<table>
<thead>
<tr>
<th>Title</th>
<th>Analysis of P-b centers at the Si(111)/SiO2 interface following rapid thermal annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hurley, Paul K.; Stesmans, A.; Afanas’ev, V. V.; O’Sullivan, B. J.; O’Callaghan, E.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2003-04</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
</tbody>
</table>
http://dx.doi.org/10.1063/1.1559428 |
| Access to the full text of the published version may require a subscription. |
| Rights | © 2003 American Institute of Physics, This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Hurley, P. K., Stesmans, A., Afanas’ev, V. V., O’Sullivan, B. J. and O’Callaghan, E. (2003) 'Analysis of P-b centers at the Si(111)/SiO2 interface following rapid thermal annealing', Journal of Applied Physics, 93(7), pp. 3971-3973 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.1559428 |
| Item downloaded from | http://hdl.handle.net/10468/4237 |

Downloaded on 2019-01-09T20:14:18Z
Analysis of P₃ centers at the Si(111)/SiO₂ interface following rapid thermal annealing

P. K. Hurley, A. Stesmans, and V. V. Afanas’ev
B. J. O’Sullivan and E. O’Callaghan

Citation: Journal of Applied Physics 93, 3971 (2003); doi: 10.1063/1.1559428
View online: http://dx.doi.org/10.1063/1.1559428
View Table of Contents: http://aip.scitation.org/toc/jap/93/7
Published by the American Institute of Physics
Analysis of P\textsubscript{b} centers at the Si(111)/SiO\textsubscript{2} interface following rapid thermal annealing

P. K. Hurley\textsuperscript{a)
NMRC, Lee Maltings, Prospect Row, Cork, Ireland
A. Stesmans and V. V. Afanas’ev
Department of Physics, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium
B. J. O’Sullivan and E. O’Callaghan
NMRC, Lee Maltings, Prospect Row, Cork, Ireland

(Received 11 October 2002; accepted 14 January 2003)

In this work, an experimental study of defects at the Si(111)/SiO\textsubscript{2} interface following rapid thermal annealing (RTA) in a nitrogen ambient at 1040 °C is presented. From a combined analysis using electron spin resonance and quasistatic capacitance–voltage characterization, the dominant defects observed at the Si(111)/SiO\textsubscript{2} interface following an inert ambient RTA process are identified unequivocally as the P\textsubscript{b} signal (interfacial Si\textsubscript{3}≡Si= for the oxidized Si(111) orientation. Furthermore, the P\textsubscript{b} density inferred from electron spin resonance (7.8 ± 1)×1012 cm-2, is in good agreement with the electrically active interface state density (6.7 ± 1.7)×1012 cm-2 determined from analysis of the quasistatic capacitance–voltage response. © 2003 American Institute of Physics. [DOI: 10.1063/1.1559428]

I. INTRODUCTION

It is now well established that interface defects with characteristic peaks in the energy gap are present for polysilicon/SiO\textsubscript{2}/Si structures, which are exposed to rapid thermal annealing (RTA) (T≥800 °C) in an inert ambient as the final process step. The interface density peaks are manifest as peak features in the capacitance–voltage (C–V) response of the structure.1–7 The peak features in the C–V response are also measured for oxide layers formed by rapid thermal oxidation (RTO), where the C–V measurement is performed directly following the oxidation process using a mercury or aluminum gate layer.8,9

The measured density of states (DOS) across the energy gap following the RTA or RTO processes, extracted from the quasistatic-C–V (QS-C–V) response, yields a peak value located at 0.85–0.88 eV above the valence band for the oxidized Si(100) orientation. The location of the peak in the band gap, and the extracted peak densities (5.5×1012 to 1.7×1013 cm-2 eV−1),7 suggest that the defects are due to unpassivated P\textsubscript{b}/(P\textsubscript{b}) centers for the oxidized Si(100) surface. Moreover, an experiment using Si(111)/SiO\textsubscript{2} structures exposed to RTA (1040 °C, 20 s in N\textsubscript{2}) as the final process step, yielded the two well established peaks in the DOS profile for the P\textsubscript{b} center of the oxidized Si(111) orientation.8 However, the atomic identification of the interface defects as P\textsubscript{b} defects by electron spin resonance (ESR) has not been established in previous publications.

