<table>
<thead>
<tr>
<th>Title</th>
<th>Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Campion, Alicia M.; Morrissey, Ruth M.; Field, Des; Cotter, Paul D.; Hill, Colin; Ross, R. Paul</td>
</tr>
<tr>
<td>Publication date</td>
<td>2017-02-07</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1016/j.fm.2017.01.020</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/</td>
</tr>
<tr>
<td>Embargo information</td>
<td>Access to this article is restricted until 12 months after publication at the request of the publisher.</td>
</tr>
<tr>
<td>Embargo lift date</td>
<td>2018-02-07</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/3980</td>
</tr>
</tbody>
</table>

Downloaded on 2018-12-05T14:16:23Z
Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7

Alicia Campion, Ruth Morrissey, Des Field, Paul D. Cotter, Colin Hill, R. Paul Ross

PII: S0740-0020(16)30065-X
DOI: 10.1016/j.fm.2017.01.020
Reference: YFMIC 2729

To appear in: Food Microbiology

Please cite this article as: Alicia Campion, Ruth Morrissey, Des Field, Paul D. Cotter, Colin Hill, R. Paul Ross, Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7, Food Microbiology (2017), doi: 10.1016/j.fm.2017.01.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Highlights

- Bioengineered nisin variants and essential oils were tested for inactivation of *C. sakazakii* and *E. coli* O157:H7.
- Nisin variant and essential oil combinations caused extended lag phases of growth compared to nisin A-essential oil combinations.
- Nisin variant-carvacrol combinations significantly reduced *C. sakazakii* and *E. coli* O157:H7 compared to nisin A-carvacrol treatment.
- Nisin variant-carvacrol combinations caused complete inactivation of *E. coli* O157:H7 in apple juice compared to nisin A-carvacrol treatment.
- Commercial Nisaplin and citric acid combinations also resulted in complete inactivation of *C. sakazakii* in infant formula.
Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control *Cronobacter sakazakii* and *Escherichia coli* O157:H7

Alicia Campion a, Ruth Morrissey a,b, Des Field a, Paul D. Cotter b,c, *, Colin Hill a,b, * and R. Paul Ross b,d

a School of Microbiology, University College Cork, Cork, Ireland
b APC Microbiome Institute, University College Cork, Cork, Ireland
c Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
d College of Science, Engineering and Food Science, University College Cork, Cork, Ireland

*Corresponding authors. Tel: +353 25 42694/ +353 21 490 1373

E-mail addresses: paul.cotter@teagasc.ie (P. D. Cotter); c.hill@ucc.ie (C. Hill).
Abstract

Cronobacter sakazakii and *Escherichia coli* O157:H7 are well known food-borne pathogens that can cause severe disease. The identification of new alternatives to heating to control these pathogens in foods, while reducing the impact on organoleptic properties and nutritional value, is highly desirable. In this study, nisin and its bioengineered variants, nisin V and nisin S29A, are used alone, or in combination with plant essential oils (thymol, carvacrol and trans-cinnamaldehyde) or citric acid, with a view to controlling *C. sakazakii* and *E. coli* O157:H7 in laboratory-based assays and model food systems. The use of nisin variants (30 µM) with low concentrations of thymol (0.015%), carvacrol (0.03%) and trans-cinnamaldehyde (0.035%) resulted in extended lag phases of growth compared to those for corresponding nisin A-essential oil combinations. Furthermore, nisin variants (60 µM) used in combination with carvacrol (0.03%) significantly reduced viable counts of *E. coli* O157:H7 (3-log) and *C. sakazakii* (4-log) compared to nisin A-carvacrol treatment. Importantly, this increased effectiveness translated into food. More specifically, sub-inhibitory concentrations of nisin variants and carvacrol caused complete inactivation of *E. coli* O157:H7 in apple juice within 3 hours at room temperature compared to that of the equivalent nisin A combination. Furthermore, combinations of commercial Nisaplin and the food additive citric acid reduced *C. sakazakii* numbers markedly in infant formula within the same 3 h period. These results highlight the potential benefits of combining nisin and variants thereof with carvacrol and/or citric acid for the inhibition of Gram negative food-borne pathogens.
Keywords

