint space, the relationships of which are

represented in Figure 2.7.
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Constraint spaces

¢ ! ¢

B-constraint space T-constraint space S-constraint space

Transmit some constraint(s) T Add some redundant T
from AMs to PMs rotational constraint(s)

Add some redundant rotational constraint(s)

Figure 2.7 Relationships among the B-constraint space, T-constraint space and S-constraint

space

2.3 Position Space

2.3.1 PM position space

Y, JZLX Y, ﬁ".xm Y. lexm
: 2 s ALY

NI I T

(a) (b) (©

Figure 2.8 Permitted positions of the three PMs excluding considering the rotations about the
X-axes of the three PM local coordinate systems: (a) permitted positions of the PM-X (red
lines), (b) permitted positions of the PM-Y (green lines), (c) permitted positions of the PM-Z

(blue lines), and (d) permitted position combination of the three PMs

From the discussion in Section 2.2.4, the results of the constraint coefficients
shown in Equation (2.44) are independent of the positions of the PMs. Therefore,
PMs can translate freely, and this cannot affect the constraints of the PMs to the
XYZ CPM system. Moreover, each PM cannot rotate about the Y- and Z-axes of
the PM local coordinate system, because the direction of the pure force wrench
of the PM should be parallel to the local X-axis. If using three straight lines to

represent the three PMs and ignoring considering the rotations of the three PMs
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about the three X-axes of the three PM local coordinate systems, the permitted

positions of the three PMs can be shown in Figure 2.8.

The following work is to identify if a PM can rotate about the X-axis of the PM
local coordinate system, by taking PM-X as an example. Based on Table 2.1 and

Equation (2.44), the constraint wrench of the PM-X can be written as

T

CCpmx -

0,0,k

] pmx-tx” 7 pmx—rx] pmxrx/ K:pmx-ry] pmx-ry 7 Kpmx—rz] pmx-rz

(2.47)

The coordinate transformation matrix, in terms of the rotation about the X-axis,

is shown in Equation (2.48), based on Equation (2.11).

1 0 0 0 0 0
0 cos(a,,,) —sin(a, ) O 0 0
0 sin(a, ) cos(e,, ) O 0 0
Tomere =/ 0 0 , 0 0 (2.48)
0 0 0 0 cos(a,,,) —sin(a, )
0 0 0 0 sin(a,,) cos(a,,)

where o is the angle of the rotation about the X-axis of the PM local

coordinate system Opmx-XpmxYpmxZpmx. After the rotation, the constraint wrench

of the PM-X in the PM local coordinate system can be represented by C. .z,

which can be written in Equation (2.49) based on Equations (2.47) and (2.48).

CCpmx-Rx = Tpmx—RxCCpmx -

jpmx—b( ]me-b(
0 0
0 0 (2.49)

pmx—rx] pmx-rx

+‘/~; sin(apmx)D

pmx-rz

pmx-rx] pmx-rx

K, Ty COS(Oéme )] pmx-ry - Hpmx-rz Sj:n(apmx )] pmx-rz :l:(‘/{/pmx—ry COS(Oépmx )

pox-

K/pmx—ry Sln(apmx )]pmx-ry + Hme-I’Z Cos(apmx )]me—l’Z :t (‘Hprnx_ry

sin(ov,, )‘ + ‘Fc COS(CX, s )D

pmx-rz

where K €OS(0 )iy ~ Bomer, SO )y, 18 equivalent  to
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+ (‘/ﬁ?pmx_ry cos(apmx) + ‘/@pmx_rz sin(apmx) ) because Kpmcry Cos(ozpmx ) jpmx_ry and
~Fipmers ST ) s always have the same sign. Similarly,
By sin(ozpmx ) jpmx_ry F K Cos(ozpmx) jpmx_rZ is equivalent to
+ (‘/ﬂpmx_ry sin(or,, )|+ ‘Iipmx_rz cos(a,,.) )

The PM-X is able to rotate about the X-axis of the PM local coordinate system if

the wrenches CCpmx and Ccme_Rx are equivalent. It can be concluded from

Equation (2.49) that: (a) the PM-X can rotate about the X-axis if

K =K =0orl, and (b) the PM-X cannot rotate about the X-axis if

pmx-ry pmx-rz

=K.
pmx-ry pmx-rz
Overall, the position space of a PM is summarized as follows:

(a) The PM can translate freely, but cannot rotate about the Y- and Z-axes of
the PM local coordinate system, which is represented in Figure 2.8.

(b) The PM can rotate about the X-axis of the PM local coordinate system, if
both of the directions about the Y- and Z-axes in the PM local coordinate
system are DOC directions or DOF directions of the PM.

(c) The PM cannot rotate about the X-axis of the PM local coordinate system
if the PM can provide only one of the two rotational constraints about

the Y- and Z-axes in the PM local coordinate system.

Note that in this section only the position space for a PM or an AM as a whole is
considered. Actually, each PM or AM can be decomposed into several sub-
compliant modules, and each of the sub-compliant modules has a position
space. However, the position spaces of the sub-compliant modules are not

considered in this chapter.

2.3.2 AM position space

According to Section 2.2.4, the results of the constraint coefficients as shown in

54



Equation (2.46) are independent of the positions of the AMs. Therefore, an AM
can translate freely, which cannot affect the constraints of the AMs to the XYZ
CPM system. Moreover, each AM cannot rotate about the Y- and Z-axes of the
AM local coordinate system so that the DOF direction of the AM must be the

same as that of the force provided by the actuator.

The following work is to identify whether an AM can rotate about the X-axis of
the AM local coordinate system, by taking AM-X as an example. Based on Table
2.1 and the AM constraint space discussed in Section 2.2.4, the constraint

wrench of the AM-X can be written as

T

Coamx =

(2.50)

K
4 amx-ry] amx-ry 7 amx—rz] amx-rz

4 ] amx-ty 7 ] amx-tz/ K/amx-rx] amx-Tx

The coordinate transformation matrix in terms of the rotation about the X-axis

is shown in Equation (2.51), based on Equation (2.11).

1 0 0 0 0 0
0 cos(e,, ) —sin(e_ ) O 0 0
0 sin(e, ) cos(e, ) O 0 0
amci = 0 0 1 0 0 (2.51)
0 0 0 0 cos(o, ) —sin(a, )
0 0 0 0 sin(a, ) cos(a, )

where o, is the angle of the rotation about the X-axis of the AM local
coordinate system. Additionally, C._ can be transformed to C_,_ . ,as shown

in Equation (2.52).

CCamx-Rx = Tamx—Rx CCamx -
0 0
COS(O[ )jamx-ty - Sin(aamx )jamx-tz + <|COS(aamX )| * |Sin(aamx )

- + (|sin(ozamx )| + |cos(a

)

) (2.52)

)

Kamx-rz Cos(aamx )|)

sin(a,_ )j +cos(a,_ )j )

amx 7/ amx-ty amx 7/ amx-tz

amx-rx ] amx-rx

+

amx-rx ] amx-rx

K;amx-ry Cos(aamx )]amx-ry - K;amx-rz Sln(aamx )]amx-rz :I:(

Hamx-ry Sln(aamx )]amX-l'Y + /iamx-rz COS(aamx )]amX-rZ :l: (‘K’arﬂx-ry Sin(a

Kk sin(a._ )

amx-rz amx

K cos(a,_ )

amx-ry

+

amx )
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On the basis of Equation (2.52), one can obtain the following: (a) the AM-X can

rotate about the X-axis if & =K =0or1, and (b) the AM-X cannot

amx-ry | amx-z

rotate about the X-axis if =K

amx-ry amx-rz°
Overall, the position space of an AM is summarized as follows:

(a) The AM can translate freely, but cannot rotate about the Y- and Z-axes of
the AM local coordinate system.

(b) The AM can rotate about the X-axis of the AM local coordinate system if
both of the directions about the Y- and Z-axes in the AM local coordinate
system are DOC directions or DOF directions of the AM. The permitted
rotations of the three AMs are illustrated in Figure 2.9.

(c) The AM cannot rotate about the X-axis of the AM local coordinate
system if the AM can provide only one of the two rotational constraints

about the Y- and Z-axes in the AM local coordinate system.

AM-Y
permitted positions

) / B
g - % 7 ;
= : b‘-rz
% 0 ; Q/@@_'i?y_. ;
Za PM-X selected g, ST~
<g N Al
é -y - M-
j= » o=t
(] = =1 1]
[e ¥ = -l
m ol
+=1 LY T T
= 5 o) | N
; S
7(8- =
NI" Pt
B
,<m
AM-Z

permitted positions

Figure 2.9 Permitted rotations of the AMs about the X-axes in the three AM local coordinate
systems (PM-X and AM-X are shown by red lines; PM-Y and AM-Y are shown by green lines;
and PM-Z and AM-Z are shown by blue lines)

Similar to the position space discussion for the PM in Section 2.3.1, if one AM is
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comprised of several sub-compliant modules, the consideration of the position

spaces of the sub-compliant modules is also out of the scope of this chapter.

2.4 Synthesis Procedure

The CPI approach is summarized as follows: once the constraint spaces and the
position spaces of the compliant modules in the topological structure of a three-
legged XYZ CPM are identified, the geometrical forms of the compliant
modules can be derived based on the permitted constraints selected from the
associated constraint spaces using the existing approaches such as the FACT
approach, and then the compliant modules can be combined with the rigid
stages based on the permitted positions selected from the position spaces. The
selections of the permitted constraints and positions differ from case to case,

depending on the requirements.

In practice, the final three-legged XYZ CPM is chosen from several potential
three-legged XYZ CPMs synthesized based on different selections. Moreover,
further modification may be needed to make the three-legged XYZ CPM have
desired characteristics such as symmetric structure, compact configuration and
easy fabrication. Additionally, the three-legged XYZ CPM may be modified into

an XYZ CPM with more than three legs via adding redundant legs.

It should be emphasized that the CPI approach is based on a systematic
arrangement of rigid stages and compliant modules using the constraint spaces
and position spaces. The CPI approach based synthesis procedure is described

in Figure 2.10.
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Input the design requirements
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Output the XYZ CPM

Select constraints for the PMs and AMs
from the constraint spaces derived in
Section 2.2.4

'

Synthesize the PMs and AMs using the
existing methods such as FACT approach

Check if the XYZ CPM meets the
design requirements

'

Design the BSs

Design the MS and set up the global
coordinate system

|

'

Implement further modifications on the
XYZ CPM such as adding redundant
constraints to make the design compact
and manufacturable

f

Design the ASs, and then assemble the

AMs to the ASs based on the AM local

| cOOTdinate systems as shown in Figure 2.6

and identify the positions of the AMs
within the position spaces

Assemble the PMs to the MS based on the
PM local coordinate systems as shown in
Figure 2.6, and identify the positions of
the PMs within the position spaces

Figure 2.10 Flow chart for the CPI approach design procedure

2.5 Case Study

This section will use an example to demonstrate how to synthesize XYZ CPMs
using the CPI approach. Suppose that the objective of the example is to
synthesize XYZ CPMs with monolithic configurations such as the ones
proposed in [87, 101]. The synthesis can be followed, based on Steps (i) to (ix)

below.

i.  Select constraints for the PMs and AMs from the constraint spaces shown
in Appendix B. According to the design requirement, it is better to select

the combination in which the PM-X, PM-Y and PM-Z have the same
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l.

iii.

constraint and the AM-X, AM-Y and AM-Z also have the same constraint,
i.e., isotropic legs. The reason for this choice is that compliant modules
can be designed with the same structure if the compliant modules have
the same constraints. Therefore, Combination 16 in the B-constraint
space (listed in Appendix B) is selected as the constraints of the
compliant modules. In order to obtain more monolithic XYZ CPMs, a
further three cases are derived based on Combination 16, which are
shown in Table 2.2. In the table, Case 1 is Combination 16 listed in
Appendix B. Case 2 is derived by selecting three redundant rotational
constraints for the PMs used in Case 1, so that Case 2 belongs to the S-
constraint space. Case 3 is determined by transmitting three rotational
constraints (the underlined rotational constraints in Case 1) from the
AMs to the PMs in Case 1, and then adding three redundant rotational
constraints for the PMs, so Case 3 still belongs to the S-constraint space.
If all redundant rotational constraints are selected for the PMs and AMs,
Case 4 is generated, which is one case within the S-constraint space.
Synthesize the structures of the PMs and AMs based on the constraints
selected in Step i. In this example, several parallel compliant modules are
synthesized using the FACT method [66] as shown in Figure 2.11. The
compliant module in Figure 2.12(a), a 4-DOC parallel module, is
designed by deleting two of the beams of the compliant module shown
in Figure 2.11(c). The compliant module shown in Figure 2.12(b) and
Figure 2.12(c), a 4-DOC serial module, is conceived by stacking the two
compliant modules in Figure 2.11(d) together. These compliant modules
include all the required compliant modules that are used in the 4 cases in
Step i; however, other possible permitted geometrical forms of the
compliant modules can be obtained based on the same constraints, if
necessary.

Choose cubes as the MSs (the dimensions can be ignored in this early-

stage design) for these cases, and set up the global coordinate system, as
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iv.

Vi.

Vii.

Viii.

shown in Figure 2.6.

Assemble the PMs based on the PM local coordinate systems, as shown
in Figure 2.6, and the position spaces of the PMs, as illustrated in Figure
2.8(d). Here, the rotations of the PMs about the X-axes of the PM local
coordinate systems should be identified based on the specific constraints
of the PMs. The 2-DOC module in Figure 2.11(a) is selected as the PM for
Case 1. The positions of the three PMs are identified as shown in Figure
2.13(a), and the orientations of the PMs should be subject to the PM local
coordinate systems as illustrated in Figure 2.13(b). The three PMs cannot
rotate about the three local X-axes due to their constraints based on the
results in Section 2.3.1. Similarly, the PMs and their selected positions for
Cases 2 to 4 are shown in Figure 2.14 to Figure 2.17, of which both Figure
2.16 and Figure 2.17 are correspond to Case 4.

Design ASs for the four cases. There are no specific requirements about
the ASs.

Identify the positions of the AMs in terms of the position spaces. For
Case 1, the 5-DOC-1 module, shown in Figure 2.11(c), is selected as the
AM. The permitted positions and selected positions of the AMs are
represented in Figure 2.13(c) based on Figure 2.9, where the translations
of the AMs are not considered in these cases. The positions for the three
AMs, as shown in Figure 2.13(c), are selected to make the XYZ CPM
compact. Similarly, the positions of the AMs for Cases 2 to 4 are shown
in Figure 2.14 to Figure 2.17, of which both Figure 2.16 and Figure 2.17
are again correspond to Case 4.

Make further modifications for the four cases. For example, an inactive
module is added to the XYZ CPM in Case 1.

Design BSs for the four cases. It should be noticed that the intermediate
stages of the PMs of the XYZ CPMs as shown in Figure 2.15 and Figure
2.16 are selected as the equivalent BSs, because the intermediate stages

can also provide the equivalent constraints to the ASs.
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ix. Check if the final XYZ CPMs in the four cases meet the design
requirements. The three novel XYZ CPMs, 4-4-XYZ CPM, 4-5-XYZ CPM-
1 and 4-5-XYZ CPM-2, as shown in Figure 2.15 and Figure 2.16, are
created in this chapter. The FEA results, shown in Figure 2.18 to Figure
2.20, validate the decoupled nature of the translational motions. The 2-5-
XYZ CPM and 3-5-XYZ CPM, as shown in Figure 2.13 and Figure 2.14,
were also proposed by Hao in [77] and [101]. A prototype for the 3-5-
XYZ CPM is also demonstrated in Figure 2.21. The 4-5-XYZ CPM-3
illustrated in Figure 2.17 was already reported [87] by Awtar. These
resulting XYZ CPMs can be manufactured easily by cutting in the three

orthogonal directions.

Table 2.2 Four constraint combination cases for the PMs and AMs

Constraints in the PM and AM local coordinate systems

Item  Module
X Y z
PMS Tpx-thpx-rz pr-thpy-ry sz-thpZ-ry
Case 1
AMS Tax-tyTax-tzRax—erax-erax-rz Tay—tyTay-tzRay-eray—ryRax-rz Taz—tyTaz—tzRaz—eraz-ryRaz-rz
PMS Tpx-thpx-rprx-rZ pr-thpy-rpry-rz sz-thpZ-rprz-rZ
Case 2
AMs Tax-tyTax-tzRax-erax-ryRax-rz Tay-tyTay-tzRay-eray—ryRay-rz Taz-tyTaz-tzRaz-eraz-ryRaz-rz
PMS TpX-tXRpX-I‘XRpX-I‘prX-rZ pr-tXpr—rXpr—rpry—rz TpZ-tXRpZ-]’XRPZ-I‘prZ-]’Z
Case 3
AMs Tax-tyTax-tzRax-erax-rz Tay-tyTay-tzRay-eray-ry Taz-tyTaz-tzRaz-eraz-ry
PMS TpX-tXRpX-I‘XRpX-I‘prX-rZ pr-tXpr—rXpr—rpry—rz TpZ-tXRpZ-]’XRPZ-I‘prZ-]’Z
Case 4
AMs Tax-tyTax-tzRax-erax-ryRax-rz Tay-tyTay-tzRay-eray—ryRay-rz Taz-tyTaz-tzRaz-eraz-ryRaz-rz

It can be concluded that all the resultant XYZ CPMs meet the early-stage design
requirements and that they are compact and can be fabricated easily. Further
comparisons can be made based on specific working conditions, non-linear
kinematostatic analysis, dynamic analysis, etc. In addition, two non-monolithic
designs, showing the PM rotations about the X-axes of the PM local coordinate
systems, can be seen in Appendix C. Note that redundant legs can also be

added to the synthesized three-legged XYZ CPMs.
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2-DOC Module

3-DOC Module

©

5-DOC Module-2

Figure 2.11 Parallel compliant modules with different DOC (or constraints) synthesized
using the FACT method: (a) a 2-DOC module design, (b) a 3-DOC module design, (c) a 5-
DOC module termed 5-DOC-1 module design, and (d) a 5-DOC module termed 5-DOC-2

module design

(a) E e (©

Figure 2.12 Compliant modules with different DOC (or constraints): (a) a 4-DOC module

termed a 4-DOC-1 module, (b) a 4-DOC module termed a 4-DOC-2 module, and (c) a 4-DOC
module termed a 4-DOC-3 module
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Figure 2.13 An XYZ CPM synthesized based on the constraints in the case 1: (a) determining
the PM positions, (b) the orientations of the PMs in the PM local coordinate systems, (c)
selecting the AM positions, (d) adding an inactive module, and (e) the final XYZ CPM termed
2-5-XYZ CPM (i.e. XYZ CPM with 2-DOC PM and 5-DOC AM)
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Figure 2.14 An XYZ CPM synthesized based on the constraints in the case 2: (a) replacing the
PMs of the XYZ CPM shown in Figure 2.13(d) with the 3-DOC module in Figure 2.11(b), and
(b) the final XYZ CPM termed the 3-5-XYZ CPM (i.e. an XYZ CPM with 3-DOC PMs and 5-
DOC AMs) obtained by adding redundant constraints on the AMs of the XYZ CPM shown in
Figure 2.14(a)
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Intermediate stage

PM__Y

PM-Z position space

AM-Z
Position space

Figure 2.15 An XYZ CPM synthesized based on the constraints in the case 3: (a) determining
the PM positions, (b) selecting the AM positions, (c) selecting the intermediate stages as the
BSs (because the intermediate stages can provide the constraints which the BSs can offer),

and (d) the final XYZ CPM termed 4-4-XYZ CPM (i.e. XYZ CPM with 4-DOC-2 PM and 4-

DOC-1 AM)

Redundant constraints
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Figure 2.16 An XYZ CPM obtained by replacing the AMs of the 4-4-XYZ CPM with the 5-
DOC-1 module and adding redundant constraints: (a) XYZ CPM termed 4-5-XYZ CPM-1 (i.e.
XYZ CPM-1 with 4-DOC-2 PM and 5-DOC AM) through adding two wire-beams to the AM-
Z, and (b) XYZ CPM termed 4-5-XYZ CPM-2 (i.e. XYZ CPM-2 with 4-DOC-2 PM and 5-DOC
AM) by adding other four wire-beams to the AMs of the 4-5-XYZ CPM-1
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AM-Z
Position space

(a) Position space

Figure 2.17 An XYZ CPM obtained by replacing the AMs of the 4-4-XYZ CPM with the 5-
DOC-2 module based on the constraints in Case 4: (a) determining the AM positions, (b)
adding redundant constraints, and (c) the final XYZ CPM termed 4-5-XYZ CPM-3 (i.e. XYZ
CPM-3 with 4-DOC-2 PM and 5-DOC AM)

(a) (b)

Figure 2.18 The FEA results of the 4-4-XYZ CPM: (a) X motion only, (b) Y motion only, and (c)

Z motion only

E

Figure 2.19 The FEA results of the 4-5-XYZ CPM-1: (a) X motion only, (b) Y motion only, and

(a) (©)

(c) Z motion only
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(©)

Figure 2.20 The FEA results of the 4-5-XYZ CPM-2: (a) X motion only, (b) Y motion only, and

(c) Z motion only

Figure 2.21 A prototype of the 3-5-XYZ CPM

2.6 Summary

A mnovel CPI approach for synthesizing decoupled XYZ CPMs, with
consideration of actuation isolation, has been proposed. The XYZ CPMs,

synthesized using the CPI approach, have the following characteristics:

(a) Each XYZ CPM has three non-redundant parallel legs between the MS
and the BSs. Note that redundant legs can be added in the further
modification design step to ensure a symmetrical arrangement.