The purpose of this article is to examine the interface defects following RTA using ESR, and to compare the ESR density to the electrically active defect density as determined from analysis of the QS-C–V response. The atomic identification of the interface defects after RTA is important for two main reasons. First, if ESR confirms the interface defects to be P\textsubscript{b} centers, then RTA in N\textsubscript{2} is confirmed as an alternative and complementary technique to vacuum annealing (T ∼700 °C, 1×106 Torr)10 and rapid furnace pulling11 to dissociate hydrogen from P\textsubscript{b} centers to permit electrical or ESR analysis. Second, the identification of the interface defects as P\textsubscript{b} centers by ESR, will provide an unambiguous explanation for the peaklike features widely observed in the C–V response of polysilicon/oxide/Si(100) structures measured following RTA in N\textsubscript{2}. For this experiment, the Si(111) orientation was selected, as the oxidized Si(111) surface has a well characterized single P\textsubscript{b} center12,13 as well as clear peaks in the DOS profile in the upper and lower regions of the energy gap.14

II. EXPERIMENTAL DETAILS

The Si (111) wafers examined in this work were antimony-doped (1.2×10−2 Ω cm) substrates with a 16[μm thick, 6.8×1014 cm-3, phosphorous-doped, epitaxial layer. Following a standard clean, the wafers were subjected to dry thermal oxidation at 850 °C in a conventional furnace. The wafers were loaded and stabilized at 850 °C (6.75 slpm N\textsubscript{2} and 0.75 slpm O\textsubscript{2}). The oxidation was in pure O\textsubscript{2} (7.5 slpm), with the ramp down to 700 °C and pull in nitrogen (7.5 slpm). The oxide thickness value obtained by ellipsometry was 11.5 nm. Following thermal oxidation, the sample received an RTA at 1040 °C for 20 s in N\textsubscript{2} (subsequently referred to as “RTA only”).

The RTA process had a cooling rate of approximately 35 °C/s. A second sample received the same processing as just detailed, with the addition of a forming gas anneal (FGA) at 450 °C for 30 min in a 15% H\textsubscript{2}/85% N\textsubscript{2} ambient...
following the RTA step. This sample is subsequently referred to as “RTA+FGA.”

The ESR measurements were conventional derivative-absorption K-band (−20.45 GHz) \(dP/\mu dB \) spectra, where \(P_\mu \) is the incident microwave power and \(B \) the applied magnetic field, recorded at 4.2 K, as described elsewhere.\(^{12}\) The angle \(\varphi_B \) which \(B \) makes with the sample slice normal \(n \) (=[111]) was varied in the range 0°–90°. Defect densities were determined by comparison of the signal intensity \(I \) (area under absorption curve) obtained by double numerical integration of \(dP/\mu dB \) spectra to that of a comounted LiF:Li \(\text{^7} \text{Li} \) reference sample, recorded in one trace. Typically, an ESR sample comprised 20 thinned down slices of \(2 \times 9 \text{ mm}^2 \) area each.

QS-C−V characterization was performed using a mercury probe \(C−V \) system. The mercury probe area is 4.18 \(\times 10^{-3} \text{ cm}^2 \). Precautions were taken to ensure valid quasi-static capacitance data by performing leakage current measurements over the \(C−V \) bias range for all samples.

III. RESULTS

Figure 1 shows typical K-band ESR signals observed at 4.2 K on the Si(111)/SiO\(_2\) RTA only sample. Three spectra are observed in a field window of 150 G around the \(g \sim 2 \) position (marker not included here for clarity). First, there is an intense and broad line centered at \(g = 1.9989(1) \) of peak-to-peak width \(\Delta B_{pp} = 15.0 \pm 0.2 \text{ G} \), dominating the total spectrum. It originates from the occupied (unionsized) Sb donors in the highly Sb-doped Si substrate (\(\rho = 0.012 \Omega \text{ cm} \)). Approximating\(^{15,16}\) the magnetic susceptibility \(\chi \) by a pure Curie law (\(\chi = C/T \)) for this \(S = 1/2 \) impurity spin system, a density \([\text{Sb}] \sim 1.4 \times 10^{18} \text{ cm}^{-3} \) in the substrate is inferred, in fair agreement with the nominal sample resistivity specification (\(\rho = 0.012 \Omega \text{ cm} \), [Sb] \(\sim 3.5 \times 10^{18} \text{ cm}^{-3} \)).\(^{17}\) When comparing with the P case, the observed large \(\Delta B_{pp} \) complies with the inferred density.\(^{15}\)