C. sakazakii, E. coli O157:H7, Nisin, Essential oils, Apple juice, Infant formula milk

1. Introduction

Cronobacter sakazakii and *Escherichia coli* O157:H7 are both significant Gram negative foodborne pathogens. They have garnered special notoriety because of their association with life-threatening diseases. Their presence in food poses a serious health risk for consumers and is a safety concern for the food industry. Enterohaemorrhagic *E. coli* O157:H7 can cause devastating and severe illness such as haemorrhagic colitis and haemolytic uremic syndrome. Approximately 10-15% of *E. coli* O157:H7 infections result in haemolytic uremic syndrome, causing acute renal failure in children and 3-5% of cases are fatal (Ho et al., 2013). There have been several outbreaks associated with the consumption of food contaminated with *E. coli* O157:H7 (Vidovic and Korber, 2014). Similarly, *C. sakazakii* can cause a range of serious neonatal infections such as meningitis, septicemia and enteritis (Drudy et al., 2006; Gurtler et al., 2005). Several disease outbreaks have been associated with the contamination of powdered infant formula milk (CDC, 2002; Iversen and Forsythe, 2004). *C. sakazakii* has a high mortality rate of 40-80%, and death can occur within hours (Bowen and Braden, 2006; Norberg et al., 2012). Infection may also result in severe sequelae such as hydrocephalus, quadriplegia and retarded neural development among survivors (Forsythe, 2005).
Heat treatments and chemical preservatives are commonly used as hurdles to control foodborne pathogens and spoilage bacteria. However, these processes may have undesirable effects, such as altering the nutritional and sensory properties of the food. Furthermore, there has been an increasing consumer demand for additive-free, minimally processed foods, while still maintaining adequate microbiological safety and stability. Therefore, the use of natural antimicrobials as food preservatives has been the focus of ever-increasing attention. Among these natural alternatives are bacteriocins. Bacteriocins are ribosomally synthesised, post-translationally modified peptides that are produced by bacteria and which are active against other bacteria. They can have a narrow range of activity within their own species or a broad spectrum of activity across genera (Cotter et al., 2005). Although there are numerous bacteriocins with food preservation potential, only nisin, produced by *Lactococcus lactis*, is used extensively. Nisin A has been assigned to the lantibiotic class of bacteriocins due to the presence of unusual amino acids that arise due to the post-translational modification of serine and threonine residues ultimately leading to the formation of lanthionine and β-methyllethalionine ring structures, respectively (Bierbaum and Sahl, 2009; Sahl et al., 1995). Nisin A is used in over 50 countries worldwide and has been approved for use by both the EU (E234) and the Food and Drug Administration (FDA) (Delves-Broughton, 1990). Nisin A functions through a unique dual mode of action. It binds to lipid II, an essential precursor to cell wall biosynthesis, while also inserting itself into the bacterial cell membrane. This facilitates pore formation and ultimately leads to the loss of solutes from the bacterial cell resulting in cell death (Wiedemann et al., 2004; Wiedemann et al., 2001).
The gene-encoded nature of nisin A allows for its manipulation in order to modify its biological and physical properties. Indeed, recent research has shown that bioengineering of nisin A can result in variants with greater potency towards food-borne pathogens (Field et al., 2015b). One particular variant, M21V (nisin V), has shown enhanced activity towards several Gram positive pathogens, including *Listeria monocytogenes*, compared to that of nisin A (Field et al., 2010). Although nisin A is effective against Gram positive bacteria such as *Staphylococci*, *Bacilli* and *Clostridia* (Bierbaum and Sahl, 2009; Sobrino-López and Martín-Belloso, 2008), Gram negative bacteria are generally not as sensitive. However, novel variants, such as nisin S29A and S29G, with enhanced activity towards Gram negative food-associated pathogens exist (Field et al., 2012). Nisin A may also be effective against Gram negatives if their outer membrane is destabilized with chelating agents (Stevens et al., 1991). Membrane disruption/permeabilisation is also thought to be the basis for the observation that nisin, when combined with the phenolic compounds carvacrol and thymol which possess membrane permeability properties, exhibit enhanced activity against Gram negative bacteria by permitting nisin to pass through the protective outer membrane (Helander et al., 1998). In fact, there are several studies demonstrating that nisin and essential oil combinations exhibit enhanced inhibitory effects against both Gram positive and Gram negative bacteria (Ettayebi et al., 2000; Olasupo et al., 2003; Olasupo et al., 2004; Periago and Moezelaar, 2001; Pol and Smid, 1999; Yuste and Fung, 2004). More recently, nisin-containing semi-purified preparations in combination with carvacrol and trans-cinnamaldehyde were established to more effectively inhibit *L. monocytogenes* than either treatment alone (Field et al., 2015a).
The aim of this study was to evaluate the antimicrobial activity of nisin A, or the bioengineered nisin derivatives nisin V and S29A, when combined with the essential oils, thymol, carvacrol or trans-cinnamaldehyde, or citric acid against the Gram negative pathogens *C. sakazakii* NCTC 8155::p16Slux-Plux or *E. coli* O157:H7 TUV 93-0::p16Slux-Plux.

2. Materials and Methods

2.1 Bacterial strains and growth conditions

The nisin producing strains and *lux*-tagged bacterial strains used in this study are listed in Table 1. *L. lactis* strains were grown in M17 broth (Oxoid) supplemented with 0.5% glucose (GM17) or GM17 agar at 30°C. *E. coli* and *C. sakazakii* cultures were grown in Luria-Bertani (LB) broth or agar at 37°C. When required, antibiotics were used where indicated at the following concentrations: chloramphenicol at 10 μg ml⁻¹ for *L. lactis* and erythromycin at 500 μg ml⁻¹ for *E. coli* and *C. sakazakii*. Stock solutions of thymol (Sigma) were prepared at 50 mg ml⁻¹ in 50% ethanol and stored
Carvacrol and trans-cinnamaldehyde (Sigma) were diluted from stock (0.976 g ml\(^{-1}\) and 1.05 g ml\(^{-1}\), respectively) in 50% ethanol to the desired concentration. Stock solutions of Nisaplin (Sigma) and citric acid (Sigma) were prepared at 100 mg ml\(^{-1}\) and 500 mM in sd\(\text{H}_2\text{O}\), respectively, filter sterilised and diluted to the desired concentration. In all experiments, the concentration of ethanol did not exceed 2% (vol/vol).