(b) Each leg has an AS that can translate in one actuation direction only.

(c) The translational motion of each AS is transmitted to the MS without
influencing the other two translations of the MS.

(d) Non-desired rotational motions of MSs are constrained by the three legs.

(e) The geometrical forms and positions of the legs can be adjusted under
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the constraint spaces and the position spaces to meet a variety of design

requirements and applications.

The CPI approach provides a systematic synthesis procedure for the compliant
modules and rigid stages in an XYZ CPM system, according to the constraint
spaces and the position spaces. The constraint spaces and the position spaces
have been derived based on screw theory rather than design experience. The
constraint spaces are classified into three different types (B-constraint space, T-
constraint space, and S-constraint space), and the most frequently employed
positions in the position spaces are illustrated by geometrical shapes.
Additionally, the possible permitted geometrical forms of the compliant
modules can be obtained using the existing approaches such as the FACT
approach. Therefore, the CPI approach is an effective method that is accessible
not only for experts, but also for beginners. The synthesis process has been
demonstrated in a step by step fashion via several monolithic XYZ CPMs. The
mobility of the XYZ CPMs synthesized is verified by FEA simulations.

The proposed constraint spaces contain a number of constraint combinations.
Moreover, a number of XYZ CPMs can be synthesized based on only one of the
combinations, because: (a) each compliant module in an XYZ CPM system has
many permitted positions in its position space; and (b) each compliant module
has many possible permitted geometrical forms such as a parallel geometrical
form, serial geometrical form and hybrid geometrical form. Therefore, a variety

of XYZ CPMs can be synthesized using the CPI approach.

It is noted that the CPI approach focuses on the early-stage conceptual design.
Nonlinear characteristics such as parasitic motions are not considered.
Additionally, coupled XYZ CPMs can be synthesized through further
modifications of decoupled XYZ CPMs, as is detailed in Appendix D.
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3 CFB MODELLING APPROACH

This chapter proposes a constraint-force-based (CFB) approach to model any
compliant mechanisms with a particular emphasis on modelling complex
compliant mechanisms such as XYZ CPMs. The principle of the CFB approach
is presented in Section 3.1, followed by modelling examples in Section 3.2. In
Section 3.3, the analytical results of the examples are validated by FEA

simulations and experimental tests.

3.1 Principle

Similar to the CPI approach, in the CFB approach, a compliant mechanism is
also regarded as a combination of the rigid stages and compliant modules. A
compliant module can offer elastic forces due to its deformation. Such elastic
forces are defined as variable constraint forces in the CFB approach, because the
elastic forces vary with the displacements of the associated deformation.
Additionally, the CFB approach defines external forces applied on a compliant
mechanism as constant constraint forces that are independent of the
deformation of the compliant mechanism. If a compliant mechanism is in static
equilibrium, all the rigid stages are also in static equilibrium under the
influence of the variable and constant constraint forces. Therefore, the
constraint force equilibrium equations of the rigid stages can be obtained, and
the analytical model of the compliant mechanism can be derived based on the
constraint force equilibrium equations. As a result, the main work of modelling
a compliant mechanism using the CFB approach is to derive the variable

constraint forces and the constraint force equilibrium equations (including
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deriving the geometrical compatibility conditions). The derivation of the
variable constraint forces produced by compliant modules and constraint force

equilibrium equations is demonstrated in Sections 3.1.1 and 3.1.2, respectively.

In this thesis, all geometrical length parameters and translational displacements
are normalized by beam length L. Additionally, translational forces (including
translational constraint forces) are normalized by EI/L? and the rotational forces
(including rotational constraint forces) are normalized by EI/L. Here E is
Young’s modulus, I is moment of inertia of cross-section area of a beam, and L

is the beam length.

3.1.1 Variable constraint forces

Compliant modules can be classified into BCMs (basic compliant modules, as
defined in Section 1.3) and NBCMs (non-basic compliant modules, as defined in
Section 1.3). The variable constraint force produced by a BCM can be obtained
according to the force-displacement relationship of the BCM. This section takes
a wire-beam with uniform cross-section (Figure 3.1) as an example BCM, so as
to demonstrate the derivation of the variable constraint force produced by the
wire-beam. As is well known, any one NBCM can be decomposed into rigid
stages and BCMs. Therefore, the variable constraint force produced by a NBCM

can be obtained based on the variable constraint forces of the associated BCMs.

Yo

Figure 3.1 A wire-beam, its local coordinate system and the principal wrenches of the local

coordinate system

In Chapter 1, constraints and motions of compliant modules are represented by
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wrenches and twists, respectively, using screw theory in the CPI approach. In
order to have a strong connection to the CPI approach, constraint forces (both
variable and constant constraint forces) and motions are described as wrenches
and twists, respectively, in the CFB approach. Note that constraint forces are
actually forces, rather than constraints. Therefore, constraint forces can be

represented by wrenches, based on Equation (2.4) rather than Equation (2.5).

A wrench, Gy, is used to represent the variable constraint force of the wire-beam
(as depicted in Figure 3.1) in the coordinate system Ov-XoYvZb. A twist, &b, is
used to indicate the displacements of the beam free tip centre along and about
the three axes of the coordinate system [61, 102]. The wrench (b and the twist &

can be written as shown below, based on Equations (2.4) and (2.9).

G, = [Cb—tx 1 Corty 7 Sortar Staxs Soory 7 S r 3.1)

Sy = [Eb-tx ’ é-b—ty 1€tar Eornr é-b—ry +Eoer r 3.2)

where(,_, , Cb_ty, Conwr Conr Cb_ry and ¢, _are principal wrench coefficients, which

represent the values of the variable constraint forces along and about the Xe-,

Yo- and Zv-axes of the coordinate system Ob-XbYbZb, respectively. Additionally,

s £b_ty, oy Eoner fb_ry and ¢, are principal twist coefficients, which represent

the values of the displacements of the beam free tip centre along and about the

three axes of the coordinate system Ov-XoYvZo.

If the displacement of a beam free tip centre is &, due to the influence of an
applied external force represented by a wrench Cp, the relationship between the
&b and the Cor is the force-displacement relationship of the beam. The nonlinear
force-displacement relationship of a wire-beam with uniform cross-section has
been developed in [85], which is very accurate (for medium motion ranges, i.e.,
when the deflection is less than 0.1% of beam length), but complicated. A

simplified force-displacement relationship of a wire-beam has been proposed in
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[78], which is also sufficiently accurate when the rotations of the wire-beam are
much smaller than the translations. The simplified force-displacement
relationship proposed in [78] is adopted in this chapter, so the derived variable
constraint force of a wire-beam is valid for modelling translational compliant
mechanisms. Simplified force-displacement relationships are obtained, as

shown in Equations (3.3) — (3.8).

£, = be—txtbz +¢ Sb-ty _ gb—rz + gb—rz _ 3€b-ty ¢
bt 12 b1 20 15 20 5 |
+ 5 11<bf-tx§b—rz _ be-txgb-ty + 5 [gbf-txgb-ty . gbf—txgb-rz
b-rz b-ty
6300 1400 700 1400
+ é‘ C‘t2>f—tx£b—rz _ Cif'txfb‘t)’ + é‘ Csf-txfb—ty _ Ck%f—txgb—rz
> 18000 84000 > 42000 84000
(3.3)
—¢ é“b-ry + $outz i . gb-ry _ 38 ¢
Y15 20 20 5 |
. . 11be—tx§b—ry o be-txgb-tz be—txgb-ry be-txgb—tz
& +&, +
'ry 6300 1400 1 1400 700
—¢ _ 51>-r>'C§f-t>< _ gb—tzc}ff—tx +¢& 5b-ryclzf-tx + Sb—tzg}ff—tx
>l 18000 84000 "1 84000 42000
§nliine 1 &rCorne Ot
be—ty = b140b6t - 700 5'b—tyC}ff-tX - . lobft + t; = - 6£b—rz + 12£b-ty (3.4)
fb—ryc‘sf—tx 1 2 gb—rycbf—tx 65]3_ ZC £-tx
be—tz = 1400 - 700 fb—tzcbf—tx + 10 _l_ t5 ot + 6§b-ry + 12§b—tz (3'5)
o be-rx be—tx (fryé-ty + Erzgtz> 6 (é-ryfty + é-rzé-’tz) 3.6
Sooc = 5 106 * § (5:6)
b b b
2
_C _ llgb—rycbf—tx + gb_tzcgf_tx . 2£b—ry<bf—tx o gb-tzcbf-tx _ 45 o 65 (37)
bfry 6300 1400 15 10 bry b
1 1§b— C]ff_t gb-tygsf-tx 2§b be—t £b—tbef-tx
— 17 X 17 X 4 —6 38
ot 6300 * 1400 * 15 10 4 6%y 58

where tv is the thickness of the wire-beam (square cross section), while
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O0v=GpJv/Evls =~ 27/32/(1+vb), here Gv, Jr, Ev, I and vb are the shear modulus,

torsional constant, Young's modulus, moment of inertia of cross-section area
and Poisson's ratio, respectively [85]. Additionally, ¢, be_ty, Corrr Copnn s be_ry
and ¢, are the principal wrench coefficients of the wrench Crr, which represent

the values of the external forces along and about the Xo-, Y- and Zs-axes of the
coordinate system Obv-XbYbZb, respectively. It can be seen from Equations (3.3) —
(3.8) that the wrench Cpt is a function of t», 6» and the components of the twist &.

Therefore, the wrench Cyt can be written as

Cor = Kieam <€b’tb’6b) = [KB-tx (€b’tb’6b)’KB-ty (Sb’ tb’éb)’KB-tz <£b’tb’6b)’

T (3.9)
Ko (Eortor ) Ky (80808, ) Ko (E4808, )

where Kseam(+) is a 6x1 variable vector, whose six components are six functions,
Ke(*), Ksy(+), Ksz(+), Kex(+), Kpry(-) and Ker(+). The six functions can be
obtained based on Equations (3.3) — (3.8), so that the values of the six functions
are (s Gy Gorer Corms Gorry ANA G, Tespectively. When the beam is in a static
equilibrium state, the resultant force represented by wrench C» is the reaction

force to the resultant force represented by Crvi. According to Newton's third law,

it can be derived that {, = —C,.. Therefore, the wrench C» can be written as

Gy = ~Kpeam (éb' tys 61)) (3.10)

Suppose that all rotational displacement components in &» are much smaller
than the translational displacement components, Equation (3.11) can be

obtained based on Equations (3.3) — (3.8) and Equation (3.10).
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KBeam (gb’ ty, 6b> = kBeam—Lgb + KBeam—NL (gb’ ty, 6b)

12/ 0 0 0 0 0 O
0 12 0 0 0 —6 O
0 0 1206 0 £ 4 [owos (3.11)
0 0 0 6 0 0 O
0 0 6 0 4 0 O
0 -6 0 0 0 4 O\

where

36(35t, — &y ) (S0 + €0

g = 7
e (1758 + 3¢, + 3¢,
504£b-ty (5£b—tx + 3 (gkz)-ty + 51t2>—tz ))
Oxp2 = 2 2 2
175t, + 3§b_ty +3&,.,
o . 5O4§b—tz (5£b—tx + 3 (é-lf-ty + gé—tz ))
b3 175t; 4 3¢, + 3¢,
66 & +E& & 17587 +2487 +24E> +35¢
o _ b-ry Sb-ty b-rz>b-tz b b-ty b-tz b-tx
b 175t +3¢2, + 360, '
o o 4:Zgb-tz (5§b—tx + 3 (é‘j—ty + €If—tz ))
kb5 175t, + 3¢, + 3¢,
42é-b-ty (5£b-tx + 3 (é-li-ty + é-If-tz ))
Orbs — — 2 2 2 :
175t, + 3§b_ty + 3¢,

Note that kseam-L is the linear stiffness matrix of the wire-beam, and Kgeam-nL(*) is @

nonlinear stiffness variable vector about v, 6» and the components of &.

The variable constraint force produced by a wire-beam can be calculated using
Equations (3.3) — (3.10), or calculated using Equation (3.11) when the rotational
displacements of the wire beam free tip centre are much smaller than the

translational displacements.
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In a similar way, the variable constraint forces produced by other BCMs can
also be derived based on their force-displacement relationships. If the variable
constraint forces of the BCMs which make up a NBCM are obtained, the
variable constraint force produced by the NBCM can also be obtained, through
transforming all the variable constraint forces of the BCMs to a common
coordinate system and then adding these variable constraint force vectors in the
common coordinate system; (two examples are shown in Sections 3.2.1 and
3.2.2). In addition, if the force-displacement relationship of a NBCM has existed
already, the variable constraint force of the NBCM can also be calculated

according to the force-displacement relationship of the NBCM.

3.1.2 Constraint force equilibrium equations

If a rigid body is balanced under the influence of n compliant modules and m
external forces, the constraint force equilibrium equation for the rigid stage can

be written as

i (Tvc-inC—i ) + i (ch-jccc-j ) =0 (3.12)

i=1 j=1

where wrenches ¢ _.(i=1, 2, 3 ... n) and wrenchesG__. (7=1, 2, 3 ... m) represent

cc-j
the variable constraint forces of the n compliant modules and m constant

constraint forces applied on this rigid stage, respectively. T __ (i=1,2,3 ... n) and
ch—j (=1, 2, 3 ... m) are transformation matrices, which can transform all the

constraint forces to a common coordinate system.

When a compliant mechanism is in static equilibrium under the influence of a
series of external forces (or constant constraint forces), all the rigid stages of the
compliant mechanism are also in static equilibrium. As studied in Section 3.1.1,
the variable constraint forces of the compliant modules can be derived.
Therefore, the constraint force equilibrium equations for all the rigid stages can

be represented by the variable and constant constraint forces. Moreover, the
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analytical model of the compliant mechanism can be calculated based on the

constraint force equilibrium equations.

The CFB approach can be used to model a compliant mechanism linearly and
non-linearly. If all nonlinear contributions to the variable constraint forces are
not considered and the transformation matrices are derived based on the
undeformed configuration, the linear analytical model of the compliant
mechanism can be obtained; otherwise, the nonlinear analytical model of the

compliant mechanism can be derived.

3.2 Case Study

The CFB approach can be used to model any one compliant mechanism.
Without loss of generality, a compact XYZ CPM (as shown in Figure 3.2 and
Figure 2.14(b)) composed of identical wire-beams is modelled in this section

using the CFB approach.
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Figure 3.2 An XYZ CPM and its decomposition: (a) the rigid stages of the XYZ CPM, and (b)
the compliant modules of the XYZ CPM

As studied in Chapter 2, this XYZ CPM can be decomposed into two types of
NBCMs, which are termed four-beam NBCM and eight-beam NBCM. The four-
beam NBCMs are PMs (PM-X, PM-Y and PM-Z), and the eight-beam NBCMs
are AMs (AM-X, AM-Y and AM-Z). The rigid stages of the XYZ CPM are
labelled in Figure 3.2(a), and the NBCMs are shown in Figure 3.2(b). Note that
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the AS-X, AS-Y and AS-Z are ASs (actuated stages), and are also the rigid stages
of the AM-X, AM-Y and AM-Z, respectively.

The BCMs of the NBCMs are wire-beams with uniform cross sections. The
variable constraint force of such a wire-beam has been derived in Section 3.1.1,
which is used to derive the variable constraint forces of the two NBCMs in
Sections 3.2.1 and 3.2.2. Finally, the constraint force equilibrium equations and

the analytical models of the XYZ CPM are derived in Section 3.2.3.

3.2.1 Variable constraint force of a four-beam NBCM

A four-beam NBCM of the XYZ CPM is shown in Figure 3.3. Suppose that the
thickness of the mobile top plate is tiny compared with the length of the beams.
Four wrenches, Cwmi (i=1, 2, 3 or 4), are used to represent the variable constraint
forces of the four wire-beams in the local coordinate systems Omi-XeiYwiZwi (=1,
2, 3 or 4), respectively. Note that the local coordinate systems are placed at the
tips of the four wire-beams, Om1, Oz, Ons and Om4, as shown in Figure 3.3. If the
displacement of the four-beam NBCM is represented by a twist & in the global
coordinate system, the displacements of the tips of the four beams can be

written as twists &mi, as shown in Equation (3.13).

Figure 3.3 Illustration of a four-beam NBCM, the global coordinate system On-XaYsZw, and
the local coordinate systems Osm1-Xw1Yw1Zew1, Ome-Xe2Ye2Zevz, Oms-XevsYwsZevs and Osa-

XtbaYtbaZ tba
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& =|Ton] &w i=12,30r4 (3.13)

where T, , (i=1, 2, 3 or 4) is the transformation matrix from the local coordinate

systems Omwi-XwiYniZi to the global coordinate system Own-XoYwnZn. When the
rotational displacements of the top plate are tiny compared with the
translational displacements, the transformation matrices can be obtained as

shown in Equation (3.14) based on Equation (2.11).

1 0 0 0 0 O
0 1 0 0 0O
T _ 0 0 1 0 0O 314
P 0 Ohi1 Omip, 1 00 G.19
Ti s 0 0 010
Tis 0 0 0 01
where

011 = 014 = 21~ 22~ 32 = T3-3 = O3~ Tppaa — (tfb - wfb> /2,
O12 =013 = 23~ Toa =031 = O34 = a1~ Oppan — (wfb - tfb) /2.
where wen is the width of the square mobile plate of the four-beam NBCM,
while ts is the thickness of the beam (in this example, all beams have the same
t .=t

thickness, i.e. f,, =t =t,). Based on Equation (3.10), the variable

2 — Fb3 T biba
constraint forces produced by the four beams can be obtained, as shown in
Equation (3.15). The variable constraint force, s, of the four-beam NBCM is the
vector sum of the variable constraint forces of the four beams, which can be

written as Equation (3.16).

oo = —Kpoum (&gt O ) 1=1,2,30r 4 (3.15)

4

Co, = Z(bei-fbcfbi) (3.16)

i=1

Combining Equations (3.3) — (3.10), (3.14), (3.15) and (3.16), the variable

constraint force of the four-beam NBCM can be derived. Suppose that the
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rotational displacements of the four-beam NBCM about the Xt-, Yi- and Z-

axes are much smaller than the translational displacements along the Xtd-, Ytd-

and Zw-axes, the principal wrench coefficients, ¢, , Cﬂ}ty, Cortsr Coor Cfb_ry and

(., Of the wrench Cw can be simplified, as shown in Equations (3.17) — (3.22).

For convenience, these equations can also be rewritten as Equation (3.23). If Cet
is a wrench representing an external force to balance the variable constraint
force Cw, wrench (¢ can be written as Equation (3.24), which is the force-

displacement relationship of the four-beam NBCM.

1680(5§M +3(¢n, + £?b.fz))

3.17
175t% + 3§§b_ty +3¢2 (3-17)

Cfbftx ==

: 48&,,., (1758, +2108,,, +129¢7, +129¢;,, | (3.18)
fo-ty 1753, 4384, +364.,, |

488,,., (17517, 42108, +1296,,, +129€7 )
S = 1752 +362, +362.,

(3.19)

. 840 (5t2, — 3t 104, + 3002 )€y F Erprnivns)
o 3¢, +3¢6, +175t,
460,81 (3§f2b.ty +3&., + 175tf2b)
3¢h., +36h., 1758,

(3.20)

700(4t;, — 3ty w,, + 3w} ), .,
oy =~ 3¢h, +36h.,, +175¢t,
24¢, (356, + 2462 +24E2, +175¢2)
3¢, + 38k, +175t;,

(3.21)

o M, (35, +2480, + 2467, +17517 )
o 3y + 3, + 1751,
700(412 —3t,,w,, + 3w, )&, .,
By + 36k, + 175t

(3.22)
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T
Cfb - _KFBeam (gfb/ wfb/ tfb/ 6fb) = _[Cfb—tx’ Cfb—ty’ Cfb—tz’ Cfb—rx’ Cfb—ry’ Cfb—rz (323)
Crot = Kipeam (gfb’wfb’ tfb’éfb> (3.24)

where 6, ~ 0.84375/ (1+vfb), with ve being the Poisson's ratio of the material

(in this example, all beams are made of the same material, i.e.

8y = 04y = 0gs =04, =0, ). When only the linear part of Equation (3.11) is
considered (ie. K, (& t,6, )~k & in Equation (3.11)), (v can be

simplified as

Coo = Kipeam (éfb’ wfb’tfb’éfb)

Oy o1 0 0 0 0 0
0 48 0 0 0 —24
0 0 48 0 24 0 (3.25)
— Kk _
FBeam-Lgfb 0 0 0 O-k_sz 0 0 éfb
0 0 24 0 Tyt3 0
0 -24 0 0 0 P
Oy 1 = 48/ tfzb
Oy = 4(6tf2b — 12w, t, + 6w +5fb> (3.26)

Oy = 4(7t5, — 6wyt + 33 )/ £,

where krseam-L is the linear stiffness matrix of the four-beam NBCM.