Second, we observe a weak doublet of splitting \(a_{\mu B} = 42.1 \text{ G} \) centered at \(g = 1.99840(5) \), originating from\(^{18,19}\) the interaction of the localized donor electrons with the \(\text{^31} \text{P} (I = 1/2) \) nuclei in the P-doped 16 \(\mu \text{m} \) thick epitaxial layer on Si doped to \(6.8 \times 10^{14} \text{ cm}^{-3} \). The doublet signal corresponds to \(\sim 3 \times 10^{12} \text{ P spins} \).

Third, and most interesting, we observe a prominent and unmistakable \(P_p \) (interfacial Si\(\text{III}\)≡Si') signal\(^{20}\) of axial symmetry with \(g \) matrix principal values \(g_\parallel = 2.0014; g_\perp = 2.0091 \). The characteristic anisotropy is clearly exposed in Fig. 1 by varying \(\varphi_B \) from 25° to 80° (four lower curves where the intense Sb signal has been eliminated through simulation to better expose the weak signals), with attendant characteristic increase in \(\Delta B_{pp} \) with increasing \(\varphi_B \) due to strain-induced line broadening. The inferred \(P_p \) density is (7.8±1) \(\times 10^{12} \text{ cm}^{-2} \).

The \(P_p \) density obtained from the ESR provides a value for comparison to the electrically active defect density obtained from QS−C−V analysis. Figure 2 shows the QS−C−V response of the Si(111)/SiO\(_2\) RTA only sample. The QS−C−V exhibits two peaks (labeled 0/+ and 0/−). The \(\psi_s \) versus \(V_g \) characteristic is also plotted in Fig. 2, and indicates pinning of the surface potential corresponding to the position of the peaks in the QS−C−V response. The same QS−C−V values are obtained for sweep rates of 25 mV/s, 50 mV/s, and 100 mV/s confirming the effect is not due to nonequilibrium. The two peaks are removed by forming gas annealing (15% \(\text{H}_2 \), 85% \(\text{N}_2 \)) at 450 °C for 30 min. The DOS across the band gap extracted from the QS−C−V data using the Berglund method is shown in Fig. 3, for the RTA only and RTA+FGA samples. The RTA only sample exhibits two characteristic peaks at 0.31 and 0.84 eV above the valence band edge (\(E_g \)). Figure 3 also shows the resulting DOS obtained by subtracting the background U-shaped DOS of the RTA+FGA sample from the RTA only DOS, over the energy range \(E_V + 0.12 \text{ eV} \) to \(E_V + 1.0 \text{ eV} \). From this DOS characteristic, the density associated with the interface defect is determined over the energy range 0.12 to 0.56 eV and 0.56 to 1.0 eV, to be \(6.8 \times 10^{12} \text{ cm}^{-2} \) and \(6.6 \times 10^{12} \text{ cm}^{-2} \), respectively. Based on an uncertainty in the oxide thickness of

FIG. 1. Absorption-derivative ESR spectra observed on a thermal Si(111)/SiO\(_2\) structure subjected to a postoxidation RTA (1040 °C; 20 s; \(\text{N}_2 \) ambient) for various angles (\(\varphi_B \)) of \(B \) with the [111] interface normal. Top curve is an as-observed spectrum; for the lower four curves, the intense central signal originating from Sb donors in the Si substrate has been subtracted to better expose the weak P\(_p\) and \(\text{^31} \text{P} \) signals. The angular anisotropy of the P\(_p\) signal with concomitant broadening is clearly exposed.