2.2 Nisin purification

Purification of wild type nisin A and nisin derivatives were carried out as described previously (Field et al., 2010). Briefly, overnight cultures of nisin producing strains were grown in GM17 broth at 30°C and were subsequently inoculated into two litres of purified TY broth at 1% and incubated overnight at 30°C. The culture was centrifuged at 7,000 r.p.m. for 20 minutes and the supernatant retained. The cell pellet was resuspended in 300 ml of 70% isopropanol 0.1% TFA and magnetically stirred for 3 h at room temperature. Cell debris was removed by centrifugation at 7,000 r.p.m. for 20 minutes and the supernatant retained. The supernatant was applied to a 60 g Amberlite bead (Sigma) column, which was subsequently washed with 500 ml of 30% ethanol and the inhibitory activity eluted in 500 ml of 70% isopropanol 0.1% trifluoroacetic acid (TFA). The isopropanol was evaporated off using a rotary evaporator (Buchi) to a volume of 160 ml and the sample pH adjusted to approximately 4.2. The sample was applied to a 10g (60ml) Varian C-18 Bond Elut Column previously pre-equilibrated with HPLC water and methanol. The column was washed with 120 ml of 30% ethanol and the inhibitory activity eluted in 60 ml of 70%
isopropanol 0.1% TFA. Six millilitres of the lantibiotic preparation was concentrated
to 1 ml through the removal of the isopropanol by rotary evaporation and applied to
a Phenomenex C12 reverse-phase (RP)-HPLC column, previously equilibrated with
25% isopropanol 0.1% TFA. The column was then developed in a gradient of 30%
isopropanol 0.1% TFA to 60% isopropanol 0.1% TFA from 10 to 45 minutes at a flow
rate of 2.1 ml min$^{-1}$. Fractions containing nisin A and nisin derivative peptides were
collected and subjected to Mass Spectrometry with a Shimadzu Biotech MALDI-TOF

2.3 Mass spectrometry

For colony mass spectrometry analysis, bacteria were collected with sterile
plastic loops and mixed with 50 ml of 70% isopropanol adjusted to pH2 with HCl. The
suspension was vortexed, centrifuged at 14,000 r.p.m. for 2 minutes and the
supernatant retained for analysis. Mass spectrometry in all cases was performed
with an Axima CFR plus matrix-assisted laser desorption/ionisation time-of-flight
(MALDI TOF) mass spectrometer (Shimadzu Biotech, Manchester, UK.) A 0.5 μl
aliquot of matrix solution (alpha-cyano-4-hydroxy cinnamic acid (CHCA), 10mg ml$^{-1}$ in
50% acetonitrile-0.1% (v/v) trifluoroacetic acid) was placed onto the target and left
for 1-2 minutes before being removed. The residual solution was then air dried and
the sample solution (re-suspended lyophilized powder or colony mass spectrometry
supernatant) was positioned onto the pre-coated sample spot. Matrix solution (0.5
ml) was added to the sample and allowed to air dry. The sample was subsequently
analysed in positive-ion reflectron mode.
2.4 Minimum inhibitory concentration (MIC) assays

The MIC of nisin peptides against Gram negative organisms were carried out in triplicate in microtitre plates as previously described (Field et al., 2010). Briefly, 96-well microtitre plates were pre-treated with phosphate buffered saline (PBS) containing 1% (w/v) bovine serum albumin (BSA) and subsequently incubated at 37°C for 30 minutes. Wells were washed with PBS and allowed to air-dry before the addition of 100 μl double-strength LB broth. Gram negative strains were grown overnight in LB broth at 37°C, subcultured into fresh LB broth and grown to mid-logarithmic phase (OD_{600nm} ~ 0.5). The cells were harvested by centrifugation, washed with 10 mM SPB at pH 7.4 and diluted to 1 × 10^5 cfu ml^-1 in 10 mM SPB pH 7.4. Nisin and nisin derivative purified peptides were resuspended in double-strength LB broth to a stock concentration of 60 μM. Peptides were then adjusted to a starting concentration of 15 μM and 2-fold dilutions of the nisin peptides were carried out in the 96-well plates. Target organisms were added and plates were incubated at room temperature overnight (~16 h). The MIC was taken as the lowest concentration of peptide at which growth was inhibited. The MIC of essential oils against Gram negative strains were carried out as above but with minor variations; BSA treatment of 96-well plates were not required and essential oils were diluted to a starting concentration of 2 mg ml^-1 for serial dilution of thymol, carvacrol and trans-cinnamaldehyde.
2.5 Growth/Kill assays

Growth and kill assays were carried out using representative strains as a consequence of the limited amount of pure material available. For growth assays, overnight cultures of target strains were harvested by centrifugation, washed in 10 mM SPB pH 7.4 and transferred (1 × 10^7 cfu ml\(^{-1}\) in a 1.0 ml volume) into LB broth containing nisin purified peptide alone and in combination with one of the essential oils being investigated. A volume of 200 μl was transferred to a 96-well plate (Genetix) and cell growth was measured spectrophotometrically using a Spectra Max 340 spectrophotometer (Molecular Devices, Sunnyvale, California) for 24 h. For kill assays, overnight cultures of target strains were again harvested by centrifugation, washed in 10 mM SPB pH 7.4 and transferred (1 × 10^7 cfu ml\(^{-1}\) in a 0.5 ml volume) into LB broth containing nisin purified peptide alone and in combination with one of the essential oils. Samples were incubated for 3 h at room temperature before serial dilution and enumeration on LB agar plates. All experiments were carried out in triplicate.

2.6 Infant milk formula trial

Commercially available powdered infant formula (PIF) (Aptamil™ First Milk) was prepared according to manufacturer’s instructions and brought to room temperature. The pH of the reconstituted PIF was 6.8 as determined with a pH meter. An overnight culture of \textit{C. sakazakii} NCTC 8155::p16\textit{Slux-P}\textit{help} was washed in 10 mM SPB pH 7.4, diluted and inoculated into reconstituted PIF at a final
concentration of 1×10^5 cfu ml$^{-1}$. PIF samples were treated with 201.12 μg ml$^{-1}$ (60 μM) of nisin A, nisin V or nisin S29A, alone and in combination with carvacrol at a concentration of 300 μg ml$^{-1}$. Samples with carvacrol alone, *C. sakazakii* NCTC 8155::p16lux-P$^\text{help}$ alone and PIF alone served as controls. Samples were incubated at room temperature and *C. sakazakii* NCTC 8155::p16lux-P$^\text{help}$ levels were determined through serial dilution and plate count technique on Druggan-Forsythe-Iversen (DFI) agar at 3 h. Where Nisaplin (Sigma), and citric acid (Sigma) were employed, concentrations of 10 mg ml$^{-1}$ and 30 mM were used, respectively. Nisaplin (containing 2.5% nisin) was resuspended in sdH2O and filter sterilised before use. The addition of citric acid did not significantly alter the pH of PIF. All experiments were carried out in triplicate.