3.2.2 Variable constraint force of an eight-beam NBCM

An eight-beam NBCM, as shown in Figure 3.4(a), is comprised of one mobile
rigid stage (MRS), two four-beam NBCMs termed CM-1 and CM-2, and base
stages (BSs). CM-1 and CM-2 have the same dimension. The MRS, CM-1, CM-2
and BSs are illustrated in Figure 3.4(b). In this example, the eight-beam NBCM
is decomposed into two four-beam NBCMs, because the variable constraint

force of the four-beam NBCM has been obtained already in Section 3.2.1.
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(a) (b)
Figure 3.4 An eight-beam NBCM and the defined coordinate systems: (a) the eight-beam

NBCM, (b) the decomposition of the eight-beam NBCM, and (c) the defined coordinate

systems

A coordinate system Oeb-XebYebZeb is defined as the global coordinate system,
which is located at the centre of the MRS. Coordinate systems Oeb1-Xeb1Yeb1Zeb1,
Oeb2-Xeb2Yeb2Zeb2 and Oebe-XeveYeriZebt are defined as the local coordinate systems.
The global and local coordinate systems can be seen in Figure 3.4(c). The origin
of the coordinate system, Oes-XebYenZeb, is at the centre of the MRS, and the
coordinate systems, Oebi-Xeb1Yeb1Zebt, Oeb2-Xeb2YeboZebz and Oebt-XebtYebtZebt, are
placed at the centres of the three surfaces of the MRS, respectively. Note that
the global coordinate system is fixed to the BSs, and the local coordinate

systems are fixed to the MRS.

The displacement of the MRS in the global coordinate system can be written as
a twist &, as shown in Equation (3.27), and the displacements of CM-1 and
CM-2 can be represented by twists &1 in the local coordinate system Oebi-
Xeb1Yeb1Zeb1 and &er in the local coordinate system Oeb2-Xeb2Yer2Zeb2, respectively.

The twists &t and &en are shown in Equation (3.28).

éreb = [geb—tx’ eb-ty / 5eb—tz’ 5.eb—rx’ é-eb—ry’ 5eb—rz} (327)

gebl = [Tebl-eb]T geb and éebz = [TebZ-eb ]T geb (328)

81



where ¢, §eb_ty, Entrr Eoprn feb_ry and £,  are the principal twist coefficients,

which represent the values of the displacements of the MRS along and about

the Xeb-, Yeb- and Ze-axes. In Equations (3.29) and (3.30), T,, , and T

eb2-eb”
obtained based on Equation (2.11), are the transformation matrices from the
local coordinate systems Oebi-Xeb1Yeb1Zebt and Oebo-Xep2Yer2Zeb2 to the global
coordinate system Oeb-XebYebZeb, respectively. The transformation matrix from
the local coordinate system Oeb-XebrYeriZert to the global coordinate system is

T

ebf-eb”/

which is illustrated in Equation (3.31). Note that the effect of the MRS’s

rotations on the transformation matrices is ignored, because the rotational

displacements are much smaller than the translational displacements of the

MRS.
0 0 -1 00 0
0 1 0 00 0

T 1 0 0 00 0

wo=lo w2 0 00 -1 (3.29)
0 0 w,/201 0
0 0 0 10 0
0 0 1 000
1 0 0 000

I (U 0 000

wo=lo w2 0 00 1 (3.30)
0 0 0 100
0 0 w,/20 10
1 0 0 000
0o 1 0 000

I 1 000

e = | 0 0 1.0 0 (3.31)
0 0 w,/20 10
0 —w,/2 0 00 1

where web is the edge length of the MRS. Based on Equation (3.23), the variable

constraint force produced by CM-1 and CM-2 can be obtained, as shown in
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Equation (3.32).
C'ebl = _KFBeam (éebl’ webl’ tebl’ 6eb1> and C'eb2 = _KFBeam <§eb2’ webZ’ teb2’ 6eb2> (332)

In this example, the CM-1 and CM-2 have the same dimension and material, so

that w, =w, , =w,,t ty, =t,andé, =6 ,, =0,. It can be seen that the

eb’ Feb1 = Fe
variable constraint force of the eight-beam NBCM is the vector sum of the
variable constraint forces of the two four-beam NBCMSs. Therefore, Ce» can be

written as shown in Equation (3.33).
Cop = Topr-avCent T Tepp.en G (3.33)

Combining Equations (3.23) and (3.29) — (3.33), the variable constraint force, Ceb,
of the eight-beam NBCM can be obtained. Because the rotational displacements
of the MRS are tiny compared with the translational displacements, the Ceo can
be simplified as shown in Equations (3.34) — (3.39), which can also be rewritten
as shown in Equation (3.40). If an external force represented by a wrench Ceb is
applied to the eight-beam parallel compliant module in the local coordinate
system Oebt-XebtYebiZebt, to balance Ceb, the force-displacement relationship of the

eight-beam NBCM can be represented as shown in Equation (3.41).

B 96£eb—tx (129£ez2b—tx +35 (Stezzb + 3€eb—ty + 3£eb-tz ))
175t +3¢; (3.34)

eb-tx

Cebftx =

_ 144 (43£eb-ty - 35) é.ezb-tx 1680£Eb‘ty <5tezb T 6£Eb_tz + 5)
©u T 75 38, 17515, + 36,

. 24web eb-rx (129€:b—tx + 35 (Stjb + 6€eb—tz >)
1752, + 3¢5 .,

(3.35)

C . 24web eb-rx (]‘29£ezb—tx +35 <5te2b + 6£eb-ty ))
o 17515, + 365

48 (3(43;1,_& +35)2,., +35(5t2, +68,,.,, +5) feb.tz)

175t3, + 3¢,

eb-tx

(3.36)
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Ceb-rx =

o+
175t:b +3 ezb—tx +prn
Ceb-ry =
—4 eb-tx

17582 +3¢€2

eb-tx

Ceb—rz =

4

17515 + 385 o | +6¢,,

Ceb -

3(43w,, +8)&;

feb-rz (36eb£ezb—tx +175 ((6eb + 4) tjb - 3webteb + 3w§b ))

KEBeam (éeb’ web’ eb’

6 (175 <web + 1) tjb + 3<43web + 8) £ezb-tx ) (geb-ty - geb—tz)

18w, (43w,, +8)& ..

s 10((3w§b + 3w, + 4)te2b — 3w, t, + 3w§b)
+3web (6web + 1) é'eb—ty + 3web <6web + 1) é.eb—tz

eb-tx

5t§b - 3webteb
+3w?,
+35(5(wg, +1)1, + (6w, +1)&4. )

3(43w,, +8)¢3 , — 35 €

T
6eb) = _[Ceb-tx’ Ceb—ty’ Ceb—tz’ Ceb—rx’ Ceb—ry’ Ceb—rz]

Cebf = [Tebf-eb ]71 KEBeam (5eb’ W rbeys 6eb)

+ 35 <5t§b - 3webteb + 3w:b ) 5eb-rx
+35(5(wg, +1)13, + (610, +1)&,, )
6y (3865, +175((6, +4)85, — 3wt + 302 )

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

When only the linear part of the variable constraint force of the four-beam

NBCM is considered (i.e. Ky, (&, Wity 6 ) X Kipeuni & in Equation (3.25)),

Ceb can be simplified as shown in Equation (3.42).

Ceb = KEBeam (éeb’ web’t

96 0
0 Okebl
_ 0 0
0 Oyeb2
T Okeeb2 0
Okeb2 0

eb’ 6eb) = _kEBeam—Léeb
0 0 —Crar Trem
0 Oren 0 0
Orawr “Oran 0 0 £
—0 o 0 0 |7
k-eb2 k-eb3
0 0 0w 0
0 0 0 T\ ens
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where

O = 48(14+1/12,)
=24(w,, +1)

k eb2

Oy = 8((302, + 6w, +7 )t — 6w, + 3wl )/ £
Oy = 46l — 1200, + (9102, + 61, + 6, +7 )£, — 6wt + 302 ) /£

keseam-L is the linear stiffness matrix of the eight-beam NBCM.

3.2.3 Modelling of the XYZ CPM

In this section, an XYZ CPM (Figure 3.2) is modelled using the CFB approach.
The defined coordinate systems for the XYZ CPM are demonstrated in Figure
3.5. The global coordinate system Oms-XmsYmsZms is fixed to the ground, and the
other local coordinate systems are fixed to the connected rigid stages,
respectively. Each of the local coordinate systems can translate with the
connected rigid stage, but cannot rotate with the connected rigid stage. When
the XYZ CPM is in the undeformed configuration, the positions of the local
coordinate systems are defined as the original positions of the local coordinate
systems. Compared with these original positions, the displacements of the
origins of the local coordinate systems Opmx-XpmxYpmxZpmx, Opmy-XpmyYpmyZpmy,
Opmz-XpmzYpmzZpmz,  Oasx-Xasx YasxZasx, Oamx-XamxYamxZamx,  Opax-XpaxYpaxZpax,  Oasy-
XasyYasyZasy, Oamy-XamyYamyZamy, Opay-Xpay YpayZpay, Oasz-Xasz YaszZasz, Oamz-XamzY amzZamsz,
and Opaz-Xpaz YpazZpaz are represented as twists Epmx, Epmy, Epmz, asx, Samx, Epax, Sasy,
Eamy, Epay, Easz, Eamz, and &Epaz, when the XYZ CPM is at a deformed configuration.
Additionally, the displacement of the top centre of the MS is represented as a

twist &ms in the global coordinate system.
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Figure 3.5 Coordinate system demonstration: (a) all the coordinate systems; (b) the coordinate
systems, Oms-XmsYmsZms, Opmx-XpmxYpmxZpmx, Opmy-XpmyYpmyZpmy and Opmz-XpmzYpmzZpmz, fixed on
the MS; (c) the coordinate systems, Oasx-XasxYasxZasx, Oamx-XamxYamxZamx and Opax-XpaxYpaxZpax
fixed on the AS-X; (d) the coordinate systems, Oasy-XasyYasyZasy, Oamy-XamyYamyZamy and Opay-
XpayYpayZpay, fixed on the AS-Y; and (e) the coordinate systems, Oasz-XaszYaszZasz, Oamz-
XamzYamzZamz and Opaz-XpazYpazZpaz, fixed on the AS-Z

Based on Equation 2.11, the associated transformation matrices are defined as

T

pmx-ms/ pmy-ms”’ pmz-ms”/ pax-pmx / pay-pmy’  “paz-pmz’/ ~ pmx-pax’ pmy-pay’ ~ pmz-paz’

and T, .The subscript of each of the

pax-asx’ T pay-asy’/ T paz-asz’/ ~amx-asx’/ ° amy-asy z-a

transformation matrices shows the associated coordinate systems and the

transformation between them. For instance, the subscript ‘pmx-ms’ in T

pmx-ms
indicates thatT  is the transformation matrix from the coordinate system

Opmx-XpmxYpmxZpmx to the coordinate system Oms-XmsYmsZms. After deformation of
the XYZ CPM, the transformation matrices can be written as Equations (E.1) —
(E.15) in Appendix E. Note that all the tiny displacements such as the parasitic

rotations in the transformation matrices are ignored.

On the basis of the conditions of geometrical compatibility [77], Equations (3.43)
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— (3.46) can be obtained. It can be seen that amx, Lamy and &am: are also represent
the deformation displacements of AM-X, AM-Y and AM-Z, respectively. In
addition, the deformation displacements of PM-X, PM-Y and PM-Z can also be
derived. These can be represented as Epmx-pax, &pmy-pay and Epmz-paz in the coordinate
systems  Opmx-XpmxYpm<Zpmx,  Opmy-XpmyYpmyZpmy ~ and — Opmz-XpmzYpmzZpmz,

reSpeCtively. The twists épmx—pax, gpmy—pay and épmz—paz are shown in Equatlon (347)

T T T
Spms :[Tpmx-m] Srms 7 Spmy :[Tpmy-m] Eims r Gpmz = [Tpmz-ms] Erms (3.43)
Eom =T Enand &, =[T, | & (3.44)
T T
éamy - [Tamy'aSY] éﬁsy and épay = [Tpay-aSY] gaSy (3.45)
£ =T Eand &, =[T, | &, (3.46)

T T
SPmX'PaX - é‘me - [TPmX'PaX] é‘Pax / é‘Pm}"}’ay - épmy o [TPmY'PaY} gpay and

(3.47)
T
épmz—paz - é-pmz - [Tpmz—paz} 5paz
Suppose that the thicknesses of the beams (each assumed identical) and the

edge lengths of the rigid stages can be represented as t and w, respectively,

while v is the Poisson ratio of the material, and 6§ ~27/32/ (1—1—0). Based on

Equations (3.23) and (3.40), the variable constraint forces produced by the AM-
X, AM-Y, AM-Z, PM-X, PM-Y and PM-Z can be written as shown in Equations
(3.48) and (3.49).

Camx = _KEBeam (gamx’ w, t’ 6) ’
Camy = Kepeam (Eamy/wztﬁ ) , (3.48)

Carnz = _KEBeam <§amz’ w, t’6>
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Cpmx = —Kigeam (5pmx_pax, w, t,é) ,
Comy = ~Kepeam <£pmy_pay, w,t, 6) , (3.49)

w,t,é)

Z;pmz = _KFBeam (gpmz—paz’

where Camx, Camy, Gamz, Cpmx, Cpmy and Cpmz are wrenches representing the variable
constraint forces of AM-X, AM-Y, AM-Z, PM-X, PM-Y and PM-Z in the
coordinate systems Oamx-XamxYamxZamx, Oamy-Xamy YamyZamy, Oamz-Xamz Y amzZamz, Opmx-
Xpmx Y pmxZpmx, Opmy-Xpmy YpmyZpmy and Opmz-XpmzYpmzZpmz, respectively. In addition,
the Cpmy, Cpmy and Cpmz can also be represented in the coordinate systems Opax-
XpaxYpaxZpax, Opay-XpayYpayZpay and Opaz-XpazYpazZpaz, respectively, which can be

written as Cpmax, Cpmay and C,pmaz, as shown in Equatlon (350)
Cpmax = Tpmx-apxcpmx’ Cprnay = Tpmy-apycpmy and Cpmaz = Tpmz—apchmz (350)

The actuation forces acting on the three ASs and the load force exerted on the
MS are defined as constant constraint forces, which can be written as wrenches
Casx, Casy, Casz and C,ms, in the coordinate Systems Oasx-Xastastasx, Oasy-XasyYasyZasy,

Oasz=Xasz YaszZasz and Oms-Xms YmsZms, respectively, as shown in Equations (3.51) —

(3.54).
T
Casx = Casx-tx’ Casx-ty’ Casx-tz’ Casx-rx’ Casx-ry’ Casx-rz} (351)
T
Casy = Casy—tx’ Casy—ty’ Casy—tz’ Casy—rx’ Casy—ry’ Casy-rz] (352)
T
Casz = <.asz-tx’ gasz—ty’ Casz—tz’ Casz—rx’ <.asz-ry’ Casz—rz] (353)
T
Z;ms - Cms—tx’ C-ms—l%y’ Cms—tz’ Cms—rx’ Cms—ry’ Cms—rz} (354)

Based on Equation (3.12), the force equilibrium equations for the ASs and MS

can be written in Equations (3.55) — (3.58).
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Casx + Tamx—asxcamx + Tapx—asxcpmax = 0 (3'55)

Casy + Tamy—asycamy + Tapy—asy(’pmay =0 (356)
Casz + Tamz—aszcamz + Tapz—aschmaz =0 (357)
Cms + Tpmx-mcpmx + Tpmy—mcpmy + Tpmz—m(’pmz =0 (358)

By combining Equations (3.43) — (3.58) and (E.1) — (E.15), the force equilibrium
equations of the XYZ CPM can be obtained, which are elaborated in Equations
(F.1) - (F.60) in Appendix F. The nonlinear force-displacement relationship of
the XYZ CPM can be calculated from the force equilibrium equations using
commercial software Mathematica. If only linear parts of the variable constraint
forces of the PMs and AMs are considered, and by setting the primary
translation displacements in the transformation matrices (in Appendix E) to
zero, the linear model of the XYZ CPM can be derived, as shown in Equation

(3.59).

£ =V, (W, 0 +W, 0 +W, 0+,
£ =V (WE, +C,,)
&=V, (W&, +C,)

V,(

£ =V, (WE, +C,.,)

(3.59)

where

v, =U, +U, + umz}fl

T
W =T, Ko [T [Tova] V.
pmx-m~ " FBeam-L | = pmx-pax pax-asx X
T
W =T Kot | oo | [T Vi
my pmy-m™ " FBeam-L | = pmy-pay pay-asy y
T
W, =T i 1%
pmz-m~ FBeam-L | ~ pmz-paz paz-asz z
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T T
u =T k T -T k T T VW
mx pmx-ms™ FBeam-L | = pmx-ms pmx-ms™ FBeam-L | © pmx-pax Ppax-asx XX
T T
u =T k T -T k T VW
my pmy-ms”~ FBeam-L [ ~ pmy-ms pmy-ms™ FBeam-L | ~ pmy-pay pay-asy y oy
T T T
u =T k T -T k T T VW
mz pmz-ms™ FBeam-L | " pmz-ms pmz-ms™ FBeam-L | ~ pmz-paz paz-asz z 'z
T T T
ux = amx-asx EBeam—L[ amx—asx] +Tpax—asprmx—paxkFBeam—L [Tpmx—pax} [Tpax—asx]
-1
v.=lu]
X X
T
W, =T, . ToomKeseamt | Tomns |
X pax-asx = pmx-pax” FBeam-L | © pmx-ms
T T T
u-=T k T +T T k T T
y amy-asy  EBeam-L | ~amy-asy pay-asy = pmy-pay FBeam-L | = pmy-pay pay-asy
-1
V=)
y y
T
W =T T k T
y pay-asy = pmy-pay”  FBeam-L [ ~ pmy-ms
T T T
uz = amz-asz EBeam—L[ amz—asz] + Tpaz—asszmZ-paZkFBeam-L [Tpmz—paz} [ paz—asz}
-1
v, =u,]
z z
T
W, =T, T Ko | Ty
z paz-asz = pmz-paz” FBeam-L | ~ pmz-ms

The following results can be derived from the linear and nonlinear analytical
models of the XYZ CPM: (a) the displacements of the MS under the influence of
specific external forces, (b) the displacements of the AS-X, AS-Y and AS-Z
under the influence of specific external forces, (c) the lost motions between the
displacements of the MS and the displacements of AS-X, AS-Y and AS-Z, (d) the
actuation stiffness along the Xms-, Yms- and Zms-axes, and (e) the relationships
between the displacements and the geometrical parameters. Note that the linear

analytical model is valid only over a very small motion range.

3.3 Model Comparisons

In this section, a series of FEA simulations and experimental tests are carried
out to validate the linear and nonlinear analytical models of the XYZ CPM

already proposed in Section 3.2.
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3.3.1 FEA comparisons

For the FEA model of the XYZ CPM, let the beam length be 50mm, the beam

thickness be Tmm, the edge length of the rigid stages be 25mm, the Poisson’s

ratio be 0.33, and the Young’s modulus be 6.9x10" Pa. Commercial software,
COMSOL MULTIPHYSICS, is selected for the nonlinear FEA simulations, using
the 10-node tetrahedral element and extra fine meshing technology (maximum
element size 3.5mm, minimum element size 0.15mm, maximum element
growth rate 1.35, curvature factor 0.3, and resolution of narrow regions 0.85).
The XYZ CPM is actuated by three linear translational actuators without
considering the mass of the XYZ CPM. Therefore, the constant constraint forces,

Casx, Casy, Casz and Cms, can be simplified, as shown in Equation (3.60).

CaSX = [Casx—tx’ O’ OI 0/ O/ O]T

T
Gy =[G 0,0, 0,0, 0)
(3.60)

CEJ‘SZ = [Casz—tx’ O’ OI 0/ O/ O]T
C...=[0,0,0,0,0,0]

In order to achieve a +0.1L motion range per axis (the motion range can be
considered as a medium to large motion range compared with the length of the

beam [103]), the actuation force per axis varies from —40N to +40N

(normalized actuation force per axis varies from —17.4 to +17.4). The designed
XYZ CPM has an isotropic configuration, so the model associated with the
motions of the MS and AS-X, is validated under the following conditions: (a)

(... Varies from —17.4 to +17.4 when(,

=0and ¢

asz-tx

sy-tx =0, (b) ¢, Vvaries from

-17.4 to +17.4 when(,_, , =174 and(_, =0, and (c) ¢ varies from -17.4 to

Sy-tx asz-tx sx-tx

+17.4 when (

asy-tx

=174 and ¢ =17.4. The nonlinear FEA results, nonlinear

asz-tx

analytical results and linear analytical results can are shown in Figure 3.6 and
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Figure 3.7.

It can be seen from Figure 3.6 that the nonlinear analytical results match the
FEA results well, and that the linear analytical results have small difference
compared with the FEA results within small motion ranges. For the translations
of the MS, the difference between the FEA results and the nonlinear results is
less than 3.25% in the translations along the Xms- and Yms-axes (Figure 3.6 (a)
and Figure 3.6 (b)), and less than 4.92% in the translation along the Zms-axis
(Figure 3.6 (c)). The difference between the FEA results and the linear results is
less than 6.59% in the translations along the Xms- and Yms-axes (Figure 3.6 (a)
and Figure 3.6 (b)), and less than 13.48% in the translation along the Zms-axis
(Figure 3.6 (c)). For the results of the MS’s rotations about the Yms- and Zms-axes,
as shown in Figure 3.6 (e) and Figure 3.6 (f), the maximum difference between
the FEA results and the nonlinear results is less than 2.7% under all the
conditions, while the maximum difference between the FEA results and the
linear results is about 16.3%. Compared with the FEA results, the linear and
nonlinear results of the rotations about the Xms-axis, as shown in Figure 3.6 (d),
have larger differences, because the results (of the order of 10 rad) shown in
this figure are comparable to the simulation accuracy and the analytical
approximations. However, the analytical results of the rotations about the Xms-

axis still have similar trends as those of the associated FEA results.