FIG. 2. QS−C−V response (100 mV/s) for the Si(111)/SiO\(_2\)(11.5 nm) mercury probe capacitor, with a 1040 °C, 20 s RTA in \(\text{N}_2 \) as the final process step. The figure also shows the calculated surface potential (\(\psi_s \)).
FIG. 3. DOS across the energy gap calculated from the \(qS-C-V \) response. Circles: Data calculated for the \(Si(111)/SiO_2(11.5 \text{ nm}) \) mercury probe capacitor, with a \(1040^\circ C, 20 \text{ s RTA in N}_2 \) as the final process step (RTA only). Triangles: DOS calculated for the \(Si(111)/SiO_2(11.5 \text{ nm}) \) mercury probe capacitor, with a \(1040^\circ C, 20 \text{ s RTA in N}_2 \), and subsequent \(\text{FGA (450 }^\circ \text{C, 30 min, 15% H}_2, 85% \text{ N}_2) \) (RTA\(+\)FGA). Solid line: DOS obtained by subtracting the background U-shaped DOS of the RTA\(+\)FGA sample from the RTA only DOS, over the energy range \(E_F+0.12 \text{ eV to } E_F+1.0 \text{ eV} \).

\[\pm 0.25 \text{ nm}, \text{ this yields an average density of } (6.7 \pm 1.7) \times 10^{12} \text{ cm}^{-2} \text{ associated with the interface defect following the RTA process.} \]

IV. DISCUSSION AND CONCLUSION

The ESR results confirm that the peak features in the \(qS-C-V \) response of metal–oxide semiconductor structures measured directly following RTA in \(N_2 \) are the result of unpassivated \(P_b \) defects. The density obtained by ESR (7.8 \(\pm 1 \times 10^{12} \text{ cm}^{-2} \)), is in close agreement with the electrically active density \((6.7 \pm 1.7) \times 10^{12} \text{ cm}^{-2} \) calculated from the \(qS-C-V \) response.

A further relevant point is the density of \(P_b \) centers obtained from the ESR and \(qS-C-V \) analysis. It is well documented, that the interface of as-grown standard thermal \(Si(111)/SiO_2 \) is invariably characterized by an inherent \(P_b \) density \(N_0 = (4.9 \pm 0.4) \times 10^{12} \text{ cm}^{-2} \) for the oxidation range \(300-950^\circ C \). Interestingly, we find here a markedly higher \(P_b \) density, indicating additional creation of \(P_b \) centers. Given the final thermal treatment, the sample underwent, i.e., RTA at \(1040^\circ C \) [effectively a postoxidation anneal (POA) in inert ambient], this result may not come as a surprise. Indeed, as demonstrated previously, POA in a vacuum or \(N_2 \) at elevated temperature may result in strong creation of additional \(P_b \) defect sites; e.g., at \(1040^\circ C, P_b \) densities of \(\sim 1.5 \times 10^{13} \text{ cm}^{-2} \) may be attained within minutes. The value found in the present work is lower, for which there may be several reasons. It may be related to the very short POA time (20 s) and/or ambient conditions. For one, trace amounts of hydrogenic species in the ambient gas may have resulted in part by the \(P_b \) system being left passivated (\(\text{P}_H \) formation), i.e., ESR and \(qS-C-V \) inactive. Also, there may be an unexplored influence of oxide thickness (only \(\sim 11.5 \text{ nm} \) here). Whatever the case, the important conclusion is that the RTA treatment in \(N_2 \) has resulted in depassivation of the \(P_b \) centers formed by the oxidation process, and has also generated additional \(P_b \) defects. With respect to the \(Si/SiO_2 \) interface, this finding confirms the results and unequivocally identifies the origin of the interface traps following inert ambient RTA as unpassivated \(P_b \) centers.

ACKNOWLEDGMENTS

The authors would like to acknowledge P. A. Stolk, F. N. Cubayne, and F. P. Widdershoven of Philips Research Leuven for useful discussions and the provision of the experimental samples.

16. Adopting a pure Curie law \((\chi \times T) / \theta \) behavior is a first-order approximation of the more realistic Curie–Weiss behavior, i.e., \(\chi \times T / (\theta + T) \), where \(\theta \) is the asymptotic Curie–Weiss temperature. For comparison, the P donor system in Si-doped to \(1-17 \times 10^{16} \text{ cm}^{-3} \) exhibits a Curie–Weiss behavior with \(\theta \approx 2.7 \pm 0.3 \text{ K} \) [see A. Stesmans, J. Magn. Reson. 76, 14 (1988)].