2.7 Apple juice trial

Commercially available apple juice was brought to room temperature, filtered and the pH determined as 3.2 with a pH meter. An overnight culture of *E. coli* O157:H7 TUV 93-0::p16lux-P$^\text{help}$ was washed in 10 mM SPB pH 7.4, diluted and inoculated into the apple juice at a final concentration of 1×10^5 cfu ml$^{-1}$. Apple juice samples were treated with 100.56 μg ml$^{-1}$ (30μM) of nisin A, nisin V or nisin S29A, alone and in combination with carvacrol at a concentration of 75 μg ml$^{-1}$. Samples with carvacrol alone, *E. coli* O157:H7 TUV 93-0::p16lux-P$^\text{help}$ alone and apple juice alone served as controls. Samples were incubated at room temperature and *E. coli* O157:H7 TUV 93-0::p16lux-P$^\text{help}$ levels were determined through serial dilution and
plate count technique on Sorbitol MacConkey agar at 3 h. All experiments were carried out in triplicate.

2.8 Statistical analysis

CFU data was transformed to log_{10} prior to analysis using the statistical software package GraphPad Prism 6. All comparisons were based on the mean ± standard deviation. Statistical significance was determined via GraphPad prism t-test. In all cases, a P value less than 0.05 were considered to be statistically significant.

Parametric data was analysed using one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test. Non-parametric data was analysed using the Kruskal-Wallis one way ANOVA followed by Dunn’s multiple comparisons test. Asterisks rating of *, **, *** or **** indicates statistically significant differences between groups (P≤0.05, P≤0.01, P≤0.001, P≤0.0001, respectively).

3. Results

3.1 Minimum inhibitory concentration assays

Nisin V and nisin S29A are previously generated nisin derivatives that exhibit enhanced activity against a number of targets arising from single amino acid alterations (Fig. 1) (Field et al., 2012). These peptides and nisin A were purified and, following purification and freeze-drying, mass spectrometry analysis was performed.
Peptide masses of 3,321 Da, 3,336 Da and 3,353 Da were obtained for nisin peptides V, S29A and nisin A as expected (data not shown). To more accurately quantify the specific activity of the peptides, broth-based MIC determination assays were carried out using purified peptides against the chosen Gram negative targets (Table 2). Nisin S29A exhibited two-fold greater specific activity than nisin A against *E. coli* O157:H7 TUV 93-0::p16Slux-P_help (3.75 μM and 7.5 μM, respectively) and *C. sakazakii* NCTC 8155::p16Slux-P_help (1.87 μM and 3.75 μM, respectively). In the case of nisin V, enhanced specific activity compared to nisin A was observed for *E. coli* O157:H7 TUV 93-0::p16Slux-P_help (3.75 μM and 7.5 μM, respectively) but activity was equal to that of nisin A when examined against *C. sakazakii* NCTC 8155::p16Slux-P_help. These results demonstrate for the first time the enhanced activity of nisin V against a Gram-negative strain (*E. coli* O157:H7 TUV 93-0::p16Slux-P_help) in a broth-based MIC assay. The enhanced efficacy of S29A compared to nisin A against some Gram negative strains has previously been reported (Field et al., 2012).

The susceptibility of the Gram-negative strains to the essential oils thymol, carvacrol and trans-cinnamaldehyde was also assessed in order to ascertain appropriate concentrations for combinatorial assays (Table 2). The essential oils were found to be inhibitory at a concentration of 250 μg ml⁻¹ against *E. coli* O157:H7 TUV 93-0::p16Slux-P_help and *C. sakazakii* NCTC 8155::p16Slux-P_help, with the exception that thymol prevented the growth of *C. sakazakii* NCTC 8155::p16Slux-P_help at a concentration of 125 μg ml⁻¹. These values are consistent with those previously reported (Hyldgaard et al., 2012).

3.2 Growth and kill-curve assays
Having shown the increased specific activity of the nisin variants against *C. sakazakii* NCTC 8155::p16Lux-P_{help} and *E. coli* O157:H7 TUV 93-0::p16Lux-P_{help}, a more detailed investigation of the impact of the nisin peptides alone, and in combination with essential oils, on bacterial growth was examined. Due to relatively large inoculum (10⁷ cfu ml⁻¹) employed for growth curve analysis, the impact of concentrations of 30 µM and 15 µM nisin peptides against *C. sakazakii* NCTC 8155::p16Lux-P_{help} and *E. coli* O157:H7 TUV 93-0::p16Lux-P_{help}, respectively, was tested along with varying concentrations (75-200 µg ml⁻¹) of essential oils. When nisin V was used in combination with 100 µg ml⁻¹ thymol and 125 µg ml⁻¹ carvacrol or trans-cinnamaldehyde, a more profound delay in growth was observed compared to that of either treatment alone against *C. sakazakii* NCTC 8155::p16Lux-P_{help} (Figs. 2). Nisin S29A-essential oil combinations were also better than their nisin A-essential oil equivalents (Fig. 2). However, statistically significant differences in bacterial inhibition were recorded only when nisin variants (V and S29A) were used in combination with the essential oil carvacrol and trans-cinnamaldehyde (Figs. 2C; P-value = 0.0209, 2E; P-value = 0.0007 and 2F; P-value =0.0014), as compared to the nisin variant used alone. No significant difference in bacterial inhibition was observed for nisin variants in combination with thymol (Fig. 2A; P-value =0.0681 and 2B; P-value =0.5645). Growth curves with *E. coli* O157:H7 TUV 93-0::p16Lux-P_{help} show that combinations of nisin V and thymol (100 µg ml⁻¹) or carvacrol (200 µg ml⁻¹) result in a longer lag phase than when either treatment is used singly (Figs. 3A and 3C). A similar pattern was observed when nisin S29A was used in combination with thymol or carvacrol (Figs. 3B and 3D). Indeed, statistically significant differences in
bacterial inhibition were recorded when nisin variants (V and S29A) used in combination with the essential oils thymol and carvacrol (Figs. 3A; P-value =0.0022, 3B; P-value = 0.0176, 3C; P-value =0.0029 and 3D; P-value = 0.0001), as compared to the nisin variant used alone. No significant difference in lag time was observed for nisin variants in combination with 75 µg ml\(^{-1}\) trans-cinnamaldehyde (Fig. 3E; P-value =0.9675 and 3F; P-value =0.4427). Ultimately, the most significant delay in growth was observed when nisin V and carvacrol were combined against \textit{E. coli} O157:H7 TUV 93-0::p16S_lux_P_help (Fig. 3C). Overall, it was apparent that, in general, the use of nisin V or nisin S29A resulted in greater inhibitory effects on growth than was observed when nisin A alone was used, and this phenomenon was also apparent when the bacteriocins were used together with essential oils.