Figure 3.6 (a) also shows that the translations of the MS along the Xms-axis
under the various conditions have small differences, which means that the
translation of the MS along the Xmsaxis is almost decoupled from the
translations of the MS along the other two directions. Figure 3.6 (b) and Figure
3.6 (c) illustrate that the translations of the MS along the Yms- and Zms-axes are
insensitive to the force along the Xms-axis, which also validates the cross-axis
decoupling motion characteristics. Other motion characteristics of the XYZ
CPM, such as lost motion and actuation stiffness, can also be captured from the

linear and nonlinear models.
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Figure 3.7 illustrates that the linear results have relative large differences to the
FEA results, because the linear results cannot capture the elastokinematic
effects [55]. It can be seen that the nonlinear analytical results of the AS-X's
translations exhibit small differences to the FEA results. These differences are
less than 2.74% in the translation along the Xms-axis (Figure 3.7(a)), less than 5.33%
in the translation along the Yms-axis (Figure 3.7(b)), and less than 4.55% in the
translation along the Zms-axis (Figure 3.7(c)). The parasitic rotations of the AS-X
about the Yms- and Zms-axes can be seen from Figure 3.7(e) — Figure 3.7(f),
showing that the nonlinear results have a maximum deviation from the FEA

results of approximately 7%.

However, Figure 3.7 (d) shows that the nonlinear results of the AS-X's Xms-axis
rotation have larger differences compared with the FEA results. The difference
occurs mainly due to the following two reasons: (a) the rotational displacements
about the Xms-axis (in the order of 10~ rad) are much smaller than the rotational
displacements about the Yms- and Zms-axes (in the order of 103 rad), so the
rotation results about the Xms-axis are more sensitive to the pre-set relative
tolerance of the FEA software (in the order of 10°); (b) approximation has been
made when deriving the nonlinear analytical models of the XYZ CPM, and the
tiny rotation results about the Xms-axis are also dependent on the approximation.
However, it can be seen that the nonlinear analytical and FEA results of the AS-
X’s rotation about the Xms-axis show similar trends, so the nonlinear analytical

results can still be employed to predict the Xms-axis rotation of the AS-X.
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Figure 3.6 Comparison of FEA, nonlinear and linear results in terms of the MS’s motion: (a)
translations along the Xms-axis, (b) translations along the Yms-axis, (c) translations along the
Zms-axis, (d) rotations about the Xms-axis, (e) rotations about the Yms-axis, and (f) rotations

about the Zms-axis, all under the same predefined conditions
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Figure 3.7 Comparison of FEA, nonlinear and linear results in terms of the AS-X’s motion: (a)
translations along the Xms-axis, (b) translations along the Yms-axis, (c) translations along the
Zms-axis, (d) rotations about the Xms-axis, (e) rotations about the Yms-axis, and (f) rotations

about the Zms-axis, , all under the same predefined conditions

3.3.2 Experimental tests

A prototype of the XYZ CPM is fabricated, as shown in Figure 3.8. The

prototype is made of Aluminium 99.5, whose Poisson’s ratio, Young’s modulus
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and Yield strength are approximately 0.33, about 6.9x10" Pa and about
105MPa, respectively. The size of the prototype is the same as the FEA model.
The maximum motion range per axis should be less than 0.634mm (normalized
actuation force per axis is approximately 43.5) as calculated in Equation (3.61)
based on [104]. The following conditions are considered in this experimental

validation: (a) ¢, varies from 0 to 2.2 when(,, =0and(, =0, (b) (..,

SX-tx

varies from 0 to 2.2 when(, , =19and(,, =0, and (c) (,,, varies from 0 to
22 when(, =19and(,,, =-2.1.

8
Motion Range <0.1667 x M = 0.634mm

6.9x10"x 1 (3.61)
50

The displacements of the MS along the Xms- and Yms-axes are measured by two
digital dial gauges with 0.001lmm resolution. The actuation forces are conducted
by mass blocks, the mass of which are measured by an electronic scale with
0.001g resolution. Note that the displacements of the MS along the Xms- and Yms-
axes are not measured on the top centre of the MS, but on the surfaces, as
shown in Figure 3.8. Additionally, only the rotational displacement of the MS
about the Zms-axis is considered in this experimental test. A low-cost method of
measuring this tiny rotational displacement is described in this chapter, the

principle of which is indicated in Figure 3.9.

Figure 3.8 A prototype of the XYZ CPM with actuation and translational displacement

measurement

96



Dis

Laser pointer
polet Laser beam

Laser beam dis

Original position New position
0,0,0) (Onx, Ony, 0)

Figure 3.9 Principle of measuring the small rotation angle of the MS

As shown in Figure 3.9, the rotation angle can be calculated using Equation

(3.62). If 6ny are much smaller than Dis, Equation (3.62) can be simplified to

Equation (3.63).
dLB — 6nx
aLB — arctan [)LB——(S (362)
ny
dy—06
oy, ~ arctan | —2—=% (3.63)
DLB

In this experimental test, the rotational displacement of the MS about the Zms-
axis is obtained based on the equation above. More specifically, as shown in
Figure 3.10(a), a laser pointer is fixed on the MS, so the laser pointer has the
same displacements as the MS. At a long distance away from the laser pointer
(6800mm in this case), a screen shown in Figure 3.10(b) is pasted onto a wall. At
first, the laser beam is set vertical to the screen, and the position of the original
laser spot on the screen is marked using a HD camera, as shown in Figure
3.10(b). When the MS moves to new positions under actuation forces, the HD
camera records the new positions of the laser spots. Therefore, a series of
pictures of the laser spots, such as the pictures shown in Figure 3.10(c) — Figure
3.10(h), are obtained. The positions of the laser spots on the pictures are
determined using the image processing function of MATLAB software. Based
on the positions and Equation (3.63), the rotational angles of the MS about the

Zms-axis are obtained over the different conditions.
Figure 3.11(a) is obtained by considering the translations of the MS along the Xms-
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axis in the different conditions. The nonlinear analytical results differ little from
the FEA results (less than 2.73%), and have acceptable differences to the
experiment results (less than 8.98%). It can be seen from Figure 3.11(c) and Figure
3.11(d) that the nonlinear analytical results are close to the FEA results and the
experimental results, with the maximum difference being approximately 2.79%.
Figure 3.11(b) shows that the analytical results exhibit larger differences between
the FEA and experimental results, because the displacements shown in this
figure are close to the manufacturing and experimental errors and the
simulation accuracy. However, the analytical, FEA and experimental results

exhibit the similar trends.

The rotations of the MS about the Zms-axis under the different conditions are
illustrated in Figure 3.12. It can be seen that the nonlinear analytical results
match the FEA results well, with the maximum difference being less than 5.2%.
The difference between the nonlinear analytical results and the experiment
results is a little larger mainly due to the manufacturing and experimental
errors, but the nonlinear analytical results and the experiment results again
follow similar trends. The difference among the FEA, analytical and
experimental results arises mainly from the following issues: FEA simulation
error, manufacturing error, assembly error, experimental error, and data
processing error (i.e. the positioning errors of the laser spots on the screen

identified using the MATLAB image processing function).

Figure 3.10 MS'’s rotation angle measurement: (a) experimental test system, (b) screen and

image capture facilities, and (c)-(h) captured images of the laser spots at different positions
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Figure 3.11 Comparison of analytical results, FEA results and experimental results with
regard to the translations of the MS: (a) along the Xms-axis under the different conditions, (b)
along the Yms-axis when Casy-+=0 and Casz=0, (c) along the Yms-axis when Casy-x=1.9 and Casz-x=0,

and (d) translations along the Yms-axis when Casy-x=1.9 and Casz-=—2.1

3.4 Summary

This chapter has proposed a CFB approach to the modelling of compliant
mechanisms (including XYZ CPMs) both linearly and nonlinearly. The
proposed CFB approach is an improved FBD-based modelling method.
Compared with the FBD approach, the mathematical expressions in the CFB

approach have easily understood physical meanings.

The CFB technique involves decomposition of a compliant mechanism into
rigid stages and compliant modules. The compliant modules (BCMs and/or
NBCMs) can produce elastic forces due to their deformation. Such elastic forces

are termed variable constraint forces. The derivation of the variable constraint
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forces produced by BCMs and NBCMs is introduced. External forces applied on
a compliant mechanism, such as actuation forces, are defined as constant
constraint forces. The constraint force equilibrium equations of a balanced
compliant mechanism can be represented by the variable constraint forces and
the constant constraint forces. The analytical model of the compliant

mechanism can be further derived from the constraint force equilibrium

equations.
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Figure 3.12 Comparison of analytical results, FEA results and experimental results under the
different conditions with regard to the rotation of the MS about the Z-axis: (a) when Casy-=0

and C.asz-tx=0, (b) when Casy-tx=1.9 and Casz-tx=0, and (C) when Casy-tx=1.9 and C.asz-tx=—2.l

In this chapter, the variable constraint force produced by a wire-beam is
obtained. This is used to derive the variable constraint forces of a four-beam
NBCM and an eight-beam NBCM. Moreover, an XYZ CPM is analytically
modelled based on the derived variable constraint forces of the two types of

NBCMs using the CFB approach. The analytical model of the XYZ CPM is
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validated by both FEA simulations and experimental tests.

In the CFB approach, the variable constraint forces and the constant constraint
forces, are all represented by wrenches in screw theory, which may extend the
CFB approach to a development of the screw-theory-based design approach
reported in [61]. In the screw-theory-based design approach, compliant
modules are regarded as constraints represented by wrenches [60, 61, 100, 105-
107]. The wrenches can represent the directions and positions of the constraints
of the compliant modules, while the exact values of constraint forces are not
taken into account. In other words, the screw-theory-based design approach is
actually a method of arranging the directions and positions of compliant
modules under the design requirements. Under this approach, the constraint
force provided by a compliant module is always represented by the binary
number zero or one. A constraint force equals zero if the associated direction is
a DOF direction; otherwise it equals one. However, the CFB approach not only
takes the direction and position of the constraint of a compliant module into

account, but also quantifies the constraints as exact constraint forces.

The CFB approach can be further extended to an approach for optimizing
compliant mechanisms. As studied in Chapter 2, each compliant module in a
compliant mechanism has a great number of permitted positions in its position
space. Based on this position space concept, a compliant mechanism can be
reconfigured into a series of new compliant mechanisms. If a compliant
mechanism termed ‘Compliant Mechanism-Original” is modelled using the CFB
approach, the compliant mechanisms reconfigured from the Compliant
Mechanism-Original can also be modelled easily, by only modifying the
transformation matrices. On the other hand, a compliant mechanism with
desired motion performance can be obtained through the optimization of the
transformation matrices (in the same manner that the positions of the compliant
modules are optimized). Therefore, the CFB modelling method can also be

easily employed to optimize compliant mechanisms.
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4 PSR-BASED OPTIMIZATION APPROACH FOR THE
REDUCTION OF PARASITIC MOTIONS

Each of the compliant modules in a compliant mechanism can be placed at any
one permitted position within its position space, which does not change the
constraint imposed by the compliant module on the compliant mechanism.
Therefore, a compliant mechanism can be reconfigured through selecting
different permitted positions for the compliant modules from the associated
position spaces. In this thesis, such a reconfiguration is termed a position-space-
based reconfiguration (PSR). The PSR approach can be used to reconfigure a
compliant mechanism so as to change both the geometrical dimension and the

geometrical shape of the compliant mechanism.

Compliant mechanisms often suffer from undesired parasitic motions, cross-
axis couplings and lost motions [2-5, 91, 92], due to the nature of their
deformation. The cross-axis couplings and lost motions should be minimized in
order to avoid complex control [55]. The parasitic motions should be maximally
reduced, since they cannot be compensated by improving the control algorithm.
The undesired motion characteristics of a compliant mechanism can be reduced
through adjusting the geometrical dimension and geometrical shape of the
compliant mechanism. Therefore, the PSR approach can be employed to reduce

the undesired motion characteristics of a compliant mechanism.

In this thesis, two PSR-based approaches to the optimization of compliant
mechanisms are proposed in Chapters 4 and 5, respectively. One PSR-based

approach is used for the reduction of parasitic motions (RPM) of compliant
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mechanisms (this approach is termed the PSR-RPM approach, which is studied
in Chapter 4). The other PSR-based approach is used for the design of
symmetric compliant mechanisms (SCMs) (this approach is termed the PSR-

SCM approach, which is to be studied in Chapter 5).

4.1 Principle and Procedure of PSR-RPM Approach

The parasitic motions of a compliant mechanism can be reduced if the
compliant modules are placed at appropriate positions. For example, the
parallelogram compliant mechanism, as shown in Figure 4.1(a), can be
decomposed into an MRS, two wire-beams and two BSs, as shown in Figure
4.1(b). The parasitic rotation of the MRS can be reduced through optimizing the
positions of the two wire-beams. Two optimized parallelogram compliant
mechanisms can be seen in Figure 4.1(c) and Figure 4.1(d). The spanning size of
the compliant mechanism shown in Figure 4.1(c) is increased compared with
the one in Figure 4.1(a), and the actuation force of the compliant mechanism
shown in Figure 4.1(d) can pass through the stiffness centre [1, 55, 91] of the
compliant mechanism. Therefore, the PSR-RPM approach can be used to reduce
parasitic motions of a compliant mechanism by optimizing the positions of the
associated compliant modules. In order to ensure that the DOF of the compliant
mechanism remains unchanged, the positions of the compliant modules should

be selected from the position spaces of the compliant modules.

TN

@ @ @ @ 2

TR R ERT

/7
@ (b) © (d)

/

Figure 4.1 Optimization of a compliant mechanism for reducing the parasitic rotation: (a) the
original parallelogram compliant mechanism, (b) decomposition of the parallelogram
compliant mechanism, (¢) and (d) optimization through changing the positions of the

compliant modules
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In order to find the appropriate positions for the compliant modules of a
compliant mechanism, the parasitic motions of the compliant mechanism are
analytically modelled in the PSR-RPM approach, using the position variables.
Such position variables can represent any possible permitted positions of the
compliant modules in the compliant mechanism. Subsequently, the positions of
the compliant modules are optimized based on the analytical models of the
parasitic motions. Finally, a new compliant mechanism with reduced parasitic
motions can be rebuilt by placing all the compliant modules at the optimized

positions.

In order to employ the PSR-RPM approach to reduce the parasitic motions of a
compliant mechanism, the following tasks should be conducted: (a)
decomposing the compliant mechanism into compliant modules and rigid
stages, (b) identifying the position spaces of the compliant modules, (c)
modelling the parasitic motions of the compliant mechanism using the position
variables that represent any possible permitted positions of the compliant
modules, (d) obtaining the values for the position variables which can reduce
the parasitic motions to minima or acceptable levels, and (e) reconfiguring the

compliant mechanism based on the optimized values of the position variables.

According to the tasks above, if the parasitic motions of a compliant mechanism
are to be reduced, the PSR-RPM approach can be used based on the following

steps:

1. Decompose the original compliant mechanism into ICMs and rigid
stages. The optimization of a compliant mechanism using the PSR-RPM
approach depends on the decomposition of the compliant mechanism,
i.e., different decomposition patterns may have different optimization
results. A compliant mechanism can be decomposed into rigid stages
and compliant modules in different ways, and each compliant module

has a great number of permitted positions within its position space.
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Therefore, a compliant mechanism can be reconfigured in a great
number of ways. However, to avoid complexity and reduce the difficulty
in identifying the position spaces of compliant modules, the PSR-RPM
approach limits the possible compliant modules to independent
compliant modules (ICMs), i.e.,, a compliant mechanism can only be
decomposed into rigid stages and ICMs.

An ICM is defined as a compliant module that produces a constraint in
the associated compliant mechanism which is completely based on its
own structure rather than needing cooperation with other compliant
modules. According to the definition of the ICM, a strategy for
identifying ICMs in a compliant mechanism and decomposing the
compliant mechanism into rigid stages and the ICMs is introduced below.
a) Decompose the compliant mechanism into BCMs (BCMs, as defined in
Chapter 1) and rigid stages.

b) Identify controllable rigid stages and non-controllable rigid stages in
the compliant mechanism decomposed in Step (a). Any one rigid stage
has six DOF along and about the X-, Y-and Z-axes in a 3D coordinate
system, if no constraint is applied to it. Under the condition that each
actuation displacement of the compliant mechanism is kept at a certain
value within the motion range, if all the six DOF of a rigid stage are
constrained, the rigid stage is called a controllable rigid stage; otherwise,
it is called a non-controllable rigid stage. The input and output stages are
all the controllable stages of a multi-DOF compliant parallel system. The
secondary stage of a double parallelogram compliant mechanism, as
reported in [55], is a non-controllable rigid stage.

c) Combine all the BCMs and non-controllable rigid stages (if these exist)
between any two adjacent controllable rigid stages, through designing
new rigid linkages. The combined compliant modules in this step are
called combined-BCMs (C-BCMs). Therefore, each C-BCM is adjacent to

two controllable rigid stages, and each of the controllable rigid stages is
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constrained by one or more C-BCMs.

d) Identify the basic ICMs of the compliant mechanism. Assume that a
controllable rigid stage is adjacent to n (n 1) C-BCMs, and assume that m
(0 (m (06) DOF of the controllable rigid stages are constrained by the n
C-BCMs (the other 6-m DOF is (are) constrained by the actuators or the
ground). If one of the m DOF has to be constrained by / (2 20h 20n and
n nd2) of the n C-BCMs together, the h C-BCMs together with their rigid
linkages is a basic ICM. If one of the n C-BCMs is needed to constrain g
(0 (g (0m) of the m DOF, and the ¢ DOF can be constrained by the ICM
without cooperating with the other C-BCMs, the single C-BCM is a basic
ICM. Therefore, all the basic ICMs of the compliant mechanism can be
identified in this step.

e) Assemble adjacent basic ICMs to form non-basic ICMs. If two or more
adjacent basic ICMs are assembled together as a new compliant module,
it can be shown that the new compliant module is also an ICM (termed a
non-basic ICM), because each non-basic ICM is also independent from
other basic ICMs and non-basic ICMs.

f) Decompose the compliant mechanism again into ICMs and rigid stages.
Since the basic ICMs and the non-basic ICMs of the compliant
mechanism are all identified in the above steps, one can decompose the
compliant mechanism into ICMs (basic or non-basic), and rigid stages. If
all the ICMs are basic ICMs, the decomposition is called the basic
decomposition pattern; otherwise, it is called a non-basic decomposition
pattern. One compliant mechanism has only one basic decomposition
pattern, but can have several non-basic decomposition patterns. If one BS
(base stage) links to more than one ICM, the BS should be decomposed
so that each of the ICMs has its own BS.

The more ICMs a compliant mechanism has, the more new compliant
mechanisms can be derived. Therefore, it is better to decompose a

compliant mechanism into basic ICMs rather than non-basic ICMs, when
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one wishes to minimize the parasitic motions of the compliant
mechanism.

. Set global and local coordinate systems. A global coordinate system is
fixed to the ground. The MS remains at its original position in the global
coordinate system over the entire reconfiguration procedure. Between
the MS and a BS, there is an ICM chain (or leg). Therefore, there are one
or more ICM chains between the MS and the BSs. In each of the ICM
chains, an ICM is adjacent to two or more rigid stages. The local
coordinate system of this ICM is located at the adjacent rigid stage,
which is the MS of the compliant mechanism or that closer to the MS in
the associated ICM chain. The other adjacent rigid stages of the ICM
should be moved (rotated and translated) with the ICM relative to the
ICM’s local coordinate system. Note that if one BS is adjacent to several
ICMs, the BS should be decomposed into several new BSs, so that each of
the new BSs is adjacent to only one of the ICMs, which allows each of the
new BSs to move together with its adjacent ICM.

. Identify the position spaces of the ICMs in its local coordinate system.
The position space of an ICM is identified based on the screw theory.
This is demonstrated below.

The constraint of an ICM on the associated compliant mechanism is not
affected when the ICM translates to another position, because the ICM is
independent of other ICMs in the compliant mechanism. Taking the
well-known basic parallelogram compliant mechanism shown in Figure
4.1(a) as an example, this basic parallelogram compliant mechanism can
be decomposed into an ICM (parallelogram compliant module) and an
MS. When the parallelogram compliant module translates only (no
rotation), the constraint of the parallelogram compliant module to the
parallelogram compliant mechanism remains unchanged when the tip of
the parallelogram compliant module connects the MS with a rigid body.

Therefore, an ICM can translate to any other positions without changing
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its orientation, i.e., the positions derived through the ICM’s translation
are the possible permitted positions of the ICM pertaining to its position
space. The following part in this step identifies if an ICM can rotate
about the axes of a coordinate system.

Based on Equation (2.5), the constraint of an ICM in a coordinate system
O-XYZ can be denoted by a wrench based on Equation (2.5), as shown in
Equation (4.1).

CCcm =

E

cm—tx] cm—tx’/ F”'cm—ty] cm—ty / Hcm—tz] cm—tz”/ Kcm—rx] cm—rx”/ K‘/Cm—ry] cm-ry”’/ cm—rz] cn-rz

T (4.1)
|

where & K

cm-tx/ " em-ty 7 Kotz

K andx____ are constraint coefficients,

emrx” Vemery
and j. s Janty’ Jemizs Jemaxs Jemry @0, are direction coefficients. If the
wrench Ccem rotates about the X-, Y- and Z-axes at the angles o, 5 and
Y..» Tespectively, the wrench Ccen will be transferred to wrenches C._ . ,
Ceempry @nd G, by pre-multiplying the transformation matrices as

denoted in Equation (4.3) [60].