Following on from this, the bactericidal activities of nisin peptides and essential oils against the Gram negative pathogens were investigated through kill curve analysis. \textit{C. sakazakii} NCTC 8155::p16S_lux_P_help and \textit{E. coli} O157:H7 TUV 93-0::p16S_lux_P_help were treated respectively with 60 µM and 30 µM of each nisin peptide in combination with 150 µg ml\(^{-1}\) thymol, 300 µg ml\(^{-1}\) carvacrol or 350 µg ml\(^{-1}\) trans-cinnamaldehyde (Figs. 4 and 5). In general, an approximate 1-log reduction in pathogen cell numbers were observed when either nisin peptides or essential oils were used alone, with the exception that carvacrol and trans-cinnamaldehyde had no effect against \textit{C. sakazakii} NCTC 8155::p16S_lux_P_help (Figs. 4B and 4C, respectively) and the use of thymol alone against \textit{E. coli} O157:H7 TUV 93-0::p16S_lux_P_help resulted in an approximate 3.5-log reduction in cell numbers (Fig. 5A). The killing effect of nisin peptides was more marked by the addition of essential oils. The antimicrobial activity of nisin peptides was significantly enhanced when used in combination with
thymol (~2-log reduction), carvacrol (~4-log reduction) and trans-cinnamaldehyde (~1.5-log reduction) against *C. sakazakii NCTC 8155::p16Slux-P*_{help} (Fig. 4). A similar significant level of inactivation of *E. coli O157:H7 TUV 93-0::p16Slux-P*_{help} was achieved when thymol (~4.5-log reduction), carvacrol (~3-log reduction) and trans-cinnamaldehyde (~2-log reduction) were used in combination with nisin peptides (Fig. 5). It was also established that the use of bioengineered nisin derivatives in combination with essential oils was more effective than nisin A-essential oil combinations. A significantly greater reduction in *E. coli O157:H7 TUV 93-0::p16Slux-P*_{help} was observed when thymol was used in combination with nisin V or nisin S29A, rather than nisin A (P<0.05) (Fig. 5A). A similar observation was made when trans-cinnamaldehyde and *C. sakazakii NCTC 8155::p16Slux-P*_{help} were utilised, in that a considerable reduction in viable cell numbers was observed when the essential oil was used in conjunction with nisin V (Fig. 4C). Furthermore, an increased bactericidal activity was seen when combinations of nisin V and nisin S29A with carvacrol were used, resulting in a 2-log greater reduction in *C. sakazakii NCTC 8155::p16Slux-P*_{help} cell counts than was the case when a nisin A-carvacrol combination was used (Fig. 4B).

3.4 Model food trials

Having shown the enhanced potency of bioengineered nisin variants in combination with carvacrol against both Gram negative pathogens using kill curve assays, this essential oil was selected for further investigation in model food systems.

To this end, commercially available powdered infant formula milk and commercially
produced apple juice were chosen as they have been associated with disease outbreaks of *C. sakazakii* and *E. coli* O157:H7, respectively. For the powdered infant formula milk studies, nisin A, nisin V or nisin S29A (60 µM) were added alone or in combination with carvacrol (300 µg ml⁻¹) (Fig. 6A). The addition of carvacrol did not significantly alter the pH. The milk was subsequently spiked with *C. sakazakii* NCTC 8155::p16Slux-Pₜₜ at a concentration of 1 × 10⁵ cfu ml⁻¹ and incubated at room temperature for 3 h. Serial dilution and subsequent plate counts revealed that nisin and/or essential oil treatment had no effect on *C. sakazakii* NCTC 8155::p16Slux-Pₜₜ as cell numbers remained unaltered (Fig 6A). It was noted, however, that the addition of the food-grade antimicrobial, citric acid (30 mM) reduced viable cell numbers of *C. sakazakii* NCTC 8155::p16Slux-Pₜₜ (~0.5-log reduction) while combinations of nisin and citric acid resulted in a significant decrease of *C. sakazakii* NCTC 8155::p16Slux-Pₜₜ cell numbers (1-log reduction) compared to nisin usage alone (P<0.001) (Fig. 6B). Combinations of all three antimicrobials improved antibacterial activity relative to nisin and the essential oil carvacrol. While there was a numerical improvement in activity relative to that of citric acid, this was not significant (Fig. 6C). Additionally, nisin variant combinations did not display an enhanced potency compared to the equivalent nisin A combined treatment.

Given that the essential oil/nisin combinations did not significantly enhance the efficacy of citric acid against *C. sakazakii* NCTC 8155::p16Slux-Pₜₜ in infant formula, we investigated the possibility that another nisin-based, food grade formulation could prove to be effective. For this purpose Nisaplin, a commercial formulation containing nisin A was used together with citric acid. Notably, this
combination brought about a significant >3-log reduction in bacterial cell counts (Fig. 7). This effect was not further augmented through the addition of carvacrol.

The commercially produced apple juice was filtered and the pH measured. Nisin A, nisin V or nisin S29A (30 µM) was added to the juice alone or in combination with low level of carvacrol (75 µg ml\(^{-1}\)) before \(E. \ coli\) O157:H7 TUV 93-0::p16Slux-\(P\) help was introduced at a concentration of 1 × 10\(^5\) cfu ml\(^{-1}\). Following incubation for 3 h at room temperature, serial dilutions and plate counts on Sorbitol MacConkey agar were carried out to enumerate bacterial cell counts. When nisin A, nisin V, nisin S29A or carvacrol were used alone, an approximate 1-log reduction in \(E. \ coli\) O157:H7 TUV 93-0::p16Slux-\(P\) help cell numbers were obtained. The effectiveness of nisin A was significantly improved when used in conjunction with carvacrol, resulting in a 2.5-log reduction in cells counts compared to that of the initial inoculum. Notably, the combinations of nisin V and nisin S29A with carvacrol were even more effective in that a 3-log reduction in bacterial cell counts was attained over the 3 h period (Fig. 8). More importantly, these results demonstrate that the enhanced effectiveness of nisin variants observed using laboratory-based assays are retained and can be translated to food systems.

4. Discussion

It has previously been reported that the phenolic compounds carvacrol and thymol have the ability to degrade the outer membranes of the Gram negative bacteria, \(E. \ coli\) and \textit{Salmonella Typhimurium} (Helander et al., 1998). This phenomenon likely explains why exposure to these compounds increases the
sensitivity of *C. sakazakii* NCTC 8155::p16Slux-P_{help} and *E. coli* O157:H7 TUV 93-0::p16Slux-P_{help} to nisin. Our investigations also highlight the enhanced potency of nisin when combined with trans-cinnamaldehyde. In the latter case, the mechanism involved may be different as trans-cinnamaldehyde does not disintegrate the outer membrane like carvacrol and thymol, but is believed that at sub-inhibitory concentrations, inhibits the activity of trans-membrane ATPase (Gill and Holley, 2006a, b).

This study also demonstrates the frequently superior activity of bioengineered nisin variants over their wild type nisin A equivalent when used in combination with a variety of essential oils. In growth curve assays, nisin V-essential oil and nisin S29A-essential oil combinations, except when combined with trans-cinnamaldehyde against *E. coli* O157:H7 TUV 93-0::p16Slux-P_{help}, surpassed the activity of their nisin A counterparts as observed by the longer delay in growth. With respect to time-kill assays, nisin variant-combinations outperformed their corresponding nisin A-combinations by at least 1-log reduction in cell numbers against *C. sakazakii* NCTC 8155::p16Slux-P_{help} (carvacrol and trans-cinnamaldehyde) and *E. coli* O157:H7 TUV 93-0::p16Slux-P_{help} (thymol and carvacrol). This increased effectiveness did not translate into powdered infant formula milk (Fig. 6A). It is known that the greater availability of nutrients in foods compared to laboratory media may enable bacterial cells to repair damaged cells faster (Gill et al., 2002). As a consequence of this protective nature, a greater concentration (approximately two-fold) of essential oils are required to achieve the same effect in foods, such as semi-skimmed milk (Karatzas et al., 2001). Instead of increasing concentrations of carvacrol and potentially altering the sensory properties of the infant milk formula,
the preservative citric acid (30 mM) was incorporated. A significant reduction (1-log) in bacterial counts was observed when nisin and citric acid were used simultaneously compared to nisin alone (Fig. 6B). However, the combination of all three antimicrobial agents did not improve significantly on the activity of citric acid against *C. sakazakii* NCTC 8155::p16Slux-P_{help} (Fig. 6C). The substitution of nisin peptides for food-grade Nisaplin (10 mg ml⁻¹) proved most effective as >3-log reduction in *C. sakazakii* NCTC 8155::p16Slux-P_{help} cell counts was observed after treatment with Nisaplin and citric acid (Fig. 7). Nisaplin contains 2.5% active nisin and the remainder is made up of a balance of sodium chloride and denatured milk solids. The high percentage of salts present is likely to contribute to antimicrobial activity. The nisin-containing formulation was employed as it is commercially available and approved for use in over 50 countries worldwide. Should equivalent forms of nisin V/S29A be generated, there is the potential for these peptides to be used in the same way with the possibility of even greater antimicrobial efficacy.

Due to the demand for minimally processed foods, researchers have previously investigated the use of natural antimicrobials including nisin and cinnamon in apple juice (Yuste and Fung, 2004). In this study, we also investigated the merits of using nisin in combination with the essential oil carvacrol in apple juice. The combination of the bioengineered nisin variants with carvacrol accelerated bacterial death, resulting in a >3-log reduction in *E. coli* O157:H7 TUV 93-0::p16Slux-P_{help} cell counts after 3 h (Fig. 8). The low pH of the apple juice may partially contribute to this effect. It is also known that essential oils are most effective at acidic pHs (Burt, 2004) due to the increase in hydrophobicity and better diffusion into the lipid phase of the membrane (Juven et al., 1994). Moreover, nisin is more
stable at acidic pH and therefore more effective (Delves-Broughton, 1990). While, the manufacture of fruit juices should include effective treatments so as to result in a cumulative 5-log reduction in the numbers of \textit{E. coli} O157:H7 as specified by the Food and Drug Administration’s Guidance for Industry (FDA, 2001), the detection limit in this study was 10^2 cfu ml$^{-1}$ and thus the use of more sensitive detection methods may reveal that this cumulative reduction can be achieved.