CCCm—Rx = Tcm-er'CCm’ CCcm-Ry = T'cm-ryCCCm and CCCm—RZ = Tcm-RzCCcm (42)
where T. , T . and T are the transformation matrices
cm-Rx cm-Ry cm-Rz

corresponding to the rotations about the X-, Y- and Z-axes at o__, 3 and

Y.  respectively.
[Rya,) 0, R(Bw) 0y
o 03><3 Rx (acm ) Lo 03><3 Ry (ﬁcm )
(4.3)
R 0
and Tcm_RZ — z (’ycm ) 3x3

03><3 RZ (chm )

where Rx(ozcm), Ry(ﬁcm> and RZ<”ycm>are the three basic sub-rotation

matrices about the X-, Y- and Z-axes at angles o, £

cm

and v

cm’

109



respectively.

On the basis of the results in Equations (4.1) — (4.3), It is clear that if the

wrench . ., CCcm—Ry orG.__ .. is equivalent to the original wrench Ccem,

the positions derived by the rotation about the X-, Y- or Z-axis, are the
new possible permitted positions of the wrench Ccem, and vice versa.
Therefore, all the possible permitted positions of an ICM derived
through either translations or rotations constitute the position space of
the ICM.

. Model the parasitic motions of the compliant mechanism using the
position variables that represent any permitted positions of the ICMs
within their position spaces.

. Optimize the positions of the ICMs within their position spaces to
minimize the parasitic motions, based on the analytical models of the
parasitic motions derived in Step (4).

. Place the ICMs at the optimized positions in the local coordinate systems.
. Design rigid linkages to link each of the ICMs to the rigid stage at which
the ICM’s local coordinate system is located.

. Re-design the BSs and modify the compliant mechanism for easy

manufacture.

The PSR-RPM approach can be used to optimize any one compliant mechanism.

In this chapter, an XYZ CPM is taken as an example to demonstrate the above

steps in Section 4.2.

4.2 Case Study

In this section, an XYZ CPM (shown in Figure 4.2(a)) is optimized using the

PSR-RPM approach so as to reduce the parasitic rotations (these rotations are

some of the possible parasitic motions) of the XYZ CPM. The XYZ CPM is

decomposed into rigid stages and ICMs in Section 4.2.1. This decomposition

may be different from the decomposition of an XYZ CPM in the CPI and CFB
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approaches. The position spaces of the ICMs are identified in Section 4.2.2. The
positions of the ICMs are finally optimized, and a new XYZ CPM is obtained in
Section 4.2.3.

4.2.1 XYZ CPM decomposition

The original XYZ CPM shown in Figure 4.2(a) can be decomposed based on
Sub-Steps (a) — (f) of Step (2) in Section 4.1. To begin with, the XYZ CPM is
decomposed into BCMs and rigid stages based on Step (a), as shown in Figure
4.2(b). The BCMs of the XYZ CPM are wire-beams. If the three actuation
displacements of the XYZ CPM are kept at their zero points, all the six DOF of
each of the seven rigid stages (the MS, the AS-X, the AS-Y, the AS-Z, and the
three BSs) are constrained. It can be derived from Step (b) that the seven rigid
stages are all controllable rigid stages. According to Step (c), all four BCMs
(wire-beams) between any two adjacent rigid stages should be combined
together as C-BCMs, using newly designed rigid linkages. There are a total of
nine C-BCMs of the XYZ CPM, as illustrated in Figure 4.2(c).

The 24 DOF of the four rigid stages, the MS, the AS-X, the AS-Y and the AS-Z,
are constrained by the nine C-BCMs, which is detailed in Table 1. It can be seen
that any one of the 24 DOF can be constrained by one of the nine C-BCMs, or
constrained by two of the nine C-BCMs separately. None of the nine C-BCMs
needs to cooperate with the other C-BCMs in order to constrain any one of the
24 DOF. Therefore, each of the nine C-BCMs is independent of the others, i.e.,

all of them are basic ICMs.

Based on the identified basic ICMs, the basic decomposition pattern of the XYZ
CPM is obtained, as shown in Figure 4.2(d). Figure 4.2(d) also shows that each
of the three BSs is decomposed into two BSs, based on Step (d). According to
the step (e), the basic ICMs, labelled with numbers 1, 2 and 3 in Figure 4.2(d),
can be combined together as a new non-basic ICM labelled as ‘123" shown in

Figure 4.2(e). Therefore, Figure 4.2(e) illustrates a non-basic decomposition
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pattern. Similarly, the decomposition pattern shown in Figure 4.2(f) is also a
non-basic decomposition pattern with isotropic decomposition in each leg. In
Figure 4.2(f), the three non-basic ICMs labelled as “123’, ‘456" and 789" are Leg-

X, Leg-Y and Leg-Z, as also shown in Figure 4.3.

For the non-basic decomposition pattern shown in Figure 4.2(f), the global and
local coordinate systems can be set as shown in Figure 4.3. The global
coordinate system, Oms-XmsYmsZms, is fixed to the ground, and the MS cannot
move in the global coordinate system over the entire procedure of the PSR-
based reconfiguration. Local coordinate systems, Ox-XxYxZx, Oy-XyYyZy and O:-
XzY:Z., are defined for Leg-X, Leg-Y and Leg-Z, respectively, as shown in
Figure 4.3. Each of the three non-basic ICMs (Leg-X, Leg-Y and Leg-Z) can
move in its local coordinate system within its position space. When the three
non-basic ICMs move in their local coordinate systems, the BSs should be

moved with the three non-basic ICMs, as stated in Step (2) in Section 4.1.

Table 4.1 The C-BCM(s) or actuation force that constrains each of the six DOF of the MS, the
AS-X, the AS-Y and the AS-Z (C-BCMs 1, 4 and 7 are also the PMs of the XYZ CPM)

The C-BCM(s) or actuation force

Constraining Constraining Constraining Constraining
6 DOF MS AS-X AS-Y AS-Z
X-translation
C-BCM 1 X-actuator C-BCM 5 C-BCM 9
DOF
Y-translation
C-BCM 4 C-BCM 2 Y-actuator C-BCM 8
DOF
Z-translation
C-BCM 7 C-BCM 3 C-BCM 6 Z-actuator
DOF
X-rotation C-BCMs 4 and 7, C-BCMs 2 and 3, C-BCMs 4 and 6, C-BCMs 7 and 8,
DOF separately separately separately separately
Y-rotation C-BCMsland3, C-BCMsb5and6, C-BCMs?7and?9,
C-BCMs 1and 7
DOF separately separately separately
Z-rotation C-BCMs 1 and 2, C-BCMs 4 and 5, C-BCMs 8 and 9,
C-BCMs 1 and 4
DOF separately separately separately
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Figure 4.2 An XYZ CPM and its decomposition: (a) XYZ CPM, (b) BCMs and their rigid stages,
() C-BCMs and their rigid stages, (d) basic decomposition pattern, (e) non-basic

decomposition pattern-1, and (f) non-basic decomposition pattern-2

Figure 4.3 The global and local coordinate systems of the decomposed XYZ CPM

4.2.2 ICM position spaces

The position spaces of the ICMs in the XYZ CPM, obtained based on screw
theory, are derived in this section. The three ICMs of the XYZ CPM, as shown in
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Figure 4.2(f), are identical, as are the position spaces of the ICMs, in terms of
their own local coordinate systems. Therefore, it is appropriate to take Leg-X as

an example to derive the position spaces of the three ICMs.

Leg-X has four DOF, which are the translations along the Xx-, Yx-, and Zx-axes
and the rotation about the Xx-axis. The wrench of the constraint of this 4-DOF

ICM can be represented as

T

(4.4)

CCx - K’x—tx] x—tx/ K;x—ty] x—ty” K’x—tz] x—tz’ K’x—rx] x—rx’ K’x—ry] x—1y’ K’x—rz] X—1Z

Based on the DOF of Leg-X, stiffness coefficients x_,, K, , k., andk_, can be

assigned zero, while k£ andr  are assigned one. Therefore, Equation (4.4)

T

can be rewritten as
G, =[0,0,0,0,+1,+1] (4.5)

According to Equations (4.2) and (4.3), after the rotations about the Xx-, Yx-, and

Zx-axes of a, B and ~ _, respectively, the wrench Ccx can be transferred to

Covrer CCX_RY or G .,,» which can be written as

=10,0,0, 0,:t<‘cos(ozx)‘ +‘sin(ozx) )r (4.6)

),:I:(‘sin(ax)‘ + ‘Cos(ax)

CC)(—Rx

Cevry =[0,0,0,4fsin(5,) 1] “.7)

, :I:‘cos(yx>

T

~10,0,0,%}sin(3,)

,il,i‘cos(/BX)‘

(4.8)

Coers

It can be seen from Equations (4.5) and (4.6) — (4.8) that C__, is equivalent to

Coxno matter what value of a has (it is well known that the sum of the absolute
values of sin(ax)and Cos(ax) is equal to or greater than one), but G, or G,

are not equivalent to Cex if 5 and +, do not equal zero. Therefore, the positions

derived by the rotation of the wrench Ccx about Xk-axis are the possible
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permitted positions of Leg-X.

In addition, the positions derived through any translations of Leg-X are also the
possible permitted positions of Leg-X. Therefore, the position space of each of
the three ICMs (Leg-X, Leg-Y and Leg-Z) includes the possible positions
derived by (a) the translations along the local X-, Y- and Z-axes at any distance,

and (b) the rotation about the local X-axis at any angle.

4.2.3 ICM position optimization

As mentioned earlier, a number of new compliant mechanisms can be derived
by reconfiguring a compliant mechanism using the PSR-RPM approach. This
section shows how a compliant mechanism with minimized parasitic motions
can be obtained, through a modelling and optimization process. The XYZ CPM,

shown in Figure 4.2(f), is taken as an example to demonstrate this process.

The modelling of the XYZ CPM is based on the CFB approach described in
Chapter 3. As derived in Section 4.2.2, each of the ICMs of the XYZ CPM can be
moved along the three axes of the local coordinate system, and can also be
rotated about the local X-axis. However, this example only considers the

rotations of the ICMs about the local X-axes, which are shown in Figure 4.4. The

rotations of the ICMs should be considered in the modelling of the XYZ CPM.

The case study of the XYZ CPM with identical beams uses the following
parameters: the beam length is 50mm, the cross sectional dimension of each
beam is 2mm x 2mm, the dimension of the MS is 35mm x 35mm x 35mm, and
the dimension of any one of the other identical rigid stages is 25mm x 25mm x
25mm. Aluminium alloy 6061 is selected as material (Young’s modulus is
69000MPa, Poisson's ratio is 0.33). The displacement vectors of the three ICMs,
Leg-X, Leg-Y and Leg-Z, in the origins of the defined local coordinate systems
Ox-XxYxZx, Oy-XyYyZy and O--X:Y:Z. can be represented as twists &, & and &,

respectively, as shown in Equations (4.9) — (4.11).
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& =€ b s bn ]| (49)
éy - [gy-tx ’ gy-ty / gy-tz / gy-rx g éy-ry ’ gy-rz ]T (4.10)

& 6 b b b ] (4.11)

where the subscripts -tx, -ty and -tz indicate the translational displacements
along the local axes, and the subscripts -rx, -ry and -rz indicate the rotational
displacements about the local axes. Based on Equation (2.4), the variable
constraint forces of the three ICMs can be written as wrenches that are shown in
Equation (4.12), and the actuation forces can be written as wrenches as shown

in Equation (4.13).

T T
x [Cx—tx’ Cx—ty’ Cx—tz’ <.x—rx’ Cx—ry’ Cx—rz] 4 Cy = [Cy—tx’ Cy—ty’ Cy—tz’ Cy—rx’ <.y—ry’ <.y—rz]

T (4.12)
s = 1S Gy Gt ey G|

Coo. =[€.00,0,0,0,0,0]', €, =[Cy 0,0,0, 0,0}T G =[C00s0,0,0,0,0]  (413)

sy

where wrenches Cx, Cy and C: represent the variable constraint forces produced
by the three ICMs. Wrenches Casx, Casy and Casz represent the three actuation
forces exerted on the three ASs, as illustrated in Figure 4.4. For the linear
modelling adopted in this example, the wrenches, Cx, Cy and C; can be

calculated using Equation (4.14) based on the studies in Chapter 3.
6, =—Kks, ’Cy :_kygy and ¢, =—k,¢&, (4.14)

where kx, ky and k. are the stiffness matrices of the ICMs in their own local
coordinate systems. The stiffness matrices using the given parameters

mentioned above can be derived as shown below, based on the results in [77].
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Figure 4.4 Demonstration of the possible permitted positions of the three non-basic ICMs
through the rotations about the local X-axes: (a) the rotation of Leg-X about the local X-axis,

and (b) the rotations of Leg-X, Leg-Y and Leg-Z about the local X-axes

k =k =k,
94.90 0.40 040 -847x10% -17.40 17.40
0.40 4753 -429x10° 1.42x10* 2.32x10* -41.39
| 040 -429x10° 4753 -142x10* 4139 -2.32x10* (4.15)
847x10%  142x10* -142x10* 8066 -124x10* -1.24x10* '
-1740 2.32x10* 4140 -124x10* 840x10*> 1.01x10?
17.40 4139 -2.32x10* -124x10* 1.01x10> 840x10?

Using Equation (3.13), the constraint force equilibrium equation for the MS can

be written as
TX-mC’asx + Ty—mcasy + Tz-mcasz + TX-mCX + Ty—mcy + TZ-mCZ = 0 (4'16)

where Txm, Tym and T.m are the transformation matrices from the local
coordinate systems, Ox-XxYxZx, Oy-XyYyZy, and O-X:Y:Z, to the global
coordinate system, Oms-XmsYmsZms, respectively. Based on Equation (2.11), the
transformation matrices can be written as shown in Equations (4.17) — (4.19),

with consideration of the rotations of the ICMs about the local X-axes.
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1 0 0 0 0 0
0 cos(a, ) —sin(a,) 0 0 0
0 sin(a) cos(a) O 0 0
T = _ (4.17)
0  7cos(a,)/20 —7sin(a)/20 1 0 0
—7/20 7sin(a,)  7cos(a)/20 0 cos(a) —sin(a)
0 —7cos(a,)/20  7sin(a)/20 0 sin(a)  cos(a,)
0 sin(, ) cos(a,) 0 0 0
1 0 0 0 0 0
0 cos(ay) —sin(a,) 0 0 0
T = ! (4.18)
™o 17/20 —7cos(ay) /20 7sin(e,)/20 0 sin(a,)  sin(a) ’
0 —7sin(e,)/20 —7cos(er,)/20 1 0 0
0  7sin(a,)/20  7cos(er,)/20 0 cos(e,) —sin(c,)
0 cos(c,) —sin(a,) 0 0 0
0 sin(a,) cos(a,) O 0 0
1 0 0 0 0 0
T,.= . . (4.19)
0  7sin(e,)/10 7cos(a,)/10 0 cos(a,) —sin(a,)
0 —7cos(e,)/10 7sin(a,)/10 0 sin(a,) cos(a,)
0 0 0 1 0 0

where o, @ and «, are the rotation angles of the three ICMs about the X-axes

of the local coordinate systems. In addition, the relationships among the twists,

&ms, &, &y and &, can be represented by Equation (4.20).

T T T
&.=(T,) &, 5y=(Ty) and & =(T) & (4.20)
where &ms is a twist representing the displacement of the MS in the global
coordinate system Oms-XmsYmsZms, as shown in Equation (4.21).

T

é‘ms = éwms—tx’ 5ms—’cy’ 5ms—tz’ fms—rx’ £ms—ry’ 5ms—rz (421)

where Ems—tx, Ems—ty, Ems—tz, Ems—rx, Ems—ry and gms—rz are the values of the displacements
of the MS along and about the Xms-, Yms- and Zms-axes. Additionally, Ems-t, Emsty,

and &mstz represent the values of the primary translations of the MS, while Emsxx,

118



Emsry and Emsrz represent the values of the parasitic rotations of the MS. Using

Equations (4.9) — (4.21), the twist &ms can be derived as shown in Equation (4.22).

X-m7x \ T x-m y-m Ty \ Ty-m z-m" "z \ T z-m

£ :[T k(T,,) +T,k, (T )T+T k,(T )T]lcxyz (4.22)

Where nyz :Tx_mcx + Ty_mCy + Tz—mCz :

The PSR-RPM approach described in this example is designed to reduce the

sum of the absolute values, {  ,of the three parasitic rotations of the MS of

the XYZ CPM, without considering the parasitic rotations of the ASs. When

o, =0 anda, =0, the relationship between {  and a can be seen in Figure

4.5, which shows that: (a) §

mnyz Will be minimized only when o = +7rand the

X-direction external force is applied, and (b) changing the rotation angle o
cannot considerably affect {  , when only a Y- or Z-direction external force is

exerted.

Because of the isotropic design of the XYZ CPM, the sum of the absolute parasitic rotation val-

ues, § ., of the MS can be minimized ifax = +m, ¢ =47 and @, = £7, no matter
yz X y z
which actuation force is applied. This conclusion is also validated in Figure 4.6. Using

a,=+m, o, == and o, = £, the XYZ CPM shown in Figure 4.2(a) can be

reconfigured (optimized) to a new XYZ CPM illustrated in Figure 4.7.

In order to compare the parasitic rotations of the two XYZ CPMs, FEA
simulations are carried out. The commercial software, COMSOL
MULTIPHYSICS, is selected for the nonlinear FEA simulations, using the 10-
node tetrahedral element and extra fine meshing technology. As shown in
Figure 4.8, the analytical results and the FEA results have almost the same

trends with less than 7% difference over the motion range. It can also be seen

that the sum of the absolute parasitic rotation values, ,»1s reduced by

5m—rxy

approximately 50%.
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Figure 4.5 Sum of the absolute values of the parasitic rotations, &mrxyz, plotted against the
rotation angle ax: (a) only X direction force applied, (b) only Y direction force applied, and (c)

only Z direction force applied

As mentioned in this section, &, , is the sum of the absolute values of the

three parasitic rotations of the MS about the Xms-, Yms- and Zms-axes. For Figure
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4.8(b), when Casx-x varies from 0 to 1, while Casy-x=1 and Casz-x=0, some of the
three parasitic rotations increase, but others decrease. Therefore, there is a flat
region in Figure 4.8(b), and

§ oy, Temains unchanged in the region. This flat

region cannot be predicted through consideration only of the geometrical shape,
but can be derived and verified from the analytical models and the FEA
simulations. That is the reason why the positions of the compliant modules

should be optimized through analytical modelling.

A CAD prototype design based on the optimized XYZ CPM is illustrated in
Figure 4.9. It can be seen from Figure 4.9 that the parasitic rotations produced
by the AM of a leg can be compensated by the parasitic rotations produced by
the two PMs of the other two legs. That is the physical reason why the parasitic
rotations of the XYZ CPM are reduced.

5m-lrxyz
0.0009

0.0008!
0.0007
0.0006'

0.0005!

Figure 4.6 Sum of the absolute values of the parasitic rotations, &mryz, with the rotation
angles ax and ay: (a) only X-direction force applied (Casxtx= 2, Gasy-x= 0 and Casztx= 0), (b) only
Y-direction force applied (Casxtx= 0, Casy-x= 2 and Casztx= 0), and (c) forces in X-and Y-directions

applied (Casx-tx= 2, Casy-tx= 2 and Casz-tx= O)
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Figure 4.7 Reconfigured XYZ CPM with smaller parasitic motions
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Figure 4.8 Analysis and FEA results: (a) Casy-x= 0 and Casz-x= 0, (b) Casy-x= 1 and Casztx= 0, and (c)

Casy-tx= 1and Casz-tx= 1
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Figure 4.9 An optimal design based on the reconfigured XYZ CPM

4.3 Discussion

In Section 4.2, an XYZ CPM was reconfigured without considering the effects of
the translations of the ICMs. As described in Section 4.1, any ICM can translate
in three-dimensional space, and the parasitic motions of a compliant
mechanism may be reduced through translating the ICMs of the compliant
mechanism, as done in [99]. It can be seen that the XYZ CPM shown in Figure
4.9 consists of basic spatial four-beam parallelogram compliant mechanisms.
The stiffness centre of the basic spatial four-beam parallelogram compliant
mechanism is located at its geometrical centre. Based on the stiffness centre
concept, one possible optimized design can be obtained by translating the
spatial four-beam basic parallelogram compliant mechanisms, so that each of
the actuation forces of the XYZ CPM goes through the stiffness centres of the

associated basic parallelogram compliant mechanisms [99].

In this section, an XY compliant mechanism, as shown in Figure 4.10(a), is taken
as an example for additional discussion. The XY compliant mechanism can be
decomposed into ICMs and rigid stages, as illustrated in Figure 4.10(b).
Module-X1, Module-Y1, Module-X2 and Module-Y2 are the basic ICMs of the XY

compliant mechanism.
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The XY compliant mechanism can be reconfigured by translating the four basic
ICMs, as shown in Figure 4.11 (a stacked design). The stiffness centres of the
two passive modules, Module-X: and Module-Yz, overlap, and each actuation
force passes through the stiffness centre of the actuated module, Module-Xi or
Module-Y1, and through the overlapping stiffness centre of the two passive
modules [93]. The parasitic motion of the XY compliant mechanism in Figure
4.11 has been significantly reduced compared with the original one, as shown
by the FEA simulation verification. Therefore, the parasitic motions of a

compliant mechanism can be reduced through the translations of the ICMs.

The structure of the XY compliant mechanism in Figure 4.10 can also be
optimized to have a smaller parasitic rotation through rotating the ICMs,
Module-Xi and Module-Yi, in their position spaces. The resulting optimal
design with a reduced parasitic rotation is shown in Figure 4.12. When
Aluminium alloy 6061 is selected as material (Young’s modulus is 69000MPa,
Poisson's ratio is 0.33) and the dimension of the identical beams and identical
cubes of the XY compliant mechanisms are defined as follows: the beam length,
beam in-plane thickness, beam out-plane thickness, cube out-plane height and
cube in-plane width are 50mm, Imm, 10mm, 10mm and 25mm, respectively,
the FEA results of the parasitic rotations of the two XY compliant mechanisms
can be seen in Figure 4.13. Figure 4.13 shows that the parasitic rotation of the
XY compliant mechanism shown in Figure 4.12 is approximately 50% of that of

the XY compliant mechanism shown in Figure 4.10.

Module-X,§§ XY

YLX

(@)

Module-Y,

(b)

Module-X,;
Module-Y,

Figure 410 An XY compliant mechanism and its basic composition pattern: (a) the XY

compliant mechanism, and (b) the basic composition pattern
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Stiffness Centre

Figure 4.11 An XY compliant mechanism reconfigured from the XY compliant mechanism

shown in Figure 4.10(a), via the translations of the ICMs

Module-X,

f

Figure 4.12 The CAD model and prototype of an XY compliant mechanism which is
reconfigured from the XY compliant mechanism shown in Figure 4.10(a) by rotating the

ICMs (Courtesy of Prof. Wei Wei, in BTBU, China)

Original XY compliant mechanism
\ — — — - Optimized XY compliant mechanism

Y-axis actuation
displacemént is 0 mm

-~ -
-~
-~ -
~

Parasitic rotation rad

Original XY compliant mechanism
— — — - Optimized XY compliant mechanism

-5 -2.5 0 2.5 5
X-axis actuation displacement mm

Figure 4.13 Comparison between the parasitic rotations of the XY compliant mechanisms

shown in Figure 4.10(a) and Figure 4.12
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4.4 Summary

A novel compliant mechanism reconfiguration approach, the PSR approach, has
been proposed in this chapter. The PSR approach allows the reconfiguration of
a compliant mechanism into many alternative compliant mechanisms, with
different geometrical structures and motion characteristics. Therefore, the PSR
approach can be used to improve the manufacturability, increase the load
transmissibility, minimize the cross-axis couplings and lost motions, and
increase the motion ranges through changing the stress distribution. Based on

the PSR theory, the PSR-RPM approach is detailed in this chapter.

The PSR-RPM approach reduces parasitic motions of a compliant mechanism
by optimizing the positions of the compliant modules of the compliant
mechanism. The following three main tasks for reducing parasitic motions of a
compliant mechanism, when using the PSR-RPM approach, have also been
detailed: (a) decomposing the compliant mechanism into ICMs and rigid stages,
(b) identifying the position spaces of the ICMs based on screw theory, and (c)
obtaining the permitted positions for the ICMs from their position spaces where
the parasitic motions of the compliant mechanism are minimized. In addition, a
case study has been presented in which an XYZ CPM was reconfigured to a
new XYZ CPM with approximately 50% reduction of parasitic motions
(rotations of the output MS) based on the PSR-RPM approach, as validated by
the FEA results.
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5 PSR-BASED OPTIMIZATION APPROACH FOR THE
DESIGN OF SYMMETRIC COMPLIANT MECHANISMS

The position-space-based reconfiguration (PSR) approach has been introduced
in Chapter 4. Based on the PSR approach, two compliant mechanism
optimization approaches, PSR-RPM and PSR-SCM approaches, are presented in
this thesis. The PSR-RPM approach has been detailed in Chapter 4. In this
chapter, the PSR-SCM approach is introduced with explanations of its principle

and example demonstrations.

5.1 Principle and Procedure of PSR-SCM Approach

Symmetry enables excellent motion performance of compliant mechanisms,
such as minimized parasitic motions. Traditionally, a symmetric compliant
mechanism is designed by adding redundant compliant modules on a non-
symmetric compliant mechanism [4, 55]. Therefore, traditional symmetric
compliant mechanisms are highly over-constrained, leading to issues such as
high actuation stiffness and large lost motions. However, the proposed PSR-
SCM approach designs a symmetric compliant mechanism, by rearranging the
compliant modules of a non-symmetric compliant mechanism within their
position spaces and adding minimal redundant compliant modules. The PSR-
SCM approach reconfigures a non-symmetric compliant mechanism into a
symmetric compliant mechanism with the addition of minimal over-constraints
(or without the addition of any over-constraints). Therefore, to design a
symmetric compliant mechanism using the proposed PSR-SCM approach, over-

constraints can be minimized, ensuring that the resulting compliant mechanism
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not only has minimized parasitic motions but also can have greatly reduced

actuation stiffness, minimized cross-axis coupling and decreased lost motions.

Using the PSR-SCM approach to reconfigure a non-symmetric compliant

mechanism into a symmetric compliant mechanism under the following:

i. Decomposing the compliant mechanism into rigid stages and compliant
modules in a decomposition pattern. In this step, the decomposition of a
non-symmetric compliant mechanism is mainly dependent on designers’
rational intuition, with consideration of reconfiguring this non-
symmetric compliant mechanism into a symmetric compliant mechanism

through rearranging the positions of the obtained compliant modules.

ii.  Changing the positions of the compliant modules within their position
spaces [20, 28], so that the non-symmetric compliant mechanism can be
reconfigured into a symmetric compliant mechanism by adding zero or
very few redundant compliant modules. If changing the positions of the
compliant modules cannot successfully reconfigure the non-symmetric
compliant mechanism into a symmetric compliant mechanism directly
(without adding other over-constraints) under the decomposition
patterns obtained in Step (i), another decomposition pattern may be
considered in Step (i). Note that the derivation of the position spaces of
the compliant modules is not detailed in this Chapter. If a compliant
module is an ICM (independent compliant module, as defined in
Chapter 4), the position space of the compliant module can be achieved
using screw theory, as studied in Chapter 4. If a compliant module is not
an ICM, the position space of the compliant module can be obtained by
trial and error, which is not detailed in this thesis.

iii. =~ Adding redundant compliant modules if needed, which enables the final
design to be a symmetric compliant mechanism. A redundant compliant

module of a compliant module should be placed at a possible permitted
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position within the position space of the compliant module, as stated in
Section 1.4.3.

iv.  Checking if the obtained symmetric compliant mechanism is as desired.
If not, other symmetric compliant mechanisms can be designed, via
repeating Steps (i) — (iii) with other different decomposition patterns.
One of these symmetric compliant mechanisms can be selected as the

final design.

The proposed PSR-SCM approach can be employed to reconfigure any one
compliant mechanism into a symmetric compliant mechanism. An original non-

symmetric XYZ CPM is reconfigured into a symmetric XYZ CPM in Section 5.2.

5.2 Case Study

5.2.1 A symmetric XYZ CPM design

In this section, an original non-symmetric XYZ CPM (as shown in Figure 5.1(a))
is reconfigured into a symmetric XYZ CPM (Figure 5.1(h)). The non-symmetric
XYZ CPM was presented by Hao in [77], which is a 3PPPRR (P: Prismatic, R:
Revolute) mechanism. It is an exactly-constrained design in its general
construction, without over-constraints in its compositional modules. The non-
symmetric XYZ CPM can provide decoupled translations along the Xms-, Yms-
and Zms-axes, but its parasitic motions and lost motions are relative large.
Therefore, a symmetric XYZ CPM, with minimized parasitic motions and
reduced lost motions, is designed using the PSR-SCM approach, based on the

following steps.

i. Decompose the non-symmetric XYZ CPM into rigid stages and
compliant modules. Figure 5.1(b) shows that the rigid stages are an MS
and BSs, and the compliant modules are actuated compliant modules
(AMs: AM-X, AM-Y and AM-Z) and passive compliant modules (PMs:
PM-X, PM-Y and PM-Z).
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1.

1ii.

iv.

Vi.

Vii.

Viii.

Further decompose each of the AMs into two DTBCMs (double-two-
beam compliant modules, as defined in Chapter 1). Figure 5.1(c)
illustrates that the AM-X is decomposed into two DTBCMs, AM-X-1 and
AM-X-2; the AM-Y is decomposed into two DTBCMs, AM-Y-1 and AM-
Y-2; the AM-Z is decomposed into two DTBCMs, AM-Z-1 and AM-Z-2.
Reconfigure the AM-X via translating the AM-X-1 (within its position
space) and its adjacent BSs along the Xms-axis, as shown in Figure 5.1(d),
so that the MS is located at an intermediate position between the AM-X-1
and the AM-X-2. As can be seen, a RL-X is needed to link the AM-X-1
and the AM-X-2.

Add redundant compliant modules, AM-X-1-R and AM-X-2-R, as shown
in Figure 5.1(e), so that the AM-X is a mirror-symmetric compliant
module about the MS. As described in Section 1.4.3 in Chapter 1, a
redundant copy of a compliant module can be added at any one position
within the position space of the compliant module. Therefore, the
positions of the AM-X-1-R and the AM-X-2-R should be within the
position spaces of the AM-X-1 and the AM-X-2, respectively.

Add a redundant PM, PM-X-R (Figure 5.1(e)), which is the reflection of
the PM-X about the MS. In this case, the PM-X cannot be reconfigured to
be symmetrical about the MS, so a redundant PM should be added (the
redundant PM is placed within the position space of the PM). By this
step, the leg of the XYZ CPM associated with the Xms-axis translation has
been reconfigured.

Reconfigure the other two legs of the XYZ CPM associated with the
translations along the Yms- and Zmsaxes, following the same
reconfiguration process of the leg associated with the translation along
the Xms-axis. The resulting design can be seen in Figure 5.1(f).

Re-design the BSs, as shown in Figure 5.1(g).

Combine all the rigid stages and compliant modules together (Figure

5.1(h)), which is the inverse process of decomposing the compliant

130



mechanism. The symmetric XYZ CPM shown in Figure 5.1(h) is the

resulting symmetric XYZ CPM.

Figure 5.1 Symmetric XYZ CPM designed via reconfiguring a non-symmetric XYZ CPM: (a)
the original non-symmetric XYZ CPM [30], (b) decomposition of the non-symmetric XYZ
CPM, (c) further decomposition of the AMs of the non-symmetric XYZ CPM, (d) AM-X-1
translated to a new permitted position, (e) adding redundant compliant modules (over-
constraints), (f) reconfiguration of the legs associated with the translations along the Yms- and
Zns-axes, (g) BS design, (h) resulting symmetric XYZ CPM, and (i) another symmetric XYZ
CPM designed by traditional approach, by adding redundant compliant modules on another

three legs

Another symmetric XYZ CPM (Figure 5.1(i)) is designed by directly adding
redundant compliant modules to the non-symmetric XYZ CPM (Figure 5.1(a)).
It can be seen that the symmetric XYZ CPM shown in Figure 5.1(i) has more

over-constraints, compared with the symmetric XYZ CPM that is shown in
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Figure 5.1(h).

5.2.2 Kinetostatic modelling and analysis

The designed symmetric XYZ CPM, as shown in Figure 5.1(i), is modelled and
analysed in this section. It can be known that the parasitic rotations and the
parasitic translations of the symmetric XYZ CPM should be much smaller than
the primary translations, due to the symmetric structure. Therefore, only the
force-displacement relationships and the lost motions, of the XYZ CPM along
the Xms-, Yms- and Zms-axes, are modelled (using the CFB approach proposed in
Chapter 3) and analysed in this section. The analysis results can be used to
estimate the actuation stiffness, and to identify the parameters of the associated

control system.

Suppose that the primary translations are performed at very small velocities.
Therefore, dynamic contribution is not taken into account in the modelling.

Additionally, the tiny parasitic motions are also ignored in the modelling.

Each PM of the symmetric XYZ CPM can be referred to as a two-beam
compliant module (TBCM) as shown in Figure 5.2(a), and each AM of the
symmetric XYZ CPM can be regarded as a combination of TBCMs. Therefore,
the motions of the symmetric XYZ CPM are performed through the
deformation of the TBCMs, so the modelling of the TBCM is carried out before
modelling the symmetric XYZ CPM. Note that all the beams of the symmetric
XYZ CPM are identical with square cross sections, and the cubes of the rigid

stages are also identical.

The reaction forces produced by the deformation of the four-beam compliant
module (FBCM), as shown in Figure 5.2(b), was first reported in [78]. The FBCM
is a combination of two TBCMs shown in Figure 5.2(a). If ignoring the rotations
of the TBCM, the reaction forces produced by the deformation of the TBCM

along the Xem-, Yem- and Zem-axes are half of the reaction forces produced by the
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deformation of the FBCM along Xem-, Yem- and Zm-axes, respectively. Therefore,
the reaction force produced by the deformation of the TBCM along the Xcm-,
Y- and Zcm-axes can be obtained, as shown in Equations (5.1) - (5.3),

respectively.

840 (5 s +3(€20y + €200

Ccm—tx = 2 2 2
175t + 3€cm—ty + 3 cm-tz (51)
i 24¢,,. (1758 +210¢,,  +129¢, +129¢ ) 652)
oy =~ 5.2
El 1758 + 3§jm_h/ +3¢
24¢_(1758° +2106, +129¢2  +129¢>
Ccmftz = t ( : ty k ) (5.3)

175¢* +3¢7, ,, +3€;

cm-tz

where t is the normalized thickness of the beam. The {mtx, Emty and Emt
denote the translational displacements of the TBCM. Additionally, Cem-tx, Cem-ty
and Cemtz represent the reaction forces along the Xn-, Yem- and Z-axes,

respectively, produced by the TBCM due to the deformation of the TBCM.

A TBCM can be regarded as a three-dimensional translational spring. The
complete symmetric XYZ CPM can be modelled based on the analytical model
of the TBCM. The motion performance of the symmetric XYZ CPM along the
Xms=, Yms- and Zms-axes is isotropic (Oms-XmsYmsZms is the global coordinate
system). Therefore, only the primary translations along one of the three
directions need to be studied. In this chapter, the derivation of the force-
displacement relationship, associated with only the translations along the Xms-
axis, is detailed. Given any displacements, Easy-x and asztx, of the RL-Y and RL-Z,
respectively, the XYZ CPM can be simplified to the model shown in Figure 5.3

if only the force-displacement relationship in Xms-axis is concerned.
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Figure 5.3 Simplified spring model of the symmetric XYZ CPM (RL-X is red in color, RL-Y is

green in color, and RL-Z is blue in color)

Assume that the lost motions along the Xms-, Yms- and Zms-axes are 6x, 0y and 0,

respectively, which can be written as shown in Equation (5.4).
6x = é.asx—tx - é.ms—tx’ 5y - gasy-tx - é-ms—ty and 62 = gasz-tx - gms—tz (54)

where Emstx, Emsty and Ems+z are the values of the primary translations of the MS
along the Xms-, Yms- and Zms-axes, respectively. The values of the primary
translations of the RL-X, the RL-Y and the RL-Z are represented by asctx, Easy-tx
and &aszt, respectively. The model, as shown in Figure 5.3, contains 14 TBCMs
in each axis, which are termed as TBCM-1 to TBCM-14, respectively. If all the
parasitic rotations and parasitic translations of the symmetric XYZ CPM are
ignored, the deformation displacements of each of the TBCMs can be obtained
easily according to the primary translations and lost motions. The reaction

forces of the TBCMs can also be calculated based on Equations (5.1) — (5.3).
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Taking the TBCM-1 as an example, the TBCM-1 is linked to the RL-X, so the
deformation displacements of the TBCM-1 can be derived from the motion
displacements of the RL-X. If ignoring all the parasitic rotations and parasitic
translations of the RL-X, the deformation displacements of the TBCM-1 equal to
Easx-tx, zero and zero along the Xms-, Yms- and Zms-axes, respectively. Therefore,
the reaction force, Cs, of the TBCM-1 along the Xms-axis can be obtained, as
shown in Equation (5.5), by substituting the deformation displacements of the
TBCM-1 into Equations (5.2) and (5.3). Note that when substituting the
deformation displacements into Equation (5.2), Eem-tx, Eemty and Eem-- in Equation
(5.2) equal to zero, &asxtx and zero, respectively; when substituting the
deformation displacements into Equation (5.3), em-tx, Ecmty and Eem-z in Equation
(5.3) equal to zero, zero and &asxtx, respectively. Similarly, the reaction force of
the TBCM-2, TBCM-3, TBCM-4, TBCM-11, TBCM-12, TBCM-13 or TBCM-14, to
the RL-X along the Xms-axis, can also be obtained as shown in Equation (5.5).
The reaction forces of the TBCM-5, TBCM-6, TBCM-7, TBCM-8, TBCM-9 and
TBCM-10, to the MS along the Xms-axis, can be derived from Equations (5.6) —
(5.11), respectively, which are represented as wrenches Cv, Cc, C4, Ce, Cf and Cg, as

shown below.
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When the MS is at static equilibrium, all the reaction forces on the MS along the
Xms-axis should be balanced, so Equation (5.12) can be obtained. When
substituting Equations (5.6) — (5.11) into Equation (5.12), Equation (5.13) can be
derived. Furthermore, the actuation force, Casxtx, should be equal to the sum of
the reaction forces of all the TBCMs except TBCM-5 and TBCM-6, along the Xums-
axis. Therefore, the relationship between the actuation force Casxtx and the
primary translations of the MS can be obtained, as shown in Equation (5.14).
Similarly, the lost motions along the Yms and Zmsaxes and the force-
displacement relationships associated with the actuation forces, Casy-x and Casztx,
can be derived, as shown in Equations (5.15) — (5.18). Note that the actuation

forces, Casy-x and Casztx, are applied on the RL-Y and RL-Z, respectively.
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Using Equations (5.14) — (5.18), the actuation forces, Casxty, Casy-x and Casz-tx, and
the lost motions, 0x, 0y and 0, can be obtained when specific translational
displacements of the MS, &msty, Emsty and Emstz, are required. Furthermore, the
primary translational displacements of the RLs, Sasxtx, Lasy-tx and aszx, can also

be obtained according to Equation (5.4).

The derived nonlinear analytical models are applicable for any geometrical
dimension and material. In order to verify the analytical models using FEA
simulations, one can let the wire-beam length be 50mm, the cross sectional
dimension of each wire-beam be Immx=1mm, the dimension of the motion stage
be 25mm x 25mm x 25mm, the Young's modulus of the selected material be
69000MPa, and the Poisson's ratio of the material be 0.33. Based on these
predefined values of the parameters, the analytical results and the FEA results,
in terms of the Xms-axis actuation force and the Xms-axis lost motion rate
(represented by Rim), can be seen in Figure 5.4, under the following actuation
conditions: (a) &asx-tx varies from —0.05 to +0.05, asy-=0 and &aszx=0, (b) Easx-tx
varies from —0.05 to +0.05, asy-x=0.05 and aszx=0, and (c) Easx-x varies from —0.05
to +0.05, Easyx=0.05 and E&aszx=0.05. The commercial software, COMSOL
MULTIPHYSICS, is selected for the nonlinear FEA simulations, using the 10-

node tetrahedral element and fine meshing technology.

Figure 5.4(a) shows that the analytical results and the FEA results of the Xms-axis
actuation force match very well, with less than 2.58% difference. Figure 5.4(b)
illustrates that the maximum difference between the analytical results and the

FEA results of the Xms-axis lost motion rate is less than 12.18%, but the trend of
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the analytical results of Rim are the same as that of the FEA results of Rim. The
difference rises as cross-axis input displacements increase. It can also be seen
that the maximum lost motion rate is less than 0.82%, which is tiny compared

with the primary translation.

Based on the analytical models of the symmetric XYZ CPM, the lost motion rate
and the Xms-axis primary translation of the MS are analysed, the results of
which can be seen in Figure 5.5. When &asy-= 0 and &aszo= 0, Figure 5.5(a) shows
that the Rim decreases with decreasing t and Casxtx. Figure 5.5(b) illustrates Rim
increases with increasing &asct, Sasy-x and Easztx. The actuation force, Casxtx,
increases with increasing &asy-« and Easztx, which is shown in Figure 5.5(c). It can
be derived that the actuation stiffness increases along the Xms-axis, when the

primary translations along the other directions increase.

A prototype of the symmetric XYZ CPM is shown in Figure 5.6 (the material
and dimension of the prototype are the same as the FEA model). The fabrication
of the prototype is described in Appendix G. The input displacements of the
ASs of the prototype are actuated and measured by three micrometres,
respectively. Additionally, the displacements of the MS along the Xms- and Yms-
axes are measured by two digital dial gauges with a resolution of 1um (the

displacement of the MS along the Xms-axis is not measured).

The relationships of the input and output translations along the X-axis are
experimentally tested on the prototype. The maximum difference between the
experimental results and the analytical results is less than 0.52%, as shown in
Figure 5.7. The difference mainly arises from analytical modelling, machining
and assembly errors, as well as the undesired deformation of rigid linkages. It is
hard to check how much the machining and assembly errors affect the
experimental results, but it is sure that the experimental results are affected by
the machining and assembly errors. The reason is that the bolted linkages can

reduce the stiffness (It can be seen from [77] that stiffness can reduce by
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approximately 30% by bolted linkages). If the rigid cubes and the RLs are made

of a material with higher Young’s modulus, the experimental results can match

the analytical results better. It can also be observed from the experimental

results that the cross-axis coupling rate and the lost motion are less than 0.13%

and 0.63%, respectively.