The use of essential oils in foods has been limited due to the high concentrations required to achieve sufficient antimicrobial activity (Hyldgaard et al., 2012). Notably, however, this study shows that relatively low concentrations of carvacrol (approximately 0.0075%) could be used in combination with nisin to inhibit \textit{E. coli} O157:H7 TUV 93-0::p16S\textit{lux-P}$_\text{help}$ in apple juice. Before commercial application, sensory studies would have to be carried out to determine the organoleptic properties of apple juice with essential oils. Although, upon addition of such a low concentration of carvacrol in this study, no adverse aroma was observed. Recently, sensory evaluations were carried out to assess the consequence of adding 75 µl L$^{-1}$ (~63.75 µg ml$^{-1}$) of lemon essential oil to apple juice. Researchers found that this relatively small concentration of essential oil did not decrease the acceptability of the sample or the organoleptic properties (Espina et al., 2012). Moreover, all of the tested essential oils have GRAS status by both the EU and the FDA (EU, 2012; FDA, Revised 2014a, b) meaning that their addition could be permitted if they were used in the minimum quantities and with good manufacturing processes.

5. Conclusion
The combination of nisin peptides and essential oils could pave the way for new hurdle concepts when it comes to food preservation, in particular towards Gram negative bacteria. Moreover, the combinatory effects could lead to reduced treatment intensity and/or antimicrobial dosage and therefore avoid undesirable sensory and nutritional properties in food. Such combinations could enhance food safety, shelf life and quality while also meeting consumer demands for more natural, preservative-free foods.

Acknowledgements

This work was carried out through a PhD Programme in Molecular Cell Biology funded by the Programme for Research in Third-Level Institutions (PRTLI) awarded to AC. Work in the authors’ laboratory is supported by the Irish Government under the National Development Plan, through Science Foundation Ireland Investigator awards (10/IN.1/B3027) and (06/IN.1/B98) (http://www.sfi.ie). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

We thank Paula O’Connor for mass spectrometry and Paddy O’Reilly for technical assistance.

References

FDA, Revised 2014a. Code of Federal Regulations Title 21, Food additives permitted for direct addition to food for human consumption; flavouring agents and related substances; synthetic flavouring substances and adjuvants. U.S. Food and Drug Administration, Washington, D.C.

FDA, Revised 2014b. Code of Federal Regulations Title 21, Substances generally recognized as safe; General Provisions; Synthetic flavouring substances and adjuvants. U.S. Food and Drug Administration, Washington, D.C.

Field, D., Daly, K., O'Connor, P.M., Cotter, P.D., Hill, C., Ross, R.P., 2015a. Efficacies of nisin A and nisin V semipurified preparations alone and in combination with plant

Tables

<table>
<thead>
<tr>
<th>Strains/Lux-tagged bacteria</th>
<th>Relevant characteristics or source of strains</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactococcus lactis NZ9700</td>
<td>Wild-type nisin producer</td>
<td>(Kuipers et al., 1993; Kuipers et al., 1998)</td>
</tr>
<tr>
<td>Lactococcus lactis NZ9800</td>
<td>L. lactis NZ9700ΔnisA</td>
<td>(Kuipers et al., 1993; Kuipers et al., 1998)</td>
</tr>
<tr>
<td>Lactococcus lactis NZ9800</td>
<td>Wild-type nisin-producing strain</td>
<td>(Field et al., 2008)</td>
</tr>
<tr>
<td>pCl372nisA</td>
<td>Wild-type producing strain + alteration at position 21</td>
<td>(Field et al., 2010)</td>
</tr>
<tr>
<td>Cronobacter sakazakii NCTC 8155::p16Slux-P_{help}</td>
<td>Isolated from dried milk powder and transformed with p16Slux-P_{help} plasmid</td>
<td>UCC Culture Collection</td>
</tr>
<tr>
<td>Escherichia coli O157:H7 TUV 93-0::p16Slux-P_{help}</td>
<td>Derived from strain EDL933 and transformed with p16Slux-P_{help}</td>
<td>UCC Culture Collection</td>
</tr>
</tbody>
</table>

Table 1
List of nisin-producing strains and lux-tagged bacterial strains used in this study, including relevant characteristics and references.

<table>
<thead>
<tr>
<th>Indicator organism</th>
<th>Nisin A μg ml⁻¹ (µM)</th>
<th>Nisin V μg ml⁻¹ (µM)</th>
<th>Nisin S29A μg ml⁻¹ (µM)</th>
<th>Thymol μg ml⁻¹</th>
<th>Carvacrol μg ml⁻¹</th>
<th>Cinnamaldehyde μg ml⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. sakazakii NCTC 8155::p16Slux-P<sub>help</sub></td>
<td>12.57 (3.75)</td>
<td>12.57 (3.75)</td>
<td>6.28 (1.875) (P<0.001)</td>
<td>125</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>E. coli O157:H7 TUV 93-0::p16Slux-P<sub>help</sub></td>
<td>25.14 (7.5)</td>
<td>12.57 (3.75) (P<0.001)</td>
<td>12.57 (3.75) (P<0.001)</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

Table 2
Minimum inhibitory concentration determinations of nisin A, nisin V, nisin S29A and the essential oils thymol, carvacrol and trans-cinnamaldehyde against C. sakazakii NCTC 8155::p16Slux-P_{help} and E. coli O157:H7 TUV 93-0::p16Slux-P_{help}. Results are expressed as the mean of triplicate assays. Values in bold represent statistical difference between nisin variants and wild type nisin A (Student’s t-test: P<0.05).
Figure legends

Fig. 1. Structure and mass spectrometry analysis of nisin A and its derivatives. (A)
Structural composition of nisin A. Blue circles indicate where amino acids were altered resulting in the generation of nisin variants with enhanced activity.