100 0.9
o FEA: 5asy_'x =0 and —— 0 < o FEA: {asy_b( =0 and{,, =0
5 80f o F Cppre=005aNd €, =0 |- Poc L OB~ O FEA g, =005ande,, =0 - ———
\ﬁ ol O F Epye =005aNd €, =0.05 o TR o FEA Easyr =005aNA &, =0.05
Anaiyucal: £asy-tx =0 and(,,, =0 ¥ 07 —— | Analytical: 5asy_'x =0 and¢, ., =0 -
40 Analytical: &, =0.05and &, =0 E o6Lb——0_ Analytical: £, =0.05and ¢, ., =0 | ¢
20 Analytical: 5asy-tx =0.05 and [—— 005 ~Z%" | *}; Analyi:zl: §asy_'x =005and ¢, =0.05 t

Normalized X-actuation force,

|
1
-0.03 -0.01 0.01 0.03 0.0¢

-0.03 -0.01

Normalized X-displacawart of the RL-X, ¢

0.01

(@)

asx-tx

Normalized X-displacement of the RL-X, ésx_

(b)

X

Figure 5.4 Comparison between the analytical results and the FEA results: (a) force-

displacement relationship and (b) lost motion rate
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Figure 5.5 Analysis of lost motion and actuation force based on the analytical models: (a) lost

motion rate (represented by Rim) variation with asxtx and ¢, when &asy-= 0 and Easz-= 0, (b) lost

motion rate (represented by Rim) variation with &asy-x and &asztx, When &asxx is equal to 0.01,

0.02, 0.03, 0.04 and 0.05, respectively, and (c) actuation force, Casxtx, variation with &asy-x and

gasz-tx, when gasx-tx= 0
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Figure 5.6 A prototype of the symmetric XYZ CPM
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Figure 5.7 Relationship between the input displacement and the output displacement along

the Xms-axis

Compared with the XYZ CPM shown in Figure 5.1(a), the proposed XYZ CPM
has reduced parasitic motions because of its symmetric configuration. Moreover,
the lost motions and cross-axis coupling of the symmetric XYZ CPM are also
reduced due to the three rigid linkages. Therefore, the XYZ CPM is an ideal
candidate to build a high-precision XYZ positioning system. For a high-
precision positioning system (such as nano-/micro-precision positioning
system), a control system is always desired. In Appendix H, a semi-closed-loop

control system is introduced for the prototype, with experimental tests. Note
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that the asymmetric XYZ CPM shown in Figure 5.1(a) has less complex
structure, so the asymmetric XYZ CPM is also a desirable candidate in some

applications which are required to be manufactured easily.

5.3 Summary

A PSR-SCM approach is detailed in this chapter. The PSR-SCM approach can
improve the motion characteristics of a non-symmetric compliant mechanism
by reconfiguring the compliant mechanism into a symmetric compliant
mechanism. The PSR-SCM approach reconfigures a non-symmetric compliant
mechanism through replacing the compliant modules within their position
spaces and adding a small number of redundant compliant modules, so that the
non-symmetric compliant mechanism can be reconfigured into a symmetric
compliant mechanism. The symmetric compliant mechanisms designed using

the PSR-SCM approach are less over-constrained.

The basic procedure of the PSR-SCM approach has been presented. In order to
demonstrate the PSR-SCM approach, a non-symmetric XYZ CPM is
reconfigured into a symmetric XYZ CPM in this chapter. The designed
symmetric XYZ CPM not only has minimized parasitic motions because of its
symmetric structure, but also has minimized cross-axis coupling, reduced

actuation stiffness and decreased lost motions.
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6 DISCUSSION

The CPI synthesis approach, the CFB modelling approach and the PSR-based
optimization approaches are newly proposed in this thesis. As a result, the
main approaches, including the existing approaches, to the synthesis, modelling

and optimization of XYZ CPMs can be listed below.
Synthesis approaches:

(a) The constraint-based synthesis approach,

(b) The screw-theory-based synthesis approach,

(c) The FACT synthesis approach,

(d) The rigid-body-replacement-based synthesis approach, and
(e) The CPI synthesis approach (proposed in this thesis).

Modelling approaches:

(a) The free-body-diagram (FBD)-based modelling approach,
(b) The energy-based modelling approach using the virtual work principle,
and

(c) The CFB-based modelling approach (proposed in this thesis).
Optimization approaches:

(a) The stiffness-centre-based geometrical shape optimization approach,
(b) The geometrical dimension optimization approach, and
(c) The PSR-based geometrical shape and dimension optimization

approaches (proposed in this thesis).
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As mentioned in Chapter 1, the design process of a compliant mechanism is a
combination of the synthesis, modelling and optimization. Therefore, in such a
design process, one synthesis approach, one modelling approach and one
optimization approach need to be selected from the associated approach lists,
respectively. The combination of the CPI synthesis approach, the CFB
modelling approach and the PSR-based optimization approaches can form a
desirable process for designing XYZ CPMs, because, using these three
approaches, both beginners and experts are able to design a variety of XYZ

CPMs for different applications.

The advantages and disadvantages of the already existing approaches have
been detailed in Chapter 1. This chapter shows how the proposed approaches
overcome the challenges of the existing approaches, especially for designing
XYZ CPMs. The main strengths and weaknesses of the proposed CPI synthesis
approach, the CFB modelling approach and the PSR-based optimization
approaches compared with the existing approaches are also discussed in this
chapter. Furthermore, in this chapter, some possible combinations of the
synthesis, modelling and optimization approaches, for designing other types of
compliant mechanisms other than XYZ CPMs, are discussed. Additionally, the
possible development of the proposed approaches is finally discussed in the

end of this chapter.

Among the listed synthesis approaches, the rigid-body-replacement-based
synthesis approach is mainly based on the development of rigid-body
mechanisms. The rigid-body-replacement-based synthesis approach is a
straightforward approach to synthesize compliant mechanisms. However, this
approach heavily depends on the development of rigid-body mechanisms as
well as design experience. The other synthesis approaches in the list, except for
the rigid-body-replacement-based synthesis approach, are actually based on the
following two concepts: (a) the mobility of a given rigid stage is determined by

the locations and orientations of the constraint elements, such as wire-beams,
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applied on it; and (b) one non-redundant 1-DOC constraint element removes

one DOF from the given rigid stage.

Based on the concepts, the constraint-based synthesis approach can be used to
synthesize any type of compliant mechanisms including XYZ CPMs. Using the
constraint-based synthesis approach to synthesize a compliant mechanism, the
designer needs to identify the locations and orientations of the selected
constraint elements based on his/her design experience. Therefore, it is very
hard to synthesize a variety of compliant mechanisms for different applications
due to the design experience limitation. Because of this, the screw-theory-based
synthesis approach and the FACT synthesis approach were proposed. The
locations and orientations of constraint elements, in these two approaches, are
derived by mathematical operations. Additionally, the locations and
orientations of constraint elements are represented by screw vectors in the
screw-theory-based synthesis approach and by geometrical shapes in the FACT
synthesis approach. However, both the screw-theory-based synthesis approach
and the FACT synthesis approach have their own limitations for the design of
XYZ CPMs.

An XYZ CPM is a complex compliant mechanism, which includes several rigid
stages and constraint elements. If using screw vectors to represent the locations
and orientations of the constraint elements, the mathematical expression would
be very complicated. The constraint elements used in the FACT approach are
mainly wire-beams, because such a wire-beam provides the most basic
constraint, and any constraint can be represented by a specific combination of
wire-beams. Based on the FACT approach, one can visualize and determine the
general shape of a compliant mechanism, through identifying the location and
orientation of the wire-beams. The FACT approach is a desirable approach to
synthesize compliant modules, but it is not a desirable approach to synthesize
compliant mechanism systems such as XYZ CPMs because actuation coupling

is not considered in the FACT approach.
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The CPI synthesis approach proposed in this thesis decomposes an XYZ CPM
into compliant modules. Moreover, the constraints and positions (including
locations and orientations) of the compliant modules are derived using the
screw theory. Additionally, the geometrical structures of the compliant
modules can be identified using the FACT approach. Therefore, the CPI
synthesis approach has the advantages of the screw-theory-based synthesis
approach and the FACT synthesis approach. However, the CPI approach is
limited to the synthesis of XYZ CPMs, which is the disadvantage of the CPI

approach.

In order to further improve the motion characteristics of the XYZ CPMs
synthesized using the synthesis approaches, the XYZ CPMs can be modelled
and then optimized based on the models. The free-body-diagram (FBD)-based
modelling approach and the energy-based modelling approach are mainly used
approaches to model compliant mechanisms. However, these two modelling
approaches are not ideal approaches to model complex compliant mechanisms
such as XYZ CPMs due to their disadvantages. The energy-based modelling
approach cannot take all internal geometrical parameters into account, the FBD-
based nonlinear modelling approach needs to obtain the deformed
configuration, and the FBD-based linear modelling approach cannot obtain
results for large motion ranges. The CFB-based modelling approach proposed
in this thesis can be employed to model a complex compliant mechanism such
as an XYZ CPM linearly and nonlinearly, with consideration of all internal and
external geometrical parameters. Moreover, when using the CFB-based
modelling approach to model a compliant mechanism, the deformed
configuration is not needed. Additionally, the mathematical expression of the
CFB-based modelling approach can be understood easily. Therefore, the
proposed CFB-based modelling approach is an ideal approach to model XYZ
CPMs.
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Based on the analytical models of an XYZ CPM, the XYZ CPM can be optimized
to have minimized parasitic motions, reduced cross-axis coupling and
decreased lost motions. The PSR-based optimization approaches proposed in
this thesis can optimize both the geometrical shape and the geometrical
dimension of a compliant mechanism including an XYZ CPM simultaneously,
which is the main advantage of the PSR-based optimization approaches over
the Stiffness-centre-based optimization approach and the geometrical

dimension optimization approach.

As a result, the combination of the CPI synthesis approach, the CFB modelling
approach and the PSR-based optimization approaches can form a desirable
design process of XYZ CPMs. However, this combination is limited to the
design of XYZ CPMs, which is its main disadvantage. Additionally, using this
design process to design an XYZ CPM, the other synthesis approaches are also

needed to synthesize the associated compliant modules.

For designing other types of compliant mechanisms, the CFB modelling
approach and the PSR-based optimization approaches are also applicable and
desirable. Unlike these approaches, the CPI synthesis approach can be
employed to synthesize only XYZ CPMs. However, the CPI synthesis approach
can be extended to synthesize all types of compliant mechanisms. For example,
if the CPI synthesis approach is extended to synthesize XY CPMs, the following
works should be done: (a) obtaining the topological structure of the basic XY
CPM, (b) identifying the possible permitted constraints (or constraint spaces) of
the associated compliant modules, and (c) identifying the possible permitted
positions (or position spaces) of the compliant modules. Based on the derived
topological structure, constraint spaces and position spaces, a great number of
XY CPMs can be designed with diverse structures for different applications. It
can be seen that similar work has been described for the synthesis of XYZ CPMs.

Therefore, following the similar way, the CPI synthesis approach can be
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extended to synthesize all types of compliant mechanisms. The development of

the CPI approach is my future work.
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7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This thesis focuses mainly on the design of compliant mechanisms, especially
XYZ CPMs. Such a design requires a combination of type synthesis, analytical
modelling and structure optimization. Therefore, the CPI synthesis approach,
the CFB modelling approach and the PSR-based optimization approaches (PSR-
RPM and PSR-SCM) have been presented and applied in this thesis. The

proposed approaches form the main contributions of this thesis.

Three-legged XYZ CPMs are basic XYZ CPMs. In the CPI approach, a three-
legged XYZ CPM is decomposed into compliant modules (AM-X, AM-Y, AM-Z,
PM-X, PM-Y and PM-Z) and rigid stages (MS, AS-X, AS-Y, AS-Z, BS-X, BS-Y
and BS-Z). The topological structure of the compliant modules and rigid stages
has been obtained. This shows the interconnection of the compliant modules
and rigid stages. Moreover, the constraint spaces of the compliant modules
have been derived based on screw theory. When each of the compliant modules
selects one possible permitted constraint from the constraint spaces, the
compliant modules can be obtained in different geometrical forms, and can be
placed in different positions. The possible permitted geometrical forms of the
compliant modules can be derived using existing approaches such as the FACT
approach. The derivation of the position spaces of the compliant modules is
also presented in the CPI approach. Therefore, a large number of three-legged
XYZ CPMs can be synthesized through connecting the compliant modules to

the rigid stages, based on the topological structure of the three-legged XYZ
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CPM, the geometrical forms and the position spaces of the compliant modules.

Additionally, XYZ CPMs, with more than three-legs, can be obtained through
adding redundant legs to three-legged XYZ CPMs. XYZ CPMs, synthesized
using the CPI approach, can provide decoupled translations, can be actuated by
ground-mounted linear actuators, and can also provide a diversity of

geometrical shapes for different applications.

A compliant module can provide elastic forces due to its deformation. Such an
elastic force is defined as a variable constraint force in the CFB approach. In
addition, the CFB approach defines an external force as a constant constraint
force. The variable constraint forces produced by a BCM can be derived based
on the previously obtained force-displacement relationship of the BCM. Any
one NBCM can be decomposed into BCMs and rigid linkages. Therefore, the
variable constraint forces produced by a NBCM can be obtained based on the
variable constraint forces produced by the associated BCMs. In the CFB
approach, a complex compliant mechanism (the complex compliant mechanism
can be an XYZ CPM) can be decomposed into BCMs and/or NBCMs. When the
complex compliant mechanism is in a state of equilibrium under the influence
of some constant constraint forces (or external forces), the analytical model of
the complex compliant mechanism can be derived based on the variable and
constant constraint forces, using the CFB approach. The CFB approach can
model compliant mechanisms (including XYZ CPMs) both linearly and
nonlinearly. The derived analytical model of a compliant mechanism can be

used to estimate the motion characteristics of the compliant mechanism.

As stated, a compliant module in a compliant mechanism has many possible
permitted positions within its position space. Using the proposed PSR approach,
a compliant mechanism can be reconfigured by rearranging the positions of the
associated compliant modules within their position spaces. Such a

reconfiguration of a compliant mechanism can be used to improve the motion
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characteristics of the compliant mechanism. In this thesis, two PSR-based
approaches, the PSR-RPM and PSR-SCM approaches, are proposed. The PSR-
RPM is employed to reduce parasitic motions of compliant mechanisms. In
order to improve the motion characteristics of a non-symmetric compliant
mechanism, the PSR-SCM can be used to reconfigure the non-symmetric

compliant mechanism into a symmetric compliant mechanism.

In order to simplify the derivation of position spaces, compliant modules must
be ICMs, in the PSR-RPM approach. The parasitic motions of a compliant
mechanism are modelled by taking the position spaces of the ICMs into account.
Based on the models of the parasitic motions, the optimized positions of the
ICMs can be derived, and then a new compliant mechanism with reduced
parasitic motions is obtained through placing the ICMs at the optimized

positions.

In the PSR-SCM approach, a non-symmetric compliant mechanism is
decomposed into compliant modules and rigid stages. This decomposition is
mainly based on designers’ experience, so that a symmetric compliant
mechanism can be obtained through rearranging the positions of the compliant

modules, with the addition of a small number of redundant compliant modules.

Compared with existing optimization approaches, the PSR-based approaches
(PSR-RPM and PSR-SCM approaches) can optimize a compliant mechanism by
adding a small number of redundant compliant modules, and can consider both
the geometrical dimension and shape of the compliant mechanism
simultaneously. Note that the PSR, PSR-RPM and PSR-SCM approaches can be

used to optimize any compliant mechanisms that include XYZ CPMs.

In this thesis, the principles of the proposed approaches have been presented,
and the procedures of the approaches have been introduced and demonstrated
by case studies. The case studies are also verified by FEA simulations and/or

experimental tests. Several decoupled XYZ CPMs, with different structures,
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have been synthesized using the CPI approach. These synthesized XYZ CPMs
can be fabricated monolithically using a CNC milling machine. One of
synthesized XYZ CPMs has also been modelled using the CFB approach and
optimized using the PSR-RPM approach. The sum of the parasitic rotations of
the optimized XYZ CPM is shown to be reduced by approximately 50%.
Additionally, a non-symmetric XYZ CPM has been reconfigured into a
symmetric XYZ CPM using the PSR-SCM approach. The symmetric XYZ CPM
has desirable motion characteristics due to its symmetric structure and
minimized over-constraints. A prototype of this symmetric XYZ CPM was
fabricated, and an open-loop control system has also been presented for the

prototype.

7.2 Future Work

The CFB approach and the PSR-based optimization approaches can be used to
model and optimize all compliant mechanisms, including XYZ CPMs. However,
the CPI approach focuses on the synthesis of XYZ CPMs. Therefore, it would be
desirable to extend the CPI approach to the synthesis of other types of

compliant mechanisms.

In this thesis, compliant mechanisms are modelled using the CFB approach
without taking the dynamic effects into account. In the future, such dynamic

effects will be considered in the CFB approach.

The PSR-based optimization approaches, as proposed in this thesis, are used to
reduce parasitic motions of compliant mechanisms and to reconfigure a non-
symmetric compliant mechanism into a symmetric compliant mechanism. One
part of the future work being considered is to use the PSR approach to improve
other motion characteristics, such as cross-axis coupling and lost motions, of a
compliant mechanism. Additionally, it will not be required that the compliant
modules in the PSR-RPM approach must be ICMs, so that more optimized

designs can be obtained. Furthermore, position space identification in the PSR-
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SCM approach will be based on a mathematical tool, rather than mainly on

design experience.

The manufacture and nonlinear control of compliant mechanisms will also form

part of the future work building on the foundation provided by this thesis.
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APPENDIX A: XYZ CPM WITH COUPLED PMS

The decomposition method used in this thesis is an effective way of analysing
compliant modules of an XYZ CPM, which is suitable for designing most
decoupled XYZ CPMs, with a consideration of actuator isolation. However,
there is a limitation resulting from the decomposition assumption, as
mentioned in Section 2.1 of Chapter 2. The assumption is that the PMs and AMs
of an XYZ CPM are regarded as ICMs (independent compliant modules).
Taking an AS which is constrained by one PM and one AM as an example, if the
PM and the AM are ICMs, any one DOF of the AS can be constrained by the PM
and/or the AM, but is not constrained by the combination of the PM and the
AM. Due to this assumption, one type of decoupled XYZ CPMs cannot be
synthesized using this CPI approach. These decoupled XYZ CPMs have the
following characteristics: (a) the PMs in different legs are combined together to
constraint a DOF of the MS, but any one of the PMs cannot resist the DOF.
and/or (b) the AM and the PM in a leg are combined together to constrain a
DOF of the AS, but the AM or the PM cannot resist the DOF of the AS

separately. One specific example is shown below.

If two redundant constraint beams are added for each AM of the XYZ CPM as
shown in Figure 2.13(c), the XYZ CPM-1 as demonstrated in Figure A. 1(a) can
be obtained. The XYZ CPM-2 as illustrated in Figure A. 1(b) can be obtained by
rotating the three PMs of the XYZ CPM-1 each by 45 degrees. The decoupled
translations of the XYZ CPM-2 can be seen in Figure A. 1(c) - Figure A. 1(e).

Each of the PM in the XYZ CPM-2 system cannot constrain any one of the
rotations of the MS of the XYZ CPM-2 about the X-, Y- and Z-axes with respect
to the coordinate system O-XYZ. However, the combination of the three PMs
can be resisted all the rotations of the MS. Therefore, the constraints of the PMs

in XYZ CPM-2 system are not independent to each other.
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Figure A. 1 Decoupled XYZ CPM designs: (a) decoupled XYZ CPM-1, (b) decoupled XYZ
CPM-2, (c) X direction motion of the decoupled XYZ CPM-2, (d) Y direction motion of the
decoupled XYZ CPM-2, and (e) Z direction motion of the decoupled XYZ CPM-2
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APPENDIX B: CONSTRAINT SPACES OF PMS AND AMS

B-constraint space is represented in Table B. 1, where T and R correspond to
translational constraint and rotational constraint, respectively. The subscripts
px, py and pz indicate the three PM local coordinate systems, and the subscripts
ax, ay and az indicate the three AM local coordinate systems. The subscripts -tx,
-ty and -tz represent the translational constraints along the three axes of each
local coordinate system, and -rx, -ry and -rz indicate the rotational constraints
about the three axes of each local coordinate system. The underlined rotational

constraints can be transmitted from the AMs to the PMs.

The T-constraint space can be derived via transmitting some of the underlined
rotational constraints from the AMs to PMs. The S-constraint space can be
obtained through adding redundant rotational constraints to the AMs and PMs
in the B-constraint space and T-constraint space. The B-constraint space, T-
constraint space and S-constraint space form the constraint spaces of the

compliant modules.