Figure 2. Growth curve analysis of *C. sakazakii* NCTC8155::p16Lux-P_{help} with 30μM nisin A (open square), (A) nisin V (open diamond), 100μg/ml thymol (open circle) and combinations of nisin A and thymol (closed square), nisin V and thymol (closed diamond) (B) nisin S29A (open inverted triangle), 100μg/ml thymol (open circle) and combinations of nisin A and thymol (closed square), nisin S29A and thymol (closed
inverted triangle). (C) nisin V (open diamond), 125µg/ml carvacrol (open circle) and combinations of nisin A and carvacrol (closed square), nisin V and carvacrol (closed diamond) (D) nisin V (open diamond), nisin S29A (open inverted triangle), 125µg/ml carvacrol (open circle) and combinations of nisin A and carvacrol (closed square) and nisin S29A and thymol (closed inverted triangle). (E) nisin V (open diamond), 125µg/ml trans-cinnamaldehyde (open circle) and combinations of nisin A and trans-cinnamaldehyde (closed square), nisin V and trans-cinnamaldehyde (closed diamond) (F) nisin S29A (open inverted triangle), 125µg/ml trans-cinnamaldehyde (open circle) and combinations of nisin A and trans-cinnamaldehyde (closed square) and nisin S29A and trans-cinnamaldehyde (closed inverted triangle).

Figure 3. Growth curve analysis of *E. coli* O157:H7 TUV93-0::p16S::lux-P_
help with 30µM nisin A (open square), (A) nisin V (open diamond), 100µg/ml thymol (open circle) and combinations of nisin A and thymol (closed square), nisin V and thymol (closed diamond) (B) nisin S29A (open inverted triangle), 100µg/ml thymol (open circle) and combinations of nisin A and thymol (closed square), nisin S29A and thymol (closed inverted triangle). (C) nisin V (open diamond), 125µg/ml carvacrol (open circle) and combinations of nisin A and carvacrol (closed square), nisin V and carvacrol (closed diamond) (D) nisin V (open diamond), nisin S29A (open inverted triangle), 125µg/ml carvacrol (open circle) and combinations of nisin A and carvacrol (closed square) and nisin S29A and thymol (closed inverted triangle). (E) nisin V (open diamond), 125µg/ml trans-cinnamaldehyde (open circle) and combinations of nisin A and trans-cinnamaldehyde (closed square), nisin V and trans-cinnamaldehyde (closed diamond) (F) nisin S29A (open inverted triangle), 125µg/ml trans-cinnamaldehyde
(open circle) and combinations of nisin A and trans-cinnamaldehyde (closed square) and nisin S29A and trans-cinnamaldehyde (closed inverted triangle).

Fig. 4. Kill effect of nisin A derivatives in combination with essential oils against *C. sakazakii* NCTC 8155::p16Slux-P_{help}. Kill curve analysis of *C. sakazakii* NCTC 8155::p16Slux-P_{help} with 60 μM of each peptide both alone and in combination with (A) 150 μg ml⁻¹ thymol (THY), (B) 300 μg ml⁻¹ carvacrol (CA) and (C) 350 μg ml⁻¹ trans-cinnamaldehyde (CN) in LB broth after 3 hours at room temperature.

Fig. 5. Kill effect of nisin A derivatives in combination with essential oils against *E. coli* O157:H7 TUV 93-0::p16Slux-P_{help}. Kill curve analysis of *E. coli* O157:H7 TUV 93-0::p16Slux-P_{help} with 30 μM of each nisin peptide both alone and in combination with (A) 150 μg ml⁻¹ thymol (THY), (B) 300 μg ml⁻¹ carvacrol (CA) and (C) 350 μg ml⁻¹ trans-cinnamaldehyde (CN) in LB broth after 3 hours at room temperature. ND, not detected.

Fig. 6. Combinations of nisin derivatives, carvacrol and citric acid against *C. sakazakii* NCTC 8155::p16Slux-P_{help} in powdered infant milk formula. Model food analysis of *C. sakazakii* NCTC 8155::p16Slux-P_{help} in powdered infant milk formula with 60 μM of each nisin peptide both alone and in combination with (A) 300 μg ml⁻¹ carvacrol (CA), (B) 30 mM citric acid (CT) and (C) 300 μg ml⁻¹ carvacrol and 30 mM citric acid after 3 hours at room temperature.
Fig. 7. Combinations of commercial Nisaplin, carvacrol and citric acid against C. sakazakii NCTC 8155::p16Slux-P_help in powdered infant milk formula. Model food analysis of C. sakazakii NCTC 8155::p16Slux-P_help in powdered infant milk formula with 10 mg ml\(^{-1}\) of commercial Nisaplin (Sigma) containing 2.5% nisin both alone and in combination with 300 µg ml\(^{-1}\) carvacrol (CA) and 30 mM citric acid (CT) after 3 hours at room temperature. ND, not detected (detection limit of 10\(^2\) cfu ml\(^{-1}\)).

Fig. 8. Combinations of nisin A derivatives and carvacrol against E. coli O157:H7 TUV 93-0::p16Slux-P_help in apple juice. Model food analysis of E. coli O157:H7 TUV 93-0::p16Slux-P_help in apple juice with 30 µM of each nisin peptide both alone and in combination with 75 µg ml\(^{-1}\) carvacrol (CA) after 3 hours at room temperature. ND, not detected (detection limit of 10\(^2\) cfu ml\(^{-1}\)).