Table B. 1 B-constraint space

Constraints of the compliant modules in the three legs

.Corr.lb- Module in the local coordinate systems
ination
X Y Z

1 PMs Tpx-txRpx-rxRpx-ryRpx-rz Tpy-x Tpz-tx

AMs TaxtyTax-tzRax-oxRaxryRaxrz  Tay-ty Tay-tzRay-xRayryRay-rz ~ TaztyTaztzRazrxRazryRaz-rz
5 PMs Tpx-txRpx-rxRpx-ry Tpy-xRpy-rz Tpz-tx

AMs TaxtyTax-tzRax-rxRaxryRaxrz ~ Tay-tyTay-tzRay-rxRayayRay-rz  TaztyTaztzRazrxRazryRaz-rz
3 PMs Tpx-txRpxrxRpx-ry Tpy-tx Tpz-oxRpzrx

AMs TaxtyTax-tzRax-rxRax-ryRaxrz ~ Tay-tyTay-tzRay-rxRayryRay-rz ~ TaztyTaztzRaz-rxRazryRaz-rz
4 PMs Tpx-txRpxrxRpx-rz Tpy-xRpy-rx Tpz-tx

AMs TaxtyTax-tzRax-oxRaxryRaxrz  Tay-ty Tay-tzRay-xRayryRay-rz ~ Tazty Taz-tzRazrxRazryRaz-rz
5 PMs Tpx-txRpxrx Tpy-txRpy-rxRpy-rz Tpz-tx

AMs TaxtyTax-tzRax-rxRaxryRaxrz  Tay-ty Tay-tzRay-rxRayryRay-rz ~ TaztyTaztzRaz-rxRazryRazrz
6 PMs Tpx-txRpxrx Tpy-xRpy-rx Tpz-oxRpzrx

AMs TaxtyTax-tzRax-xRaxryRaxrz ~ Tay-tyTay-tzRay-xRayryRay-rz ~ TaztyTaztzRaz-rxRazryRaz-rz
7 PMs Tpx-txRpxrxRpx-rz Tpy-x Tpz-txRpzry

AMs TaxtyTax-tzRax-oxRaxryRaxrz  Tay-ty Tay-tzRay-xRayryRay-rz ~ Tazty Taz-tzRazrRazryRazrz
8 PMs Tpx-txRpxrx Tpy-xRpy-rz Tpz-txRpzry

AMs TaxctyTax-tzRax-xRaxaryRaxaz ~ Tay-ty Tay-tzRay-nxRayayRayrz  TaztyTaztzRazrxRazryRazrz
9 PMs Tpx-txRpxrx Tpy-tx Tpz-xRpzrxRpzery
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Constraints of the compliant modules in the three legs

.Con}b- Module in the local coordinate systems
ination
X Y Z

AMs Tax-ty Tax-tzRax-rxRaxayRaxrz ~ Tay-tyTay-tzRayrxRay-ryRayrz  TaztyTaz-tzRaz-rxRazryRazrz
10 PMs Tpx-tRpxryRpx-rz Tpy-txRpyry Tpz-tx

AMs TaxtyTax-tzRax-rxRaxryRaxrz ~ Tay-tyTay-tzRaynxRay-ryRayrz ~ TaztyTaztzRaz-rxRazryRazrz
1 PMs Tpx-sRpxry Tpy-txRpy-ryRpy-rz Tpz-tx

AMs Tax-tyTax-tszax-ryM Tay-tyTay-tz&mRay-ryRay-rz Taz-tyTaz-tzRaz-eraz-ryRaz—rz
1 PMs Tpx-tRpxry Tpy-tRpy-ry Tpz-tRpzrx

AMs TaxtyTax-tzRax-rxRax-ryRaxrz ~ Tay-tyTay-tzRaynxRay-ryRay-rz =~ Taz-tyTaz-tzRaz-rxRazryRazrz
13 PMs Tpx-tcRpxrz Tpy-txRpy-nxRpy-ry Tpz-tx

AMs Tty TxtzRenRryRcrz Tay-tyTay-tzRay-rxRayryRayrz ~ TaztyTaztzRazrxRazryRaz-rz
14 PMs Tpx-tx Tpy-xRpy-rxRpy-ryRpy-rz Tpz-tx

AMs TaxtyTax-tzRax-rxRaxryRaxrz ~ Tay-tyTay-tzRayrxRay-ryRayrz  TaztyTaz-tzRaz-rxRazryRazrz
15 PMs Tpx-tx Tpy-txRpy-nxRpy-ry Tpz-tRpzrx

AMs Taxty Tax-tzRax-rxRax-ryRaxrz ~ Tay-tyTay-tzRayrxRay-ryRay-rz ~ Taz-tyTaz-tzRaz-rxRazryRazrz
16 PMs Tpx-tcRpxrz Tpy-xRpyry Tpz-tRpzry

AMs TaxtyTax-tzRaxnRaxryRaxrz ~ Tay-tyTay-tzRay-rxRayryRay-rz ~ TaztyTaztzRazrxRazryRazrz
17 PMs Tpx-tx Tpy-txRpy-ryRpy-rz Tpz-Rpzry

AMs TaxtyTax-tzRax-rxRaxavRaxarz  Tay-tyTay-tzRaynRay-ryRayrz ~ TaztyTaz-tzRaz-rxRazryRazrz
18 PMs Tpx-tx Tpy-txRpyry Tpz-tRpzoRpzry

AMs Taxty Tax-tzRax-rxRax-ryRaxrz ~ Tay-tyTay-tzRaynxRay-ryRay-rz ~ TaztyTaz-tzRaz-rxRazryRazrz
19 PMs Tpx-RpxeryRpx-rz Tpy-tx Tpz-tRpzrz

AMs TaxtyTax-tzRaxnxRaxryRaxrz  Tay-ty Tay-tzRay-rxRayryRay-rz  TaztyTaz-tzRazrxRazryRazrz
20 PMs Tpx-sRpxry Tpy-Rpy-rz Tpz-oRpzrz

AMs Tax-ty Tax-tzRaxrxRax-ryRaxrz ~ Tay-tyTay-tzRay-nRay-ryRay-rz ~ Taz-tyTaz-tzRazrRaz-ryRaz-rz
” PMs Tpx-tRpxry Tpy-tx TpzRpznxRpzrz

AMs Taxty Tax-tzRax-rxRax-ryRaxrz ~ Tay-tyTay-tzRayrxRay-ryRayrz ~ TaztyTaz-tzRaz-rxRazryRazrz
2 PMs Tpx-tcRpxrz Tpy-txRpy-rx Tpz-Rpzrz

AMs TaxtyTax-tzRaxnRaxryRaxrz ~ Tay-tyTay-tzRay-rxRayryRay-rz ~ TaztyTaz-tzRazrxRazryRazrz
23 PMs Tpx-tx Tpy-txRpy-rxRpy-rz Tpz-oRpzrz

AMs TaxtyTax-tzRax-rxRaxryRaxrz ~ Tay-tyTay-tzRayrxRay-ryRayrz ~ TaztyTaz-tzRaz-rxRazryRazrz
o4 PMs Tpx-tx Tpy-oRpy-rx Tpz-tRpznxRpzrz

AMs Taxty Tax-tzRax-rxRaxryRaxrz ~ Tay-tyTay-tzRayrxRay-ryRay-rz ~ Taz-tyTaz-tzRaz-rxRazryRaz-rz
o5 PMs Tpx-tRpxrz Tpy-tx Tpz-RpzryRpzrz

AMs TaxtyTax-tzRaxnRaxryRaxrz ~ Tay-tyTay-tzRay-rxRayryRayrz  TaztyTaztzRazrxRazryRaz-rz
2% PMs Tpx-tx Tpy-Rpy-rz Tpz-6RpzryRpzrz

AMs TaxtyTax-tzRax-rxRaxryRaxrz  Tay-tyTay-tzRaynRay-ryRayrz ~ TaztyTaz-tzRaz-rxRazryRazrz
57 PMs Tpx-tx pr-tx sz-thpz-rXsz-rprz-rz

AMs Taxty Tax-tzRax-rxRax-ryRaxrz ~ Tay-tyTay-tzRayrxRay-ryRayrz ~ TaztyTaz-tzRaz-rxRazryRazrz
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APPENDIX C: NON-MONOLITHIC DECOUPLED XYZ
CPMs

Based on the position space concept, each of the PMs in the XYZ CPM, as
shown in Figure 2.17(a), can rotate as a whole about the X-axis of the PM local
coordinate system. Figure C. 1(a) shows an XYZ CPM obtained by rotating the
PMs of the XYZ CPM each by 45 degree about the X-axes of the PM local
coordinate system. The decoupled translational motions of the XYZ CPM are
derived using the FEA method, as demonstrated in Figure C. 1(b) - Figure C.
1(d). Another XYZ CPM illustrated in Figure C. 2 can be designed by rotating
the PM-X of the XYZ CPM shown in Figure 2.17(a) at 90 degrees about the X-

axis of the PM local coordinate system.

' (b)

(9

Figure C. 1 An XYZ CPM with PMs of the XYZ CPM shown in Fig. 17(a) rotated by 45
degrees about the X-axes of the PM local coordinate systems: (a) XYZ CPM without motion,

(b) X motion only, (c) Y motion only, and (d) Z motion only
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(©) (d)

Figure C. 2 An XYZ CPM with PM-X of the XYZ CPM shown in Fig. 17(a) rotated by 90
degrees about the X-axis of the PM local coordinate system: (a) XYZ CPM without

translations, (b) X translation only, (c) Y translation only, and (d) Z translation only
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APPENDIX D: COUPLED XYZ CPM

The CPI approach does not focus on designing coupled XYZ CPMs, but a
number of coupled XYZ CPMs can be obtained through making appropriate
modifications to the decoupled XYZ CPMs synthesized using the CPI approach.
The modification is usually based on the position space concept, with one

typical example demonstrated below.

Figure D. 1(a) shows a decoupled XYZ CPM, which is also illustrated in Figure
2.17(a). If the decoupled XYZ CPM is decomposed into one motion stage (MS)
and three legs, each of the legs has three translational DOF along the X-, Y- and
Z-axes of the coordinate system O-XYZ. Therefore, each of the legs can
constrain the three rotational DOF of the MS. Based on the method of
identifying the position space of a compliant module, as studied in Section 2.3
of Chapter 2, each of the legs can freely rotate and translate along and about the
X-, Y- and Z-axes without affecting the MS’s three-axis translations. However,
in order to make the MS controllable by the three actuation forces to have a
spatial motion, the directions of any two of the three actuation forces cannot be
parallel or collinear. This is as a result of the fact that when any two actuation

forces are parallel or collinear, there is at least one leg to be redundant.

Consequently, the coupled XYZ CPM shown in Figure D. 1(b) is obtained by
rotating the three legs about the specific axes, through the following steps: the
Leg-X rotates about the Z-axis by —45 degrees and then rotates about the Y-axis
by —45 degrees; the Leg-Y rotates about the X-axis by 45 degrees and then
rotates about the Y-axis by 45 degrees; and the Leg-Z rotates about the Y-axis by
—45 degrees and then rotates about the X-axis by —45 degrees. These rotations
result in coupled actuation forces for the MS’s motion. When only one of the
three forces is applied, the MS will translate along the X-, Y- and Z-axes at the
same time, as represented in Figure D. 1(c) - Figure D. 1(e). When actuation

forces along the Y- and Z-axes are applied, the motions of the MS can be seen in
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Figure D. 1(f). In other words, if only one of the three motions along the X-, Y-

and Z-axes is needed, the three forces should be exerted simultaneously.

Figure D. 1 A coupled XYZ CPM designed via some appropriate modification on the
decoupled XYZ CPM, as shown in Figure 2.17(a): (a) the decoupled XYZ CPM also shown in
Figure 2.17(a), (b) the coupled XYZ CPM, (c) X-axis actuation force applied only, (d) Y-axis
actuation force applied only, (e) Z-axis actuation force applied only, and (f) actuation forces

along the X- and Y-axes both applied
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APPENDIX E: TRANSFORMATION MATRICES

1 0 000
0 1 0 0 00
0 0 1 0 00
pax-pmx = O gm_tz _ Sm_ty 1 0 0 (E].)
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where w is the edge length of the rigid stages, while { ., , ., and { , are

used to represent the translations of the MS along the Xms-, Yms- and Zms-axes,
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respectively. Additionally, £

ot €asy_tx and &, represent the X-axis
translational displacements of AS-X, AS-Y and AS-Z in their own local
coordinate systems, respectively. The translations of the MS and the X-axis
translations of the AS-X, AS-Y and AS-Z are the primary translations of the XYZ
CPM. The other translations and rotations of the MS, AS-X, AS-Y and AS-Z are
the parasitic motions of the XYZ CPM. The parasitic motions are much smaller

than the primary translations, so the parasitic motions are not taken into

account in the transformation matrices. If the { ., {ooyr Snerr Sannr Sasynn

and §_ , ,in the transformation matrices can be neglected, the transformation

matrices above can be simplified to linear transformation matrices of the XYZ

CPM corresponding to the un-deformed configuration of the XYZ CPM.
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APPENDIX F: CONSTRAINT FORCE EQUILIBRIUM
EQUATIONS
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APPENDIX G: FABRICATION OF A SYMMETRIC XYZ CPM

The designed symmetric XYZ CPM, as shown in Figure 5.1(h), can provide
translations along the Xms, Yms- and Zms-axes, with desired motion
characteristics. However, the MS of the symmetric XYZ CPM is located at the
centre of the whole structure, and the symmetric XYZ CPM cannot be fabricated
monolithically. Therefore, a practical design of the symmetric XYZ CPM is
desired, which can be fabricated by a traditional subtractive manufacturing

method using a computer numeric control (CNC) milling machine.

Because the XYZ CPM cannot be fabricated monolithically, assembling
accessories (components) are presented, as shown in Figure G.1. The accessories,
with mounting holes, can be fabricated using a CNC milling machine. These
accessories are assembled together using screws, as shown in Figure G.2(a) —
Figure G.2(e). Figure G.2(f) — Figure G.2(i) show that three RLs (rigid linkages),
one output platform, one supporting seat and four legs are added to the module
shown in Figure G.2(e). The output platform is connected to the MS with a RL.
Therefore, the motion of the MS can be transmitted to the output platform, i.e.,
the output platform can translate in the three orthogonal directions under the
actuation of the three actuators. The rigid accessories and the compliant
accessories can be fabricated using different materials. Moreover, if one of the
accessories is broken, it is easy to replace it with a new one. In addition, the
actuation stiffness of the XYZ CPM can be increased by increasing the in-plane
thickness, tin, of the compliant AM beams (see Figure G.3). Note that the
accessories should be assembled together strongly using screws, in order to
avoid stiffness reduction. It can be seen from [76] that stiffness can reduce by

approximately 30% by bolted joints.

A prototype of the XYZ CPM, with three micrometres as displacement inputs, is

fabricated, based on the practical design shown in Figure G.2(i). The prototype
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is shown in Figure 5.6. All components of the prototype are made of
Aluminium 6061 (Young’s modulus is about 69000MPa and Poisson’s ratio is
about 0.33). The output displacements of the MS can be measured by digital

dial gauges with a resolution of 1Tum.

Figure G.1 Main assembling accessories: (a) rigid cube, (b) rigid washer, (¢) compliant PM

beam, and (d) compliant AM beam

Figure G.2 Assembling process demonstration of the practical design
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Figure G.3 A symmetric XYZ CPM with larger a
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APPENDIX H: CONTROL SYSTEM FOR A SYMMETRIC XYZ
CPM

The XYZ CPM (shown in Figure 5.1(h)) can be used in nano-/micro-positioning
systems. Such a positioning system can be operated manually or automatically.
The positioning system, as shown in Figure 5.6, is a manually operated
positioning system (the translations are actuated by three micrometres and the
displacements are measured by digital dial gauges). In this Appendix, a semi-
closed-loop control system is introduced. This is used to control the XYZ CPM

prototype shown in Figure 5.6.

In order to control the output platform of the XYZ CPM prototype to translate
along the Xms-, Yms- and Zms-axes with a desired resolution, the following three
aspects should be emphasized: (a) actuator selection and assembling, (b)
displacement sensor selection and assembling, and (c) control strategy. These

three aspects are discussed in the following parts of this appendix.
(a) Actuator selection and assembling

According to Equation (3.61), the maximum motion range of the prototype
should be smaller than 1.667mm. If a safety factor of two is assigned, the
maximum motion range should be less than approximately 0.8mm. It can be
calculated, using Equations (5.14), (5.16) and (5.18), that the maximum actuation
force is approximately 17 N. Based on the maximum actuation force and motion
range, different types of linear actuators, such as voice coils, linear motors and
piezoelectric stacks, can be employed to actuate the XYZ CPM prototype. For
this example, a cylindrical housed linear voice coil actuator (type number
LAH16-23-000A-4E, shown in Figure H.1(a), made by BEI Kimco Company
located in Vista, California, USA) can be selected to actuate one of the three

translations of the XYZ CPM prototype. Such an actuator can offer a peak force
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of 89N and a continuous stall force of 17N, with +6.08mm motion range and
virtually unlimited resolution (the resolution is limited only by the associated
displacement sensors). However, three cylindrical frameless linear voice coil
actuators (shown in Figure H.1(b), type number: LA30-48-000A, motion range:
+12.7mm, peak force: 445N and continuous stall force: 185N) are actually

employed, due to the ready availability of these voice coil actuators.

(@) (b)

Figure H.1 Linear voice coil actuators: (a) cylindrical housed linear voice coil actuator, and (b)

cylindrical frameless linear voice coil actuator

Output platform Digital dial gauge

oice coil actuato Optical linear encoder assembl

Figure H.2 Demonstration of the assembly of the XYZ CPM prototype, voice coil actuator,

prismatic joint, optical linear encoder, micrometre input, and digital dial gauges
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It can be seen from Figure H.1(a) that the translation of the output shaft of a
cylindrical housed linear voice coil actuator is guided by the actuator, so the
output shaft can be connected to an AS of the XYZ CPM prototype directly.
However, the translation of the coil assembly of a cylindrical frameless linear
voice coil actuator is not guided by the actuator, and the translation cannot be
guided by an AS of the XYZ CPM prototype, because the coil assembly is heavy
(0.744kg). Therefore, a prismatic joint is designed to guide the translation of the
coil assembly of a cylindrical frameless linear voice coil actuator. In this

example, a compliant prismatic joint is designed, as shown in Figure H.2.
(b) Displacement sensor selection and assembling

In order to control the output platform of the XYZ CPM prototype at a specific
position, the translational displacements of the output platform along the Xms-,
Yms- and Zms-axes should be measured. The measurement can be achieved by a

three-axis displacement sensor or three single-axis displacement sensors.

Three-axis displacement sensors (such as multi-axis laser interferometers) have
complex structures. If using such a three-axis displacement sensor to measure
the three translations of the XYZ CPM prototype, the XYZ CPM prototype
control system will be bulky. If using three single-axis displacement sensors to
measure the three translations, each of the three single-axis displacement
sensors should be capable of tolerating the displacements of the other two

translations.

In this example, the translational displacements of the three ASs of the XYZ
CPM prototype are measured instead of the output platform of the XYZ CPM
prototype, because the lost motions between the ASs and the output platform
are less than 0.63% within a 0.8mm motion range, as studied in Section 5.2.2.
Each of the ASs translates only along one specific direction, so the displacement
sensor that is used to measure the displacement of the AS does not need to

tolerate relative large transverse displacements along the other directions.
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Therefore, an accurate optical linear encoder (as shown in Figure H.3) can be
used to measure the translational displacement of one of the ASs. Such an
optical linear encoder is comprised of a scale and a read head. The read head is
used to read the encoded position from the scale. In this example, three optical
linear encoders with a 5-nm resolution are used. Each of the optical linear
encoders is modelled based on a SIGNUM™ (Renishaw Public Limited
Company, Gloucestershire, UK) RSLM/RELM high accuracy linear encoder
system (the type number of the read head is A-9572-1514, and the type number
of the scale is A-9660-0130). The assembly of one of the optical linear encoders

can be seen in Figure H.2.

Figure H.3 Optical linear encoder

(c) Control strategy

As stated in Chapter 5, the cross-axis coupling of the XYZ CPM prototype is
tiny compared with the primary translations. Therefore, the three translations
of the XYZ CPM prototype can be controlled separately. A control strategy is
proposed in this appendix, which can be seen from the diagram flow chart
shown in Figure H.4. It can also be seen from the diagram flow chart that the
three translations of the XYZ CPM prototype are controlled separately, based
on the same principle, so that only the control strategy relating to the X-axis
translation is detailed. The procedure of the control strategy of the X-axis

translation is shown in the steps below.
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ii.

iii.

iv.

Vi.

Vii.
Viii.

iX.

Input the required translational displacements of the XYZ CPM along the
Xms-, Yms- and Zms-axes.

Calculate the lost motion along the Xms-axis based on the required
translational displacements, using Equation (5.13).

Obtain the total Xms-axis input, which equals the sum of the required
displacement and lost motion along the Xms-axis. The total Xms-axis input
is the position reference to be used by a dSPACE-based PID controller.
Read the displacement of the Xms-axis prismatic joint from the
displacement sensor, and input the displacement to the dSPACE-based
PID controller to act as the feedback position signal.

Calculate the output value of the dSPACE-based PID controller, based on
both the total Xms-axis input and the sensor reading.

Amplify the output value of the dSPACE-based PID controller using the
Xms-axis driver.

Use the amplified output of the driver to power the Xms-axis actuator.
Actuate the Xms-axis prismatic joint and the AS-X, using the actuator.
Repeat Steps (iv) — (viii), until the sensor reading matches the total Xms-

axis input.

Based on the statements above, a part of the described control system is set up

as shown in Figure H.5, which is employed to control the Xms-axis translation of

the XYZ CPM prototype. Note that the Yms- and Zms-axes translations of the XYZ

CPM prototype can be controlled by the micrometres and digital dial gauges.

Experimental tests are conducted on the XYZ CPM prototype system, and the

results are shown in Figure H.6 — Figure H.8. It can be seen from the figures that

the maximum error is less than 1%, over a 0.8mm motion range.

This semi-closed-loop control system cannot achieve a very high precision. If a

nano-precision positioning system is desired, a closed-loop control system

should be designed, with consideration of environment conditions such as
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temperature and signal noise.
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Figure H.4 Control principle of the X-axis displacement
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Figure H.6 Experimental results when the translational displacements along the Yms- and Zms-

axes are both zero: (a) X-axis displacements, and (b) X-axis displacement errors
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Figure H.7 Experimental results when the translational displacements along the Yms- and Zms-

axes are 0.800mm and zero, respectively: (a) X-axis displacements, and (b) X-axis

displacement errors
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Figure H.8 Experimental results when the translational displacements along the Yms- and Zms-

axes are both 0.800mm: (a) X-axis displacements, and (b) X-axis displacement errors
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